ETH Price: $1,609.52 (+4.12%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Execute Batches ...222902622025-04-17 17:39:2337 secs ago1744911563IN
0x8c0Bfc04...04306F564
0 ETH0.000192241.7265197
Prove Batches Sh...222902622025-04-17 17:39:2337 secs ago1744911563IN
0x8c0Bfc04...04306F564
0 ETH0.000839991.7265197
Execute Batches ...222902552025-04-17 17:37:592 mins ago1744911479IN
0x8c0Bfc04...04306F564
0 ETH0.00025911.72471797
Commit Batches S...222902502025-04-17 17:36:593 mins ago1744911419IN
0x8c0Bfc04...04306F564
0 ETH0.000463572.81953811
Commit Batches S...222902462025-04-17 17:36:113 mins ago1744911371IN
0x8c0Bfc04...04306F564
0 ETH0.000454882.76507528
Commit Batches S...222902452025-04-17 17:35:594 mins ago1744911359IN
0x8c0Bfc04...04306F564
0 ETH0.016563642.80498387
Commit Batches S...222902432025-04-17 17:35:354 mins ago1744911335IN
0x8c0Bfc04...04306F564
0 ETH0.017852522.75478602
Commit Batches S...222902422025-04-17 17:35:234 mins ago1744911323IN
0x8c0Bfc04...04306F564
0 ETH0.016523382.70393578
Commit Batches S...222902412025-04-17 17:35:114 mins ago1744911311IN
0x8c0Bfc04...04306F564
0 ETH0.015928452.70312249
Commit Batches S...222902392025-04-17 17:34:475 mins ago1744911287IN
0x8c0Bfc04...04306F564
0 ETH0.013755252.66590159
Commit Batches S...222902382025-04-17 17:34:355 mins ago1744911275IN
0x8c0Bfc04...04306F564
0 ETH0.013259762.64843033
Commit Batches S...222902372025-04-17 17:34:235 mins ago1744911263IN
0x8c0Bfc04...04306F564
0 ETH0.012800692.67534148
Commit Batches S...222902362025-04-17 17:34:115 mins ago1744911251IN
0x8c0Bfc04...04306F564
0 ETH0.011919062.68590005
Commit Batches S...222902352025-04-17 17:33:596 mins ago1744911239IN
0x8c0Bfc04...04306F564
0 ETH0.01109592.67650258
Prove Batches Sh...222902352025-04-17 17:33:596 mins ago1744911239IN
0x8c0Bfc04...04306F564
0 ETH0.00081571.67650258
Prove Batches Sh...222902352025-04-17 17:33:596 mins ago1744911239IN
0x8c0Bfc04...04306F564
0 ETH0.000815741.67650258
Commit Batches S...222902342025-04-17 17:33:476 mins ago1744911227IN
0x8c0Bfc04...04306F564
0 ETH0.010383012.67282706
Execute Batches ...222902332025-04-17 17:33:356 mins ago1744911215IN
0x8c0Bfc04...04306F564
0 ETH0.000268712.41325448
Commit Batches S...222902252025-04-17 17:31:598 mins ago1744911119IN
0x8c0Bfc04...04306F564
0 ETH0.013153084.69057227
Commit Batches S...222902232025-04-17 17:31:358 mins ago1744911095IN
0x8c0Bfc04...04306F564
0 ETH0.000460082.79892433
Commit Batches S...222902212025-04-17 17:31:118 mins ago1744911071IN
0x8c0Bfc04...04306F564
0 ETH0.010079534.72676348
Commit Batches S...222902172025-04-17 17:30:239 mins ago1744911023IN
0x8c0Bfc04...04306F564
0 ETH0.013131824.63881479
Commit Batches S...222902142025-04-17 17:29:4710 mins ago1744910987IN
0x8c0Bfc04...04306F564
0 ETH0.015069344.68620201
Commit Batches S...222902112025-04-17 17:29:1110 mins ago1744910951IN
0x8c0Bfc04...04306F564
0 ETH0.012292564.67073117
Commit Batches S...222902082025-04-17 17:28:3511 mins ago1744910915IN
0x8c0Bfc04...04306F564
0 ETH0.010346332.69608909
View all transactions

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Method Block
From
To
0x60806040218093642025-02-09 13:49:5967 days ago1739108999  Contract Creation0 ETH
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
ValidatorTimelock

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
File 1 of 24 : ValidatorTimelock.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {Ownable2Step} from "@openzeppelin/contracts-v4/access/Ownable2Step.sol";
import {LibMap} from "./libraries/LibMap.sol";
import {IExecutor} from "./chain-interfaces/IExecutor.sol";
import {IChainTypeManager} from "./IChainTypeManager.sol";
import {Unauthorized, TimeNotReached, ZeroAddress} from "../common/L1ContractErrors.sol";

/// @author Matter Labs
/// @custom:security-contact [email protected]
/// @notice Intermediate smart contract between the validator EOA account and the ZK chains state transition diamond smart contract.
/// @dev The primary purpose of this contract is to provide a trustless means of delaying batch execution without
/// modifying the main zkChain diamond contract. As such, even if this contract is compromised, it will not impact the main
/// contract.
/// @dev ZKsync actively monitors the chain activity and reacts to any suspicious activity by freezing the chain.
/// This allows time for investigation and mitigation before resuming normal operations.
/// @dev The contract overloads all of the 4 methods, that are used in state transition. When the batch is committed,
/// the timestamp is stored for it. Later, when the owner calls the batch execution, the contract checks that batch
/// was committed not earlier than X time ago.
contract ValidatorTimelock is IExecutor, Ownable2Step {
    using LibMap for LibMap.Uint32Map;

    /// @dev Part of the IBase interface. Not used in this contract.
    string public constant override getName = "ValidatorTimelock";

    /// @notice The delay between committing and executing batches is changed.
    event NewExecutionDelay(uint256 _newExecutionDelay);

    /// @notice A new validator has been added.
    event ValidatorAdded(uint256 indexed _chainId, address _addedValidator);

    /// @notice A validator has been removed.
    event ValidatorRemoved(uint256 indexed _chainId, address _removedValidator);

    /// @notice Error for when an address is already a validator.
    error AddressAlreadyValidator(uint256 _chainId);

    /// @notice Error for when an address is not a validator.
    error ValidatorDoesNotExist(uint256 _chainId);

    /// @dev The chainTypeManager smart contract.
    IChainTypeManager public chainTypeManager;

    /// @dev The mapping of L2 chainId => batch number => timestamp when it was committed.
    mapping(uint256 chainId => LibMap.Uint32Map batchNumberToTimestampMapping) internal committedBatchTimestamp;

    /// @dev The address that can commit/revert/validate/execute batches.
    mapping(uint256 _chainId => mapping(address _validator => bool)) public validators;

    /// @dev The delay between committing and executing batches.
    uint32 public executionDelay;

    constructor(address _initialOwner, uint32 _executionDelay) {
        _transferOwnership(_initialOwner);
        executionDelay = _executionDelay;
    }

    /// @notice Checks if the caller is the admin of the chain.
    modifier onlyChainAdmin(uint256 _chainId) {
        if (msg.sender != chainTypeManager.getChainAdmin(_chainId)) {
            revert Unauthorized(msg.sender);
        }
        _;
    }

    /// @notice Checks if the caller is a validator.
    modifier onlyValidator(uint256 _chainId) {
        if (!validators[_chainId][msg.sender]) {
            revert Unauthorized(msg.sender);
        }
        _;
    }

    /// @dev Sets a new state transition manager.
    function setChainTypeManager(IChainTypeManager _chainTypeManager) external onlyOwner {
        if (address(_chainTypeManager) == address(0)) {
            revert ZeroAddress();
        }
        chainTypeManager = _chainTypeManager;
    }

    /// @dev Sets an address as a validator.
    function addValidator(uint256 _chainId, address _newValidator) external onlyChainAdmin(_chainId) {
        if (validators[_chainId][_newValidator]) {
            revert AddressAlreadyValidator(_chainId);
        }
        validators[_chainId][_newValidator] = true;
        emit ValidatorAdded(_chainId, _newValidator);
    }

    /// @dev Removes an address as a validator.
    function removeValidator(uint256 _chainId, address _validator) external onlyChainAdmin(_chainId) {
        if (!validators[_chainId][_validator]) {
            revert ValidatorDoesNotExist(_chainId);
        }
        validators[_chainId][_validator] = false;
        emit ValidatorRemoved(_chainId, _validator);
    }

    /// @dev Set the delay between committing and executing batches.
    function setExecutionDelay(uint32 _executionDelay) external onlyOwner {
        executionDelay = _executionDelay;
        emit NewExecutionDelay(_executionDelay);
    }

    /// @dev Returns the timestamp when `_l2BatchNumber` was committed.
    function getCommittedBatchTimestamp(uint256 _chainId, uint256 _l2BatchNumber) external view returns (uint256) {
        return committedBatchTimestamp[_chainId].get(_l2BatchNumber);
    }

    /// @dev Records the timestamp for all provided committed batches and make
    /// a call to the zkChain diamond contract with the same calldata.
    function commitBatchesSharedBridge(
        uint256 _chainId,
        uint256 _processBatchFrom,
        uint256 _processBatchTo,
        bytes calldata
    ) external onlyValidator(_chainId) {
        unchecked {
            // This contract is only a temporary solution, that hopefully will be disabled until 2106 year, so...
            // It is safe to cast.
            uint32 timestamp = uint32(block.timestamp);
            // We disable this check because calldata array length is cheap.
            for (uint256 i = _processBatchFrom; i <= _processBatchTo; ++i) {
                committedBatchTimestamp[_chainId].set(i, timestamp);
            }
        }
        _propagateToZKChain(_chainId);
    }

    /// @dev Make a call to the zkChain diamond contract with the same calldata.
    /// Note: If the batch is reverted, it needs to be committed first before the execution.
    /// So it's safe to not override the committed batches.
    function revertBatchesSharedBridge(uint256 _chainId, uint256) external onlyValidator(_chainId) {
        _propagateToZKChain(_chainId);
    }

    /// @dev Make a call to the zkChain diamond contract with the same calldata.
    /// Note: We don't track the time when batches are proven, since all information about
    /// the batch is known on the commit stage and the proved is not finalized (may be reverted).
    function proveBatchesSharedBridge(
        uint256 _chainId,
        uint256, // _processBatchFrom
        uint256, // _processBatchTo
        bytes calldata
    ) external onlyValidator(_chainId) {
        _propagateToZKChain(_chainId);
    }

    /// @dev Check that batches were committed at least X time ago and
    /// make a call to the zkChain diamond contract with the same calldata.
    function executeBatchesSharedBridge(
        uint256 _chainId,
        uint256 _processBatchFrom,
        uint256 _processBatchTo,
        bytes calldata
    ) external onlyValidator(_chainId) {
        uint256 delay = executionDelay; // uint32
        unchecked {
            // We disable this check because calldata array length is cheap.
            for (uint256 i = _processBatchFrom; i <= _processBatchTo; ++i) {
                uint256 commitBatchTimestamp = committedBatchTimestamp[_chainId].get(i);

                // Note: if the `commitBatchTimestamp` is zero, that means either:
                // * The batch was committed, but not through this contract.
                // * The batch wasn't committed at all, so execution will fail in the ZKsync contract.
                // We allow executing such batches.

                if (block.timestamp < commitBatchTimestamp + delay) {
                    revert TimeNotReached(commitBatchTimestamp + delay, block.timestamp);
                }
            }
        }
        _propagateToZKChain(_chainId);
    }

    /// @dev Call the zkChain diamond contract with the same calldata as this contract was called.
    /// Note: it is called the zkChain diamond contract, not delegatecalled!
    function _propagateToZKChain(uint256 _chainId) internal {
        // Note, that it is important to use chain type manager and
        // the legacy method here for obtaining the chain id in order for
        // this contract to before the CTM upgrade is finalized.
        address contractAddress = chainTypeManager.getHyperchain(_chainId);
        if (contractAddress == address(0)) {
            revert ZeroAddress();
        }
        assembly {
            // Copy function signature and arguments from calldata at zero position into memory at pointer position
            calldatacopy(0, 0, calldatasize())
            // Call method of the ZK chain diamond contract returns 0 on error
            let result := call(gas(), contractAddress, 0, 0, calldatasize(), 0, 0)
            // Get the size of the last return data
            let size := returndatasize()
            // Copy the size length of bytes from return data at zero position to pointer position
            returndatacopy(0, 0, size)
            // Depending on the result value
            switch result
            case 0 {
                // End execution and revert state changes
                revert(0, size)
            }
            default {
                // Return data with length of size at pointers position
                return(0, size)
            }
        }
    }
}

File 2 of 24 : Ownable2Step.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.0;

import "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
        _transferOwnership(sender);
    }
}

File 3 of 24 : LibMap.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/// @notice Library for storage of packed unsigned integers.
/// @author Matter Labs
/// @dev This library is an adaptation of the corresponding Solady library (https://github.com/vectorized/solady/blob/main/src/utils/LibMap.sol)
/// @custom:security-contact [email protected]
library LibMap {
    /// @dev A uint32 map in storage.
    struct Uint32Map {
        mapping(uint256 packedIndex => uint256 eightPackedValues) map;
    }

    /// @dev Retrieves the uint32 value at a specific index from the Uint32Map.
    /// @param _map The Uint32Map instance containing the packed uint32 values.
    /// @param _index The index of the uint32 value to retrieve.
    /// @return result The uint32 value at the specified index.
    function get(Uint32Map storage _map, uint256 _index) internal view returns (uint32 result) {
        unchecked {
            // Each storage slot can store 256 bits of data.
            // As uint32 is 32 bits long, 8 uint32s can be packed into one storage slot.
            // Hence, `_index / 8` is done to find the storage slot that contains the required uint32.
            uint256 mapValue = _map.map[_index / 8];

            // First three bits of the original `_index` denotes the position of the uint32 in that slot.
            // So, '(_index & 7) * 32' is done to find the bit position of the uint32 in that storage slot.
            uint256 bitOffset = (_index & 7) * 32;

            // Shift the bits to the right and retrieve the uint32 value.
            result = uint32(mapValue >> bitOffset);
        }
    }

    /// @dev Updates the uint32 value at `_index` in `map`.
    /// @param _map The Uint32Map instance containing the packed uint32 values.
    /// @param _index The index of the uint32 value to set.
    /// @param _value The new value at the specified index.
    function set(Uint32Map storage _map, uint256 _index, uint32 _value) internal {
        unchecked {
            // Each storage slot can store 256 bits of data.
            // As uint32 is 32 bits long, 8 uint32s can be packed into one storage slot.
            // Hence, `_index / 8` is done to find the storage slot that contains the required uint32.
            uint256 mapIndex = _index / 8;
            uint256 mapValue = _map.map[mapIndex];

            // First three bits of the original `_index` denotes the position of the uint32 in that slot.
            // So, '(_index & 7) * 32' is done to find the bit position of the uint32 in that storage slot.
            uint256 bitOffset = (_index & 7) * 32;

            // XORing a value A with B, and then with A again, gives the original value B.
            // We will use this property to update the uint32 value in the slot.

            // Shift the bits to the right and retrieve the uint32 value.
            uint32 oldValue = uint32(mapValue >> bitOffset);

            // Calculate the XOR of the new value and the existing value.
            uint256 newValueXorOldValue = uint256(oldValue ^ _value);

            // Finally, we XOR the slot with the XOR of the new value and the existing value,
            // shifted to its proper position. The XOR operation will effectively replace the old value with the new value.
            _map.map[mapIndex] = (newValueXorOldValue << bitOffset) ^ mapValue;
        }
    }
}

File 4 of 24 : IExecutor.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {IZKChainBase} from "./IZKChainBase.sol";

/// @dev Enum used by L2 System Contracts to differentiate logs.
enum SystemLogKey {
    L2_TO_L1_LOGS_TREE_ROOT_KEY,
    PACKED_BATCH_AND_L2_BLOCK_TIMESTAMP_KEY,
    CHAINED_PRIORITY_TXN_HASH_KEY,
    NUMBER_OF_LAYER_1_TXS_KEY,
    // Note, that it is important that `PREV_BATCH_HASH_KEY` has position
    // `4` since it is the same as it was in the previous protocol version and
    // it is the only one that is emitted before the system contracts are upgraded.
    PREV_BATCH_HASH_KEY,
    L2_DA_VALIDATOR_OUTPUT_HASH_KEY,
    USED_L2_DA_VALIDATOR_ADDRESS_KEY,
    EXPECTED_SYSTEM_CONTRACT_UPGRADE_TX_HASH_KEY
}

struct LogProcessingOutput {
    uint256 numberOfLayer1Txs;
    bytes32 chainedPriorityTxsHash;
    bytes32 previousBatchHash;
    bytes32 pubdataHash;
    bytes32 stateDiffHash;
    bytes32 l2LogsTreeRoot;
    uint256 packedBatchAndL2BlockTimestamp;
    bytes32 l2DAValidatorOutputHash;
}

/// @dev Offset used to pull Address From Log. Equal to 4 (bytes for isService)
uint256 constant L2_LOG_ADDRESS_OFFSET = 4;

/// @dev Offset used to pull Key From Log. Equal to 4 (bytes for isService) + 20 (bytes for address)
uint256 constant L2_LOG_KEY_OFFSET = 24;

/// @dev Offset used to pull Value From Log. Equal to 4 (bytes for isService) + 20 (bytes for address) + 32 (bytes for key)
uint256 constant L2_LOG_VALUE_OFFSET = 56;

/// @dev Max number of blobs currently supported
uint256 constant MAX_NUMBER_OF_BLOBS = 6;

/// @dev The number of blobs that must be present in the commitment to a batch.
/// It represents the maximal number of blobs that circuits can support and can be larger
/// than the maximal number of blobs supported by the contract (`MAX_NUMBER_OF_BLOBS`).
uint256 constant TOTAL_BLOBS_IN_COMMITMENT = 16;

/// @title The interface of the ZKsync Executor contract capable of processing events emitted in the ZKsync protocol.
/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IExecutor is IZKChainBase {
    /// @notice Rollup batch stored data
    /// @param batchNumber Rollup batch number
    /// @param batchHash Hash of L2 batch
    /// @param indexRepeatedStorageChanges The serial number of the shortcut index that's used as a unique identifier for storage keys that were used twice or more
    /// @param numberOfLayer1Txs Number of priority operations to be processed
    /// @param priorityOperationsHash Hash of all priority operations from this batch
    /// @param l2LogsTreeRoot Root hash of tree that contains L2 -> L1 messages from this batch
    /// @param timestamp Rollup batch timestamp, have the same format as Ethereum batch constant
    /// @param commitment Verified input for the ZKsync circuit
    // solhint-disable-next-line gas-struct-packing
    struct StoredBatchInfo {
        uint64 batchNumber;
        bytes32 batchHash;
        uint64 indexRepeatedStorageChanges;
        uint256 numberOfLayer1Txs;
        bytes32 priorityOperationsHash;
        bytes32 l2LogsTreeRoot;
        uint256 timestamp;
        bytes32 commitment;
    }

    /// @notice Data needed to commit new batch
    /// @param batchNumber Number of the committed batch
    /// @param timestamp Unix timestamp denoting the start of the batch execution
    /// @param indexRepeatedStorageChanges The serial number of the shortcut index that's used as a unique identifier for storage keys that were used twice or more
    /// @param newStateRoot The state root of the full state tree
    /// @param numberOfLayer1Txs Number of priority operations to be processed
    /// @param priorityOperationsHash Hash of all priority operations from this batch
    /// @param bootloaderHeapInitialContentsHash Hash of the initial contents of the bootloader heap. In practice it serves as the commitment to the transactions in the batch.
    /// @param eventsQueueStateHash Hash of the events queue state. In practice it serves as the commitment to the events in the batch.
    /// @param systemLogs concatenation of all L2 -> L1 system logs in the batch
    /// @param operatorDAInput Packed pubdata commitments/data.
    /// @dev pubdataCommitments format: This will always start with a 1 byte pubdataSource flag. Current allowed values are 0 (calldata) or 1 (blobs)
    ///                             kzg: list of: opening point (16 bytes) || claimed value (32 bytes) || commitment (48 bytes) || proof (48 bytes) = 144 bytes
    ///                             calldata: pubdataCommitments.length - 1 - 32 bytes of pubdata
    ///                                       and 32 bytes appended to serve as the blob commitment part for the aux output part of the batch commitment
    /// @dev For 2 blobs we will be sending 288 bytes of calldata instead of the full amount for pubdata.
    /// @dev When using calldata, we only need to send one blob commitment since the max number of bytes in calldata fits in a single blob and we can pull the
    ///     linear hash from the system logs
    struct CommitBatchInfo {
        uint64 batchNumber;
        uint64 timestamp;
        uint64 indexRepeatedStorageChanges;
        bytes32 newStateRoot;
        uint256 numberOfLayer1Txs;
        bytes32 priorityOperationsHash;
        bytes32 bootloaderHeapInitialContentsHash;
        bytes32 eventsQueueStateHash;
        bytes systemLogs;
        bytes operatorDAInput;
    }

    /// @notice Function called by the operator to commit new batches. It is responsible for:
    /// - Verifying the correctness of their timestamps.
    /// - Processing their L2->L1 logs.
    /// - Storing batch commitments.
    /// @param _chainId Chain ID of the chain.
    /// @param _processFrom The batch number from which the processing starts.
    /// @param _processTo The batch number at which the processing ends.
    /// @param _commitData The encoded data of the new batches to be committed.
    function commitBatchesSharedBridge(
        uint256 _chainId,
        uint256 _processFrom,
        uint256 _processTo,
        bytes calldata _commitData
    ) external;

    /// @notice Batches commitment verification.
    /// @dev Only verifies batch commitments without any other processing.
    /// @param _chainId Chain ID of the chain.
    /// @param _processBatchFrom The batch number from which the verification starts.
    /// @param _processBatchTo The batch number at which the verification ends.
    /// @param _proofData The encoded data of the new batches to be verified.
    function proveBatchesSharedBridge(
        uint256 _chainId,
        uint256 _processBatchFrom,
        uint256 _processBatchTo,
        bytes calldata _proofData
    ) external;

    /// @notice The function called by the operator to finalize (execute) batches. It is responsible for:
    /// - Processing all pending operations (commpleting priority requests).
    /// - Finalizing this batch (i.e. allowing to withdraw funds from the system)
    /// @param _chainId Chain ID of the chain.
    /// @param _processFrom The batch number from which the execution starts.
    /// @param _processTo The batch number at which the execution ends.
    /// @param _executeData The encoded data of the new batches to be executed.
    function executeBatchesSharedBridge(
        uint256 _chainId,
        uint256 _processFrom,
        uint256 _processTo,
        bytes calldata _executeData
    ) external;

    /// @notice Reverts unexecuted batches
    /// @param _chainId Chain ID of the chain
    /// @param _newLastBatch batch number after which batches should be reverted
    /// NOTE: Doesn't delete the stored data about batches, but only decreases
    /// counters that are responsible for the number of batches
    function revertBatchesSharedBridge(uint256 _chainId, uint256 _newLastBatch) external;

    /// @notice Event emitted when a batch is committed
    /// @param batchNumber Number of the batch committed
    /// @param batchHash Hash of the L2 batch
    /// @param commitment Calculated input for the ZKsync circuit
    /// @dev It has the name "BlockCommit" and not "BatchCommit" due to backward compatibility considerations
    event BlockCommit(uint256 indexed batchNumber, bytes32 indexed batchHash, bytes32 indexed commitment);

    /// @notice Event emitted when batches are verified
    /// @param previousLastVerifiedBatch Batch number of the previous last verified batch
    /// @param currentLastVerifiedBatch Batch number of the current last verified batch
    /// @dev It has the name "BlocksVerification" and not "BatchesVerification" due to backward compatibility considerations
    event BlocksVerification(uint256 indexed previousLastVerifiedBatch, uint256 indexed currentLastVerifiedBatch);

    /// @notice Event emitted when a batch is executed
    /// @param batchNumber Number of the batch executed
    /// @param batchHash Hash of the L2 batch
    /// @param commitment Verified input for the ZKsync circuit
    /// @dev It has the name "BlockExecution" and not "BatchExecution" due to backward compatibility considerations
    event BlockExecution(uint256 indexed batchNumber, bytes32 indexed batchHash, bytes32 indexed commitment);

    /// @notice Event emitted when batches are reverted
    /// @param totalBatchesCommitted Total number of committed batches after the revert
    /// @param totalBatchesVerified Total number of verified batches after the revert
    /// @param totalBatchesExecuted Total number of executed batches
    /// @dev It has the name "BlocksRevert" and not "BatchesRevert" due to backward compatibility considerations
    event BlocksRevert(uint256 totalBatchesCommitted, uint256 totalBatchesVerified, uint256 totalBatchesExecuted);
}

File 5 of 24 : IChainTypeManager.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {Diamond} from "./libraries/Diamond.sol";
import {L2CanonicalTransaction} from "../common/Messaging.sol";
import {FeeParams} from "./chain-deps/ZKChainStorage.sol";

// import {IBridgehub} from "../bridgehub/IBridgehub.sol";

/// @notice Struct that holds all data needed for initializing CTM Proxy.
/// @dev We use struct instead of raw parameters in `initialize` function to prevent "Stack too deep" error
/// @param owner The address who can manage non-critical updates in the contract
/// @param validatorTimelock The address that serves as consensus, i.e. can submit blocks to be processed
/// @param chainCreationParams The struct that contains the fields that define how a new chain should be created
/// @param protocolVersion The initial protocol version on the newly deployed chain
struct ChainTypeManagerInitializeData {
    address owner;
    address validatorTimelock;
    ChainCreationParams chainCreationParams;
    uint256 protocolVersion;
}

/// @notice The struct that contains the fields that define how a new chain should be created
/// within this CTM.
/// @param genesisUpgrade The address that is used in the diamond cut initialize address on chain creation
/// @param genesisBatchHash Batch hash of the genesis (initial) batch
/// @param genesisIndexRepeatedStorageChanges The serial number of the shortcut storage key for the genesis batch
/// @param genesisBatchCommitment The zk-proof commitment for the genesis batch
/// @param diamondCut The diamond cut for the first upgrade transaction on the newly deployed chain
// solhint-disable-next-line gas-struct-packing
struct ChainCreationParams {
    address genesisUpgrade;
    bytes32 genesisBatchHash;
    uint64 genesisIndexRepeatedStorageChanges;
    bytes32 genesisBatchCommitment;
    Diamond.DiamondCutData diamondCut;
    bytes forceDeploymentsData;
}

interface IChainTypeManager {
    /// @dev Emitted when a new ZKChain is added
    event NewZKChain(uint256 indexed _chainId, address indexed _zkChainContract);

    /// @dev emitted when an chain registers and a GenesisUpgrade happens
    event GenesisUpgrade(
        address indexed _zkChain,
        L2CanonicalTransaction _l2Transaction,
        uint256 indexed _protocolVersion
    );

    /// @notice pendingAdmin is changed
    /// @dev Also emitted when new admin is accepted and in this case, `newPendingAdmin` would be zero address
    event NewPendingAdmin(address indexed oldPendingAdmin, address indexed newPendingAdmin);

    /// @notice Admin changed
    event NewAdmin(address indexed oldAdmin, address indexed newAdmin);

    /// @notice ValidatorTimelock changed
    event NewValidatorTimelock(address indexed oldValidatorTimelock, address indexed newValidatorTimelock);

    /// @notice chain creation parameters changed
    event NewChainCreationParams(
        address genesisUpgrade,
        bytes32 genesisBatchHash,
        uint64 genesisIndexRepeatedStorageChanges,
        bytes32 genesisBatchCommitment,
        bytes32 newInitialCutHash,
        bytes32 forceDeploymentHash
    );

    /// @notice New UpgradeCutHash
    event NewUpgradeCutHash(uint256 indexed protocolVersion, bytes32 indexed upgradeCutHash);

    /// @notice New UpgradeCutData
    event NewUpgradeCutData(uint256 indexed protocolVersion, Diamond.DiamondCutData diamondCutData);

    /// @notice New ProtocolVersion
    event NewProtocolVersion(uint256 indexed oldProtocolVersion, uint256 indexed newProtocolVersion);

    /// @notice Updated ProtocolVersion deadline
    event UpdateProtocolVersionDeadline(uint256 indexed protocolVersion, uint256 deadline);

    function BRIDGE_HUB() external view returns (address);

    function setPendingAdmin(address _newPendingAdmin) external;

    function acceptAdmin() external;

    function getZKChain(uint256 _chainId) external view returns (address);

    function getHyperchain(uint256 _chainId) external view returns (address);

    function getZKChainLegacy(uint256 _chainId) external view returns (address);

    function storedBatchZero() external view returns (bytes32);

    function initialCutHash() external view returns (bytes32);

    function l1GenesisUpgrade() external view returns (address);

    function upgradeCutHash(uint256 _protocolVersion) external view returns (bytes32);

    function protocolVersion() external view returns (uint256);

    function protocolVersionDeadline(uint256 _protocolVersion) external view returns (uint256);

    function protocolVersionIsActive(uint256 _protocolVersion) external view returns (bool);

    function getProtocolVersion(uint256 _chainId) external view returns (uint256);

    function initialize(ChainTypeManagerInitializeData calldata _initializeData) external;

    function setValidatorTimelock(address _validatorTimelock) external;

    function setChainCreationParams(ChainCreationParams calldata _chainCreationParams) external;

    function getChainAdmin(uint256 _chainId) external view returns (address);

    function createNewChain(
        uint256 _chainId,
        bytes32 _baseTokenAssetId,
        address _admin,
        bytes calldata _initData,
        bytes[] calldata _factoryDeps
    ) external returns (address);

    function setNewVersionUpgrade(
        Diamond.DiamondCutData calldata _cutData,
        uint256 _oldProtocolVersion,
        uint256 _oldProtocolVersionDeadline,
        uint256 _newProtocolVersion
    ) external;

    function setUpgradeDiamondCut(Diamond.DiamondCutData calldata _cutData, uint256 _oldProtocolVersion) external;

    function executeUpgrade(uint256 _chainId, Diamond.DiamondCutData calldata _diamondCut) external;

    function setPriorityTxMaxGasLimit(uint256 _chainId, uint256 _maxGasLimit) external;

    function freezeChain(uint256 _chainId) external;

    function unfreezeChain(uint256 _chainId) external;

    function setTokenMultiplier(uint256 _chainId, uint128 _nominator, uint128 _denominator) external;

    function changeFeeParams(uint256 _chainId, FeeParams calldata _newFeeParams) external;

    function setValidator(uint256 _chainId, address _validator, bool _active) external;

    function setPorterAvailability(uint256 _chainId, bool _zkPorterIsAvailable) external;

    function upgradeChainFromVersion(
        uint256 _chainId,
        uint256 _oldProtocolVersion,
        Diamond.DiamondCutData calldata _diamondCut
    ) external;

    function getSemverProtocolVersion() external view returns (uint32, uint32, uint32);

    function forwardedBridgeBurn(
        uint256 _chainId,
        bytes calldata _data
    ) external returns (bytes memory _bridgeMintData);

    function forwardedBridgeMint(uint256 _chainId, bytes calldata _data) external returns (address);

    function forwardedBridgeRecoverFailedTransfer(
        uint256 _chainId,
        bytes32 _assetInfo,
        address _depositSender,
        bytes calldata _ctmData
    ) external;
}

File 6 of 24 : L1ContractErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.21;

// 0x5ecf2d7a
error AccessToFallbackDenied(address target, address invoker);
// 0x3995f750
error AccessToFunctionDenied(address target, bytes4 selector, address invoker);
// 0x6c167909
error OnlySelfAllowed();
// 0x52e22c98
error RestrictionWasNotPresent(address restriction);
// 0xf126e113
error RestrictionWasAlreadyPresent(address restriction);
// 0x3331e9c0
error CallNotAllowed(bytes call);
// 0xf6fd7071
error RemovingPermanentRestriction();
// 0xfcb9b2e1
error UnallowedImplementation(bytes32 implementationHash);
// 0x1ff9d522
error AddressAlreadyUsed(address addr);
// 0x0dfb42bf
error AddressAlreadySet(address addr);
// 0x86bb51b8
error AddressHasNoCode(address);
// 0x1f73225f
error AddressMismatch(address expected, address supplied);
// 0x5e85ae73
error AmountMustBeGreaterThanZero();
// 0xfde974f4
error AssetHandlerDoesNotExist(bytes32 assetId);
// 0x1294e9e1
error AssetIdMismatch(bytes32 expected, bytes32 supplied);
// 0xfe919e28
error AssetIdAlreadyRegistered();
// 0x0bfcef28
error AlreadyWhitelisted(address);
// 0x04a0b7e9
error AssetIdNotSupported(bytes32 assetId);
// 0x6ef9a972
error BaseTokenGasPriceDenominatorNotSet();
// 0x55ad3fd3
error BatchHashMismatch(bytes32 expected, bytes32 actual);
// 0x2078a6a0
error BatchNotExecuted(uint256 batchNumber);
// 0xbd4455ff
error BatchNumberMismatch(uint256 expectedBatchNumber, uint256 providedBatchNumber);
// 0x6cf12312
error BridgeHubAlreadyRegistered();
// 0xdb538614
error BridgeMintNotImplemented();
// 0xe85392f9
error CanOnlyProcessOneBatch();
// 0x00c6ead2
error CantExecuteUnprovenBatches();
// 0xe18cb383
error CantRevertExecutedBatch();
// 0x24591d89
error ChainIdAlreadyExists();
// 0x717a1656
error ChainIdCantBeCurrentChain();
// 0xa179f8c9
error ChainIdMismatch();
// 0x23f3c357
error ChainIdNotRegistered(uint256 chainId);
// 0x8f620a06
error ChainIdTooBig();
// 0xf7a01e4d
error DelegateCallFailed(bytes returnData);
// 0x0a8ed92c
error DenominatorIsZero();
// 0xb4f54111
error DeployFailed();
// 0x138ee1a3
error DeployingBridgedTokenForNativeToken();
// 0xc7c9660f
error DepositDoesNotExist();
// 0xad2fa98e
error DepositExists();
// 0x0e7ee319
error DiamondAlreadyFrozen();
// 0xa7151b9a
error DiamondNotFrozen();
// 0x7138356f
error EmptyAddress();
// 0x2d4d012f
error EmptyAssetId();
// 0x1c25715b
error EmptyBytes32();
// 0x95b66fe9
error EmptyDeposit();
// 0x627e0872
error ETHDepositNotSupported();
// 0xac4a3f98
error FacetExists(bytes4 selector, address);
// 0xc91cf3b1
error GasPerPubdataMismatch();
// 0x6d4a7df8
error GenesisBatchCommitmentZero();
// 0x7940c83f
error GenesisBatchHashZero();
// 0xb4fc6835
error GenesisIndexStorageZero();
// 0x3a1a8589
error GenesisUpgradeZero();
// 0xd356e6ba
error HashedLogIsDefault();
// 0x0b08d5be
error HashMismatch(bytes32 expected, bytes32 actual);
// 0x601b6882
error ZKChainLimitReached();
// 0xdd381a4c
error IncorrectBridgeHubAddress(address bridgehub);
// 0x826fb11e
error InsufficientChainBalance();
// 0xcbd9d2e0
error InvalidCaller(address);
// 0x4fbe5dba
error InvalidDelay();
// 0xc1780bd6
error InvalidLogSender(address sender, uint256 logKey);
// 0xd8e9405c
error InvalidNumberOfBlobs(uint256 expected, uint256 numCommitments, uint256 numHashes);
// 0x09bde339
error InvalidProof();
// 0x5428eae7
error InvalidProtocolVersion();
// 0x5513177c
error InvalidPubdataHash(bytes32 expectedHash, bytes32 provided);
// 0x6f1cf752
error InvalidPubdataPricingMode();
// 0x12ba286f
error InvalidSelector(bytes4 func);
// 0x5cb29523
error InvalidTxType(uint256 txType);
// 0x0214acb6
error InvalidUpgradeTxn(UpgradeTxVerifyParam);
// 0xfb5c22e6
error L2TimestampTooBig();
// 0xd2c011d6
error L2UpgradeNonceNotEqualToNewProtocolVersion(uint256 nonce, uint256 protocolVersion);
// 0x97e1359e
error L2WithdrawalMessageWrongLength(uint256 messageLen);
// 0xe37d2c02
error LengthIsNotDivisibleBy32(uint256 length);
// 0x1b6825bb
error LogAlreadyProcessed(uint8);
// 0xcea34703
error MalformedBytecode(BytecodeError);
// 0x9bb54c35
error MerkleIndexOutOfBounds();
// 0x8e23ac1a
error MerklePathEmpty();
// 0x1c500385
error MerklePathOutOfBounds();
// 0x3312a450
error MigrationPaused();
// 0xfa44b527
error MissingSystemLogs(uint256 expected, uint256 actual);
// 0x4a094431
error MsgValueMismatch(uint256 expectedMsgValue, uint256 providedMsgValue);
// 0xb385a3da
error MsgValueTooLow(uint256 required, uint256 provided);
// 0x72ea85ad
error NewProtocolMajorVersionNotZero();
// 0x79cc2d22
error NoCallsProvided();
// 0xa6fef710
error NoFunctionsForDiamondCut();
// 0xcab098d8
error NoFundsTransferred();
// 0xc21b1ab7
error NonEmptyCalldata();
// 0x536ec84b
error NonEmptyMsgValue();
// 0xd018e08e
error NonIncreasingTimestamp();
// 0x0105f9c0
error NonSequentialBatch();
// 0x0ac76f01
error NonSequentialVersion();
// 0xdd629f86
error NotEnoughGas();
// 0xdd7e3621
error NotInitializedReentrancyGuard();
// 0xdf17e316
error NotWhitelisted(address);
// 0xf3ed9dfa
error OnlyEraSupported();
// 0x1a21feed
error OperationExists();
// 0xeda2fbb1
error OperationMustBePending();
// 0xe1c1ff37
error OperationMustBeReady();
// 0xb926450e
error OriginChainIdNotFound();
// 0xd7f50a9d
error PatchCantSetUpgradeTxn();
// 0x962fd7d0
error PatchUpgradeCantSetBootloader();
// 0x559cc34e
error PatchUpgradeCantSetDefaultAccount();
// 0x9b48e060
error PreviousOperationNotExecuted();
// 0x5c598b60
error PreviousProtocolMajorVersionNotZero();
// 0xa0f47245
error PreviousUpgradeNotCleaned();
// 0x101ba748
error PreviousUpgradeNotFinalized(bytes32 txHash);
// 0xd5a99014
error PriorityOperationsRollingHashMismatch();
// 0x1a4d284a
error PriorityTxPubdataExceedsMaxPubDataPerBatch();
// 0xa461f651
error ProtocolIdMismatch(uint256 expectedProtocolVersion, uint256 providedProtocolId);
// 0x64f94ec2
error ProtocolIdNotGreater();
// 0xd328c12a
error ProtocolVersionMinorDeltaTooBig(uint256 limit, uint256 proposed);
// 0x88d7b498
error ProtocolVersionTooSmall();
// 0x53dee67b
error PubdataCommitmentsEmpty();
// 0x959f26fb
error PubdataGreaterThanLimit(uint256 limit, uint256 length);
// 0x63c36549
error QueueIsEmpty();
// 0xab143c06
error Reentrancy();
// 0x667d17de
error RemoveFunctionFacetAddressNotZero(address facet);
// 0xa2d4b16c
error RemoveFunctionFacetAddressZero();
// 0x3580370c
error ReplaceFunctionFacetAddressZero();
// 0x9a67c1cb
error RevertedBatchNotAfterNewLastBatch();
// 0xd3b6535b
error SelectorsMustAllHaveSameFreezability();
// 0xd7a6b5e6
error SharedBridgeValueNotSet(SharedBridgeKey);
// 0x856d5b77
error SharedBridgeNotSet();
// 0xdf3a8fdd
error SlotOccupied();
// 0xec273439
error CTMAlreadyRegistered();
// 0xc630ef3c
error CTMNotRegistered();
// 0xae43b424
error SystemLogsSizeTooBig();
// 0x08753982
error TimeNotReached(uint256 expectedTimestamp, uint256 actualTimestamp);
// 0x2d50c33b
error TimestampError();
// 0x06439c6b
error TokenNotSupported(address token);
// 0x23830e28
error TokensWithFeesNotSupported();
// 0x76da24b9
error TooManyFactoryDeps();
// 0xf0b4e88f
error TooMuchGas();
// 0x00c5a6a9
error TransactionNotAllowed();
// 0x4c991078
error TxHashMismatch();
// 0x2e311df8
error TxnBodyGasLimitNotEnoughGas();
// 0x8e4a23d6
error Unauthorized(address caller);
// 0xe52478c7
error UndefinedDiamondCutAction();
// 0x6aa39880
error UnexpectedSystemLog(uint256 logKey);
// 0xf093c2e5
error UpgradeBatchNumberIsNotZero();
// 0x084a1449
error UnsupportedEncodingVersion();
// 0x47b3b145
error ValidateTxnNotEnoughGas();
// 0x626ade30
error ValueMismatch(uint256 expected, uint256 actual);
// 0xe1022469
error VerifiedBatchesExceedsCommittedBatches();
// 0xae899454
error WithdrawalAlreadyFinalized();
// 0x750b219c
error WithdrawFailed();
// 0x15e8e429
error WrongMagicValue(uint256 expectedMagicValue, uint256 providedMagicValue);
// 0xd92e233d
error ZeroAddress();
// 0xc84885d4
error ZeroChainId();
// 0x99d8fec9
error EmptyData();
// 0xf3dd1b9c
error UnsupportedCommitBatchEncoding(uint8 version);
// 0xf338f830
error UnsupportedProofBatchEncoding(uint8 version);
// 0x14d2ed8a
error UnsupportedExecuteBatchEncoding(uint8 version);
// 0xd7d93e1f
error IncorrectBatchBounds(
    uint256 processFromExpected,
    uint256 processToExpected,
    uint256 processFromProvided,
    uint256 processToProvided
);
// 0x64107968
error AssetHandlerNotRegistered(bytes32 assetId);
// 0x64846fe4
error NotARestriction(address addr);
// 0xfa5cd00f
error NotAllowed(address addr);
// 0xccdd18d2
error BytecodeAlreadyPublished(bytes32 bytecodeHash);
// 0x25d8333c
error CallerNotTimerAdmin();
// 0x907f8e51
error DeadlineNotYetPassed();
// 0x6eef58d1
error NewDeadlineNotGreaterThanCurrent();
// 0x8b7e144a
error NewDeadlineExceedsMaxDeadline();
// 0x2a5989a0
error AlreadyPermanentRollup();
// 0x92daded2
error InvalidDAForPermanentRollup();
// 0xd0266e26
error NotSettlementLayer();
// 0x7a4902ad
error TimerAlreadyStarted();

// 0x09aa9830
error MerklePathLengthMismatch(uint256 pathLength, uint256 expectedLength);

// 0xc33e6128
error MerkleNothingToProve();

// 0xafbb7a4e
error MerkleIndexOrHeightMismatch();

// 0x1b582fcf
error MerkleWrongIndex(uint256 index, uint256 maxNodeNumber);

// 0x485cfcaa
error MerkleWrongLength(uint256 newLeavesLength, uint256 leafNumber);

// 0xce63ce17
error NoCTMForAssetId(bytes32 assetId);
// 0x02181a13
error SettlementLayersMustSettleOnL1();
// 0x1850b46b
error TokenNotLegacy();
// 0x1929b7de
error IncorrectTokenAddressFromNTV(bytes32 assetId, address tokenAddress);
// 0x48c5fa28
error InvalidProofLengthForFinalNode();
// 0x7acd7817
error TokenIsNotLegacy();
// 0xfade089a
error LegacyEncodingUsedForNonL1Token();
// 0xa51fa558
error TokenIsLegacy();
// 0x29963361
error LegacyBridgeUsesNonNativeToken();
// 0x11832de8
error AssetRouterAllowanceNotZero();
// 0xaa5f6180
error BurningNativeWETHNotSupported();
// 0xb20b58ce
error NoLegacySharedBridge();
// 0x8e3ce3cb
error TooHighDeploymentNonce();
// 0x78d2ed02
error ChainAlreadyLive();
// 0x4e98b356
error MigrationsNotPaused();
// 0xf20c5c2a
error WrappedBaseTokenAlreadyRegistered();

// 0xde4c0b96
error InvalidNTVBurnData();
// 0xbe7193d4
error InvalidSystemLogsLength();
// 0x8efef97a
error LegacyBridgeNotSet();
// 0x767eed08
error LegacyMethodForNonL1Token();

enum SharedBridgeKey {
    PostUpgradeFirstBatch,
    LegacyBridgeFirstBatch,
    LegacyBridgeLastDepositBatch,
    LegacyBridgeLastDepositTxn
}

enum BytecodeError {
    Version,
    NumberOfWords,
    Length,
    WordsMustBeOdd
}

enum UpgradeTxVerifyParam {
    From,
    To,
    Paymaster,
    Value,
    MaxFeePerGas,
    MaxPriorityFeePerGas,
    Reserved0,
    Reserved1,
    Reserved2,
    Reserved3,
    Signature,
    PaymasterInput,
    ReservedDynamic
}

File 7 of 24 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 8 of 24 : IZKChainBase.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/// @title The interface of the ZKsync contract, responsible for the main ZKsync logic.
/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IZKChainBase {
    /// @return Returns facet name.
    function getName() external view returns (string memory);
}

File 9 of 24 : Diamond.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {SafeCast} from "@openzeppelin/contracts-v4/utils/math/SafeCast.sol";
import {UncheckedMath} from "../../common/libraries/UncheckedMath.sol";
import {NoFunctionsForDiamondCut, UndefinedDiamondCutAction, AddressHasNoCode, FacetExists, RemoveFunctionFacetAddressZero, SelectorsMustAllHaveSameFreezability, NonEmptyCalldata, ReplaceFunctionFacetAddressZero, RemoveFunctionFacetAddressNotZero, DelegateCallFailed} from "../../common/L1ContractErrors.sol";

/// @author Matter Labs
/// @custom:security-contact [email protected]
/// @notice The helper library for managing the EIP-2535 diamond proxy.
library Diamond {
    using UncheckedMath for uint256;
    using SafeCast for uint256;

    /// @dev Magic value that should be returned by diamond cut initialize contracts.
    /// @dev Used to distinguish calls to contracts that were supposed to be used as diamond initializer from other contracts.
    bytes32 internal constant DIAMOND_INIT_SUCCESS_RETURN_VALUE =
        0x33774e659306e47509050e97cb651e731180a42d458212294d30751925c551a2; // keccak256("diamond.zksync.init") - 1

    /// @dev Storage position of `DiamondStorage` structure.
    bytes32 private constant DIAMOND_STORAGE_POSITION =
        0xc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131b; // keccak256("diamond.standard.diamond.storage") - 1;

    event DiamondCut(FacetCut[] facetCuts, address initAddress, bytes initCalldata);

    /// @dev Utility struct that contains associated facet & meta information of selector
    /// @param facetAddress address of the facet which is connected with selector
    /// @param selectorPosition index in `FacetToSelectors.selectors` array, where is selector stored
    /// @param isFreezable denotes whether the selector can be frozen.
    struct SelectorToFacet {
        address facetAddress;
        uint16 selectorPosition;
        bool isFreezable;
    }

    /// @dev Utility struct that contains associated selectors & meta information of facet
    /// @param selectors list of all selectors that belong to the facet
    /// @param facetPosition index in `DiamondStorage.facets` array, where is facet stored
    struct FacetToSelectors {
        bytes4[] selectors;
        uint16 facetPosition;
    }

    /// @notice The structure that holds all diamond proxy associated parameters
    /// @dev According to the EIP-2535 should be stored on a special storage key - `DIAMOND_STORAGE_POSITION`
    /// @param selectorToFacet A mapping from the selector to the facet address and its meta information
    /// @param facetToSelectors A mapping from facet address to its selectors with meta information
    /// @param facets The array of all unique facet addresses that belong to the diamond proxy
    /// @param isFrozen Denotes whether the diamond proxy is frozen and all freezable facets are not accessible
    struct DiamondStorage {
        mapping(bytes4 selector => SelectorToFacet selectorInfo) selectorToFacet;
        mapping(address facetAddress => FacetToSelectors facetInfo) facetToSelectors;
        address[] facets;
        bool isFrozen;
    }

    /// @dev Parameters for diamond changes that touch one of the facets
    /// @param facet The address of facet that's affected by the cut
    /// @param action The action that is made on the facet
    /// @param isFreezable Denotes whether the facet & all their selectors can be frozen
    /// @param selectors An array of unique selectors that belongs to the facet address
    // solhint-disable-next-line gas-struct-packing
    struct FacetCut {
        address facet;
        Action action;
        bool isFreezable;
        bytes4[] selectors;
    }

    /// @dev Structure of the diamond proxy changes
    /// @param facetCuts The set of changes (adding/removing/replacement) of implementation contracts
    /// @param initAddress The address that's delegate called after setting up new facet changes
    /// @param initCalldata Calldata for the delegate call to `initAddress`
    struct DiamondCutData {
        FacetCut[] facetCuts;
        address initAddress;
        bytes initCalldata;
    }

    /// @dev Type of change over diamond: add/replace/remove facets
    enum Action {
        Add,
        Replace,
        Remove
    }

    /// @return diamondStorage The pointer to the storage where all specific diamond proxy parameters stored
    function getDiamondStorage() internal pure returns (DiamondStorage storage diamondStorage) {
        bytes32 position = DIAMOND_STORAGE_POSITION;
        assembly {
            diamondStorage.slot := position
        }
    }

    /// @dev Add/replace/remove any number of selectors and optionally execute a function with delegatecall
    /// @param _diamondCut Diamond's facet changes and the parameters to optional initialization delegatecall
    function diamondCut(DiamondCutData memory _diamondCut) internal {
        FacetCut[] memory facetCuts = _diamondCut.facetCuts;
        address initAddress = _diamondCut.initAddress;
        bytes memory initCalldata = _diamondCut.initCalldata;
        uint256 facetCutsLength = facetCuts.length;
        for (uint256 i = 0; i < facetCutsLength; i = i.uncheckedInc()) {
            Action action = facetCuts[i].action;
            address facet = facetCuts[i].facet;
            bool isFacetFreezable = facetCuts[i].isFreezable;
            bytes4[] memory selectors = facetCuts[i].selectors;

            if (selectors.length == 0) {
                revert NoFunctionsForDiamondCut();
            }

            if (action == Action.Add) {
                _addFunctions(facet, selectors, isFacetFreezable);
            } else if (action == Action.Replace) {
                _replaceFunctions(facet, selectors, isFacetFreezable);
            } else if (action == Action.Remove) {
                _removeFunctions(facet, selectors);
            } else {
                revert UndefinedDiamondCutAction();
            }
        }

        _initializeDiamondCut(initAddress, initCalldata);
        emit DiamondCut(facetCuts, initAddress, initCalldata);
    }

    /// @dev Add new functions to the diamond proxy
    /// NOTE: expect but NOT enforce that `_selectors` is NON-EMPTY array
    function _addFunctions(address _facet, bytes4[] memory _selectors, bool _isFacetFreezable) private {
        DiamondStorage storage ds = getDiamondStorage();

        // Facet with no code cannot be added.
        // This check also verifies that the facet does not have zero address, since it is the
        // address with which 0x00000000 selector is associated.
        if (_facet.code.length == 0) {
            revert AddressHasNoCode(_facet);
        }

        // Add facet to the list of facets if the facet address is new one
        _saveFacetIfNew(_facet);

        uint256 selectorsLength = _selectors.length;
        for (uint256 i = 0; i < selectorsLength; i = i.uncheckedInc()) {
            bytes4 selector = _selectors[i];
            SelectorToFacet memory oldFacet = ds.selectorToFacet[selector];
            if (oldFacet.facetAddress != address(0)) {
                revert FacetExists(selector, oldFacet.facetAddress);
            }

            _addOneFunction(_facet, selector, _isFacetFreezable);
        }
    }

    /// @dev Change associated facets to already known function selectors
    /// NOTE: expect but NOT enforce that `_selectors` is NON-EMPTY array
    function _replaceFunctions(address _facet, bytes4[] memory _selectors, bool _isFacetFreezable) private {
        DiamondStorage storage ds = getDiamondStorage();

        // Facet with no code cannot be added.
        // This check also verifies that the facet does not have zero address, since it is the
        // address with which 0x00000000 selector is associated.
        if (_facet.code.length == 0) {
            revert AddressHasNoCode(_facet);
        }

        uint256 selectorsLength = _selectors.length;
        for (uint256 i = 0; i < selectorsLength; i = i.uncheckedInc()) {
            bytes4 selector = _selectors[i];
            SelectorToFacet memory oldFacet = ds.selectorToFacet[selector];
            // it is impossible to replace the facet with zero address
            if (oldFacet.facetAddress == address(0)) {
                revert ReplaceFunctionFacetAddressZero();
            }

            _removeOneFunction(oldFacet.facetAddress, selector);
            // Add facet to the list of facets if the facet address is a new one
            _saveFacetIfNew(_facet);
            _addOneFunction(_facet, selector, _isFacetFreezable);
        }
    }

    /// @dev Remove association with function and facet
    /// NOTE: expect but NOT enforce that `_selectors` is NON-EMPTY array
    function _removeFunctions(address _facet, bytes4[] memory _selectors) private {
        DiamondStorage storage ds = getDiamondStorage();

        // facet address must be zero
        if (_facet != address(0)) {
            revert RemoveFunctionFacetAddressNotZero(_facet);
        }

        uint256 selectorsLength = _selectors.length;
        for (uint256 i = 0; i < selectorsLength; i = i.uncheckedInc()) {
            bytes4 selector = _selectors[i];
            SelectorToFacet memory oldFacet = ds.selectorToFacet[selector];
            // Can't delete a non-existent facet
            if (oldFacet.facetAddress == address(0)) {
                revert RemoveFunctionFacetAddressZero();
            }

            _removeOneFunction(oldFacet.facetAddress, selector);
        }
    }

    /// @dev Add address to the list of known facets if it is not on the list yet
    /// NOTE: should be called ONLY before adding a new selector associated with the address
    function _saveFacetIfNew(address _facet) private {
        DiamondStorage storage ds = getDiamondStorage();

        uint256 selectorsLength = ds.facetToSelectors[_facet].selectors.length;
        // If there are no selectors associated with facet then save facet as new one
        if (selectorsLength == 0) {
            ds.facetToSelectors[_facet].facetPosition = ds.facets.length.toUint16();
            ds.facets.push(_facet);
        }
    }

    /// @dev Add one function to the already known facet
    /// NOTE: It is expected but NOT enforced that:
    /// - `_facet` is NON-ZERO address
    /// - `_facet` is already stored address in `DiamondStorage.facets`
    /// - `_selector` is NOT associated by another facet
    function _addOneFunction(address _facet, bytes4 _selector, bool _isSelectorFreezable) private {
        DiamondStorage storage ds = getDiamondStorage();

        uint16 selectorPosition = (ds.facetToSelectors[_facet].selectors.length).toUint16();

        // if selectorPosition is nonzero, it means it is not a new facet
        // so the freezability of the first selector must be matched to _isSelectorFreezable
        // so all the selectors in a facet will have the same freezability
        if (selectorPosition != 0) {
            bytes4 selector0 = ds.facetToSelectors[_facet].selectors[0];
            if (_isSelectorFreezable != ds.selectorToFacet[selector0].isFreezable) {
                revert SelectorsMustAllHaveSameFreezability();
            }
        }

        ds.selectorToFacet[_selector] = SelectorToFacet({
            facetAddress: _facet,
            selectorPosition: selectorPosition,
            isFreezable: _isSelectorFreezable
        });
        ds.facetToSelectors[_facet].selectors.push(_selector);
    }

    /// @dev Remove one associated function with facet
    /// NOTE: It is expected but NOT enforced that `_facet` is NON-ZERO address
    function _removeOneFunction(address _facet, bytes4 _selector) private {
        DiamondStorage storage ds = getDiamondStorage();

        // Get index of `FacetToSelectors.selectors` of the selector and last element of array
        uint256 selectorPosition = ds.selectorToFacet[_selector].selectorPosition;
        uint256 lastSelectorPosition = ds.facetToSelectors[_facet].selectors.length - 1;

        // If the selector is not at the end of the array then move the last element to the selector position
        if (selectorPosition != lastSelectorPosition) {
            bytes4 lastSelector = ds.facetToSelectors[_facet].selectors[lastSelectorPosition];

            ds.facetToSelectors[_facet].selectors[selectorPosition] = lastSelector;
            ds.selectorToFacet[lastSelector].selectorPosition = selectorPosition.toUint16();
        }

        // Remove last element from the selectors array
        ds.facetToSelectors[_facet].selectors.pop();

        // Finally, clean up the association with facet
        delete ds.selectorToFacet[_selector];

        // If there are no selectors for facet then remove the facet from the list of known facets
        if (lastSelectorPosition == 0) {
            _removeFacet(_facet);
        }
    }

    /// @dev remove facet from the list of known facets
    /// NOTE: It is expected but NOT enforced that there are no selectors associated with `_facet`
    function _removeFacet(address _facet) private {
        DiamondStorage storage ds = getDiamondStorage();

        // Get index of `DiamondStorage.facets` of the facet and last element of array
        uint256 facetPosition = ds.facetToSelectors[_facet].facetPosition;
        uint256 lastFacetPosition = ds.facets.length - 1;

        // If the facet is not at the end of the array then move the last element to the facet position
        if (facetPosition != lastFacetPosition) {
            address lastFacet = ds.facets[lastFacetPosition];

            ds.facets[facetPosition] = lastFacet;
            ds.facetToSelectors[lastFacet].facetPosition = facetPosition.toUint16();
        }

        // Remove last element from the facets array
        ds.facets.pop();
    }

    /// @dev Delegates call to the initialization address with provided calldata
    /// @dev Used as a final step of diamond cut to execute the logic of the initialization for changed facets
    function _initializeDiamondCut(address _init, bytes memory _calldata) private {
        if (_init == address(0)) {
            // Non-empty calldata for zero address
            if (_calldata.length != 0) {
                revert NonEmptyCalldata();
            }
        } else {
            // Do not check whether `_init` is a contract since later we check that it returns data.
            (bool success, bytes memory data) = _init.delegatecall(_calldata);
            if (!success) {
                // If the returndata is too small, we still want to produce some meaningful error

                if (data.length < 4) {
                    revert DelegateCallFailed(data);
                }

                assembly {
                    revert(add(data, 0x20), mload(data))
                }
            }

            // Check that called contract returns magic value to make sure that contract logic
            // supposed to be used as diamond cut initializer.
            if (data.length != 32) {
                revert DelegateCallFailed(data);
            }
            if (abi.decode(data, (bytes32)) != DIAMOND_INIT_SUCCESS_RETURN_VALUE) {
                revert DelegateCallFailed(data);
            }
        }
    }
}

File 10 of 24 : Messaging.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/// @dev The enum that represents the transaction execution status
/// @param Failure The transaction execution failed
/// @param Success The transaction execution succeeded
enum TxStatus {
    Failure,
    Success
}

/// @dev The log passed from L2
/// @param l2ShardId The shard identifier, 0 - rollup, 1 - porter
/// All other values are not used but are reserved for the future
/// @param isService A boolean flag that is part of the log along with `key`, `value`, and `sender` address.
/// This field is required formally but does not have any special meaning
/// @param txNumberInBatch The L2 transaction number in a Batch, in which the log was sent
/// @param sender The L2 address which sent the log
/// @param key The 32 bytes of information that was sent in the log
/// @param value The 32 bytes of information that was sent in the log
// Both `key` and `value` are arbitrary 32-bytes selected by the log sender
struct L2Log {
    uint8 l2ShardId;
    bool isService;
    uint16 txNumberInBatch;
    address sender;
    bytes32 key;
    bytes32 value;
}

/// @dev An arbitrary length message passed from L2
/// @notice Under the hood it is `L2Log` sent from the special system L2 contract
/// @param txNumberInBatch The L2 transaction number in a Batch, in which the message was sent
/// @param sender The address of the L2 account from which the message was passed
/// @param data An arbitrary length message
struct L2Message {
    uint16 txNumberInBatch;
    address sender;
    bytes data;
}

/// @dev Internal structure that contains the parameters for the writePriorityOp
/// internal function.
/// @param txId The id of the priority transaction.
/// @param l2GasPrice The gas price for the l2 priority operation.
/// @param expirationTimestamp The timestamp by which the priority operation must be processed by the operator.
/// @param request The external calldata request for the priority operation.
struct WritePriorityOpParams {
    uint256 txId;
    uint256 l2GasPrice;
    uint64 expirationTimestamp;
    BridgehubL2TransactionRequest request;
}

/// @dev Structure that includes all fields of the L2 transaction
/// @dev The hash of this structure is the "canonical L2 transaction hash" and can
/// be used as a unique identifier of a tx
/// @param txType The tx type number, depending on which the L2 transaction can be
/// interpreted differently
/// @param from The sender's address. `uint256` type for possible address format changes
/// and maintaining backward compatibility
/// @param to The recipient's address. `uint256` type for possible address format changes
/// and maintaining backward compatibility
/// @param gasLimit The L2 gas limit for L2 transaction. Analog to the `gasLimit` on an
/// L1 transactions
/// @param gasPerPubdataByteLimit Maximum number of L2 gas that will cost one byte of pubdata
/// (every piece of data that will be stored on L1 as calldata)
/// @param maxFeePerGas The absolute maximum sender willing to pay per unit of L2 gas to get
/// the transaction included in a Batch. Analog to the EIP-1559 `maxFeePerGas` on an L1 transactions
/// @param maxPriorityFeePerGas The additional fee that is paid directly to the validator
/// to incentivize them to include the transaction in a Batch. Analog to the EIP-1559
/// `maxPriorityFeePerGas` on an L1 transactions
/// @param paymaster The address of the EIP-4337 paymaster, that will pay fees for the
/// transaction. `uint256` type for possible address format changes and maintaining backward compatibility
/// @param nonce The nonce of the transaction. For L1->L2 transactions it is the priority
/// operation Id
/// @param value The value to pass with the transaction
/// @param reserved The fixed-length fields for usage in a future extension of transaction
/// formats
/// @param data The calldata that is transmitted for the transaction call
/// @param signature An abstract set of bytes that are used for transaction authorization
/// @param factoryDeps The set of L2 bytecode hashes whose preimages were shown on L1
/// @param paymasterInput The arbitrary-length data that is used as a calldata to the paymaster pre-call
/// @param reservedDynamic The arbitrary-length field for usage in a future extension of transaction formats
struct L2CanonicalTransaction {
    uint256 txType;
    uint256 from;
    uint256 to;
    uint256 gasLimit;
    uint256 gasPerPubdataByteLimit;
    uint256 maxFeePerGas;
    uint256 maxPriorityFeePerGas;
    uint256 paymaster;
    uint256 nonce;
    uint256 value;
    // In the future, we might want to add some
    // new fields to the struct. The `txData` struct
    // is to be passed to account and any changes to its structure
    // would mean a breaking change to these accounts. To prevent this,
    // we should keep some fields as "reserved"
    // It is also recommended that their length is fixed, since
    // it would allow easier proof integration (in case we will need
    // some special circuit for preprocessing transactions)
    uint256[4] reserved;
    bytes data;
    bytes signature;
    uint256[] factoryDeps;
    bytes paymasterInput;
    // Reserved dynamic type for the future use-case. Using it should be avoided,
    // But it is still here, just in case we want to enable some additional functionality
    bytes reservedDynamic;
}

/// @param sender The sender's address.
/// @param contractAddressL2 The address of the contract on L2 to call.
/// @param valueToMint The amount of base token that should be minted on L2 as the result of this transaction.
/// @param l2Value The msg.value of the L2 transaction.
/// @param l2Calldata The calldata for the L2 transaction.
/// @param l2GasLimit The limit of the L2 gas for the L2 transaction
/// @param l2GasPerPubdataByteLimit The price for a single pubdata byte in L2 gas.
/// @param factoryDeps The array of L2 bytecodes that the tx depends on.
/// @param refundRecipient The recipient of the refund for the transaction on L2. If the transaction fails, then
/// this address will receive the `l2Value`.
// solhint-disable-next-line gas-struct-packing
struct BridgehubL2TransactionRequest {
    address sender;
    address contractL2;
    uint256 mintValue;
    uint256 l2Value;
    bytes l2Calldata;
    uint256 l2GasLimit;
    uint256 l2GasPerPubdataByteLimit;
    bytes[] factoryDeps;
    address refundRecipient;
}

File 11 of 24 : ZKChainStorage.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {IVerifier, VerifierParams} from "../chain-interfaces/IVerifier.sol";
// import {IChainTypeManager} from "../IChainTypeManager.sol";
import {PriorityQueue} from "../../state-transition/libraries/PriorityQueue.sol";
import {PriorityTree} from "../../state-transition/libraries/PriorityTree.sol";

/// @notice Indicates whether an upgrade is initiated and if yes what type
/// @param None Upgrade is NOT initiated
/// @param Transparent Fully transparent upgrade is initiated, upgrade data is publicly known
/// @param Shadow Shadow upgrade is initiated, upgrade data is hidden
enum UpgradeState {
    None,
    Transparent,
    Shadow
}

/// @dev Logically separated part of the storage structure, which is responsible for everything related to proxy
/// upgrades and diamond cuts
/// @param proposedUpgradeHash The hash of the current upgrade proposal, zero if there is no active proposal
/// @param state Indicates whether an upgrade is initiated and if yes what type
/// @param securityCouncil Address which has the permission to approve instant upgrades (expected to be a Gnosis
/// multisig)
/// @param approvedBySecurityCouncil Indicates whether the security council has approved the upgrade
/// @param proposedUpgradeTimestamp The timestamp when the upgrade was proposed, zero if there are no active proposals
/// @param currentProposalId The serial number of proposed upgrades, increments when proposing a new one
struct UpgradeStorage {
    bytes32 proposedUpgradeHash;
    UpgradeState state;
    address securityCouncil;
    bool approvedBySecurityCouncil;
    uint40 proposedUpgradeTimestamp;
    uint40 currentProposalId;
}

/// @notice The struct that describes whether users will be charged for pubdata for L1->L2 transactions.
/// @param Rollup The users are charged for pubdata & it is priced based on the gas price on Ethereum.
/// @param Validium The pubdata is considered free with regard to the L1 gas price.
enum PubdataPricingMode {
    Rollup,
    Validium
}

/// @notice The fee params for L1->L2 transactions for the network.
/// @param pubdataPricingMode How the users will charged for pubdata in L1->L2 transactions.
/// @param batchOverheadL1Gas The amount of L1 gas required to process the batch (except for the calldata).
/// @param maxPubdataPerBatch The maximal number of pubdata that can be emitted per batch.
/// @param priorityTxMaxPubdata The maximal amount of pubdata a priority transaction is allowed to publish.
/// It can be slightly less than maxPubdataPerBatch in order to have some margin for the bootloader execution.
/// @param minimalL2GasPrice The minimal L2 gas price to be used by L1->L2 transactions. It should represent
/// the price that a single unit of compute costs.
struct FeeParams {
    PubdataPricingMode pubdataPricingMode;
    uint32 batchOverheadL1Gas;
    uint32 maxPubdataPerBatch;
    uint32 maxL2GasPerBatch;
    uint32 priorityTxMaxPubdata;
    uint64 minimalL2GasPrice;
}

/// @dev storing all storage variables for ZK chain diamond facets
/// NOTE: It is used in a proxy, so it is possible to add new variables to the end
/// but NOT to modify already existing variables or change their order.
/// NOTE: variables prefixed with '__DEPRECATED_' are deprecated and shouldn't be used.
/// Their presence is maintained for compatibility and to prevent storage collision.
// solhint-disable-next-line gas-struct-packing
struct ZKChainStorage {
    /// @dev Storage of variables needed for deprecated diamond cut facet
    uint256[7] __DEPRECATED_diamondCutStorage;
    /// @notice Address which will exercise critical changes to the Diamond Proxy (upgrades, freezing & unfreezing). Replaced by CTM
    address __DEPRECATED_governor;
    /// @notice Address that the governor proposed as one that will replace it
    address __DEPRECATED_pendingGovernor;
    /// @notice List of permitted validators
    mapping(address validatorAddress => bool isValidator) validators;
    /// @dev Verifier contract. Used to verify aggregated proof for batches
    IVerifier verifier;
    /// @notice Total number of executed batches i.e. batches[totalBatchesExecuted] points at the latest executed batch
    /// (batch 0 is genesis)
    uint256 totalBatchesExecuted;
    /// @notice Total number of proved batches i.e. batches[totalBatchesProved] points at the latest proved batch
    uint256 totalBatchesVerified;
    /// @notice Total number of committed batches i.e. batches[totalBatchesCommitted] points at the latest committed
    /// batch
    uint256 totalBatchesCommitted;
    /// @dev Stored hashed StoredBatch for batch number
    mapping(uint256 batchNumber => bytes32 batchHash) storedBatchHashes;
    /// @dev Stored root hashes of L2 -> L1 logs
    mapping(uint256 batchNumber => bytes32 l2LogsRootHash) l2LogsRootHashes;
    /// @dev Container that stores transactions requested from L1
    PriorityQueue.Queue priorityQueue;
    /// @dev The smart contract that manages the list with permission to call contract functions
    address __DEPRECATED_allowList;
    VerifierParams __DEPRECATED_verifierParams;
    /// @notice Bytecode hash of bootloader program.
    /// @dev Used as an input to zkp-circuit.
    bytes32 l2BootloaderBytecodeHash;
    /// @notice Bytecode hash of default account (bytecode for EOA).
    /// @dev Used as an input to zkp-circuit.
    bytes32 l2DefaultAccountBytecodeHash;
    /// @dev Indicates that the porter may be touched on L2 transactions.
    /// @dev Used as an input to zkp-circuit.
    bool zkPorterIsAvailable;
    /// @dev The maximum number of the L2 gas that a user can request for L1 -> L2 transactions
    /// @dev This is the maximum number of L2 gas that is available for the "body" of the transaction, i.e.
    /// without overhead for proving the batch.
    uint256 priorityTxMaxGasLimit;
    /// @dev Storage of variables needed for upgrade facet
    UpgradeStorage __DEPRECATED_upgrades;
    /// @dev A mapping L2 batch number => message number => flag.
    /// @dev The L2 -> L1 log is sent for every withdrawal, so this mapping is serving as
    /// a flag to indicate that the message was already processed.
    /// @dev Used to indicate that eth withdrawal was already processed
    mapping(uint256 l2BatchNumber => mapping(uint256 l2ToL1MessageNumber => bool isFinalized)) isEthWithdrawalFinalized;
    /// @dev The most recent withdrawal time and amount reset
    uint256 __DEPRECATED_lastWithdrawalLimitReset;
    /// @dev The accumulated withdrawn amount during the withdrawal limit window
    uint256 __DEPRECATED_withdrawnAmountInWindow;
    /// @dev A mapping user address => the total deposited amount by the user
    mapping(address => uint256) __DEPRECATED_totalDepositedAmountPerUser;
    /// @dev Stores the protocol version. Note, that the protocol version may not only encompass changes to the
    /// smart contracts, but also to the node behavior.
    uint256 protocolVersion;
    /// @dev Hash of the system contract upgrade transaction. If 0, then no upgrade transaction needs to be done.
    bytes32 l2SystemContractsUpgradeTxHash;
    /// @dev Batch number where the upgrade transaction has happened. If 0, then no upgrade transaction has happened
    /// yet.
    uint256 l2SystemContractsUpgradeBatchNumber;
    /// @dev Address which will exercise non-critical changes to the Diamond Proxy (changing validator set & unfreezing)
    address admin;
    /// @notice Address that the admin proposed as one that will replace admin role
    address pendingAdmin;
    /// @dev Fee params used to derive gasPrice for the L1->L2 transactions. For L2 transactions,
    /// the bootloader gives enough freedom to the operator.
    /// @dev The value is only for the L1 deployment of the ZK Chain, since payment for all the priority transactions is
    /// charged at that level.
    FeeParams feeParams;
    /// @dev Address of the blob versioned hash getter smart contract used for EIP-4844 versioned hashes.
    /// @dev Used only for testing.
    address blobVersionedHashRetriever;
    /// @dev The chainId of the chain
    uint256 chainId;
    /// @dev The address of the bridgehub
    address bridgehub;
    /// @dev The address of the ChainTypeManager
    address chainTypeManager;
    /// @dev The address of the baseToken contract. Eth is address(1)
    address __DEPRECATED_baseToken;
    /// @dev The address of the baseTokenbridge. Eth also uses the shared bridge
    address __DEPRECATED_baseTokenBridge;
    /// @notice gasPriceMultiplier for each baseToken, so that each L1->L2 transaction pays for its transaction on the destination
    /// we multiply by the nominator, and divide by the denominator
    uint128 baseTokenGasPriceMultiplierNominator;
    uint128 baseTokenGasPriceMultiplierDenominator;
    /// @dev The optional address of the contract that has to be used for transaction filtering/whitelisting
    address transactionFilterer;
    /// @dev The address of the l1DAValidator contract.
    /// This contract is responsible for the verification of the correctness of the DA on L1.
    address l1DAValidator;
    /// @dev The address of the contract on L2 that is responsible for the data availability verification.
    /// This contract sends `l2DAValidatorOutputHash` to L1 via L2->L1 system log and it will routed to the `l1DAValidator` contract.
    address l2DAValidator;
    /// @dev the Asset Id of the baseToken
    bytes32 baseTokenAssetId;
    /// @dev If this ZKchain settles on this chain, then this is zero. Otherwise it is the address of the ZKchain that is a
    /// settlement layer for this ZKchain. (think about it as a 'forwarding' address for the chain that migrated away).
    address settlementLayer;
    /// @dev Priority tree, the new data structure for priority queue
    PriorityTree.Tree priorityTree;
    /// @dev Whether the chain is a permanent rollup. Note, that it only enforces the DA validator pair, but
    /// it does not enforce any other parameters, e.g. `pubdataPricingMode`
    bool isPermanentRollup;
}

File 12 of 24 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 13 of 24 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.0;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 *
 * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
 * all math on `uint256` and `int256` and then downcasting.
 */
library SafeCast {
    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     *
     * _Available since v4.7._
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     *
     * _Available since v4.7._
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     *
     * _Available since v4.7._
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     *
     * _Available since v4.2._
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     *
     * _Available since v4.7._
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     *
     * _Available since v4.7._
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     *
     * _Available since v4.7._
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     *
     * _Available since v4.7._
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     *
     * _Available since v4.7._
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     *
     * _Available since v4.7._
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     *
     * _Available since v4.7._
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     *
     * _Available since v4.7._
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     *
     * _Available since v4.7._
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     *
     * _Available since v4.7._
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     *
     * _Available since v4.7._
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     *
     * _Available since v2.5._
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     *
     * _Available since v4.7._
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     *
     * _Available since v4.7._
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     *
     * _Available since v4.7._
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     *
     * _Available since v4.2._
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     *
     * _Available since v4.7._
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     *
     * _Available since v4.7._
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     *
     * _Available since v4.7._
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     *
     * _Available since v2.5._
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     *
     * _Available since v4.7._
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     *
     * _Available since v4.7._
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     *
     * _Available since v4.7._
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     *
     * _Available since v2.5._
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     *
     * _Available since v4.7._
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     *
     * _Available since v2.5._
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     *
     * _Available since v2.5._
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     *
     * _Available since v3.0._
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        require(value >= 0, "SafeCast: value must be positive");
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     *
     * _Available since v4.7._
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 248 bits");
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     *
     * _Available since v4.7._
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 240 bits");
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     *
     * _Available since v4.7._
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 232 bits");
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     *
     * _Available since v4.7._
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 224 bits");
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     *
     * _Available since v4.7._
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 216 bits");
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     *
     * _Available since v4.7._
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 208 bits");
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     *
     * _Available since v4.7._
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 200 bits");
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     *
     * _Available since v4.7._
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 192 bits");
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     *
     * _Available since v4.7._
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 184 bits");
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     *
     * _Available since v4.7._
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 176 bits");
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     *
     * _Available since v4.7._
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 168 bits");
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     *
     * _Available since v4.7._
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 160 bits");
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     *
     * _Available since v4.7._
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 152 bits");
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     *
     * _Available since v4.7._
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 144 bits");
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     *
     * _Available since v4.7._
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 136 bits");
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     *
     * _Available since v3.1._
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 128 bits");
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     *
     * _Available since v4.7._
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 120 bits");
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     *
     * _Available since v4.7._
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 112 bits");
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     *
     * _Available since v4.7._
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 104 bits");
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     *
     * _Available since v4.7._
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 96 bits");
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     *
     * _Available since v4.7._
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 88 bits");
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     *
     * _Available since v4.7._
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 80 bits");
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     *
     * _Available since v4.7._
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 72 bits");
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     *
     * _Available since v3.1._
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 64 bits");
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     *
     * _Available since v4.7._
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 56 bits");
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     *
     * _Available since v4.7._
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 48 bits");
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     *
     * _Available since v4.7._
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 40 bits");
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     *
     * _Available since v3.1._
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 32 bits");
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     *
     * _Available since v4.7._
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 24 bits");
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     *
     * _Available since v3.1._
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 16 bits");
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     *
     * _Available since v3.1._
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 8 bits");
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     *
     * _Available since v3.0._
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
        return int256(value);
    }
}

File 14 of 24 : UncheckedMath.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice The library for unchecked math.
 */
library UncheckedMath {
    function uncheckedInc(uint256 _number) internal pure returns (uint256) {
        unchecked {
            return _number + 1;
        }
    }

    function uncheckedAdd(uint256 _lhs, uint256 _rhs) internal pure returns (uint256) {
        unchecked {
            return _lhs + _rhs;
        }
    }
}

File 15 of 24 : IVerifier.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/// @notice Part of the configuration parameters of ZKP circuits
struct VerifierParams {
    bytes32 recursionNodeLevelVkHash;
    bytes32 recursionLeafLevelVkHash;
    bytes32 recursionCircuitsSetVksHash;
}

/// @title The interface of the Verifier contract, responsible for the zero knowledge proof verification.
/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IVerifier {
    /// @dev Verifies a zk-SNARK proof.
    /// @return A boolean value indicating whether the zk-SNARK proof is valid.
    /// Note: The function may revert execution instead of returning false in some cases.
    function verify(uint256[] calldata _publicInputs, uint256[] calldata _proof) external view returns (bool);

    /// @notice Calculates a keccak256 hash of the runtime loaded verification keys.
    /// @return vkHash The keccak256 hash of the loaded verification keys.
    function verificationKeyHash() external pure returns (bytes32);
}

File 16 of 24 : PriorityQueue.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {QueueIsEmpty} from "../../common/L1ContractErrors.sol";

/// @notice The structure that contains meta information of the L2 transaction that was requested from L1
/// @dev The weird size of fields was selected specifically to minimize the structure storage size
/// @param canonicalTxHash Hashed L2 transaction data that is needed to process it
/// @param expirationTimestamp Expiration timestamp for this request (must be satisfied before)
/// @param layer2Tip Additional payment to the validator as an incentive to perform the operation
struct PriorityOperation {
    bytes32 canonicalTxHash;
    uint64 expirationTimestamp;
    uint192 layer2Tip;
}

/// @author Matter Labs
/// @custom:security-contact [email protected]
/// @dev The library provides the API to interact with the priority queue container
/// @dev Order of processing operations from queue - FIFO (Fist in - first out)
library PriorityQueue {
    using PriorityQueue for Queue;

    /// @notice Container that stores priority operations
    /// @param data The inner mapping that saves priority operation by its index
    /// @param head The pointer to the first unprocessed priority operation, equal to the tail if the queue is empty
    /// @param tail The pointer to the free slot
    struct Queue {
        mapping(uint256 priorityOpId => PriorityOperation priorityOp) data;
        uint256 tail;
        uint256 head;
    }

    /// @notice Returns zero if and only if no operations were processed from the queue
    /// @return Index of the oldest priority operation that wasn't processed yet
    function getFirstUnprocessedPriorityTx(Queue storage _queue) internal view returns (uint256) {
        return _queue.head;
    }

    /// @return The total number of priority operations that were added to the priority queue, including all processed ones
    function getTotalPriorityTxs(Queue storage _queue) internal view returns (uint256) {
        return _queue.tail;
    }

    /// @return The total number of unprocessed priority operations in a priority queue
    function getSize(Queue storage _queue) internal view returns (uint256) {
        return uint256(_queue.tail - _queue.head);
    }

    /// @return Whether the priority queue contains no operations
    function isEmpty(Queue storage _queue) internal view returns (bool) {
        return _queue.tail == _queue.head;
    }

    /// @notice Add the priority operation to the end of the priority queue
    function pushBack(Queue storage _queue, PriorityOperation memory _operation) internal {
        // Save value into the stack to avoid double reading from the storage
        uint256 tail = _queue.tail;

        _queue.data[tail] = _operation;
        _queue.tail = tail + 1;
    }

    /// @return The first unprocessed priority operation from the queue
    function front(Queue storage _queue) internal view returns (PriorityOperation memory) {
        // priority queue is empty
        if (_queue.isEmpty()) {
            revert QueueIsEmpty();
        }

        return _queue.data[_queue.head];
    }

    /// @notice Remove the first unprocessed priority operation from the queue
    /// @return priorityOperation that was popped from the priority queue
    function popFront(Queue storage _queue) internal returns (PriorityOperation memory priorityOperation) {
        // priority queue is empty
        if (_queue.isEmpty()) {
            revert QueueIsEmpty();
        }

        // Save value into the stack to avoid double reading from the storage
        uint256 head = _queue.head;

        priorityOperation = _queue.data[head];
        delete _queue.data[head];
        _queue.head = head + 1;
    }
}

File 17 of 24 : PriorityTree.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the zkSync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {DynamicIncrementalMerkle} from "../../common/libraries/DynamicIncrementalMerkle.sol";
import {Merkle} from "../../common/libraries/Merkle.sol";
import {PriorityTreeCommitment} from "../../common/Config.sol";
import {NotHistoricalRoot, InvalidCommitment, InvalidStartIndex, InvalidUnprocessedIndex, InvalidNextLeafIndex} from "../L1StateTransitionErrors.sol";

struct PriorityOpsBatchInfo {
    bytes32[] leftPath;
    bytes32[] rightPath;
    bytes32[] itemHashes;
}

bytes32 constant ZERO_LEAF_HASH = keccak256("");

library PriorityTree {
    using PriorityTree for Tree;
    using DynamicIncrementalMerkle for DynamicIncrementalMerkle.Bytes32PushTree;

    struct Tree {
        uint256 startIndex; // priority tree started accepting priority ops from this index
        uint256 unprocessedIndex; // relative to `startIndex`
        mapping(bytes32 => bool) historicalRoots;
        DynamicIncrementalMerkle.Bytes32PushTree tree;
    }

    /// @notice Returns zero if and only if no operations were processed from the tree
    /// @return Index of the oldest priority operation that wasn't processed yet
    function getFirstUnprocessedPriorityTx(Tree storage _tree) internal view returns (uint256) {
        return _tree.startIndex + _tree.unprocessedIndex;
    }

    /// @return The total number of priority operations that were added to the priority queue, including all processed ones
    function getTotalPriorityTxs(Tree storage _tree) internal view returns (uint256) {
        return _tree.startIndex + _tree.tree._nextLeafIndex;
    }

    /// @return The total number of unprocessed priority operations in a priority queue
    function getSize(Tree storage _tree) internal view returns (uint256) {
        return _tree.tree._nextLeafIndex - _tree.unprocessedIndex;
    }

    /// @notice Add the priority operation to the end of the priority queue
    function push(Tree storage _tree, bytes32 _hash) internal {
        (, bytes32 newRoot) = _tree.tree.push(_hash);
        _tree.historicalRoots[newRoot] = true;
    }

    /// @notice Set up the tree
    function setup(Tree storage _tree, uint256 _startIndex) internal {
        bytes32 initialRoot = _tree.tree.setup(ZERO_LEAF_HASH);
        _tree.historicalRoots[initialRoot] = true;
        _tree.startIndex = _startIndex;
    }

    /// @return Returns the tree root.
    function getRoot(Tree storage _tree) internal view returns (bytes32) {
        return _tree.tree.root();
    }

    /// @param _root The root to check.
    /// @return Returns true if the root is a historical root.
    function isHistoricalRoot(Tree storage _tree, bytes32 _root) internal view returns (bool) {
        return _tree.historicalRoots[_root];
    }

    /// @notice Process the priority operations of a batch.
    /// @dev Note, that the function below only checks that a certain segment of items is present in the tree.
    /// It does not check that e.g. there are no zero items inside the provided `itemHashes`, so in theory proofs
    /// that include non-existing priority operations could be created. This function relies on the fact
    /// that the `itemHashes` of `_priorityOpsData` are hashes of valid priority transactions.
    /// This fact is ensures by the fact the rolling hash of those is sent to the Executor by the bootloader
    /// and so assuming that zero knowledge proofs are correct, so is the structure of the `itemHashes`.
    function processBatch(Tree storage _tree, PriorityOpsBatchInfo memory _priorityOpsData) internal {
        if (_priorityOpsData.itemHashes.length > 0) {
            bytes32 expectedRoot = Merkle.calculateRootPaths(
                _priorityOpsData.leftPath,
                _priorityOpsData.rightPath,
                _tree.unprocessedIndex,
                _priorityOpsData.itemHashes
            );
            if (!_tree.historicalRoots[expectedRoot]) {
                revert NotHistoricalRoot();
            }
            _tree.unprocessedIndex += _priorityOpsData.itemHashes.length;
        }
    }

    /// @notice Allows to skip a certain number of operations.
    /// @param _lastUnprocessed The new expected id of the unprocessed transaction.
    /// @dev It is used when the corresponding transactions have been processed by priority queue.
    function skipUntil(Tree storage _tree, uint256 _lastUnprocessed) internal {
        if (_tree.startIndex > _lastUnprocessed) {
            // Nothing to do, return
            return;
        }
        uint256 newUnprocessedIndex = _lastUnprocessed - _tree.startIndex;
        if (newUnprocessedIndex <= _tree.unprocessedIndex) {
            // These transactions were already processed, skip.
            return;
        }

        _tree.unprocessedIndex = newUnprocessedIndex;
    }

    /// @notice Initialize a chain from a commitment.
    function initFromCommitment(Tree storage _tree, PriorityTreeCommitment memory _commitment) internal {
        uint256 height = _commitment.sides.length; // Height, including the root node.
        if (height == 0) {
            revert InvalidCommitment();
        }
        _tree.startIndex = _commitment.startIndex;
        _tree.unprocessedIndex = _commitment.unprocessedIndex;
        _tree.tree._nextLeafIndex = _commitment.nextLeafIndex;
        _tree.tree._sides = _commitment.sides;
        bytes32 zero = ZERO_LEAF_HASH;
        _tree.tree._zeros = new bytes32[](height);
        for (uint256 i; i < height; ++i) {
            _tree.tree._zeros[i] = zero;
            zero = Merkle.efficientHash(zero, zero);
        }
        _tree.historicalRoots[_tree.tree.root()] = true;
    }

    /// @notice Reinitialize the tree from a commitment on L1.
    function l1Reinit(Tree storage _tree, PriorityTreeCommitment memory _commitment) internal {
        if (_tree.startIndex != _commitment.startIndex) {
            revert InvalidStartIndex(_tree.startIndex, _commitment.startIndex);
        }
        if (_tree.unprocessedIndex > _commitment.unprocessedIndex) {
            revert InvalidUnprocessedIndex(_tree.unprocessedIndex, _commitment.unprocessedIndex);
        }
        if (_tree.tree._nextLeafIndex < _commitment.nextLeafIndex) {
            revert InvalidNextLeafIndex(_tree.tree._nextLeafIndex, _commitment.nextLeafIndex);
        }

        _tree.unprocessedIndex = _commitment.unprocessedIndex;
    }

    /// @notice Reinitialize the tree from a commitment on GW.
    function checkGWReinit(Tree storage _tree, PriorityTreeCommitment memory _commitment) internal view {
        if (_tree.startIndex != _commitment.startIndex) {
            revert InvalidStartIndex(_tree.startIndex, _commitment.startIndex);
        }
        if (_tree.unprocessedIndex > _commitment.unprocessedIndex) {
            revert InvalidUnprocessedIndex(_tree.unprocessedIndex, _commitment.unprocessedIndex);
        }
        if (_tree.tree._nextLeafIndex > _commitment.nextLeafIndex) {
            revert InvalidNextLeafIndex(_tree.tree._nextLeafIndex, _commitment.nextLeafIndex);
        }
    }

    /// @notice Returns the commitment to the priority tree.
    function getCommitment(Tree storage _tree) internal view returns (PriorityTreeCommitment memory commitment) {
        commitment.nextLeafIndex = _tree.tree._nextLeafIndex;
        commitment.startIndex = _tree.startIndex;
        commitment.unprocessedIndex = _tree.unprocessedIndex;
        commitment.sides = _tree.tree._sides;
    }
}

File 18 of 24 : DynamicIncrementalMerkle.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.24;

import {Merkle} from "./Merkle.sol";
import {Arrays} from "@openzeppelin/contracts-v4/utils/Arrays.sol";

/**
 * @dev Library for managing https://wikipedia.org/wiki/Merkle_Tree[Merkle Tree] data structures.
 *
 * Each tree is a complete binary tree with the ability to sequentially insert leaves, changing them from a zero to a
 * non-zero value and updating its root. This structure allows inserting commitments (or other entries) that are not
 * stored, but can be proven to be part of the tree at a later time if the root is kept. See {MerkleProof}.
 *
 * A tree is defined by the following parameters:
 *
 * * Depth: The number of levels in the tree, it also defines the maximum number of leaves as 2**depth.
 * * Zero value: The value that represents an empty leaf. Used to avoid regular zero values to be part of the tree.
 * * Hashing function: A cryptographic hash function used to produce internal nodes.
 *
 * This is a fork of OpenZeppelin's [`MerkleTree`](https://github.com/OpenZeppelin/openzeppelin-contracts/blob/9af280dc4b45ee5bda96ba47ff829b407eaab67e/contracts/utils/structs/MerkleTree.sol)
 * library, with the changes to support dynamic tree growth (doubling the size when full).
 */
library DynamicIncrementalMerkle {
    /**
     * @dev A complete `bytes32` Merkle tree.
     *
     * The `sides` and `zero` arrays are set to have a length equal to the depth of the tree during setup.
     *
     * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
     * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
     * lead to unexpected behavior.
     *
     * NOTE: The `root` and the updates history is not stored within the tree. Consider using a secondary structure to
     * store a list of historical roots from the values returned from {setup} and {push} (e.g. a mapping, {BitMaps} or
     * {Checkpoints}).
     *
     * WARNING: Updating any of the tree's parameters after the first insertion will result in a corrupted tree.
     */
    struct Bytes32PushTree {
        uint256 _nextLeafIndex;
        bytes32[] _sides;
        bytes32[] _zeros;
    }

    /**
     * @dev Initialize a {Bytes32PushTree} using {Hashes-Keccak256} to hash internal nodes.
     * The capacity of the tree (i.e. number of leaves) is set to `2**levels`.
     *
     * IMPORTANT: The zero value should be carefully chosen since it will be stored in the tree representing
     * empty leaves. It should be a value that is not expected to be part of the tree.
     */
    function setup(Bytes32PushTree storage self, bytes32 zero) internal returns (bytes32 initialRoot) {
        self._nextLeafIndex = 0;
        self._zeros.push(zero);
        self._sides.push(bytes32(0));
        return bytes32(0);
    }

    /**
     * @dev Resets the tree to a blank state.
     * Calling this function on MerkleTree that was already setup and used will reset it to a blank state.
     * @param zero The value that represents an empty leaf.
     * @return initialRoot The initial root of the tree.
     */
    function reset(Bytes32PushTree storage self, bytes32 zero) internal returns (bytes32 initialRoot) {
        self._nextLeafIndex = 0;
        uint256 length = self._zeros.length;
        for (uint256 i = length; 0 < i; --i) {
            self._zeros.pop();
        }
        length = self._sides.length;
        for (uint256 i = length; 0 < i; --i) {
            self._sides.pop();
        }
        self._zeros.push(zero);
        self._sides.push(bytes32(0));
        return bytes32(0);
    }

    /**
     * @dev Insert a new leaf in the tree, and compute the new root. Returns the position of the inserted leaf in the
     * tree, and the resulting root.
     *
     * Hashing the leaf before calling this function is recommended as a protection against
     * second pre-image attacks.
     */
    function push(Bytes32PushTree storage self, bytes32 leaf) internal returns (uint256 index, bytes32 newRoot) {
        // Cache read
        uint256 levels = self._zeros.length - 1;

        // Get leaf index
        // solhint-disable-next-line gas-increment-by-one
        index = self._nextLeafIndex++;

        // Check if tree is full.
        if (index == 1 << levels) {
            bytes32 zero = self._zeros[levels];
            bytes32 newZero = Merkle.efficientHash(zero, zero);
            self._zeros.push(newZero);
            self._sides.push(bytes32(0));
            ++levels;
        }

        // Rebuild branch from leaf to root
        uint256 currentIndex = index;
        bytes32 currentLevelHash = leaf;
        bool updatedSides = false;
        for (uint32 i = 0; i < levels; ++i) {
            // Reaching the parent node, is currentLevelHash the left child?
            bool isLeft = currentIndex % 2 == 0;

            // If so, next time we will come from the right, so we need to save it
            if (isLeft && !updatedSides) {
                Arrays.unsafeAccess(self._sides, i).value = currentLevelHash;
                updatedSides = true;
            }

            // Compute the current node hash by using the hash function
            // with either its sibling (side) or the zero value for that level.
            currentLevelHash = Merkle.efficientHash(
                isLeft ? currentLevelHash : Arrays.unsafeAccess(self._sides, i).value,
                isLeft ? Arrays.unsafeAccess(self._zeros, i).value : currentLevelHash
            );

            // Update node index
            currentIndex >>= 1;
        }

        Arrays.unsafeAccess(self._sides, levels).value = currentLevelHash;
        return (index, currentLevelHash);
    }

    /**
     * @dev Tree's root.
     */
    function root(Bytes32PushTree storage self) internal view returns (bytes32) {
        return Arrays.unsafeAccess(self._sides, self._sides.length - 1).value;
    }

    /**
     * @dev Tree's height (does not include the root node).
     */
    function height(Bytes32PushTree storage self) internal view returns (uint256) {
        return self._sides.length - 1;
    }
}

File 19 of 24 : Merkle.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

import {UncheckedMath} from "../../common/libraries/UncheckedMath.sol";
import {MerklePathEmpty, MerklePathOutOfBounds, MerkleIndexOutOfBounds, MerklePathLengthMismatch, MerkleNothingToProve, MerkleIndexOrHeightMismatch} from "../../common/L1ContractErrors.sol";

/// @author Matter Labs
/// @custom:security-contact [email protected]
library Merkle {
    using UncheckedMath for uint256;

    /// @dev Calculate Merkle root by the provided Merkle proof.
    /// NOTE: When using this function, check that the _path length is equal to the tree height to prevent shorter/longer paths attack
    /// however, for chains settling on GW the proof includes the GW proof, so the path increases. See Mailbox for more details.
    /// @param _path Merkle path from the leaf to the root
    /// @param _index Leaf index in the tree
    /// @param _itemHash Hash of leaf content
    /// @return The Merkle root
    function calculateRoot(
        bytes32[] calldata _path,
        uint256 _index,
        bytes32 _itemHash
    ) internal pure returns (bytes32) {
        uint256 pathLength = _path.length;
        _validatePathLengthForSingleProof(_index, pathLength);

        bytes32 currentHash = _itemHash;
        for (uint256 i; i < pathLength; i = i.uncheckedInc()) {
            currentHash = (_index % 2 == 0)
                ? efficientHash(currentHash, _path[i])
                : efficientHash(_path[i], currentHash);
            _index /= 2;
        }

        return currentHash;
    }

    /// @dev Calculate Merkle root by the provided Merkle proof.
    /// NOTE: When using this function, check that the _path length is equal to the tree height to prevent shorter/longer paths attack
    /// @param _path Merkle path from the leaf to the root
    /// @param _index Leaf index in the tree
    /// @param _itemHash Hash of leaf content
    /// @return The Merkle root
    function calculateRootMemory(
        bytes32[] memory _path,
        uint256 _index,
        bytes32 _itemHash
    ) internal pure returns (bytes32) {
        uint256 pathLength = _path.length;
        _validatePathLengthForSingleProof(_index, pathLength);

        bytes32 currentHash = _itemHash;
        for (uint256 i; i < pathLength; i = i.uncheckedInc()) {
            currentHash = (_index % 2 == 0)
                ? efficientHash(currentHash, _path[i])
                : efficientHash(_path[i], currentHash);
            _index /= 2;
        }

        return currentHash;
    }

    /// @dev Calculate Merkle root by the provided Merkle proof for a range of elements
    /// NOTE: When using this function, check that the _startPath and _endPath lengths are equal to the tree height to prevent shorter/longer paths attack
    /// @param _startPath Merkle path from the first element of the range to the root
    /// @param _endPath Merkle path from the last element of the range to the root
    /// @param _startIndex Index of the first element of the range in the tree
    /// @param _itemHashes Hashes of the elements in the range
    /// @return The Merkle root
    function calculateRootPaths(
        bytes32[] memory _startPath,
        bytes32[] memory _endPath,
        uint256 _startIndex,
        bytes32[] memory _itemHashes
    ) internal pure returns (bytes32) {
        uint256 pathLength = _startPath.length;
        if (pathLength != _endPath.length) {
            revert MerklePathLengthMismatch(pathLength, _endPath.length);
        }
        if (pathLength >= 256) {
            revert MerklePathOutOfBounds();
        }
        uint256 levelLen = _itemHashes.length;
        // Edge case: we want to be able to prove an element in a single-node tree.
        if (pathLength == 0 && (_startIndex != 0 || levelLen != 1)) {
            revert MerklePathEmpty();
        }
        if (levelLen == 0) {
            revert MerkleNothingToProve();
        }
        if (_startIndex + levelLen > (1 << pathLength)) {
            revert MerkleIndexOrHeightMismatch();
        }
        bytes32[] memory itemHashes = _itemHashes;

        for (uint256 level; level < pathLength; level = level.uncheckedInc()) {
            uint256 parity = _startIndex % 2;
            // We get an extra element on the next level if on the current level elements either
            // start on an odd index (`parity == 1`) or end on an even index (`levelLen % 2 == 1`)
            uint256 nextLevelLen = levelLen / 2 + (parity | (levelLen % 2));
            for (uint256 i; i < nextLevelLen; i = i.uncheckedInc()) {
                bytes32 lhs = (i == 0 && parity == 1) ? _startPath[level] : itemHashes[2 * i - parity];
                bytes32 rhs = (i == nextLevelLen - 1 && (levelLen - parity) % 2 == 1)
                    ? _endPath[level]
                    : itemHashes[2 * i + 1 - parity];
                itemHashes[i] = efficientHash(lhs, rhs);
            }
            levelLen = nextLevelLen;
            _startIndex /= 2;
        }

        return itemHashes[0];
    }

    /// @dev Keccak hash of the concatenation of two 32-byte words
    function efficientHash(bytes32 _lhs, bytes32 _rhs) internal pure returns (bytes32 result) {
        assembly {
            mstore(0x00, _lhs)
            mstore(0x20, _rhs)
            result := keccak256(0x00, 0x40)
        }
    }

    function _validatePathLengthForSingleProof(uint256 _index, uint256 _pathLength) private pure {
        if (_pathLength >= 256) {
            revert MerklePathOutOfBounds();
        }
        if (_index >= (1 << _pathLength)) {
            revert MerkleIndexOutOfBounds();
        }
    }
}

File 20 of 24 : Config.sol
// SPDX-License-Identifier: MIT
// We use a floating point pragma here so it can be used within other projects that interact with the ZKsync ecosystem without using our exact pragma version.
pragma solidity ^0.8.21;

/// @dev `keccak256("")`
bytes32 constant EMPTY_STRING_KECCAK = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;

/// @dev Bytes in raw L2 log
/// @dev Equal to the bytes size of the tuple - (uint8 ShardId, bool isService, uint16 txNumberInBatch, address sender,
/// bytes32 key, bytes32 value)
uint256 constant L2_TO_L1_LOG_SERIALIZE_SIZE = 88;

/// @dev The maximum length of the bytes array with L2 -> L1 logs
uint256 constant MAX_L2_TO_L1_LOGS_COMMITMENT_BYTES = 4 + L2_TO_L1_LOG_SERIALIZE_SIZE * 512;

/// @dev The value of default leaf hash for L2 -> L1 logs Merkle tree
/// @dev An incomplete fixed-size tree is filled with this value to be a full binary tree
/// @dev Actually equal to the `keccak256(new bytes(L2_TO_L1_LOG_SERIALIZE_SIZE))`
bytes32 constant L2_L1_LOGS_TREE_DEFAULT_LEAF_HASH = 0x72abee45b59e344af8a6e520241c4744aff26ed411f4c4b00f8af09adada43ba;

bytes32 constant DEFAULT_L2_LOGS_TREE_ROOT_HASH = bytes32(0);

/// @dev Denotes the type of the ZKsync transaction that came from L1.
uint256 constant PRIORITY_OPERATION_L2_TX_TYPE = 255;

/// @dev Denotes the type of the ZKsync transaction that is used for system upgrades.
uint256 constant SYSTEM_UPGRADE_L2_TX_TYPE = 254;

/// @dev The maximal allowed difference between protocol minor versions in an upgrade. The 100 gap is needed
/// in case a protocol version has been tested on testnet, but then not launched on mainnet, e.g.
/// due to a bug found.
/// We are allowed to jump at most 100 minor versions at a time. The major version is always expected to be 0.
uint256 constant MAX_ALLOWED_MINOR_VERSION_DELTA = 100;

/// @dev The amount of time in seconds the validator has to process the priority transaction
/// NOTE: The constant is set to zero for the Alpha release period
uint256 constant PRIORITY_EXPIRATION = 0 days;

/// @dev Timestamp - seconds since unix epoch.
uint256 constant COMMIT_TIMESTAMP_NOT_OLDER = 3 days;

/// @dev Maximum available error between real commit batch timestamp and analog used in the verifier (in seconds)
/// @dev Must be used cause miner's `block.timestamp` value can differ on some small value (as we know - 12 seconds)
uint256 constant COMMIT_TIMESTAMP_APPROXIMATION_DELTA = 1 hours;

/// @dev Shift to apply to verify public input before verifying.
uint256 constant PUBLIC_INPUT_SHIFT = 32;

/// @dev The maximum number of L2 gas that a user can request for an L2 transaction
uint256 constant MAX_GAS_PER_TRANSACTION = 80_000_000;

/// @dev Even though the price for 1 byte of pubdata is 16 L1 gas, we have a slightly increased
/// value.
uint256 constant L1_GAS_PER_PUBDATA_BYTE = 17;

/// @dev The intrinsic cost of the L1->l2 transaction in computational L2 gas
uint256 constant L1_TX_INTRINSIC_L2_GAS = 167_157;

/// @dev The intrinsic cost of the L1->l2 transaction in pubdata
uint256 constant L1_TX_INTRINSIC_PUBDATA = 88;

/// @dev The minimal base price for L1 transaction
uint256 constant L1_TX_MIN_L2_GAS_BASE = 173_484;

/// @dev The number of L2 gas the transaction starts costing more with each 544 bytes of encoding
uint256 constant L1_TX_DELTA_544_ENCODING_BYTES = 1656;

/// @dev The number of L2 gas an L1->L2 transaction gains with each new factory dependency
uint256 constant L1_TX_DELTA_FACTORY_DEPS_L2_GAS = 2473;

/// @dev The number of L2 gas an L1->L2 transaction gains with each new factory dependency
uint256 constant L1_TX_DELTA_FACTORY_DEPS_PUBDATA = 64;

/// @dev The number of pubdata an L1->L2 transaction requires with each new factory dependency
uint256 constant MAX_NEW_FACTORY_DEPS = 64;

/// @dev The L2 gasPricePerPubdata required to be used in bridges.
uint256 constant REQUIRED_L2_GAS_PRICE_PER_PUBDATA = 800;

/// @dev The mask which should be applied to the packed batch and L2 block timestamp in order
/// to obtain the L2 block timestamp. Applying this mask is equivalent to calculating modulo 2**128
uint256 constant PACKED_L2_BLOCK_TIMESTAMP_MASK = 0xffffffffffffffffffffffffffffffff;

/// @dev Address of the point evaluation precompile used for EIP-4844 blob verification.
address constant POINT_EVALUATION_PRECOMPILE_ADDR = address(0x0A);

/// @dev The overhead for a transaction slot in L2 gas.
/// It is roughly equal to 80kk/MAX_TRANSACTIONS_IN_BATCH, i.e. how many gas would an L1->L2 transaction
/// need to pay to compensate for the batch being closed.
/// @dev It is expected that the L1 contracts will enforce that the L2 gas price will be high enough to compensate
/// the operator in case the batch is closed because of tx slots filling up.
uint256 constant TX_SLOT_OVERHEAD_L2_GAS = 10000;

/// @dev The overhead for each byte of the bootloader memory that the encoding of the transaction.
/// It is roughly equal to 80kk/BOOTLOADER_MEMORY_FOR_TXS, i.e. how many gas would an L1->L2 transaction
/// need to pay to compensate for the batch being closed.
/// @dev It is expected that the L1 contracts will enforce that the L2 gas price will be high enough to compensate
/// the operator in case the batch is closed because of the memory for transactions being filled up.
uint256 constant MEMORY_OVERHEAD_GAS = 10;

/// @dev The maximum gas limit for a priority transaction in L2.
uint256 constant PRIORITY_TX_MAX_GAS_LIMIT = 72_000_000;

/// @dev the address used to identify eth as the base token for chains.
address constant ETH_TOKEN_ADDRESS = address(1);

/// @dev the value returned in bridgehubDeposit in the TwoBridges function.
bytes32 constant TWO_BRIDGES_MAGIC_VALUE = bytes32(uint256(keccak256("TWO_BRIDGES_MAGIC_VALUE")) - 1);

/// @dev https://eips.ethereum.org/EIPS/eip-1352
address constant BRIDGEHUB_MIN_SECOND_BRIDGE_ADDRESS = address(uint160(type(uint16).max));

/// @dev the maximum number of supported chains, this is an arbitrary limit.
/// @dev Note, that in case of a malicious Bridgehub admin, the total number of chains
/// can be up to 2 times higher. This may be possible, in case the old ChainTypeManager
/// had `100` chains and these were migrated to the Bridgehub only after `MAX_NUMBER_OF_ZK_CHAINS`
/// were added to the bridgehub via creation of new chains.
uint256 constant MAX_NUMBER_OF_ZK_CHAINS = 100;

/// @dev Used as the `msg.sender` for transactions that relayed via a settlement layer.
address constant SETTLEMENT_LAYER_RELAY_SENDER = address(uint160(0x1111111111111111111111111111111111111111));

/// @dev The metadata version that is supported by the ZK Chains to prove that an L2->L1 log was included in a batch.
uint256 constant SUPPORTED_PROOF_METADATA_VERSION = 1;

/// @dev The virtual address of the L1 settlement layer.
address constant L1_SETTLEMENT_LAYER_VIRTUAL_ADDRESS = address(
    uint160(uint256(keccak256("L1_SETTLEMENT_LAYER_VIRTUAL_ADDRESS")) - 1)
);

struct PriorityTreeCommitment {
    uint256 nextLeafIndex;
    uint256 startIndex;
    uint256 unprocessedIndex;
    bytes32[] sides;
}

// Info that allows to restore a chain.
struct ZKChainCommitment {
    /// @notice Total number of executed batches i.e. batches[totalBatchesExecuted] points at the latest executed batch
    /// (batch 0 is genesis)
    uint256 totalBatchesExecuted;
    /// @notice Total number of proved batches i.e. batches[totalBatchesProved] points at the latest proved batch
    uint256 totalBatchesVerified;
    /// @notice Total number of committed batches i.e. batches[totalBatchesCommitted] points at the latest committed
    /// batch
    uint256 totalBatchesCommitted;
    /// @notice The hash of the L2 system contracts ugpgrade transaction.
    /// @dev It is non zero if the migration happens while the upgrade is not yet finalized.
    bytes32 l2SystemContractsUpgradeTxHash;
    /// @notice The batch when the system contracts upgrade transaction was executed.
    /// @dev It is non-zero if the migration happens while the batch where the upgrade tx was present
    /// has not been finalized (executed) yet.
    uint256 l2SystemContractsUpgradeBatchNumber;
    /// @notice The hashes of the batches that are needed to keep the blockchain working.
    /// @dev The length of the array is equal to the `totalBatchesCommitted - totalBatchesExecuted + 1`, i.e. we need
    /// to store all the unexecuted batches' hashes + 1 latest executed one.
    bytes32[] batchHashes;
    /// @notice Commitment to the priority merkle tree.
    PriorityTreeCommitment priorityTree;
    /// @notice Whether a chain is a permanent rollup.
    bool isPermanentRollup;
}

File 21 of 24 : L1StateTransitionErrors.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.21;

// 0x2e89f517
error L1DAValidatorAddressIsZero();

// 0x944bc075
error L2DAValidatorAddressIsZero();

// 0xca1c3cbc
error AlreadyMigrated();

// 0xf05c64c6
error NotChainAdmin(address prevMsgSender, address admin);

// 0xc59d372c
error ProtocolVersionNotUpToDate(uint256 currentProtocolVersion, uint256 protocolVersion);

// 0xedae13f3
error ExecutedIsNotConsistentWithVerified(uint256 batchesExecuted, uint256 batchesVerified);

// 0x712d02d2
error VerifiedIsNotConsistentWithCommitted(uint256 batchesVerified, uint256 batchesCommitted);

// 0xfb1a3b59
error InvalidNumberOfBatchHashes(uint256 batchHashesLength, uint256 expected);

// 0xa840274f
error PriorityQueueNotReady();

// 0x79274f04
error UnsupportedProofMetadataVersion(uint256 metadataVersion);

// 0xa969e486
error LocalRootIsZero();

// 0xbdaf7d42
error LocalRootMustBeZero();

// 0xd0266e26
error NotSettlementLayer();

// 0x32ddf9a2
error NotHyperchain();

// 0x2237c426
error MismatchL2DAValidator();

// 0x2c01a4af
error MismatchNumberOfLayer1Txs(uint256 numberOfLayer1Txs, uint256 expectedLength);

// 0xfbd630b8
error InvalidBatchesDataLength(uint256 batchesDataLength, uint256 priorityOpsDataLength);

// 0x55008233
error PriorityOpsDataLeftPathLengthIsNotZero();

// 0x8be936a9
error PriorityOpsDataRightPathLengthIsNotZero();

// 0x99d44739
error PriorityOpsDataItemHashesLengthIsNotZero();

// 0x885ae069
error OperatorDAInputTooSmall(uint256 operatorDAInputLength, uint256 minAllowedLength);

// 0xbeb96791
error InvalidNumberOfBlobs(uint256 blobsProvided, uint256 maxBlobsSupported);

// 0xd2531c15
error InvalidL2DAOutputHash(bytes32 l2DAValidatorOutputHash);

// 0x04e05fd1
error OnlyOneBlobWithCalldataAllowed();

// 0x2dc9747d
error PubdataInputTooSmall(uint256 pubdataInputLength, uint256 totalBlobsCommitmentSize);

// 0x9044dff9
error PubdataLengthTooBig(uint256 pubdataLength, uint256 totalBlobSizeBytes);

// 0x5513177c
error InvalidPubdataHash(bytes32 fullPubdataHash, bytes32 providedPubdataHash);

// 0x5717f940
error InvalidPubdataSource(uint8 pubdataSource);

// 0x125d99b0
error BlobHashBlobCommitmentMismatchValue();

// 0x7fbff2dd
error L1DAValidatorInvalidSender(address msgSender);

// 0xc06789fa
error InvalidCommitment();

// 0xc866ff2c
error InitialForceDeploymentMismatch(bytes32 forceDeploymentHash, bytes32 initialForceDeploymentHash);

// 0xb325f767
error AdminZero();

// 0x681150be
error OutdatedProtocolVersion(uint256 protocolVersion, uint256 currentProtocolVersion);

// 0x87470e36
error NotL1(uint256 blockChainId);

// 0x90f67ecf
error InvalidStartIndex(uint256 treeStartIndex, uint256 commitmentStartIndex);

// 0x0f67bc0a
error InvalidUnprocessedIndex(uint256 treeUnprocessedIndex, uint256 commitmentUnprocessedIndex);

// 0x30043900
error InvalidNextLeafIndex(uint256 treeNextLeafIndex, uint256 commitmentNextLeafIndex);

// 0xf9ba09d6
error NotAllBatchesExecuted();

// 0x9b53b101
error NotHistoricalRoot();

// 0xc02d3ee3
error ContractNotDeployed();

// 0xd7b2559b
error NotMigrated();

// 0x52595598
error ValL1DAWrongInputLength(uint256 inputLength, uint256 expectedLength);

File 22 of 24 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Arrays.sol)

pragma solidity ^0.8.0;

import "./StorageSlot.sol";
import "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using StorageSlot for bytes32;

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * `array` is expected to be sorted in ascending order, and to contain no
     * repeated elements.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        if (array.length == 0) {
            return 0;
        }

        uint256 low = 0;
        uint256 high = array.length;

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds down (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
        // following https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-arrays.

        /// @solidity memory-safe-assembly
        assembly {
            mstore(0, arr.slot)
            slot := add(keccak256(0, 0x20), pos)
        }
        return slot.getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
        // following https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-arrays.

        /// @solidity memory-safe-assembly
        assembly {
            mstore(0, arr.slot)
            slot := add(keccak256(0, 0x20), pos)
        }
        return slot.getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
        // following https://docs.soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-arrays.

        /// @solidity memory-safe-assembly
        assembly {
            mstore(0, arr.slot)
            slot := add(keccak256(0, 0x20), pos)
        }
        return slot.getUint256Slot();
    }
}

File 23 of 24 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
 * _Available since v4.9 for `string`, `bytes`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

File 24 of 24 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

Settings
{
  "remappings": [
    "@ensdomains/=node_modules/@ensdomains/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "eth-gas-reporter/=node_modules/eth-gas-reporter/",
    "forge-std/=lib/forge-std/src/",
    "hardhat/=node_modules/hardhat/",
    "murky/=lib/murky/src/",
    "foundry-test/=test/foundry/",
    "l2-contracts/=../l2-contracts/contracts/",
    "@openzeppelin/contracts-v4/=lib/openzeppelin-contracts-v4/contracts/",
    "@openzeppelin/contracts-upgradeable-v4/=lib/openzeppelin-contracts-upgradeable-v4/contracts/",
    "@openzeppelin/=node_modules/@openzeppelin/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable-v4/lib/erc4626-tests/",
    "openzeppelin-contracts-upgradeable-v4/=lib/openzeppelin-contracts-upgradeable-v4/",
    "openzeppelin-contracts-v4/=lib/openzeppelin-contracts-v4/",
    "openzeppelin-contracts/=lib/murky/lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_initialOwner","type":"address"},{"internalType":"uint32","name":"_executionDelay","type":"uint32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"}],"name":"AddressAlreadyValidator","type":"error"},{"inputs":[{"internalType":"uint256","name":"expectedTimestamp","type":"uint256"},{"internalType":"uint256","name":"actualTimestamp","type":"uint256"}],"name":"TimeNotReached","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"Unauthorized","type":"error"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"}],"name":"ValidatorDoesNotExist","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"batchNumber","type":"uint256"},{"indexed":true,"internalType":"bytes32","name":"batchHash","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"commitment","type":"bytes32"}],"name":"BlockCommit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"batchNumber","type":"uint256"},{"indexed":true,"internalType":"bytes32","name":"batchHash","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"commitment","type":"bytes32"}],"name":"BlockExecution","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"totalBatchesCommitted","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalBatchesVerified","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalBatchesExecuted","type":"uint256"}],"name":"BlocksRevert","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"previousLastVerifiedBatch","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"currentLastVerifiedBatch","type":"uint256"}],"name":"BlocksVerification","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_newExecutionDelay","type":"uint256"}],"name":"NewExecutionDelay","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_chainId","type":"uint256"},{"indexed":false,"internalType":"address","name":"_addedValidator","type":"address"}],"name":"ValidatorAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_chainId","type":"uint256"},{"indexed":false,"internalType":"address","name":"_removedValidator","type":"address"}],"name":"ValidatorRemoved","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"address","name":"_newValidator","type":"address"}],"name":"addValidator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"chainTypeManager","outputs":[{"internalType":"contract IChainTypeManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"uint256","name":"_processBatchFrom","type":"uint256"},{"internalType":"uint256","name":"_processBatchTo","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"commitBatchesSharedBridge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"uint256","name":"_processBatchFrom","type":"uint256"},{"internalType":"uint256","name":"_processBatchTo","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"executeBatchesSharedBridge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"executionDelay","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"uint256","name":"_l2BatchNumber","type":"uint256"}],"name":"getCommittedBatchTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getName","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"proveBatchesSharedBridge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"address","name":"_validator","type":"address"}],"name":"removeValidator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"revertBatchesSharedBridge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IChainTypeManager","name":"_chainTypeManager","type":"address"}],"name":"setChainTypeManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"_executionDelay","type":"uint32"}],"name":"setExecutionDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_chainId","type":"uint256"},{"internalType":"address","name":"_validator","type":"address"}],"name":"validators","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]

608060405234801561000f575f80fd5b50604051610d84380380610d8483398101604081905261002e916100cb565b61003733610060565b61004082610060565b6005805463ffffffff191663ffffffff9290921691909117905550610116565b600180546001600160a01b03191690556100798161007c565b50565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f80604083850312156100dc575f80fd5b82516001600160a01b03811681146100f2575f80fd5b602084015190925063ffffffff8116811461010b575f80fd5b809150509250929050565b610c61806101235f395ff3fe608060405234801561000f575f80fd5b5060043610610111575f3560e01c806398f819621161009e578063cf02827d1161006e578063cf02827d146102b1578063e12a6137146102c4578063e30c3978146102d7578063f2fde38b146102e8578063f34d1868146102fb575f80fd5b806398f819621461022c578063b993549e1461023f578063bd5bcf931461028b578063c0e42a5c1461029e575f80fd5b8063715018a6116100e4578063715018a61461019657806379ba50971461019e5780638b257989146101a65780638da5cb5b146101cb57806391b19874146101ef575f80fd5b80630f23da431461011557806317d7de7c1461012a5780634b561753146101705780636a0cd1f514610183575b5f80fd5b610128610123366004610a98565b61030e565b005b61015a6040518060400160405280601181526020017056616c696461746f7254696d656c6f636b60781b81525081565b6040516101679190610ab8565b60405180910390f35b61012861017e366004610b18565b61035e565b610128610191366004610b18565b6104a7565b6101286105e4565b6101286105f7565b6005546101b69063ffffffff1681565b60405163ffffffff9091168152602001610167565b5f546001600160a01b03165b6040516001600160a01b039091168152602001610167565b61021c6101fd366004610b18565b600460209081525f928352604080842090915290825290205460ff1681565b6040519015158152602001610167565b61012861023a366004610b46565b610671565b61027d61024d366004610a98565b5f8281526003602090815260408083206008850484528252822054600784169091021c63ffffffff169392505050565b604051908152602001610167565b610128610299366004610bcb565b610709565b6002546101d7906001600160a01b031681565b6101286102bf366004610b46565b61075a565b6101286102d2366004610b46565b61081c565b6001546001600160a01b03166101d7565b6101286102f6366004610bcb565b610862565b610128610309366004610bed565b6108d2565b5f828152600460209081526040808320338452909152902054829060ff166103505760405163472511eb60e11b81523360048201526024015b60405180910390fd5b61035983610928565b505050565b60025460405163301e776560e01b81526004810184905283916001600160a01b03169063301e776590602401602060405180830381865afa1580156103a5573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103c99190610c10565b6001600160a01b0316336001600160a01b0316146103fc5760405163472511eb60e11b8152336004820152602401610347565b5f8381526004602090815260408083206001600160a01b038616845290915290205460ff161561044157604051622577c560e11b815260048101849052602401610347565b5f8381526004602090815260408083206001600160a01b03861680855290835292819020805460ff191660011790555191825284917f7429a06e9412e469f0d64f9d222640b0af359f556b709e2913588c227851b88d91015b60405180910390a2505050565b60025460405163301e776560e01b81526004810184905283916001600160a01b03169063301e776590602401602060405180830381865afa1580156104ee573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105129190610c10565b6001600160a01b0316336001600160a01b0316146105455760405163472511eb60e11b8152336004820152602401610347565b5f8381526004602090815260408083206001600160a01b038616845290915290205460ff1661058a57604051635fd1e44b60e01b815260048101849052602401610347565b5f8381526004602090815260408083206001600160a01b03861680855290835292819020805460ff191690555191825284917f7126bef88d1149ccdff9681ed5aecd3ba5ae70c96517551de250af09cebd1a0b910161049a565b6105ec6109dc565b6105f55f610a35565b565b60015433906001600160a01b031681146106655760405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b6064820152608401610347565b61066e81610a35565b50565b5f858152600460209081526040808320338452909152902054859060ff166106ae5760405163472511eb60e11b8152336004820152602401610347565b42855b8581116106f6575f888152600360209081526040808320600885048452825290912080546007841690920282811c851863ffffffff16901b90911890556001016106b1565b505061070186610928565b505050505050565b6107116109dc565b6001600160a01b0381166107385760405163d92e233d60e01b815260040160405180910390fd5b600280546001600160a01b0319166001600160a01b0392909216919091179055565b5f858152600460209081526040808320338452909152902054859060ff166107975760405163472511eb60e11b8152336004820152602401610347565b60055463ffffffff16855b858111610809575f88815260036020908152604080832060088504845282529091205463ffffffff600784169092021c168281014210156108005760405163043a9cc160e11b81528184016004820152426024820152604401610347565b506001016107a2565b5061081387610928565b50505050505050565b5f858152600460209081526040808320338452909152902054859060ff166108595760405163472511eb60e11b8152336004820152602401610347565b61070186610928565b61086a6109dc565b600180546001600160a01b0383166001600160a01b0319909116811790915561089a5f546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b6108da6109dc565b6005805463ffffffff191663ffffffff83169081179091556040519081527fd32d6d626bb9c7077c559fc3b4e5ce71ef14609d7d216d030ee63dcf2422c2c49060200160405180910390a150565b60025460405163dead6f7f60e01b8152600481018390525f916001600160a01b03169063dead6f7f90602401602060405180830381865afa15801561096f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109939190610c10565b90506001600160a01b0381166109bc5760405163d92e233d60e01b815260040160405180910390fd5b365f80375f80365f80855af13d805f803e8180156109d857815ff35b815ffd5b5f546001600160a01b031633146105f55760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610347565b600180546001600160a01b031916905561066e815f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f8060408385031215610aa9575f80fd5b50508035926020909101359150565b5f602080835283518060208501525f5b81811015610ae457858101830151858201604001528201610ac8565b505f604082860101526040601f19601f8301168501019250505092915050565b6001600160a01b038116811461066e575f80fd5b5f8060408385031215610b29575f80fd5b823591506020830135610b3b81610b04565b809150509250929050565b5f805f805f60808688031215610b5a575f80fd5b853594506020860135935060408601359250606086013567ffffffffffffffff80821115610b86575f80fd5b818801915088601f830112610b99575f80fd5b813581811115610ba7575f80fd5b896020828501011115610bb8575f80fd5b9699959850939650602001949392505050565b5f60208284031215610bdb575f80fd5b8135610be681610b04565b9392505050565b5f60208284031215610bfd575f80fd5b813563ffffffff81168114610be6575f80fd5b5f60208284031215610c20575f80fd5b8151610be681610b0456fea26469706673582212206c1e8d666e61f914efddf6ba84e2e9670d3696569a556bc1077b3eaa5e0d7f9064736f6c63430008180033000000000000000000000000043da37f21c4c83b97b546724c75600c2d0c9e160000000000000000000000000000000000000000000000000000000000002a30

Deployed Bytecode

0x608060405234801561000f575f80fd5b5060043610610111575f3560e01c806398f819621161009e578063cf02827d1161006e578063cf02827d146102b1578063e12a6137146102c4578063e30c3978146102d7578063f2fde38b146102e8578063f34d1868146102fb575f80fd5b806398f819621461022c578063b993549e1461023f578063bd5bcf931461028b578063c0e42a5c1461029e575f80fd5b8063715018a6116100e4578063715018a61461019657806379ba50971461019e5780638b257989146101a65780638da5cb5b146101cb57806391b19874146101ef575f80fd5b80630f23da431461011557806317d7de7c1461012a5780634b561753146101705780636a0cd1f514610183575b5f80fd5b610128610123366004610a98565b61030e565b005b61015a6040518060400160405280601181526020017056616c696461746f7254696d656c6f636b60781b81525081565b6040516101679190610ab8565b60405180910390f35b61012861017e366004610b18565b61035e565b610128610191366004610b18565b6104a7565b6101286105e4565b6101286105f7565b6005546101b69063ffffffff1681565b60405163ffffffff9091168152602001610167565b5f546001600160a01b03165b6040516001600160a01b039091168152602001610167565b61021c6101fd366004610b18565b600460209081525f928352604080842090915290825290205460ff1681565b6040519015158152602001610167565b61012861023a366004610b46565b610671565b61027d61024d366004610a98565b5f8281526003602090815260408083206008850484528252822054600784169091021c63ffffffff169392505050565b604051908152602001610167565b610128610299366004610bcb565b610709565b6002546101d7906001600160a01b031681565b6101286102bf366004610b46565b61075a565b6101286102d2366004610b46565b61081c565b6001546001600160a01b03166101d7565b6101286102f6366004610bcb565b610862565b610128610309366004610bed565b6108d2565b5f828152600460209081526040808320338452909152902054829060ff166103505760405163472511eb60e11b81523360048201526024015b60405180910390fd5b61035983610928565b505050565b60025460405163301e776560e01b81526004810184905283916001600160a01b03169063301e776590602401602060405180830381865afa1580156103a5573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103c99190610c10565b6001600160a01b0316336001600160a01b0316146103fc5760405163472511eb60e11b8152336004820152602401610347565b5f8381526004602090815260408083206001600160a01b038616845290915290205460ff161561044157604051622577c560e11b815260048101849052602401610347565b5f8381526004602090815260408083206001600160a01b03861680855290835292819020805460ff191660011790555191825284917f7429a06e9412e469f0d64f9d222640b0af359f556b709e2913588c227851b88d91015b60405180910390a2505050565b60025460405163301e776560e01b81526004810184905283916001600160a01b03169063301e776590602401602060405180830381865afa1580156104ee573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105129190610c10565b6001600160a01b0316336001600160a01b0316146105455760405163472511eb60e11b8152336004820152602401610347565b5f8381526004602090815260408083206001600160a01b038616845290915290205460ff1661058a57604051635fd1e44b60e01b815260048101849052602401610347565b5f8381526004602090815260408083206001600160a01b03861680855290835292819020805460ff191690555191825284917f7126bef88d1149ccdff9681ed5aecd3ba5ae70c96517551de250af09cebd1a0b910161049a565b6105ec6109dc565b6105f55f610a35565b565b60015433906001600160a01b031681146106655760405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b6064820152608401610347565b61066e81610a35565b50565b5f858152600460209081526040808320338452909152902054859060ff166106ae5760405163472511eb60e11b8152336004820152602401610347565b42855b8581116106f6575f888152600360209081526040808320600885048452825290912080546007841690920282811c851863ffffffff16901b90911890556001016106b1565b505061070186610928565b505050505050565b6107116109dc565b6001600160a01b0381166107385760405163d92e233d60e01b815260040160405180910390fd5b600280546001600160a01b0319166001600160a01b0392909216919091179055565b5f858152600460209081526040808320338452909152902054859060ff166107975760405163472511eb60e11b8152336004820152602401610347565b60055463ffffffff16855b858111610809575f88815260036020908152604080832060088504845282529091205463ffffffff600784169092021c168281014210156108005760405163043a9cc160e11b81528184016004820152426024820152604401610347565b506001016107a2565b5061081387610928565b50505050505050565b5f858152600460209081526040808320338452909152902054859060ff166108595760405163472511eb60e11b8152336004820152602401610347565b61070186610928565b61086a6109dc565b600180546001600160a01b0383166001600160a01b0319909116811790915561089a5f546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b6108da6109dc565b6005805463ffffffff191663ffffffff83169081179091556040519081527fd32d6d626bb9c7077c559fc3b4e5ce71ef14609d7d216d030ee63dcf2422c2c49060200160405180910390a150565b60025460405163dead6f7f60e01b8152600481018390525f916001600160a01b03169063dead6f7f90602401602060405180830381865afa15801561096f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109939190610c10565b90506001600160a01b0381166109bc5760405163d92e233d60e01b815260040160405180910390fd5b365f80375f80365f80855af13d805f803e8180156109d857815ff35b815ffd5b5f546001600160a01b031633146105f55760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610347565b600180546001600160a01b031916905561066e815f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f8060408385031215610aa9575f80fd5b50508035926020909101359150565b5f602080835283518060208501525f5b81811015610ae457858101830151858201604001528201610ac8565b505f604082860101526040601f19601f8301168501019250505092915050565b6001600160a01b038116811461066e575f80fd5b5f8060408385031215610b29575f80fd5b823591506020830135610b3b81610b04565b809150509250929050565b5f805f805f60808688031215610b5a575f80fd5b853594506020860135935060408601359250606086013567ffffffffffffffff80821115610b86575f80fd5b818801915088601f830112610b99575f80fd5b813581811115610ba7575f80fd5b896020828501011115610bb8575f80fd5b9699959850939650602001949392505050565b5f60208284031215610bdb575f80fd5b8135610be681610b04565b9392505050565b5f60208284031215610bfd575f80fd5b813563ffffffff81168114610be6575f80fd5b5f60208284031215610c20575f80fd5b8151610be681610b0456fea26469706673582212206c1e8d666e61f914efddf6ba84e2e9670d3696569a556bc1077b3eaa5e0d7f9064736f6c63430008180033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000043da37f21c4c83b97b546724c75600c2d0c9e160000000000000000000000000000000000000000000000000000000000002a30

-----Decoded View---------------
Arg [0] : _initialOwner (address): 0x043DA37F21c4C83b97b546724c75600c2D0C9E16
Arg [1] : _executionDelay (uint32): 10800

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000043da37f21c4c83b97b546724c75600c2d0c9e16
Arg [1] : 0000000000000000000000000000000000000000000000000000000000002a30


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.