Overview
ETH Balance
0.006835787717939633 ETH
Eth Value
$26.46 (@ $3,870.69/ETH)More Info
Private Name Tags
ContractCreator
Latest 9 from a total of 9 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Transfer | 18228636 | 434 days ago | IN | 0.00683578 ETH | 0.00052173 | ||||
Deposit ETH | 17601904 | 521 days ago | IN | 0.012 ETH | 0.00345702 | ||||
Deposit ETH | 17601839 | 521 days ago | IN | 0.012 ETH | 0.00356363 | ||||
Deposit ETH | 17601799 | 521 days ago | IN | 0.012 ETH | 0.00316291 | ||||
Deposit ETH | 17601650 | 522 days ago | IN | 0.031 ETH | 0.00381998 | ||||
Deposit ETH | 17530932 | 531 days ago | IN | 0.023 ETH | 0.00480441 | ||||
Deposit ETH | 17530886 | 531 days ago | IN | 0.027 ETH | 0.00617255 | ||||
Deposit ETH | 17530464 | 532 days ago | IN | 0.031 ETH | 0.00660224 | ||||
Deposit ETH | 17530228 | 532 days ago | IN | 0.031 ETH | 0.00119303 |
Latest 8 internal transactions
Advanced mode:
Loading...
Loading
Contract Name:
ETHZapper
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 10000 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
pragma solidity ^0.8.10; import { IERC20 } from "openzeppelin-contracts/token/ERC20/IERC20.sol"; import { WETH as IWETH } from "solmate/tokens/WETH.sol"; import { MultiPoolStrategy as IMultiPoolStrategy } from "./MultiPoolStrategy.sol"; //// ERRORS error StrategyPaused(); error StrategyAssetNotWETH(); error EmptyInput(); /** * @title ETHZapper * @dev This contract allows users to deposit, withdraw, and redeem into a MultiPoolStrategy contract using native ETH. * It wraps ETH into WETH and interacts with the MultiPoolStrategy contract to perform the operations. */ contract ETHZapper { address constant WETH_ADDRESS = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; constructor() { } /** * @dev Deposits ETH into the MultiPoolStrategy contract. * @param receiver The address to receive the shares. * @param strategyAddress The address of the MultiPoolStrategy contract to deposit into . * @return shares The amount of shares received. */ function depositETH(address receiver, address strategyAddress) public payable returns (uint256 shares) { if (msg.value == 0) revert EmptyInput(); IMultiPoolStrategy multipoolStrategy = IMultiPoolStrategy(strategyAddress); if (multipoolStrategy.paused()) revert StrategyPaused(); uint256 assets = msg.value; // wrap ether and then call deposit IWETH(payable(multipoolStrategy.asset())).deposit{ value: msg.value }(); //// we need to approve the strategy to spend our WETH IERC20(multipoolStrategy.asset()).approve(address(multipoolStrategy), 0); IERC20(multipoolStrategy.asset()).approve(address(multipoolStrategy), assets); shares = multipoolStrategy.deposit(assets, address(this)); multipoolStrategy.transfer(receiver, shares); return shares; } /** * @dev Withdraws native ETH from the MultiPoolStrategy contract by assets. * @param assets The amount of ETH to withdraw. * @param receiver The address to receive the withdrawn native ETH. * @param minimumReceive The minimum amount of ETH to receive. * @param strategyAddress The address of the MultiPoolStrategy contract to withdraw from. * @return The amount of shares burned. * @notice to run this function user needs to approve the zapper to spend strategy token (shares) */ function withdrawETH( uint256 assets, address receiver, uint256 minimumReceive, address strategyAddress ) public returns (uint256) { if (assets == 0) revert EmptyInput(); if (!strategyUsesWETH(strategyAddress)) revert StrategyAssetNotWETH(); IMultiPoolStrategy multipoolStrategy = IMultiPoolStrategy(strategyAddress); /// withdraw from strategy and get WETH uint256 shares = multipoolStrategy.withdraw(assets, address(this), msg.sender, minimumReceive); /// unwrap WETH to ETH and send to receiver IWETH(payable(multipoolStrategy.asset())).withdraw(assets); payable(address(receiver)).transfer(assets); return shares; } /** * @dev Withdraws native ETH from the MultiPoolStrategy contract by shares (redeem). * @param shares The amount of shares to redeem. * @param receiver The address to receive the redeemed ETH. * @param minimumReceive The minimum amount of ETH to receive. * @param strategyAddress The address of the MultiPoolStrategy contract to redeem from. * @return The amount of redeemed ETH received. * @notice to run this function user needs to approve the zapper to spend strategy token (shares) */ function redeemETH( uint256 shares, address receiver, uint256 minimumReceive, address strategyAddress ) public returns (uint256) { if (shares == 0) revert EmptyInput(); if (!strategyUsesWETH(strategyAddress)) revert StrategyAssetNotWETH(); IMultiPoolStrategy multipoolStrategy = IMultiPoolStrategy(strategyAddress); // redeem shares and get WETH from strategy uint256 received = multipoolStrategy.redeem(shares, address(this), msg.sender, minimumReceive); // unwrap WETH to ETH and send to receiver IWETH(payable(multipoolStrategy.asset())).withdraw(received); payable(address(receiver)).transfer(received); return received; } /** * @dev Checks if the MultiPoolStrategy contract uses WETH as its asset. * @param strategyAddress The address of the MultiPoolStrategy contract to check. * @return True if the MultiPoolStrategy contract uses WETH as its asset, false otherwise. */ function strategyUsesWETH(address strategyAddress) public view returns (bool) { IMultiPoolStrategy multipoolStrategy = IMultiPoolStrategy(strategyAddress); return multipoolStrategy.asset() == address(WETH_ADDRESS); } receive() external payable { } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "./ERC20.sol"; import {SafeTransferLib} from "../utils/SafeTransferLib.sol"; /// @notice Minimalist and modern Wrapped Ether implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/WETH.sol) /// @author Inspired by WETH9 (https://github.com/dapphub/ds-weth/blob/master/src/weth9.sol) contract WETH is ERC20("Wrapped Ether", "WETH", 18) { using SafeTransferLib for address; event Deposit(address indexed from, uint256 amount); event Withdrawal(address indexed to, uint256 amount); function deposit() public payable virtual { _mint(msg.sender, msg.value); emit Deposit(msg.sender, msg.value); } function withdraw(uint256 amount) public virtual { _burn(msg.sender, amount); emit Withdrawal(msg.sender, amount); msg.sender.safeTransferETH(amount); } receive() external payable virtual { deposit(); } }
pragma solidity ^0.8.10; import { Initializable } from "openzeppelin-contracts/proxy/utils/Initializable.sol"; import { ERC4626Upgradeable } from "openzeppelin-contracts-upgradeable/token/ERC20/extensions/ERC4626Upgradeable.sol"; import { IERC20Upgradeable } from "openzeppelin-contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol"; import { OwnableUpgradeable } from "openzeppelin-contracts-upgradeable/access/OwnableUpgradeable.sol"; import { IAdapter } from "./interfaces/IAdapter.sol"; import { IERC20UpgradeableDetailed } from "./interfaces/IERC20UpgradeableDetailed.sol"; import { ERC4626UpgradeableModified } from "./ERC4626UpgradeableModified.sol"; import "solmate/utils/SafeCastLib.sol"; // TODO - implement donation attack protection contract MultiPoolStrategy is OwnableUpgradeable, ERC4626UpgradeableModified { using SafeCastLib for *; /// @notice addresses of the adapters address[] public adapters; /// @notice Mapping for the whitelisted adapters mapping(address => bool) public isAdapter; /// @notice Address of the offchain monitor address public monitor; /// @notice Interval for adjusting in uint256 public adjustInInterval; /// @notice Interval for adjusting out uint256 public adjustOutInterval; /// @notice timestamp of the last adjust in uint256 public lastAdjustIn; /// @notice timestamp of the last adjust out uint256 public lastAdjustOut; /// @notice Minimum percentage of assets that must be in this contract uint256 public minPercentage; // 10000 = 100% /// @notice Percentage of the fee uint256 public feePercentage; // 10000 = 100% /// @notice Address of the fee recipient address public feeRecipient; /// @notice Flag for pausing the contract bool public paused; /// @notice the maximum length of a rewards cycle uint32 public rewardsCycleLength; /// @notice the effective start of the current cycle uint32 public lastSync; /// @notice the end of the current cycle. Will always be evenly divisible by `rewardsCycleLength`. uint32 public rewardsCycleEnd; /// @notice the amount of rewards distributed in a the most recent cycle. uint192 public lastRewardAmount; uint256 public storedTotalAssets; /// @notice Address of the LIFI diamond address public constant LIFI_DIAMOND = 0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE; //// ERRORS error Unauthorized(); error AdjustmentWrong(); error SwapFailed(); error AdapterIsNotEmpty(); error WithdrawTooLow(); error AdapterNotHealthy(); error StrategyPaused(); error AdapterAlreadyAdded(); /// @dev thrown when syncing before cycle ends. error SyncError(); ///STRUCTS struct Adjust { address adapter; uint256 amount; uint256 minReceive; } struct SwapData { address token; uint256 amount; bytes callData; } /// EVENTS event HardWork(uint256 totalClaimed, uint256 fee); /// @dev emit every time a new rewards cycle starts event NewRewardsCycle(uint32 indexed cycleEnd, uint256 rewardAmount); /// @dev The contract automatically disables initializers when deployed so that nobody can highjack the /// implementation contract. constructor() { _disableInitializers(); } /** * * @param _stakingToken address of the underlying token * @param _monitor address of the monitor */ function initalize(address _stakingToken, address _monitor) public initializer { __Ownable_init_unchained(); __ERC20_init_unchained( string(abi.encodePacked(IERC20UpgradeableDetailed(_stakingToken).name(), " MultiPoolStrategy")), string(abi.encodePacked("mp", IERC20UpgradeableDetailed(_stakingToken).symbol())) ); __ERC4626_init(IERC20Upgradeable(_stakingToken)); monitor = _monitor; adjustInInterval = 6 hours; minPercentage = 500; // 5% rewardsCycleLength = 7 days; feePercentage = 1000; // 10% } /// OVERRIDEN FUNCTIONS /** * @notice Fetch all the underlying balances including this contract */ function totalAssets() public view override returns (uint256) { // cache global vars uint256 storedTotalAssets_ = storedTotalAssets; uint192 lastRewardAmount_ = lastRewardAmount; uint32 rewardsCycleEnd_ = rewardsCycleEnd; uint32 lastSync_ = lastSync; uint256 total = 0; for (uint256 i = 0; i < adapters.length; i++) { total += IAdapter(adapters[i]).underlyingBalance(); } if (block.timestamp >= rewardsCycleEnd_) { // no rewards or rewards fully unlocked // entire reward amount is available return storedTotalAssets_ + lastRewardAmount_ + total; } // rewards not fully unlocked // add unlocked rewards to stored total uint256 unlockedRewards = (lastRewardAmount_ * (block.timestamp - lastSync_)) / (rewardsCycleEnd_ - lastSync_); return storedTotalAssets_ + unlockedRewards + total; } function deposit(uint256 assets, address receiver) public override returns (uint256 shares) { if (paused) revert StrategyPaused(); address[] memory _adapters = adapters; // SSTORE for (uint256 i = 0; i < _adapters.length; i++) { bool isHealthy = IAdapter(_adapters[i]).isHealthy(); if (!isHealthy) revert AdapterNotHealthy(); } shares = super.deposit(assets, receiver); storedTotalAssets += assets; return shares; } /** * @dev See {IERC4626-withdraw}. */ function withdraw( uint256 assets, address receiver, address owner, uint256 minimumReceive ) public override returns (uint256) { require(assets <= maxWithdraw(owner), "ERC4626: withdraw more than max"); uint256 shares = previewWithdraw(assets); uint256 currBal = IERC20Upgradeable(asset()).balanceOf(address(this)); // in the contract if (assets > currBal) { assets = _withdrawFromAdapter(assets, currBal, minimumReceive); } else { storedTotalAssets -= assets; } _withdraw(_msgSender(), receiver, owner, assets, shares); return shares; } function redeem( uint256 shares, address receiver, address owner, uint256 minimumReceive ) public override returns (uint256) { require(shares <= maxRedeem(owner), "ERC4626: redeem more than max"); uint256 assets = previewRedeem(shares); uint256 currBal = IERC20Upgradeable(asset()).balanceOf(address(this)); if (assets > currBal) { assets = _withdrawFromAdapter(assets, currBal, minimumReceive); } else { storedTotalAssets -= assets; } _withdraw(_msgSender(), receiver, owner, assets, shares); return assets; } /** * @dev Withdraws tokens from the adapter in the case of assets amount being greater than the current balance. * @param assets amount of assets to withdraw * @param currBal current balance of the contract * @param minimumReceive minimum amount of assets to receive */ function _withdrawFromAdapter(uint256 assets, uint256 currBal, uint256 minimumReceive) internal returns (uint256) { address[] memory _adapters = adapters; // SSTORE Adjust[] memory _adjustOuts = new Adjust[](adapters.length); //init with worst case scenario uint256 _assets = assets - currBal; uint256 adaptersLength = adapters.length; for (uint256 i = adaptersLength; i > 0;) { uint256 _adapterAssets = IAdapter(_adapters[i - 1]).underlyingBalance(); if (_adapterAssets > 0) { uint256 lpBal = IAdapter(_adapters[i - 1]).lpBalance(); // check the lpbalance of the adapter uint256 _amount = _assets > _adapterAssets ? _adapterAssets : _assets; // check if the underlying asset // amount in adapter is greater than the assets to be withdrawn uint256 _lpAmount = (_amount * 10 ** decimals() / _adapterAssets) * lpBal / (10 ** decimals()); // calculate // the lp amount to be withdrawn based on asset amount _adjustOuts[i - 1] = Adjust({ adapter: _adapters[i - 1], amount: _lpAmount, minReceive: 0 }); _assets -= _amount; if (_assets == 0) break; } unchecked { --i; } } for (uint256 i = _adjustOuts.length; i > 0;) { if (_adjustOuts[i - 1].adapter != address(0)) { IAdapter(_adjustOuts[i - 1].adapter).withdraw(_adjustOuts[i - 1].amount, _adjustOuts[i - 1].minReceive); } else { break; } unchecked { --i; } } assets = IERC20Upgradeable(asset()).balanceOf(address(this)); if (assets < minimumReceive) revert WithdrawTooLow(); storedTotalAssets = 0; // withdraw all assets from this contract return assets; } /// ADMIN FUNCTIONS /** * @notice Adjust the underlying assets either out from adapters or in to adapters.Total adjust out amount must be * smaller/equal to storedTotalAssets - (storedTotalAssets * minPercentage / 10000) * @param _adjustIns List of AdjustIn structs * @param _adjustOuts List of AdjustOut structs * @param _sortedAdapters List of adapters sorted by lowest tvl to highest tvl */ function adjust( Adjust[] calldata _adjustIns, Adjust[] calldata _adjustOuts, address[] calldata _sortedAdapters ) external { if ((_msgSender() != monitor && paused) || (_msgSender() != owner() && !paused)) revert Unauthorized(); uint256 adjustOutLength = _adjustOuts.length; if (adjustOutLength > 0 && block.timestamp - lastAdjustOut > adjustOutInterval) { uint256 balBefore = IERC20Upgradeable(asset()).balanceOf(address(this)); for (uint256 i = 0; i < adjustOutLength; i++) { IAdapter(_adjustOuts[i].adapter).withdraw(_adjustOuts[i].amount, _adjustOuts[i].minReceive); } uint256 balAfter = IERC20Upgradeable(asset()).balanceOf(address(this)); storedTotalAssets += (balAfter - balBefore); // add the assets back to the contract lastAdjustOut = block.timestamp; } uint256 adjustInLength = _adjustIns.length; if (adjustInLength > 0 && block.timestamp - lastAdjustIn > adjustInInterval) { uint256 totalOut; for (uint256 i = 0; i < adjustInLength; i++) { if (!isAdapter[_adjustIns[i].adapter]) revert Unauthorized(); IERC20Upgradeable(asset()).transfer(_adjustIns[i].adapter, _adjustIns[i].amount); IAdapter(_adjustIns[i].adapter).deposit(_adjustIns[i].amount, _adjustIns[i].minReceive); totalOut += _adjustIns[i].amount; } storedTotalAssets -= totalOut; // remove the assets from the contract lastAdjustIn = block.timestamp; } uint256 _totalAssets = totalAssets(); if (storedTotalAssets < _totalAssets * minPercentage / 10_000) { revert AdjustmentWrong(); } if (_sortedAdapters.length > 0) adapters = _sortedAdapters; } /** * @notice Claim rewards from the adapters and swap them for the underlying asset. Only callable once per reward * cycle. Can be callable by monitor or owner. * @param _adaptersToClaim List of adapters to claim from * @param _swapDatas List of SwapData structs */ function doHardWork(address[] calldata _adaptersToClaim, SwapData[] calldata _swapDatas) external { if (_msgSender() != monitor || _msgSender() != owner()) revert Unauthorized(); for (uint256 i = 0; i < _adaptersToClaim.length; i++) { IAdapter(_adaptersToClaim[i]).claim(); } uint256 underlyingBalanceBefore = IERC20Upgradeable(asset()).balanceOf(address(this)); for (uint256 i = 0; i < _swapDatas.length; i++) { IERC20Upgradeable(_swapDatas[i].token).approve(LIFI_DIAMOND, 0); IERC20Upgradeable(_swapDatas[i].token).approve(LIFI_DIAMOND, _swapDatas[i].amount); (bool success,) = LIFI_DIAMOND.call(_swapDatas[i].callData); if (!success) revert SwapFailed(); unchecked { ++i; } } uint256 underlyingBalanceAfter = IERC20Upgradeable(asset()).balanceOf(address(this)); uint256 totalClaimed = underlyingBalanceAfter - underlyingBalanceBefore; uint256 fee; if (totalClaimed > 0) { fee = totalClaimed * feePercentage / 10_000; if (fee > 0) { IERC20Upgradeable(asset()).transfer(feeRecipient, fee); } } uint256 rewardAmount = totalClaimed - fee; _syncRewards(rewardAmount); emit HardWork(totalClaimed, fee); } /// @notice Distributes rewards to xERC4626 holders. /// All surplus `asset` balance of the contract over the internal balance becomes queued for the next cycle. function _syncRewards(uint256 nextRewards) internal { uint192 lastRewardAmount_ = lastRewardAmount; uint32 timestamp = block.timestamp.safeCastTo32(); if (timestamp < rewardsCycleEnd) revert SyncError(); uint256 storedTotalAssets_ = storedTotalAssets; storedTotalAssets = storedTotalAssets_ + lastRewardAmount_; // SSTORE uint32 end = ((timestamp + rewardsCycleLength) / rewardsCycleLength) * rewardsCycleLength; if (end - timestamp < rewardsCycleLength / 20) { end += rewardsCycleLength; } // Combined single SSTORE lastRewardAmount = nextRewards.safeCastTo192(); lastSync = timestamp; rewardsCycleEnd = end; emit NewRewardsCycle(end, nextRewards); } /** * @notice Add an adapter to the list of adapters * @param _adapter Address of the adapter to add */ function addAdapter(address _adapter) external onlyOwner { if (isAdapter[_adapter]) revert AdapterAlreadyAdded(); isAdapter[_adapter] = true; adapters.push(_adapter); } /** * @notice Add multiple adapters to the list of adapters * @param _adapters Addresses of the adapters to add */ function addAdapters(address[] calldata _adapters) external onlyOwner { for (uint256 i = 0; i < _adapters.length; i++) { if (isAdapter[_adapters[i]]) revert AdapterAlreadyAdded(); isAdapter[_adapters[i]] = true; adapters.push(_adapters[i]); } } /** * @notice Remove an adapter from the list of adapters * @param _adapter Address of the adapter to remove */ function removeAdapter(address _adapter) external onlyOwner { if (IAdapter(_adapter).underlyingBalance() > 0) revert AdapterIsNotEmpty(); isAdapter[_adapter] = false; for (uint256 i = 0; i < adapters.length; i++) { if (adapters[i] == _adapter) { adapters[i] = adapters[adapters.length - 1]; adapters.pop(); break; } } } /** * @notice Set the minimum percentage of assets that will be in this contract as idle for cheaper withdrawals * @param _minPercentage 10000 = 100% */ function setMinimumPercentage(uint256 _minPercentage) external onlyOwner { minPercentage = _minPercentage; } /** * @notice Set the monitor address * @param _monitor Address of the monitor */ function setMonitor(address _monitor) external onlyOwner { monitor = _monitor; } /** * @notice Change interval for adjusting in to adapters * @param _adjustInInterval New interval in seconds */ function changeAdjustInInterval(uint256 _adjustInInterval) external onlyOwner { adjustInInterval = _adjustInInterval; } /** * @notice Change interval for adjusting out from adapters * @param _adjustOutInterval New interval in seconds */ function changeAdjustOutInterval(uint256 _adjustOutInterval) external onlyOwner { adjustOutInterval = _adjustOutInterval; } /** * @notice Pause the strategy */ function togglePause() external onlyOwner { paused = !paused; } /** * @notice change the adapter health factor. Health factor indicates how much of the underlying pool of adapter lost * it's ratio * @param _adapter Address of the adapter * @param _healthFactor New health factor for the adapter. 10000 = 100% */ function changeAdapterHealthFactor(address _adapter, uint256 _healthFactor) external onlyOwner { require(_healthFactor <= 10_000, "Health factor can't be more than 100%"); IAdapter(_adapter).setHealthFactor(_healthFactor); } /** * @notice Change the fee percentage * @param _feePercentage New fee percentage. 10000 = 100% */ function changeFeePercentage(uint256 _feePercentage) external onlyOwner { feePercentage = _feePercentage; } /** * @notice Change the fee recipient * @param _feeRecipient New fee recipient */ function changeFeeRecipient(address _feeRecipient) external onlyOwner { feeRecipient = _feeRecipient; } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\x19\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument. mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.1) (token/ERC20/extensions/ERC4626.sol) pragma solidity ^0.8.0; import "../ERC20Upgradeable.sol"; import "../utils/SafeERC20Upgradeable.sol"; import "../../../interfaces/IERC4626Upgradeable.sol"; import "../../../utils/math/MathUpgradeable.sol"; import "../../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the ERC4626 "Tokenized Vault Standard" as defined in * https://eips.ethereum.org/EIPS/eip-4626[EIP-4626]. * * This extension allows the minting and burning of "shares" (represented using the ERC20 inheritance) in exchange for * underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends * the ERC20 standard. Any additional extensions included along it would affect the "shares" token represented by this * contract and not the "assets" token which is an independent contract. * * CAUTION: When the vault is empty or nearly empty, deposits are at high risk of being stolen through frontrunning with * a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation * attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial * deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may * similarly be affected by slippage. Users can protect against this attack as well unexpected slippage in general by * verifying the amount received is as expected, using a wrapper that performs these checks such as * https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router]. * * _Available since v4.7._ */ abstract contract ERC4626Upgradeable is Initializable, ERC20Upgradeable, IERC4626Upgradeable { using MathUpgradeable for uint256; IERC20Upgradeable private _asset; uint8 private _decimals; /** * @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC20 or ERC777). */ function __ERC4626_init(IERC20Upgradeable asset_) internal onlyInitializing { __ERC4626_init_unchained(asset_); } function __ERC4626_init_unchained(IERC20Upgradeable asset_) internal onlyInitializing { (bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_); _decimals = success ? assetDecimals : super.decimals(); _asset = asset_; } /** * @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way. */ function _tryGetAssetDecimals(IERC20Upgradeable asset_) private view returns (bool, uint8) { (bool success, bytes memory encodedDecimals) = address(asset_).staticcall( abi.encodeWithSelector(IERC20MetadataUpgradeable.decimals.selector) ); if (success && encodedDecimals.length >= 32) { uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256)); if (returnedDecimals <= type(uint8).max) { return (true, uint8(returnedDecimals)); } } return (false, 0); } /** * @dev Decimals are read from the underlying asset in the constructor and cached. If this fails (e.g., the asset * has not been created yet), the cached value is set to a default obtained by `super.decimals()` (which depends on * inheritance but is most likely 18). Override this function in order to set a guaranteed hardcoded value. * See {IERC20Metadata-decimals}. */ function decimals() public view virtual override(IERC20MetadataUpgradeable, ERC20Upgradeable) returns (uint8) { return _decimals; } /** @dev See {IERC4626-asset}. */ function asset() public view virtual override returns (address) { return address(_asset); } /** @dev See {IERC4626-totalAssets}. */ function totalAssets() public view virtual override returns (uint256) { return _asset.balanceOf(address(this)); } /** @dev See {IERC4626-convertToShares}. */ function convertToShares(uint256 assets) public view virtual override returns (uint256 shares) { return _convertToShares(assets, MathUpgradeable.Rounding.Down); } /** @dev See {IERC4626-convertToAssets}. */ function convertToAssets(uint256 shares) public view virtual override returns (uint256 assets) { return _convertToAssets(shares, MathUpgradeable.Rounding.Down); } /** @dev See {IERC4626-maxDeposit}. */ function maxDeposit(address) public view virtual override returns (uint256) { return _isVaultCollateralized() ? type(uint256).max : 0; } /** @dev See {IERC4626-maxMint}. */ function maxMint(address) public view virtual override returns (uint256) { return type(uint256).max; } /** @dev See {IERC4626-maxWithdraw}. */ function maxWithdraw(address owner) public view virtual override returns (uint256) { return _convertToAssets(balanceOf(owner), MathUpgradeable.Rounding.Down); } /** @dev See {IERC4626-maxRedeem}. */ function maxRedeem(address owner) public view virtual override returns (uint256) { return balanceOf(owner); } /** @dev See {IERC4626-previewDeposit}. */ function previewDeposit(uint256 assets) public view virtual override returns (uint256) { return _convertToShares(assets, MathUpgradeable.Rounding.Down); } /** @dev See {IERC4626-previewMint}. */ function previewMint(uint256 shares) public view virtual override returns (uint256) { return _convertToAssets(shares, MathUpgradeable.Rounding.Up); } /** @dev See {IERC4626-previewWithdraw}. */ function previewWithdraw(uint256 assets) public view virtual override returns (uint256) { return _convertToShares(assets, MathUpgradeable.Rounding.Up); } /** @dev See {IERC4626-previewRedeem}. */ function previewRedeem(uint256 shares) public view virtual override returns (uint256) { return _convertToAssets(shares, MathUpgradeable.Rounding.Down); } /** @dev See {IERC4626-deposit}. */ function deposit(uint256 assets, address receiver) public virtual override returns (uint256) { require(assets <= maxDeposit(receiver), "ERC4626: deposit more than max"); uint256 shares = previewDeposit(assets); _deposit(_msgSender(), receiver, assets, shares); return shares; } /** @dev See {IERC4626-mint}. * * As opposed to {deposit}, minting is allowed even if the vault is in a state where the price of a share is zero. * In this case, the shares will be minted without requiring any assets to be deposited. */ function mint(uint256 shares, address receiver) public virtual override returns (uint256) { require(shares <= maxMint(receiver), "ERC4626: mint more than max"); uint256 assets = previewMint(shares); _deposit(_msgSender(), receiver, assets, shares); return assets; } /** @dev See {IERC4626-withdraw}. */ function withdraw( uint256 assets, address receiver, address owner ) public virtual override returns (uint256) { require(assets <= maxWithdraw(owner), "ERC4626: withdraw more than max"); uint256 shares = previewWithdraw(assets); _withdraw(_msgSender(), receiver, owner, assets, shares); return shares; } /** @dev See {IERC4626-redeem}. */ function redeem( uint256 shares, address receiver, address owner ) public virtual override returns (uint256) { require(shares <= maxRedeem(owner), "ERC4626: redeem more than max"); uint256 assets = previewRedeem(shares); _withdraw(_msgSender(), receiver, owner, assets, shares); return assets; } /** * @dev Internal conversion function (from assets to shares) with support for rounding direction. * * Will revert if assets > 0, totalSupply > 0 and totalAssets = 0. That corresponds to a case where any asset * would represent an infinite amount of shares. */ function _convertToShares(uint256 assets, MathUpgradeable.Rounding rounding) internal view virtual returns (uint256 shares) { uint256 supply = totalSupply(); return (assets == 0 || supply == 0) ? _initialConvertToShares(assets, rounding) : assets.mulDiv(supply, totalAssets(), rounding); } /** * @dev Internal conversion function (from assets to shares) to apply when the vault is empty. * * NOTE: Make sure to keep this function consistent with {_initialConvertToAssets} when overriding it. */ function _initialConvertToShares( uint256 assets, MathUpgradeable.Rounding /*rounding*/ ) internal view virtual returns (uint256 shares) { return assets; } /** * @dev Internal conversion function (from shares to assets) with support for rounding direction. */ function _convertToAssets(uint256 shares, MathUpgradeable.Rounding rounding) internal view virtual returns (uint256 assets) { uint256 supply = totalSupply(); return (supply == 0) ? _initialConvertToAssets(shares, rounding) : shares.mulDiv(totalAssets(), supply, rounding); } /** * @dev Internal conversion function (from shares to assets) to apply when the vault is empty. * * NOTE: Make sure to keep this function consistent with {_initialConvertToShares} when overriding it. */ function _initialConvertToAssets( uint256 shares, MathUpgradeable.Rounding /*rounding*/ ) internal view virtual returns (uint256 assets) { return shares; } /** * @dev Deposit/mint common workflow. */ function _deposit( address caller, address receiver, uint256 assets, uint256 shares ) internal virtual { // If _asset is ERC777, `transferFrom` can trigger a reenterancy BEFORE the transfer happens through the // `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer, // calls the vault, which is assumed not malicious. // // Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the // assets are transferred and before the shares are minted, which is a valid state. // slither-disable-next-line reentrancy-no-eth SafeERC20Upgradeable.safeTransferFrom(_asset, caller, address(this), assets); _mint(receiver, shares); emit Deposit(caller, receiver, assets, shares); } /** * @dev Withdraw/redeem common workflow. */ function _withdraw( address caller, address receiver, address owner, uint256 assets, uint256 shares ) internal virtual { if (caller != owner) { _spendAllowance(owner, caller, shares); } // If _asset is ERC777, `transfer` can trigger a reentrancy AFTER the transfer happens through the // `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer, // calls the vault, which is assumed not malicious. // // Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the // shares are burned and after the assets are transferred, which is a valid state. _burn(owner, shares); SafeERC20Upgradeable.safeTransfer(_asset, receiver, assets); emit Withdraw(caller, receiver, owner, assets, shares); } /** * @dev Checks if vault is "healthy" in the sense of having assets backing the circulating shares. */ function _isVaultCollateralized() private view returns (bool) { return totalAssets() > 0 || totalSupply() == 0; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
pragma solidity ^0.8.10; interface IAdapter { struct RewardData { address token; uint256 amount; } function underlyingBalance() external view returns (uint256); function withdraw(uint256, uint256) external; function deposit(uint256, uint256) external; function claim() external; function lpBalance() external view returns (uint256); function totalClaimable() external view returns (RewardData[] memory); function isHealthy() external view returns (bool); function setHealthFactor(uint256 _newHealthFactor) external; }
pragma solidity ^0.8.10; import { IERC20Upgradeable } from "openzeppelin-contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol"; interface IERC20UpgradeableDetailed is IERC20Upgradeable { function name() external view returns (string memory); function symbol() external view returns (string memory); }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import "openzeppelin-contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol"; import { SafeERC20Upgradeable } from "openzeppelin-contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol"; import "openzeppelin-contracts-upgradeable/utils/math/MathUpgradeable.sol"; import "./interfaces/IERC4626.sol"; /// @dev Implementation of the ERC4626 "Tokenized Vault Standard" /// @author Openzeppelin abstract contract ERC4626UpgradeableModified is Initializable, ERC20Upgradeable, IERC4626Upgradeable { using MathUpgradeable for uint256; IERC20Upgradeable private _asset; uint8 private _decimals; /** * @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC20 or ERC777). */ function __ERC4626_init(IERC20Upgradeable asset_) internal onlyInitializing { __ERC4626_init_unchained(asset_); } function __ERC4626_init_unchained(IERC20Upgradeable asset_) internal onlyInitializing { (bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_); _decimals = success ? assetDecimals : super.decimals(); _asset = asset_; } /** * @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way. */ function _tryGetAssetDecimals(IERC20Upgradeable asset_) private view returns (bool, uint8) { (bool success, bytes memory encodedDecimals) = address(asset_).staticcall(abi.encodeWithSelector(IERC20MetadataUpgradeable.decimals.selector)); if (success && encodedDecimals.length >= 32) { uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256)); if (returnedDecimals <= type(uint8).max) { return (true, uint8(returnedDecimals)); } } return (false, 0); } /** * @dev Decimals are read from the underlying asset in the constructor and cached. If this fails (e.g., the asset * has not been created yet), the cached value is set to a default obtained by `super.decimals()` (which depends on * inheritance but is most likely 18). Override this function in order to set a guaranteed hardcoded value. * See {IERC20Metadata-decimals}. */ function decimals() public view virtual override(IERC20MetadataUpgradeable, ERC20Upgradeable) returns (uint8) { return _decimals; } /** * @dev See {IERC4626-asset}. */ function asset() public view virtual override returns (address) { return address(_asset); } /** * @dev See {IERC4626-totalAssets}. */ function totalAssets() public view virtual override returns (uint256) { return _asset.balanceOf(address(this)); } /** * @dev See {IERC4626-convertToShares}. */ function convertToShares(uint256 assets) public view virtual override returns (uint256 shares) { return _convertToShares(assets, MathUpgradeable.Rounding.Down); } /** * @dev See {IERC4626-convertToAssets}. */ function convertToAssets(uint256 shares) public view virtual override returns (uint256 assets) { return _convertToAssets(shares, MathUpgradeable.Rounding.Down); } /** * @dev See {IERC4626-maxDeposit}. */ function maxDeposit(address) public view virtual override returns (uint256) { return _isVaultCollateralized() ? type(uint256).max : 0; } /** * @dev See {IERC4626-maxMint}. */ function maxMint(address) public view virtual override returns (uint256) { return type(uint256).max; } /** * @dev See {IERC4626-maxWithdraw}. */ function maxWithdraw(address owner) public view virtual override returns (uint256) { return _convertToAssets(balanceOf(owner), MathUpgradeable.Rounding.Down); } /** * @dev See {IERC4626-maxRedeem}. */ function maxRedeem(address owner) public view virtual override returns (uint256) { return balanceOf(owner); } /** * @dev See {IERC4626-previewDeposit}. */ function previewDeposit(uint256 assets) public view virtual override returns (uint256) { return _convertToShares(assets, MathUpgradeable.Rounding.Down); } /** * @dev See {IERC4626-previewMint}. */ function previewMint(uint256 shares) public view virtual override returns (uint256) { return _convertToAssets(shares, MathUpgradeable.Rounding.Up); } /** * @dev See {IERC4626-previewWithdraw}. */ function previewWithdraw(uint256 assets) public view virtual override returns (uint256) { return _convertToShares(assets, MathUpgradeable.Rounding.Up); } /** * @dev See {IERC4626-previewRedeem}. */ function previewRedeem(uint256 shares) public view virtual override returns (uint256) { return _convertToAssets(shares, MathUpgradeable.Rounding.Down); } /** * @dev See {IERC4626-deposit}. */ function deposit(uint256 assets, address receiver) public virtual override returns (uint256) { require(assets <= maxDeposit(receiver), "ERC4626: deposit more than max"); uint256 shares = previewDeposit(assets); _deposit(_msgSender(), receiver, assets, shares); return shares; } /** * @dev See {IERC4626-withdraw}. */ function withdraw( uint256 assets, address receiver, address owner, uint256 minimumReceive ) public virtual override returns (uint256) { require(assets <= maxWithdraw(owner), "ERC4626: withdraw more than max"); uint256 shares = previewWithdraw(assets); _withdraw(_msgSender(), receiver, owner, assets, shares); return shares; } /** * @dev See {IERC4626-redeem}. */ function redeem( uint256 shares, address receiver, address owner, uint256 minimumReceive ) public virtual override returns (uint256) { require(shares <= maxRedeem(owner), "ERC4626: redeem more than max"); uint256 assets = previewRedeem(shares); _withdraw(_msgSender(), receiver, owner, assets, shares); return assets; } /** * @dev Internal conversion function (from assets to shares) with support for rounding direction. * * Will revert if assets > 0, totalSupply > 0 and totalAssets = 0. That corresponds to a case where any asset * would represent an infinite amount of shares. */ function _convertToShares( uint256 assets, MathUpgradeable.Rounding rounding ) internal view virtual returns (uint256 shares) { uint256 supply = totalSupply(); return (assets == 0 || supply == 0) ? _initialConvertToShares(assets, rounding) : assets.mulDiv(supply, totalAssets(), rounding); } /** * @dev Internal conversion function (from assets to shares) to apply when the vault is empty. * * NOTE: Make sure to keep this function consistent with {_initialConvertToAssets} when overriding it. */ function _initialConvertToShares( uint256 assets, MathUpgradeable.Rounding /*rounding*/ ) internal view virtual returns (uint256 shares) { return assets; } /** * @dev Internal conversion function (from shares to assets) with support for rounding direction. */ function _convertToAssets( uint256 shares, MathUpgradeable.Rounding rounding ) internal view virtual returns (uint256 assets) { uint256 supply = totalSupply(); return (supply == 0) ? _initialConvertToAssets(shares, rounding) : shares.mulDiv(totalAssets(), supply, rounding); } /** * @dev Internal conversion function (from shares to assets) to apply when the vault is empty. * * NOTE: Make sure to keep this function consistent with {_initialConvertToShares} when overriding it. */ function _initialConvertToAssets( uint256 shares, MathUpgradeable.Rounding /*rounding*/ ) internal view virtual returns (uint256 assets) { return shares; } /** * @dev Deposit/mint common workflow. */ function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual { // If _asset is ERC777, `transferFrom` can trigger a reenterancy BEFORE the transfer happens through the // `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer, // calls the vault, which is assumed not malicious. // // Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the // assets are transferred and before the shares are minted, which is a valid state. // slither-disable-next-line reentrancy-no-eth SafeERC20Upgradeable.safeTransferFrom(_asset, caller, address(this), assets); _mint(receiver, shares); emit Deposit(caller, receiver, assets, shares); } /** * @dev Withdraw/redeem common workflow. */ function _withdraw( address caller, address receiver, address owner, uint256 assets, uint256 shares ) internal virtual { if (caller != owner) { _spendAllowance(owner, caller, shares); } // If _asset is ERC777, `transfer` can trigger a reentrancy AFTER the transfer happens through the // `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer, // calls the vault, which is assumed not malicious. // // Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the // shares are burned and after the assets are transferred, which is a valid state. _burn(owner, shares); SafeERC20Upgradeable.safeTransfer(_asset, receiver, assets); emit Withdraw(caller, receiver, owner, assets, shares); } /** * @dev Checks if vault is "healthy" in the sense of having assets backing the circulating shares. */ function _isVaultCollateralized() private view returns (bool) { return totalAssets() > 0 || totalSupply() == 0; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Safe unsigned integer casting library that reverts on overflow. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeCastLib.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol) library SafeCastLib { function safeCastTo248(uint256 x) internal pure returns (uint248 y) { require(x < 1 << 248); y = uint248(x); } function safeCastTo240(uint256 x) internal pure returns (uint240 y) { require(x < 1 << 240); y = uint240(x); } function safeCastTo232(uint256 x) internal pure returns (uint232 y) { require(x < 1 << 232); y = uint232(x); } function safeCastTo224(uint256 x) internal pure returns (uint224 y) { require(x < 1 << 224); y = uint224(x); } function safeCastTo216(uint256 x) internal pure returns (uint216 y) { require(x < 1 << 216); y = uint216(x); } function safeCastTo208(uint256 x) internal pure returns (uint208 y) { require(x < 1 << 208); y = uint208(x); } function safeCastTo200(uint256 x) internal pure returns (uint200 y) { require(x < 1 << 200); y = uint200(x); } function safeCastTo192(uint256 x) internal pure returns (uint192 y) { require(x < 1 << 192); y = uint192(x); } function safeCastTo184(uint256 x) internal pure returns (uint184 y) { require(x < 1 << 184); y = uint184(x); } function safeCastTo176(uint256 x) internal pure returns (uint176 y) { require(x < 1 << 176); y = uint176(x); } function safeCastTo168(uint256 x) internal pure returns (uint168 y) { require(x < 1 << 168); y = uint168(x); } function safeCastTo160(uint256 x) internal pure returns (uint160 y) { require(x < 1 << 160); y = uint160(x); } function safeCastTo152(uint256 x) internal pure returns (uint152 y) { require(x < 1 << 152); y = uint152(x); } function safeCastTo144(uint256 x) internal pure returns (uint144 y) { require(x < 1 << 144); y = uint144(x); } function safeCastTo136(uint256 x) internal pure returns (uint136 y) { require(x < 1 << 136); y = uint136(x); } function safeCastTo128(uint256 x) internal pure returns (uint128 y) { require(x < 1 << 128); y = uint128(x); } function safeCastTo120(uint256 x) internal pure returns (uint120 y) { require(x < 1 << 120); y = uint120(x); } function safeCastTo112(uint256 x) internal pure returns (uint112 y) { require(x < 1 << 112); y = uint112(x); } function safeCastTo104(uint256 x) internal pure returns (uint104 y) { require(x < 1 << 104); y = uint104(x); } function safeCastTo96(uint256 x) internal pure returns (uint96 y) { require(x < 1 << 96); y = uint96(x); } function safeCastTo88(uint256 x) internal pure returns (uint88 y) { require(x < 1 << 88); y = uint88(x); } function safeCastTo80(uint256 x) internal pure returns (uint80 y) { require(x < 1 << 80); y = uint80(x); } function safeCastTo72(uint256 x) internal pure returns (uint72 y) { require(x < 1 << 72); y = uint72(x); } function safeCastTo64(uint256 x) internal pure returns (uint64 y) { require(x < 1 << 64); y = uint64(x); } function safeCastTo56(uint256 x) internal pure returns (uint56 y) { require(x < 1 << 56); y = uint56(x); } function safeCastTo48(uint256 x) internal pure returns (uint48 y) { require(x < 1 << 48); y = uint48(x); } function safeCastTo40(uint256 x) internal pure returns (uint40 y) { require(x < 1 << 40); y = uint40(x); } function safeCastTo32(uint256 x) internal pure returns (uint32 y) { require(x < 1 << 32); y = uint32(x); } function safeCastTo24(uint256 x) internal pure returns (uint24 y) { require(x < 1 << 24); y = uint24(x); } function safeCastTo16(uint256 x) internal pure returns (uint16 y) { require(x < 1 << 16); y = uint16(x); } function safeCastTo8(uint256 x) internal pure returns (uint8 y) { require(x < 1 << 8); y = uint8(x); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20Upgradeable.sol"; import "./extensions/IERC20MetadataUpgradeable.sol"; import "../../utils/ContextUpgradeable.sol"; import "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing { __ERC20_init_unchained(name_, symbol_); } function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[45] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20Upgradeable.sol"; import "../extensions/draft-IERC20PermitUpgradeable.sol"; import "../../../utils/AddressUpgradeable.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20Upgradeable { using AddressUpgradeable for address; function safeTransfer( IERC20Upgradeable token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20Upgradeable token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20Upgradeable token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20Upgradeable token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20Upgradeable token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20PermitUpgradeable token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (interfaces/IERC4626.sol) pragma solidity ^0.8.0; import "../token/ERC20/IERC20Upgradeable.sol"; import "../token/ERC20/extensions/IERC20MetadataUpgradeable.sol"; /** * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626]. * * _Available since v4.7._ */ interface IERC4626Upgradeable is IERC20Upgradeable, IERC20MetadataUpgradeable { event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares); event Withdraw( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /** * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing. * * - MUST be an ERC-20 token contract. * - MUST NOT revert. */ function asset() external view returns (address assetTokenAddress); /** * @dev Returns the total amount of the underlying asset that is “managed” by Vault. * * - SHOULD include any compounding that occurs from yield. * - MUST be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT revert. */ function totalAssets() external view returns (uint256 totalManagedAssets); /** * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToShares(uint256 assets) external view returns (uint256 shares); /** * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToAssets(uint256 shares) external view returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver, * through a deposit call. * * - MUST return a limited value if receiver is subject to some deposit limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited. * - MUST NOT revert. */ function maxDeposit(address receiver) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given * current on-chain conditions. * * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called * in the same transaction. * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the * deposit would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewDeposit(uint256 assets) external view returns (uint256 shares); /** * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * deposit execution, and are accounted for during deposit. * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function deposit(uint256 assets, address receiver) external returns (uint256 shares); /** * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call. * - MUST return a limited value if receiver is subject to some mint limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted. * - MUST NOT revert. */ function maxMint(address receiver) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given * current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the * same transaction. * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint * would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by minting. */ function previewMint(uint256 shares) external view returns (uint256 assets); /** * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint * execution, and are accounted for during mint. * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function mint(uint256 shares, address receiver) external returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the * Vault, through a withdraw call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST NOT revert. */ function maxWithdraw(address owner) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block, * given current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if * called * in the same transaction. * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though * the withdrawal would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewWithdraw(uint256 assets) external view returns (uint256 shares); /** * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * withdraw execution, and are accounted for during withdraw. * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function withdraw( uint256 assets, address receiver, address owner ) external returns (uint256 shares); /** * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault, * through a redeem call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock. * - MUST NOT revert. */ function maxRedeem(address owner) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block, * given current on-chain conditions. * * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the * same transaction. * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the * redemption would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by redeeming. */ function previewRedeem(uint256 shares) external view returns (uint256 assets); /** * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * redeem execution, and are accounted for during redeem. * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function redeem( uint256 shares, address receiver, address owner ) external returns (uint256 assets); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library MathUpgradeable { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (interfaces/IERC4626.sol) pragma solidity ^0.8.0; import "openzeppelin-contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol"; import "openzeppelin-contracts-upgradeable/token/ERC20/extensions/IERC20MetadataUpgradeable.sol"; /** * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626]. * * _Available since v4.7._ */ interface IERC4626Upgradeable is IERC20Upgradeable, IERC20MetadataUpgradeable { event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares); event Withdraw( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /** * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing. * * - MUST be an ERC-20 token contract. * - MUST NOT revert. */ function asset() external view returns (address assetTokenAddress); /** * @dev Returns the total amount of the underlying asset that is “managed” by Vault. * * - SHOULD include any compounding that occurs from yield. * - MUST be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT revert. */ function totalAssets() external view returns (uint256 totalManagedAssets); /** * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToShares(uint256 assets) external view returns (uint256 shares); /** * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToAssets(uint256 shares) external view returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver, * through a deposit call. * * - MUST return a limited value if receiver is subject to some deposit limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited. * - MUST NOT revert. */ function maxDeposit(address receiver) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given * current on-chain conditions. * * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called * in the same transaction. * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the * deposit would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewDeposit(uint256 assets) external view returns (uint256 shares); /** * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * deposit execution, and are accounted for during deposit. * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function deposit(uint256 assets, address receiver) external returns (uint256 shares); /** * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call. * - MUST return a limited value if receiver is subject to some mint limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted. * - MUST NOT revert. */ function maxMint(address receiver) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given * current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the * same transaction. * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint * would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by minting. */ function previewMint(uint256 shares) external view returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the * Vault, through a withdraw call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST NOT revert. */ function maxWithdraw(address owner) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block, * given current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if * called * in the same transaction. * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though * the withdrawal would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewWithdraw(uint256 assets) external view returns (uint256 shares); /** * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * withdraw execution, and are accounted for during withdraw. * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function withdraw( uint256 assets, address receiver, address owner, uint256 minimumReceive ) external returns (uint256 shares); /** * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault, * through a redeem call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock. * - MUST NOT revert. */ function maxRedeem(address owner) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block, * given current on-chain conditions. * * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the * same transaction. * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the * redemption would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by redeeming. */ function previewRedeem(uint256 shares) external view returns (uint256 assets); /** * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * redeem execution, and are accounted for during redeem. * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function redeem( uint256 shares, address receiver, address owner, uint256 minimumReceive ) external returns (uint256 assets); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20Upgradeable.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20MetadataUpgradeable is IERC20Upgradeable { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20PermitUpgradeable { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
{ "remappings": [ "@prb/test/=lib/prb-test/src/", "ERC4626/=lib/ERC4626/src/", "ds-test/=lib/forge-std/lib/ds-test/src/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/", "pool-weighted/=node_modules/@balancer-labs/v2-pool-weighted/contracts/", "prb-test/=lib/prb-test/src/", "solmate/=lib/solmate/src/", "src/=src/" ], "optimizer": { "enabled": true, "runs": 10000 }, "metadata": { "bytecodeHash": "none", "appendCBOR": false }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"EmptyInput","type":"error"},{"inputs":[],"name":"StrategyAssetNotWETH","type":"error"},{"inputs":[],"name":"StrategyPaused","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"strategyAddress","type":"address"}],"name":"depositETH","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"minimumReceive","type":"uint256"},{"internalType":"address","name":"strategyAddress","type":"address"}],"name":"redeemETH","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"strategyAddress","type":"address"}],"name":"strategyUsesWETH","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"minimumReceive","type":"uint256"},{"internalType":"address","name":"strategyAddress","type":"address"}],"name":"withdrawETH","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
608060405234801561001057600080fd5b50610c68806100206000396000f3fe6080604052600436106100435760003560e01c8063693201411461004f57806370a8fe2314610082578063734029bf146100a257806378d548ec146100b557600080fd5b3661004a57005b600080fd5b34801561005b57600080fd5b5061006f61006a366004610b69565b6100e5565b6040519081526020015b60405180910390f35b34801561008e57600080fd5b5061006f61009d366004610b69565b610334565b61006f6100b0366004610bb3565b610578565b3480156100c157600080fd5b506100d56100d0366004610bec565b610a86565b6040519015158152602001610079565b600084600003610121576040517fa447fc5300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61012a82610a86565b610160576040517f942eb82d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517fa318c1a40000000000000000000000000000000000000000000000000000000081526004810186905230602482015233604482015260648101849052829060009073ffffffffffffffffffffffffffffffffffffffff83169063a318c1a4906084016020604051808303816000875af11580156101e5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102099190610c10565b90508173ffffffffffffffffffffffffffffffffffffffff166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610256573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061027a9190610c29565b73ffffffffffffffffffffffffffffffffffffffff16632e1a7d4d886040518263ffffffff1660e01b81526004016102b491815260200190565b600060405180830381600087803b1580156102ce57600080fd5b505af11580156102e2573d6000803e3d6000fd5b505060405173ffffffffffffffffffffffffffffffffffffffff8916925089156108fc02915089906000818181858888f19350505050158015610329573d6000803e3d6000fd5b509695505050505050565b600084600003610370576040517fa447fc5300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61037982610a86565b6103af576040517f942eb82d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f9f40a7b30000000000000000000000000000000000000000000000000000000081526004810186905230602482015233604482015260648101849052829060009073ffffffffffffffffffffffffffffffffffffffff831690639f40a7b3906084016020604051808303816000875af1158015610434573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104589190610c10565b90508173ffffffffffffffffffffffffffffffffffffffff166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156104a5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104c99190610c29565b73ffffffffffffffffffffffffffffffffffffffff16632e1a7d4d826040518263ffffffff1660e01b815260040161050391815260200190565b600060405180830381600087803b15801561051d57600080fd5b505af1158015610531573d6000803e3d6000fd5b505060405173ffffffffffffffffffffffffffffffffffffffff8916925083156108fc02915083906000818181858888f19350505050158015610329573d6000803e3d6000fd5b6000346000036105b4576040517fa447fc5300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60008290508073ffffffffffffffffffffffffffffffffffffffff16635c975abb6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610604573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106289190610c46565b1561065f576040517fe628b94900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60003490508173ffffffffffffffffffffffffffffffffffffffff166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156106af573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106d39190610c29565b73ffffffffffffffffffffffffffffffffffffffff1663d0e30db0346040518263ffffffff1660e01b81526004016000604051808303818588803b15801561071a57600080fd5b505af115801561072e573d6000803e3d6000fd5b50505050508173ffffffffffffffffffffffffffffffffffffffff166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561077e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107a29190610c29565b6040517f095ea7b300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff848116600483015260006024830152919091169063095ea7b3906044016020604051808303816000875af1158015610819573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061083d9190610c46565b508173ffffffffffffffffffffffffffffffffffffffff166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610889573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108ad9190610c29565b6040517f095ea7b300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff848116600483015260248201849052919091169063095ea7b3906044016020604051808303816000875af1158015610924573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109489190610c46565b506040517f6e553f650000000000000000000000000000000000000000000000000000000081526004810182905230602482015273ffffffffffffffffffffffffffffffffffffffff831690636e553f65906044016020604051808303816000875af11580156109bc573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109e09190610c10565b6040517fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8781166004830152602482018390529194509083169063a9059cbb906044016020604051808303816000875af1158015610a59573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a7d9190610c46565b50505092915050565b60008082905073c02aaa39b223fe8d0a0e5c4f27ead9083c756cc273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b02573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b269190610c29565b73ffffffffffffffffffffffffffffffffffffffff16149392505050565b73ffffffffffffffffffffffffffffffffffffffff81168114610b6657600080fd5b50565b60008060008060808587031215610b7f57600080fd5b843593506020850135610b9181610b44565b9250604085013591506060850135610ba881610b44565b939692955090935050565b60008060408385031215610bc657600080fd5b8235610bd181610b44565b91506020830135610be181610b44565b809150509250929050565b600060208284031215610bfe57600080fd5b8135610c0981610b44565b9392505050565b600060208284031215610c2257600080fd5b5051919050565b600060208284031215610c3b57600080fd5b8151610c0981610b44565b600060208284031215610c5857600080fd5b81518015158114610c0957600080fd
Deployed Bytecode
0x6080604052600436106100435760003560e01c8063693201411461004f57806370a8fe2314610082578063734029bf146100a257806378d548ec146100b557600080fd5b3661004a57005b600080fd5b34801561005b57600080fd5b5061006f61006a366004610b69565b6100e5565b6040519081526020015b60405180910390f35b34801561008e57600080fd5b5061006f61009d366004610b69565b610334565b61006f6100b0366004610bb3565b610578565b3480156100c157600080fd5b506100d56100d0366004610bec565b610a86565b6040519015158152602001610079565b600084600003610121576040517fa447fc5300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61012a82610a86565b610160576040517f942eb82d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517fa318c1a40000000000000000000000000000000000000000000000000000000081526004810186905230602482015233604482015260648101849052829060009073ffffffffffffffffffffffffffffffffffffffff83169063a318c1a4906084016020604051808303816000875af11580156101e5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102099190610c10565b90508173ffffffffffffffffffffffffffffffffffffffff166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610256573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061027a9190610c29565b73ffffffffffffffffffffffffffffffffffffffff16632e1a7d4d886040518263ffffffff1660e01b81526004016102b491815260200190565b600060405180830381600087803b1580156102ce57600080fd5b505af11580156102e2573d6000803e3d6000fd5b505060405173ffffffffffffffffffffffffffffffffffffffff8916925089156108fc02915089906000818181858888f19350505050158015610329573d6000803e3d6000fd5b509695505050505050565b600084600003610370576040517fa447fc5300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61037982610a86565b6103af576040517f942eb82d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f9f40a7b30000000000000000000000000000000000000000000000000000000081526004810186905230602482015233604482015260648101849052829060009073ffffffffffffffffffffffffffffffffffffffff831690639f40a7b3906084016020604051808303816000875af1158015610434573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104589190610c10565b90508173ffffffffffffffffffffffffffffffffffffffff166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156104a5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104c99190610c29565b73ffffffffffffffffffffffffffffffffffffffff16632e1a7d4d826040518263ffffffff1660e01b815260040161050391815260200190565b600060405180830381600087803b15801561051d57600080fd5b505af1158015610531573d6000803e3d6000fd5b505060405173ffffffffffffffffffffffffffffffffffffffff8916925083156108fc02915083906000818181858888f19350505050158015610329573d6000803e3d6000fd5b6000346000036105b4576040517fa447fc5300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60008290508073ffffffffffffffffffffffffffffffffffffffff16635c975abb6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610604573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106289190610c46565b1561065f576040517fe628b94900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60003490508173ffffffffffffffffffffffffffffffffffffffff166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156106af573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106d39190610c29565b73ffffffffffffffffffffffffffffffffffffffff1663d0e30db0346040518263ffffffff1660e01b81526004016000604051808303818588803b15801561071a57600080fd5b505af115801561072e573d6000803e3d6000fd5b50505050508173ffffffffffffffffffffffffffffffffffffffff166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561077e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107a29190610c29565b6040517f095ea7b300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff848116600483015260006024830152919091169063095ea7b3906044016020604051808303816000875af1158015610819573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061083d9190610c46565b508173ffffffffffffffffffffffffffffffffffffffff166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610889573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108ad9190610c29565b6040517f095ea7b300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff848116600483015260248201849052919091169063095ea7b3906044016020604051808303816000875af1158015610924573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109489190610c46565b506040517f6e553f650000000000000000000000000000000000000000000000000000000081526004810182905230602482015273ffffffffffffffffffffffffffffffffffffffff831690636e553f65906044016020604051808303816000875af11580156109bc573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109e09190610c10565b6040517fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8781166004830152602482018390529194509083169063a9059cbb906044016020604051808303816000875af1158015610a59573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a7d9190610c46565b50505092915050565b60008082905073c02aaa39b223fe8d0a0e5c4f27ead9083c756cc273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b02573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b269190610c29565b73ffffffffffffffffffffffffffffffffffffffff16149392505050565b73ffffffffffffffffffffffffffffffffffffffff81168114610b6657600080fd5b50565b60008060008060808587031215610b7f57600080fd5b843593506020850135610b9181610b44565b9250604085013591506060850135610ba881610b44565b939692955090935050565b60008060408385031215610bc657600080fd5b8235610bd181610b44565b91506020830135610be181610b44565b809150509250929050565b600060208284031215610bfe57600080fd5b8135610c0981610b44565b9392505050565b600060208284031215610c2257600080fd5b5051919050565b600060208284031215610c3b57600080fd5b8151610c0981610b44565b600060208284031215610c5857600080fd5b81518015158114610c0957600080fd
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
ETH | Ether (ETH) | 100.00% | $3,859.36 | 0.00683579 | $26.38 |
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.