Input Data Messages (IDM)
Decentralized communication on Ethereum.
Filter by:
718 IDM

MechaHitler
at txn 0x0d1aa2b014a3a1583f67c8e3552b4c367c12dff7f5ed59acc56b8ccbe4055b72 Jul-10-2025 04:56:35 PM UTC (20 hrs ago)

mechahitler
at txn 0x2f8608b8c47d30d9630697fcc57110783c5f77839679299ef022933c7024f8a8 Jul-10-2025 04:54:23 PM UTC (20 hrs ago)

data:,dinks
at txn 0xe5f1a8aba437a80709582c042bd8b83e1c6af6d8630d5aa6acb3ca634e876fe2 Mar-17-2024 11:20:23 PM UTC (480 days ago)

data:,dink
at txn 0xe24556060c0250e6f3808ec76ec47bd5d64773eb282fd6d3e45695e109109100 Mar-17-2024 11:19:35 PM UTC (480 days ago)

data:,madlads
at txn 0x8b577e5ad4d500d93cea1856411b4186f61fe9015f55030b4a22b0f5c0f2c2ed Mar-17-2024 11:12:47 PM UTC (480 days ago)

data:,From: Satoshi Nakamoto <[email protected]> Subject: Re: Introduction To: “Jon Matonis” <[email protected]> Date: Thursday, March 4, 2010, 9:55 PM Nice blog. That’s the first I’ve seen that focuses on this subject. I wish there was something like that when I originally researched this three years ago, there was scant to nothing back then. I think I’ll be a regular reader. Bitcoin would be right up your alley. Its advantage is that it’s P2P. There isn’t a central mint or company running it. As long as there are users, it survives. I’m sure you’ve already found the FAQ and Forum at bitcoin.org. The logo is here: http://www.bitcoin.o….php?topic=64.0 Was there anything particular you were interested in?
at txn 0x87deb00289532f28c98a069e28cb24834bc6d549ab05a67349b14928239fd46c Feb-23-2024 11:22:59 PM UTC (503 days ago)

data:,A big attraction to new users is that anyone with a computer can generate some free coins. When there are 5000 users, that incentive may fade, but for now it’s still true. GPUs would prematurely limit the incentive to only those with high end GPU hardware. It’s inevitable that GPU compute clusters will eventually hog all the generated coins, but I don’t want to hasten that day. If the difficulty gets really high, that increases the value of each coin in a way since the supply becomes more limited. The supply is the same: 50 coins every 10 minutes. But GPUs are much less evenly distributed, so the generated coins only go towards rewarding 20% of the people for joining the network instead of 100%. I don’t mean to sound like a socialist, I don’t care if wealth is concentrated, but for now, we get more growth by giving that money to 100% of the people than giving it to 20%. Also, the longer we can delay the GPU arms race, the more mature the OpenCL libraries get, and the more people will have OpenCL compatible video cards. If we see from the difficulty factor that someone is using too much GPU, we can certainly pick this OpenCL stuff up again then. Maybe my effort to maintain GPU innocence is running out of time. It’s worked out so far. Satoshi
at txn 0x62d6683872c81d061bf18ec3f0527a0999ebae08e5e24aa38de8e4aa2d0fd8b2 Feb-23-2024 11:13:59 PM UTC (503 days ago)

data:,I wish you wouldn’t keep talking about me as a mysterious shadowy figure, the press just turns that into a pirate currency angle. Maybe instead make it about the open source project and give more credit to your dev contributors; it helps motivate them.
at txn 0x5182cc70845d3fb5ead9db6750877b0c01121a608fc90084e8c8bcee92856757 Feb-23-2024 11:10:59 PM UTC (503 days ago)

data:,From: Satoshi Nakamoto Sent: Saturday, January 10, 2009 11:17 AM To: [email protected] Subject: Re: Citation of your b-money page I wanted to let you know, I just released the full implementation of the paper I sent you a few months ago, Bitcoin v0.1. Details, download and screenshots are at www.bitcoin.org I think it achieves nearly all the goals you set out to solve in your b-money paper. The system is entirely decentralized, without any server or trusted parties. The network infrastructure can support a full range of escrow transactions and contracts, but for now the focus is on the basics of money and transactions. There was a discussion of the design on the Cryptography mailing list. Hal Finney gave a good high-level overview: | One thing I might mention is that in many ways bitcoin is two independent | ideas: a way of solving the kinds of problems James lists here, of | creating a globally consistent but decentralized database; and then using | it for a system similar to Wei Dai's b-money (which is referenced in the | paper) but transaction/coin based rather than account based. Solving the | global, massively decentralized database problem is arguably the harder | part, as James emphasizes. The use of proof-of-work as a tool for this | purpose is a novel idea well worth further review IMO. Satoshi
at txn 0x77223ca03bf533bc8f617fb581da760f6c553132f0aa2c6b4298284abacce9b8 Feb-23-2024 11:07:47 PM UTC (503 days ago)

data:,From: Satoshi Nakamoto <[email protected]> Sent: Friday, August 22, 2008 4:38 PM To: Wei Dai <[email protected]> Cc: Satoshi Nakamoto <[email protected]> Subject: Citation of your b-money page I was very interested to read your b-money page. I'm getting ready to release a paper that expands on your ideas into a complete working system. Adam Back (hashcash.org) noticed the similarities and pointed me to your site. I need to find out the year of publication of your b-money page for the citation in my paper. It'll look like: [1] W. Dai, "b-money," http://www.weidai.com/bmoney.txt, (2006?). You can download a pre-release draft at http://www.upload.ae/file/6157/ecash-pdf.html Feel free to forward it to anyone else you think would be interested. Title: Electronic Cash Without a Trusted Third Party Abstract: A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without the burdens of going through a financial institution. Digital signatures offer part of the solution, but the main benefits are lost if a trusted party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as honest nodes control the most CPU power on the network, they can generate the longest chain and outpace any attackers. The network itself requires minimal structure. Messages are broadcasted on a best effort basis, and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what happened while they were gone. Satoshi
at txn 0xeb9a0169ee9208a9ceb96fe7d23dd039d3ea5bd72ce0808940fcdd1a754d577f Feb-23-2024 11:04:59 PM UTC (503 days ago)

data:,Bitcoin Whitepaper TABLE OF CONTENTS Abstract 1. Introduction 2. Transactions 3. Timestamp Server 4. Proof-of-Work 5. Network 6. Incentive 7. Reclaiming Disk Space 8. Simplified Payment Verification 9. Combining and Splitting Value 10. Privacy 11. Calculations 12. Conclusion References Bitcoin: A Peer-to-Peer Electronic Cash System Abstract A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they’ll generate the longest chain and outpace attackers. The network itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what happened while they were gone. 1. Introduction Commerce on the Internet has come to rely almost exclusively on financial institutions serving as trusted third parties to process electronic payments. While the system works well enough for most transactions, it still suffers from the inherent weaknesses of the trust based model. Completely non-reversible transactions are not really possible, since financial institutions cannot avoid mediating disputes. The cost of mediation increases transaction costs, limiting the minimum practical transaction size and cutting off the possibility for small casual transactions, and there is a broader cost in the loss of ability to make non-reversible payments for non-reversible services. With the possibility of reversal, the need for trust spreads. Merchants must be wary of their customers, hassling them for more information than they would otherwise need. A certain percentage of fraud is accepted as unavoidable. These costs and payment uncertainties can be avoided in person by using physical currency, but no mechanism exists to make payments over a communications channel without a trusted party. What is needed is an electronic payment system based on cryptographic proof instead of trust, allowing any two willing parties to transact directly with each other without the need for a trusted third party. Transactions that are computationally impractical to reverse would protect sellers from fraud, and routine escrow mechanisms could easily be implemented to protect buyers. In this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed timestamp server to generate computational proof of the chronological order of transactions. The system is secure as long as honest nodes collectively control more CPU power than any cooperating group of attacker nodes. 2. Transactions We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the next by digitally signing a hash of the previous transaction and the public key of the next owner and adding these to the end of the coin. A payee can verify the signatures to verify the chain of ownership. Transaction diagram showing chain of digital signatures The problem of course is the payee can’t verify that one of the owners did not double-spend the coin. A common solution is to introduce a trusted central authority, or mint, that checks every transaction for double spending. After each transaction, the coin must be returned to the mint to issue a new coin, and only coins issued directly from the mint are trusted not to be double-spent. The problem with this solution is that the fate of the entire money system depends on the company running the mint, with every transaction having to go through them, just like a bank. We need a way for the payee to know that the previous owners did not sign any earlier transactions. For our purposes, the earliest transaction is the one that counts, so we don’t care about later attempts to double-spend. The only way to confirm the absence of a transaction is to be aware of all transactions. In the mint based model, the mint was aware of all transactions and decided which arrived first. To accomplish this without a trusted party, transactions must be publicly announced[1], and we need a system for participants to agree on a single history of the order in which they were received. The payee needs proof that at the time of each transaction, the majority of nodes agreed it was the first received. 3. Timestamp Server The solution we propose begins with a timestamp server. A timestamp server works by taking a hash of a block of items to be timestamped and widely publishing the hash, such as in a newspaper or Usenet post[2-5]. The timestamp proves that the data must have existed at the time, obviously, in order to get into the hash. Each timestamp includes the previous timestamp in its hash, forming a chain, with each additional timestamp reinforcing the ones before it. Diagram of timestamp server taking hash of a block of items 4. Proof-of-Work To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a proof-of-work system similar to Adam Back’s Hashcash[6], rather than newspaper or Usenet posts. The proof-of-work involves scanning for a value that when hashed, such as with SHA-256, the hash begins with a number of zero bits. The average work required is exponential in the number of zero bits required and can be verified by executing a single hash. For our timestamp network, we implement the proof-of-work by incrementing a nonce in the block until a value is found that gives the block’s hash the required zero bits. Once the CPU effort has been expended to make it satisfy the proof-of-work, the block cannot be changed without redoing the work. As later blocks are chained after it, the work to change the block would include redoing all the blocks after it. Diagram of proof-of-work with nonce in block The proof-of-work also solves the problem of determining representation in majority decision making. If the majority were based on one-IP-address-one-vote, it could be subverted by anyone able to allocate many IPs. Proof-of-work is essentially one-CPU-one-vote. The majority decision is represented by the longest chain, which has the greatest proof-of-work effort invested in it. If a majority of CPU power is controlled by honest nodes, the honest chain will grow the fastest and outpace any competing chains. To modify a past block, an attacker would have to redo the proof-of-work of the block and all blocks after it and then catch up with and surpass the work of the honest nodes. We will show later that the probability of a slower attacker catching up diminishes exponentially as subsequent blocks are added. To compensate for increasing hardware speed and varying interest in running nodes over time, the proof-of-work difficulty is determined by a moving average targeting an average number of blocks per hour. If they’re generated too fast, the difficulty increases. 5. Network The steps to run the network are as follows: New transactions are broadcast to all nodes. Each node collects new transactions into a block. 3.Each node works on finding a difficult proof-of-work for its block. When a node finds a proof-of-work, it broadcasts the block to all nodes. Nodes accept the block only if all transactions in it are valid and not already spent. Nodes express their acceptance of the block by working on creating the next block in the chain, using the hash of the accepted block as the previous hash. Nodes always consider the longest chain to be the correct one and will keep working on extending it. If two nodes broadcast different versions of the next block simultaneously, some nodes may receive one or the other first. In that case, they work on the first one they received, but save the other branch in case it becomes longer. The tie will be broken when the next proof-of-work is found and one branch becomes longer; the nodes that were working on the other branch will then switch to the longer one. New transaction broadcasts do not necessarily need to reach all nodes. As long as they reach many nodes, they will get into a block before long. Block broadcasts are also tolerant of dropped messages. If a node does not receive a block, it will request it when it receives the next block and realizes it missed one. 6. Incentive By convention, the first transaction in a block is a special transaction that starts a new coin owned by the creator of the block. This adds an incentive for nodes to support the network, and provides a way to initially distribute coins into circulation, since there is no central authority to issue them. The steady addition of a constant of amount of new coins is analogous to gold miners expending resources to add gold to circulation. In our case, it is CPU time and electricity that is expended. The incentive can also be funded with transaction fees. If the output value of a transaction is less than its input value, the difference is a transaction fee that is added to the incentive value of the block containing the transaction. Once a predetermined number of coins have entered circulation, the incentive can transition entirely to transaction fees and be completely inflation free. The incentive may help encourage nodes to stay honest. If a greedy attacker is able to assemble more CPU power than all the honest nodes, he would have to choose between using it to defraud people by stealing back his payments, or using it to generate new coins. He ought to find it more profitable to play by the rules, such rules that favour him with more new coins than everyone else combined, than to undermine the system and the validity of his own wealth. 7. Reclaiming Disk Space Once the latest transaction in a coin is buried under enough blocks, the spent transactions before it can be discarded to save disk space. To facilitate this without breaking the block’s hash, transactions are hashed in a Merkle Tree [7][2][5], with only the root included in the block’s hash. Old blocks can then be compacted by stubbing off branches of the tree. The interior hashes do not need to be stored. Diagram showing transactions hashed in merkle tree and then pruned A block header with no transactions would be about 80 bytes. If we suppose blocks are generated every 10 minutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year. With computer systems typically selling with 2GB of RAM as of 2008, and Moore’s Law predicting current growth of 1.2GB per year, storage should not be a problem even if the block headers must be kept in memory. 8. Simplified Payment Verification It is possible to verify payments without running a full network node. A user only needs to keep a copy of the block headers of the longest proof-of-work chain, which he can get by querying network nodes until he’s convinced he has the longest chain, and obtain the Merkle branch linking the transaction to the block it’s timestamped in. He can’t check the transaction for himself, but by linking it to a place in the chain, he can see that a network node has accepted it, and blocks added after it further confirm the network has accepted it. Diagram of merkle branch from longest proof-of-work chain As such, the verification is reliable as long as honest nodes control the network, but is more vulnerable if the network is overpowered by an attacker. While network nodes can verify transactions for themselves, the simplified method can be fooled by an attacker’s fabricated transactions for as long as the attacker can continue to overpower the network. One strategy to protect against this would be to accept alerts from network nodes when they detect an invalid block, prompting the user’s software to download the full block and alerted transactions to confirm the inconsistency. Businesses that receive frequent payments will probably still want to run their own nodes for more independent security and quicker verification. 9. Combining and Splitting Value Although it would be possible to handle coins individually, it would be unwieldy to make a separate transaction for every cent in a transfer. To allow value to be split and combined, transactions contain multiple inputs and outputs. Normally there will be either a single input from a larger previous transaction or multiple inputs combining smaller amounts, and at most two outputs: one for the payment, and one returning the change, if any, back to the sender. Diagram with transactions containing multiple inputs and outputs It should be noted that fan-out, where a transaction depends on several transactions, and those transactions depend on many more, is not a problem here. There is never the need to extract a complete standalone copy of a transaction’s history. 10. Privacy The traditional banking model achieves a level of privacy by limiting access to information to the parties involved and the trusted third party. The necessity to announce all transactions publicly precludes this method, but privacy can still be maintained by breaking the flow of information in another place: by keeping public keys anonymous. The public can see that someone is sending an amount to someone else, but without information linking the transaction to anyone. This is similar to the level of information released by stock exchanges, where the time and size of individual trades, the “tape”, is made public, but without telling who the parties were. Diagram of Traditional Privacy Model and New Privacy Model As an additional firewall, a new key pair should be used for each transaction to keep them from being linked to a common owner. Some linking is still unavoidable with multi-input transactions, which necessarily reveal that their inputs were owned by the same owner. The risk is that if the owner of a key is revealed, linking could reveal other transactions that belonged to the same owner. 11. Calculations We consider the scenario of an attacker trying to generate an alternate chain faster than the honest chain. Even if this is accomplished, it does not throw the system open to arbitrary changes, such as creating value out of thin air or taking money that never belonged to the attacker. Nodes are not going to accept an invalid transaction as payment, and honest nodes will never accept a block containing them. An attacker can only try to change one of his own transactions to take back money he recently spent. The race between the honest chain and an attacker chain can be characterized as a Binomial Random Walk. The success event is the honest chain being extended by one block, increasing its lead by +1, and the failure event is the attacker’s chain being extended by one block, reducing the gap by -1. The probability of an attacker catching up from a given deficit is analogous to a Gambler’s Ruin problem. Suppose a gambler with unlimited credit starts at a deficit and plays potentially an infinite number of trials to try to reach breakeven. We can calculate the probability he ever reaches breakeven, or that an attacker ever catches up with the honest chain, as follows[8]: pqqz=== probability an honest node finds the next block probability the attacker finds the next block probability the attacker will ever catch up from z blocks behind qz={1(q/p)zifp≤qifp>q} Given our assumption that p>q, the probability drops exponentially as the number of blocks the attacker has to catch up with increases. With the odds against him, if he doesn’t make a lucky lunge forward early on, his chances become vanishingly small as he falls further behind. We now consider how long the recipient of a new transaction needs to wait before being sufficiently certain the sender can’t change the transaction. We assume the sender is an attacker who wants to make the recipient believe he paid him for a while, then switch it to pay back to himself after some time has passed. The receiver will be alerted when that happens, but the sender hopes it will be too late. The receiver generates a new key pair and gives the public key to the sender shortly before signing. This prevents the sender from preparing a chain of blocks ahead of time by working on it continuously until he is lucky enough to get far enough ahead, then executing the transaction at that moment. Once the transaction is sent, the dishonest sender starts working in secret on a parallel chain containing an alternate version of his transaction. The recipient waits until the transaction has been added to a block and z blocks have been linked after it. He doesn’t know the exact amount of progress the attacker has made, but assuming the honest blocks took the average expected time per block, the attacker’s potential progress will be a Poisson distribution with expected value: λ=zqp To get the probability the attacker could still catch up now, we multiply the Poisson density for each amount of progress he could have made by the probability he could catch up from that point: ∑k=0∞λke−λk!⋅{(q/p)(z−k)1ifk≤zifk>z} Rearranging to avoid summing the infinite tail of the distribution… 1−∑k=0zλke−λk!(1−(q/p)(z−k)) Converting to C code… #include <math.h> double AttackerSuccessProbability(double q, int z) { double p = 1.0 - q; double lambda = z * (q / p); double sum = 1.0; int i, k; for (k = 0; k <= z; k++) { double poisson = exp(-lambda); for (i = 1; i <= k; i++) poisson *= lambda / i; sum -= poisson * (1 - pow(q / p, z - k)); } return sum; } Running some results, we can see the probability drop off exponentially with z. q=0.1 z=0 P=1.0000000 z=1 P=0.2045873 z=2 P=0.0509779 z=3 P=0.0131722 z=4 P=0.0034552 z=5 P=0.0009137 z=6 P=0.0002428 z=7 P=0.0000647 z=8 P=0.0000173 z=9 P=0.0000046 z=10 P=0.0000012 q=0.3 z=0 P=1.0000000 z=5 P=0.1773523 z=10 P=0.0416605 z=15 P=0.0101008 z=20 P=0.0024804 z=25 P=0.0006132 z=30 P=0.0001522 z=35 P=0.0000379 z=40 P=0.0000095 z=45 P=0.0000024 z=50 P=0.0000006 Solving for P less than 0.1%… P < 0.001 q=0.10 z=5 q=0.15 z=8 q=0.20 z=11 q=0.25 z=15 q=0.30 z=24 q=0.35 z=41 q=0.40 z=89 q=0.45 z=340 12. Conclusion We have proposed a system for electronic transactions without relying on trust. We started with the usual framework of coins made from digital signatures, which provides strong control of ownership, but is incomplete without a way to prevent double-spending. To solve this, we proposed a peer-to-peer network using proof-of-work to record a public history of transactions that quickly becomes computationally impractical for an attacker to change if honest nodes control a majority of CPU power. The network is robust in its unstructured simplicity. Nodes work all at once with little coordination. They do not need to be identified, since messages are not routed to any particular place and only need to be delivered on a best effort basis. Nodes can leave and rejoin the network at will, accepting the proof-of-work chain as proof of what happened while they were gone. They vote with their CPU power, expressing their acceptance of valid blocks by working on extending them and rejecting invalid blocks by refusing to work on them. Any needed rules and incentives can be enforced with this consensus mechanism.
at txn 0x0132bca1ed0aea62dc2f85bbc570c9f9f9cecc3f0b8a8fc913ee09fd463533e3 Feb-23-2024 10:56:11 PM UTC (503 days ago)

data:,chunyun
at txn 0x67275387f5dfa812a198437012c55cfd4236016c5922fa7aefc487b2df362cb7 Feb-06-2024 01:45:23 PM UTC (520 days ago)

data:,cordoba.argentina
at txn 0xbc589fae207924dae207cec5227ca826cecd488d92cd4de8bdc2dfe1f23cfca0 Jan-18-2024 03:16:11 PM UTC (539 days ago)

data:,mendoza.argentina
at txn 0x7d727a093013367966edf0b32b32383e3e79d07f775fe211f4c7805284e3d3b1 Jan-18-2024 03:15:35 PM UTC (539 days ago)

data:,santacruz.argentina
at txn 0xf678b4df65c0ba79066d18130566a61c74c711103d6b3d39def75cfe1ca8d647 Jan-18-2024 03:13:11 PM UTC (539 days ago)

data:,lionelmessi.argentina
at txn 0xe198e5392a68abc85a5d49844b6ee5c046963012c384119898583439021dca33 Jan-18-2024 03:12:11 PM UTC (539 days ago)

data:,buenosaires.argentina
at txn 0x1f7aca378948a0e698f33bff42748f2b4e3959e584b17956dac69c6cfb4e4928 Jan-18-2024 03:11:35 PM UTC (539 days ago)

data:,motherrussia
at txn 0x58fb76a1cdd4eb2713e63dafe35788f079d7880a05eb535140c4fbf43dcbe435 Jan-18-2024 12:04:59 PM UTC (540 days ago)

data:,fatherland
at txn 0x307dd606b7f161befc2b291647afc021a9e59ee50e3c3b92131a1f407dffb7bd Jan-18-2024 12:04:23 PM UTC (540 days ago)

data:,motherland
at txn 0x8282a8fd429e62c61503d2fb0b140e011e7e0058a7c455aaa2eb50bc4c6ac092 Jan-18-2024 12:03:35 PM UTC (540 days ago)

data:,knockout
at txn 0x16763b11a8cd5bb437ddc016380a0dcd9538ae74bcb0a9a0a5e47a45c0870e37 Jan-01-2024 10:22:11 AM UTC (557 days ago)

data:,tko
at txn 0x7f1e11469b3eb97dc00f5c753cb988c5661b6c83cdb730d035bb667d33da8cea Jan-01-2024 10:18:23 AM UTC (557 days ago)

data:,infantry
at txn 0xc323607febee8a22a699842cafafba47584e760a7eaa4e3323dd85e0b64b6774 Jan-01-2024 10:12:35 AM UTC (557 days ago)

data:,maleficent
at txn 0xb5552bfe17ec1b731f3a5a412949c1aab61ef5c2cabbddaa455c7f92f3ff2f59 Jan-01-2024 03:12:35 AM UTC (557 days ago)

data:,conjurer
at txn 0x0baa90f57a78cbb740e70e3c8689183eb78fa55e07a826b1b6773912e6b597a2 Jan-01-2024 02:38:35 AM UTC (557 days ago)