ETH Price: $2,651.97 (+7.98%)
Gas: 0.88 Gwei

Transaction Decoder

Block:
22281343 at Apr-16-2025 11:45:35 AM +UTC
Transaction Fee:
0.000058182792946908 ETH $0.15
Gas Used:
102,009 Gas / 0.570369212 Gwei

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
23.880928226778517389 Eth23.880947389625759673 Eth0.000019162847242284
0x6b270F0B...Da9da8c93
3.048606856235292433 Eth
Nonce: 10804
3.048548673442345525 Eth
Nonce: 10805
0.000058182792946908

Execution Trace

0x22863c875e6b7519141cb8394f2220fac7e6ade6.f5789705( )
  • 0x6e9359dd27980fb7027c179ae5e701e4bcb2f6b9.f5789705( )
    • AggregationRouterV6.fillOrderArgs( order=[{name:salt, type:uint256, order:1, indexed:false, value:102412815597488229701339058217231537660377783400348654814607714769717995472483, valueString:102412815597488229701339058217231537660377783400348654814607714769717995472483}, {name:maker, type:uint256, order:2, indexed:false, value:444637767300975226364631887431980306376835773171, valueString:444637767300975226364631887431980306376835773171}, {name:receiver, type:uint256, order:3, indexed:false, value:0, valueString:0}, {name:makerAsset, type:uint256, order:4, indexed:false, value:1248875146012964071876423320777688075155124985543, valueString:1248875146012964071876423320777688075155124985543}, {name:takerAsset, type:uint256, order:5, indexed:false, value:1097077688018008265106216665536940668749033598146, valueString:1097077688018008265106216665536940668749033598146}, {name:makingAmount, type:uint256, order:6, indexed:false, value:5000000, valueString:5000000}, {name:takingAmount, type:uint256, order:7, indexed:false, value:2968944261533662, valueString:2968944261533662}, {name:makerTraits, type:uint256, order:8, indexed:false, value:62645329528782394789705396186445553996282648272394758475269719962315231592448, valueString:62645329528782394789705396186445553996282648272394758475269719962315231592448}], r=6D419B12A1914DBFAE0E5A827AB39BD9EB31138D71FA612083D8204FBA591972, vs=41C59039D8FC74295512F8533C3699BF3818067F82E0877213F56B3B98B34512, amount=5000000, takerTraits=72370070763054550302523142311721464081907258662278533304965171766702941143040, args=0x0000020C00000140000001400000014000000140000000A00000000000000000ABD4E5FB590AA132749BBF2A04EA57EFBAAC399E04B5380000016C67FF97D60000B40963970104B53800B40000000000640BB09498030AE3416B66DC5DCD8578CA14EEC99E63B8394F2220FAC7E6ADE6D18BD45F0B94F54A968FD61B892B2AD62490118595770895AD27AD6B0D95339FB574BDC56763F995617556ED277AB32233786DE5E0E428AC771D77B55B7D1434EAE4A48B2C8626813BD1B091EA6BEDBDABD4E5FB590AA132749BBF2A04EA57EFBAAC399E04B5380000016C67FF97D60000B40963970104B53800B40000000000640BB09498030AE3416B66DC5DCD8578CA14EEC99E63B8394F2220FAC7E6ADE6D18BD45F0B94F54A968FD61B892B2AD62490118595770895AD27AD6B0D95339FB574BDC56763F995617556ED277AB32233786DE5E0E428AC771D77B55B7D1434EAE4A48B2C8626813BD1B091EA6BEDBDABD4E5FB590AA132749BBF2A04EA57EFBAAC399E000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006467FF97BE0BB09498030AE3416B66DC00005DCD8578CA14EEC99E630000B8394F2220FAC7E6ADE60000D18BD45F0B94F54A968F0000D61B892B2AD624901185000095770895AD27AD6B0D950000339FB574BDC56763F9950000617556ED277AB322337800006DE5E0E428AC771D77B500005B7D1434EAE4A48B2C86000026813BD1B091EA6BEDBD000022863C875E6B7519141CB8394F2220FAC7E6ADE652BBBE2900000000000000000000000000000000000000000000000000000000000000E000000000000000000000000022863C875E6B7519141CB8394F2220FAC7E6ADE6000000000000000000000000000000000000000000000000000000000000000000000000000000000000000022863C875E6B7519141CB8394F2220FAC7E6ADE6000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000067FF9862315A892A4D02C5C1169D5F0E4F7CB4130CC0D1380002000000000000000000090000000000000000000000000000000000000000000000000000000000000000000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC200000000000000000000000000000000000000000000000000000000004C4B4000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000180000000000000000000000000000000000000000000000000000632E20C2CB5310000000000000000000000000000000000000000000000000000000067FF986200000000000000000000000000000000000000000000000000000000000000E00000000000000000000000006B270F0BA52908399170B0D4BDDC8A5DA9DA8C9300000000000000000000000000000000000000000000000000000000000000000000000000000055D8129CFB7C1A467300000000000000004615343E73B90000000000000000899E107B7F96D28D8000000000000000000F4C3AC283698E159F00000000000000000000000000000000000000000014594617D9DC364210000000000000000000004563918244F400000000000000000000006A94D74F43000000000000000000000000000067FF985D0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000416DEF01C5C32DB81AAB899514CC329CACE38B67D1F61DCC2E44056ECF99E73311047F9CF48982D97E46ECDDBC911CDC2963882B2153C33104297C94F00AB239441B00000000000000000000000000000000000000000000000000000000000000 ) => ( 1889550152, 0, )
      • Null: 0x000...001.59dfc9ea( )
      • Settlement.getTakingAmount( order=[{name:salt, type:uint256, order:1, indexed:false, value:102412815597488229701339058217231537660377783400348654814607714769717995472483, valueString:102412815597488229701339058217231537660377783400348654814607714769717995472483}, {name:maker, type:uint256, order:2, indexed:false, value:444637767300975226364631887431980306376835773171, valueString:444637767300975226364631887431980306376835773171}, {name:receiver, type:uint256, order:3, indexed:false, value:0, valueString:0}, {name:makerAsset, type:uint256, order:4, indexed:false, value:1248875146012964071876423320777688075155124985543, valueString:1248875146012964071876423320777688075155124985543}, {name:takerAsset, type:uint256, order:5, indexed:false, value:1097077688018008265106216665536940668749033598146, valueString:1097077688018008265106216665536940668749033598146}, {name:makingAmount, type:uint256, order:6, indexed:false, value:5000000, valueString:5000000}, {name:takingAmount, type:uint256, order:7, indexed:false, value:2968944261533662, valueString:2968944261533662}, {name:makerTraits, type:uint256, order:8, indexed:false, value:62645329528782394789705396186445553996282648272394758475269719962315231592448, valueString:62645329528782394789705396186445553996282648272394758475269719962315231592448}], extension=0x0000020C00000140000001400000014000000140000000A00000000000000000ABD4E5FB590AA132749BBF2A04EA57EFBAAC399E04B5380000016C67FF97D60000B40963970104B53800B40000000000640BB09498030AE3416B66DC5DCD8578CA14EEC99E63B8394F2220FAC7E6ADE6D18BD45F0B94F54A968FD61B892B2AD62490118595770895AD27AD6B0D95339FB574BDC56763F995617556ED277AB32233786DE5E0E428AC771D77B55B7D1434EAE4A48B2C8626813BD1B091EA6BEDBDABD4E5FB590AA132749BBF2A04EA57EFBAAC399E04B5380000016C67FF97D60000B40963970104B53800B40000000000640BB09498030AE3416B66DC5DCD8578CA14EEC99E63B8394F2220FAC7E6ADE6D18BD45F0B94F54A968FD61B892B2AD62490118595770895AD27AD6B0D95339FB574BDC56763F995617556ED277AB32233786DE5E0E428AC771D77B55B7D1434EAE4A48B2C8626813BD1B091EA6BEDBDABD4E5FB590AA132749BBF2A04EA57EFBAAC399E000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006467FF97BE0BB09498030AE3416B66DC00005DCD8578CA14EEC99E630000B8394F2220FAC7E6ADE60000D18BD45F0B94F54A968F0000D61B892B2AD624901185000095770895AD27AD6B0D950000339FB574BDC56763F9950000617556ED277AB322337800006DE5E0E428AC771D77B500005B7D1434EAE4A48B2C86000026813BD1B091EA6BEDBD0000, orderHash=59DFC9EA6DD45DCB26FF87044DCFBCBB381BB21ADEB2BF7A1AE9E3FA301097D6, taker=0x22863c875e6b7519141CB8394f2220FAC7e6Ade6, makingAmount=5000000, remainingMakingAmount=5000000, extraData=0x04B5380000016C67FF97D60000B40963970104B53800B40000000000640BB09498030AE3416B66DC5DCD8578CA14EEC99E63B8394F2220FAC7E6ADE6D18BD45F0B94F54A968FD61B892B2AD62490118595770895AD27AD6B0D95339FB574BDC56763F995617556ED277AB32233786DE5E0E428AC771D77B55B7D1434EAE4A48B2C8626813BD1B091EA6BEDBD ) => ( 2986043599113539 )
      • TetherToken.transferFrom( _from=0x4DE23f3f0Fb3318287378AdbdE030cf61714b2f3, _to=0x22863c875e6b7519141CB8394f2220FAC7e6Ade6, _value=5000000 )
        File 1 of 3: AggregationRouterV6
        /*
                                                                   ,▄▓▓██▌   ,╓▄▄▓▓▓▓▓▓▓▓▄▄▄,,
                                                                ,▓██▓███▓▄▓███▓╬╬╬╬╬╬╬╬╬╬╬╬╬▓███▓▄,
                                                          ▄█   ▓██╬╣███████╬▓▀╬╬▓▓▓████████████▓█████▄,
                                                         ▓██▌ ▓██╬╣██████╬▓▌  ██████████████████████▌╙╙▀ⁿ
                                                        ▐████████╬▓████▓▓█╨ ▄ ╟█████████▓▓╬╬╬╬╬▓▓█████▓▄
                                          └▀▓▓▄╓        ╟█▓╣█████▓██████▀ ╓█▌ ███████▓▓▓▓▓╬╬╬╬╬╬╬╬╬╬╬╬▓██▓▄
                                             └▀████▓▄╥  ▐██╬╬██████████╙ Æ▀─ ▓███▀╚╠╬╩▀▀███████▓▓╬╬╬╬╬╬╬╬╬██▄
                                                └▀██▓▀▀█████▓╬▓██████▀     ▄█████▒╠"      └╙▓██████▓╬╬╬╬╬╬╬╬██▄
                                                   └▀██▄,└╙▀▀████▌└╙    ^"▀╙╙╙"╙██      @▄    ╙▀███████╬╬╬╬╬╬╬██µ
                                                      └▀██▓▄, ██▌       ╒       ╙█▓     ]▓█▓╔    ▀███████▓╬╬╬╬╬▓█▌
                                                          ▀█████       ▓         ╟█▌    ]╠██▓░▒╓   ▀████████╬╬╬╬╣█▌
                                                          ▐████      ╓█▀█▌      ,██▌    ╚Å███▓▒▒╠╓  ╙█████████╬╬╬╣█▌
                                                          └████     ▓█░░▓█      ▀▀▀    φ▒╫████▒▒▒▒╠╓  █████████▓╬╬▓█µ
                                                           ╘███µ ▌▄█▓▄▓▀`     ,▀    ,╔╠░▓██████▌╠▒▒▒φ  ██████████╬╬██
                                                           ▐████µ╙▓▀`     ,▀╙,╔╔φφφ╠░▄▓███████▌░▓╙▒▒▒╠ └██╬███████╬▓█⌐
                                                           ╫██ ▓▌         ▌φ▒▒░▓██████████████▌▒░▓╚▒▒▒╠ ▓██╬▓██████╣█▌
                                                           ██▌           ▌╔▒▒▄████████████████▒▒▒░▌╠▒▒▒≥▐██▓╬╬███████▌
                                                           ██▌      ,╓φ╠▓«▒▒▓████▀  ▀█████████▌▒▒▒╟░▒▒▒▒▐███╬╬╣████▓█▌
                                                          ▐██      ╠▒▄▓▓███▓████└     ▀████████▌▒▒░▌╚▒▒▒▐███▓╬╬████ ╙▌
                                                          ███  )  ╠▒░░░▒░╬████▀        └████████░▒▒░╬∩▒▒▓████╬╬╣███
                                                         ▓██    ╠╠▒▒▐█▀▀▌`░╫██           ███████▒▒▒▒░▒▒½█████╬╬╣███
                                                        ███ ,█▄ ╠▒▒▒╫▌,▄▀,▒╫██           ╟██████▒▒▒░╣⌠▒▓█████╬╬╣██▌
                                                       ╘██µ ██` ╠▒▒░██╬φ╠▄▓██`            ██████░░▌φ╠░▓█████▓╬╬▓██
                                                        ╟██  .φ╠▒░▄█▀░░▄██▀└              █████▌▒╣φ▒░▓██████╬╬╣██
                                                         ▀██▄▄▄╓▄███████▀                ▐█████░▓φ▒▄███████▓╬╣██
                                                           ╙▀▀▀██▀└                      ████▓▄▀φ▄▓████████╬▓█▀
                                                                                        ▓███╬╩╔╣██████████▓██└
                                                                                      ╓████▀▄▓████████▀████▀
                                                                                    ,▓███████████████─]██╙
                                                                                 ,▄▓██████████████▀└  ╙
                                                                            ,╓▄▓███████████████▀╙
                                                                     `"▀▀▀████████▀▀▀▀`▄███▀▀└
                                                                                      └└
                            11\\   11\\                     11\\             11\\   11\\            11\\                                       11\\
                          1111 |  \\__|                    11 |            111\\  11 |           11 |                                      11 |
                          \\_11 |  11\\ 1111111\\   1111111\\ 1111111\\        1111\\ 11 | 111111\\ 111111\\   11\\  11\\  11\\  111111\\   111111\\  11 |  11\\
                            11 |  11 |11  __11\\ 11  _____|11  __11\\       11 11\\11 |11  __11\\\\_11  _|  11 | 11 | 11 |11  __11\\ 11  __11\\ 11 | 11  |
                            11 |  11 |11 |  11 |11 /      11 |  11 |      11 \\1111 |11111111 | 11 |    11 | 11 | 11 |11 /  11 |11 |  \\__|111111  /
                            11 |  11 |11 |  11 |11 |      11 |  11 |      11 |\\111 |11   ____| 11 |11\\ 11 | 11 | 11 |11 |  11 |11 |      11  _11<
                          111111\\ 11 |11 |  11 |\\1111111\\ 11 |  11 |      11 | \\11 |\\1111111\\  \\1111  |\\11111\\1111  |\\111111  |11 |      11 | \\11\\
                          \\______|\\__|\\__|  \\__| \\_______|\\__|  \\__|      \\__|  \\__| \\_______|  \\____/  \\_____\\____/  \\______/ \\__|      \\__|  \\__|
                                       111111\\                                                               11\\     11\\
                                      11  __11\\                                                              11 |    \\__|
                                      11 /  11 | 111111\\   111111\\   111111\\   111111\\   111111\\   111111\\ 111111\\   11\\  111111\\  1111111\\
                                      11111111 |11  __11\\ 11  __11\\ 11  __11\\ 11  __11\\ 11  __11\\  \\____11\\\\_11  _|  11 |11  __11\\ 11  __11\\
                                      11  __11 |11 /  11 |11 /  11 |11 |  \\__|11111111 |11 /  11 | 1111111 | 11 |    11 |11 /  11 |11 |  11 |
                                      11 |  11 |11 |  11 |11 |  11 |11 |      11   ____|11 |  11 |11  __11 | 11 |11\\ 11 |11 |  11 |11 |  11 |
                                      11 |  11 |\\1111111 |\\1111111 |11 |      \\1111111\\ \\1111111 |\\1111111 | \\1111  |11 |\\111111  |11 |  11 |
                                      \\__|  \\__| \\____11 | \\____11 |\\__|       \\_______| \\____11 | \\_______|  \\____/ \\__| \\______/ \\__|  \\__|
                                                11\\   11 |11\\   11 |                    11\\   11 |
                                                \\111111  |\\111111  |                    \\111111  |
                                                 \\______/  \\______/                      \\______/
                                                        1111111\\                        11\\
                                                        11  __11\\                       11 |
                                                        11 |  11 | 111111\\  11\\   11\\ 111111\\    111111\\   111111\\
                                                        1111111  |11  __11\\ 11 |  11 |\\_11  _|  11  __11\\ 11  __11\\
                                                        11  __11< 11 /  11 |11 |  11 |  11 |    11111111 |11 |  \\__|
                                                        11 |  11 |11 |  11 |11 |  11 |  11 |11\\ 11   ____|11 |
                                                        11 |  11 |\\111111  |\\111111  |  \\1111  |\\1111111\\ 11 |
                                                        \\__|  \\__| \\______/  \\______/    \\____/  \\_______|\\__|
        */
        // SPDX-License-Identifier: MIT
        // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
        pragma solidity 0.8.23;
        type MakerTraits is uint256;
        /**
         * @title MakerTraitsLib
         * @notice A library to manage and check MakerTraits, which are used to encode the maker's preferences for an order in a single uint256.
         * @dev
         * The MakerTraits type is a uint256 and different parts of the number are used to encode different traits.
         * High bits are used for flags
         * 255 bit `NO_PARTIAL_FILLS_FLAG`          - if set, the order does not allow partial fills
         * 254 bit `ALLOW_MULTIPLE_FILLS_FLAG`      - if set, the order permits multiple fills
         * 253 bit                                  - unused
         * 252 bit `PRE_INTERACTION_CALL_FLAG`      - if set, the order requires pre-interaction call
         * 251 bit `POST_INTERACTION_CALL_FLAG`     - if set, the order requires post-interaction call
         * 250 bit `NEED_CHECK_EPOCH_MANAGER_FLAG`  - if set, the order requires to check the epoch manager
         * 249 bit `HAS_EXTENSION_FLAG`             - if set, the order has extension(s)
         * 248 bit `USE_PERMIT2_FLAG`               - if set, the order uses permit2
         * 247 bit `UNWRAP_WETH_FLAG`               - if set, the order requires to unwrap WETH
         * Low 200 bits are used for allowed sender, expiration, nonceOrEpoch, and series
         * uint80 last 10 bytes of allowed sender address (0 if any)
         * uint40 expiration timestamp (0 if none)
         * uint40 nonce or epoch
         * uint40 series
         */
        library MakerTraitsLib {
            // Low 200 bits are used for allowed sender, expiration, nonceOrEpoch, and series
            uint256 private constant _ALLOWED_SENDER_MASK = type(uint80).max;
            uint256 private constant _EXPIRATION_OFFSET = 80;
            uint256 private constant _EXPIRATION_MASK = type(uint40).max;
            uint256 private constant _NONCE_OR_EPOCH_OFFSET = 120;
            uint256 private constant _NONCE_OR_EPOCH_MASK = type(uint40).max;
            uint256 private constant _SERIES_OFFSET = 160;
            uint256 private constant _SERIES_MASK = type(uint40).max;
            uint256 private constant _NO_PARTIAL_FILLS_FLAG = 1 << 255;
            uint256 private constant _ALLOW_MULTIPLE_FILLS_FLAG = 1 << 254;
            uint256 private constant _PRE_INTERACTION_CALL_FLAG = 1 << 252;
            uint256 private constant _POST_INTERACTION_CALL_FLAG = 1 << 251;
            uint256 private constant _NEED_CHECK_EPOCH_MANAGER_FLAG = 1 << 250;
            uint256 private constant _HAS_EXTENSION_FLAG = 1 << 249;
            uint256 private constant _USE_PERMIT2_FLAG = 1 << 248;
            uint256 private constant _UNWRAP_WETH_FLAG = 1 << 247;
            /**
             * @notice Checks if the order has the extension flag set.
             * @dev If the `HAS_EXTENSION_FLAG` is set in the makerTraits, then the protocol expects that the order has extension(s).
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the flag is set.
             */
            function hasExtension(MakerTraits makerTraits) internal pure returns (bool) {
                return (MakerTraits.unwrap(makerTraits) & _HAS_EXTENSION_FLAG) != 0;
            }
            /**
             * @notice Checks if the maker allows a specific taker to fill the order.
             * @param makerTraits The traits of the maker.
             * @param sender The address of the taker to be checked.
             * @return result A boolean indicating whether the taker is allowed.
             */
            function isAllowedSender(MakerTraits makerTraits, address sender) internal pure returns (bool) {
                uint160 allowedSender = uint160(MakerTraits.unwrap(makerTraits) & _ALLOWED_SENDER_MASK);
                return allowedSender == 0 || allowedSender == uint160(sender) & _ALLOWED_SENDER_MASK;
            }
            /**
             * @notice Checks if the order has expired.
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the order has expired.
             */
            function isExpired(MakerTraits makerTraits) internal view returns (bool) {
                uint256 expiration = (MakerTraits.unwrap(makerTraits) >> _EXPIRATION_OFFSET) & _EXPIRATION_MASK;
                return expiration != 0 && expiration < block.timestamp;  // solhint-disable-line not-rely-on-time
            }
            /**
             * @notice Returns the nonce or epoch of the order.
             * @param makerTraits The traits of the maker.
             * @return result The nonce or epoch of the order.
             */
            function nonceOrEpoch(MakerTraits makerTraits) internal pure returns (uint256) {
                return (MakerTraits.unwrap(makerTraits) >> _NONCE_OR_EPOCH_OFFSET) & _NONCE_OR_EPOCH_MASK;
            }
            /**
             * @notice Returns the series of the order.
             * @param makerTraits The traits of the maker.
             * @return result The series of the order.
             */
            function series(MakerTraits makerTraits) internal pure returns (uint256) {
                return (MakerTraits.unwrap(makerTraits) >> _SERIES_OFFSET) & _SERIES_MASK;
            }
            /**
              * @notice Determines if the order allows partial fills.
              * @dev If the _NO_PARTIAL_FILLS_FLAG is not set in the makerTraits, then the order allows partial fills.
              * @param makerTraits The traits of the maker, determining their preferences for the order.
              * @return result A boolean indicating whether the maker allows partial fills.
              */
            function allowPartialFills(MakerTraits makerTraits) internal pure returns (bool) {
                return (MakerTraits.unwrap(makerTraits) & _NO_PARTIAL_FILLS_FLAG) == 0;
            }
            /**
             * @notice Checks if the maker needs pre-interaction call.
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the maker needs a pre-interaction call.
             */
            function needPreInteractionCall(MakerTraits makerTraits) internal pure returns (bool) {
                return (MakerTraits.unwrap(makerTraits) & _PRE_INTERACTION_CALL_FLAG) != 0;
            }
            /**
             * @notice Checks if the maker needs post-interaction call.
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the maker needs a post-interaction call.
             */
            function needPostInteractionCall(MakerTraits makerTraits) internal pure returns (bool) {
                return (MakerTraits.unwrap(makerTraits) & _POST_INTERACTION_CALL_FLAG) != 0;
            }
            /**
              * @notice Determines if the order allows multiple fills.
              * @dev If the _ALLOW_MULTIPLE_FILLS_FLAG is set in the makerTraits, then the maker allows multiple fills.
              * @param makerTraits The traits of the maker, determining their preferences for the order.
              * @return result A boolean indicating whether the maker allows multiple fills.
              */
            function allowMultipleFills(MakerTraits makerTraits) internal pure returns (bool) {
                return (MakerTraits.unwrap(makerTraits) & _ALLOW_MULTIPLE_FILLS_FLAG) != 0;
            }
            /**
              * @notice Determines if an order should use the bit invalidator or remaining amount validator.
              * @dev The bit invalidator can be used if the order does not allow partial or multiple fills.
              * @param makerTraits The traits of the maker, determining their preferences for the order.
              * @return result A boolean indicating whether the bit invalidator should be used.
              * True if the order requires the use of the bit invalidator.
              */
            function useBitInvalidator(MakerTraits makerTraits) internal pure returns (bool) {
                return !allowPartialFills(makerTraits) || !allowMultipleFills(makerTraits);
            }
            /**
             * @notice Checks if the maker needs to check the epoch.
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the maker needs to check the epoch manager.
             */
            function needCheckEpochManager(MakerTraits makerTraits) internal pure returns (bool) {
                return (MakerTraits.unwrap(makerTraits) & _NEED_CHECK_EPOCH_MANAGER_FLAG) != 0;
            }
            /**
             * @notice Checks if the maker uses permit2.
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the maker uses permit2.
             */
            function usePermit2(MakerTraits makerTraits) internal pure returns (bool) {
                return MakerTraits.unwrap(makerTraits) & _USE_PERMIT2_FLAG != 0;
            }
            /**
             * @notice Checks if the maker needs to unwraps WETH.
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the maker needs to unwrap WETH.
             */
            function unwrapWeth(MakerTraits makerTraits) internal pure returns (bool) {
                return MakerTraits.unwrap(makerTraits) & _UNWRAP_WETH_FLAG != 0;
            }
        }
        // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
        type TakerTraits is uint256;
        /**
         * @title TakerTraitsLib
         * @notice This library to manage and check TakerTraits, which are used to encode the taker's preferences for an order in a single uint256.
         * @dev The TakerTraits are structured as follows:
         * High bits are used for flags
         * 255 bit `_MAKER_AMOUNT_FLAG`           - If set, the taking amount is calculated based on making amount, otherwise making amount is calculated based on taking amount.
         * 254 bit `_UNWRAP_WETH_FLAG`            - If set, the WETH will be unwrapped into ETH before sending to taker.
         * 253 bit `_SKIP_ORDER_PERMIT_FLAG`      - If set, the order skips maker's permit execution.
         * 252 bit `_USE_PERMIT2_FLAG`            - If set, the order uses the permit2 function for authorization.
         * 251 bit `_ARGS_HAS_TARGET`             - If set, then first 20 bytes of args are treated as target address for maker’s funds transfer.
         * 224-247 bits `ARGS_EXTENSION_LENGTH`   - The length of the extension calldata in the args.
         * 200-223 bits `ARGS_INTERACTION_LENGTH` - The length of the interaction calldata in the args.
         * 0-184 bits                             - The threshold amount (the maximum amount a taker agrees to give in exchange for a making amount).
         */
        library TakerTraitsLib {
            uint256 private constant _MAKER_AMOUNT_FLAG = 1 << 255;
            uint256 private constant _UNWRAP_WETH_FLAG = 1 << 254;
            uint256 private constant _SKIP_ORDER_PERMIT_FLAG = 1 << 253;
            uint256 private constant _USE_PERMIT2_FLAG = 1 << 252;
            uint256 private constant _ARGS_HAS_TARGET = 1 << 251;
            uint256 private constant _ARGS_EXTENSION_LENGTH_OFFSET = 224;
            uint256 private constant _ARGS_EXTENSION_LENGTH_MASK = 0xffffff;
            uint256 private constant _ARGS_INTERACTION_LENGTH_OFFSET = 200;
            uint256 private constant _ARGS_INTERACTION_LENGTH_MASK = 0xffffff;
            uint256 private constant _AMOUNT_MASK = 0x000000000000000000ffffffffffffffffffffffffffffffffffffffffffffff;
            /**
             * @notice Checks if the args should contain target address.
             * @param takerTraits The traits of the taker.
             * @return result A boolean indicating whether the args should contain target address.
             */
            function argsHasTarget(TakerTraits takerTraits) internal pure returns (bool) {
                return (TakerTraits.unwrap(takerTraits) & _ARGS_HAS_TARGET) != 0;
            }
            /**
             * @notice Retrieves the length of the extension calldata from the takerTraits.
             * @param takerTraits The traits of the taker.
             * @return result The length of the extension calldata encoded in the takerTraits.
             */
            function argsExtensionLength(TakerTraits takerTraits) internal pure returns (uint256) {
                return (TakerTraits.unwrap(takerTraits) >> _ARGS_EXTENSION_LENGTH_OFFSET) & _ARGS_EXTENSION_LENGTH_MASK;
            }
            /**
             * @notice Retrieves the length of the interaction calldata from the takerTraits.
             * @param takerTraits The traits of the taker.
             * @return result The length of the interaction calldata encoded in the takerTraits.
             */
            function argsInteractionLength(TakerTraits takerTraits) internal pure returns (uint256) {
                return (TakerTraits.unwrap(takerTraits) >> _ARGS_INTERACTION_LENGTH_OFFSET) & _ARGS_INTERACTION_LENGTH_MASK;
            }
            /**
             * @notice Checks if the taking amount should be calculated based on making amount.
             * @param takerTraits The traits of the taker.
             * @return result A boolean indicating whether the taking amount should be calculated based on making amount.
             */
            function isMakingAmount(TakerTraits takerTraits) internal pure returns (bool) {
                return (TakerTraits.unwrap(takerTraits) & _MAKER_AMOUNT_FLAG) != 0;
            }
            /**
             * @notice Checks if the order should unwrap WETH and send ETH to taker.
             * @param takerTraits The traits of the taker.
             * @return result A boolean indicating whether the order should unwrap WETH.
             */
            function unwrapWeth(TakerTraits takerTraits) internal pure returns (bool) {
                return (TakerTraits.unwrap(takerTraits) & _UNWRAP_WETH_FLAG) != 0;
            }
            /**
             * @notice Checks if the order should skip maker's permit execution.
             * @param takerTraits The traits of the taker.
             * @return result A boolean indicating whether the order don't apply permit.
             */
            function skipMakerPermit(TakerTraits takerTraits) internal pure returns (bool) {
                return (TakerTraits.unwrap(takerTraits) & _SKIP_ORDER_PERMIT_FLAG) != 0;
            }
            /**
             * @notice Checks if the order uses the permit2 instead of permit.
             * @param takerTraits The traits of the taker.
             * @return result A boolean indicating whether the order uses the permit2.
             */
            function usePermit2(TakerTraits takerTraits) internal pure returns (bool) {
                return (TakerTraits.unwrap(takerTraits) & _USE_PERMIT2_FLAG) != 0;
            }
            /**
             * @notice Retrieves the threshold amount from the takerTraits.
             * The maximum amount a taker agrees to give in exchange for a making amount.
             * @param takerTraits The traits of the taker.
             * @return result The threshold amount encoded in the takerTraits.
             */
            function threshold(TakerTraits takerTraits) internal pure returns (uint256) {
                return TakerTraits.unwrap(takerTraits) & _AMOUNT_MASK;
            }
        }
        // File @1inch/solidity-utils/contracts/libraries/[email protected]
        type Address is uint256;
        /**
        * @dev Library for working with addresses encoded as uint256 values, which can include flags in the highest bits.
        */
        library AddressLib {
            uint256 private constant _LOW_160_BIT_MASK = (1 << 160) - 1;
            /**
            * @notice Returns the address representation of a uint256.
            * @param a The uint256 value to convert to an address.
            * @return The address representation of the provided uint256 value.
            */
            function get(Address a) internal pure returns (address) {
                return address(uint160(Address.unwrap(a) & _LOW_160_BIT_MASK));
            }
            /**
            * @notice Checks if a given flag is set for the provided address.
            * @param a The address to check for the flag.
            * @param flag The flag to check for in the provided address.
            * @return True if the provided flag is set in the address, false otherwise.
            */
            function getFlag(Address a, uint256 flag) internal pure returns (bool) {
                return (Address.unwrap(a) & flag) != 0;
            }
            /**
            * @notice Returns a uint32 value stored at a specific bit offset in the provided address.
            * @param a The address containing the uint32 value.
            * @param offset The bit offset at which the uint32 value is stored.
            * @return The uint32 value stored in the address at the specified bit offset.
            */
            function getUint32(Address a, uint256 offset) internal pure returns (uint32) {
                return uint32(Address.unwrap(a) >> offset);
            }
            /**
            * @notice Returns a uint64 value stored at a specific bit offset in the provided address.
            * @param a The address containing the uint64 value.
            * @param offset The bit offset at which the uint64 value is stored.
            * @return The uint64 value stored in the address at the specified bit offset.
            */
            function getUint64(Address a, uint256 offset) internal pure returns (uint64) {
                return uint64(Address.unwrap(a) >> offset);
            }
        }
        // File @1inch/limit-order-protocol-contract/contracts/interfaces/[email protected]
        interface IOrderMixin {
            struct Order {
                uint256 salt;
                Address maker;
                Address receiver;
                Address makerAsset;
                Address takerAsset;
                uint256 makingAmount;
                uint256 takingAmount;
                MakerTraits makerTraits;
            }
            error InvalidatedOrder();
            error TakingAmountExceeded();
            error PrivateOrder();
            error BadSignature();
            error OrderExpired();
            error WrongSeriesNonce();
            error SwapWithZeroAmount();
            error PartialFillNotAllowed();
            error OrderIsNotSuitableForMassInvalidation();
            error EpochManagerAndBitInvalidatorsAreIncompatible();
            error ReentrancyDetected();
            error PredicateIsNotTrue();
            error TakingAmountTooHigh();
            error MakingAmountTooLow();
            error TransferFromMakerToTakerFailed();
            error TransferFromTakerToMakerFailed();
            error MismatchArraysLengths();
            error InvalidPermit2Transfer();
            error SimulationResults(bool success, bytes res);
            /**
             * @notice Emitted when order gets filled
             * @param orderHash Hash of the order
             * @param remainingAmount Amount of the maker asset that remains to be filled
             */
            event OrderFilled(
                bytes32 orderHash,
                uint256 remainingAmount
            );
            /**
             * @notice Emitted when order without `useBitInvalidator` gets cancelled
             * @param orderHash Hash of the order
             */
            event OrderCancelled(
                bytes32 orderHash
            );
            /**
             * @notice Emitted when order with `useBitInvalidator` gets cancelled
             * @param maker Maker address
             * @param slotIndex Slot index that was updated
             * @param slotValue New slot value
             */
            event BitInvalidatorUpdated(
                address indexed maker,
                uint256 slotIndex,
                uint256 slotValue
            );
            /**
             * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
             * @param maker Maker address
             * @param slot Slot number to return bitmask for
             * @return result Each bit represents whether corresponding was already invalidated
             */
            function bitInvalidatorForOrder(address maker, uint256 slot) external view returns(uint256 result);
            /**
             * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
             * @param orderHash Hash of the order
             * @return remaining Remaining amount of the order
             */
            function remainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 remaining);
            /**
             * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
             * @param orderHash Hash of the order
             * @return remainingRaw Inverse of the remaining amount of the order if order was filled at least once, otherwise 0
             */
            function rawRemainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 remainingRaw);
            /**
             * @notice Cancels order's quote
             * @param makerTraits Order makerTraits
             * @param orderHash Hash of the order to cancel
             */
            function cancelOrder(MakerTraits makerTraits, bytes32 orderHash) external;
            /**
             * @notice Cancels orders' quotes
             * @param makerTraits Orders makerTraits
             * @param orderHashes Hashes of the orders to cancel
             */
            function cancelOrders(MakerTraits[] calldata makerTraits, bytes32[] calldata orderHashes) external;
            /**
             * @notice Cancels all quotes of the maker (works for bit-invalidating orders only)
             * @param makerTraits Order makerTraits
             * @param additionalMask Additional bitmask to invalidate orders
             */
            function bitsInvalidateForOrder(MakerTraits makerTraits, uint256 additionalMask) external;
            /**
             * @notice Returns order hash, hashed with limit order protocol contract EIP712
             * @param order Order
             * @return orderHash Hash of the order
             */
            function hashOrder(IOrderMixin.Order calldata order) external view returns(bytes32 orderHash);
            /**
             * @notice Delegates execution to custom implementation. Could be used to validate if `transferFrom` works properly
             * @dev The function always reverts and returns the simulation results in revert data.
             * @param target Addresses that will be delegated
             * @param data Data that will be passed to delegatee
             */
            function simulate(address target, bytes calldata data) external;
            /**
             * @notice Fills order's quote, fully or partially (whichever is possible).
             * @param order Order quote to fill
             * @param r R component of signature
             * @param vs VS component of signature
             * @param amount Taker amount to fill
             * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
             * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
             * @return makingAmount Actual amount transferred from maker to taker
             * @return takingAmount Actual amount transferred from taker to maker
             * @return orderHash Hash of the filled order
             */
            function fillOrder(
                Order calldata order,
                bytes32 r,
                bytes32 vs,
                uint256 amount,
                TakerTraits takerTraits
            ) external payable returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
            /**
             * @notice Same as `fillOrder` but allows to specify arguments that are used by the taker.
             * @param order Order quote to fill
             * @param r R component of signature
             * @param vs VS component of signature
             * @param amount Taker amount to fill
             * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
             * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
             * @param args Arguments that are used by the taker (target, extension, interaction, permit)
             * @return makingAmount Actual amount transferred from maker to taker
             * @return takingAmount Actual amount transferred from taker to maker
             * @return orderHash Hash of the filled order
             */
            function fillOrderArgs(
                IOrderMixin.Order calldata order,
                bytes32 r,
                bytes32 vs,
                uint256 amount,
                TakerTraits takerTraits,
                bytes calldata args
            ) external payable returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
            /**
             * @notice Same as `fillOrder` but uses contract-based signatures.
             * @param order Order quote to fill
             * @param signature Signature to confirm quote ownership
             * @param amount Taker amount to fill
             * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
             * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
             * @return makingAmount Actual amount transferred from maker to taker
             * @return takingAmount Actual amount transferred from taker to maker
             * @return orderHash Hash of the filled order
             * @dev See tests for examples
             */
            function fillContractOrder(
                Order calldata order,
                bytes calldata signature,
                uint256 amount,
                TakerTraits takerTraits
            ) external returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
            /**
             * @notice Same as `fillContractOrder` but allows to specify arguments that are used by the taker.
             * @param order Order quote to fill
             * @param signature Signature to confirm quote ownership
             * @param amount Taker amount to fill
             * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
             * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
             * @param args Arguments that are used by the taker (target, extension, interaction, permit)
             * @return makingAmount Actual amount transferred from maker to taker
             * @return takingAmount Actual amount transferred from taker to maker
             * @return orderHash Hash of the filled order
             * @dev See tests for examples
             */
            function fillContractOrderArgs(
                Order calldata order,
                bytes calldata signature,
                uint256 amount,
                TakerTraits takerTraits,
                bytes calldata args
            ) external returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
        }
        // File @1inch/limit-order-protocol-contract/contracts/interfaces/[email protected]
        interface IAmountGetter {
            /**
             * @notice View method that gets called to determine the actual making amount
             * @param order Order being processed
             * @param extension Order extension data
             * @param orderHash Hash of the order being processed
             * @param taker Taker address
             * @param takingAmount Actual taking amount
             * @param remainingMakingAmount Order remaining making amount
             * @param extraData Extra data
             */
            function getMakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) external view returns (uint256);
            /**
             * @notice View method that gets called to determine the actual making amount
             * @param order Order being processed
             * @param extension Order extension data
             * @param orderHash Hash of the order being processed
             * @param taker Taker address
             * @param makingAmount Actual taking amount
             * @param remainingMakingAmount Order remaining making amount
             * @param extraData Extra data
             */
            function getTakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) external view returns (uint256);
        }
        // File @1inch/limit-order-protocol-contract/contracts/interfaces/[email protected]
        interface IPostInteraction {
            /**
             * @notice Callback method that gets called after all fund transfers
             * @param order Order being processed
             * @param extension Order extension data
             * @param orderHash Hash of the order being processed
             * @param taker Taker address
             * @param makingAmount Actual making amount
             * @param takingAmount Actual taking amount
             * @param remainingMakingAmount Order remaining making amount
             * @param extraData Extra data
             */
            function postInteraction(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) external;
        }
        // File @1inch/limit-order-protocol-contract/contracts/interfaces/[email protected]
        interface IPreInteraction {
            /**
             * @notice Callback method that gets called before any funds transfers
             * @param order Order being processed
             * @param extension Order extension data
             * @param orderHash Hash of the order being processed
             * @param taker Taker address
             * @param makingAmount Actual making amount
             * @param takingAmount Actual taking amount
             * @param remainingMakingAmount Order remaining making amount
             * @param extraData Extra data
             */
            function preInteraction(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) external;
        }
        // File @1inch/limit-order-protocol-contract/contracts/interfaces/[email protected]
        /**
         * @title Interface for interactor which acts after `maker -> taker` transfer but before `taker -> maker` transfer.
         * @notice The order filling steps are `preInteraction` =>` Transfer "maker -> taker"` => **`Interaction`** => `Transfer "taker -> maker"` => `postInteraction`
         */
        interface ITakerInteraction {
            /**
             * @dev This callback allows to interactively handle maker aseets to produce takers assets, doesn't supports ETH as taker assets
             * @notice Callback method that gets called after maker fund transfer but before taker fund transfer
             * @param order Order being processed
             * @param extension Order extension data
             * @param orderHash Hash of the order being processed
             * @param taker Taker address
             * @param makingAmount Actual making amount
             * @param takingAmount Actual taking amount
             * @param remainingMakingAmount Order remaining making amount
             * @param extraData Extra data
             */
            function takerInteraction(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) external;
        }
        // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
        type Offsets is uint256;
        /// @title OffsetsLib
        /// @dev A library for retrieving values by offsets from a concatenated calldata.
        library OffsetsLib {
            /// @dev Error to be thrown when the offset is out of bounds.
            error OffsetOutOfBounds();
            /**
             * @notice Retrieves the field value calldata corresponding to the provided field index from the concatenated calldata.
             * @dev
             * The function performs the following steps:
             * 1. Retrieve the start and end of the segment corresponding to the provided index from the offsets array.
             * 2. Get the value from segment using offset and length calculated based on the start and end of the segment.
             * 3. Throw `OffsetOutOfBounds` error if the length of the segment is greater than the length of the concatenated data.
             * @param offsets The offsets encoding the start and end of each segment within the concatenated calldata.
             * @param concat The concatenated calldata.
             * @param index The index of the segment to retrieve. The field index 0 corresponds to the lowest bytes of the offsets array.
             * @return result The calldata from a segment of the concatenated calldata corresponding to the provided index.
             */
            function get(Offsets offsets, bytes calldata concat, uint256 index) internal pure returns(bytes calldata result) {
                bytes4 exception = OffsetOutOfBounds.selector;
                assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                    let bitShift := shl(5, index)                                   // bitShift = index * 32
                    let begin := and(0xffffffff, shr(bitShift, shl(32, offsets)))   // begin = offsets[ bitShift : bitShift + 32 ]
                    let end := and(0xffffffff, shr(bitShift, offsets))              // end   = offsets[ bitShift + 32 : bitShift + 64 ]
                    result.offset := add(concat.offset, begin)
                    result.length := sub(end, begin)
                    if gt(end, concat.length) {
                        mstore(0, exception)
                        revert(0, 4)
                    }
                }
            }
        }
        // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
        /**
         * @title ExtensionLib
         * @notice Library for retrieving extensions information for the IOrderMixin Interface.
         */
        library ExtensionLib {
            using AddressLib for Address;
            using OffsetsLib for Offsets;
            enum DynamicField {
                MakerAssetSuffix,
                TakerAssetSuffix,
                MakingAmountData,
                TakingAmountData,
                Predicate,
                MakerPermit,
                PreInteractionData,
                PostInteractionData,
                CustomData
            }
            /**
             * @notice Returns the MakerAssetSuffix from the provided extension calldata.
             * @param extension The calldata from which the MakerAssetSuffix is to be retrieved.
             * @return calldata Bytes representing the MakerAssetSuffix.
             */
            function makerAssetSuffix(bytes calldata extension) internal pure returns(bytes calldata) {
                return _get(extension, DynamicField.MakerAssetSuffix);
            }
            /**
             * @notice Returns the TakerAssetSuffix from the provided extension calldata.
             * @param extension The calldata from which the TakerAssetSuffix is to be retrieved.
             * @return calldata Bytes representing the TakerAssetSuffix.
             */
            function takerAssetSuffix(bytes calldata extension) internal pure returns(bytes calldata) {
                return _get(extension, DynamicField.TakerAssetSuffix);
            }
            /**
             * @notice Returns the MakingAmountData from the provided extension calldata.
             * @param extension The calldata from which the MakingAmountData is to be retrieved.
             * @return calldata Bytes representing the MakingAmountData.
             */
            function makingAmountData(bytes calldata extension) internal pure returns(bytes calldata) {
                return _get(extension, DynamicField.MakingAmountData);
            }
            /**
             * @notice Returns the TakingAmountData from the provided extension calldata.
             * @param extension The calldata from which the TakingAmountData is to be retrieved.
             * @return calldata Bytes representing the TakingAmountData.
             */
            function takingAmountData(bytes calldata extension) internal pure returns(bytes calldata) {
                return _get(extension, DynamicField.TakingAmountData);
            }
            /**
             * @notice Returns the order's predicate from the provided extension calldata.
             * @param extension The calldata from which the predicate is to be retrieved.
             * @return calldata Bytes representing the predicate.
             */
            function predicate(bytes calldata extension) internal pure returns(bytes calldata) {
                return _get(extension, DynamicField.Predicate);
            }
            /**
             * @notice Returns the maker's permit from the provided extension calldata.
             * @param extension The calldata from which the maker's permit is to be retrieved.
             * @return calldata Bytes representing the maker's permit.
             */
            function makerPermit(bytes calldata extension) internal pure returns(bytes calldata) {
                return _get(extension, DynamicField.MakerPermit);
            }
            /**
             * @notice Returns the pre-interaction from the provided extension calldata.
             * @param extension The calldata from which the pre-interaction is to be retrieved.
             * @return calldata Bytes representing the pre-interaction.
             */
            function preInteractionTargetAndData(bytes calldata extension) internal pure returns(bytes calldata) {
                return _get(extension, DynamicField.PreInteractionData);
            }
            /**
             * @notice Returns the post-interaction from the provided extension calldata.
             * @param extension The calldata from which the post-interaction is to be retrieved.
             * @return calldata Bytes representing the post-interaction.
             */
            function postInteractionTargetAndData(bytes calldata extension) internal pure returns(bytes calldata) {
                return _get(extension, DynamicField.PostInteractionData);
            }
            /**
             * @notice Returns extra suffix data from the provided extension calldata.
             * @param extension The calldata from which the extra suffix data is to be retrieved.
             * @return calldata Bytes representing the extra suffix data.
             */
            function customData(bytes calldata extension) internal pure returns(bytes calldata) {
                if (extension.length < 0x20) return msg.data[:0];
                uint256 offsets = uint256(bytes32(extension));
                unchecked {
                    return extension[0x20 + (offsets >> 224):];
                }
            }
            /**
             * @notice Retrieves a specific field from the provided extension calldata.
             * @dev The first 32 bytes of an extension calldata contain offsets to the end of each field within the calldata.
             * @param extension The calldata from which the field is to be retrieved.
             * @param field The specific dynamic field to retrieve from the extension.
             * @return calldata Bytes representing the requested field.
             */
            function _get(bytes calldata extension, DynamicField field) private pure returns(bytes calldata) {
                if (extension.length < 0x20) return msg.data[:0];
                Offsets offsets;
                bytes calldata concat;
                assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                    offsets := calldataload(extension.offset)
                    concat.offset := add(extension.offset, 0x20)
                    concat.length := sub(extension.length, 0x20)
                }
                return offsets.get(concat, uint256(field));
            }
        }
        // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
        /// @title The helper library to calculate linearly taker amount from maker amount and vice versa.
        library AmountCalculatorLib {
            /// @notice Calculates maker amount
            /// @return Result Floored maker amount
            function getMakingAmount(uint256 orderMakerAmount, uint256 orderTakerAmount, uint256 swapTakerAmount) internal pure returns(uint256) {
                if ((swapTakerAmount | orderMakerAmount) >> 128 == 0) {
                    unchecked {
                        return (swapTakerAmount * orderMakerAmount) / orderTakerAmount;
                    }
                }
                return swapTakerAmount * orderMakerAmount / orderTakerAmount;
            }
            /// @notice Calculates taker amount
            /// @return Result Ceiled taker amount
            function getTakingAmount(uint256 orderMakerAmount, uint256 orderTakerAmount, uint256 swapMakerAmount) internal pure returns(uint256) {
                if ((swapMakerAmount | orderTakerAmount) >> 128 == 0) {
                    unchecked {
                        return (swapMakerAmount * orderTakerAmount + orderMakerAmount - 1) / orderMakerAmount;
                    }
                }
                return (swapMakerAmount * orderTakerAmount + orderMakerAmount - 1) / orderMakerAmount;
            }
        }
        // File @openzeppelin/contracts/interfaces/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)
        /**
         * @dev Interface of the ERC1271 standard signature validation method for
         * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
         */
        interface IERC1271 {
            /**
             * @dev Should return whether the signature provided is valid for the provided data
             * @param hash      Hash of the data to be signed
             * @param signature Signature byte array associated with _data
             */
            function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
        }
        // File @1inch/solidity-utils/contracts/libraries/[email protected]
        library ECDSA {
            // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
            // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
            // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
            // signatures from current libraries generate a unique signature with an s-value in the lower half order.
            //
            // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
            // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
            // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
            // these malleable signatures as well.
            uint256 private constant _S_BOUNDARY = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0 + 1;
            uint256 private constant _COMPACT_S_MASK = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
            uint256 private constant _COMPACT_V_SHIFT = 255;
            function recover(
                bytes32 hash,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal view returns (address signer) {
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    if lt(s, _S_BOUNDARY) {
                        let ptr := mload(0x40)
                        mstore(ptr, hash)
                        mstore(add(ptr, 0x20), v)
                        mstore(add(ptr, 0x40), r)
                        mstore(add(ptr, 0x60), s)
                        mstore(0, 0)
                        pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                        signer := mload(0)
                    }
                }
            }
            function recover(
                bytes32 hash,
                bytes32 r,
                bytes32 vs
            ) internal view returns (address signer) {
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let s := and(vs, _COMPACT_S_MASK)
                    if lt(s, _S_BOUNDARY) {
                        let ptr := mload(0x40)
                        mstore(ptr, hash)
                        mstore(add(ptr, 0x20), add(27, shr(_COMPACT_V_SHIFT, vs)))
                        mstore(add(ptr, 0x40), r)
                        mstore(add(ptr, 0x60), s)
                        mstore(0, 0)
                        pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                        signer := mload(0)
                    }
                }
            }
            /// @dev WARNING!!!
            /// There is a known signature malleability issue with two representations of signatures!
            /// Even though this function is able to verify both standard 65-byte and compact 64-byte EIP-2098 signatures
            /// one should never use raw signatures for any kind of invalidation logic in their code.
            /// As the standard and compact representations are interchangeable any invalidation logic that relies on
            /// signature uniqueness will get rekt.
            /// More info: https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
            function recover(bytes32 hash, bytes calldata signature) internal view returns (address signer) {
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    // memory[ptr:ptr+0x80] = (hash, v, r, s)
                    switch signature.length
                    case 65 {
                        // memory[ptr+0x20:ptr+0x80] = (v, r, s)
                        mstore(add(ptr, 0x20), byte(0, calldataload(add(signature.offset, 0x40))))
                        calldatacopy(add(ptr, 0x40), signature.offset, 0x40)
                    }
                    case 64 {
                        // memory[ptr+0x20:ptr+0x80] = (v, r, s)
                        let vs := calldataload(add(signature.offset, 0x20))
                        mstore(add(ptr, 0x20), add(27, shr(_COMPACT_V_SHIFT, vs)))
                        calldatacopy(add(ptr, 0x40), signature.offset, 0x20)
                        mstore(add(ptr, 0x60), and(vs, _COMPACT_S_MASK))
                    }
                    default {
                        ptr := 0
                    }
                    if ptr {
                        if lt(mload(add(ptr, 0x60)), _S_BOUNDARY) {
                            // memory[ptr:ptr+0x20] = (hash)
                            mstore(ptr, hash)
                            mstore(0, 0)
                            pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                            signer := mload(0)
                        }
                    }
                }
            }
            function recoverOrIsValidSignature(
                address signer,
                bytes32 hash,
                bytes calldata signature
            ) internal view returns (bool success) {
                if (signer == address(0)) return false;
                if ((signature.length == 64 || signature.length == 65) && recover(hash, signature) == signer) {
                    return true;
                }
                return isValidSignature(signer, hash, signature);
            }
            function recoverOrIsValidSignature(
                address signer,
                bytes32 hash,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal view returns (bool success) {
                if (signer == address(0)) return false;
                if (recover(hash, v, r, s) == signer) {
                    return true;
                }
                return isValidSignature(signer, hash, v, r, s);
            }
            function recoverOrIsValidSignature(
                address signer,
                bytes32 hash,
                bytes32 r,
                bytes32 vs
            ) internal view returns (bool success) {
                if (signer == address(0)) return false;
                if (recover(hash, r, vs) == signer) {
                    return true;
                }
                return isValidSignature(signer, hash, r, vs);
            }
            function recoverOrIsValidSignature65(
                address signer,
                bytes32 hash,
                bytes32 r,
                bytes32 vs
            ) internal view returns (bool success) {
                if (signer == address(0)) return false;
                if (recover(hash, r, vs) == signer) {
                    return true;
                }
                return isValidSignature65(signer, hash, r, vs);
            }
            function isValidSignature(
                address signer,
                bytes32 hash,
                bytes calldata signature
            ) internal view returns (bool success) {
                // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature));
                // return success && data.length >= 4 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
                bytes4 selector = IERC1271.isValidSignature.selector;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    mstore(ptr, selector)
                    mstore(add(ptr, 0x04), hash)
                    mstore(add(ptr, 0x24), 0x40)
                    mstore(add(ptr, 0x44), signature.length)
                    calldatacopy(add(ptr, 0x64), signature.offset, signature.length)
                    if staticcall(gas(), signer, ptr, add(0x64, signature.length), 0, 0x20) {
                        success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
                    }
                }
            }
            function isValidSignature(
                address signer,
                bytes32 hash,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal view returns (bool success) {
                bytes4 selector = IERC1271.isValidSignature.selector;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    mstore(ptr, selector)
                    mstore(add(ptr, 0x04), hash)
                    mstore(add(ptr, 0x24), 0x40)
                    mstore(add(ptr, 0x44), 65)
                    mstore(add(ptr, 0x64), r)
                    mstore(add(ptr, 0x84), s)
                    mstore8(add(ptr, 0xa4), v)
                    if staticcall(gas(), signer, ptr, 0xa5, 0, 0x20) {
                        success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
                    }
                }
            }
            function isValidSignature(
                address signer,
                bytes32 hash,
                bytes32 r,
                bytes32 vs
            ) internal view returns (bool success) {
                // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, abi.encodePacked(r, vs)));
                // return success && data.length >= 4 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
                bytes4 selector = IERC1271.isValidSignature.selector;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    mstore(ptr, selector)
                    mstore(add(ptr, 0x04), hash)
                    mstore(add(ptr, 0x24), 0x40)
                    mstore(add(ptr, 0x44), 64)
                    mstore(add(ptr, 0x64), r)
                    mstore(add(ptr, 0x84), vs)
                    if staticcall(gas(), signer, ptr, 0xa4, 0, 0x20) {
                        success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
                    }
                }
            }
            function isValidSignature65(
                address signer,
                bytes32 hash,
                bytes32 r,
                bytes32 vs
            ) internal view returns (bool success) {
                // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, abi.encodePacked(r, vs & ~uint256(1 << 255), uint8(vs >> 255))));
                // return success && data.length >= 4 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
                bytes4 selector = IERC1271.isValidSignature.selector;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    mstore(ptr, selector)
                    mstore(add(ptr, 0x04), hash)
                    mstore(add(ptr, 0x24), 0x40)
                    mstore(add(ptr, 0x44), 65)
                    mstore(add(ptr, 0x64), r)
                    mstore(add(ptr, 0x84), and(vs, _COMPACT_S_MASK))
                    mstore8(add(ptr, 0xa4), add(27, shr(_COMPACT_V_SHIFT, vs)))
                    if staticcall(gas(), signer, ptr, 0xa5, 0, 0x20) {
                        success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
                    }
                }
            }
            function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 res) {
                // 32 is the length in bytes of hash, enforced by the type signature above
                // return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
        32", hash));
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    mstore(0, 0x19457468657265756d205369676e6564204d6573736167653a0a333200000000) // "\\x19Ethereum Signed Message:\
        32"
                    mstore(28, hash)
                    res := keccak256(0, 60)
                }
            }
            function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 res) {
                // return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash));
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    mstore(ptr, 0x1901000000000000000000000000000000000000000000000000000000000000) // "\\x19\\x01"
                    mstore(add(ptr, 0x02), domainSeparator)
                    mstore(add(ptr, 0x22), structHash)
                    res := keccak256(ptr, 66)
                }
            }
        }
        // File @1inch/limit-order-protocol-contract/contracts/[email protected]
        /**
         * @title OrderLib
         * @dev The library provides common functionality for processing and manipulating limit orders.
         * It provides functionality to calculate and verify order hashes, calculate trade amounts, and validate
         * extension data associated with orders. The library also contains helper methods to get the receiver of
         * an order and call getter functions.
         */
         library OrderLib {
            using AddressLib for Address;
            using MakerTraitsLib for MakerTraits;
            using ExtensionLib for bytes;
            /// @dev Error to be thrown when the extension data of an order is missing.
            error MissingOrderExtension();
            /// @dev Error to be thrown when the order has an unexpected extension.
            error UnexpectedOrderExtension();
            /// @dev Error to be thrown when the order extension hash is invalid.
            error InvalidExtensionHash();
            /// @dev The typehash of the order struct.
            bytes32 constant internal _LIMIT_ORDER_TYPEHASH = keccak256(
                "Order("
                    "uint256 salt,"
                    "address maker,"
                    "address receiver,"
                    "address makerAsset,"
                    "address takerAsset,"
                    "uint256 makingAmount,"
                    "uint256 takingAmount,"
                    "uint256 makerTraits"
                ")"
            );
            uint256 constant internal _ORDER_STRUCT_SIZE = 0x100;
            uint256 constant internal _DATA_HASH_SIZE = 0x120;
            /**
              * @notice Calculates the hash of an order.
              * @param order The order to be hashed.
              * @param domainSeparator The domain separator to be used for the EIP-712 hashing.
              * @return result The keccak256 hash of the order data.
              */
            function hash(IOrderMixin.Order calldata order, bytes32 domainSeparator) internal pure returns(bytes32 result) {
                bytes32 typehash = _LIMIT_ORDER_TYPEHASH;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    // keccak256(abi.encode(_LIMIT_ORDER_TYPEHASH, order));
                    mstore(ptr, typehash)
                    calldatacopy(add(ptr, 0x20), order, _ORDER_STRUCT_SIZE)
                    result := keccak256(ptr, _DATA_HASH_SIZE)
                }
                result = ECDSA.toTypedDataHash(domainSeparator, result);
            }
            /**
              * @notice Returns the receiver address for an order.
              * @param order The order.
              * @return receiver The address of the receiver, either explicitly defined in the order or the maker's address if not specified.
              */
            function getReceiver(IOrderMixin.Order calldata order) internal pure returns(address /*receiver*/) {
                address receiver = order.receiver.get();
                return receiver != address(0) ? receiver : order.maker.get();
            }
            /**
              * @notice Calculates the making amount based on the requested taking amount.
              * @dev If getter is specified in the extension data, the getter is called to calculate the making amount,
              * otherwise the making amount is calculated linearly.
              * @param order The order.
              * @param extension The extension data associated with the order.
              * @param requestedTakingAmount The amount the taker wants to take.
              * @param remainingMakingAmount The remaining amount of the asset left to fill.
              * @param orderHash The hash of the order.
              * @return makingAmount The amount of the asset the maker receives.
              */
            function calculateMakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                uint256 requestedTakingAmount,
                uint256 remainingMakingAmount,
                bytes32 orderHash
            ) internal view returns(uint256) {
                bytes calldata data = extension.makingAmountData();
                if (data.length == 0) {
                    // Linear proportion
                    return AmountCalculatorLib.getMakingAmount(order.makingAmount, order.takingAmount, requestedTakingAmount);
                }
                return IAmountGetter(address(bytes20(data))).getMakingAmount(
                    order,
                    extension,
                    orderHash,
                    msg.sender,
                    requestedTakingAmount,
                    remainingMakingAmount,
                    data[20:]
                );
            }
            /**
              * @notice Calculates the taking amount based on the requested making amount.
              * @dev If getter is specified in the extension data, the getter is called to calculate the taking amount,
              * otherwise the taking amount is calculated linearly.
              * @param order The order.
              * @param extension The extension data associated with the order.
              * @param requestedMakingAmount The amount the maker wants to receive.
              * @param remainingMakingAmount The remaining amount of the asset left to be filled.
              * @param orderHash The hash of the order.
              * @return takingAmount The amount of the asset the taker takes.
              */
            function calculateTakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                uint256 requestedMakingAmount,
                uint256 remainingMakingAmount,
                bytes32 orderHash
            ) internal view returns(uint256) {
                bytes calldata data = extension.takingAmountData();
                if (data.length == 0) {
                    // Linear proportion
                    return AmountCalculatorLib.getTakingAmount(order.makingAmount, order.takingAmount, requestedMakingAmount);
                }
                return IAmountGetter(address(bytes20(data))).getTakingAmount(
                    order,
                    extension,
                    orderHash,
                    msg.sender,
                    requestedMakingAmount,
                    remainingMakingAmount,
                    data[20:]
                );
            }
            /**
              * @dev Validates the extension associated with an order.
              * @param order The order to validate against.
              * @param extension The extension associated with the order.
              * @return valid True if the extension is valid, false otherwise.
              * @return errorSelector The error selector if the extension is invalid, 0x00000000 otherwise.
              */
            function isValidExtension(IOrderMixin.Order calldata order, bytes calldata extension) internal pure returns(bool, bytes4) {
                if (order.makerTraits.hasExtension()) {
                    if (extension.length == 0) return (false, MissingOrderExtension.selector);
                    // Lowest 160 bits of the order salt must be equal to the lowest 160 bits of the extension hash
                    if (uint256(keccak256(extension)) & type(uint160).max != order.salt & type(uint160).max) return (false, InvalidExtensionHash.selector);
                } else {
                    if (extension.length > 0) return (false, UnexpectedOrderExtension.selector);
                }
                return (true, 0x00000000);
            }
        }
        // File @1inch/limit-order-protocol-contract/contracts/helpers/[email protected]
        /// @title A helper contract for executing boolean functions on arbitrary target call results
        contract PredicateHelper {
            error ArbitraryStaticCallFailed();
            /// @notice Calls every target with corresponding data
            /// @return Result True if call to any target returned True. Otherwise, false
            function or(uint256 offsets, bytes calldata data) public view returns(bool) {
                uint256 previous;
                for (uint256 current; (current = uint32(offsets)) != 0; offsets >>= 32) {
                    (bool success, uint256 res) = _staticcallForUint(address(this), data[previous:current]);
                    if (success && res == 1) {
                        return true;
                    }
                    previous = current;
                }
                return false;
            }
            /// @notice Calls every target with corresponding data
            /// @return Result True if calls to all targets returned True. Otherwise, false
            function and(uint256 offsets, bytes calldata data) public view returns(bool) {
                uint256 previous;
                for (uint256 current; (current = uint32(offsets)) != 0; offsets >>= 32) {
                    (bool success, uint256 res) = _staticcallForUint(address(this), data[previous:current]);
                    if (!success || res != 1) {
                        return false;
                    }
                    previous = current;
                }
                return true;
            }
            /// @notice Calls target with specified data and tests if it's equal to 0
            /// @return Result True if call to target returns 0. Otherwise, false
            function not(bytes calldata data) public view returns(bool) {
                (bool success, uint256 res) = _staticcallForUint(address(this), data);
                return success && res == 0;
            }
            /// @notice Calls target with specified data and tests if it's equal to the value
            /// @param value Value to test
            /// @return Result True if call to target returns the same value as `value`. Otherwise, false
            function eq(uint256 value, bytes calldata data) public view returns(bool) {
                (bool success, uint256 res) = _staticcallForUint(address(this), data);
                return success && res == value;
            }
            /// @notice Calls target with specified data and tests if it's lower than value
            /// @param value Value to test
            /// @return Result True if call to target returns value which is lower than `value`. Otherwise, false
            function lt(uint256 value, bytes calldata data) public view returns(bool) {
                (bool success, uint256 res) = _staticcallForUint(address(this), data);
                return success && res < value;
            }
            /// @notice Calls target with specified data and tests if it's bigger than value
            /// @param value Value to test
            /// @return Result True if call to target returns value which is bigger than `value`. Otherwise, false
            function gt(uint256 value, bytes calldata data) public view returns(bool) {
                (bool success, uint256 res) = _staticcallForUint(address(this), data);
                return success && res > value;
            }
            /// @notice Performs an arbitrary call to target with data
            /// @return Result Bytes transmuted to uint256
            function arbitraryStaticCall(address target, bytes calldata data) public view returns(uint256) {
                (bool success, uint256 res) = _staticcallForUint(target, data);
                if (!success) revert ArbitraryStaticCallFailed();
                return res;
            }
            function _staticcallForUint(address target, bytes calldata data) internal view returns(bool success, uint256 res) {
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    calldatacopy(ptr, data.offset, data.length)
                    success := staticcall(gas(), target, ptr, data.length, 0x0, 0x20)
                    success := and(success, eq(returndatasize(), 32))
                    if success {
                        res := mload(0)
                    }
                }
            }
        }
        // File @1inch/limit-order-protocol-contract/contracts/helpers/[email protected]
        /// @title A helper contract to manage nonce with the series
        contract SeriesEpochManager {
            error AdvanceEpochFailed();
            event EpochIncreased(address indexed maker, uint256 series, uint256 newEpoch);
            // {
            //    1: {
            //        '0x762f73Ad...842Ffa8': 0,
            //        '0xd20c41ee...32aaDe2': 1
            //    },
            //    2: {
            //        '0x762f73Ad...842Ffa8': 3,
            //        '0xd20c41ee...32aaDe2': 15
            //    },
            //    ...
            // }
            mapping(uint256 seriesId => uint256 epoch) private _epochs;
            /// @notice Returns nonce for `maker` and `series`
            function epoch(address maker, uint96 series) public view returns(uint256) {
                return _epochs[uint160(maker) | (uint256(series) << 160)];
            }
            /// @notice Advances nonce by one
            function increaseEpoch(uint96 series) external {
                advanceEpoch(series, 1);
            }
            /// @notice Advances nonce by specified amount
            function advanceEpoch(uint96 series, uint256 amount) public {
                if (amount == 0 || amount > 255) revert AdvanceEpochFailed();
                unchecked {
                    uint256 key = uint160(msg.sender) | (uint256(series) << 160);
                    uint256 newEpoch = _epochs[key] + amount;
                    _epochs[key] = newEpoch;
                    emit EpochIncreased(msg.sender, series, newEpoch);
                }
            }
            /// @notice Checks if `maker` has specified `makerEpoch` for `series`
            /// @return Result True if `maker` has specified epoch. Otherwise, false
            function epochEquals(address maker, uint256 series, uint256 makerEpoch) public view returns(bool) {
                return _epochs[uint160(maker) | (uint256(series) << 160)] == makerEpoch;
            }
        }
        // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
        /**
         * @title BitInvalidatorLib
         * @dev The library provides a mechanism to invalidate objects based on a bit invalidator.
         * The bit invalidator holds a mapping where each key represents a slot number and each value contains an integer.
         * Each bit of the integer represents whether the object with corresponding index is valid or has been invalidated (0 - valid, 1 - invalidated).
         * The nonce given to access or invalidate an entity's state follows this structure:
         * - bits [0..7] represent the object state index in the slot.
         * - bits [8..255] represent the slot number (mapping key).
         */
        library BitInvalidatorLib {
            /// @dev The error is thrown when an attempt is made to invalidate an already invalidated entity.
            error BitInvalidatedOrder();
            struct Data {
                mapping(uint256 slotIndex => uint256 slotData) _raw;
            }
            /**
             * @notice Retrieves the validity status of entities in a specific slot.
             * @dev Each bit in the returned value corresponds to the validity of an entity. 0 for valid, 1 for invalidated.
             * @param self The data structure.
             * @param nonce The nonce identifying the slot.
             * @return result The validity status of entities in the slot as a uint256.
             */
            function checkSlot(Data storage self, uint256 nonce) internal view returns(uint256) {
                uint256 invalidatorSlot = nonce >> 8;
                return self._raw[invalidatorSlot];
            }
            /**
             * @notice Checks the validity of a specific entity and invalidates it if valid.
             * @dev Throws an error if the entity has already been invalidated.
             * @param self The data structure.
             * @param nonce The nonce identifying the slot and the entity.
             */
            function checkAndInvalidate(Data storage self, uint256 nonce) internal {
                uint256 invalidatorSlot = nonce >> 8;
                uint256 invalidatorBit = 1 << (nonce & 0xff);
                uint256 invalidator = self._raw[invalidatorSlot];
                if (invalidator & invalidatorBit == invalidatorBit) revert BitInvalidatedOrder();
                self._raw[invalidatorSlot] = invalidator | invalidatorBit;
            }
            /**
             * @notice Invalidates multiple entities in a single slot.
             * @dev The entities to be invalidated are identified by setting their corresponding bits to 1 in a mask.
             * @param self The data structure.
             * @param nonce The nonce identifying the slot.
             * @param additionalMask A mask of bits to be invalidated.
             * @return result Resulting validity status of entities in the slot as a uint256.
             */
            function massInvalidate(Data storage self, uint256 nonce, uint256 additionalMask) internal returns(uint256 result) {
                uint256 invalidatorSlot = nonce >> 8;
                uint256 invalidatorBits = (1 << (nonce & 0xff)) | additionalMask;
                result = self._raw[invalidatorSlot] | invalidatorBits;
                self._raw[invalidatorSlot] = result;
            }
        }
        // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
        library Errors {
            error InvalidMsgValue();
            error ETHTransferFailed();
        }
        // File @1inch/limit-order-protocol-contract/contracts/libraries/[email protected]
        type RemainingInvalidator is uint256;
        /**
         * @title RemainingInvalidatorLib
         * @notice The library provides a mechanism to invalidate order based on the remaining amount of the order.
         * @dev The remaining amount is used as a nonce to invalidate the order.
         * When order is created, the remaining invalidator is 0.
         * When order is filled, the remaining invalidator is the inverse of the remaining amount.
         */
        library RemainingInvalidatorLib {
            /// @dev The error is thrown when an attempt is made to invalidate an already invalidated entity.
            error RemainingInvalidatedOrder();
            /**
             * @notice Checks if an order is new based on the invalidator value.
             * @param invalidator The remaining invalidator of the order.
             * @return result Whether the order is new or not.
             */
            function isNewOrder(RemainingInvalidator invalidator) internal pure returns(bool) {
                return RemainingInvalidator.unwrap(invalidator) == 0;
            }
            /**
             * @notice Retrieves the remaining amount for an order.
             * @dev If the order is unknown, a RemainingInvalidatedOrder error is thrown.
             * @param invalidator The remaining invalidator for the order.
             * @return result The remaining amount for the order.
             */
            function remaining(RemainingInvalidator invalidator) internal pure returns(uint256) {
                uint256 value = RemainingInvalidator.unwrap(invalidator);
                if (value == 0) {
                    revert RemainingInvalidatedOrder();
                }
                unchecked {
                    return ~value;
                }
            }
            /**
             * @notice Calculates the remaining amount for an order.
             * @dev If the order is unknown, the order maker amount is returned.
             * @param invalidator The remaining invalidator for the order.
             * @param orderMakerAmount The amount to return if the order is new.
             * @return result The remaining amount for the order.
             */
            function remaining(RemainingInvalidator invalidator, uint256 orderMakerAmount) internal pure returns(uint256) {
                uint256 value = RemainingInvalidator.unwrap(invalidator);
                if (value == 0) {
                    return orderMakerAmount;
                }
                unchecked {
                    return ~value;
                }
            }
            /**
             * @notice Calculates the remaining invalidator of the order.
             * @param remainingMakingAmount The remaining making amount of the order.
             * @param makingAmount The making amount of the order.
             * @return result The remaining invalidator for the order.
             */
            function remains(uint256 remainingMakingAmount, uint256 makingAmount) internal pure returns(RemainingInvalidator) {
                unchecked {
                    return RemainingInvalidator.wrap(~(remainingMakingAmount - makingAmount));
                }
            }
            /**
             * @notice Provides the remaining invalidator for a fully filled order.
             * @return result The remaining invalidator for a fully filled order.
             */
            function fullyFilled() internal pure returns(RemainingInvalidator) {
                return RemainingInvalidator.wrap(type(uint256).max);
            }
        }
        // File @openzeppelin/contracts/token/ERC20/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the value of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the value of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 value) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the
             * allowance mechanism. `value` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 value) external returns (bool);
        }
        // File @1inch/solidity-utils/contracts/interfaces/[email protected]
        interface IWETH is IERC20 {
            event Deposit(address indexed dst, uint256 wad);
            event Withdrawal(address indexed src, uint256 wad);
            function deposit() external payable;
            function withdraw(uint256 amount) external;
        }
        // File @1inch/solidity-utils/contracts/interfaces/[email protected]
        interface IDaiLikePermit {
            function permit(
                address holder,
                address spender,
                uint256 nonce,
                uint256 expiry,
                bool allowed,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external;
        }
        // File @1inch/solidity-utils/contracts/interfaces/[email protected]
        interface IPermit2 {
            struct PermitDetails {
                // ERC20 token address
                address token;
                // the maximum amount allowed to spend
                uint160 amount;
                // timestamp at which a spender's token allowances become invalid
                uint48 expiration;
                // an incrementing value indexed per owner,token,and spender for each signature
                uint48 nonce;
            }
            /// @notice The permit message signed for a single token allownce
            struct PermitSingle {
                // the permit data for a single token alownce
                PermitDetails details;
                // address permissioned on the allowed tokens
                address spender;
                // deadline on the permit signature
                uint256 sigDeadline;
            }
            /// @notice Packed allowance
            struct PackedAllowance {
                // amount allowed
                uint160 amount;
                // permission expiry
                uint48 expiration;
                // an incrementing value indexed per owner,token,and spender for each signature
                uint48 nonce;
            }
            function transferFrom(address user, address spender, uint160 amount, address token) external;
            function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;
            function allowance(address user, address token, address spender) external view returns (PackedAllowance memory);
        }
        // File @1inch/solidity-utils/contracts/libraries/[email protected]
        /// @title Revert reason forwarder.
        library RevertReasonForwarder {
            /// @dev Forwards latest externall call revert.
            function reRevert() internal pure {
                // bubble up revert reason from latest external call
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    returndatacopy(ptr, 0, returndatasize())
                    revert(ptr, returndatasize())
                }
            }
            /// @dev Returns latest external call revert reason.
            function reReason() internal pure returns (bytes memory reason) {
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    reason := mload(0x40)
                    let length := returndatasize()
                    mstore(reason, length)
                    returndatacopy(add(reason, 0x20), 0, length)
                    mstore(0x40, add(reason, add(0x20, length)))
                }
            }
        }
        // File @openzeppelin/contracts/token/ERC20/extensions/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
        /**
         * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
         * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
         *
         * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
         * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
         * need to send a transaction, and thus is not required to hold Ether at all.
         *
         * ==== Security Considerations
         *
         * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
         * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
         * considered as an intention to spend the allowance in any specific way. The second is that because permits have
         * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
         * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
         * generally recommended is:
         *
         * ```solidity
         * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
         *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
         *     doThing(..., value);
         * }
         *
         * function doThing(..., uint256 value) public {
         *     token.safeTransferFrom(msg.sender, address(this), value);
         *     ...
         * }
         * ```
         *
         * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
         * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
         * {SafeERC20-safeTransferFrom}).
         *
         * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
         * contracts should have entry points that don't rely on permit.
         */
        interface IERC20Permit {
            /**
             * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
             * given ``owner``'s signed approval.
             *
             * IMPORTANT: The same issues {IERC20-approve} has related to transaction
             * ordering also apply here.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `deadline` must be a timestamp in the future.
             * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
             * over the EIP712-formatted function arguments.
             * - the signature must use ``owner``'s current nonce (see {nonces}).
             *
             * For more information on the signature format, see the
             * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
             * section].
             *
             * CAUTION: See Security Considerations above.
             */
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external;
            /**
             * @dev Returns the current nonce for `owner`. This value must be
             * included whenever a signature is generated for {permit}.
             *
             * Every successful call to {permit} increases ``owner``'s nonce by one. This
             * prevents a signature from being used multiple times.
             */
            function nonces(address owner) external view returns (uint256);
            /**
             * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
             */
            // solhint-disable-next-line func-name-mixedcase
            function DOMAIN_SEPARATOR() external view returns (bytes32);
        }
        // File @1inch/solidity-utils/contracts/libraries/[email protected]
        /**
         * @title Implements efficient safe methods for ERC20 interface.
         * @notice Compared to the standard ERC20, this implementation offers several enhancements:
         * 1. more gas-efficient, providing significant savings in transaction costs.
         * 2. support for different permit implementations
         * 3. forceApprove functionality
         * 4. support for WETH deposit and withdraw
         */
        library SafeERC20 {
            error SafeTransferFailed();
            error SafeTransferFromFailed();
            error ForceApproveFailed();
            error SafeIncreaseAllowanceFailed();
            error SafeDecreaseAllowanceFailed();
            error SafePermitBadLength();
            error Permit2TransferAmountTooHigh();
            // Uniswap Permit2 address
            address private constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
            bytes4 private constant _PERMIT_LENGTH_ERROR = 0x68275857;  // SafePermitBadLength.selector
            uint256 private constant _RAW_CALL_GAS_LIMIT = 5000;
            /**
             * @notice Fetches the balance of a specific ERC20 token held by an account.
             * Consumes less gas then regular `ERC20.balanceOf`.
             * @dev Note that the implementation does not perform dirty bits cleaning, so it is the
             * responsibility of the caller to make sure that the higher 96 bits of the `account` parameter are clean.
             * @param token The IERC20 token contract for which the balance will be fetched.
             * @param account The address of the account whose token balance will be fetched.
             * @return tokenBalance The balance of the specified ERC20 token held by the account.
             */
            function safeBalanceOf(
                IERC20 token,
                address account
            ) internal view returns(uint256 tokenBalance) {
                bytes4 selector = IERC20.balanceOf.selector;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    mstore(0x00, selector)
                    mstore(0x04, account)
                    let success := staticcall(gas(), token, 0x00, 0x24, 0x00, 0x20)
                    tokenBalance := mload(0)
                    if or(iszero(success), lt(returndatasize(), 0x20)) {
                        let ptr := mload(0x40)
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                }
            }
            /**
             * @notice Attempts to safely transfer tokens from one address to another.
             * @dev If permit2 is true, uses the Permit2 standard; otherwise uses the standard ERC20 transferFrom.
             * Either requires `true` in return data, or requires target to be smart-contract and empty return data.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
             * @param token The IERC20 token contract from which the tokens will be transferred.
             * @param from The address from which the tokens will be transferred.
             * @param to The address to which the tokens will be transferred.
             * @param amount The amount of tokens to transfer.
             * @param permit2 If true, uses the Permit2 standard for the transfer; otherwise uses the standard ERC20 transferFrom.
             */
            function safeTransferFromUniversal(
                IERC20 token,
                address from,
                address to,
                uint256 amount,
                bool permit2
            ) internal {
                if (permit2) {
                    safeTransferFromPermit2(token, from, to, amount);
                } else {
                    safeTransferFrom(token, from, to, amount);
                }
            }
            /**
             * @notice Attempts to safely transfer tokens from one address to another using the ERC20 standard.
             * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
             * @param token The IERC20 token contract from which the tokens will be transferred.
             * @param from The address from which the tokens will be transferred.
             * @param to The address to which the tokens will be transferred.
             * @param amount The amount of tokens to transfer.
             */
            function safeTransferFrom(
                IERC20 token,
                address from,
                address to,
                uint256 amount
            ) internal {
                bytes4 selector = token.transferFrom.selector;
                bool success;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let data := mload(0x40)
                    mstore(data, selector)
                    mstore(add(data, 0x04), from)
                    mstore(add(data, 0x24), to)
                    mstore(add(data, 0x44), amount)
                    success := call(gas(), token, 0, data, 100, 0x0, 0x20)
                    if success {
                        switch returndatasize()
                        case 0 {
                            success := gt(extcodesize(token), 0)
                        }
                        default {
                            success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                        }
                    }
                }
                if (!success) revert SafeTransferFromFailed();
            }
            /**
             * @notice Attempts to safely transfer tokens from one address to another using the Permit2 standard.
             * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
             * @param token The IERC20 token contract from which the tokens will be transferred.
             * @param from The address from which the tokens will be transferred.
             * @param to The address to which the tokens will be transferred.
             * @param amount The amount of tokens to transfer.
             */
            function safeTransferFromPermit2(
                IERC20 token,
                address from,
                address to,
                uint256 amount
            ) internal {
                if (amount > type(uint160).max) revert Permit2TransferAmountTooHigh();
                bytes4 selector = IPermit2.transferFrom.selector;
                bool success;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let data := mload(0x40)
                    mstore(data, selector)
                    mstore(add(data, 0x04), from)
                    mstore(add(data, 0x24), to)
                    mstore(add(data, 0x44), amount)
                    mstore(add(data, 0x64), token)
                    success := call(gas(), _PERMIT2, 0, data, 0x84, 0x0, 0x0)
                    if success {
                        success := gt(extcodesize(_PERMIT2), 0)
                    }
                }
                if (!success) revert SafeTransferFromFailed();
            }
            /**
             * @notice Attempts to safely transfer tokens to another address.
             * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `to` parameter are clean.
             * @param token The IERC20 token contract from which the tokens will be transferred.
             * @param to The address to which the tokens will be transferred.
             * @param value The amount of tokens to transfer.
             */
            function safeTransfer(
                IERC20 token,
                address to,
                uint256 value
            ) internal {
                if (!_makeCall(token, token.transfer.selector, to, value)) {
                    revert SafeTransferFailed();
                }
            }
            /**
             * @notice Attempts to approve a spender to spend a certain amount of tokens.
             * @dev If `approve(from, to, amount)` fails, it tries to set the allowance to zero, and retries the `approve` call.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
             * @param token The IERC20 token contract on which the call will be made.
             * @param spender The address which will spend the funds.
             * @param value The amount of tokens to be spent.
             */
            function forceApprove(
                IERC20 token,
                address spender,
                uint256 value
            ) internal {
                if (!_makeCall(token, token.approve.selector, spender, value)) {
                    if (
                        !_makeCall(token, token.approve.selector, spender, 0) ||
                        !_makeCall(token, token.approve.selector, spender, value)
                    ) {
                        revert ForceApproveFailed();
                    }
                }
            }
            /**
             * @notice Safely increases the allowance of a spender.
             * @dev Increases with safe math check. Checks if the increased allowance will overflow, if yes, then it reverts the transaction.
             * Then uses `forceApprove` to increase the allowance.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
             * @param token The IERC20 token contract on which the call will be made.
             * @param spender The address which will spend the funds.
             * @param value The amount of tokens to increase the allowance by.
             */
            function safeIncreaseAllowance(
                IERC20 token,
                address spender,
                uint256 value
            ) internal {
                uint256 allowance = token.allowance(address(this), spender);
                if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
                forceApprove(token, spender, allowance + value);
            }
            /**
             * @notice Safely decreases the allowance of a spender.
             * @dev Decreases with safe math check. Checks if the decreased allowance will underflow, if yes, then it reverts the transaction.
             * Then uses `forceApprove` to increase the allowance.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
             * @param token The IERC20 token contract on which the call will be made.
             * @param spender The address which will spend the funds.
             * @param value The amount of tokens to decrease the allowance by.
             */
            function safeDecreaseAllowance(
                IERC20 token,
                address spender,
                uint256 value
            ) internal {
                uint256 allowance = token.allowance(address(this), spender);
                if (value > allowance) revert SafeDecreaseAllowanceFailed();
                forceApprove(token, spender, allowance - value);
            }
            /**
             * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
             * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
             * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
             * @param token The IERC20 token to execute the permit function on.
             * @param permit The permit data to be used in the function call.
             */
            function safePermit(IERC20 token, bytes calldata permit) internal {
                if (!tryPermit(token, msg.sender, address(this), permit)) RevertReasonForwarder.reRevert();
            }
            /**
             * @notice Attempts to execute the `permit` function on the provided token with custom owner and spender parameters.
             * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
             * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
             * @param token The IERC20 token to execute the permit function on.
             * @param owner The owner of the tokens for which the permit is made.
             * @param spender The spender allowed to spend the tokens by the permit.
             * @param permit The permit data to be used in the function call.
             */
            function safePermit(IERC20 token, address owner, address spender, bytes calldata permit) internal {
                if (!tryPermit(token, owner, spender, permit)) RevertReasonForwarder.reRevert();
            }
            /**
             * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
             * @dev Invokes `tryPermit` with sender as owner and contract as spender.
             * @param token The IERC20 token to execute the permit function on.
             * @param permit The permit data to be used in the function call.
             * @return success Returns true if the permit function was successfully executed, false otherwise.
             */
            function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool success) {
                return tryPermit(token, msg.sender, address(this), permit);
            }
            /**
             * @notice The function attempts to call the permit function on a given ERC20 token.
             * @dev The function is designed to support a variety of permit functions, namely: IERC20Permit, IDaiLikePermit, and IPermit2.
             * It accommodates both Compact and Full formats of these permit types.
             * Please note, it is expected that the `expiration` parameter for the compact Permit2 and the `deadline` parameter
             * for the compact Permit are to be incremented by one before invoking this function. This approach is motivated by
             * gas efficiency considerations; as the unlimited expiration period is likely to be the most common scenario, and
             * zeros are cheaper to pass in terms of gas cost. Thus, callers should increment the expiration or deadline by one
             * before invocation for optimized performance.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
             * @param token The address of the ERC20 token on which to call the permit function.
             * @param owner The owner of the tokens. This address should have signed the off-chain permit.
             * @param spender The address which will be approved for transfer of tokens.
             * @param permit The off-chain permit data, containing different fields depending on the type of permit function.
             * @return success A boolean indicating whether the permit call was successful.
             */
            function tryPermit(IERC20 token, address owner, address spender, bytes calldata permit) internal returns(bool success) {
                // load function selectors for different permit standards
                bytes4 permitSelector = IERC20Permit.permit.selector;
                bytes4 daiPermitSelector = IDaiLikePermit.permit.selector;
                bytes4 permit2Selector = IPermit2.permit.selector;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    // Switch case for different permit lengths, indicating different permit standards
                    switch permit.length
                    // Compact IERC20Permit
                    case 100 {
                        mstore(ptr, permitSelector)     // store selector
                        mstore(add(ptr, 0x04), owner)   // store owner
                        mstore(add(ptr, 0x24), spender) // store spender
                        // Compact IERC20Permit.permit(uint256 value, uint32 deadline, uint256 r, uint256 vs)
                        {  // stack too deep
                            let deadline := shr(224, calldataload(add(permit.offset, 0x20))) // loads permit.offset 0x20..0x23
                            let vs := calldataload(add(permit.offset, 0x44))                 // loads permit.offset 0x44..0x63
                            calldatacopy(add(ptr, 0x44), permit.offset, 0x20)            // store value     = copy permit.offset 0x00..0x19
                            mstore(add(ptr, 0x64), sub(deadline, 1))                     // store deadline  = deadline - 1
                            mstore(add(ptr, 0x84), add(27, shr(255, vs)))                // store v         = most significant bit of vs + 27 (27 or 28)
                            calldatacopy(add(ptr, 0xa4), add(permit.offset, 0x24), 0x20) // store r         = copy permit.offset 0x24..0x43
                            mstore(add(ptr, 0xc4), shr(1, shl(1, vs)))                   // store s         = vs without most significant bit
                        }
                        // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                        success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
                    }
                    // Compact IDaiLikePermit
                    case 72 {
                        mstore(ptr, daiPermitSelector)  // store selector
                        mstore(add(ptr, 0x04), owner)   // store owner
                        mstore(add(ptr, 0x24), spender) // store spender
                        // Compact IDaiLikePermit.permit(uint32 nonce, uint32 expiry, uint256 r, uint256 vs)
                        {  // stack too deep
                            let expiry := shr(224, calldataload(add(permit.offset, 0x04))) // loads permit.offset 0x04..0x07
                            let vs := calldataload(add(permit.offset, 0x28))               // loads permit.offset 0x28..0x47
                            mstore(add(ptr, 0x44), shr(224, calldataload(permit.offset))) // store nonce   = copy permit.offset 0x00..0x03
                            mstore(add(ptr, 0x64), sub(expiry, 1))                        // store expiry  = expiry - 1
                            mstore(add(ptr, 0x84), true)                                  // store allowed = true
                            mstore(add(ptr, 0xa4), add(27, shr(255, vs)))                 // store v       = most significant bit of vs + 27 (27 or 28)
                            calldatacopy(add(ptr, 0xc4), add(permit.offset, 0x08), 0x20)  // store r       = copy permit.offset 0x08..0x27
                            mstore(add(ptr, 0xe4), shr(1, shl(1, vs)))                    // store s       = vs without most significant bit
                        }
                        // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                        success := call(gas(), token, 0, ptr, 0x104, 0, 0)
                    }
                    // IERC20Permit
                    case 224 {
                        mstore(ptr, permitSelector)
                        calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                        // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                        success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
                    }
                    // IDaiLikePermit
                    case 256 {
                        mstore(ptr, daiPermitSelector)
                        calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                        // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                        success := call(gas(), token, 0, ptr, 0x104, 0, 0)
                    }
                    // Compact IPermit2
                    case 96 {
                        // Compact IPermit2.permit(uint160 amount, uint32 expiration, uint32 nonce, uint32 sigDeadline, uint256 r, uint256 vs)
                        mstore(ptr, permit2Selector)  // store selector
                        mstore(add(ptr, 0x04), owner) // store owner
                        mstore(add(ptr, 0x24), token) // store token
                        calldatacopy(add(ptr, 0x50), permit.offset, 0x14)             // store amount = copy permit.offset 0x00..0x13
                        // and(0xffffffffffff, ...) - conversion to uint48
                        mstore(add(ptr, 0x64), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x14))), 1))) // store expiration = ((permit.offset 0x14..0x17 - 1) & 0xffffffffffff)
                        mstore(add(ptr, 0x84), shr(224, calldataload(add(permit.offset, 0x18)))) // store nonce = copy permit.offset 0x18..0x1b
                        mstore(add(ptr, 0xa4), spender)                               // store spender
                        // and(0xffffffffffff, ...) - conversion to uint48
                        mstore(add(ptr, 0xc4), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x1c))), 1))) // store sigDeadline = ((permit.offset 0x1c..0x1f - 1) & 0xffffffffffff)
                        mstore(add(ptr, 0xe4), 0x100)                                 // store offset = 256
                        mstore(add(ptr, 0x104), 0x40)                                 // store length = 64
                        calldatacopy(add(ptr, 0x124), add(permit.offset, 0x20), 0x20) // store r      = copy permit.offset 0x20..0x3f
                        calldatacopy(add(ptr, 0x144), add(permit.offset, 0x40), 0x20) // store vs     = copy permit.offset 0x40..0x5f
                        // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                        success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
                    }
                    // IPermit2
                    case 352 {
                        mstore(ptr, permit2Selector)
                        calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                        // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                        success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
                    }
                    // Unknown
                    default {
                        mstore(ptr, _PERMIT_LENGTH_ERROR)
                        revert(ptr, 4)
                    }
                }
            }
            /**
             * @dev Executes a low level call to a token contract, making it resistant to reversion and erroneous boolean returns.
             * @param token The IERC20 token contract on which the call will be made.
             * @param selector The function signature that is to be called on the token contract.
             * @param to The address to which the token amount will be transferred.
             * @param amount The token amount to be transferred.
             * @return success A boolean indicating if the call was successful. Returns 'true' on success and 'false' on failure.
             * In case of success but no returned data, validates that the contract code exists.
             * In case of returned data, ensures that it's a boolean `true`.
             */
            function _makeCall(
                IERC20 token,
                bytes4 selector,
                address to,
                uint256 amount
            ) private returns (bool success) {
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let data := mload(0x40)
                    mstore(data, selector)
                    mstore(add(data, 0x04), to)
                    mstore(add(data, 0x24), amount)
                    success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
                    if success {
                        switch returndatasize()
                        case 0 {
                            success := gt(extcodesize(token), 0)
                        }
                        default {
                            success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                        }
                    }
                }
            }
            /**
             * @notice Safely deposits a specified amount of Ether into the IWETH contract. Consumes less gas then regular `IWETH.deposit`.
             * @param weth The IWETH token contract.
             * @param amount The amount of Ether to deposit into the IWETH contract.
             */
            function safeDeposit(IWETH weth, uint256 amount) internal {
                if (amount > 0) {
                    bytes4 selector = IWETH.deposit.selector;
                    assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                        mstore(0, selector)
                        if iszero(call(gas(), weth, amount, 0, 4, 0, 0)) {
                            let ptr := mload(0x40)
                            returndatacopy(ptr, 0, returndatasize())
                            revert(ptr, returndatasize())
                        }
                    }
                }
            }
            /**
             * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract. Consumes less gas then regular `IWETH.withdraw`.
             * @dev Uses inline assembly to interact with the IWETH contract.
             * @param weth The IWETH token contract.
             * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
             */
            function safeWithdraw(IWETH weth, uint256 amount) internal {
                bytes4 selector = IWETH.withdraw.selector;
                assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                    mstore(0, selector)
                    mstore(4, amount)
                    if iszero(call(gas(), weth, 0, 0, 0x24, 0, 0)) {
                        let ptr := mload(0x40)
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                }
            }
            /**
             * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract to a specified recipient.
             * Consumes less gas then regular `IWETH.withdraw`.
             * @param weth The IWETH token contract.
             * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
             * @param to The recipient of the withdrawn Ether.
             */
            function safeWithdrawTo(IWETH weth, uint256 amount, address to) internal {
                safeWithdraw(weth, amount);
                if (to != address(this)) {
                    assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                        if iszero(call(_RAW_CALL_GAS_LIMIT, to, amount, 0, 0, 0, 0)) {
                            let ptr := mload(0x40)
                            returndatacopy(ptr, 0, returndatasize())
                            revert(ptr, returndatasize())
                        }
                    }
                }
            }
        }
        // File @1inch/solidity-utils/contracts/[email protected]
        abstract contract EthReceiver {
            error EthDepositRejected();
            receive() external payable {
                _receive();
            }
            function _receive() internal virtual {
                // solhint-disable-next-line avoid-tx-origin
                if (msg.sender == tx.origin) revert EthDepositRejected();
            }
        }
        // File @1inch/solidity-utils/contracts/[email protected]
        abstract contract OnlyWethReceiver is EthReceiver {
            address private immutable _WETH; // solhint-disable-line var-name-mixedcase
            constructor(address weth) {
                _WETH = address(weth);
            }
            function _receive() internal virtual override {
                if (msg.sender != _WETH) revert EthDepositRejected();
            }
        }
        // File @1inch/solidity-utils/contracts/[email protected]
        abstract contract PermitAndCall {
            using SafeERC20 for IERC20;
            function permitAndCall(bytes calldata permit, bytes calldata action) external payable {
                IERC20(address(bytes20(permit))).tryPermit(permit[20:]);
                // solhint-disable-next-line no-inline-assembly
                assembly ("memory-safe") {
                    let ptr := mload(0x40)
                    calldatacopy(ptr, action.offset, action.length)
                    let success := delegatecall(gas(), address(), ptr, action.length, 0, 0)
                    returndatacopy(ptr, 0, returndatasize())
                    switch success
                    case 0 {
                        revert(ptr, returndatasize())
                    }
                    default {
                        return(ptr, returndatasize())
                    }
                }
            }
        }
        // File @openzeppelin/contracts/interfaces/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
        interface IERC5267 {
            /**
             * @dev MAY be emitted to signal that the domain could have changed.
             */
            event EIP712DomainChanged();
            /**
             * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
             * signature.
             */
            function eip712Domain()
                external
                view
                returns (
                    bytes1 fields,
                    string memory name,
                    string memory version,
                    uint256 chainId,
                    address verifyingContract,
                    bytes32 salt,
                    uint256[] memory extensions
                );
        }
        // File @openzeppelin/contracts/utils/math/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            /**
             * @dev Muldiv operation overflow.
             */
            error MathOverflowedMulDiv();
            enum Rounding {
                Floor, // Toward negative infinity
                Ceil, // Toward positive infinity
                Trunc, // Toward zero
                Expand // Away from zero
            }
            /**
             * @dev Returns the addition of two unsigned integers, with an overflow flag.
             */
            function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    uint256 c = a + b;
                    if (c < a) return (false, 0);
                    return (true, c);
                }
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
             */
            function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    if (b > a) return (false, 0);
                    return (true, a - b);
                }
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
             */
            function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                    // benefit is lost if 'b' is also tested.
                    // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                    if (a == 0) return (true, 0);
                    uint256 c = a * b;
                    if (c / a != b) return (false, 0);
                    return (true, c);
                }
            }
            /**
             * @dev Returns the division of two unsigned integers, with a division by zero flag.
             */
            function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    if (b == 0) return (false, 0);
                    return (true, a / b);
                }
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
             */
            function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    if (b == 0) return (false, 0);
                    return (true, a % b);
                }
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds towards infinity instead
             * of rounding towards zero.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                if (b == 0) {
                    // Guarantee the same behavior as in a regular Solidity division.
                    return a / b;
                }
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
             * denominator == 0.
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
             * Uniswap Labs also under MIT license.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0 = x * y; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                        // The surrounding unchecked block does not change this fact.
                        // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    if (denominator <= prod1) {
                        revert MathOverflowedMulDiv();
                    }
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                    // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                    uint256 twos = denominator & (0 - denominator);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                    // works in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
             * towards zero.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                //
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                //
                // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                //
                // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1 << (log2(a) >> 1);
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = sqrt(a);
                    return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 2 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             */
            function log2(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 128;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 64;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 32;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 16;
                    }
                    if (value >> 8 > 0) {
                        value >>= 8;
                        result += 8;
                    }
                    if (value >> 4 > 0) {
                        value >>= 4;
                        result += 4;
                    }
                    if (value >> 2 > 0) {
                        value >>= 2;
                        result += 2;
                    }
                    if (value >> 1 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log2(value);
                    return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 10 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             */
            function log10(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >= 10 ** 64) {
                        value /= 10 ** 64;
                        result += 64;
                    }
                    if (value >= 10 ** 32) {
                        value /= 10 ** 32;
                        result += 32;
                    }
                    if (value >= 10 ** 16) {
                        value /= 10 ** 16;
                        result += 16;
                    }
                    if (value >= 10 ** 8) {
                        value /= 10 ** 8;
                        result += 8;
                    }
                    if (value >= 10 ** 4) {
                        value /= 10 ** 4;
                        result += 4;
                    }
                    if (value >= 10 ** 2) {
                        value /= 10 ** 2;
                        result += 2;
                    }
                    if (value >= 10 ** 1) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log10(value);
                    return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 256 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             *
             * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
             */
            function log256(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 16;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 8;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 4;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 2;
                    }
                    if (value >> 8 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log256(value);
                    return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
                }
            }
            /**
             * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
             */
            function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
                return uint8(rounding) % 2 == 1;
            }
        }
        // File @openzeppelin/contracts/utils/math/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMath {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // File @openzeppelin/contracts/utils/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
        /**
         * @dev String operations.
         */
        library Strings {
            bytes16 private constant HEX_DIGITS = "0123456789abcdef";
            uint8 private constant ADDRESS_LENGTH = 20;
            /**
             * @dev The `value` string doesn't fit in the specified `length`.
             */
            error StringsInsufficientHexLength(uint256 value, uint256 length);
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    uint256 length = Math.log10(value) + 1;
                    string memory buffer = new string(length);
                    uint256 ptr;
                    /// @solidity memory-safe-assembly
                    assembly {
                        ptr := add(buffer, add(32, length))
                    }
                    while (true) {
                        ptr--;
                        /// @solidity memory-safe-assembly
                        assembly {
                            mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                        }
                        value /= 10;
                        if (value == 0) break;
                    }
                    return buffer;
                }
            }
            /**
             * @dev Converts a `int256` to its ASCII `string` decimal representation.
             */
            function toStringSigned(int256 value) internal pure returns (string memory) {
                return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    return toHexString(value, Math.log256(value) + 1);
                }
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                uint256 localValue = value;
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = HEX_DIGITS[localValue & 0xf];
                    localValue >>= 4;
                }
                if (localValue != 0) {
                    revert StringsInsufficientHexLength(value, length);
                }
                return string(buffer);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
             * representation.
             */
            function toHexString(address addr) internal pure returns (string memory) {
                return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
            }
            /**
             * @dev Returns true if the two strings are equal.
             */
            function equal(string memory a, string memory b) internal pure returns (bool) {
                return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
            }
        }
        // File @openzeppelin/contracts/utils/cryptography/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
        /**
         * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
         *
         * The library provides methods for generating a hash of a message that conforms to the
         * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
         * specifications.
         */
        library MessageHashUtils {
            /**
             * @dev Returns the keccak256 digest of an EIP-191 signed data with version
             * `0x45` (`personal_sign` messages).
             *
             * The digest is calculated by prefixing a bytes32 `messageHash` with
             * `"\\x19Ethereum Signed Message:\
        32"` and hashing the result. It corresponds with the
             * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
             *
             * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
             * keccak256, although any bytes32 value can be safely used because the final digest will
             * be re-hashed.
             *
             * See {ECDSA-recover}.
             */
            function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x00, "\\x19Ethereum Signed Message:\
        32") // 32 is the bytes-length of messageHash
                    mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                    digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
                }
            }
            /**
             * @dev Returns the keccak256 digest of an EIP-191 signed data with version
             * `0x45` (`personal_sign` messages).
             *
             * The digest is calculated by prefixing an arbitrary `message` with
             * `"\\x19Ethereum Signed Message:\
        " + len(message)` and hashing the result. It corresponds with the
             * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
             *
             * See {ECDSA-recover}.
             */
            function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
                return
                    keccak256(bytes.concat("\\x19Ethereum Signed Message:\
        ", bytes(Strings.toString(message.length)), message));
            }
            /**
             * @dev Returns the keccak256 digest of an EIP-191 signed data with version
             * `0x00` (data with intended validator).
             *
             * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended
             * `validator` address. Then hashing the result.
             *
             * See {ECDSA-recover}.
             */
            function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
                return keccak256(abi.encodePacked(hex"19_00", validator, data));
            }
            /**
             * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
             *
             * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
             * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
             * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
             *
             * See {ECDSA-recover}.
             */
            function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
                /// @solidity memory-safe-assembly
                assembly {
                    let ptr := mload(0x40)
                    mstore(ptr, hex"19_01")
                    mstore(add(ptr, 0x02), domainSeparator)
                    mstore(add(ptr, 0x22), structHash)
                    digest := keccak256(ptr, 0x42)
                }
            }
        }
        // File @openzeppelin/contracts/utils/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
        // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```solidity
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(newImplementation.code.length > 0);
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            struct StringSlot {
                string value;
            }
            struct BytesSlot {
                bytes value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` with member `value` located at `slot`.
             */
            function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
             */
            function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` with member `value` located at `slot`.
             */
            function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
             */
            function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
        }
        // File @openzeppelin/contracts/utils/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
        // | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
        // | length  | 0x                                                              BB |
        type ShortString is bytes32;
        /**
         * @dev This library provides functions to convert short memory strings
         * into a `ShortString` type that can be used as an immutable variable.
         *
         * Strings of arbitrary length can be optimized using this library if
         * they are short enough (up to 31 bytes) by packing them with their
         * length (1 byte) in a single EVM word (32 bytes). Additionally, a
         * fallback mechanism can be used for every other case.
         *
         * Usage example:
         *
         * ```solidity
         * contract Named {
         *     using ShortStrings for *;
         *
         *     ShortString private immutable _name;
         *     string private _nameFallback;
         *
         *     constructor(string memory contractName) {
         *         _name = contractName.toShortStringWithFallback(_nameFallback);
         *     }
         *
         *     function name() external view returns (string memory) {
         *         return _name.toStringWithFallback(_nameFallback);
         *     }
         * }
         * ```
         */
        library ShortStrings {
            // Used as an identifier for strings longer than 31 bytes.
            bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
            error StringTooLong(string str);
            error InvalidShortString();
            /**
             * @dev Encode a string of at most 31 chars into a `ShortString`.
             *
             * This will trigger a `StringTooLong` error is the input string is too long.
             */
            function toShortString(string memory str) internal pure returns (ShortString) {
                bytes memory bstr = bytes(str);
                if (bstr.length > 31) {
                    revert StringTooLong(str);
                }
                return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
            }
            /**
             * @dev Decode a `ShortString` back to a "normal" string.
             */
            function toString(ShortString sstr) internal pure returns (string memory) {
                uint256 len = byteLength(sstr);
                // using `new string(len)` would work locally but is not memory safe.
                string memory str = new string(32);
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(str, len)
                    mstore(add(str, 0x20), sstr)
                }
                return str;
            }
            /**
             * @dev Return the length of a `ShortString`.
             */
            function byteLength(ShortString sstr) internal pure returns (uint256) {
                uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
                if (result > 31) {
                    revert InvalidShortString();
                }
                return result;
            }
            /**
             * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
             */
            function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
                if (bytes(value).length < 32) {
                    return toShortString(value);
                } else {
                    StorageSlot.getStringSlot(store).value = value;
                    return ShortString.wrap(FALLBACK_SENTINEL);
                }
            }
            /**
             * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
             */
            function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
                if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                    return toString(value);
                } else {
                    return store;
                }
            }
            /**
             * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
             * {setWithFallback}.
             *
             * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
             * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
             */
            function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
                if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                    return byteLength(value);
                } else {
                    return bytes(store).length;
                }
            }
        }
        // File @openzeppelin/contracts/utils/cryptography/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
        /**
         * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
         *
         * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
         * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
         * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
         * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
         *
         * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
         * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
         * ({_hashTypedDataV4}).
         *
         * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
         * the chain id to protect against replay attacks on an eventual fork of the chain.
         *
         * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
         * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
         *
         * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
         * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
         * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
         *
         * @custom:oz-upgrades-unsafe-allow state-variable-immutable
         */
        abstract contract EIP712 is IERC5267 {
            using ShortStrings for *;
            bytes32 private constant TYPE_HASH =
                keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
            // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
            // invalidate the cached domain separator if the chain id changes.
            bytes32 private immutable _cachedDomainSeparator;
            uint256 private immutable _cachedChainId;
            address private immutable _cachedThis;
            bytes32 private immutable _hashedName;
            bytes32 private immutable _hashedVersion;
            ShortString private immutable _name;
            ShortString private immutable _version;
            string private _nameFallback;
            string private _versionFallback;
            /**
             * @dev Initializes the domain separator and parameter caches.
             *
             * The meaning of `name` and `version` is specified in
             * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
             *
             * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
             * - `version`: the current major version of the signing domain.
             *
             * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
             * contract upgrade].
             */
            constructor(string memory name, string memory version) {
                _name = name.toShortStringWithFallback(_nameFallback);
                _version = version.toShortStringWithFallback(_versionFallback);
                _hashedName = keccak256(bytes(name));
                _hashedVersion = keccak256(bytes(version));
                _cachedChainId = block.chainid;
                _cachedDomainSeparator = _buildDomainSeparator();
                _cachedThis = address(this);
            }
            /**
             * @dev Returns the domain separator for the current chain.
             */
            function _domainSeparatorV4() internal view returns (bytes32) {
                if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
                    return _cachedDomainSeparator;
                } else {
                    return _buildDomainSeparator();
                }
            }
            function _buildDomainSeparator() private view returns (bytes32) {
                return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
            }
            /**
             * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
             * function returns the hash of the fully encoded EIP712 message for this domain.
             *
             * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
             *
             * ```solidity
             * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
             *     keccak256("Mail(address to,string contents)"),
             *     mailTo,
             *     keccak256(bytes(mailContents))
             * )));
             * address signer = ECDSA.recover(digest, signature);
             * ```
             */
            function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
                return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
            }
            /**
             * @dev See {IERC-5267}.
             */
            function eip712Domain()
                public
                view
                virtual
                returns (
                    bytes1 fields,
                    string memory name,
                    string memory version,
                    uint256 chainId,
                    address verifyingContract,
                    bytes32 salt,
                    uint256[] memory extensions
                )
            {
                return (
                    hex"0f", // 01111
                    _EIP712Name(),
                    _EIP712Version(),
                    block.chainid,
                    address(this),
                    bytes32(0),
                    new uint256[](0)
                );
            }
            /**
             * @dev The name parameter for the EIP712 domain.
             *
             * NOTE: By default this function reads _name which is an immutable value.
             * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
             */
            // solhint-disable-next-line func-name-mixedcase
            function _EIP712Name() internal view returns (string memory) {
                return _name.toStringWithFallback(_nameFallback);
            }
            /**
             * @dev The version parameter for the EIP712 domain.
             *
             * NOTE: By default this function reads _version which is an immutable value.
             * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
             */
            // solhint-disable-next-line func-name-mixedcase
            function _EIP712Version() internal view returns (string memory) {
                return _version.toStringWithFallback(_versionFallback);
            }
        }
        // File @openzeppelin/contracts/utils/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            function _contextSuffixLength() internal view virtual returns (uint256) {
                return 0;
            }
        }
        // File @openzeppelin/contracts/utils/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
        /**
         * @dev Contract module which allows children to implement an emergency stop
         * mechanism that can be triggered by an authorized account.
         *
         * This module is used through inheritance. It will make available the
         * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
         * the functions of your contract. Note that they will not be pausable by
         * simply including this module, only once the modifiers are put in place.
         */
        abstract contract Pausable is Context {
            bool private _paused;
            /**
             * @dev Emitted when the pause is triggered by `account`.
             */
            event Paused(address account);
            /**
             * @dev Emitted when the pause is lifted by `account`.
             */
            event Unpaused(address account);
            /**
             * @dev The operation failed because the contract is paused.
             */
            error EnforcedPause();
            /**
             * @dev The operation failed because the contract is not paused.
             */
            error ExpectedPause();
            /**
             * @dev Initializes the contract in unpaused state.
             */
            constructor() {
                _paused = false;
            }
            /**
             * @dev Modifier to make a function callable only when the contract is not paused.
             *
             * Requirements:
             *
             * - The contract must not be paused.
             */
            modifier whenNotPaused() {
                _requireNotPaused();
                _;
            }
            /**
             * @dev Modifier to make a function callable only when the contract is paused.
             *
             * Requirements:
             *
             * - The contract must be paused.
             */
            modifier whenPaused() {
                _requirePaused();
                _;
            }
            /**
             * @dev Returns true if the contract is paused, and false otherwise.
             */
            function paused() public view virtual returns (bool) {
                return _paused;
            }
            /**
             * @dev Throws if the contract is paused.
             */
            function _requireNotPaused() internal view virtual {
                if (paused()) {
                    revert EnforcedPause();
                }
            }
            /**
             * @dev Throws if the contract is not paused.
             */
            function _requirePaused() internal view virtual {
                if (!paused()) {
                    revert ExpectedPause();
                }
            }
            /**
             * @dev Triggers stopped state.
             *
             * Requirements:
             *
             * - The contract must not be paused.
             */
            function _pause() internal virtual whenNotPaused {
                _paused = true;
                emit Paused(_msgSender());
            }
            /**
             * @dev Returns to normal state.
             *
             * Requirements:
             *
             * - The contract must be paused.
             */
            function _unpause() internal virtual whenPaused {
                _paused = false;
                emit Unpaused(_msgSender());
            }
        }
        // File @1inch/limit-order-protocol-contract/contracts/[email protected]
        /// @title Limit Order mixin
        abstract contract OrderMixin is IOrderMixin, EIP712, PredicateHelper, SeriesEpochManager, Pausable, OnlyWethReceiver, PermitAndCall {
            using SafeERC20 for IERC20;
            using SafeERC20 for IWETH;
            using OrderLib for IOrderMixin.Order;
            using ExtensionLib for bytes;
            using AddressLib for Address;
            using MakerTraitsLib for MakerTraits;
            using TakerTraitsLib for TakerTraits;
            using BitInvalidatorLib for BitInvalidatorLib.Data;
            using RemainingInvalidatorLib for RemainingInvalidator;
            IWETH private immutable _WETH;  // solhint-disable-line var-name-mixedcase
            mapping(address maker => BitInvalidatorLib.Data data) private _bitInvalidator;
            mapping(address maker => mapping(bytes32 orderHash => RemainingInvalidator remaining)) private _remainingInvalidator;
            constructor(IWETH weth) OnlyWethReceiver(address(weth)) {
                _WETH = weth;
            }
            /**
             * @notice See {IOrderMixin-bitInvalidatorForOrder}.
             */
            function bitInvalidatorForOrder(address maker, uint256 slot) external view returns(uint256 /* result */) {
                return _bitInvalidator[maker].checkSlot(slot);
            }
            /**
             * @notice See {IOrderMixin-remainingInvalidatorForOrder}.
             */
            function remainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 /* remaining */) {
                return _remainingInvalidator[maker][orderHash].remaining();
            }
            /**
             * @notice See {IOrderMixin-rawRemainingInvalidatorForOrder}.
             */
            function rawRemainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 /* remainingRaw */) {
                return RemainingInvalidator.unwrap(_remainingInvalidator[maker][orderHash]);
            }
            /**
             * @notice See {IOrderMixin-simulate}.
             */
            function simulate(address target, bytes calldata data) external {
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory result) = target.delegatecall(data);
                revert SimulationResults(success, result);
            }
            /**
             * @notice See {IOrderMixin-cancelOrder}.
             */
            function cancelOrder(MakerTraits makerTraits, bytes32 orderHash) public {
                if (makerTraits.useBitInvalidator()) {
                    uint256 invalidator = _bitInvalidator[msg.sender].massInvalidate(makerTraits.nonceOrEpoch(), 0);
                    emit BitInvalidatorUpdated(msg.sender, makerTraits.nonceOrEpoch() >> 8, invalidator);
                } else {
                    _remainingInvalidator[msg.sender][orderHash] = RemainingInvalidatorLib.fullyFilled();
                    emit OrderCancelled(orderHash);
                }
            }
            /**
             * @notice See {IOrderMixin-cancelOrders}.
             */
            function cancelOrders(MakerTraits[] calldata makerTraits, bytes32[] calldata orderHashes) external {
                if (makerTraits.length != orderHashes.length) revert MismatchArraysLengths();
                unchecked {
                    for (uint256 i = 0; i < makerTraits.length; i++) {
                        cancelOrder(makerTraits[i], orderHashes[i]);
                    }
                }
            }
            /**
             * @notice See {IOrderMixin-bitsInvalidateForOrder}.
             */
            function bitsInvalidateForOrder(MakerTraits makerTraits, uint256 additionalMask) external {
                if (!makerTraits.useBitInvalidator()) revert OrderIsNotSuitableForMassInvalidation();
                uint256 invalidator = _bitInvalidator[msg.sender].massInvalidate(makerTraits.nonceOrEpoch(), additionalMask);
                emit BitInvalidatorUpdated(msg.sender, makerTraits.nonceOrEpoch() >> 8, invalidator);
            }
             /**
             * @notice See {IOrderMixin-hashOrder}.
             */
            function hashOrder(IOrderMixin.Order calldata order) external view returns(bytes32) {
                return order.hash(_domainSeparatorV4());
            }
            /**
             * @notice See {IOrderMixin-checkPredicate}.
             */
            function checkPredicate(bytes calldata predicate) public view returns(bool) {
                (bool success, uint256 res) = _staticcallForUint(address(this), predicate);
                return success && res == 1;
            }
            /**
             * @notice See {IOrderMixin-fillOrder}.
             */
            function fillOrder(
                IOrderMixin.Order calldata order,
                bytes32 r,
                bytes32 vs,
                uint256 amount,
                TakerTraits takerTraits
            ) external payable returns(uint256 /* makingAmount */, uint256 /* takingAmount */, bytes32 /* orderHash */) {
                return _fillOrder(order, r, vs, amount, takerTraits, msg.sender, msg.data[:0], msg.data[:0]);
            }
            /**
             * @notice See {IOrderMixin-fillOrderArgs}.
             */
            function fillOrderArgs(
                IOrderMixin.Order calldata order,
                bytes32 r,
                bytes32 vs,
                uint256 amount,
                TakerTraits takerTraits,
                bytes calldata args
            ) external payable returns(uint256 /* makingAmount */, uint256 /* takingAmount */, bytes32 /* orderHash */) {
                (
                    address target,
                    bytes calldata extension,
                    bytes calldata interaction
                ) = _parseArgs(takerTraits, args);
                return _fillOrder(order, r, vs, amount, takerTraits, target, extension, interaction);
            }
            function _fillOrder(
                IOrderMixin.Order calldata order,
                bytes32 r,
                bytes32 vs,
                uint256 amount,
                TakerTraits takerTraits,
                address target,
                bytes calldata extension,
                bytes calldata interaction
            ) private returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash) {
                // Check signature and apply order/maker permit only on the first fill
                orderHash = order.hash(_domainSeparatorV4());
                uint256 remainingMakingAmount = _checkRemainingMakingAmount(order, orderHash);
                if (remainingMakingAmount == order.makingAmount) {
                    address maker = order.maker.get();
                    if (maker == address(0) || maker != ECDSA.recover(orderHash, r, vs)) revert BadSignature();
                    if (!takerTraits.skipMakerPermit()) {
                        bytes calldata makerPermit = extension.makerPermit();
                        if (makerPermit.length >= 20) {
                            // proceed only if taker is willing to execute permit and its length is enough to store address
                            IERC20(address(bytes20(makerPermit))).tryPermit(maker, address(this), makerPermit[20:]);
                            if (!order.makerTraits.useBitInvalidator()) {
                                // Bit orders are not subjects for reentrancy, but we still need to check remaining-based orders for reentrancy
                                if (!_remainingInvalidator[order.maker.get()][orderHash].isNewOrder()) revert ReentrancyDetected();
                            }
                        }
                    }
                }
                (makingAmount, takingAmount) = _fill(order, orderHash, remainingMakingAmount, amount, takerTraits, target, extension, interaction);
            }
            /**
             * @notice See {IOrderMixin-fillContractOrder}.
             */
            function fillContractOrder(
                IOrderMixin.Order calldata order,
                bytes calldata signature,
                uint256 amount,
                TakerTraits takerTraits
            ) external returns(uint256 /* makingAmount */, uint256 /* takingAmount */, bytes32 /* orderHash */) {
                return _fillContractOrder(order, signature, amount, takerTraits, msg.sender, msg.data[:0], msg.data[:0]);
            }
            /**
             * @notice See {IOrderMixin-fillContractOrderArgs}.
             */
            function fillContractOrderArgs(
                IOrderMixin.Order calldata order,
                bytes calldata signature,
                uint256 amount,
                TakerTraits takerTraits,
                bytes calldata args
            ) external returns(uint256 /* makingAmount */, uint256 /* takingAmount */, bytes32 /* orderHash */) {
                (
                    address target,
                    bytes calldata extension,
                    bytes calldata interaction
                ) = _parseArgs(takerTraits, args);
                return _fillContractOrder(order, signature, amount, takerTraits, target, extension, interaction);
            }
            function _fillContractOrder(
                IOrderMixin.Order calldata order,
                bytes calldata signature,
                uint256 amount,
                TakerTraits takerTraits,
                address target,
                bytes calldata extension,
                bytes calldata interaction
            ) private returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash) {
                // Check signature only on the first fill
                orderHash = order.hash(_domainSeparatorV4());
                uint256 remainingMakingAmount = _checkRemainingMakingAmount(order, orderHash);
                if (remainingMakingAmount == order.makingAmount) {
                    if (!ECDSA.isValidSignature(order.maker.get(), orderHash, signature)) revert BadSignature();
                }
                (makingAmount, takingAmount) = _fill(order, orderHash, remainingMakingAmount, amount, takerTraits, target, extension, interaction);
            }
            /**
              * @notice Fills an order and transfers making amount to a specified target.
              * @dev If the target is zero assigns it the caller's address.
              * The function flow is as follows:
              * 1. Validate order
              * 2. Call maker pre-interaction
              * 3. Transfer maker asset to taker
              * 4. Call taker interaction
              * 5. Transfer taker asset to maker
              * 5. Call maker post-interaction
              * 6. Emit OrderFilled event
              * @param order The order details.
              * @param orderHash The hash of the order.
              * @param extension The extension calldata of the order.
              * @param remainingMakingAmount The remaining amount to be filled.
              * @param amount The order amount.
              * @param takerTraits The taker preferences for the order.
              * @param target The address to which the order is filled.
              * @param interaction The interaction calldata.
              * @return makingAmount The computed amount that the maker will get.
              * @return takingAmount The computed amount that the taker will send.
              */
            function _fill(
                IOrderMixin.Order calldata order,
                bytes32 orderHash,
                uint256 remainingMakingAmount,
                uint256 amount,
                TakerTraits takerTraits,
                address target,
                bytes calldata extension,
                bytes calldata interaction
            ) private whenNotPaused() returns(uint256 makingAmount, uint256 takingAmount) {
                // Validate order
                {
                    (bool valid, bytes4 validationResult) = order.isValidExtension(extension);
                    if (!valid) {
                        // solhint-disable-next-line no-inline-assembly
                        assembly ("memory-safe") {
                            mstore(0, validationResult)
                            revert(0, 4)
                        }
                    }
                }
                if (!order.makerTraits.isAllowedSender(msg.sender)) revert PrivateOrder();
                if (order.makerTraits.isExpired()) revert OrderExpired();
                if (order.makerTraits.needCheckEpochManager()) {
                    if (order.makerTraits.useBitInvalidator()) revert EpochManagerAndBitInvalidatorsAreIncompatible();
                    if (!epochEquals(order.maker.get(), order.makerTraits.series(), order.makerTraits.nonceOrEpoch())) revert WrongSeriesNonce();
                }
                // Check if orders predicate allows filling
                if (extension.length > 0) {
                    bytes calldata predicate = extension.predicate();
                    if (predicate.length > 0) {
                        if (!checkPredicate(predicate)) revert PredicateIsNotTrue();
                    }
                }
                // Compute maker and taker assets amount
                if (takerTraits.isMakingAmount()) {
                    makingAmount = Math.min(amount, remainingMakingAmount);
                    takingAmount = order.calculateTakingAmount(extension, makingAmount, remainingMakingAmount, orderHash);
                    uint256 threshold = takerTraits.threshold();
                    if (threshold > 0) {
                        // Check rate: takingAmount / makingAmount <= threshold / amount
                        if (amount == makingAmount) {  // Gas optimization, no SafeMath.mul()
                            if (takingAmount > threshold) revert TakingAmountTooHigh();
                        } else {
                            if (takingAmount * amount > threshold * makingAmount) revert TakingAmountTooHigh();
                        }
                    }
                }
                else {
                    takingAmount = amount;
                    makingAmount = order.calculateMakingAmount(extension, takingAmount, remainingMakingAmount, orderHash);
                    if (makingAmount > remainingMakingAmount) {
                        // Try to decrease taking amount because computed making amount exceeds remaining amount
                        makingAmount = remainingMakingAmount;
                        takingAmount = order.calculateTakingAmount(extension, makingAmount, remainingMakingAmount, orderHash);
                        if (takingAmount > amount) revert TakingAmountExceeded();
                    }
                    uint256 threshold = takerTraits.threshold();
                    if (threshold > 0) {
                        // Check rate: makingAmount / takingAmount >= threshold / amount
                        if (amount == takingAmount) { // Gas optimization, no SafeMath.mul()
                            if (makingAmount < threshold) revert MakingAmountTooLow();
                        } else {
                            if (makingAmount * amount < threshold * takingAmount) revert MakingAmountTooLow();
                        }
                    }
                }
                if (!order.makerTraits.allowPartialFills() && makingAmount != order.makingAmount) revert PartialFillNotAllowed();
                unchecked { if (makingAmount * takingAmount == 0) revert SwapWithZeroAmount(); }
                // Invalidate order depending on makerTraits
                if (order.makerTraits.useBitInvalidator()) {
                    _bitInvalidator[order.maker.get()].checkAndInvalidate(order.makerTraits.nonceOrEpoch());
                } else {
                    _remainingInvalidator[order.maker.get()][orderHash] = RemainingInvalidatorLib.remains(remainingMakingAmount, makingAmount);
                }
                // Pre interaction, where maker can prepare funds interactively
                if (order.makerTraits.needPreInteractionCall()) {
                    bytes calldata data = extension.preInteractionTargetAndData();
                    address listener = order.maker.get();
                    if (data.length > 19) {
                        listener = address(bytes20(data));
                        data = data[20:];
                    }
                    IPreInteraction(listener).preInteraction(
                        order, extension, orderHash, msg.sender, makingAmount, takingAmount, remainingMakingAmount, data
                    );
                }
                // Maker => Taker
                {
                    bool needUnwrap = order.makerAsset.get() == address(_WETH) && takerTraits.unwrapWeth();
                    address receiver = needUnwrap ? address(this) : target;
                    if (order.makerTraits.usePermit2()) {
                        if (extension.makerAssetSuffix().length > 0) revert InvalidPermit2Transfer();
                        IERC20(order.makerAsset.get()).safeTransferFromPermit2(order.maker.get(), receiver, makingAmount);
                    } else {
                        if (!_callTransferFromWithSuffix(
                            order.makerAsset.get(),
                            order.maker.get(),
                            receiver,
                            makingAmount,
                            extension.makerAssetSuffix()
                        )) revert TransferFromMakerToTakerFailed();
                    }
                    if (needUnwrap) {
                        _WETH.safeWithdrawTo(makingAmount, target);
                    }
                }
                if (interaction.length > 19) {
                    // proceed only if interaction length is enough to store address
                    ITakerInteraction(address(bytes20(interaction))).takerInteraction(
                        order, extension, orderHash, msg.sender, makingAmount, takingAmount, remainingMakingAmount, interaction[20:]
                    );
                }
                // Taker => Maker
                if (order.takerAsset.get() == address(_WETH) && msg.value > 0) {
                    if (msg.value < takingAmount) revert Errors.InvalidMsgValue();
                    if (msg.value > takingAmount) {
                        unchecked {
                            // solhint-disable-next-line avoid-low-level-calls
                            (bool success, ) = msg.sender.call{value: msg.value - takingAmount}("");
                            if (!success) revert Errors.ETHTransferFailed();
                        }
                    }
                    if (order.makerTraits.unwrapWeth()) {
                        // solhint-disable-next-line avoid-low-level-calls
                        (bool success, ) = order.getReceiver().call{value: takingAmount}("");
                        if (!success) revert Errors.ETHTransferFailed();
                    } else {
                        _WETH.safeDeposit(takingAmount);
                        _WETH.safeTransfer(order.getReceiver(), takingAmount);
                    }
                } else {
                    if (msg.value != 0) revert Errors.InvalidMsgValue();
                    bool needUnwrap = order.takerAsset.get() == address(_WETH) && order.makerTraits.unwrapWeth();
                    address receiver = needUnwrap ? address(this) : order.getReceiver();
                    if (takerTraits.usePermit2()) {
                        if (extension.takerAssetSuffix().length > 0) revert InvalidPermit2Transfer();
                        IERC20(order.takerAsset.get()).safeTransferFromPermit2(msg.sender, receiver, takingAmount);
                    } else {
                        if (!_callTransferFromWithSuffix(
                            order.takerAsset.get(),
                            msg.sender,
                            receiver,
                            takingAmount,
                            extension.takerAssetSuffix()
                        )) revert TransferFromTakerToMakerFailed();
                    }
                    if (needUnwrap) {
                        _WETH.safeWithdrawTo(takingAmount, order.getReceiver());
                    }
                }
                // Post interaction, where maker can handle funds interactively
                if (order.makerTraits.needPostInteractionCall()) {
                    bytes calldata data = extension.postInteractionTargetAndData();
                    address listener = order.maker.get();
                    if (data.length > 19) {
                        listener = address(bytes20(data));
                        data = data[20:];
                    }
                    IPostInteraction(listener).postInteraction(
                        order, extension, orderHash, msg.sender, makingAmount, takingAmount, remainingMakingAmount, data
                    );
                }
                emit OrderFilled(orderHash, remainingMakingAmount - makingAmount);
            }
            /**
              * @notice Processes the taker interaction arguments.
              * @param takerTraits The taker preferences for the order.
              * @param args The taker interaction arguments.
              * @return target The address to which the order is filled.
              * @return extension The extension calldata of the order.
              * @return interaction The interaction calldata.
              */
            function _parseArgs(TakerTraits takerTraits, bytes calldata args)
                private
                view
                returns(
                    address target,
                    bytes calldata extension,
                    bytes calldata interaction
                )
            {
                if (takerTraits.argsHasTarget()) {
                    target = address(bytes20(args));
                    args = args[20:];
                } else {
                    target = msg.sender;
                }
                uint256 extensionLength = takerTraits.argsExtensionLength();
                if (extensionLength > 0) {
                    extension = args[:extensionLength];
                    args = args[extensionLength:];
                } else {
                    extension = msg.data[:0];
                }
                uint256 interactionLength = takerTraits.argsInteractionLength();
                if (interactionLength > 0) {
                    interaction = args[:interactionLength];
                } else {
                    interaction = msg.data[:0];
                }
            }
            /**
              * @notice Checks the remaining making amount for the order.
              * @dev If the order has been invalidated, the function will revert.
              * @param order The order to check.
              * @param orderHash The hash of the order.
              * @return remainingMakingAmount The remaining amount of the order.
              */
            function _checkRemainingMakingAmount(IOrderMixin.Order calldata order, bytes32 orderHash) private view returns(uint256 remainingMakingAmount) {
                if (order.makerTraits.useBitInvalidator()) {
                    remainingMakingAmount = order.makingAmount;
                } else {
                    remainingMakingAmount = _remainingInvalidator[order.maker.get()][orderHash].remaining(order.makingAmount);
                }
                if (remainingMakingAmount == 0) revert InvalidatedOrder();
            }
            /**
              * @notice Calls the transferFrom function with an arbitrary suffix.
              * @dev The suffix is appended to the end of the standard ERC20 transferFrom function parameters.
              * @param asset The token to be transferred.
              * @param from The address to transfer the token from.
              * @param to The address to transfer the token to.
              * @param amount The amount of the token to transfer.
              * @param suffix The suffix (additional data) to append to the end of the transferFrom call.
              * @return success A boolean indicating whether the transfer was successful.
              */
            function _callTransferFromWithSuffix(address asset, address from, address to, uint256 amount, bytes calldata suffix) private returns(bool success) {
                bytes4 selector = IERC20.transferFrom.selector;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let data := mload(0x40)
                    mstore(data, selector)
                    mstore(add(data, 0x04), from)
                    mstore(add(data, 0x24), to)
                    mstore(add(data, 0x44), amount)
                    if suffix.length {
                        calldatacopy(add(data, 0x64), suffix.offset, suffix.length)
                    }
                    let status := call(gas(), asset, 0, data, add(0x64, suffix.length), 0x0, 0x20)
                    success := and(status, or(iszero(returndatasize()), and(gt(returndatasize(), 31), eq(mload(0), 1))))
                }
            }
        }
        // File @1inch/solidity-utils/contracts/interfaces/[email protected]
        interface IERC20MetadataUppercase {
            function NAME() external view returns (string memory); // solhint-disable-line func-name-mixedcase
            function SYMBOL() external view returns (string memory); // solhint-disable-line func-name-mixedcase
        }
        // File @1inch/solidity-utils/contracts/libraries/[email protected]
        /// @title Library with gas-efficient string operations
        library StringUtil {
            function toHex(uint256 value) internal pure returns (string memory) {
                return toHex(abi.encodePacked(value));
            }
            function toHex(address value) internal pure returns (string memory) {
                return toHex(abi.encodePacked(value));
            }
            /// @dev this is the assembly adaptation of highly optimized toHex16 code from Mikhail Vladimirov
            /// https://stackoverflow.com/a/69266989
            function toHex(bytes memory data) internal pure returns (string memory result) {
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    function _toHex16(input) -> output {
                        output := or(
                            and(input, 0xFFFFFFFFFFFFFFFF000000000000000000000000000000000000000000000000),
                            shr(64, and(input, 0x0000000000000000FFFFFFFFFFFFFFFF00000000000000000000000000000000))
                        )
                        output := or(
                            and(output, 0xFFFFFFFF000000000000000000000000FFFFFFFF000000000000000000000000),
                            shr(32, and(output, 0x00000000FFFFFFFF000000000000000000000000FFFFFFFF0000000000000000))
                        )
                        output := or(
                            and(output, 0xFFFF000000000000FFFF000000000000FFFF000000000000FFFF000000000000),
                            shr(16, and(output, 0x0000FFFF000000000000FFFF000000000000FFFF000000000000FFFF00000000))
                        )
                        output := or(
                            and(output, 0xFF000000FF000000FF000000FF000000FF000000FF000000FF000000FF000000),
                            shr(8, and(output, 0x00FF000000FF000000FF000000FF000000FF000000FF000000FF000000FF0000))
                        )
                        output := or(
                            shr(4, and(output, 0xF000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000)),
                            shr(8, and(output, 0x0F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F00))
                        )
                        output := add(
                            add(0x3030303030303030303030303030303030303030303030303030303030303030, output),
                            mul(
                                and(
                                    shr(4, add(output, 0x0606060606060606060606060606060606060606060606060606060606060606)),
                                    0x0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F
                                ),
                                7 // Change 7 to 39 for lower case output
                            )
                        )
                    }
                    result := mload(0x40)
                    let length := mload(data)
                    let resultLength := shl(1, length)
                    let toPtr := add(result, 0x22) // 32 bytes for length + 2 bytes for '0x'
                    mstore(0x40, add(toPtr, resultLength)) // move free memory pointer
                    mstore(add(result, 2), 0x3078) // 0x3078 is right aligned so we write to `result + 2`
                    // to store the last 2 bytes in the beginning of the string
                    mstore(result, add(resultLength, 2)) // extra 2 bytes for '0x'
                    for {
                        let fromPtr := add(data, 0x20)
                        let endPtr := add(fromPtr, length)
                    } lt(fromPtr, endPtr) {
                        fromPtr := add(fromPtr, 0x20)
                    } {
                        let rawData := mload(fromPtr)
                        let hexData := _toHex16(rawData)
                        mstore(toPtr, hexData)
                        toPtr := add(toPtr, 0x20)
                        hexData := _toHex16(shl(128, rawData))
                        mstore(toPtr, hexData)
                        toPtr := add(toPtr, 0x20)
                    }
                }
            }
        }
        // File @openzeppelin/contracts/token/ERC20/extensions/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
        /**
         * @dev Interface for the optional metadata functions from the ERC20 standard.
         */
        interface IERC20Metadata is IERC20 {
            /**
             * @dev Returns the name of the token.
             */
            function name() external view returns (string memory);
            /**
             * @dev Returns the symbol of the token.
             */
            function symbol() external view returns (string memory);
            /**
             * @dev Returns the decimals places of the token.
             */
            function decimals() external view returns (uint8);
        }
        // File @1inch/solidity-utils/contracts/libraries/[email protected]
        /// @title Library, which allows usage of ETH as ERC20 and ERC20 itself. Uses SafeERC20 library for ERC20 interface.
        library UniERC20 {
            using SafeERC20 for IERC20;
            error InsufficientBalance();
            error ApproveCalledOnETH();
            error NotEnoughValue();
            error FromIsNotSender();
            error ToIsNotThis();
            error ETHTransferFailed();
            uint256 private constant _RAW_CALL_GAS_LIMIT = 5000;
            IERC20 private constant _ETH_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
            IERC20 private constant _ZERO_ADDRESS = IERC20(address(0));
            /// @dev Returns true if `token` is ETH.
            function isETH(IERC20 token) internal pure returns (bool) {
                return (token == _ZERO_ADDRESS || token == _ETH_ADDRESS);
            }
            /// @dev Returns `account` ERC20 `token` balance.
            function uniBalanceOf(IERC20 token, address account) internal view returns (uint256) {
                if (isETH(token)) {
                    return account.balance;
                } else {
                    return token.balanceOf(account);
                }
            }
            /// @dev `token` transfer `to` `amount`.
            /// Note that this function does nothing in case of zero amount.
            function uniTransfer(
                IERC20 token,
                address payable to,
                uint256 amount
            ) internal {
                if (amount > 0) {
                    if (isETH(token)) {
                        if (address(this).balance < amount) revert InsufficientBalance();
                        // solhint-disable-next-line avoid-low-level-calls
                        (bool success, ) = to.call{value: amount, gas: _RAW_CALL_GAS_LIMIT}("");
                        if (!success) revert ETHTransferFailed();
                    } else {
                        token.safeTransfer(to, amount);
                    }
                }
            }
            /// @dev `token` transfer `from` `to` `amount`.
            /// Note that this function does nothing in case of zero amount.
            function uniTransferFrom(
                IERC20 token,
                address payable from,
                address to,
                uint256 amount
            ) internal {
                if (amount > 0) {
                    if (isETH(token)) {
                        if (msg.value < amount) revert NotEnoughValue();
                        if (from != msg.sender) revert FromIsNotSender();
                        if (to != address(this)) revert ToIsNotThis();
                        if (msg.value > amount) {
                            // Return remainder if exist
                            unchecked {
                                // solhint-disable-next-line avoid-low-level-calls
                                (bool success, ) = from.call{value: msg.value - amount, gas: _RAW_CALL_GAS_LIMIT}("");
                                if (!success) revert ETHTransferFailed();
                            }
                        }
                    } else {
                        token.safeTransferFrom(from, to, amount);
                    }
                }
            }
            /// @dev Returns `token` symbol from ERC20 metadata.
            function uniSymbol(IERC20 token) internal view returns (string memory) {
                return _uniDecode(token, IERC20Metadata.symbol.selector, IERC20MetadataUppercase.SYMBOL.selector);
            }
            /// @dev Returns `token` name from ERC20 metadata.
            function uniName(IERC20 token) internal view returns (string memory) {
                return _uniDecode(token, IERC20Metadata.name.selector, IERC20MetadataUppercase.NAME.selector);
            }
            /// @dev Reverts if `token` is ETH, otherwise performs ERC20 forceApprove.
            function uniApprove(
                IERC20 token,
                address to,
                uint256 amount
            ) internal {
                if (isETH(token)) revert ApproveCalledOnETH();
                token.forceApprove(to, amount);
            }
            /// @dev 20K gas is provided to account for possible implementations of name/symbol
            /// (token implementation might be behind proxy or store the value in storage)
            function _uniDecode(
                IERC20 token,
                bytes4 lowerCaseSelector,
                bytes4 upperCaseSelector
            ) private view returns (string memory result) {
                if (isETH(token)) {
                    return "ETH";
                }
                (bool success, bytes memory data) = address(token).staticcall{gas: 20000}(
                    abi.encodeWithSelector(lowerCaseSelector)
                );
                if (!success) {
                    (success, data) = address(token).staticcall{gas: 20000}(abi.encodeWithSelector(upperCaseSelector));
                }
                if (success && data.length >= 0x40) {
                    (uint256 offset, uint256 len) = abi.decode(data, (uint256, uint256));
                    /*
                        return data is padded up to 32 bytes with ABI encoder also sometimes
                        there is extra 32 bytes of zeros padded in the end:
                        https://github.com/ethereum/solidity/issues/10170
                        because of that we can't check for equality and instead check
                        that overall data length is greater or equal than string length + extra 64 bytes
                    */
                    if (offset == 0x20 && data.length >= 0x40 + len) {
                        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                            result := add(data, 0x40)
                        }
                        return result;
                    }
                }
                if (success && data.length == 32) {
                    uint256 len = 0;
                    while (len < data.length && data[len] >= 0x20 && data[len] <= 0x7E) {
                        unchecked {
                            len++;
                        }
                    }
                    if (len > 0) {
                        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                            mstore(data, len)
                        }
                        return string(data);
                    }
                }
                return StringUtil.toHex(address(token));
            }
        }
        // File @openzeppelin/contracts/access/[email protected]
        // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * The initial owner is set to the address provided by the deployer. This can
         * later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            /**
             * @dev The caller account is not authorized to perform an operation.
             */
            error OwnableUnauthorizedAccount(address account);
            /**
             * @dev The owner is not a valid owner account. (eg. `address(0)`)
             */
            error OwnableInvalidOwner(address owner);
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
             */
            constructor(address initialOwner) {
                if (initialOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(initialOwner);
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                if (owner() != _msgSender()) {
                    revert OwnableUnauthorizedAccount(_msgSender());
                }
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby disabling any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                if (newOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // File contracts/helpers/RouterErrors.sol
        library RouterErrors {
            error ReturnAmountIsNotEnough(uint256 result, uint256 minReturn);
            error InvalidMsgValue();
            error ERC20TransferFailed();
            error Permit2TransferFromFailed();
            error ApproveFailed();
        }
        // File contracts/interfaces/IClipperExchange.sol
        /// @title Clipper interface subset used in swaps
        interface IClipperExchange {
            struct Signature {
                uint8 v;
                bytes32 r;
                bytes32 s;
            }
            function sellEthForToken(address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external payable;
            function sellTokenForEth(address inputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external;
            function swap(address inputToken, address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external;
        }
        // File contracts/routers/ClipperRouter.sol
        /**
         * @title ClipperRouter
         * @notice Clipper router that allows to use `IClipperExchange` for swaps.
         */
        contract ClipperRouter is Pausable, EthReceiver {
            using SafeERC20 for IERC20;
            using SafeERC20 for IWETH;
            using AddressLib for Address;
            uint256 private constant _PERMIT2_FLAG = 1 << 255;
            uint256 private constant _SIGNATURE_S_MASK = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
            uint256 private constant _SIGNATURE_V_SHIFT = 255;
            bytes5 private constant _INCH_TAG = "1INCH";
            uint256 private constant _INCH_TAG_LENGTH = 5;
            IERC20 private constant _ETH = IERC20(address(0));
            IWETH private immutable _WETH;  // solhint-disable-line var-name-mixedcase
            constructor(IWETH weth) {
                _WETH = weth;
            }
            /**
            * @notice Same as `clipperSwapTo` but uses `msg.sender` as recipient.
            * @param clipperExchange Clipper pool address.
            * @param srcToken Source token and flags.
            * @param dstToken Destination token.
            * @param inputAmount Amount of source tokens to swap.
            * @param outputAmount Amount of destination tokens to receive.
            * @param goodUntil Clipper parameter.
            * @param r Clipper order signature (r part).
            * @param vs Clipper order signature (vs part).
            * @return returnAmount Amount of destination tokens received.
            */
            function clipperSwap(
                IClipperExchange clipperExchange,
                Address srcToken,
                IERC20 dstToken,
                uint256 inputAmount,
                uint256 outputAmount,
                uint256 goodUntil,
                bytes32 r,
                bytes32 vs
            ) external payable returns(uint256 returnAmount) {
                return clipperSwapTo(clipperExchange, payable(msg.sender), srcToken, dstToken, inputAmount, outputAmount, goodUntil, r, vs);
            }
            /**
            * @notice Performs swap using Clipper exchange. Wraps and unwraps ETH if required.
            *         Sending non-zero `msg.value` for anything but ETH swaps is prohibited.
            * @param clipperExchange Clipper pool address.
            * @param recipient Address that will receive swap funds.
            * @param srcToken Source token and flags.
            * @param dstToken Destination token.
            * @param inputAmount Amount of source tokens to swap.
            * @param outputAmount Amount of destination tokens to receive.
            * @param goodUntil Clipper parameter.
            * @param r Clipper order signature (r part).
            * @param vs Clipper order signature (vs part).
            * @return returnAmount Amount of destination tokens received.
            */
            function clipperSwapTo(
                IClipperExchange clipperExchange,
                address payable recipient,
                Address srcToken,
                IERC20 dstToken,
                uint256 inputAmount,
                uint256 outputAmount,
                uint256 goodUntil,
                bytes32 r,
                bytes32 vs
            ) public payable whenNotPaused() returns(uint256 returnAmount) {
                IERC20 srcToken_ = IERC20(srcToken.get());
                if (srcToken_ == _ETH) {
                    if (msg.value != inputAmount) revert RouterErrors.InvalidMsgValue();
                } else {
                    if (msg.value != 0) revert RouterErrors.InvalidMsgValue();
                    srcToken_.safeTransferFromUniversal(msg.sender, address(clipperExchange), inputAmount, srcToken.getFlag(_PERMIT2_FLAG));
                }
                if (srcToken_ == _ETH) {
                    // clipperExchange.sellEthForToken{value: inputAmount}(address(dstToken), inputAmount, outputAmount, goodUntil, recipient, signature, _INCH_TAG);
                    address clipper = address(clipperExchange);
                    bytes4 selector = clipperExchange.sellEthForToken.selector;
                    assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                        let ptr := mload(0x40)
                        mstore(ptr, selector)
                        mstore(add(ptr, 0x04), dstToken)
                        mstore(add(ptr, 0x24), inputAmount)
                        mstore(add(ptr, 0x44), outputAmount)
                        mstore(add(ptr, 0x64), goodUntil)
                        mstore(add(ptr, 0x84), recipient)
                        mstore(add(ptr, 0xa4), add(27, shr(_SIGNATURE_V_SHIFT, vs)))
                        mstore(add(ptr, 0xc4), r)
                        mstore(add(ptr, 0xe4), and(vs, _SIGNATURE_S_MASK))
                        mstore(add(ptr, 0x104), 0x120)
                        mstore(add(ptr, 0x124), _INCH_TAG_LENGTH)
                        mstore(add(ptr, 0x144), _INCH_TAG)
                        if iszero(call(gas(), clipper, inputAmount, ptr, 0x149, 0, 0)) {
                            returndatacopy(ptr, 0, returndatasize())
                            revert(ptr, returndatasize())
                        }
                    }
                } else if (dstToken == _ETH) {
                    // clipperExchange.sellTokenForEth(address(srcToken_), inputAmount, outputAmount, goodUntil, recipient, signature, _INCH_TAG);
                    address clipper = address(clipperExchange);
                    bytes4 selector = clipperExchange.sellTokenForEth.selector;
                    assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                        let ptr := mload(0x40)
                        mstore(ptr, selector)
                        mstore(add(ptr, 0x04), srcToken_)
                        mstore(add(ptr, 0x24), inputAmount)
                        mstore(add(ptr, 0x44), outputAmount)
                        mstore(add(ptr, 0x64), goodUntil)
                        switch iszero(dstToken)
                        case 1 {
                            mstore(add(ptr, 0x84), recipient)
                        }
                        default {
                            mstore(add(ptr, 0x84), address())
                        }
                        mstore(add(ptr, 0xa4), add(27, shr(_SIGNATURE_V_SHIFT, vs)))
                        mstore(add(ptr, 0xc4), r)
                        mstore(add(ptr, 0xe4), and(vs, _SIGNATURE_S_MASK))
                        mstore(add(ptr, 0x104), 0x120)
                        mstore(add(ptr, 0x124), _INCH_TAG_LENGTH)
                        mstore(add(ptr, 0x144), _INCH_TAG)
                        if iszero(call(gas(), clipper, 0, ptr, 0x149, 0, 0)) {
                            returndatacopy(ptr, 0, returndatasize())
                            revert(ptr, returndatasize())
                        }
                    }
                } else {
                    // clipperExchange.swap(address(srcToken_), address(dstToken), inputAmount, outputAmount, goodUntil, recipient, signature, _INCH_TAG);
                    address clipper = address(clipperExchange);
                    bytes4 selector = clipperExchange.swap.selector;
                    assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                        let ptr := mload(0x40)
                        mstore(ptr, selector)
                        mstore(add(ptr, 0x04), srcToken_)
                        mstore(add(ptr, 0x24), dstToken)
                        mstore(add(ptr, 0x44), inputAmount)
                        mstore(add(ptr, 0x64), outputAmount)
                        mstore(add(ptr, 0x84), goodUntil)
                        mstore(add(ptr, 0xa4), recipient)
                        mstore(add(ptr, 0xc4), add(27, shr(_SIGNATURE_V_SHIFT, vs)))
                        mstore(add(ptr, 0xe4), r)
                        mstore(add(ptr, 0x104), and(vs, _SIGNATURE_S_MASK))
                        mstore(add(ptr, 0x124), 0x140)
                        mstore(add(ptr, 0x144), _INCH_TAG_LENGTH)
                        mstore(add(ptr, 0x164), _INCH_TAG)
                        if iszero(call(gas(), clipper, 0, ptr, 0x169, 0, 0)) {
                            returndatacopy(ptr, 0, returndatasize())
                            revert(ptr, returndatasize())
                        }
                    }
                }
                return outputAmount;
            }
        }
        // File contracts/interfaces/IAggregationExecutor.sol
        /// @title Interface for making arbitrary calls during swap
        interface IAggregationExecutor {
            /// @notice propagates information about original msg.sender and executes arbitrary data
            function execute(address msgSender) external payable returns(uint256);  // 0x4b64e492
        }
        // File contracts/routers/GenericRouter.sol
        /**
         * @title GenericRouter
         * @notice Router that allows to use `IAggregationExecutor` for swaps.
         */
        contract GenericRouter is Pausable, EthReceiver {
            using UniERC20 for IERC20;
            using SafeERC20 for IERC20;
            error ZeroMinReturn();
            uint256 private constant _PARTIAL_FILL = 1 << 0;
            uint256 private constant _REQUIRES_EXTRA_ETH = 1 << 1;
            uint256 private constant _USE_PERMIT2 = 1 << 2;
            struct SwapDescription {
                IERC20 srcToken;
                IERC20 dstToken;
                address payable srcReceiver;
                address payable dstReceiver;
                uint256 amount;
                uint256 minReturnAmount;
                uint256 flags;
            }
            /**
            * @notice Performs a swap, delegating all calls encoded in `data` to `executor`. See tests for usage examples.
            * @dev Router keeps 1 wei of every token on the contract balance for gas optimisations reasons.
            *      This affects first swap of every token by leaving 1 wei on the contract.
            * @param executor Aggregation executor that executes calls described in `data`.
            * @param desc Swap description.
            * @param data Encoded calls that `caller` should execute in between of swaps.
            * @return returnAmount Resulting token amount.
            * @return spentAmount Source token amount.
            */
            function swap(
                IAggregationExecutor executor,
                SwapDescription calldata desc,
                bytes calldata data
            )
                external
                payable
                whenNotPaused()
                returns (
                    uint256 returnAmount,
                    uint256 spentAmount
                )
            {
                if (desc.minReturnAmount == 0) revert ZeroMinReturn();
                IERC20 srcToken = desc.srcToken;
                IERC20 dstToken = desc.dstToken;
                bool srcETH = srcToken.isETH();
                if (desc.flags & _REQUIRES_EXTRA_ETH != 0) {
                    if (msg.value <= (srcETH ? desc.amount : 0)) revert RouterErrors.InvalidMsgValue();
                } else {
                    if (msg.value != (srcETH ? desc.amount : 0)) revert RouterErrors.InvalidMsgValue();
                }
                if (!srcETH) {
                    srcToken.safeTransferFromUniversal(msg.sender, desc.srcReceiver, desc.amount, desc.flags & _USE_PERMIT2 != 0);
                }
                returnAmount = _execute(executor, msg.sender, desc.amount, data);
                spentAmount = desc.amount;
                if (desc.flags & _PARTIAL_FILL != 0) {
                    uint256 unspentAmount = srcToken.uniBalanceOf(address(this));
                    if (unspentAmount > 1) {
                        // we leave 1 wei on the router for gas optimisations reasons
                        unchecked { unspentAmount--; }
                        spentAmount -= unspentAmount;
                        srcToken.uniTransfer(payable(msg.sender), unspentAmount);
                    }
                    if (returnAmount * desc.amount < desc.minReturnAmount * spentAmount) revert RouterErrors.ReturnAmountIsNotEnough(returnAmount, desc.minReturnAmount * spentAmount / desc.amount);
                } else {
                    if (returnAmount < desc.minReturnAmount) revert RouterErrors.ReturnAmountIsNotEnough(returnAmount, desc.minReturnAmount);
                }
                address payable dstReceiver = (desc.dstReceiver == address(0)) ? payable(msg.sender) : desc.dstReceiver;
                dstToken.uniTransfer(dstReceiver, returnAmount);
            }
            function _execute(
                IAggregationExecutor executor,
                address srcTokenOwner,
                uint256 inputAmount,
                bytes calldata data
            ) private returns(uint256 result) {
                bytes4 executeSelector = executor.execute.selector;
                assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    mstore(ptr, executeSelector)
                    mstore(add(ptr, 0x04), srcTokenOwner)
                    calldatacopy(add(ptr, 0x24), data.offset, data.length)
                    mstore(add(add(ptr, 0x24), data.length), inputAmount)
                    if iszero(call(gas(), executor, callvalue(), ptr, add(0x44, data.length), 0, 0x20)) {
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                    result := mload(0)
                }
            }
        }
        // File contracts/interfaces/IUniswapV3Pool.sol
        interface IUniswapV3Pool {
            /// @notice Emitted by the pool for any swaps between token0 and token1
            /// @param sender The address that initiated the swap call, and that received the callback
            /// @param recipient The address that received the output of the swap
            /// @param amount0 The delta of the token0 balance of the pool
            /// @param amount1 The delta of the token1 balance of the pool
            /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
            /// @param liquidity The liquidity of the pool after the swap
            /// @param tick The log base 1.0001 of price of the pool after the swap
            event Swap(
                address indexed sender,
                address indexed recipient,
                int256 amount0,
                int256 amount1,
                uint160 sqrtPriceX96,
                uint128 liquidity,
                int24 tick
            );
            /// @notice Swap token0 for token1, or token1 for token0
            /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
            /// @param recipient The address to receive the output of the swap
            /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
            /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
            /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
            /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
            /// @param data Any data to be passed through to the callback
            /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
            /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
            function swap(
                address recipient,
                bool zeroForOne,
                int256 amountSpecified,
                uint160 sqrtPriceLimitX96,
                bytes calldata data
            ) external returns (int256 amount0, int256 amount1);
            /// @notice The first of the two tokens of the pool, sorted by address
            /// @return The token contract address
            function token0() external view returns (address);
            /// @notice The second of the two tokens of the pool, sorted by address
            /// @return The token contract address
            function token1() external view returns (address);
            /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
            /// @return The fee
            function fee() external view returns (uint24);
        }
        // File contracts/interfaces/IUniswapV3SwapCallback.sol
        /// @title Callback for IUniswapV3PoolActions#swap
        /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
        interface IUniswapV3SwapCallback {
            /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
            /// @dev In the implementation you must pay the pool tokens owed for the swap.
            /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
            /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
            /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
            /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
            /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
            /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
            /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
            function uniswapV3SwapCallback(
                int256 amount0Delta,
                int256 amount1Delta,
                bytes calldata data
            ) external;
        }
        // File contracts/libs/ProtocolLib.sol
        library ProtocolLib {
            using AddressLib for Address;
            enum Protocol {
                UniswapV2,
                UniswapV3,
                Curve
            }
            uint256 private constant _PROTOCOL_OFFSET = 253;
            uint256 private constant _WETH_UNWRAP_FLAG = 1 << 252;
            uint256 private constant _WETH_NOT_WRAP_FLAG = 1 << 251;
            uint256 private constant _USE_PERMIT2_FLAG = 1 << 250;
            function protocol(Address self) internal pure returns(Protocol) {
                // there is no need to mask because protocol is stored in the highest 3 bits
                return Protocol((Address.unwrap(self) >> _PROTOCOL_OFFSET));
            }
            function shouldUnwrapWeth(Address self) internal pure returns(bool) {
                return self.getFlag(_WETH_UNWRAP_FLAG);
            }
            function shouldWrapWeth(Address self) internal pure returns(bool) {
                return !self.getFlag(_WETH_NOT_WRAP_FLAG);
            }
            function usePermit2(Address self) internal pure returns(bool) {
                return self.getFlag(_USE_PERMIT2_FLAG);
            }
            function addressForPreTransfer(Address self) internal view returns(address) {
                if (protocol(self) == Protocol.UniswapV2) {
                    return self.get();
                }
                return address(this);
            }
        }
        // File contracts/routers/UnoswapRouter.sol
        /**
         * @title UnoswapRouter
         * @notice A router contract for executing token swaps on Unoswap-compatible decentralized exchanges: UniswapV3, UniswapV2, Curve.
         */
        contract UnoswapRouter is Pausable, EthReceiver, IUniswapV3SwapCallback {
            using SafeERC20 for IERC20;
            using SafeERC20 for IWETH;
            using AddressLib for Address;
            using ProtocolLib for Address;
            error BadPool();
            error BadCurveSwapSelector();
            /// @dev WETH address is network-specific and needs to be changed before deployment.
            /// It can not be moved to immutable as immutables are not supported in assembly
            address private constant _WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
            address private constant _ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
            address private constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
            bytes4 private constant _WETH_DEPOSIT_CALL_SELECTOR = 0xd0e30db0;
            bytes4 private constant _WETH_WITHDRAW_CALL_SELECTOR = 0x2e1a7d4d;
            uint256 private constant _ADDRESS_MASK = 0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff;
            uint256 private constant _SELECTORS = (
                (uint256(uint32(IUniswapV3Pool.token0.selector)) << 224) |
                (uint256(uint32(IUniswapV3Pool.token1.selector)) << 192) |
                (uint256(uint32(IUniswapV3Pool.fee.selector)) << 160) |
                (uint256(uint32(IERC20.transfer.selector)) << 128) |
                (uint256(uint32(IERC20.transferFrom.selector)) << 96) |
                (uint256(uint32(IPermit2.transferFrom.selector)) << 64)
            );
            uint256 private constant _TOKEN0_SELECTOR_OFFSET = 0;
            uint256 private constant _TOKEN1_SELECTOR_OFFSET = 4;
            uint256 private constant _FEE_SELECTOR_OFFSET = 8;
            uint256 private constant _TRANSFER_SELECTOR_OFFSET = 12;
            uint256 private constant _TRANSFER_FROM_SELECTOR_OFFSET = 16;
            uint256 private constant _PERMIT2_TRANSFER_FROM_SELECTOR_OFFSET = 20;
            bytes32 private constant _POOL_INIT_CODE_HASH = 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;
            bytes32 private constant _FF_FACTORY = 0xff1F98431c8aD98523631AE4a59f267346ea31F9840000000000000000000000;
            // =====================================================================
            //                          Methods with 1 pool
            // =====================================================================
            /**
            * @notice Swaps `amount` of the specified `token` for another token using an Unoswap-compatible exchange's pool,
            *         with a minimum return specified by `minReturn`.
            * @param token The address of the token to be swapped.
            * @param amount The amount of tokens to be swapped.
            * @param minReturn The minimum amount of tokens to be received after the swap.
            * @param dex The address of the Unoswap-compatible exchange's pool.
            * @return returnAmount The actual amount of tokens received after the swap.
            */
            function unoswap(Address token, uint256 amount, uint256 minReturn, Address dex) external returns(uint256 returnAmount) {
                returnAmount = _unoswapTo(msg.sender, msg.sender, token, amount, minReturn, dex);
            }
            /**
            * @notice Swaps `amount` of the specified `token` for another token using an Unoswap-compatible exchange's pool,
            *         sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
            * @param to The address to receive the swapped tokens.
            * @param token The address of the token to be swapped.
            * @param amount The amount of tokens to be swapped.
            * @param minReturn The minimum amount of tokens to be received after the swap.
            * @param dex The address of the Unoswap-compatible exchange's pool.
            * @return returnAmount The actual amount of tokens received after the swap.
            */
            function unoswapTo(Address to, Address token, uint256 amount, uint256 minReturn, Address dex) external returns(uint256 returnAmount) {
                returnAmount = _unoswapTo(msg.sender, to.get(), token, amount, minReturn, dex);
            }
            /**
            * @notice Swaps ETH for another token using an Unoswap-compatible exchange's pool, with a minimum return specified by `minReturn`.
            *         The function is payable and requires the sender to attach ETH.
            *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
            * @param minReturn The minimum amount of tokens to be received after the swap.
            * @param dex The address of the Unoswap-compatible exchange's pool.
            * @return returnAmount The actual amount of tokens received after the swap.
            */
            function ethUnoswap(uint256 minReturn, Address dex) external payable returns(uint256 returnAmount) {
                if (dex.shouldWrapWeth()) {
                    IWETH(_WETH).safeDeposit(msg.value);
                }
                returnAmount = _unoswapTo(address(this), msg.sender, Address.wrap(uint160(_WETH)), msg.value, minReturn, dex);
            }
            /**
            * @notice Swaps ETH for another token using an Unoswap-compatible exchange's pool, sending the resulting tokens to the `to` address,
            *         with a minimum return specified by `minReturn`. The function is payable and requires the sender to attach ETH.
            *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
            * @param to The address to receive the swapped tokens.
            * @param minReturn The minimum amount of tokens to be received after the swap.
            * @param dex The address of the Unoswap-compatible exchange's pool.
            * @return returnAmount The actual amount of tokens received after the swap.
            */
            function ethUnoswapTo(Address to, uint256 minReturn, Address dex) external payable returns(uint256 returnAmount) {
                if (dex.shouldWrapWeth()) {
                    IWETH(_WETH).safeDeposit(msg.value);
                }
                returnAmount = _unoswapTo(address(this), to.get(), Address.wrap(uint160(_WETH)), msg.value, minReturn, dex);
            }
            function _unoswapTo(address from, address to, Address token, uint256 amount, uint256 minReturn, Address dex) private whenNotPaused() returns(uint256 returnAmount) {
                if (dex.shouldUnwrapWeth()) {
                    returnAmount = _unoswap(from, address(this), token, amount, minReturn, dex);
                    IWETH(_WETH).safeWithdrawTo(returnAmount, to);
                } else {
                    returnAmount = _unoswap(from, to, token, amount, minReturn, dex);
                }
            }
            // =====================================================================
            //                    Methods with 2 sequential pools
            // =====================================================================
            /**
            * @notice Swaps `amount` of the specified `token` for another token using two Unoswap-compatible exchange pools (`dex` and `dex2`) sequentially,
            *         with a minimum return specified by `minReturn`.
            * @param token The address of the token to be swapped.
            * @param amount The amount of tokens to be swapped.
            * @param minReturn The minimum amount of tokens to be received after the swap.
            * @param dex The address of the first Unoswap-compatible exchange's pool.
            * @param dex2 The address of the second Unoswap-compatible exchange's pool.
            * @return returnAmount The actual amount of tokens received after the swap through both pools.
            */
            function unoswap2(Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2) external returns(uint256 returnAmount) {
                returnAmount = _unoswapTo2(msg.sender, msg.sender, token, amount, minReturn, dex, dex2);
            }
            /**
            * @notice Swaps `amount` of the specified `token` for another token using two Unoswap-compatible exchange pools (`dex` and `dex2`) sequentially,
            *         sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
            * @param to The address to receive the swapped tokens.
            * @param token The address of the token to be swapped.
            * @param amount The amount of tokens to be swapped.
            * @param minReturn The minimum amount of tokens to be received after the swap.
            * @param dex The address of the first Unoswap-compatible exchange's pool.
            * @param dex2 The address of the second Unoswap-compatible exchange's pool.
            * @return returnAmount The actual amount of tokens received after the swap through both pools.
            */
            function unoswapTo2(Address to, Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2) external returns(uint256 returnAmount) {
                returnAmount = _unoswapTo2(msg.sender, to.get(), token, amount, minReturn, dex, dex2);
            }
            /**
            * @notice Swaps ETH for another token using two Unoswap-compatible exchange pools (`dex` and `dex2`) sequentially,
            *         with a minimum return specified by `minReturn`. The function is payable and requires the sender to attach ETH.
            *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
            * @param minReturn The minimum amount of tokens to be received after the swap.
            * @param dex The address of the first Unoswap-compatible exchange's pool.
            * @param dex2 The address of the second Unoswap-compatible exchange's pool.
            * @return returnAmount The actual amount of tokens received after the swap through both pools.
            */
            function ethUnoswap2(uint256 minReturn, Address dex, Address dex2) external payable returns(uint256 returnAmount) {
                if (dex.shouldWrapWeth()) {
                    IWETH(_WETH).safeDeposit(msg.value);
                }
                returnAmount = _unoswapTo2(address(this), msg.sender, Address.wrap(uint160(_WETH)), msg.value, minReturn, dex, dex2);
            }
            /**
            * @notice Swaps ETH for another token using two Unoswap-compatible exchange pools (`dex` and `dex2`) sequentially,
            *         sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
            *         The function is payable and requires the sender to attach ETH.
            *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
            * @param to The address to receive the swapped tokens.
            * @param minReturn The minimum amount of tokens to be received after the swap.
            * @param dex The address of the first Unoswap-compatible exchange's pool.
            * @param dex2 The address of the second Unoswap-compatible exchange's pool.
            * @return returnAmount The actual amount of tokens received after the swap through both pools.
            */
            function ethUnoswapTo2(Address to, uint256 minReturn, Address dex, Address dex2) external payable returns(uint256 returnAmount) {
                if (dex.shouldWrapWeth()) {
                    IWETH(_WETH).safeDeposit(msg.value);
                }
                returnAmount = _unoswapTo2(address(this), to.get(), Address.wrap(uint160(_WETH)), msg.value, minReturn, dex, dex2);
            }
            function _unoswapTo2(address from, address to, Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2) private whenNotPaused() returns(uint256 returnAmount) {
                address pool2 = dex2.addressForPreTransfer();
                address target = dex2.shouldUnwrapWeth() ? address(this) : to;
                returnAmount = _unoswap(from, pool2, token, amount, 0, dex);
                returnAmount = _unoswap(pool2, target, Address.wrap(0), returnAmount, minReturn, dex2);
                if (dex2.shouldUnwrapWeth()) {
                    IWETH(_WETH).safeWithdrawTo(returnAmount, to);
                }
            }
            // =====================================================================
            //                    Methods with 3 sequential pools
            // =====================================================================
            /**
            * @notice Swaps `amount` of the specified `token` for another token using three Unoswap-compatible exchange pools
            *         (`dex`, `dex2`, and `dex3`) sequentially, with a minimum return specified by `minReturn`.
            * @param token The address of the token to be swapped.
            * @param amount The amount of tokens to be swapped.
            * @param minReturn The minimum amount of tokens to be received after the swap.
            * @param dex The address of the first Unoswap-compatible exchange's pool.
            * @param dex2 The address of the second Unoswap-compatible exchange's pool.
            * @param dex3 The address of the third Unoswap-compatible exchange's pool.
            * @return returnAmount The actual amount of tokens received after the swap through all three pools.
            */
            function unoswap3(Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2, Address dex3) external returns(uint256 returnAmount) {
                returnAmount = _unoswapTo3(msg.sender, msg.sender, token, amount, minReturn, dex, dex2, dex3);
            }
            /**
            * @notice Swaps `amount` of the specified `token` for another token using three Unoswap-compatible exchange pools
            *         (`dex`, `dex2`, and `dex3`) sequentially, sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
            * @param to The address to receive the swapped tokens.
            * @param token The address of the token to be swapped.
            * @param amount The amount of tokens to be swapped.
            * @param minReturn The minimum amount of tokens to be received after the swap.
            * @param dex The address of the first Unoswap-compatible exchange's pool.
            * @param dex2 The address of the second Unoswap-compatible exchange's pool.
            * @param dex3 The address of the third Unoswap-compatible exchange's pool.
            * @return returnAmount The actual amount of tokens received after the swap through all three pools.
            */
            function unoswapTo3(Address to, Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2, Address dex3) external returns(uint256 returnAmount) {
                returnAmount = _unoswapTo3(msg.sender, to.get(), token, amount, minReturn, dex, dex2, dex3);
            }
            /**
            * @notice Swaps ETH for another token using three Unoswap-compatible exchange pools (`dex`, `dex2`, and `dex3`) sequentially,
            *         with a minimum return specified by `minReturn`. The function is payable and requires the sender to attach ETH.
            *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
            * @param minReturn The minimum amount of tokens to be received after the swap.
            * @param dex The address of the first Unoswap-compatible exchange's pool.
            * @param dex2 The address of the second Unoswap-compatible exchange's pool.
            * @param dex3 The address of the third Unoswap-compatible exchange's pool.
            * @return returnAmount The actual amount of tokens received after the swap through all three pools.
            */
            function ethUnoswap3(uint256 minReturn, Address dex, Address dex2, Address dex3) external payable returns(uint256 returnAmount) {
                if (dex.shouldWrapWeth()) {
                    IWETH(_WETH).safeDeposit(msg.value);
                }
                returnAmount = _unoswapTo3(address(this), msg.sender, Address.wrap(uint160(_WETH)), msg.value, minReturn, dex, dex2, dex3);
            }
            /**
            * @notice Swaps ETH for another token using three Unoswap-compatible exchange pools (`dex`, `dex2`, and `dex3`) sequentially,
            *         sending the resulting tokens to the `to` address, with a minimum return specified by `minReturn`.
            *         The function is payable and requires the sender to attach ETH.
            *         It is necessary to check if it's cheaper to use _WETH_NOT_WRAP_FLAG in `dex` Address (for example: for Curve pools).
            * @param to The address to receive the swapped tokens.
            * @param minReturn The minimum amount of tokens to be received after the swap.
            * @param dex The address of the first Unoswap-compatible exchange's pool.
            * @param dex2 The address of the second Unoswap-compatible exchange's pool.
            * @param dex3 The address of the third Unoswap-compatible exchange's pool.
            * @return returnAmount The actual amount of tokens received after the swap through all three pools.
            */
            function ethUnoswapTo3(Address to, uint256 minReturn, Address dex, Address dex2, Address dex3) external payable returns(uint256 returnAmount) {
                if (dex.shouldWrapWeth()) {
                    IWETH(_WETH).safeDeposit(msg.value);
                }
                returnAmount = _unoswapTo3(address(this), to.get(), Address.wrap(uint160(_WETH)), msg.value, minReturn, dex, dex2, dex3);
            }
            function _unoswapTo3(address from, address to, Address token, uint256 amount, uint256 minReturn, Address dex, Address dex2, Address dex3) private whenNotPaused() returns(uint256 returnAmount) {
                address pool2 = dex2.addressForPreTransfer();
                address pool3 = dex3.addressForPreTransfer();
                address target = dex3.shouldUnwrapWeth() ? address(this) : to;
                returnAmount = _unoswap(from, pool2, token, amount, 0, dex);
                returnAmount = _unoswap(pool2, pool3, Address.wrap(0), returnAmount, 0, dex2);
                returnAmount = _unoswap(pool3, target, Address.wrap(0), returnAmount, minReturn, dex3);
                if (dex3.shouldUnwrapWeth()) {
                    IWETH(_WETH).safeWithdrawTo(returnAmount, to);
                }
            }
            function _unoswap(
                address spender,
                address recipient,
                Address token,
                uint256 amount,
                uint256 minReturn,
                Address dex
            ) private returns(uint256 returnAmount) {
                ProtocolLib.Protocol protocol = dex.protocol();
                if (protocol == ProtocolLib.Protocol.UniswapV3) {
                    returnAmount = _unoswapV3(spender, recipient, amount, minReturn, dex);
                } else if (protocol == ProtocolLib.Protocol.UniswapV2) {
                    if (spender == address(this)) {
                        IERC20(token.get()).safeTransfer(dex.get(), amount);
                    } else if (spender == msg.sender) {
                        IERC20(token.get()).safeTransferFromUniversal(msg.sender, dex.get(), amount, dex.usePermit2());
                    }
                    returnAmount = _unoswapV2(recipient, amount, minReturn, dex);
                } else if (protocol == ProtocolLib.Protocol.Curve) {
                    if (spender == msg.sender && msg.value == 0) {
                        IERC20(token.get()).safeTransferFromUniversal(msg.sender, address(this), amount, dex.usePermit2());
                    }
                    returnAmount = _curfe(recipient, amount, minReturn, dex);
                }
            }
            uint256 private constant _UNISWAP_V2_ZERO_FOR_ONE_OFFSET = 247;
            uint256 private constant _UNISWAP_V2_ZERO_FOR_ONE_MASK = 0x01;
            uint256 private constant _UNISWAP_V2_NUMERATOR_OFFSET = 160;
            uint256 private constant _UNISWAP_V2_NUMERATOR_MASK = 0xffffffff;
            bytes4 private constant _UNISWAP_V2_PAIR_RESERVES_CALL_SELECTOR = 0x0902f1ac;
            bytes4 private constant _UNISWAP_V2_PAIR_SWAP_CALL_SELECTOR = 0x022c0d9f;
            uint256 private constant _UNISWAP_V2_DENOMINATOR = 1e9;
            uint256 private constant _UNISWAP_V2_DEFAULT_NUMERATOR = 997_000_000;
            error ReservesCallFailed();
            function _unoswapV2(
                address recipient,
                uint256 amount,
                uint256 minReturn,
                Address dex
            ) private returns(uint256 ret) {
                bytes4 returnAmountNotEnoughException = RouterErrors.ReturnAmountIsNotEnough.selector;
                bytes4 reservesCallFailedException = ReservesCallFailed.selector;
                assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                    let pool := and(dex, _ADDRESS_MASK)
                    let zeroForOne := and(shr(_UNISWAP_V2_ZERO_FOR_ONE_OFFSET, dex), _UNISWAP_V2_ZERO_FOR_ONE_MASK)
                    let numerator := and(shr(_UNISWAP_V2_NUMERATOR_OFFSET, dex), _UNISWAP_V2_NUMERATOR_MASK)
                    if iszero(numerator) {
                        numerator := _UNISWAP_V2_DEFAULT_NUMERATOR
                    }
                    let ptr := mload(0x40)
                    mstore(0, _UNISWAP_V2_PAIR_RESERVES_CALL_SELECTOR)
                    if iszero(staticcall(gas(), pool, 0, 4, 0, 0x40)) {
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                    if sub(returndatasize(), 0x60) {
                        mstore(0, reservesCallFailedException)
                        revert(0, 4)
                    }
                    let reserve0 := mload(mul(0x20, iszero(zeroForOne)))
                    let reserve1 := mload(mul(0x20, zeroForOne))
                    // this will not overflow as reserve0, reserve1 and ret fit to 112 bit and numerator and _DENOMINATOR fit to 32 bit
                    ret := mul(amount, numerator)
                    ret := div(mul(ret, reserve1), add(ret, mul(reserve0, _UNISWAP_V2_DENOMINATOR)))
                    if lt(ret, minReturn) {
                        mstore(ptr, returnAmountNotEnoughException)
                        mstore(add(ptr, 0x04), ret)
                        mstore(add(ptr, 0x24), minReturn)
                        revert(ptr, 0x44)
                    }
                    mstore(ptr, _UNISWAP_V2_PAIR_SWAP_CALL_SELECTOR)
                    mstore(add(ptr, 0x04), mul(ret, iszero(zeroForOne)))
                    mstore(add(ptr, 0x24), mul(ret, zeroForOne))
                    mstore(add(ptr, 0x44), recipient)
                    mstore(add(ptr, 0x64), 0x80)
                    mstore(add(ptr, 0x84), 0)
                    if iszero(call(gas(), pool, 0, ptr, 0xa4, 0, 0)) {
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                }
            }
            /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
            uint160 private constant _UNISWAP_V3_MIN_SQRT_RATIO = 4295128739 + 1;
            /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
            uint160 private constant _UNISWAP_V3_MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342 - 1;
            uint256 private constant _UNISWAP_V3_ZERO_FOR_ONE_OFFSET = 247;
            uint256 private constant _UNISWAP_V3_ZERO_FOR_ONE_MASK = 0x01;
            function _unoswapV3(
                address spender,
                address recipient,
                uint256 amount,
                uint256 minReturn,
                Address dex
            ) private returns(uint256 ret) {
                bytes4 swapSelector = IUniswapV3Pool.swap.selector;
                bool usePermit2 = dex.usePermit2();
                assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                    let pool := and(dex, _ADDRESS_MASK)
                    let zeroForOne := and(shr(_UNISWAP_V3_ZERO_FOR_ONE_OFFSET, dex), _UNISWAP_V3_ZERO_FOR_ONE_MASK)
                    let ptr := mload(0x40)
                    mstore(ptr, swapSelector)
                    mstore(add(ptr, 0x04), recipient)
                    mstore(add(ptr, 0x24), zeroForOne)
                    mstore(add(ptr, 0x44), amount)
                    switch zeroForOne
                    case 1 {
                        mstore(add(ptr, 0x64), _UNISWAP_V3_MIN_SQRT_RATIO)
                    }
                    case 0 {
                        mstore(add(ptr, 0x64), _UNISWAP_V3_MAX_SQRT_RATIO)
                    }
                    mstore(add(ptr, 0x84), 0xa0)
                    mstore(add(ptr, 0xa4), 0x40)
                    mstore(add(ptr, 0xc4), spender)
                    mstore(add(ptr, 0xe4), usePermit2)
                    if iszero(call(gas(), pool, 0, ptr, 0x0104, 0, 0x40)) {
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                    ret := sub(0, mload(mul(0x20, zeroForOne)))
                }
                if (ret < minReturn) revert RouterErrors.ReturnAmountIsNotEnough(ret, minReturn);
            }
            uint256 private constant _CURVE_SWAP_SELECTOR_IDX_OFFSET = 184;
            uint256 private constant _CURVE_SWAP_SELECTOR_IDX_MASK = 0xff;
            uint256 private constant _CURVE_FROM_COINS_SELECTOR_OFFSET = 192;
            uint256 private constant _CURVE_FROM_COINS_SELECTOR_MASK = 0xff;
            uint256 private constant _CURVE_FROM_COINS_ARG_OFFSET = 200;
            uint256 private constant _CURVE_FROM_COINS_ARG_MASK = 0xff;
            uint256 private constant _CURVE_TO_COINS_SELECTOR_OFFSET = 208;
            uint256 private constant _CURVE_TO_COINS_SELECTOR_MASK = 0xff;
            uint256 private constant _CURVE_TO_COINS_ARG_OFFSET = 216;
            uint256 private constant _CURVE_TO_COINS_ARG_MASK = 0xff;
            uint256 private constant _CURVE_FROM_TOKEN_OFFSET = 224;
            uint256 private constant _CURVE_FROM_TOKEN_MASK = 0xff;
            uint256 private constant _CURVE_TO_TOKEN_OFFSET = 232;
            uint256 private constant _CURVE_TO_TOKEN_MASK = 0xff;
            uint256 private constant _CURVE_INPUT_WETH_DEPOSIT_OFFSET = 240;
            uint256 private constant _CURVE_INPUT_WETH_WITHDRAW_OFFSET = 241;
            uint256 private constant _CURVE_SWAP_USE_ETH_OFFSET = 242;
            uint256 private constant _CURVE_SWAP_HAS_ARG_USE_ETH_OFFSET = 243;
            uint256 private constant _CURVE_SWAP_HAS_ARG_DESTINATION_OFFSET = 244;
            uint256 private constant _CURVE_OUTPUT_WETH_DEPOSIT_OFFSET = 245;
            uint256 private constant _CURVE_OUTPUT_WETH_WITHDRAW_OFFSET = 246;
            uint256 private constant _CURVE_SWAP_USE_SECOND_OUTPUT_OFFSET = 247;
            uint256 private constant _CURVE_SWAP_HAS_ARG_CALLBACK_OFFSET = 249;
            // Curve Pool function selectors for different `coins` methods. For details, see contracts/interfaces/ICurvePool.sol
            bytes32 private constant _CURVE_COINS_SELECTORS = 0x87cb4f5723746eb8c6610657b739953eb9947eb0000000000000000000000000;
            // Curve Pool function selectors for different `exchange` methods. For details, see contracts/interfaces/ICurvePool.sol
            bytes32 private constant _CURVE_SWAP_SELECTORS_1 = 0x3df02124a6417ed6ddc1f59d44ee1986ed4ae2b8bf5ed0562f7865a837cab679;
            bytes32 private constant _CURVE_SWAP_SELECTORS_2 = 0x2a064e3c5b41b90865b2489ba64833a0e2ad025a394747c5cb7558f1ce7d6503;
            bytes32 private constant _CURVE_SWAP_SELECTORS_3 = 0xd2e2833add96994f000000000000000000000000000000000000000000000000;
            uint256 private constant _CURVE_MAX_SELECTOR_INDEX = 17;
            function _curfe(
                address recipient,
                uint256 amount,
                uint256 minReturn,
                Address dex
            ) private returns(uint256 ret) {
                bytes4 callbackSelector = this.curveSwapCallback.selector;
                assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                    function reRevert() {
                        let ptr := mload(0x40)
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                    function callReturnSize(status) -> rds {
                        if iszero(status) {
                            reRevert()
                        }
                        rds := returndatasize()
                    }
                    function tokenBalanceOf(tokenAddress, accountAddress) -> tokenBalance {
                        mstore(0, 0x70a0823100000000000000000000000000000000000000000000000000000000)
                        mstore(4, accountAddress)
                        if iszero(callReturnSize(staticcall(gas(), tokenAddress, 0, 0x24, 0, 0x20))) {
                            revert(0, 0)
                        }
                        tokenBalance := mload(0)
                    }
                    function asmApprove(token, to, value, mem) {
                        let selector := 0x095ea7b300000000000000000000000000000000000000000000000000000000 // IERC20.approve.selector
                        let exception := 0x3e3f8f7300000000000000000000000000000000000000000000000000000000 // error ApproveFailed()
                        if iszero(_asmCall(token, selector, to, value, mem)) {
                            if iszero(_asmCall(token, selector, to, 0, mem)) {
                                mstore(mem, exception)
                                revert(mem, 4)
                            }
                            if iszero(_asmCall(token, selector, to, value, mem)) {
                                mstore(mem, exception)
                                revert(mem, 4)
                            }
                        }
                    }
                    function _asmCall(token, selector, to, value, mem) -> done {
                        mstore(mem, selector)
                        mstore(add(mem, 0x04), to)
                        mstore(add(mem, 0x24), value)
                        let success := call(gas(), token, 0, mem, 0x44, 0x0, 0x20)
                        done := and(
                            success,
                            or(
                                iszero(returndatasize()),
                                and(gt(returndatasize(), 31), eq(mload(0), 1))
                            )
                        )
                    }
                    function curveCoins(pool, selectorOffset, index) -> coin {
                        mstore(0, _CURVE_COINS_SELECTORS)
                        mstore(add(selectorOffset, 4), index)
                        if iszero(staticcall(gas(), pool, selectorOffset, 0x24, 0, 0x20)) {
                            reRevert()
                        }
                        coin := mload(0)
                    }
                    let pool := and(dex, _ADDRESS_MASK)
                    let useEth := and(shr(_CURVE_SWAP_USE_ETH_OFFSET, dex), 0x01)
                    let hasCallback := and(shr(_CURVE_SWAP_HAS_ARG_CALLBACK_OFFSET, dex), 0x01)
                    if and(shr(_CURVE_INPUT_WETH_DEPOSIT_OFFSET, dex), 0x01) {
                        // Deposit ETH to WETH
                        mstore(0, _WETH_DEPOSIT_CALL_SELECTOR)
                        if iszero(call(gas(), _WETH, amount, 0, 4, 0, 0)) {
                            reRevert()
                        }
                    }
                    if and(shr(_CURVE_INPUT_WETH_WITHDRAW_OFFSET, dex), 0x01) {
                        // Withdraw ETH from WETH
                        mstore(0, _WETH_WITHDRAW_CALL_SELECTOR)
                        mstore(4, amount)
                        if iszero(call(gas(), _WETH, 0, 0, 0x24, 0, 0)) {
                            reRevert()
                        }
                    }
                    let toToken
                    {  // Stack too deep
                        let toSelectorOffset := and(shr(_CURVE_TO_COINS_SELECTOR_OFFSET, dex), _CURVE_TO_COINS_SELECTOR_MASK)
                        let toTokenIndex := and(shr(_CURVE_TO_COINS_ARG_OFFSET, dex), _CURVE_TO_COINS_ARG_MASK)
                        toToken := curveCoins(pool, toSelectorOffset, toTokenIndex)
                    }
                    let toTokenIsEth := or(eq(toToken, _ETH), eq(toToken, _WETH))
                    // use approve when the callback is not used AND (raw ether is not used at all OR ether is used on the output)
                    if and(iszero(hasCallback), or(iszero(useEth), toTokenIsEth)) {
                        let fromSelectorOffset := and(shr(_CURVE_FROM_COINS_SELECTOR_OFFSET, dex), _CURVE_FROM_COINS_SELECTOR_MASK)
                        let fromTokenIndex := and(shr(_CURVE_FROM_COINS_ARG_OFFSET, dex), _CURVE_FROM_COINS_ARG_MASK)
                        let fromToken := curveCoins(pool, fromSelectorOffset, fromTokenIndex)
                        if eq(fromToken, _ETH) {
                            fromToken := _WETH
                        }
                        asmApprove(fromToken, pool, amount, mload(0x40))
                    }
                    // Swap
                    let ptr := mload(0x40)
                    {  // stack too deep
                        let selectorIndex := and(shr(_CURVE_SWAP_SELECTOR_IDX_OFFSET, dex), _CURVE_SWAP_SELECTOR_IDX_MASK)
                        if gt(selectorIndex, _CURVE_MAX_SELECTOR_INDEX) {
                            mstore(0, 0xa231cb8200000000000000000000000000000000000000000000000000000000)  // BadCurveSwapSelector()
                            revert(0, 4)
                        }
                        mstore(ptr, _CURVE_SWAP_SELECTORS_1)
                        mstore(add(ptr, 0x20), _CURVE_SWAP_SELECTORS_2)
                        mstore(add(ptr, 0x40), _CURVE_SWAP_SELECTORS_3)
                        ptr := add(ptr, mul(selectorIndex, 4))
                    }
                    mstore(add(ptr, 0x04), and(shr(_CURVE_FROM_TOKEN_OFFSET, dex), _CURVE_FROM_TOKEN_MASK))
                    mstore(add(ptr, 0x24), and(shr(_CURVE_TO_TOKEN_OFFSET, dex), _CURVE_TO_TOKEN_MASK))
                    mstore(add(ptr, 0x44), amount)
                    mstore(add(ptr, 0x64), minReturn)
                    let offset := 0x84
                    if and(shr(_CURVE_SWAP_HAS_ARG_USE_ETH_OFFSET, dex), 0x01) {
                        mstore(add(ptr, offset), useEth)
                        offset := add(offset, 0x20)
                    }
                    switch hasCallback
                    case 1 {
                        mstore(add(ptr, offset), address())
                        mstore(add(ptr, add(offset, 0x20)), recipient)
                        mstore(add(ptr, add(offset, 0x40)), callbackSelector)
                        offset := add(offset, 0x60)
                    }
                    default {
                        if and(shr(_CURVE_SWAP_HAS_ARG_DESTINATION_OFFSET, dex), 0x01) {
                            mstore(add(ptr, offset), recipient)
                            offset := add(offset, 0x20)
                        }
                    }
                    // swap call
                    // value is passed when useEth is set but toToken is not ETH
                    switch callReturnSize(call(gas(), pool, mul(mul(amount, useEth), iszero(toTokenIsEth)), ptr, offset, 0, 0x40))
                    case 0 {
                        // we expect that curve pools that do not return any value also do not have the recipient argument
                        switch and(useEth, toTokenIsEth)
                        case 1 {
                            ret := balance(address())
                        }
                        default {
                            ret := tokenBalanceOf(toToken, address())
                        }
                        ret := sub(ret, 1)  // keep 1 wei
                    }
                    default {
                        ret := mload(mul(0x20, and(shr(_CURVE_SWAP_USE_SECOND_OUTPUT_OFFSET, dex), 0x01)))
                    }
                    if iszero(and(shr(_CURVE_SWAP_HAS_ARG_DESTINATION_OFFSET, dex), 0x01)) {
                        if and(shr(_CURVE_OUTPUT_WETH_DEPOSIT_OFFSET, dex), 0x01) {
                            // Deposit ETH to WETH
                            mstore(0, _WETH_DEPOSIT_CALL_SELECTOR)
                            if iszero(call(gas(), _WETH, ret, 0, 4, 0, 0)) {
                                reRevert()
                            }
                        }
                        if and(shr(_CURVE_OUTPUT_WETH_WITHDRAW_OFFSET, dex), 0x01) {
                            // Withdraw ETH from WETH
                            mstore(0, _WETH_WITHDRAW_CALL_SELECTOR)
                            mstore(4, ret)
                            if iszero(call(gas(), _WETH, 0, 0, 0x24, 0, 0)) {
                                reRevert()
                            }
                        }
                        // Post transfer toToken if needed
                        if xor(recipient, address()) {
                            switch and(useEth, toTokenIsEth)
                            case 1 {
                                if iszero(call(gas(), recipient, ret, 0, 0, 0, 0)) {
                                    reRevert()
                                }
                            }
                            default {
                                if eq(toToken, _ETH) {
                                    toToken := _WETH
                                }
                                // toToken.transfer(recipient, ret)
                                if iszero(_asmCall(toToken, 0xa9059cbb00000000000000000000000000000000000000000000000000000000, recipient, ret, ptr)) {
                                    mstore(ptr, 0xf27f64e400000000000000000000000000000000000000000000000000000000)  // error ERC20TransferFailed()
                                    revert(ptr, 4)
                                }
                            }
                        }
                    }
                }
                if (ret < minReturn) revert RouterErrors.ReturnAmountIsNotEnough(ret, minReturn);
            }
            /**
             * @notice Called by Curve pool during the swap operation initiated by `_curfe`.
             * @dev This function can be called by anyone assuming there are no tokens
             * stored on this contract between transactions.
             * @param inCoin Address of the token to be exchanged.
             * @param dx Amount of tokens to be exchanged.
             */
            function curveSwapCallback(
                address /* sender */,
                address /* receiver */,
                address inCoin,
                uint256 dx,
                uint256 /* dy */
            ) external {
                IERC20(inCoin).safeTransfer(msg.sender, dx);
            }
            /**
             * @notice See {IUniswapV3SwapCallback-uniswapV3SwapCallback}
             *         Called by UniswapV3 pool during the swap operation initiated by `_unoswapV3`.
             *         This callback function ensures the proper transfer of tokens based on the swap's
             *         configuration. It handles the transfer of tokens by either directly transferring
             *         the tokens from the payer to the recipient, or by using a secondary permit contract
             *         to transfer the tokens if required by the pool. It verifies the correct pool is
             *         calling the function and uses inline assembly for efficient execution and to access
             *         low-level EVM features.
             */
            function uniswapV3SwapCallback(
                int256 amount0Delta,
                int256 amount1Delta,
                bytes calldata /* data */
            ) external override {
                uint256 selectors = _SELECTORS;
                assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                    function reRevert() {
                        let ptr := mload(0x40)
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                    function safeERC20(target, value, mem, memLength, outLen) {
                        let status := call(gas(), target, value, mem, memLength, 0, outLen)
                        if iszero(status) {
                            reRevert()
                        }
                        let success := or(
                            iszero(returndatasize()),                       // empty return data
                            and(gt(returndatasize(), 31), eq(mload(0), 1))  // true in return data
                        )
                        if iszero(success) {
                            mstore(0, 0xf27f64e400000000000000000000000000000000000000000000000000000000)  // ERC20TransferFailed()
                            revert(0, 4)
                        }
                    }
                    let emptyPtr := mload(0x40)
                    let resultPtr := add(emptyPtr, 0x15)  // 0x15 = _FF_FACTORY size
                    mstore(emptyPtr, selectors)
                    let amount
                    let token
                    switch sgt(amount0Delta, 0)
                    case 1 {
                        if iszero(staticcall(gas(), caller(), add(emptyPtr, _TOKEN0_SELECTOR_OFFSET), 0x4, resultPtr, 0x20)) {
                            reRevert()
                        }
                        token := mload(resultPtr)
                        amount := amount0Delta
                    }
                    default {
                        if iszero(staticcall(gas(), caller(), add(emptyPtr, _TOKEN1_SELECTOR_OFFSET), 0x4, add(resultPtr, 0x20), 0x20)) {
                            reRevert()
                        }
                        token := mload(add(resultPtr, 0x20))
                        amount := amount1Delta
                    }
                    let payer := calldataload(0x84)
                    let usePermit2 := calldataload(0xa4)
                    switch eq(payer, address())
                    case 1 {
                        // IERC20(token.get()).safeTransfer(msg.sender,amount)
                        mstore(add(emptyPtr, add(_TRANSFER_SELECTOR_OFFSET, 0x04)), caller())
                        mstore(add(emptyPtr, add(_TRANSFER_SELECTOR_OFFSET, 0x24)), amount)
                        safeERC20(token, 0, add(emptyPtr, _TRANSFER_SELECTOR_OFFSET), 0x44, 0x20)
                    }
                    default {
                        switch sgt(amount0Delta, 0)
                        case 1 {
                            if iszero(staticcall(gas(), caller(), add(emptyPtr, _TOKEN1_SELECTOR_OFFSET), 0x4, add(resultPtr, 0x20), 0x20)) {
                                reRevert()
                            }
                        }
                        default {
                            if iszero(staticcall(gas(), caller(), add(emptyPtr, _TOKEN0_SELECTOR_OFFSET), 0x4, resultPtr, 0x20)) {
                                reRevert()
                            }
                        }
                        if iszero(staticcall(gas(), caller(), add(emptyPtr, _FEE_SELECTOR_OFFSET), 0x4, add(resultPtr, 0x40), 0x20)) {
                            reRevert()
                        }
                        mstore(emptyPtr, _FF_FACTORY)
                        mstore(resultPtr, keccak256(resultPtr, 0x60)) // Compute the inner hash in-place
                        mstore(add(resultPtr, 0x20), _POOL_INIT_CODE_HASH)
                        let pool := and(keccak256(emptyPtr, 0x55), _ADDRESS_MASK)
                        if xor(pool, caller()) {
                            mstore(0, 0xb2c0272200000000000000000000000000000000000000000000000000000000)  // BadPool()
                            revert(0, 4)
                        }
                        switch usePermit2
                        case 1 {
                            // permit2.transferFrom(payer, msg.sender, amount, token);
                            mstore(emptyPtr, selectors)
                            emptyPtr := add(emptyPtr, _PERMIT2_TRANSFER_FROM_SELECTOR_OFFSET)
                            mstore(add(emptyPtr, 0x04), payer)
                            mstore(add(emptyPtr, 0x24), caller())
                            mstore(add(emptyPtr, 0x44), amount)
                            mstore(add(emptyPtr, 0x64), token)
                            let success := call(gas(), _PERMIT2, 0, emptyPtr, 0x84, 0, 0)
                            if success {
                                success := gt(extcodesize(_PERMIT2), 0)
                            }
                            if iszero(success) {
                                mstore(0, 0xc3f9d33200000000000000000000000000000000000000000000000000000000)  // Permit2TransferFromFailed()
                                revert(0, 4)
                            }
                        }
                        case 0 {
                            // IERC20(token.get()).safeTransferFrom(payer, msg.sender, amount);
                            mstore(emptyPtr, selectors)
                            emptyPtr := add(emptyPtr, _TRANSFER_FROM_SELECTOR_OFFSET)
                            mstore(add(emptyPtr, 0x04), payer)
                            mstore(add(emptyPtr, 0x24), caller())
                            mstore(add(emptyPtr, 0x44), amount)
                            safeERC20(token, 0, emptyPtr, 0x64, 0x20)
                        }
                    }
                }
            }
        }
        // File contracts/AggregationRouterV6.sol
        /// @notice Main contract incorporates a number of routers to perform swaps and limit orders protocol to fill limit orders
        contract AggregationRouterV6 is EIP712("1inch Aggregation Router", "6"), Ownable, Pausable,
            ClipperRouter, GenericRouter, UnoswapRouter, PermitAndCall, OrderMixin
        {
            using UniERC20 for IERC20;
            error ZeroAddress();
            /**
             * @dev Sets the wrapped eth token and clipper exhange interface
             * Both values are immutable: they can only be set once during
             * construction.
             */
            constructor(IWETH weth)
                ClipperRouter(weth)
                OrderMixin(weth)
                Ownable(msg.sender)
            {
                if (address(weth) == address(0)) revert ZeroAddress();
            }
            /**
             * @notice Retrieves funds accidently sent directly to the contract address
             * @param token ERC20 token to retrieve
             * @param amount amount to retrieve
             */
            function rescueFunds(IERC20 token, uint256 amount) external onlyOwner {
                token.uniTransfer(payable(msg.sender), amount);
            }
            /**
             * @notice Pauses all the trading functionality in the contract.
             */
            function pause() external onlyOwner {
                _pause();
            }
            /**
             * @notice Unpauses all the trading functionality in the contract.
             */
            function unpause() external onlyOwner {
                _unpause();
            }
            function _receive() internal override(EthReceiver, OnlyWethReceiver) {
                EthReceiver._receive();
            }
        }
        

        File 2 of 3: Settlement
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.23;
        import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
        import { IAmountGetter } from "../interfaces/IAmountGetter.sol";
        import { IOrderMixin } from "../interfaces/IOrderMixin.sol";
        /// @title Base price getter contract that either calls external getter or applies linear formula
        contract AmountGetterBase is IAmountGetter {
            function getMakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) external view returns (uint256) {
                return _getMakingAmount(order, extension, orderHash, taker, takingAmount, remainingMakingAmount, extraData);
            }
            function getTakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) external view returns (uint256) {
                return _getTakingAmount(order, extension, orderHash, taker, makingAmount, remainingMakingAmount, extraData);
            }
            function _getMakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) internal view virtual returns (uint256) {
                if (extraData.length >= 20) {
                    return IAmountGetter(address(bytes20(extraData))).getMakingAmount(
                        order, extension, orderHash, taker, takingAmount, remainingMakingAmount, extraData[20:]
                    );
                } else {
                    return Math.mulDiv(order.makingAmount, takingAmount, order.takingAmount);
                }
            }
            function _getTakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) internal view virtual returns (uint256) {
                if (extraData.length >= 20) {
                    return IAmountGetter(address(bytes20(extraData))).getTakingAmount(
                        order, extension, orderHash, taker, makingAmount, remainingMakingAmount, extraData[20:]
                    );
                } else {
                    return Math.mulDiv(order.takingAmount, makingAmount, order.makingAmount, Math.Rounding.Ceil);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.23;
        import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
        import { IOrderMixin } from "../interfaces/IOrderMixin.sol";
        import { AmountGetterBase } from "./AmountGetterBase.sol";
        /// @title Price getter contract that adds fee calculation
        contract AmountGetterWithFee is AmountGetterBase {
            /// @dev Allows fees in range [1e-5, 0.65535]
            uint256 internal constant _BASE_1E5 = 1e5;
            uint256 internal constant _BASE_1E2 = 100;
            error InvalidIntegratorShare();
            error InvalidWhitelistDiscountNumerator();
            /**
             * @dev Calculates makingAmount with fee.
             */
            function _getMakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) internal view virtual override returns (uint256) {
                unchecked {
                    (, uint256 integratorFee, , uint256 resolverFee, bytes calldata tail) = _parseFeeData(extraData, taker, _isWhitelistedGetterImpl);
                    return Math.mulDiv(
                        super._getMakingAmount(order, extension, orderHash, taker, takingAmount, remainingMakingAmount, tail),
                        _BASE_1E5,
                        _BASE_1E5 + integratorFee + resolverFee
                    );
                }
            }
            /**
             * @dev Calculates takingAmount with fee.
             */
            function _getTakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) internal view virtual override returns (uint256) {
                unchecked {
                    (, uint256 integratorFee, , uint256 resolverFee, bytes calldata tail) = _parseFeeData(extraData, taker, _isWhitelistedGetterImpl);
                    return Math.mulDiv(
                        super._getTakingAmount(order, extension, orderHash, taker, makingAmount, remainingMakingAmount, tail),
                        _BASE_1E5 + integratorFee + resolverFee,
                        _BASE_1E5,
                        Math.Rounding.Ceil
                    );
                }
            }
            /**
             * @dev `extraData` consists of:
             * 2 bytes — integrator fee percentage (in 1e5)
             * 1 byte - integrator share percentage (in 1e2)
             * 2 bytes — resolver fee percentage (in 1e5)
             * 1 byte - whitelist discount numerator (in 1e2)
             * bytes — whitelist structure determined by `_isWhitelisted` implementation
             * bytes — custom data (optional)
             * @param _isWhitelisted internal function to parse and check whitelist
             */
            function _parseFeeData(
                bytes calldata extraData,
                address taker,
                function (bytes calldata, address) internal view returns (bool, bytes calldata) _isWhitelisted
            ) internal view returns (bool isWhitelisted, uint256 integratorFee, uint256 integratorShare, uint256 resolverFee, bytes calldata tail) {
                unchecked {
                    integratorFee = uint256(uint16(bytes2(extraData)));
                    integratorShare = uint256(uint8(bytes1(extraData[2:])));
                    if (integratorShare > _BASE_1E2) revert InvalidIntegratorShare();
                    resolverFee = uint256(uint16(bytes2(extraData[3:])));
                    uint256 whitelistDiscountNumerator = uint256(uint8(bytes1(extraData[5:])));
                    if (whitelistDiscountNumerator > _BASE_1E2) revert InvalidWhitelistDiscountNumerator();
                    (isWhitelisted, tail) = _isWhitelisted(extraData[6:], taker);
                    if (isWhitelisted) {
                        resolverFee = resolverFee * whitelistDiscountNumerator / _BASE_1E2;
                    }
                }
            }
            /**
             * @dev Validates whether the taker is whitelisted.
             * @param whitelistData Whitelist data is a tightly packed struct of the following format:
             * ```
             * 1 byte - size of the whitelist
             * (bytes10)[N] whitelisted addresses;
             * ```
             * Only 10 lowest bytes of the address are used for comparison.
             * @param taker The taker address to check.
             * @return isWhitelisted Whether the taker is whitelisted.
             * @return tail Remaining calldata.
             */
            function _isWhitelistedGetterImpl(bytes calldata whitelistData, address taker) internal pure returns (bool isWhitelisted, bytes calldata tail) {
                unchecked {
                    uint80 maskedTakerAddress = uint80(uint160(taker));
                    uint256 size = uint8(whitelistData[0]);
                    bytes calldata whitelist = whitelistData[1:1 + 10 * size];
                    tail = whitelistData[1 + 10 * size:];
                    for (uint256 i = 0; i < size; i++) {
                        uint80 whitelistedAddress = uint80(bytes10(whitelist[:10]));
                        if (maskedTakerAddress == whitelistedAddress) {
                            return (true, tail);
                        }
                        whitelist = whitelist[10:];
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.23;
        import { Address, AddressLib } from "@1inch/solidity-utils/contracts/libraries/AddressLib.sol";
        import { SafeERC20 } from "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";
        import { UniERC20 } from "@1inch/solidity-utils/contracts/libraries/UniERC20.sol";
        import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
        import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
        import { IOrderMixin } from "../interfaces/IOrderMixin.sol";
        import { IPostInteraction } from "../interfaces/IPostInteraction.sol";
        import { MakerTraits, MakerTraitsLib } from "../libraries/MakerTraitsLib.sol";
        import { AmountGetterWithFee } from "./AmountGetterWithFee.sol";
        /// @title Helper contract that adds feature of collecting fee in takerAsset
        contract FeeTaker is IPostInteraction, AmountGetterWithFee, Ownable {
            using AddressLib for Address;
            using SafeERC20 for IERC20;
            using UniERC20 for IERC20;
            using MakerTraitsLib for MakerTraits;
            bytes1 private constant _CUSTOM_RECEIVER_FLAG = 0x01;
            /**
             * @dev The caller is not the limit order protocol contract.
             */
            error OnlyLimitOrderProtocol();
            /**
             * @dev The taker is not whitelisted and does not have access token.
             */
            error OnlyWhitelistOrAccessToken();
            /**
             * @dev Eth transfer failed. The target fallback may have reverted.
             */
            error EthTransferFailed();
            /**
              * @dev Fees are specified but FeeTaker is not set as a receiver.
              */
            error InconsistentFee();
            address private immutable _LIMIT_ORDER_PROTOCOL;
            address private immutable _WETH;
            /// @notice Contract address whose tokens allow filling limit orders with a fee for resolvers that are outside the whitelist
            IERC20 private immutable _ACCESS_TOKEN;
            /// @dev Modifier to check if the caller is the limit order protocol contract.
            modifier onlyLimitOrderProtocol {
                if (msg.sender != _LIMIT_ORDER_PROTOCOL) revert OnlyLimitOrderProtocol();
                _;
            }
            /**
             * @notice Initializes the contract.
             * @param limitOrderProtocol The limit order protocol contract.
             * @param accessToken Contract address whose tokens allow filling limit orders with a fee for resolvers that are outside the whitelist.
             * @param weth The WETH address.
             * @param owner The owner of the contract.
             */
            constructor(address limitOrderProtocol, IERC20 accessToken, address weth, address owner) Ownable(owner) {
                _LIMIT_ORDER_PROTOCOL = limitOrderProtocol;
                _WETH = weth;
                _ACCESS_TOKEN = accessToken;
            }
            /**
             * @notice Fallback function to receive ETH.
             */
            receive() external payable {}
            /**
             * @notice See {IPostInteraction-postInteraction}.
             */
            function postInteraction(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) external onlyLimitOrderProtocol {
                _postInteraction(order, extension, orderHash, taker, makingAmount, takingAmount, remainingMakingAmount, extraData);
            }
            /**
             * @notice Retrieves funds accidently sent directly to the contract address
             * @param token ERC20 token to retrieve
             * @param amount amount to retrieve
             */
            function rescueFunds(IERC20 token, uint256 amount) external onlyOwner {
                token.uniTransfer(payable(msg.sender), amount);
            }
            /**
             * @notice See {IPostInteraction-postInteraction}.
             * @dev Takes the fee in taking tokens and transfers the rest to the maker.
             * `extraData` consists of:
             * 1 byte - flags
             * 20 bytes — integrator fee recipient
             * 20 bytes - protocol fee recipient
             * 20 bytes — receiver of taking tokens (optional, if not set, maker is used)
             * 2 bytes — integrator fee percentage (in 1e5)
             * 1 byte - integrator rev share percentage (in 1e2)
             * 2 bytes — resolver fee percentage (in 1e5)
             * 1 byte - whitelist discount numerator (in 1e2)
             * bytes — whitelist structure determined by `_isWhitelistedPostInteractionImpl` implementation
             * bytes — custom data to call extra postInteraction (optional)
             */
            function _postInteraction(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) internal virtual {
                unchecked {
                    bool customReceiver = extraData[0] & _CUSTOM_RECEIVER_FLAG == _CUSTOM_RECEIVER_FLAG;
                    address integratorFeeRecipient = address(bytes20(extraData[1:21]));
                    address protocolFeeRecipient = address(bytes20(extraData[21:41]));
                    extraData = extraData[41:];
                    address receiver = order.maker.get();
                    if (customReceiver) {
                        receiver = address(bytes20(extraData));
                        extraData = extraData[20:];
                    }
                    (bool isWhitelisted, uint256 integratorFee, uint256 integratorShare, uint256 resolverFee, bytes calldata tail) = _parseFeeData(extraData, taker, _isWhitelistedPostInteractionImpl);
                    if (!isWhitelisted && _ACCESS_TOKEN.balanceOf(taker) == 0) revert OnlyWhitelistOrAccessToken();
                    uint256 integratorFeeAmount;
                    uint256 protocolFeeAmount;
                    {
                        uint256 denominator = _BASE_1E5 + integratorFee + resolverFee;
                        uint256 integratorFeeTotal = Math.mulDiv(takingAmount, integratorFee, denominator);
                        integratorFeeAmount = Math.mulDiv(integratorFeeTotal, integratorShare, _BASE_1E2);
                        protocolFeeAmount = Math.mulDiv(takingAmount, resolverFee, denominator) + integratorFeeTotal - integratorFeeAmount;
                    }
                    if (order.receiver.get() == address(this)) {
                        if (order.takerAsset.get() == address(_WETH) && order.makerTraits.unwrapWeth()) {
                            if (integratorFeeAmount > 0) {
                                _sendEth(integratorFeeRecipient, integratorFeeAmount);
                            }
                            if (protocolFeeAmount > 0) {
                                _sendEth(protocolFeeRecipient, protocolFeeAmount);
                            }
                            _sendEth(receiver, takingAmount - integratorFeeAmount - protocolFeeAmount);
                        } else {
                            if (integratorFeeAmount > 0) {
                                IERC20(order.takerAsset.get()).safeTransfer(integratorFeeRecipient, integratorFeeAmount);
                            }
                            if (protocolFeeAmount > 0) {
                                IERC20(order.takerAsset.get()).safeTransfer(protocolFeeRecipient, protocolFeeAmount);
                            }
                            IERC20(order.takerAsset.get()).safeTransfer(receiver, takingAmount - integratorFeeAmount - protocolFeeAmount);
                        }
                    } else if (integratorFeeAmount + protocolFeeAmount > 0) {
                        revert InconsistentFee();
                    }
                    if (tail.length >= 20) {
                        IPostInteraction(address(bytes20(tail))).postInteraction(order, extension, orderHash, taker, makingAmount, takingAmount, remainingMakingAmount, tail[20:]);
                    }
                }
            }
            /**
             * @dev Parses fee data from `extraData`.
             * Override this function if whitelist structure in postInteraction is different from getters.
             */
            function _isWhitelistedPostInteractionImpl(bytes calldata whitelistData, address taker) internal view virtual returns (bool isWhitelisted, bytes calldata tail) {
                return _isWhitelistedGetterImpl(whitelistData, taker);
            }
            function _sendEth(address target, uint256 amount) private {
                (bool success, ) = target.call{value: amount}("");
                if (!success) {
                    revert EthTransferFailed();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "./IOrderMixin.sol";
        interface IAmountGetter {
            /**
             * @notice View method that gets called to determine the actual making amount
             * @param order Order being processed
             * @param extension Order extension data
             * @param orderHash Hash of the order being processed
             * @param taker Taker address
             * @param takingAmount Actual taking amount
             * @param remainingMakingAmount Order remaining making amount
             * @param extraData Extra data
             */
            function getMakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) external view returns (uint256);
            /**
             * @notice View method that gets called to determine the actual making amount
             * @param order Order being processed
             * @param extension Order extension data
             * @param orderHash Hash of the order being processed
             * @param taker Taker address
             * @param makingAmount Actual taking amount
             * @param remainingMakingAmount Order remaining making amount
             * @param extraData Extra data
             */
            function getTakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) external view returns (uint256);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "@1inch/solidity-utils/contracts/libraries/AddressLib.sol";
        import "../libraries/MakerTraitsLib.sol";
        import "../libraries/TakerTraitsLib.sol";
        interface IOrderMixin {
            struct Order {
                uint256 salt;
                Address maker;
                Address receiver;
                Address makerAsset;
                Address takerAsset;
                uint256 makingAmount;
                uint256 takingAmount;
                MakerTraits makerTraits;
            }
            error InvalidatedOrder();
            error TakingAmountExceeded();
            error PrivateOrder();
            error BadSignature();
            error OrderExpired();
            error WrongSeriesNonce();
            error SwapWithZeroAmount();
            error PartialFillNotAllowed();
            error OrderIsNotSuitableForMassInvalidation();
            error EpochManagerAndBitInvalidatorsAreIncompatible();
            error ReentrancyDetected();
            error PredicateIsNotTrue();
            error TakingAmountTooHigh();
            error MakingAmountTooLow();
            error TransferFromMakerToTakerFailed();
            error TransferFromTakerToMakerFailed();
            error MismatchArraysLengths();
            error InvalidPermit2Transfer();
            error SimulationResults(bool success, bytes res);
            /**
             * @notice Emitted when order gets filled
             * @param orderHash Hash of the order
             * @param remainingAmount Amount of the maker asset that remains to be filled
             */
            event OrderFilled(
                bytes32 orderHash,
                uint256 remainingAmount
            );
            /**
             * @notice Emitted when order without `useBitInvalidator` gets cancelled
             * @param orderHash Hash of the order
             */
            event OrderCancelled(
                bytes32 orderHash
            );
            /**
             * @notice Emitted when order with `useBitInvalidator` gets cancelled
             * @param maker Maker address
             * @param slotIndex Slot index that was updated
             * @param slotValue New slot value
             */
            event BitInvalidatorUpdated(
                address indexed maker,
                uint256 slotIndex,
                uint256 slotValue
            );
            /**
             * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
             * @param maker Maker address
             * @param slot Slot number to return bitmask for
             * @return result Each bit represents whether corresponding was already invalidated
             */
            function bitInvalidatorForOrder(address maker, uint256 slot) external view returns(uint256 result);
            /**
             * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
             * @param orderHash Hash of the order
             * @return remaining Remaining amount of the order
             */
            function remainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 remaining);
            /**
             * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
             * @param orderHash Hash of the order
             * @return remainingRaw Inverse of the remaining amount of the order if order was filled at least once, otherwise 0
             */
            function rawRemainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 remainingRaw);
            /**
             * @notice Cancels order's quote
             * @param makerTraits Order makerTraits
             * @param orderHash Hash of the order to cancel
             */
            function cancelOrder(MakerTraits makerTraits, bytes32 orderHash) external;
            /**
             * @notice Cancels orders' quotes
             * @param makerTraits Orders makerTraits
             * @param orderHashes Hashes of the orders to cancel
             */
            function cancelOrders(MakerTraits[] calldata makerTraits, bytes32[] calldata orderHashes) external;
            /**
             * @notice Cancels all quotes of the maker (works for bit-invalidating orders only)
             * @param makerTraits Order makerTraits
             * @param additionalMask Additional bitmask to invalidate orders
             */
            function bitsInvalidateForOrder(MakerTraits makerTraits, uint256 additionalMask) external;
            /**
             * @notice Returns order hash, hashed with limit order protocol contract EIP712
             * @param order Order
             * @return orderHash Hash of the order
             */
            function hashOrder(IOrderMixin.Order calldata order) external view returns(bytes32 orderHash);
            /**
             * @notice Delegates execution to custom implementation. Could be used to validate if `transferFrom` works properly
             * @dev The function always reverts and returns the simulation results in revert data.
             * @param target Addresses that will be delegated
             * @param data Data that will be passed to delegatee
             */
            function simulate(address target, bytes calldata data) external;
            /**
             * @notice Fills order's quote, fully or partially (whichever is possible).
             * @param order Order quote to fill
             * @param r R component of signature
             * @param vs VS component of signature
             * @param amount Taker amount to fill
             * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
             * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
             * @return makingAmount Actual amount transferred from maker to taker
             * @return takingAmount Actual amount transferred from taker to maker
             * @return orderHash Hash of the filled order
             */
            function fillOrder(
                Order calldata order,
                bytes32 r,
                bytes32 vs,
                uint256 amount,
                TakerTraits takerTraits
            ) external payable returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
            /**
             * @notice Same as `fillOrder` but allows to specify arguments that are used by the taker.
             * @param order Order quote to fill
             * @param r R component of signature
             * @param vs VS component of signature
             * @param amount Taker amount to fill
             * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
             * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
             * @param args Arguments that are used by the taker (target, extension, interaction, permit)
             * @return makingAmount Actual amount transferred from maker to taker
             * @return takingAmount Actual amount transferred from taker to maker
             * @return orderHash Hash of the filled order
             */
            function fillOrderArgs(
                IOrderMixin.Order calldata order,
                bytes32 r,
                bytes32 vs,
                uint256 amount,
                TakerTraits takerTraits,
                bytes calldata args
            ) external payable returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
            /**
             * @notice Same as `fillOrder` but uses contract-based signatures.
             * @param order Order quote to fill
             * @param signature Signature to confirm quote ownership
             * @param amount Taker amount to fill
             * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
             * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
             * @return makingAmount Actual amount transferred from maker to taker
             * @return takingAmount Actual amount transferred from taker to maker
             * @return orderHash Hash of the filled order
             * @dev See tests for examples
             */
            function fillContractOrder(
                Order calldata order,
                bytes calldata signature,
                uint256 amount,
                TakerTraits takerTraits
            ) external returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
            /**
             * @notice Same as `fillContractOrder` but allows to specify arguments that are used by the taker.
             * @param order Order quote to fill
             * @param signature Signature to confirm quote ownership
             * @param amount Taker amount to fill
             * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
             * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
             * @param args Arguments that are used by the taker (target, extension, interaction, permit)
             * @return makingAmount Actual amount transferred from maker to taker
             * @return takingAmount Actual amount transferred from taker to maker
             * @return orderHash Hash of the filled order
             * @dev See tests for examples
             */
            function fillContractOrderArgs(
                Order calldata order,
                bytes calldata signature,
                uint256 amount,
                TakerTraits takerTraits,
                bytes calldata args
            ) external returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "./IOrderMixin.sol";
        interface IPostInteraction {
            /**
             * @notice Callback method that gets called after all fund transfers
             * @param order Order being processed
             * @param extension Order extension data
             * @param orderHash Hash of the order being processed
             * @param taker Taker address
             * @param makingAmount Actual making amount
             * @param takingAmount Actual taking amount
             * @param remainingMakingAmount Order remaining making amount
             * @param extraData Extra data
             */
            function postInteraction(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        type MakerTraits is uint256;
        /**
         * @title MakerTraitsLib
         * @notice A library to manage and check MakerTraits, which are used to encode the maker's preferences for an order in a single uint256.
         * @dev
         * The MakerTraits type is a uint256 and different parts of the number are used to encode different traits.
         * High bits are used for flags
         * 255 bit `NO_PARTIAL_FILLS_FLAG`          - if set, the order does not allow partial fills
         * 254 bit `ALLOW_MULTIPLE_FILLS_FLAG`      - if set, the order permits multiple fills
         * 253 bit                                  - unused
         * 252 bit `PRE_INTERACTION_CALL_FLAG`      - if set, the order requires pre-interaction call
         * 251 bit `POST_INTERACTION_CALL_FLAG`     - if set, the order requires post-interaction call
         * 250 bit `NEED_CHECK_EPOCH_MANAGER_FLAG`  - if set, the order requires to check the epoch manager
         * 249 bit `HAS_EXTENSION_FLAG`             - if set, the order has extension(s)
         * 248 bit `USE_PERMIT2_FLAG`               - if set, the order uses permit2
         * 247 bit `UNWRAP_WETH_FLAG`               - if set, the order requires to unwrap WETH
         * Low 200 bits are used for allowed sender, expiration, nonceOrEpoch, and series
         * uint80 last 10 bytes of allowed sender address (0 if any)
         * uint40 expiration timestamp (0 if none)
         * uint40 nonce or epoch
         * uint40 series
         */
        library MakerTraitsLib {
            // Low 200 bits are used for allowed sender, expiration, nonceOrEpoch, and series
            uint256 private constant _ALLOWED_SENDER_MASK = type(uint80).max;
            uint256 private constant _EXPIRATION_OFFSET = 80;
            uint256 private constant _EXPIRATION_MASK = type(uint40).max;
            uint256 private constant _NONCE_OR_EPOCH_OFFSET = 120;
            uint256 private constant _NONCE_OR_EPOCH_MASK = type(uint40).max;
            uint256 private constant _SERIES_OFFSET = 160;
            uint256 private constant _SERIES_MASK = type(uint40).max;
            uint256 private constant _NO_PARTIAL_FILLS_FLAG = 1 << 255;
            uint256 private constant _ALLOW_MULTIPLE_FILLS_FLAG = 1 << 254;
            uint256 private constant _PRE_INTERACTION_CALL_FLAG = 1 << 252;
            uint256 private constant _POST_INTERACTION_CALL_FLAG = 1 << 251;
            uint256 private constant _NEED_CHECK_EPOCH_MANAGER_FLAG = 1 << 250;
            uint256 private constant _HAS_EXTENSION_FLAG = 1 << 249;
            uint256 private constant _USE_PERMIT2_FLAG = 1 << 248;
            uint256 private constant _UNWRAP_WETH_FLAG = 1 << 247;
            /**
             * @notice Checks if the order has the extension flag set.
             * @dev If the `HAS_EXTENSION_FLAG` is set in the makerTraits, then the protocol expects that the order has extension(s).
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the flag is set.
             */
            function hasExtension(MakerTraits makerTraits) internal pure returns (bool) {
                return (MakerTraits.unwrap(makerTraits) & _HAS_EXTENSION_FLAG) != 0;
            }
            /**
             * @notice Checks if the maker allows a specific taker to fill the order.
             * @param makerTraits The traits of the maker.
             * @param sender The address of the taker to be checked.
             * @return result A boolean indicating whether the taker is allowed.
             */
            function isAllowedSender(MakerTraits makerTraits, address sender) internal pure returns (bool) {
                uint160 allowedSender = uint160(MakerTraits.unwrap(makerTraits) & _ALLOWED_SENDER_MASK);
                return allowedSender == 0 || allowedSender == uint160(sender) & _ALLOWED_SENDER_MASK;
            }
            /**
             * @notice Checks if the order has expired.
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the order has expired.
             */
            function isExpired(MakerTraits makerTraits) internal view returns (bool) {
                uint256 expiration = (MakerTraits.unwrap(makerTraits) >> _EXPIRATION_OFFSET) & _EXPIRATION_MASK;
                return expiration != 0 && expiration < block.timestamp;  // solhint-disable-line not-rely-on-time
            }
            /**
             * @notice Returns the nonce or epoch of the order.
             * @param makerTraits The traits of the maker.
             * @return result The nonce or epoch of the order.
             */
            function nonceOrEpoch(MakerTraits makerTraits) internal pure returns (uint256) {
                return (MakerTraits.unwrap(makerTraits) >> _NONCE_OR_EPOCH_OFFSET) & _NONCE_OR_EPOCH_MASK;
            }
            /**
             * @notice Returns the series of the order.
             * @param makerTraits The traits of the maker.
             * @return result The series of the order.
             */
            function series(MakerTraits makerTraits) internal pure returns (uint256) {
                return (MakerTraits.unwrap(makerTraits) >> _SERIES_OFFSET) & _SERIES_MASK;
            }
            /**
              * @notice Determines if the order allows partial fills.
              * @dev If the _NO_PARTIAL_FILLS_FLAG is not set in the makerTraits, then the order allows partial fills.
              * @param makerTraits The traits of the maker, determining their preferences for the order.
              * @return result A boolean indicating whether the maker allows partial fills.
              */
            function allowPartialFills(MakerTraits makerTraits) internal pure returns (bool) {
                return (MakerTraits.unwrap(makerTraits) & _NO_PARTIAL_FILLS_FLAG) == 0;
            }
            /**
             * @notice Checks if the maker needs pre-interaction call.
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the maker needs a pre-interaction call.
             */
            function needPreInteractionCall(MakerTraits makerTraits) internal pure returns (bool) {
                return (MakerTraits.unwrap(makerTraits) & _PRE_INTERACTION_CALL_FLAG) != 0;
            }
            /**
             * @notice Checks if the maker needs post-interaction call.
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the maker needs a post-interaction call.
             */
            function needPostInteractionCall(MakerTraits makerTraits) internal pure returns (bool) {
                return (MakerTraits.unwrap(makerTraits) & _POST_INTERACTION_CALL_FLAG) != 0;
            }
            /**
              * @notice Determines if the order allows multiple fills.
              * @dev If the _ALLOW_MULTIPLE_FILLS_FLAG is set in the makerTraits, then the maker allows multiple fills.
              * @param makerTraits The traits of the maker, determining their preferences for the order.
              * @return result A boolean indicating whether the maker allows multiple fills.
              */
            function allowMultipleFills(MakerTraits makerTraits) internal pure returns (bool) {
                return (MakerTraits.unwrap(makerTraits) & _ALLOW_MULTIPLE_FILLS_FLAG) != 0;
            }
            /**
              * @notice Determines if an order should use the bit invalidator or remaining amount validator.
              * @dev The bit invalidator can be used if the order does not allow partial or multiple fills.
              * @param makerTraits The traits of the maker, determining their preferences for the order.
              * @return result A boolean indicating whether the bit invalidator should be used.
              * True if the order requires the use of the bit invalidator.
              */
            function useBitInvalidator(MakerTraits makerTraits) internal pure returns (bool) {
                return !allowPartialFills(makerTraits) || !allowMultipleFills(makerTraits);
            }
            /**
             * @notice Checks if the maker needs to check the epoch.
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the maker needs to check the epoch manager.
             */
            function needCheckEpochManager(MakerTraits makerTraits) internal pure returns (bool) {
                return (MakerTraits.unwrap(makerTraits) & _NEED_CHECK_EPOCH_MANAGER_FLAG) != 0;
            }
            /**
             * @notice Checks if the maker uses permit2.
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the maker uses permit2.
             */
            function usePermit2(MakerTraits makerTraits) internal pure returns (bool) {
                return MakerTraits.unwrap(makerTraits) & _USE_PERMIT2_FLAG != 0;
            }
            /**
             * @notice Checks if the maker needs to unwraps WETH.
             * @param makerTraits The traits of the maker.
             * @return result A boolean indicating whether the maker needs to unwrap WETH.
             */
            function unwrapWeth(MakerTraits makerTraits) internal pure returns (bool) {
                return MakerTraits.unwrap(makerTraits) & _UNWRAP_WETH_FLAG != 0;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        type TakerTraits is uint256;
        /**
         * @title TakerTraitsLib
         * @notice This library to manage and check TakerTraits, which are used to encode the taker's preferences for an order in a single uint256.
         * @dev The TakerTraits are structured as follows:
         * High bits are used for flags
         * 255 bit `_MAKER_AMOUNT_FLAG`           - If set, the taking amount is calculated based on making amount, otherwise making amount is calculated based on taking amount.
         * 254 bit `_UNWRAP_WETH_FLAG`            - If set, the WETH will be unwrapped into ETH before sending to taker.
         * 253 bit `_SKIP_ORDER_PERMIT_FLAG`      - If set, the order skips maker's permit execution.
         * 252 bit `_USE_PERMIT2_FLAG`            - If set, the order uses the permit2 function for authorization.
         * 251 bit `_ARGS_HAS_TARGET`             - If set, then first 20 bytes of args are treated as target address for maker’s funds transfer.
         * 224-247 bits `ARGS_EXTENSION_LENGTH`   - The length of the extension calldata in the args.
         * 200-223 bits `ARGS_INTERACTION_LENGTH` - The length of the interaction calldata in the args.
         * 0-184 bits                             - The threshold amount (the maximum amount a taker agrees to give in exchange for a making amount).
         */
        library TakerTraitsLib {
            uint256 private constant _MAKER_AMOUNT_FLAG = 1 << 255;
            uint256 private constant _UNWRAP_WETH_FLAG = 1 << 254;
            uint256 private constant _SKIP_ORDER_PERMIT_FLAG = 1 << 253;
            uint256 private constant _USE_PERMIT2_FLAG = 1 << 252;
            uint256 private constant _ARGS_HAS_TARGET = 1 << 251;
            uint256 private constant _ARGS_EXTENSION_LENGTH_OFFSET = 224;
            uint256 private constant _ARGS_EXTENSION_LENGTH_MASK = 0xffffff;
            uint256 private constant _ARGS_INTERACTION_LENGTH_OFFSET = 200;
            uint256 private constant _ARGS_INTERACTION_LENGTH_MASK = 0xffffff;
            uint256 private constant _AMOUNT_MASK = 0x000000000000000000ffffffffffffffffffffffffffffffffffffffffffffff;
            /**
             * @notice Checks if the args should contain target address.
             * @param takerTraits The traits of the taker.
             * @return result A boolean indicating whether the args should contain target address.
             */
            function argsHasTarget(TakerTraits takerTraits) internal pure returns (bool) {
                return (TakerTraits.unwrap(takerTraits) & _ARGS_HAS_TARGET) != 0;
            }
            /**
             * @notice Retrieves the length of the extension calldata from the takerTraits.
             * @param takerTraits The traits of the taker.
             * @return result The length of the extension calldata encoded in the takerTraits.
             */
            function argsExtensionLength(TakerTraits takerTraits) internal pure returns (uint256) {
                return (TakerTraits.unwrap(takerTraits) >> _ARGS_EXTENSION_LENGTH_OFFSET) & _ARGS_EXTENSION_LENGTH_MASK;
            }
            /**
             * @notice Retrieves the length of the interaction calldata from the takerTraits.
             * @param takerTraits The traits of the taker.
             * @return result The length of the interaction calldata encoded in the takerTraits.
             */
            function argsInteractionLength(TakerTraits takerTraits) internal pure returns (uint256) {
                return (TakerTraits.unwrap(takerTraits) >> _ARGS_INTERACTION_LENGTH_OFFSET) & _ARGS_INTERACTION_LENGTH_MASK;
            }
            /**
             * @notice Checks if the taking amount should be calculated based on making amount.
             * @param takerTraits The traits of the taker.
             * @return result A boolean indicating whether the taking amount should be calculated based on making amount.
             */
            function isMakingAmount(TakerTraits takerTraits) internal pure returns (bool) {
                return (TakerTraits.unwrap(takerTraits) & _MAKER_AMOUNT_FLAG) != 0;
            }
            /**
             * @notice Checks if the order should unwrap WETH and send ETH to taker.
             * @param takerTraits The traits of the taker.
             * @return result A boolean indicating whether the order should unwrap WETH.
             */
            function unwrapWeth(TakerTraits takerTraits) internal pure returns (bool) {
                return (TakerTraits.unwrap(takerTraits) & _UNWRAP_WETH_FLAG) != 0;
            }
            /**
             * @notice Checks if the order should skip maker's permit execution.
             * @param takerTraits The traits of the taker.
             * @return result A boolean indicating whether the order don't apply permit.
             */
            function skipMakerPermit(TakerTraits takerTraits) internal pure returns (bool) {
                return (TakerTraits.unwrap(takerTraits) & _SKIP_ORDER_PERMIT_FLAG) != 0;
            }
            /**
             * @notice Checks if the order uses the permit2 instead of permit.
             * @param takerTraits The traits of the taker.
             * @return result A boolean indicating whether the order uses the permit2.
             */
            function usePermit2(TakerTraits takerTraits) internal pure returns (bool) {
                return (TakerTraits.unwrap(takerTraits) & _USE_PERMIT2_FLAG) != 0;
            }
            /**
             * @notice Retrieves the threshold amount from the takerTraits.
             * The maximum amount a taker agrees to give in exchange for a making amount.
             * @param takerTraits The traits of the taker.
             * @return result The threshold amount encoded in the takerTraits.
             */
            function threshold(TakerTraits takerTraits) internal pure returns (uint256) {
                return TakerTraits.unwrap(takerTraits) & _AMOUNT_MASK;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @title IDaiLikePermit
         * @dev Interface for Dai-like permit function allowing token spending via signatures.
         */
        interface IDaiLikePermit {
            /**
             * @notice Approves spending of tokens via off-chain signatures.
             * @param holder Token holder's address.
             * @param spender Spender's address.
             * @param nonce Current nonce of the holder.
             * @param expiry Time when the permit expires.
             * @param allowed True to allow, false to disallow spending.
             * @param v, r, s Signature components.
             */
            function permit(
                address holder,
                address spender,
                uint256 nonce,
                uint256 expiry,
                bool allowed,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @title IERC20MetadataUppercase
         * @dev Interface for ERC20 token metadata with uppercase naming convention.
         */
        interface IERC20MetadataUppercase {
            /**
             * @notice Gets the token name.
             * @return Token name.
             */
            function NAME() external view returns (string memory); // solhint-disable-line func-name-mixedcase
            /**
             * @notice Gets the token symbol.
             * @return Token symbol.
             */
            function SYMBOL() external view returns (string memory); // solhint-disable-line func-name-mixedcase
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @title IERC7597Permit
         * @dev A new extension for ERC-2612 permit, which has already been added to USDC v2.2.
         */
        interface IERC7597Permit {
            /**
             * @notice Update allowance with a signed permit.
             * @dev Signature bytes can be used for both EOA wallets and contract wallets.
             * @param owner Token owner's address (Authorizer).
             * @param spender Spender's address.
             * @param value Amount of allowance.
             * @param deadline The time at which the signature expires (unixtime).
             * @param signature Unstructured bytes signature signed by an EOA wallet or a contract wallet.
             */
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                bytes memory signature
            ) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @title IPermit2
         * @dev Interface for a flexible permit system that extends ERC20 tokens to support permits in tokens lacking native permit functionality.
         */
        interface IPermit2 {
            /**
             * @dev Struct for holding permit details.
             * @param token ERC20 token address for which the permit is issued.
             * @param amount The maximum amount allowed to spend.
             * @param expiration Timestamp until which the permit is valid.
             * @param nonce An incrementing value for each signature, unique per owner, token, and spender.
             */
            struct PermitDetails {
                address token;
                uint160 amount;
                uint48 expiration;
                uint48 nonce;
            }
            /**
             * @dev Struct for a single token allowance permit.
             * @param details Permit details including token, amount, expiration, and nonce.
             * @param spender Address authorized to spend the tokens.
             * @param sigDeadline Deadline for the permit signature, ensuring timeliness of the permit.
             */
            struct PermitSingle {
                PermitDetails details;
                address spender;
                uint256 sigDeadline;
            }
            /**
             * @dev Struct for packed allowance data to optimize storage.
             * @param amount Amount allowed.
             * @param expiration Permission expiry timestamp.
             * @param nonce Unique incrementing value for tracking allowances.
             */
            struct PackedAllowance {
                uint160 amount;
                uint48 expiration;
                uint48 nonce;
            }
            /**
             * @notice Executes a token transfer from one address to another.
             * @param user The token owner's address.
             * @param spender The address authorized to spend the tokens.
             * @param amount The amount of tokens to transfer.
             * @param token The address of the token being transferred.
             */
            function transferFrom(address user, address spender, uint160 amount, address token) external;
            /**
             * @notice Issues a permit for spending tokens via a signed authorization.
             * @param owner The token owner's address.
             * @param permitSingle Struct containing the permit details.
             * @param signature The signature proving the owner authorized the permit.
             */
            function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;
            /**
             * @notice Retrieves the allowance details between a token owner and spender.
             * @param user The token owner's address.
             * @param token The token address.
             * @param spender The spender's address.
             * @return The packed allowance details.
             */
            function allowance(address user, address token, address spender) external view returns (PackedAllowance memory);
            /**
             * @notice Approves the spender to use up to amount of the specified token up until the expiration
             * @param token The token to approve
             * @param spender The spender address to approve
             * @param amount The approved amount of the token
             * @param expiration The timestamp at which the approval is no longer valid
             * @dev The packed allowance also holds a nonce, which will stay unchanged in approve
             * @dev Setting amount to type(uint160).max sets an unlimited approval
             */
            function approve(address token, address spender, uint160 amount, uint48 expiration) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        /**
         * @title IWETH
         * @dev Interface for wrapper as WETH-like token.
         */
        interface IWETH is IERC20 {
            /**
             * @notice Emitted when Ether is deposited to get wrapper tokens.
             */
            event Deposit(address indexed dst, uint256 wad);
            /**
             * @notice Emitted when wrapper tokens is withdrawn as Ether.
             */
            event Withdrawal(address indexed src, uint256 wad);
            /**
             * @notice Deposit Ether to get wrapper tokens.
             */
            function deposit() external payable;
            /**
             * @notice Withdraw wrapped tokens as Ether.
             * @param amount Amount of wrapped tokens to withdraw.
             */
            function withdraw(uint256 amount) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        type Address is uint256;
        /**
        * @notice AddressLib
        * @notice Library for working with addresses encoded as uint256 values, which can include flags in the highest bits.
        */
        library AddressLib {
            uint256 private constant _LOW_160_BIT_MASK = (1 << 160) - 1;
            /**
            * @notice Returns the address representation of a uint256.
            * @param a The uint256 value to convert to an address.
            * @return The address representation of the provided uint256 value.
            */
            function get(Address a) internal pure returns (address) {
                return address(uint160(Address.unwrap(a) & _LOW_160_BIT_MASK));
            }
            /**
            * @notice Checks if a given flag is set for the provided address.
            * @param a The address to check for the flag.
            * @param flag The flag to check for in the provided address.
            * @return True if the provided flag is set in the address, false otherwise.
            */
            function getFlag(Address a, uint256 flag) internal pure returns (bool) {
                return (Address.unwrap(a) & flag) != 0;
            }
            /**
            * @notice Returns a uint32 value stored at a specific bit offset in the provided address.
            * @param a The address containing the uint32 value.
            * @param offset The bit offset at which the uint32 value is stored.
            * @return The uint32 value stored in the address at the specified bit offset.
            */
            function getUint32(Address a, uint256 offset) internal pure returns (uint32) {
                return uint32(Address.unwrap(a) >> offset);
            }
            /**
            * @notice Returns a uint64 value stored at a specific bit offset in the provided address.
            * @param a The address containing the uint64 value.
            * @param offset The bit offset at which the uint64 value is stored.
            * @return The uint64 value stored in the address at the specified bit offset.
            */
            function getUint64(Address a, uint256 offset) internal pure returns (uint64) {
                return uint64(Address.unwrap(a) >> offset);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @title RevertReasonForwarder
         * @notice Provides utilities for forwarding and retrieving revert reasons from failed external calls.
         */
        library RevertReasonForwarder {
            /**
             * @dev Forwards the revert reason from the latest external call.
             * This method allows propagating the revert reason of a failed external call to the caller.
             */
            function reRevert() internal pure {
                // bubble up revert reason from latest external call
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    returndatacopy(ptr, 0, returndatasize())
                    revert(ptr, returndatasize())
                }
            }
            /**
             * @dev Retrieves the revert reason from the latest external call.
             * This method enables capturing the revert reason of a failed external call for inspection or processing.
             * @return reason The latest external call revert reason.
             */
            function reReason() internal pure returns (bytes memory reason) {
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    reason := mload(0x40)
                    let length := returndatasize()
                    mstore(reason, length)
                    returndatacopy(add(reason, 0x20), 0, length)
                    mstore(0x40, add(reason, add(0x20, length)))
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
        import "../interfaces/IDaiLikePermit.sol";
        import "../interfaces/IPermit2.sol";
        import "../interfaces/IERC7597Permit.sol";
        import "../interfaces/IWETH.sol";
        import "../libraries/RevertReasonForwarder.sol";
        /**
         * @title Implements efficient safe methods for ERC20 interface.
         * @notice Compared to the standard ERC20, this implementation offers several enhancements:
         * 1. more gas-efficient, providing significant savings in transaction costs.
         * 2. support for different permit implementations
         * 3. forceApprove functionality
         * 4. support for WETH deposit and withdraw
         */
        library SafeERC20 {
            error SafeTransferFailed();
            error SafeTransferFromFailed();
            error ForceApproveFailed();
            error SafeIncreaseAllowanceFailed();
            error SafeDecreaseAllowanceFailed();
            error SafePermitBadLength();
            error Permit2TransferAmountTooHigh();
            // Uniswap Permit2 address
            address private constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
            bytes4 private constant _PERMIT_LENGTH_ERROR = 0x68275857;  // SafePermitBadLength.selector
            uint256 private constant _RAW_CALL_GAS_LIMIT = 5000;
            /**
             * @notice Fetches the balance of a specific ERC20 token held by an account.
             * Consumes less gas then regular `ERC20.balanceOf`.
             * @dev Note that the implementation does not perform dirty bits cleaning, so it is the
             * responsibility of the caller to make sure that the higher 96 bits of the `account` parameter are clean.
             * @param token The IERC20 token contract for which the balance will be fetched.
             * @param account The address of the account whose token balance will be fetched.
             * @return tokenBalance The balance of the specified ERC20 token held by the account.
             */
            function safeBalanceOf(
                IERC20 token,
                address account
            ) internal view returns(uint256 tokenBalance) {
                bytes4 selector = IERC20.balanceOf.selector;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    mstore(0x00, selector)
                    mstore(0x04, account)
                    let success := staticcall(gas(), token, 0x00, 0x24, 0x00, 0x20)
                    tokenBalance := mload(0)
                    if or(iszero(success), lt(returndatasize(), 0x20)) {
                        let ptr := mload(0x40)
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                }
            }
            /**
             * @notice Attempts to safely transfer tokens from one address to another.
             * @dev If permit2 is true, uses the Permit2 standard; otherwise uses the standard ERC20 transferFrom.
             * Either requires `true` in return data, or requires target to be smart-contract and empty return data.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
             * @param token The IERC20 token contract from which the tokens will be transferred.
             * @param from The address from which the tokens will be transferred.
             * @param to The address to which the tokens will be transferred.
             * @param amount The amount of tokens to transfer.
             * @param permit2 If true, uses the Permit2 standard for the transfer; otherwise uses the standard ERC20 transferFrom.
             */
            function safeTransferFromUniversal(
                IERC20 token,
                address from,
                address to,
                uint256 amount,
                bool permit2
            ) internal {
                if (permit2) {
                    safeTransferFromPermit2(token, from, to, amount);
                } else {
                    safeTransferFrom(token, from, to, amount);
                }
            }
            /**
             * @notice Attempts to safely transfer tokens from one address to another using the ERC20 standard.
             * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
             * @param token The IERC20 token contract from which the tokens will be transferred.
             * @param from The address from which the tokens will be transferred.
             * @param to The address to which the tokens will be transferred.
             * @param amount The amount of tokens to transfer.
             */
            function safeTransferFrom(
                IERC20 token,
                address from,
                address to,
                uint256 amount
            ) internal {
                bytes4 selector = token.transferFrom.selector;
                bool success;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let data := mload(0x40)
                    mstore(data, selector)
                    mstore(add(data, 0x04), from)
                    mstore(add(data, 0x24), to)
                    mstore(add(data, 0x44), amount)
                    success := call(gas(), token, 0, data, 100, 0x0, 0x20)
                    if success {
                        switch returndatasize()
                        case 0 {
                            success := gt(extcodesize(token), 0)
                        }
                        default {
                            success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                        }
                    }
                }
                if (!success) revert SafeTransferFromFailed();
            }
            /**
             * @notice Attempts to safely transfer tokens from one address to another using the Permit2 standard.
             * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
             * @param token The IERC20 token contract from which the tokens will be transferred.
             * @param from The address from which the tokens will be transferred.
             * @param to The address to which the tokens will be transferred.
             * @param amount The amount of tokens to transfer.
             */
            function safeTransferFromPermit2(
                IERC20 token,
                address from,
                address to,
                uint256 amount
            ) internal {
                if (amount > type(uint160).max) revert Permit2TransferAmountTooHigh();
                bytes4 selector = IPermit2.transferFrom.selector;
                bool success;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let data := mload(0x40)
                    mstore(data, selector)
                    mstore(add(data, 0x04), from)
                    mstore(add(data, 0x24), to)
                    mstore(add(data, 0x44), amount)
                    mstore(add(data, 0x64), token)
                    success := call(gas(), _PERMIT2, 0, data, 0x84, 0x0, 0x0)
                    if success {
                        success := gt(extcodesize(_PERMIT2), 0)
                    }
                }
                if (!success) revert SafeTransferFromFailed();
            }
            /**
             * @notice Attempts to safely transfer tokens to another address.
             * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `to` parameter are clean.
             * @param token The IERC20 token contract from which the tokens will be transferred.
             * @param to The address to which the tokens will be transferred.
             * @param value The amount of tokens to transfer.
             */
            function safeTransfer(
                IERC20 token,
                address to,
                uint256 value
            ) internal {
                if (!_makeCall(token, token.transfer.selector, to, value)) {
                    revert SafeTransferFailed();
                }
            }
            /**
             * @notice Attempts to approve a spender to spend a certain amount of tokens.
             * @dev If `approve(from, to, amount)` fails, it tries to set the allowance to zero, and retries the `approve` call.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
             * @param token The IERC20 token contract on which the call will be made.
             * @param spender The address which will spend the funds.
             * @param value The amount of tokens to be spent.
             */
            function forceApprove(
                IERC20 token,
                address spender,
                uint256 value
            ) internal {
                if (!_makeCall(token, token.approve.selector, spender, value)) {
                    if (
                        !_makeCall(token, token.approve.selector, spender, 0) ||
                        !_makeCall(token, token.approve.selector, spender, value)
                    ) {
                        revert ForceApproveFailed();
                    }
                }
            }
            /**
             * @notice Safely increases the allowance of a spender.
             * @dev Increases with safe math check. Checks if the increased allowance will overflow, if yes, then it reverts the transaction.
             * Then uses `forceApprove` to increase the allowance.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
             * @param token The IERC20 token contract on which the call will be made.
             * @param spender The address which will spend the funds.
             * @param value The amount of tokens to increase the allowance by.
             */
            function safeIncreaseAllowance(
                IERC20 token,
                address spender,
                uint256 value
            ) internal {
                uint256 allowance = token.allowance(address(this), spender);
                if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
                forceApprove(token, spender, allowance + value);
            }
            /**
             * @notice Safely decreases the allowance of a spender.
             * @dev Decreases with safe math check. Checks if the decreased allowance will underflow, if yes, then it reverts the transaction.
             * Then uses `forceApprove` to increase the allowance.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
             * @param token The IERC20 token contract on which the call will be made.
             * @param spender The address which will spend the funds.
             * @param value The amount of tokens to decrease the allowance by.
             */
            function safeDecreaseAllowance(
                IERC20 token,
                address spender,
                uint256 value
            ) internal {
                uint256 allowance = token.allowance(address(this), spender);
                if (value > allowance) revert SafeDecreaseAllowanceFailed();
                forceApprove(token, spender, allowance - value);
            }
            /**
             * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
             * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
             * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
             * @param token The IERC20 token to execute the permit function on.
             * @param permit The permit data to be used in the function call.
             */
            function safePermit(IERC20 token, bytes calldata permit) internal {
                if (!tryPermit(token, msg.sender, address(this), permit)) RevertReasonForwarder.reRevert();
            }
            /**
             * @notice Attempts to execute the `permit` function on the provided token with custom owner and spender parameters.
             * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
             * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
             * @param token The IERC20 token to execute the permit function on.
             * @param owner The owner of the tokens for which the permit is made.
             * @param spender The spender allowed to spend the tokens by the permit.
             * @param permit The permit data to be used in the function call.
             */
            function safePermit(IERC20 token, address owner, address spender, bytes calldata permit) internal {
                if (!tryPermit(token, owner, spender, permit)) RevertReasonForwarder.reRevert();
            }
            /**
             * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
             * @dev Invokes `tryPermit` with sender as owner and contract as spender.
             * @param token The IERC20 token to execute the permit function on.
             * @param permit The permit data to be used in the function call.
             * @return success Returns true if the permit function was successfully executed, false otherwise.
             */
            function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool success) {
                return tryPermit(token, msg.sender, address(this), permit);
            }
            /**
             * @notice The function attempts to call the permit function on a given ERC20 token.
             * @dev The function is designed to support a variety of permit functions, namely: IERC20Permit, IDaiLikePermit, IERC7597Permit and IPermit2.
             * It accommodates both Compact and Full formats of these permit types.
             * Please note, it is expected that the `expiration` parameter for the compact Permit2 and the `deadline` parameter
             * for the compact Permit are to be incremented by one before invoking this function. This approach is motivated by
             * gas efficiency considerations; as the unlimited expiration period is likely to be the most common scenario, and
             * zeros are cheaper to pass in terms of gas cost. Thus, callers should increment the expiration or deadline by one
             * before invocation for optimized performance.
             * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
             * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
             * @param token The address of the ERC20 token on which to call the permit function.
             * @param owner The owner of the tokens. This address should have signed the off-chain permit.
             * @param spender The address which will be approved for transfer of tokens.
             * @param permit The off-chain permit data, containing different fields depending on the type of permit function.
             * @return success A boolean indicating whether the permit call was successful.
             */
            function tryPermit(IERC20 token, address owner, address spender, bytes calldata permit) internal returns(bool success) {
                // load function selectors for different permit standards
                bytes4 permitSelector = IERC20Permit.permit.selector;
                bytes4 daiPermitSelector = IDaiLikePermit.permit.selector;
                bytes4 permit2Selector = IPermit2.permit.selector;
                bytes4 erc7597PermitSelector = IERC7597Permit.permit.selector;
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let ptr := mload(0x40)
                    // Switch case for different permit lengths, indicating different permit standards
                    switch permit.length
                    // Compact IERC20Permit
                    case 100 {
                        mstore(ptr, permitSelector)     // store selector
                        mstore(add(ptr, 0x04), owner)   // store owner
                        mstore(add(ptr, 0x24), spender) // store spender
                        // Compact IERC20Permit.permit(uint256 value, uint32 deadline, uint256 r, uint256 vs)
                        {  // stack too deep
                            let deadline := shr(224, calldataload(add(permit.offset, 0x20))) // loads permit.offset 0x20..0x23
                            let vs := calldataload(add(permit.offset, 0x44))                 // loads permit.offset 0x44..0x63
                            calldatacopy(add(ptr, 0x44), permit.offset, 0x20)            // store value     = copy permit.offset 0x00..0x19
                            mstore(add(ptr, 0x64), sub(deadline, 1))                     // store deadline  = deadline - 1
                            mstore(add(ptr, 0x84), add(27, shr(255, vs)))                // store v         = most significant bit of vs + 27 (27 or 28)
                            calldatacopy(add(ptr, 0xa4), add(permit.offset, 0x24), 0x20) // store r         = copy permit.offset 0x24..0x43
                            mstore(add(ptr, 0xc4), shr(1, shl(1, vs)))                   // store s         = vs without most significant bit
                        }
                        // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                        success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
                    }
                    // Compact IDaiLikePermit
                    case 72 {
                        mstore(ptr, daiPermitSelector)  // store selector
                        mstore(add(ptr, 0x04), owner)   // store owner
                        mstore(add(ptr, 0x24), spender) // store spender
                        // Compact IDaiLikePermit.permit(uint32 nonce, uint32 expiry, uint256 r, uint256 vs)
                        {  // stack too deep
                            let expiry := shr(224, calldataload(add(permit.offset, 0x04))) // loads permit.offset 0x04..0x07
                            let vs := calldataload(add(permit.offset, 0x28))               // loads permit.offset 0x28..0x47
                            mstore(add(ptr, 0x44), shr(224, calldataload(permit.offset))) // store nonce   = copy permit.offset 0x00..0x03
                            mstore(add(ptr, 0x64), sub(expiry, 1))                        // store expiry  = expiry - 1
                            mstore(add(ptr, 0x84), true)                                  // store allowed = true
                            mstore(add(ptr, 0xa4), add(27, shr(255, vs)))                 // store v       = most significant bit of vs + 27 (27 or 28)
                            calldatacopy(add(ptr, 0xc4), add(permit.offset, 0x08), 0x20)  // store r       = copy permit.offset 0x08..0x27
                            mstore(add(ptr, 0xe4), shr(1, shl(1, vs)))                    // store s       = vs without most significant bit
                        }
                        // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                        success := call(gas(), token, 0, ptr, 0x104, 0, 0)
                    }
                    // IERC20Permit
                    case 224 {
                        mstore(ptr, permitSelector)
                        calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                        // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                        success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
                    }
                    // IDaiLikePermit
                    case 256 {
                        mstore(ptr, daiPermitSelector)
                        calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                        // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                        success := call(gas(), token, 0, ptr, 0x104, 0, 0)
                    }
                    // Compact IPermit2
                    case 96 {
                        // Compact IPermit2.permit(uint160 amount, uint32 expiration, uint32 nonce, uint32 sigDeadline, uint256 r, uint256 vs)
                        mstore(ptr, permit2Selector)  // store selector
                        mstore(add(ptr, 0x04), owner) // store owner
                        mstore(add(ptr, 0x24), token) // store token
                        calldatacopy(add(ptr, 0x50), permit.offset, 0x14)             // store amount = copy permit.offset 0x00..0x13
                        // and(0xffffffffffff, ...) - conversion to uint48
                        mstore(add(ptr, 0x64), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x14))), 1))) // store expiration = ((permit.offset 0x14..0x17 - 1) & 0xffffffffffff)
                        mstore(add(ptr, 0x84), shr(224, calldataload(add(permit.offset, 0x18)))) // store nonce = copy permit.offset 0x18..0x1b
                        mstore(add(ptr, 0xa4), spender)                               // store spender
                        // and(0xffffffffffff, ...) - conversion to uint48
                        mstore(add(ptr, 0xc4), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x1c))), 1))) // store sigDeadline = ((permit.offset 0x1c..0x1f - 1) & 0xffffffffffff)
                        mstore(add(ptr, 0xe4), 0x100)                                 // store offset = 256
                        mstore(add(ptr, 0x104), 0x40)                                 // store length = 64
                        calldatacopy(add(ptr, 0x124), add(permit.offset, 0x20), 0x20) // store r      = copy permit.offset 0x20..0x3f
                        calldatacopy(add(ptr, 0x144), add(permit.offset, 0x40), 0x20) // store vs     = copy permit.offset 0x40..0x5f
                        // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                        success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
                    }
                    // IPermit2
                    case 352 {
                        mstore(ptr, permit2Selector)
                        calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                        // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                        success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
                    }
                    // Dynamic length
                    default {
                        mstore(ptr, erc7597PermitSelector)
                        calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                        // IERC7597Permit.permit(address owner, address spender, uint256 value, uint256 deadline, bytes memory signature)
                        success := call(gas(), token, 0, ptr, add(permit.length, 4), 0, 0)
                    }
                }
            }
            /**
             * @dev Executes a low level call to a token contract, making it resistant to reversion and erroneous boolean returns.
             * @param token The IERC20 token contract on which the call will be made.
             * @param selector The function signature that is to be called on the token contract.
             * @param to The address to which the token amount will be transferred.
             * @param amount The token amount to be transferred.
             * @return success A boolean indicating if the call was successful. Returns 'true' on success and 'false' on failure.
             * In case of success but no returned data, validates that the contract code exists.
             * In case of returned data, ensures that it's a boolean `true`.
             */
            function _makeCall(
                IERC20 token,
                bytes4 selector,
                address to,
                uint256 amount
            ) private returns (bool success) {
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    let data := mload(0x40)
                    mstore(data, selector)
                    mstore(add(data, 0x04), to)
                    mstore(add(data, 0x24), amount)
                    success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
                    if success {
                        switch returndatasize()
                        case 0 {
                            success := gt(extcodesize(token), 0)
                        }
                        default {
                            success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                        }
                    }
                }
            }
            /**
             * @notice Safely deposits a specified amount of Ether into the IWETH contract. Consumes less gas then regular `IWETH.deposit`.
             * @param weth The IWETH token contract.
             * @param amount The amount of Ether to deposit into the IWETH contract.
             */
            function safeDeposit(IWETH weth, uint256 amount) internal {
                if (amount > 0) {
                    bytes4 selector = IWETH.deposit.selector;
                    assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                        mstore(0, selector)
                        if iszero(call(gas(), weth, amount, 0, 4, 0, 0)) {
                            let ptr := mload(0x40)
                            returndatacopy(ptr, 0, returndatasize())
                            revert(ptr, returndatasize())
                        }
                    }
                }
            }
            /**
             * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract. Consumes less gas then regular `IWETH.withdraw`.
             * @dev Uses inline assembly to interact with the IWETH contract.
             * @param weth The IWETH token contract.
             * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
             */
            function safeWithdraw(IWETH weth, uint256 amount) internal {
                bytes4 selector = IWETH.withdraw.selector;
                assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                    mstore(0, selector)
                    mstore(4, amount)
                    if iszero(call(gas(), weth, 0, 0, 0x24, 0, 0)) {
                        let ptr := mload(0x40)
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                }
            }
            /**
             * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract to a specified recipient.
             * Consumes less gas then regular `IWETH.withdraw`.
             * @param weth The IWETH token contract.
             * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
             * @param to The recipient of the withdrawn Ether.
             */
            function safeWithdrawTo(IWETH weth, uint256 amount, address to) internal {
                safeWithdraw(weth, amount);
                if (to != address(this)) {
                    assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                        if iszero(call(_RAW_CALL_GAS_LIMIT, to, amount, 0, 0, 0, 0)) {
                            let ptr := mload(0x40)
                            returndatacopy(ptr, 0, returndatasize())
                            revert(ptr, returndatasize())
                        }
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @title StringUtil
         * @dev Library with gas-efficient string operations.
         */
        library StringUtil {
            /**
             * @notice Converts a uint256 value to its hexadecimal string representation.
             * @param value The uint256 value to convert.
             * @return The hexadecimal string representation of the input value.
             */
            function toHex(uint256 value) internal pure returns (string memory) {
                return toHex(abi.encodePacked(value));
            }
            /**
             * @notice Converts an address to its hexadecimal string representation.
             * @param value The address to convert.
             * @return The hexadecimal string representation of the input address.
             */
            function toHex(address value) internal pure returns (string memory) {
                return toHex(abi.encodePacked(value));
            }
            /**
             * @dev Converts arbitrary bytes to their hexadecimal string representation.
             * This is an assembly adaptation of highly optimized toHex16 code by Mikhail Vladimirov.
             * Reference: https://stackoverflow.com/a/69266989
             * @param data The bytes to be converted to hexadecimal string.
             * @return result The hexadecimal string representation of the input bytes.
             */
            function toHex(bytes memory data) internal pure returns (string memory result) {
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    function _toHex16(input) -> output {
                        output := or(
                            and(input, 0xFFFFFFFFFFFFFFFF000000000000000000000000000000000000000000000000),
                            shr(64, and(input, 0x0000000000000000FFFFFFFFFFFFFFFF00000000000000000000000000000000))
                        )
                        output := or(
                            and(output, 0xFFFFFFFF000000000000000000000000FFFFFFFF000000000000000000000000),
                            shr(32, and(output, 0x00000000FFFFFFFF000000000000000000000000FFFFFFFF0000000000000000))
                        )
                        output := or(
                            and(output, 0xFFFF000000000000FFFF000000000000FFFF000000000000FFFF000000000000),
                            shr(16, and(output, 0x0000FFFF000000000000FFFF000000000000FFFF000000000000FFFF00000000))
                        )
                        output := or(
                            and(output, 0xFF000000FF000000FF000000FF000000FF000000FF000000FF000000FF000000),
                            shr(8, and(output, 0x00FF000000FF000000FF000000FF000000FF000000FF000000FF000000FF0000))
                        )
                        output := or(
                            shr(4, and(output, 0xF000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000)),
                            shr(8, and(output, 0x0F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F00))
                        )
                        output := add(
                            add(0x3030303030303030303030303030303030303030303030303030303030303030, output),
                            mul(
                                and(
                                    shr(4, add(output, 0x0606060606060606060606060606060606060606060606060606060606060606)),
                                    0x0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F
                                ),
                                7 // Change 7 to 39 for lower case output
                            )
                        )
                    }
                    result := mload(0x40)
                    let length := mload(data)
                    let resultLength := shl(1, length)
                    let toPtr := add(result, 0x22) // 32 bytes for length + 2 bytes for '0x'
                    mstore(0x40, add(toPtr, resultLength)) // move free memory pointer
                    mstore(add(result, 2), 0x3078) // 0x3078 is right aligned so we write to `result + 2`
                    // to store the last 2 bytes in the beginning of the string
                    mstore(result, add(resultLength, 2)) // extra 2 bytes for '0x'
                    for {
                        let fromPtr := add(data, 0x20)
                        let endPtr := add(fromPtr, length)
                    } lt(fromPtr, endPtr) {
                        fromPtr := add(fromPtr, 0x20)
                    } {
                        let rawData := mload(fromPtr)
                        let hexData := _toHex16(rawData)
                        mstore(toPtr, hexData)
                        toPtr := add(toPtr, 0x20)
                        hexData := _toHex16(shl(128, rawData))
                        mstore(toPtr, hexData)
                        toPtr := add(toPtr, 0x20)
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
        import "../interfaces/IERC20MetadataUppercase.sol";
        import "./SafeERC20.sol";
        import "./StringUtil.sol";
        /**
         * @title UniERC20
         * @dev Library to abstract the handling of ETH and ERC20 tokens, enabling unified interaction with both. It allows usage of ETH as ERC20.
         * Utilizes SafeERC20 for ERC20 interactions and provides additional utility functions.
         */
        library UniERC20 {
            using SafeERC20 for IERC20;
            error InsufficientBalance();
            error ApproveCalledOnETH();
            error NotEnoughValue();
            error FromIsNotSender();
            error ToIsNotThis();
            error ETHTransferFailed();
            uint256 private constant _RAW_CALL_GAS_LIMIT = 5000;
            IERC20 private constant _ETH_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
            IERC20 private constant _ZERO_ADDRESS = IERC20(address(0));
            /**
             * @dev Determines if the specified token is ETH.
             * @param token The token to check.
             * @return bool True if the token is ETH, false otherwise.
             */
            function isETH(IERC20 token) internal pure returns (bool) {
                return (token == _ZERO_ADDRESS || token == _ETH_ADDRESS);
            }
            /**
             * @dev Retrieves the balance of the specified token for an account.
             * @param token The token to query the balance of.
             * @param account The address of the account.
             * @return uint256 The balance of the token for the specified account.
             */
            function uniBalanceOf(IERC20 token, address account) internal view returns (uint256) {
                if (isETH(token)) {
                    return account.balance;
                } else {
                    return token.balanceOf(account);
                }
            }
            /**
             * @dev Transfers a specified amount of the token to a given address.
             * Note: Does nothing if the amount is zero.
             * @param token The token to transfer.
             * @param to The address to transfer the token to.
             * @param amount The amount of the token to transfer.
             */
            function uniTransfer(
                IERC20 token,
                address payable to,
                uint256 amount
            ) internal {
                if (amount > 0) {
                    if (isETH(token)) {
                        if (address(this).balance < amount) revert InsufficientBalance();
                        // solhint-disable-next-line avoid-low-level-calls
                        (bool success, ) = to.call{value: amount, gas: _RAW_CALL_GAS_LIMIT}("");
                        if (!success) revert ETHTransferFailed();
                    } else {
                        token.safeTransfer(to, amount);
                    }
                }
            }
            /**
             * @dev Transfers a specified amount of the token from one address to another.
             * Note: Does nothing if the amount is zero.
             * @param token The token to transfer.
             * @param from The address to transfer the token from.
             * @param to The address to transfer the token to.
             * @param amount The amount of the token to transfer.
             */
            function uniTransferFrom(
                IERC20 token,
                address payable from,
                address to,
                uint256 amount
            ) internal {
                if (amount > 0) {
                    if (isETH(token)) {
                        if (msg.value < amount) revert NotEnoughValue();
                        if (from != msg.sender) revert FromIsNotSender();
                        if (to != address(this)) revert ToIsNotThis();
                        if (msg.value > amount) {
                            // Return remainder if exist
                            unchecked {
                                // solhint-disable-next-line avoid-low-level-calls
                                (bool success, ) = from.call{value: msg.value - amount, gas: _RAW_CALL_GAS_LIMIT}("");
                                if (!success) revert ETHTransferFailed();
                            }
                        }
                    } else {
                        token.safeTransferFrom(from, to, amount);
                    }
                }
            }
            /**
             * @dev Retrieves the symbol from ERC20 metadata of the specified token.
             * @param token The token to retrieve the symbol of.
             * @return string The symbol of the token.
             */
            function uniSymbol(IERC20 token) internal view returns (string memory) {
                return _uniDecode(token, IERC20Metadata.symbol.selector, IERC20MetadataUppercase.SYMBOL.selector);
            }
            /**
             * @dev Retrieves the name from ERC20 metadata of the specified token.
             * @param token The token to retrieve the name of.
             * @return string The name of the token.
             */
            function uniName(IERC20 token) internal view returns (string memory) {
                return _uniDecode(token, IERC20Metadata.name.selector, IERC20MetadataUppercase.NAME.selector);
            }
            /**
             * @dev forceApprove the specified amount of the token to a given address.
             * Reverts if the token is ETH.
             * @param token The token to approve.
             * @param to The address to approve the token to.
             * @param amount The amount of the token to approve.
             */
            function uniApprove(
                IERC20 token,
                address to,
                uint256 amount
            ) internal {
                if (isETH(token)) revert ApproveCalledOnETH();
                token.forceApprove(to, amount);
            }
            /**
             * @dev Internal function to decode token metadata (name or symbol).
             * 20K gas is provided to account for possible implementations of name/symbol
             * (token implementation might be behind proxy or store the value in storage)
             * @param token The token to decode metadata for.
             * @param lowerCaseSelector The selector for the lowercase metadata function.
             * @param upperCaseSelector The selector for the uppercase metadata function.
             * @return result The decoded metadata value.
             */
            function _uniDecode(
                IERC20 token,
                bytes4 lowerCaseSelector,
                bytes4 upperCaseSelector
            ) private view returns (string memory result) {
                if (isETH(token)) {
                    return "ETH";
                }
                (bool success, bytes memory data) = address(token).staticcall{gas: 20000}(
                    abi.encodeWithSelector(lowerCaseSelector)
                );
                if (!success) {
                    (success, data) = address(token).staticcall{gas: 20000}(abi.encodeWithSelector(upperCaseSelector));
                }
                if (success && data.length >= 0x40) {
                    (uint256 offset, uint256 len) = abi.decode(data, (uint256, uint256));
                    /*
                        return data is padded up to 32 bytes with ABI encoder also sometimes
                        there is extra 32 bytes of zeros padded in the end:
                        https://github.com/ethereum/solidity/issues/10170
                        because of that we can't check for equality and instead check
                        that overall data length is greater or equal than string length + extra 64 bytes
                    */
                    if (offset == 0x20 && data.length >= 0x40 + len) {
                        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                            result := add(data, 0x40)
                        }
                        return result;
                    }
                }
                if (success && data.length == 32) {
                    uint256 len = 0;
                    while (len < data.length && data[len] >= 0x20 && data[len] <= 0x7E) {
                        unchecked {
                            len++;
                        }
                    }
                    if (len > 0) {
                        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                            mstore(data, len)
                        }
                        return string(data);
                    }
                }
                return StringUtil.toHex(address(token));
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
        pragma solidity ^0.8.20;
        import {Context} from "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * The initial owner is set to the address provided by the deployer. This can
         * later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            /**
             * @dev The caller account is not authorized to perform an operation.
             */
            error OwnableUnauthorizedAccount(address account);
            /**
             * @dev The owner is not a valid owner account. (eg. `address(0)`)
             */
            error OwnableInvalidOwner(address owner);
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
             */
            constructor(address initialOwner) {
                if (initialOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(initialOwner);
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                if (owner() != _msgSender()) {
                    revert OwnableUnauthorizedAccount(_msgSender());
                }
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby disabling any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                if (newOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "../IERC20.sol";
        /**
         * @dev Interface for the optional metadata functions from the ERC-20 standard.
         */
        interface IERC20Metadata is IERC20 {
            /**
             * @dev Returns the name of the token.
             */
            function name() external view returns (string memory);
            /**
             * @dev Returns the symbol of the token.
             */
            function symbol() external view returns (string memory);
            /**
             * @dev Returns the decimals places of the token.
             */
            function decimals() external view returns (uint8);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
         * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
         *
         * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
         * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
         * need to send a transaction, and thus is not required to hold Ether at all.
         *
         * ==== Security Considerations
         *
         * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
         * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
         * considered as an intention to spend the allowance in any specific way. The second is that because permits have
         * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
         * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
         * generally recommended is:
         *
         * ```solidity
         * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
         *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
         *     doThing(..., value);
         * }
         *
         * function doThing(..., uint256 value) public {
         *     token.safeTransferFrom(msg.sender, address(this), value);
         *     ...
         * }
         * ```
         *
         * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
         * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
         * {SafeERC20-safeTransferFrom}).
         *
         * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
         * contracts should have entry points that don't rely on permit.
         */
        interface IERC20Permit {
            /**
             * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
             * given ``owner``'s signed approval.
             *
             * IMPORTANT: The same issues {IERC20-approve} has related to transaction
             * ordering also apply here.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `deadline` must be a timestamp in the future.
             * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
             * over the EIP712-formatted function arguments.
             * - the signature must use ``owner``'s current nonce (see {nonces}).
             *
             * For more information on the signature format, see the
             * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
             * section].
             *
             * CAUTION: See Security Considerations above.
             */
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external;
            /**
             * @dev Returns the current nonce for `owner`. This value must be
             * included whenever a signature is generated for {permit}.
             *
             * Every successful call to {permit} increases ``owner``'s nonce by one. This
             * prevents a signature from being used multiple times.
             */
            function nonces(address owner) external view returns (uint256);
            /**
             * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
             */
            // solhint-disable-next-line func-name-mixedcase
            function DOMAIN_SEPARATOR() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC-20 standard as defined in the ERC.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the value of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the value of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 value) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the
             * allowance mechanism. `value` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 value) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            function _contextSuffixLength() internal view virtual returns (uint256) {
                return 0;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
        pragma solidity ^0.8.20;
        import {Panic} from "../Panic.sol";
        import {SafeCast} from "./SafeCast.sol";
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            enum Rounding {
                Floor, // Toward negative infinity
                Ceil, // Toward positive infinity
                Trunc, // Toward zero
                Expand // Away from zero
            }
            /**
             * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
             */
            function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
                unchecked {
                    uint256 c = a + b;
                    if (c < a) return (false, 0);
                    return (true, c);
                }
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
             */
            function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
                unchecked {
                    if (b > a) return (false, 0);
                    return (true, a - b);
                }
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
             */
            function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
                unchecked {
                    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                    // benefit is lost if 'b' is also tested.
                    // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                    if (a == 0) return (true, 0);
                    uint256 c = a * b;
                    if (c / a != b) return (false, 0);
                    return (true, c);
                }
            }
            /**
             * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
             */
            function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
                unchecked {
                    if (b == 0) return (false, 0);
                    return (true, a / b);
                }
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
             */
            function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
                unchecked {
                    if (b == 0) return (false, 0);
                    return (true, a % b);
                }
            }
            /**
             * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
             *
             * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
             * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
             * one branch when needed, making this function more expensive.
             */
            function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
                unchecked {
                    // branchless ternary works because:
                    // b ^ (a ^ b) == a
                    // b ^ 0 == b
                    return b ^ ((a ^ b) * SafeCast.toUint(condition));
                }
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return ternary(a > b, a, b);
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return ternary(a < b, a, b);
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds towards infinity instead
             * of rounding towards zero.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                if (b == 0) {
                    // Guarantee the same behavior as in a regular Solidity division.
                    Panic.panic(Panic.DIVISION_BY_ZERO);
                }
                // The following calculation ensures accurate ceiling division without overflow.
                // Since a is non-zero, (a - 1) / b will not overflow.
                // The largest possible result occurs when (a - 1) / b is type(uint256).max,
                // but the largest value we can obtain is type(uint256).max - 1, which happens
                // when a = type(uint256).max and b = 1.
                unchecked {
                    return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
                }
            }
            /**
             * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
             * denominator == 0.
             *
             * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
             * Uniswap Labs also under MIT license.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
                    // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2²⁵⁶ + prod0.
                    uint256 prod0 = x * y; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                        // The surrounding unchecked block does not change this fact.
                        // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
                    if (denominator <= prod1) {
                        Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
                    }
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                    // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                    uint256 twos = denominator & (0 - denominator);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
                    // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                    // works in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2⁸
                    inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
                    inverse *= 2 - denominator * inverse; // inverse mod 2³²
                    inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
                    inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
                    inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
                    // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
            }
            /**
             * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
             *
             * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
             * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
             *
             * If the input value is not inversible, 0 is returned.
             *
             * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
             * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
             */
            function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
                unchecked {
                    if (n == 0) return 0;
                    // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
                    // Used to compute integers x and y such that: ax + ny = gcd(a, n).
                    // When the gcd is 1, then the inverse of a modulo n exists and it's x.
                    // ax + ny = 1
                    // ax = 1 + (-y)n
                    // ax ≡ 1 (mod n) # x is the inverse of a modulo n
                    // If the remainder is 0 the gcd is n right away.
                    uint256 remainder = a % n;
                    uint256 gcd = n;
                    // Therefore the initial coefficients are:
                    // ax + ny = gcd(a, n) = n
                    // 0a + 1n = n
                    int256 x = 0;
                    int256 y = 1;
                    while (remainder != 0) {
                        uint256 quotient = gcd / remainder;
                        (gcd, remainder) = (
                            // The old remainder is the next gcd to try.
                            remainder,
                            // Compute the next remainder.
                            // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                            // where gcd is at most n (capped to type(uint256).max)
                            gcd - remainder * quotient
                        );
                        (x, y) = (
                            // Increment the coefficient of a.
                            y,
                            // Decrement the coefficient of n.
                            // Can overflow, but the result is casted to uint256 so that the
                            // next value of y is "wrapped around" to a value between 0 and n - 1.
                            x - y * int256(quotient)
                        );
                    }
                    if (gcd != 1) return 0; // No inverse exists.
                    return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
                }
            }
            /**
             * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
             *
             * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
             * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
             * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
             *
             * NOTE: this function does NOT check that `p` is a prime greater than `2`.
             */
            function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
                unchecked {
                    return Math.modExp(a, p - 2, p);
                }
            }
            /**
             * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
             *
             * Requirements:
             * - modulus can't be zero
             * - underlying staticcall to precompile must succeed
             *
             * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
             * sure the chain you're using it on supports the precompiled contract for modular exponentiation
             * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
             * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
             * interpreted as 0.
             */
            function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
                (bool success, uint256 result) = tryModExp(b, e, m);
                if (!success) {
                    Panic.panic(Panic.DIVISION_BY_ZERO);
                }
                return result;
            }
            /**
             * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
             * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
             * to operate modulo 0 or if the underlying precompile reverted.
             *
             * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
             * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
             * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
             * of a revert, but the result may be incorrectly interpreted as 0.
             */
            function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
                if (m == 0) return (false, 0);
                assembly ("memory-safe") {
                    let ptr := mload(0x40)
                    // | Offset    | Content    | Content (Hex)                                                      |
                    // |-----------|------------|--------------------------------------------------------------------|
                    // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                    // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                    // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                    // | 0x60:0x7f | value of b | 0x<.............................................................b> |
                    // | 0x80:0x9f | value of e | 0x<.............................................................e> |
                    // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
                    mstore(ptr, 0x20)
                    mstore(add(ptr, 0x20), 0x20)
                    mstore(add(ptr, 0x40), 0x20)
                    mstore(add(ptr, 0x60), b)
                    mstore(add(ptr, 0x80), e)
                    mstore(add(ptr, 0xa0), m)
                    // Given the result < m, it's guaranteed to fit in 32 bytes,
                    // so we can use the memory scratch space located at offset 0.
                    success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
                    result := mload(0x00)
                }
            }
            /**
             * @dev Variant of {modExp} that supports inputs of arbitrary length.
             */
            function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
                (bool success, bytes memory result) = tryModExp(b, e, m);
                if (!success) {
                    Panic.panic(Panic.DIVISION_BY_ZERO);
                }
                return result;
            }
            /**
             * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
             */
            function tryModExp(
                bytes memory b,
                bytes memory e,
                bytes memory m
            ) internal view returns (bool success, bytes memory result) {
                if (_zeroBytes(m)) return (false, new bytes(0));
                uint256 mLen = m.length;
                // Encode call args in result and move the free memory pointer
                result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
                assembly ("memory-safe") {
                    let dataPtr := add(result, 0x20)
                    // Write result on top of args to avoid allocating extra memory.
                    success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
                    // Overwrite the length.
                    // result.length > returndatasize() is guaranteed because returndatasize() == m.length
                    mstore(result, mLen)
                    // Set the memory pointer after the returned data.
                    mstore(0x40, add(dataPtr, mLen))
                }
            }
            /**
             * @dev Returns whether the provided byte array is zero.
             */
            function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
                for (uint256 i = 0; i < byteArray.length; ++i) {
                    if (byteArray[i] != 0) {
                        return false;
                    }
                }
                return true;
            }
            /**
             * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
             * towards zero.
             *
             * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
             * using integer operations.
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                unchecked {
                    // Take care of easy edge cases when a == 0 or a == 1
                    if (a <= 1) {
                        return a;
                    }
                    // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
                    // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
                    // the current value as `ε_n = | x_n - sqrt(a) |`.
                    //
                    // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
                    // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
                    // bigger than any uint256.
                    //
                    // By noticing that
                    // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
                    // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
                    // to the msb function.
                    uint256 aa = a;
                    uint256 xn = 1;
                    if (aa >= (1 << 128)) {
                        aa >>= 128;
                        xn <<= 64;
                    }
                    if (aa >= (1 << 64)) {
                        aa >>= 64;
                        xn <<= 32;
                    }
                    if (aa >= (1 << 32)) {
                        aa >>= 32;
                        xn <<= 16;
                    }
                    if (aa >= (1 << 16)) {
                        aa >>= 16;
                        xn <<= 8;
                    }
                    if (aa >= (1 << 8)) {
                        aa >>= 8;
                        xn <<= 4;
                    }
                    if (aa >= (1 << 4)) {
                        aa >>= 4;
                        xn <<= 2;
                    }
                    if (aa >= (1 << 2)) {
                        xn <<= 1;
                    }
                    // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
                    //
                    // We can refine our estimation by noticing that the middle of that interval minimizes the error.
                    // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
                    // This is going to be our x_0 (and ε_0)
                    xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
                    // From here, Newton's method give us:
                    // x_{n+1} = (x_n + a / x_n) / 2
                    //
                    // One should note that:
                    // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
                    //              = ((x_n² + a) / (2 * x_n))² - a
                    //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
                    //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
                    //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
                    //              = (x_n² - a)² / (2 * x_n)²
                    //              = ((x_n² - a) / (2 * x_n))²
                    //              ≥ 0
                    // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
                    //
                    // This gives us the proof of quadratic convergence of the sequence:
                    // ε_{n+1} = | x_{n+1} - sqrt(a) |
                    //         = | (x_n + a / x_n) / 2 - sqrt(a) |
                    //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
                    //         = | (x_n - sqrt(a))² / (2 * x_n) |
                    //         = | ε_n² / (2 * x_n) |
                    //         = ε_n² / | (2 * x_n) |
                    //
                    // For the first iteration, we have a special case where x_0 is known:
                    // ε_1 = ε_0² / | (2 * x_0) |
                    //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
                    //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
                    //     ≤ 2**(e-3) / 3
                    //     ≤ 2**(e-3-log2(3))
                    //     ≤ 2**(e-4.5)
                    //
                    // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
                    // ε_{n+1} = ε_n² / | (2 * x_n) |
                    //         ≤ (2**(e-k))² / (2 * 2**(e-1))
                    //         ≤ 2**(2*e-2*k) / 2**e
                    //         ≤ 2**(e-2*k)
                    xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
                    xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
                    xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
                    xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
                    xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
                    xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72
                    // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
                    // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
                    // sqrt(a) or sqrt(a) + 1.
                    return xn - SafeCast.toUint(xn > a / xn);
                }
            }
            /**
             * @dev Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = sqrt(a);
                    return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
                }
            }
            /**
             * @dev Return the log in base 2 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             */
            function log2(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                uint256 exp;
                unchecked {
                    exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
                    value >>= exp;
                    result += exp;
                    exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
                    value >>= exp;
                    result += exp;
                    exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
                    value >>= exp;
                    result += exp;
                    exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
                    value >>= exp;
                    result += exp;
                    exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
                    value >>= exp;
                    result += exp;
                    exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
                    value >>= exp;
                    result += exp;
                    exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
                    value >>= exp;
                    result += exp;
                    result += SafeCast.toUint(value > 1);
                }
                return result;
            }
            /**
             * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log2(value);
                    return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
                }
            }
            /**
             * @dev Return the log in base 10 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             */
            function log10(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >= 10 ** 64) {
                        value /= 10 ** 64;
                        result += 64;
                    }
                    if (value >= 10 ** 32) {
                        value /= 10 ** 32;
                        result += 32;
                    }
                    if (value >= 10 ** 16) {
                        value /= 10 ** 16;
                        result += 16;
                    }
                    if (value >= 10 ** 8) {
                        value /= 10 ** 8;
                        result += 8;
                    }
                    if (value >= 10 ** 4) {
                        value /= 10 ** 4;
                        result += 4;
                    }
                    if (value >= 10 ** 2) {
                        value /= 10 ** 2;
                        result += 2;
                    }
                    if (value >= 10 ** 1) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log10(value);
                    return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
                }
            }
            /**
             * @dev Return the log in base 256 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             *
             * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
             */
            function log256(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                uint256 isGt;
                unchecked {
                    isGt = SafeCast.toUint(value > (1 << 128) - 1);
                    value >>= isGt * 128;
                    result += isGt * 16;
                    isGt = SafeCast.toUint(value > (1 << 64) - 1);
                    value >>= isGt * 64;
                    result += isGt * 8;
                    isGt = SafeCast.toUint(value > (1 << 32) - 1);
                    value >>= isGt * 32;
                    result += isGt * 4;
                    isGt = SafeCast.toUint(value > (1 << 16) - 1);
                    value >>= isGt * 16;
                    result += isGt * 2;
                    result += SafeCast.toUint(value > (1 << 8) - 1);
                }
                return result;
            }
            /**
             * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log256(value);
                    return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
                }
            }
            /**
             * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
             */
            function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
                return uint8(rounding) % 2 == 1;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
        // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
        pragma solidity ^0.8.20;
        /**
         * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
         * checks.
         *
         * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
         * easily result in undesired exploitation or bugs, since developers usually
         * assume that overflows raise errors. `SafeCast` restores this intuition by
         * reverting the transaction when such an operation overflows.
         *
         * Using this library instead of the unchecked operations eliminates an entire
         * class of bugs, so it's recommended to use it always.
         */
        library SafeCast {
            /**
             * @dev Value doesn't fit in an uint of `bits` size.
             */
            error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
            /**
             * @dev An int value doesn't fit in an uint of `bits` size.
             */
            error SafeCastOverflowedIntToUint(int256 value);
            /**
             * @dev Value doesn't fit in an int of `bits` size.
             */
            error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
            /**
             * @dev An uint value doesn't fit in an int of `bits` size.
             */
            error SafeCastOverflowedUintToInt(uint256 value);
            /**
             * @dev Returns the downcasted uint248 from uint256, reverting on
             * overflow (when the input is greater than largest uint248).
             *
             * Counterpart to Solidity's `uint248` operator.
             *
             * Requirements:
             *
             * - input must fit into 248 bits
             */
            function toUint248(uint256 value) internal pure returns (uint248) {
                if (value > type(uint248).max) {
                    revert SafeCastOverflowedUintDowncast(248, value);
                }
                return uint248(value);
            }
            /**
             * @dev Returns the downcasted uint240 from uint256, reverting on
             * overflow (when the input is greater than largest uint240).
             *
             * Counterpart to Solidity's `uint240` operator.
             *
             * Requirements:
             *
             * - input must fit into 240 bits
             */
            function toUint240(uint256 value) internal pure returns (uint240) {
                if (value > type(uint240).max) {
                    revert SafeCastOverflowedUintDowncast(240, value);
                }
                return uint240(value);
            }
            /**
             * @dev Returns the downcasted uint232 from uint256, reverting on
             * overflow (when the input is greater than largest uint232).
             *
             * Counterpart to Solidity's `uint232` operator.
             *
             * Requirements:
             *
             * - input must fit into 232 bits
             */
            function toUint232(uint256 value) internal pure returns (uint232) {
                if (value > type(uint232).max) {
                    revert SafeCastOverflowedUintDowncast(232, value);
                }
                return uint232(value);
            }
            /**
             * @dev Returns the downcasted uint224 from uint256, reverting on
             * overflow (when the input is greater than largest uint224).
             *
             * Counterpart to Solidity's `uint224` operator.
             *
             * Requirements:
             *
             * - input must fit into 224 bits
             */
            function toUint224(uint256 value) internal pure returns (uint224) {
                if (value > type(uint224).max) {
                    revert SafeCastOverflowedUintDowncast(224, value);
                }
                return uint224(value);
            }
            /**
             * @dev Returns the downcasted uint216 from uint256, reverting on
             * overflow (when the input is greater than largest uint216).
             *
             * Counterpart to Solidity's `uint216` operator.
             *
             * Requirements:
             *
             * - input must fit into 216 bits
             */
            function toUint216(uint256 value) internal pure returns (uint216) {
                if (value > type(uint216).max) {
                    revert SafeCastOverflowedUintDowncast(216, value);
                }
                return uint216(value);
            }
            /**
             * @dev Returns the downcasted uint208 from uint256, reverting on
             * overflow (when the input is greater than largest uint208).
             *
             * Counterpart to Solidity's `uint208` operator.
             *
             * Requirements:
             *
             * - input must fit into 208 bits
             */
            function toUint208(uint256 value) internal pure returns (uint208) {
                if (value > type(uint208).max) {
                    revert SafeCastOverflowedUintDowncast(208, value);
                }
                return uint208(value);
            }
            /**
             * @dev Returns the downcasted uint200 from uint256, reverting on
             * overflow (when the input is greater than largest uint200).
             *
             * Counterpart to Solidity's `uint200` operator.
             *
             * Requirements:
             *
             * - input must fit into 200 bits
             */
            function toUint200(uint256 value) internal pure returns (uint200) {
                if (value > type(uint200).max) {
                    revert SafeCastOverflowedUintDowncast(200, value);
                }
                return uint200(value);
            }
            /**
             * @dev Returns the downcasted uint192 from uint256, reverting on
             * overflow (when the input is greater than largest uint192).
             *
             * Counterpart to Solidity's `uint192` operator.
             *
             * Requirements:
             *
             * - input must fit into 192 bits
             */
            function toUint192(uint256 value) internal pure returns (uint192) {
                if (value > type(uint192).max) {
                    revert SafeCastOverflowedUintDowncast(192, value);
                }
                return uint192(value);
            }
            /**
             * @dev Returns the downcasted uint184 from uint256, reverting on
             * overflow (when the input is greater than largest uint184).
             *
             * Counterpart to Solidity's `uint184` operator.
             *
             * Requirements:
             *
             * - input must fit into 184 bits
             */
            function toUint184(uint256 value) internal pure returns (uint184) {
                if (value > type(uint184).max) {
                    revert SafeCastOverflowedUintDowncast(184, value);
                }
                return uint184(value);
            }
            /**
             * @dev Returns the downcasted uint176 from uint256, reverting on
             * overflow (when the input is greater than largest uint176).
             *
             * Counterpart to Solidity's `uint176` operator.
             *
             * Requirements:
             *
             * - input must fit into 176 bits
             */
            function toUint176(uint256 value) internal pure returns (uint176) {
                if (value > type(uint176).max) {
                    revert SafeCastOverflowedUintDowncast(176, value);
                }
                return uint176(value);
            }
            /**
             * @dev Returns the downcasted uint168 from uint256, reverting on
             * overflow (when the input is greater than largest uint168).
             *
             * Counterpart to Solidity's `uint168` operator.
             *
             * Requirements:
             *
             * - input must fit into 168 bits
             */
            function toUint168(uint256 value) internal pure returns (uint168) {
                if (value > type(uint168).max) {
                    revert SafeCastOverflowedUintDowncast(168, value);
                }
                return uint168(value);
            }
            /**
             * @dev Returns the downcasted uint160 from uint256, reverting on
             * overflow (when the input is greater than largest uint160).
             *
             * Counterpart to Solidity's `uint160` operator.
             *
             * Requirements:
             *
             * - input must fit into 160 bits
             */
            function toUint160(uint256 value) internal pure returns (uint160) {
                if (value > type(uint160).max) {
                    revert SafeCastOverflowedUintDowncast(160, value);
                }
                return uint160(value);
            }
            /**
             * @dev Returns the downcasted uint152 from uint256, reverting on
             * overflow (when the input is greater than largest uint152).
             *
             * Counterpart to Solidity's `uint152` operator.
             *
             * Requirements:
             *
             * - input must fit into 152 bits
             */
            function toUint152(uint256 value) internal pure returns (uint152) {
                if (value > type(uint152).max) {
                    revert SafeCastOverflowedUintDowncast(152, value);
                }
                return uint152(value);
            }
            /**
             * @dev Returns the downcasted uint144 from uint256, reverting on
             * overflow (when the input is greater than largest uint144).
             *
             * Counterpart to Solidity's `uint144` operator.
             *
             * Requirements:
             *
             * - input must fit into 144 bits
             */
            function toUint144(uint256 value) internal pure returns (uint144) {
                if (value > type(uint144).max) {
                    revert SafeCastOverflowedUintDowncast(144, value);
                }
                return uint144(value);
            }
            /**
             * @dev Returns the downcasted uint136 from uint256, reverting on
             * overflow (when the input is greater than largest uint136).
             *
             * Counterpart to Solidity's `uint136` operator.
             *
             * Requirements:
             *
             * - input must fit into 136 bits
             */
            function toUint136(uint256 value) internal pure returns (uint136) {
                if (value > type(uint136).max) {
                    revert SafeCastOverflowedUintDowncast(136, value);
                }
                return uint136(value);
            }
            /**
             * @dev Returns the downcasted uint128 from uint256, reverting on
             * overflow (when the input is greater than largest uint128).
             *
             * Counterpart to Solidity's `uint128` operator.
             *
             * Requirements:
             *
             * - input must fit into 128 bits
             */
            function toUint128(uint256 value) internal pure returns (uint128) {
                if (value > type(uint128).max) {
                    revert SafeCastOverflowedUintDowncast(128, value);
                }
                return uint128(value);
            }
            /**
             * @dev Returns the downcasted uint120 from uint256, reverting on
             * overflow (when the input is greater than largest uint120).
             *
             * Counterpart to Solidity's `uint120` operator.
             *
             * Requirements:
             *
             * - input must fit into 120 bits
             */
            function toUint120(uint256 value) internal pure returns (uint120) {
                if (value > type(uint120).max) {
                    revert SafeCastOverflowedUintDowncast(120, value);
                }
                return uint120(value);
            }
            /**
             * @dev Returns the downcasted uint112 from uint256, reverting on
             * overflow (when the input is greater than largest uint112).
             *
             * Counterpart to Solidity's `uint112` operator.
             *
             * Requirements:
             *
             * - input must fit into 112 bits
             */
            function toUint112(uint256 value) internal pure returns (uint112) {
                if (value > type(uint112).max) {
                    revert SafeCastOverflowedUintDowncast(112, value);
                }
                return uint112(value);
            }
            /**
             * @dev Returns the downcasted uint104 from uint256, reverting on
             * overflow (when the input is greater than largest uint104).
             *
             * Counterpart to Solidity's `uint104` operator.
             *
             * Requirements:
             *
             * - input must fit into 104 bits
             */
            function toUint104(uint256 value) internal pure returns (uint104) {
                if (value > type(uint104).max) {
                    revert SafeCastOverflowedUintDowncast(104, value);
                }
                return uint104(value);
            }
            /**
             * @dev Returns the downcasted uint96 from uint256, reverting on
             * overflow (when the input is greater than largest uint96).
             *
             * Counterpart to Solidity's `uint96` operator.
             *
             * Requirements:
             *
             * - input must fit into 96 bits
             */
            function toUint96(uint256 value) internal pure returns (uint96) {
                if (value > type(uint96).max) {
                    revert SafeCastOverflowedUintDowncast(96, value);
                }
                return uint96(value);
            }
            /**
             * @dev Returns the downcasted uint88 from uint256, reverting on
             * overflow (when the input is greater than largest uint88).
             *
             * Counterpart to Solidity's `uint88` operator.
             *
             * Requirements:
             *
             * - input must fit into 88 bits
             */
            function toUint88(uint256 value) internal pure returns (uint88) {
                if (value > type(uint88).max) {
                    revert SafeCastOverflowedUintDowncast(88, value);
                }
                return uint88(value);
            }
            /**
             * @dev Returns the downcasted uint80 from uint256, reverting on
             * overflow (when the input is greater than largest uint80).
             *
             * Counterpart to Solidity's `uint80` operator.
             *
             * Requirements:
             *
             * - input must fit into 80 bits
             */
            function toUint80(uint256 value) internal pure returns (uint80) {
                if (value > type(uint80).max) {
                    revert SafeCastOverflowedUintDowncast(80, value);
                }
                return uint80(value);
            }
            /**
             * @dev Returns the downcasted uint72 from uint256, reverting on
             * overflow (when the input is greater than largest uint72).
             *
             * Counterpart to Solidity's `uint72` operator.
             *
             * Requirements:
             *
             * - input must fit into 72 bits
             */
            function toUint72(uint256 value) internal pure returns (uint72) {
                if (value > type(uint72).max) {
                    revert SafeCastOverflowedUintDowncast(72, value);
                }
                return uint72(value);
            }
            /**
             * @dev Returns the downcasted uint64 from uint256, reverting on
             * overflow (when the input is greater than largest uint64).
             *
             * Counterpart to Solidity's `uint64` operator.
             *
             * Requirements:
             *
             * - input must fit into 64 bits
             */
            function toUint64(uint256 value) internal pure returns (uint64) {
                if (value > type(uint64).max) {
                    revert SafeCastOverflowedUintDowncast(64, value);
                }
                return uint64(value);
            }
            /**
             * @dev Returns the downcasted uint56 from uint256, reverting on
             * overflow (when the input is greater than largest uint56).
             *
             * Counterpart to Solidity's `uint56` operator.
             *
             * Requirements:
             *
             * - input must fit into 56 bits
             */
            function toUint56(uint256 value) internal pure returns (uint56) {
                if (value > type(uint56).max) {
                    revert SafeCastOverflowedUintDowncast(56, value);
                }
                return uint56(value);
            }
            /**
             * @dev Returns the downcasted uint48 from uint256, reverting on
             * overflow (when the input is greater than largest uint48).
             *
             * Counterpart to Solidity's `uint48` operator.
             *
             * Requirements:
             *
             * - input must fit into 48 bits
             */
            function toUint48(uint256 value) internal pure returns (uint48) {
                if (value > type(uint48).max) {
                    revert SafeCastOverflowedUintDowncast(48, value);
                }
                return uint48(value);
            }
            /**
             * @dev Returns the downcasted uint40 from uint256, reverting on
             * overflow (when the input is greater than largest uint40).
             *
             * Counterpart to Solidity's `uint40` operator.
             *
             * Requirements:
             *
             * - input must fit into 40 bits
             */
            function toUint40(uint256 value) internal pure returns (uint40) {
                if (value > type(uint40).max) {
                    revert SafeCastOverflowedUintDowncast(40, value);
                }
                return uint40(value);
            }
            /**
             * @dev Returns the downcasted uint32 from uint256, reverting on
             * overflow (when the input is greater than largest uint32).
             *
             * Counterpart to Solidity's `uint32` operator.
             *
             * Requirements:
             *
             * - input must fit into 32 bits
             */
            function toUint32(uint256 value) internal pure returns (uint32) {
                if (value > type(uint32).max) {
                    revert SafeCastOverflowedUintDowncast(32, value);
                }
                return uint32(value);
            }
            /**
             * @dev Returns the downcasted uint24 from uint256, reverting on
             * overflow (when the input is greater than largest uint24).
             *
             * Counterpart to Solidity's `uint24` operator.
             *
             * Requirements:
             *
             * - input must fit into 24 bits
             */
            function toUint24(uint256 value) internal pure returns (uint24) {
                if (value > type(uint24).max) {
                    revert SafeCastOverflowedUintDowncast(24, value);
                }
                return uint24(value);
            }
            /**
             * @dev Returns the downcasted uint16 from uint256, reverting on
             * overflow (when the input is greater than largest uint16).
             *
             * Counterpart to Solidity's `uint16` operator.
             *
             * Requirements:
             *
             * - input must fit into 16 bits
             */
            function toUint16(uint256 value) internal pure returns (uint16) {
                if (value > type(uint16).max) {
                    revert SafeCastOverflowedUintDowncast(16, value);
                }
                return uint16(value);
            }
            /**
             * @dev Returns the downcasted uint8 from uint256, reverting on
             * overflow (when the input is greater than largest uint8).
             *
             * Counterpart to Solidity's `uint8` operator.
             *
             * Requirements:
             *
             * - input must fit into 8 bits
             */
            function toUint8(uint256 value) internal pure returns (uint8) {
                if (value > type(uint8).max) {
                    revert SafeCastOverflowedUintDowncast(8, value);
                }
                return uint8(value);
            }
            /**
             * @dev Converts a signed int256 into an unsigned uint256.
             *
             * Requirements:
             *
             * - input must be greater than or equal to 0.
             */
            function toUint256(int256 value) internal pure returns (uint256) {
                if (value < 0) {
                    revert SafeCastOverflowedIntToUint(value);
                }
                return uint256(value);
            }
            /**
             * @dev Returns the downcasted int248 from int256, reverting on
             * overflow (when the input is less than smallest int248 or
             * greater than largest int248).
             *
             * Counterpart to Solidity's `int248` operator.
             *
             * Requirements:
             *
             * - input must fit into 248 bits
             */
            function toInt248(int256 value) internal pure returns (int248 downcasted) {
                downcasted = int248(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(248, value);
                }
            }
            /**
             * @dev Returns the downcasted int240 from int256, reverting on
             * overflow (when the input is less than smallest int240 or
             * greater than largest int240).
             *
             * Counterpart to Solidity's `int240` operator.
             *
             * Requirements:
             *
             * - input must fit into 240 bits
             */
            function toInt240(int256 value) internal pure returns (int240 downcasted) {
                downcasted = int240(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(240, value);
                }
            }
            /**
             * @dev Returns the downcasted int232 from int256, reverting on
             * overflow (when the input is less than smallest int232 or
             * greater than largest int232).
             *
             * Counterpart to Solidity's `int232` operator.
             *
             * Requirements:
             *
             * - input must fit into 232 bits
             */
            function toInt232(int256 value) internal pure returns (int232 downcasted) {
                downcasted = int232(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(232, value);
                }
            }
            /**
             * @dev Returns the downcasted int224 from int256, reverting on
             * overflow (when the input is less than smallest int224 or
             * greater than largest int224).
             *
             * Counterpart to Solidity's `int224` operator.
             *
             * Requirements:
             *
             * - input must fit into 224 bits
             */
            function toInt224(int256 value) internal pure returns (int224 downcasted) {
                downcasted = int224(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(224, value);
                }
            }
            /**
             * @dev Returns the downcasted int216 from int256, reverting on
             * overflow (when the input is less than smallest int216 or
             * greater than largest int216).
             *
             * Counterpart to Solidity's `int216` operator.
             *
             * Requirements:
             *
             * - input must fit into 216 bits
             */
            function toInt216(int256 value) internal pure returns (int216 downcasted) {
                downcasted = int216(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(216, value);
                }
            }
            /**
             * @dev Returns the downcasted int208 from int256, reverting on
             * overflow (when the input is less than smallest int208 or
             * greater than largest int208).
             *
             * Counterpart to Solidity's `int208` operator.
             *
             * Requirements:
             *
             * - input must fit into 208 bits
             */
            function toInt208(int256 value) internal pure returns (int208 downcasted) {
                downcasted = int208(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(208, value);
                }
            }
            /**
             * @dev Returns the downcasted int200 from int256, reverting on
             * overflow (when the input is less than smallest int200 or
             * greater than largest int200).
             *
             * Counterpart to Solidity's `int200` operator.
             *
             * Requirements:
             *
             * - input must fit into 200 bits
             */
            function toInt200(int256 value) internal pure returns (int200 downcasted) {
                downcasted = int200(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(200, value);
                }
            }
            /**
             * @dev Returns the downcasted int192 from int256, reverting on
             * overflow (when the input is less than smallest int192 or
             * greater than largest int192).
             *
             * Counterpart to Solidity's `int192` operator.
             *
             * Requirements:
             *
             * - input must fit into 192 bits
             */
            function toInt192(int256 value) internal pure returns (int192 downcasted) {
                downcasted = int192(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(192, value);
                }
            }
            /**
             * @dev Returns the downcasted int184 from int256, reverting on
             * overflow (when the input is less than smallest int184 or
             * greater than largest int184).
             *
             * Counterpart to Solidity's `int184` operator.
             *
             * Requirements:
             *
             * - input must fit into 184 bits
             */
            function toInt184(int256 value) internal pure returns (int184 downcasted) {
                downcasted = int184(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(184, value);
                }
            }
            /**
             * @dev Returns the downcasted int176 from int256, reverting on
             * overflow (when the input is less than smallest int176 or
             * greater than largest int176).
             *
             * Counterpart to Solidity's `int176` operator.
             *
             * Requirements:
             *
             * - input must fit into 176 bits
             */
            function toInt176(int256 value) internal pure returns (int176 downcasted) {
                downcasted = int176(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(176, value);
                }
            }
            /**
             * @dev Returns the downcasted int168 from int256, reverting on
             * overflow (when the input is less than smallest int168 or
             * greater than largest int168).
             *
             * Counterpart to Solidity's `int168` operator.
             *
             * Requirements:
             *
             * - input must fit into 168 bits
             */
            function toInt168(int256 value) internal pure returns (int168 downcasted) {
                downcasted = int168(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(168, value);
                }
            }
            /**
             * @dev Returns the downcasted int160 from int256, reverting on
             * overflow (when the input is less than smallest int160 or
             * greater than largest int160).
             *
             * Counterpart to Solidity's `int160` operator.
             *
             * Requirements:
             *
             * - input must fit into 160 bits
             */
            function toInt160(int256 value) internal pure returns (int160 downcasted) {
                downcasted = int160(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(160, value);
                }
            }
            /**
             * @dev Returns the downcasted int152 from int256, reverting on
             * overflow (when the input is less than smallest int152 or
             * greater than largest int152).
             *
             * Counterpart to Solidity's `int152` operator.
             *
             * Requirements:
             *
             * - input must fit into 152 bits
             */
            function toInt152(int256 value) internal pure returns (int152 downcasted) {
                downcasted = int152(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(152, value);
                }
            }
            /**
             * @dev Returns the downcasted int144 from int256, reverting on
             * overflow (when the input is less than smallest int144 or
             * greater than largest int144).
             *
             * Counterpart to Solidity's `int144` operator.
             *
             * Requirements:
             *
             * - input must fit into 144 bits
             */
            function toInt144(int256 value) internal pure returns (int144 downcasted) {
                downcasted = int144(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(144, value);
                }
            }
            /**
             * @dev Returns the downcasted int136 from int256, reverting on
             * overflow (when the input is less than smallest int136 or
             * greater than largest int136).
             *
             * Counterpart to Solidity's `int136` operator.
             *
             * Requirements:
             *
             * - input must fit into 136 bits
             */
            function toInt136(int256 value) internal pure returns (int136 downcasted) {
                downcasted = int136(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(136, value);
                }
            }
            /**
             * @dev Returns the downcasted int128 from int256, reverting on
             * overflow (when the input is less than smallest int128 or
             * greater than largest int128).
             *
             * Counterpart to Solidity's `int128` operator.
             *
             * Requirements:
             *
             * - input must fit into 128 bits
             */
            function toInt128(int256 value) internal pure returns (int128 downcasted) {
                downcasted = int128(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(128, value);
                }
            }
            /**
             * @dev Returns the downcasted int120 from int256, reverting on
             * overflow (when the input is less than smallest int120 or
             * greater than largest int120).
             *
             * Counterpart to Solidity's `int120` operator.
             *
             * Requirements:
             *
             * - input must fit into 120 bits
             */
            function toInt120(int256 value) internal pure returns (int120 downcasted) {
                downcasted = int120(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(120, value);
                }
            }
            /**
             * @dev Returns the downcasted int112 from int256, reverting on
             * overflow (when the input is less than smallest int112 or
             * greater than largest int112).
             *
             * Counterpart to Solidity's `int112` operator.
             *
             * Requirements:
             *
             * - input must fit into 112 bits
             */
            function toInt112(int256 value) internal pure returns (int112 downcasted) {
                downcasted = int112(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(112, value);
                }
            }
            /**
             * @dev Returns the downcasted int104 from int256, reverting on
             * overflow (when the input is less than smallest int104 or
             * greater than largest int104).
             *
             * Counterpart to Solidity's `int104` operator.
             *
             * Requirements:
             *
             * - input must fit into 104 bits
             */
            function toInt104(int256 value) internal pure returns (int104 downcasted) {
                downcasted = int104(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(104, value);
                }
            }
            /**
             * @dev Returns the downcasted int96 from int256, reverting on
             * overflow (when the input is less than smallest int96 or
             * greater than largest int96).
             *
             * Counterpart to Solidity's `int96` operator.
             *
             * Requirements:
             *
             * - input must fit into 96 bits
             */
            function toInt96(int256 value) internal pure returns (int96 downcasted) {
                downcasted = int96(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(96, value);
                }
            }
            /**
             * @dev Returns the downcasted int88 from int256, reverting on
             * overflow (when the input is less than smallest int88 or
             * greater than largest int88).
             *
             * Counterpart to Solidity's `int88` operator.
             *
             * Requirements:
             *
             * - input must fit into 88 bits
             */
            function toInt88(int256 value) internal pure returns (int88 downcasted) {
                downcasted = int88(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(88, value);
                }
            }
            /**
             * @dev Returns the downcasted int80 from int256, reverting on
             * overflow (when the input is less than smallest int80 or
             * greater than largest int80).
             *
             * Counterpart to Solidity's `int80` operator.
             *
             * Requirements:
             *
             * - input must fit into 80 bits
             */
            function toInt80(int256 value) internal pure returns (int80 downcasted) {
                downcasted = int80(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(80, value);
                }
            }
            /**
             * @dev Returns the downcasted int72 from int256, reverting on
             * overflow (when the input is less than smallest int72 or
             * greater than largest int72).
             *
             * Counterpart to Solidity's `int72` operator.
             *
             * Requirements:
             *
             * - input must fit into 72 bits
             */
            function toInt72(int256 value) internal pure returns (int72 downcasted) {
                downcasted = int72(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(72, value);
                }
            }
            /**
             * @dev Returns the downcasted int64 from int256, reverting on
             * overflow (when the input is less than smallest int64 or
             * greater than largest int64).
             *
             * Counterpart to Solidity's `int64` operator.
             *
             * Requirements:
             *
             * - input must fit into 64 bits
             */
            function toInt64(int256 value) internal pure returns (int64 downcasted) {
                downcasted = int64(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(64, value);
                }
            }
            /**
             * @dev Returns the downcasted int56 from int256, reverting on
             * overflow (when the input is less than smallest int56 or
             * greater than largest int56).
             *
             * Counterpart to Solidity's `int56` operator.
             *
             * Requirements:
             *
             * - input must fit into 56 bits
             */
            function toInt56(int256 value) internal pure returns (int56 downcasted) {
                downcasted = int56(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(56, value);
                }
            }
            /**
             * @dev Returns the downcasted int48 from int256, reverting on
             * overflow (when the input is less than smallest int48 or
             * greater than largest int48).
             *
             * Counterpart to Solidity's `int48` operator.
             *
             * Requirements:
             *
             * - input must fit into 48 bits
             */
            function toInt48(int256 value) internal pure returns (int48 downcasted) {
                downcasted = int48(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(48, value);
                }
            }
            /**
             * @dev Returns the downcasted int40 from int256, reverting on
             * overflow (when the input is less than smallest int40 or
             * greater than largest int40).
             *
             * Counterpart to Solidity's `int40` operator.
             *
             * Requirements:
             *
             * - input must fit into 40 bits
             */
            function toInt40(int256 value) internal pure returns (int40 downcasted) {
                downcasted = int40(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(40, value);
                }
            }
            /**
             * @dev Returns the downcasted int32 from int256, reverting on
             * overflow (when the input is less than smallest int32 or
             * greater than largest int32).
             *
             * Counterpart to Solidity's `int32` operator.
             *
             * Requirements:
             *
             * - input must fit into 32 bits
             */
            function toInt32(int256 value) internal pure returns (int32 downcasted) {
                downcasted = int32(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(32, value);
                }
            }
            /**
             * @dev Returns the downcasted int24 from int256, reverting on
             * overflow (when the input is less than smallest int24 or
             * greater than largest int24).
             *
             * Counterpart to Solidity's `int24` operator.
             *
             * Requirements:
             *
             * - input must fit into 24 bits
             */
            function toInt24(int256 value) internal pure returns (int24 downcasted) {
                downcasted = int24(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(24, value);
                }
            }
            /**
             * @dev Returns the downcasted int16 from int256, reverting on
             * overflow (when the input is less than smallest int16 or
             * greater than largest int16).
             *
             * Counterpart to Solidity's `int16` operator.
             *
             * Requirements:
             *
             * - input must fit into 16 bits
             */
            function toInt16(int256 value) internal pure returns (int16 downcasted) {
                downcasted = int16(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(16, value);
                }
            }
            /**
             * @dev Returns the downcasted int8 from int256, reverting on
             * overflow (when the input is less than smallest int8 or
             * greater than largest int8).
             *
             * Counterpart to Solidity's `int8` operator.
             *
             * Requirements:
             *
             * - input must fit into 8 bits
             */
            function toInt8(int256 value) internal pure returns (int8 downcasted) {
                downcasted = int8(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(8, value);
                }
            }
            /**
             * @dev Converts an unsigned uint256 into a signed int256.
             *
             * Requirements:
             *
             * - input must be less than or equal to maxInt256.
             */
            function toInt256(uint256 value) internal pure returns (int256) {
                // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
                if (value > uint256(type(int256).max)) {
                    revert SafeCastOverflowedUintToInt(value);
                }
                return int256(value);
            }
            /**
             * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
             */
            function toUint(bool b) internal pure returns (uint256 u) {
                assembly ("memory-safe") {
                    u := iszero(iszero(b))
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Helper library for emitting standardized panic codes.
         *
         * ```solidity
         * contract Example {
         *      using Panic for uint256;
         *
         *      // Use any of the declared internal constants
         *      function foo() { Panic.GENERIC.panic(); }
         *
         *      // Alternatively
         *      function foo() { Panic.panic(Panic.GENERIC); }
         * }
         * ```
         *
         * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
         *
         * _Available since v5.1._
         */
        // slither-disable-next-line unused-state
        library Panic {
            /// @dev generic / unspecified error
            uint256 internal constant GENERIC = 0x00;
            /// @dev used by the assert() builtin
            uint256 internal constant ASSERT = 0x01;
            /// @dev arithmetic underflow or overflow
            uint256 internal constant UNDER_OVERFLOW = 0x11;
            /// @dev division or modulo by zero
            uint256 internal constant DIVISION_BY_ZERO = 0x12;
            /// @dev enum conversion error
            uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
            /// @dev invalid encoding in storage
            uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
            /// @dev empty array pop
            uint256 internal constant EMPTY_ARRAY_POP = 0x31;
            /// @dev array out of bounds access
            uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
            /// @dev resource error (too large allocation or too large array)
            uint256 internal constant RESOURCE_ERROR = 0x41;
            /// @dev calling invalid internal function
            uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
            /// @dev Reverts with a panic code. Recommended to use with
            /// the internal constants with predefined codes.
            function panic(uint256 code) internal pure {
                assembly ("memory-safe") {
                    mstore(0x00, 0x4e487b71)
                    mstore(0x20, code)
                    revert(0x1c, 0x24)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.23;
        import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import { IOrderMixin } from "@1inch/limit-order-protocol-contract/contracts/interfaces/IOrderMixin.sol";
        import { SimpleSettlement } from "./SimpleSettlement.sol";
        /**
         * @title Settlement contract
         * @notice Contract to execute limit orders settlement on Mainnet, created by Fusion mode.
         */
        contract Settlement is SimpleSettlement {
            error InvalidPriorityFee();
            constructor(address limitOrderProtocol, IERC20 accessToken, address weth, address owner)
                SimpleSettlement(limitOrderProtocol, accessToken, weth, owner)
            {}
            function _postInteraction(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) internal virtual override {
                if (!_isPriorityFeeValid()) revert InvalidPriorityFee();
                super._postInteraction(order, extension, orderHash, taker, makingAmount, takingAmount, remainingMakingAmount, extraData);
            }
            /**
             * @dev Validates priority fee according to the spec
             * https://snapshot.org/#/1inch.eth/proposal/0xa040c60050147a0f67042ae024673e92e813b5d2c0f748abf70ddfa1ed107cbe
             * For blocks with baseFee <10.6 gwei – the priorityFee is capped at 70% of the baseFee.
             * For blocks with baseFee between 10.6 gwei and 104.1 gwei – the priorityFee is capped at 50% of the baseFee.
             * For blocks with baseFee >104.1 gwei – priorityFee is capped at 65% of the block’s baseFee.
             */
            function _isPriorityFeeValid() internal view returns(bool) {
                unchecked {
                    uint256 baseFee = block.basefee;
                    uint256 priorityFee = tx.gasprice - baseFee;
                    if (baseFee < 10.6 gwei) {
                        return priorityFee * 100 <= baseFee * 70;
                    } else if (baseFee > 104.1 gwei) {
                        return priorityFee * 100 <= baseFee * 65;
                    } else {
                        return priorityFee * 2 <= baseFee;
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.23;
        import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
        import { IOrderMixin } from "@1inch/limit-order-protocol-contract/contracts/interfaces/IOrderMixin.sol";
        import { FeeTaker } from "@1inch/limit-order-protocol-contract/contracts/extensions/FeeTaker.sol";
        /**
         * @title Simple Settlement contract
         * @notice Contract to execute limit orders settlement, created by Fusion mode.
         */
        contract SimpleSettlement is FeeTaker {
            uint256 private constant _BASE_POINTS = 10_000_000; // 100%
            uint256 private constant _GAS_PRICE_BASE = 1_000_000; // 1000 means 1 Gwei
            error AllowedTimeViolation();
            /**
             * @notice Initializes the contract.
             * @param limitOrderProtocol The limit order protocol contract.
             * @param accessToken Contract address whose tokens allow filling limit orders with a fee for resolvers that are outside the whitelist.
             * @param weth The WETH address.
             * @param owner The owner of the contract.
             */
            constructor(address limitOrderProtocol, IERC20 accessToken, address weth, address owner)
                FeeTaker(limitOrderProtocol, accessToken, weth, owner)
            {}
            /**
             * @dev Adds dutch auction capabilities to the getter
             */
            function _getMakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 takingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) internal view override returns (uint256) {
                (uint256 rateBump, bytes calldata tail) = _getRateBump(extraData);
                return Math.mulDiv(
                    super._getMakingAmount(order, extension, orderHash, taker, takingAmount, remainingMakingAmount, tail),
                    _BASE_POINTS,
                    _BASE_POINTS + rateBump
                );
            }
            /**
             * @dev Adds dutch auction capabilities to the getter
             */
            function _getTakingAmount(
                IOrderMixin.Order calldata order,
                bytes calldata extension,
                bytes32 orderHash,
                address taker,
                uint256 makingAmount,
                uint256 remainingMakingAmount,
                bytes calldata extraData
            ) internal view override returns (uint256) {
                (uint256 rateBump, bytes calldata tail) = _getRateBump(extraData);
                return Math.mulDiv(
                    super._getTakingAmount(order, extension, orderHash, taker, makingAmount, remainingMakingAmount, tail),
                    _BASE_POINTS + rateBump,
                    _BASE_POINTS,
                    Math.Rounding.Ceil
                );
            }
            /**
             * @dev Parses auction rate bump data from the `auctionDetails` field.
             * `gasBumpEstimate` and `gasPriceEstimate` are used to estimate the transaction costs
             * which are then offset from the auction rate bump.
             * @param auctionDetails AuctionDetails is a tightly packed struct of the following format:
             * ```
             * struct AuctionDetails {
             *     bytes3 gasBumpEstimate;
             *     bytes4 gasPriceEstimate;
             *     bytes4 auctionStartTime;
             *     bytes3 auctionDuration;
             *     bytes3 initialRateBump;
             *     (bytes3,bytes2)[N] pointsAndTimeDeltas;
             * }
             * ```
             * @return rateBump The rate bump.
             */
            function _getRateBump(bytes calldata auctionDetails) private view returns (uint256, bytes calldata) {
                unchecked {
                    uint256 gasBumpEstimate = uint24(bytes3(auctionDetails[0:3]));
                    uint256 gasPriceEstimate = uint32(bytes4(auctionDetails[3:7]));
                    uint256 gasBump = gasBumpEstimate == 0 || gasPriceEstimate == 0 ? 0 : gasBumpEstimate * block.basefee / gasPriceEstimate / _GAS_PRICE_BASE;
                    uint256 auctionStartTime = uint32(bytes4(auctionDetails[7:11]));
                    uint256 auctionFinishTime = auctionStartTime + uint24(bytes3(auctionDetails[11:14]));
                    uint256 initialRateBump = uint24(bytes3(auctionDetails[14:17]));
                    (uint256 auctionBump, bytes calldata tail) = _getAuctionBump(auctionStartTime, auctionFinishTime, initialRateBump, auctionDetails[17:]);
                    return (auctionBump > gasBump ? auctionBump - gasBump : 0, tail);
                }
            }
            /**
             * @dev Calculates auction price bump. Auction is represented as a piecewise linear function with `N` points.
             * Each point is represented as a pair of `(rateBump, timeDelta)`, where `rateBump` is the
             * rate bump in basis points and `timeDelta` is the time delta in seconds.
             * The rate bump is interpolated linearly between the points.
             * The last point is assumed to be `(0, auctionDuration)`.
             * @param auctionStartTime The time when the auction starts.
             * @param auctionFinishTime The time when the auction finishes.
             * @param initialRateBump The initial rate bump.
             * @param pointsAndTimeDeltas The points and time deltas structure.
             * @return The rate bump at the current time.
             */
            function _getAuctionBump(
                uint256 auctionStartTime, uint256 auctionFinishTime, uint256 initialRateBump, bytes calldata pointsAndTimeDeltas
            ) private view returns (uint256, bytes calldata) {
                unchecked {
                    uint256 currentPointTime = auctionStartTime;
                    uint256 currentRateBump = initialRateBump;
                    uint256 pointsCount = uint8(pointsAndTimeDeltas[0]);
                    pointsAndTimeDeltas = pointsAndTimeDeltas[1:];
                    bytes calldata tail = pointsAndTimeDeltas[5 * pointsCount:];
                    if (block.timestamp <= auctionStartTime) {
                        return (initialRateBump, tail);
                    } else if (block.timestamp >= auctionFinishTime) {
                        return (0, tail);
                    }
                    for (uint256 i = 0; i < pointsCount; i++) {
                        uint256 nextRateBump = uint24(bytes3(pointsAndTimeDeltas[:3]));
                        uint256 nextPointTime = currentPointTime + uint16(bytes2(pointsAndTimeDeltas[3:5]));
                        if (block.timestamp <= nextPointTime) {
                            return (((block.timestamp - currentPointTime) * nextRateBump + (nextPointTime - block.timestamp) * currentRateBump) / (nextPointTime - currentPointTime), tail);
                        }
                        currentRateBump = nextRateBump;
                        currentPointTime = nextPointTime;
                        pointsAndTimeDeltas = pointsAndTimeDeltas[5:];
                    }
                    return ((auctionFinishTime - block.timestamp) * currentRateBump / (auctionFinishTime - currentPointTime), tail);
                }
            }
            /**
             * @dev Validates whether the taker is whitelisted.
             * @param whitelistData Whitelist data is a tightly packed struct of the following format:
             * ```
             * 4 bytes - allowed time
             * 1 byte - size of the whitelist
             * (bytes12)[N] — taker whitelist
             * ```
             * Only 10 lowest bytes of the address are used for comparison.
             * @param taker The taker address to check.
             * @return isWhitelisted Whether the taker is whitelisted.
             * @return tail Remaining calldata.
             */
            function _isWhitelistedPostInteractionImpl(bytes calldata whitelistData, address taker) internal view override returns (bool isWhitelisted, bytes calldata tail) {
                unchecked {
                    uint80 maskedTakerAddress = uint80(uint160(taker));
                    uint256 allowedTime = uint32(bytes4(whitelistData));
                    uint256 size = uint8(whitelistData[4]);
                    bytes calldata whitelist = whitelistData[5:5 + 12 * size];
                    tail = whitelistData[5 + 12 * size:];
                    for (uint256 i = 0; i < size; i++) {
                        uint80 whitelistedAddress = uint80(bytes10(whitelist));
                        if (block.timestamp < allowedTime) {
                            revert AllowedTimeViolation();
                        } else if (maskedTakerAddress == whitelistedAddress) {
                            return (true, tail);
                        }
                        allowedTime += uint16(bytes2(whitelist[10:])); // add next time delta
                        whitelist = whitelist[12:];
                    }
                    if (block.timestamp < allowedTime) {
                        revert AllowedTimeViolation();
                    }
                }
            }
        }
        

        File 3 of 3: TetherToken
        pragma solidity ^0.4.17;
        
        /**
         * @title SafeMath
         * @dev Math operations with safety checks that throw on error
         */
        library SafeMath {
            function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                uint256 c = a * b;
                assert(c / a == b);
                return c;
            }
        
            function div(uint256 a, uint256 b) internal pure returns (uint256) {
                // assert(b > 0); // Solidity automatically throws when dividing by 0
                uint256 c = a / b;
                // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                return c;
            }
        
            function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                assert(b <= a);
                return a - b;
            }
        
            function add(uint256 a, uint256 b) internal pure returns (uint256) {
                uint256 c = a + b;
                assert(c >= a);
                return c;
            }
        }
        
        /**
         * @title Ownable
         * @dev The Ownable contract has an owner address, and provides basic authorization control
         * functions, this simplifies the implementation of "user permissions".
         */
        contract Ownable {
            address public owner;
        
            /**
              * @dev The Ownable constructor sets the original `owner` of the contract to the sender
              * account.
              */
            function Ownable() public {
                owner = msg.sender;
            }
        
            /**
              * @dev Throws if called by any account other than the owner.
              */
            modifier onlyOwner() {
                require(msg.sender == owner);
                _;
            }
        
            /**
            * @dev Allows the current owner to transfer control of the contract to a newOwner.
            * @param newOwner The address to transfer ownership to.
            */
            function transferOwnership(address newOwner) public onlyOwner {
                if (newOwner != address(0)) {
                    owner = newOwner;
                }
            }
        
        }
        
        /**
         * @title ERC20Basic
         * @dev Simpler version of ERC20 interface
         * @dev see https://github.com/ethereum/EIPs/issues/20
         */
        contract ERC20Basic {
            uint public _totalSupply;
            function totalSupply() public constant returns (uint);
            function balanceOf(address who) public constant returns (uint);
            function transfer(address to, uint value) public;
            event Transfer(address indexed from, address indexed to, uint value);
        }
        
        /**
         * @title ERC20 interface
         * @dev see https://github.com/ethereum/EIPs/issues/20
         */
        contract ERC20 is ERC20Basic {
            function allowance(address owner, address spender) public constant returns (uint);
            function transferFrom(address from, address to, uint value) public;
            function approve(address spender, uint value) public;
            event Approval(address indexed owner, address indexed spender, uint value);
        }
        
        /**
         * @title Basic token
         * @dev Basic version of StandardToken, with no allowances.
         */
        contract BasicToken is Ownable, ERC20Basic {
            using SafeMath for uint;
        
            mapping(address => uint) public balances;
        
            // additional variables for use if transaction fees ever became necessary
            uint public basisPointsRate = 0;
            uint public maximumFee = 0;
        
            /**
            * @dev Fix for the ERC20 short address attack.
            */
            modifier onlyPayloadSize(uint size) {
                require(!(msg.data.length < size + 4));
                _;
            }
        
            /**
            * @dev transfer token for a specified address
            * @param _to The address to transfer to.
            * @param _value The amount to be transferred.
            */
            function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
                uint fee = (_value.mul(basisPointsRate)).div(10000);
                if (fee > maximumFee) {
                    fee = maximumFee;
                }
                uint sendAmount = _value.sub(fee);
                balances[msg.sender] = balances[msg.sender].sub(_value);
                balances[_to] = balances[_to].add(sendAmount);
                if (fee > 0) {
                    balances[owner] = balances[owner].add(fee);
                    Transfer(msg.sender, owner, fee);
                }
                Transfer(msg.sender, _to, sendAmount);
            }
        
            /**
            * @dev Gets the balance of the specified address.
            * @param _owner The address to query the the balance of.
            * @return An uint representing the amount owned by the passed address.
            */
            function balanceOf(address _owner) public constant returns (uint balance) {
                return balances[_owner];
            }
        
        }
        
        /**
         * @title Standard ERC20 token
         *
         * @dev Implementation of the basic standard token.
         * @dev https://github.com/ethereum/EIPs/issues/20
         * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
         */
        contract StandardToken is BasicToken, ERC20 {
        
            mapping (address => mapping (address => uint)) public allowed;
        
            uint public constant MAX_UINT = 2**256 - 1;
        
            /**
            * @dev Transfer tokens from one address to another
            * @param _from address The address which you want to send tokens from
            * @param _to address The address which you want to transfer to
            * @param _value uint the amount of tokens to be transferred
            */
            function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) {
                var _allowance = allowed[_from][msg.sender];
        
                // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
                // if (_value > _allowance) throw;
        
                uint fee = (_value.mul(basisPointsRate)).div(10000);
                if (fee > maximumFee) {
                    fee = maximumFee;
                }
                if (_allowance < MAX_UINT) {
                    allowed[_from][msg.sender] = _allowance.sub(_value);
                }
                uint sendAmount = _value.sub(fee);
                balances[_from] = balances[_from].sub(_value);
                balances[_to] = balances[_to].add(sendAmount);
                if (fee > 0) {
                    balances[owner] = balances[owner].add(fee);
                    Transfer(_from, owner, fee);
                }
                Transfer(_from, _to, sendAmount);
            }
        
            /**
            * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
            * @param _spender The address which will spend the funds.
            * @param _value The amount of tokens to be spent.
            */
            function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
        
                // To change the approve amount you first have to reduce the addresses`
                //  allowance to zero by calling `approve(_spender, 0)` if it is not
                //  already 0 to mitigate the race condition described here:
                //  https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
        
                allowed[msg.sender][_spender] = _value;
                Approval(msg.sender, _spender, _value);
            }
        
            /**
            * @dev Function to check the amount of tokens than an owner allowed to a spender.
            * @param _owner address The address which owns the funds.
            * @param _spender address The address which will spend the funds.
            * @return A uint specifying the amount of tokens still available for the spender.
            */
            function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                return allowed[_owner][_spender];
            }
        
        }
        
        
        /**
         * @title Pausable
         * @dev Base contract which allows children to implement an emergency stop mechanism.
         */
        contract Pausable is Ownable {
          event Pause();
          event Unpause();
        
          bool public paused = false;
        
        
          /**
           * @dev Modifier to make a function callable only when the contract is not paused.
           */
          modifier whenNotPaused() {
            require(!paused);
            _;
          }
        
          /**
           * @dev Modifier to make a function callable only when the contract is paused.
           */
          modifier whenPaused() {
            require(paused);
            _;
          }
        
          /**
           * @dev called by the owner to pause, triggers stopped state
           */
          function pause() onlyOwner whenNotPaused public {
            paused = true;
            Pause();
          }
        
          /**
           * @dev called by the owner to unpause, returns to normal state
           */
          function unpause() onlyOwner whenPaused public {
            paused = false;
            Unpause();
          }
        }
        
        contract BlackList is Ownable, BasicToken {
        
            /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
            function getBlackListStatus(address _maker) external constant returns (bool) {
                return isBlackListed[_maker];
            }
        
            function getOwner() external constant returns (address) {
                return owner;
            }
        
            mapping (address => bool) public isBlackListed;
            
            function addBlackList (address _evilUser) public onlyOwner {
                isBlackListed[_evilUser] = true;
                AddedBlackList(_evilUser);
            }
        
            function removeBlackList (address _clearedUser) public onlyOwner {
                isBlackListed[_clearedUser] = false;
                RemovedBlackList(_clearedUser);
            }
        
            function destroyBlackFunds (address _blackListedUser) public onlyOwner {
                require(isBlackListed[_blackListedUser]);
                uint dirtyFunds = balanceOf(_blackListedUser);
                balances[_blackListedUser] = 0;
                _totalSupply -= dirtyFunds;
                DestroyedBlackFunds(_blackListedUser, dirtyFunds);
            }
        
            event DestroyedBlackFunds(address _blackListedUser, uint _balance);
        
            event AddedBlackList(address _user);
        
            event RemovedBlackList(address _user);
        
        }
        
        contract UpgradedStandardToken is StandardToken{
            // those methods are called by the legacy contract
            // and they must ensure msg.sender to be the contract address
            function transferByLegacy(address from, address to, uint value) public;
            function transferFromByLegacy(address sender, address from, address spender, uint value) public;
            function approveByLegacy(address from, address spender, uint value) public;
        }
        
        contract TetherToken is Pausable, StandardToken, BlackList {
        
            string public name;
            string public symbol;
            uint public decimals;
            address public upgradedAddress;
            bool public deprecated;
        
            //  The contract can be initialized with a number of tokens
            //  All the tokens are deposited to the owner address
            //
            // @param _balance Initial supply of the contract
            // @param _name Token Name
            // @param _symbol Token symbol
            // @param _decimals Token decimals
            function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public {
                _totalSupply = _initialSupply;
                name = _name;
                symbol = _symbol;
                decimals = _decimals;
                balances[owner] = _initialSupply;
                deprecated = false;
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function transfer(address _to, uint _value) public whenNotPaused {
                require(!isBlackListed[msg.sender]);
                if (deprecated) {
                    return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value);
                } else {
                    return super.transfer(_to, _value);
                }
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function transferFrom(address _from, address _to, uint _value) public whenNotPaused {
                require(!isBlackListed[_from]);
                if (deprecated) {
                    return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value);
                } else {
                    return super.transferFrom(_from, _to, _value);
                }
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function balanceOf(address who) public constant returns (uint) {
                if (deprecated) {
                    return UpgradedStandardToken(upgradedAddress).balanceOf(who);
                } else {
                    return super.balanceOf(who);
                }
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                if (deprecated) {
                    return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value);
                } else {
                    return super.approve(_spender, _value);
                }
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                if (deprecated) {
                    return StandardToken(upgradedAddress).allowance(_owner, _spender);
                } else {
                    return super.allowance(_owner, _spender);
                }
            }
        
            // deprecate current contract in favour of a new one
            function deprecate(address _upgradedAddress) public onlyOwner {
                deprecated = true;
                upgradedAddress = _upgradedAddress;
                Deprecate(_upgradedAddress);
            }
        
            // deprecate current contract if favour of a new one
            function totalSupply() public constant returns (uint) {
                if (deprecated) {
                    return StandardToken(upgradedAddress).totalSupply();
                } else {
                    return _totalSupply;
                }
            }
        
            // Issue a new amount of tokens
            // these tokens are deposited into the owner address
            //
            // @param _amount Number of tokens to be issued
            function issue(uint amount) public onlyOwner {
                require(_totalSupply + amount > _totalSupply);
                require(balances[owner] + amount > balances[owner]);
        
                balances[owner] += amount;
                _totalSupply += amount;
                Issue(amount);
            }
        
            // Redeem tokens.
            // These tokens are withdrawn from the owner address
            // if the balance must be enough to cover the redeem
            // or the call will fail.
            // @param _amount Number of tokens to be issued
            function redeem(uint amount) public onlyOwner {
                require(_totalSupply >= amount);
                require(balances[owner] >= amount);
        
                _totalSupply -= amount;
                balances[owner] -= amount;
                Redeem(amount);
            }
        
            function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner {
                // Ensure transparency by hardcoding limit beyond which fees can never be added
                require(newBasisPoints < 20);
                require(newMaxFee < 50);
        
                basisPointsRate = newBasisPoints;
                maximumFee = newMaxFee.mul(10**decimals);
        
                Params(basisPointsRate, maximumFee);
            }
        
            // Called when new token are issued
            event Issue(uint amount);
        
            // Called when tokens are redeemed
            event Redeem(uint amount);
        
            // Called when contract is deprecated
            event Deprecate(address newAddress);
        
            // Called if contract ever adds fees
            event Params(uint feeBasisPoints, uint maxFee);
        }