Transaction Hash:
Block:
23074270 at Aug-05-2025 10:29:11 AM +UTC
Transaction Fee:
0.000159641964399892 ETH
$0.58
Gas Used:
89,882 Gas / 1.776128306 Gwei
Emitted Events:
397 |
ERC20PredicateProxy.0x9b217a401a5ddf7c4d474074aff9958a18d48690d77cc2151c4706aa7348b401( 0x9b217a401a5ddf7c4d474074aff9958a18d48690d77cc2151c4706aa7348b401, 0x000000000000000000000000faeefd557ffd2714f16e1a44a165fcd5d6a6b6a0, 0x000000000000000000000000faeefd557ffd2714f16e1a44a165fcd5d6a6b6a0, 0x000000000000000000000000b58e61c3098d85632df34eecfb899a1ed80921cb, 00000000000000000000000000000000000000000000000889c067877c060000 )
|
398 |
Frankencoin.Transfer( from=[Sender] 0xfaeefd557ffd2714f16e1a44a165fcd5d6a6b6a0, to=ERC20PredicateProxy, value=157500000000000000000 )
|
399 |
StateSender.StateSynced( id=3091059, contractAddress=0xA6FA4fB5...9C5d1C0aa, data=0x87A7811F4BFEDEA3D341AD165680AE306B01AAEACC205D227629CF157DD9F821000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000A0000000000000000000000000FAEEFD557FFD2714F16E1A44A165FCD5D6A6B6A0000000000000000000000000B58E61C3098D85632DF34EECFB899A1ED80921CB0000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000889C067877C060000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x28e4F3a7...189A5bFbE | (Polygon (Matic): State Syncer) | ||||
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 20.907012016825144706 Eth | 20.907146839825144706 Eth | 0.000134823 | |
0xB58E61C3...Ed80921cB | |||||
0xFAEefD55...5d6a6b6a0 |
0.616923831030242275 Eth
Nonce: 17056
|
0.616764189065842383 Eth
Nonce: 17057
| 0.000159641964399892 |
Execution Trace
RootChainManagerProxy.e3dec8fb( )

RootChainManager.depositFor( user=0xFAEefD557ffD2714f16e1A44A165FCd5d6a6b6a0, rootToken=0xB58E61C3098d85632Df34EecfB899A1Ed80921cB, depositData=0x00000000000000000000000000000000000000000000000889C067877C060000 )
ERC20PredicateProxy.e375b64e( )
ERC20Predicate.lockTokens( depositor=0xFAEefD557ffD2714f16e1A44A165FCd5d6a6b6a0, depositReceiver=0xFAEefD557ffD2714f16e1A44A165FCd5d6a6b6a0, rootToken=0xB58E61C3098d85632Df34EecfB899A1Ed80921cB, depositData=0x00000000000000000000000000000000000000000000000889C067877C060000 )
-
Frankencoin.transferFrom( sender=0xFAEefD557ffD2714f16e1A44A165FCd5d6a6b6a0, recipient=0x40ec5B33f54e0E8A33A975908C5BA1c14e5BbbDf, amount=157500000000000000000 ) => ( True )
-
-
StateSender.syncState( receiver=0xA6FA4fB5f76172d178d61B04b0ecd319C5d1C0aa, data=0x87A7811F4BFEDEA3D341AD165680AE306B01AAEACC205D227629CF157DD9F821000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000A0000000000000000000000000FAEEFD557FFD2714F16E1A44A165FCD5D6A6B6A0000000000000000000000000B58E61C3098D85632DF34EECFB899A1ED80921CB0000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000889C067877C060000 )
depositFor[RootChainManager (ln:243)]
_depositFor[RootChainManager (ln:252)]
lockTokens[RootChainManager (ln:284)]
_msgSender[RootChainManager (ln:285)]
msgSender[RootChainManager (ln:47)]
encode[RootChainManager (ln:290)]
syncState[RootChainManager (ln:291)]
encode[RootChainManager (ln:293)]
File 1 of 6: RootChainManagerProxy
File 2 of 6: ERC20PredicateProxy
File 3 of 6: Frankencoin
File 4 of 6: StateSender
File 5 of 6: RootChainManager
File 6 of 6: ERC20Predicate
// File: contracts/common/Proxy/IERCProxy.sol pragma solidity 0.6.6; interface IERCProxy { function proxyType() external pure returns (uint256 proxyTypeId); function implementation() external view returns (address codeAddr); } // File: contracts/common/Proxy/Proxy.sol pragma solidity 0.6.6; abstract contract Proxy is IERCProxy { function delegatedFwd(address _dst, bytes memory _calldata) internal { // solium-disable-next-line security/no-inline-assembly assembly { let result := delegatecall( sub(gas(), 10000), _dst, add(_calldata, 0x20), mload(_calldata), 0, 0 ) let size := returndatasize() let ptr := mload(0x40) returndatacopy(ptr, 0, size) // revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas. // if the call returned error data, forward it switch result case 0 { revert(ptr, size) } default { return(ptr, size) } } } function proxyType() external virtual override pure returns (uint256 proxyTypeId) { // Upgradeable proxy proxyTypeId = 2; } function implementation() external virtual override view returns (address); } // File: contracts/common/Proxy/UpgradableProxy.sol pragma solidity 0.6.6; contract UpgradableProxy is Proxy { event ProxyUpdated(address indexed _new, address indexed _old); event ProxyOwnerUpdate(address _new, address _old); bytes32 constant IMPLEMENTATION_SLOT = keccak256("matic.network.proxy.implementation"); bytes32 constant OWNER_SLOT = keccak256("matic.network.proxy.owner"); constructor(address _proxyTo) public { setProxyOwner(msg.sender); setImplementation(_proxyTo); } fallback() external payable { delegatedFwd(loadImplementation(), msg.data); } receive() external payable { delegatedFwd(loadImplementation(), msg.data); } modifier onlyProxyOwner() { require(loadProxyOwner() == msg.sender, "NOT_OWNER"); _; } function proxyOwner() external view returns(address) { return loadProxyOwner(); } function loadProxyOwner() internal view returns(address) { address _owner; bytes32 position = OWNER_SLOT; assembly { _owner := sload(position) } return _owner; } function implementation() external override view returns (address) { return loadImplementation(); } function loadImplementation() internal view returns(address) { address _impl; bytes32 position = IMPLEMENTATION_SLOT; assembly { _impl := sload(position) } return _impl; } function transferProxyOwnership(address newOwner) public onlyProxyOwner { require(newOwner != address(0), "ZERO_ADDRESS"); emit ProxyOwnerUpdate(newOwner, loadProxyOwner()); setProxyOwner(newOwner); } function setProxyOwner(address newOwner) private { bytes32 position = OWNER_SLOT; assembly { sstore(position, newOwner) } } function updateImplementation(address _newProxyTo) public onlyProxyOwner { require(_newProxyTo != address(0x0), "INVALID_PROXY_ADDRESS"); require(isContract(_newProxyTo), "DESTINATION_ADDRESS_IS_NOT_A_CONTRACT"); emit ProxyUpdated(_newProxyTo, loadImplementation()); setImplementation(_newProxyTo); } function updateAndCall(address _newProxyTo, bytes memory data) payable public onlyProxyOwner { updateImplementation(_newProxyTo); (bool success, bytes memory returnData) = address(this).call{value: msg.value}(data); require(success, string(returnData)); } function setImplementation(address _newProxyTo) private { bytes32 position = IMPLEMENTATION_SLOT; assembly { sstore(position, _newProxyTo) } } function isContract(address _target) internal view returns (bool) { if (_target == address(0)) { return false; } uint256 size; assembly { size := extcodesize(_target) } return size > 0; } } // File: contracts/root/RootChainManager/RootChainManagerProxy.sol pragma solidity 0.6.6; contract RootChainManagerProxy is UpgradableProxy { constructor(address _proxyTo) public UpgradableProxy(_proxyTo) {} }
File 2 of 6: ERC20PredicateProxy
// File: contracts/common/Proxy/IERCProxy.sol pragma solidity 0.6.6; interface IERCProxy { function proxyType() external pure returns (uint256 proxyTypeId); function implementation() external view returns (address codeAddr); } // File: contracts/common/Proxy/Proxy.sol pragma solidity 0.6.6; abstract contract Proxy is IERCProxy { function delegatedFwd(address _dst, bytes memory _calldata) internal { // solium-disable-next-line security/no-inline-assembly assembly { let result := delegatecall( sub(gas(), 10000), _dst, add(_calldata, 0x20), mload(_calldata), 0, 0 ) let size := returndatasize() let ptr := mload(0x40) returndatacopy(ptr, 0, size) // revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas. // if the call returned error data, forward it switch result case 0 { revert(ptr, size) } default { return(ptr, size) } } } function proxyType() external virtual override pure returns (uint256 proxyTypeId) { // Upgradeable proxy proxyTypeId = 2; } function implementation() external virtual override view returns (address); } // File: contracts/common/Proxy/UpgradableProxy.sol pragma solidity 0.6.6; contract UpgradableProxy is Proxy { event ProxyUpdated(address indexed _new, address indexed _old); event ProxyOwnerUpdate(address _new, address _old); bytes32 constant IMPLEMENTATION_SLOT = keccak256("matic.network.proxy.implementation"); bytes32 constant OWNER_SLOT = keccak256("matic.network.proxy.owner"); constructor(address _proxyTo) public { setProxyOwner(msg.sender); setImplementation(_proxyTo); } fallback() external payable { delegatedFwd(loadImplementation(), msg.data); } receive() external payable { delegatedFwd(loadImplementation(), msg.data); } modifier onlyProxyOwner() { require(loadProxyOwner() == msg.sender, "NOT_OWNER"); _; } function proxyOwner() external view returns(address) { return loadProxyOwner(); } function loadProxyOwner() internal view returns(address) { address _owner; bytes32 position = OWNER_SLOT; assembly { _owner := sload(position) } return _owner; } function implementation() external override view returns (address) { return loadImplementation(); } function loadImplementation() internal view returns(address) { address _impl; bytes32 position = IMPLEMENTATION_SLOT; assembly { _impl := sload(position) } return _impl; } function transferProxyOwnership(address newOwner) public onlyProxyOwner { require(newOwner != address(0), "ZERO_ADDRESS"); emit ProxyOwnerUpdate(newOwner, loadProxyOwner()); setProxyOwner(newOwner); } function setProxyOwner(address newOwner) private { bytes32 position = OWNER_SLOT; assembly { sstore(position, newOwner) } } function updateImplementation(address _newProxyTo) public onlyProxyOwner { require(_newProxyTo != address(0x0), "INVALID_PROXY_ADDRESS"); require(isContract(_newProxyTo), "DESTINATION_ADDRESS_IS_NOT_A_CONTRACT"); emit ProxyUpdated(_newProxyTo, loadImplementation()); setImplementation(_newProxyTo); } function updateAndCall(address _newProxyTo, bytes memory data) payable public onlyProxyOwner { updateImplementation(_newProxyTo); (bool success, bytes memory returnData) = address(this).call{value: msg.value}(data); require(success, string(returnData)); } function setImplementation(address _newProxyTo) private { bytes32 position = IMPLEMENTATION_SLOT; assembly { sstore(position, _newProxyTo) } } function isContract(address _target) internal view returns (bool) { if (_target == address(0)) { return false; } uint256 size; assembly { size := extcodesize(_target) } return size > 0; } } // File: contracts/root/TokenPredicates/ERC20PredicateProxy.sol pragma solidity 0.6.6; contract ERC20PredicateProxy is UpgradableProxy { constructor(address _proxyTo) public UpgradableProxy(_proxyTo) {} }
File 3 of 6: Frankencoin
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./Frankencoin.sol"; import "./utils/MathUtil.sol"; import "./interface/IReserve.sol"; import "./interface/IERC677Receiver.sol"; /** * @title Equity * @notice If the Frankencoin system was a bank, this contract would represent the equity on its balance sheet. * Like with a corporation, the owners of the equity capital are the shareholders, or in this case the holders * of Frankencoin Pool Shares (FPS) tokens. Anyone can mint additional FPS tokens by adding Frankencoins to the * reserve pool. Also, FPS tokens can be redeemed for Frankencoins again after a minimum holding period. * Furthermore, the FPS shares come with some voting power. Anyone that held at least 3% of the holding-period- * weighted reserve pool shares gains veto power and can veto new proposals. */ contract Equity is ERC20PermitLight, MathUtil, IReserve { /** * The VALUATION_FACTOR determines the market cap of the reserve pool shares relative to the equity reserves. * The following always holds: Market Cap = Valuation Factor * Equity Reserve = Price * Supply * * In the absence of profits and losses, the variables grow as follows when FPS tokens are minted: * * | Reserve | Market Cap | Price | Supply | * | 1000 | 3000 | 3 | 1000 | * | 1000000 | 3000000 | 300 | 10000 | * | 1000000000 | 3000000000 | 30000 | 100000 | * | 1000000000000 | 3000000000000 | 3000000 | 1000000 | * * I.e., the supply is proporational to the cubic root of the reserve and the price is proportional to the * squared cubic root. When profits accumulate or losses materialize, the reserve, the market cap, * and the price are adjusted proportionally, with the supply staying constant. In the absence of an extreme * inflation of the Swiss franc, it is unlikely that there will ever be more than ten million FPS. */ uint32 public constant VALUATION_FACTOR = 3; uint256 private constant MINIMUM_EQUITY = 1000 * ONE_DEC18; /** * @notice The quorum in basis points. 100 is 1%. */ uint32 private constant QUORUM = 200; /** * @notice The number of digits to store the average holding time of share tokens. */ uint8 private constant TIME_RESOLUTION_BITS = 20; /** * @notice The minimum holding duration. You are not allowed to redeem your pool shares if you held them * for less than the minimum holding duration at average. For example, if you have two pool shares on your * address, one acquired 5 days ago and one acquired 105 days ago, you cannot redeem them as the average * holding duration of your shares is only 55 days < 90 days. */ uint256 public constant MIN_HOLDING_DURATION = 90 days << TIME_RESOLUTION_BITS; // Set to 5 for local testing Frankencoin public immutable zchf; /** * @dev To track the total number of votes we need to know the number of votes at the anchor time and when the * anchor time was. This is (hopefully) stored in one 256 bit slot, with the anchor time taking 64 Bits and * the total vote count 192 Bits. Given the sub-second resolution of 20 Bits, the implicit assumption is * that the timestamp can always be stored in 44 Bits (i.e. it does not exceed half a million years). Further, * given 18 decimals (about 60 Bits), this implies that the total supply cannot exceed * 192 - 60 - 44 - 20 = 68 Bits * Here, we are also save, as 68 Bits would imply more than a trillion outstanding shares. In fact, * a limit of about 2**36 shares (that's about 2**96 Bits when taking into account the decimals) is imposed * when minting. This means that the maximum supply is billions shares, which is could only be reached in * a scenario with hyper inflation, in which case the stablecoin is worthless anyway. */ uint192 private totalVotesAtAnchor; // Total number of votes at the anchor time, see comment on the um uint64 private totalVotesAnchorTime; // 44 Bit for the time stamp, 20 Bit sub-second time resolution /** * @notice Keeping track on who delegated votes to whom. * Note that delegation does not mean you cannot vote / veto any more, it just means that the delegate can * benefit from your votes when invoking a veto. Circular delegations are valid, do not help when voting. */ mapping(address owner => address delegate) public delegates; /** * @notice A time stamp in the past such that: votes = balance * (time passed since anchor was set) */ mapping(address owner => uint64 timestamp) private voteAnchor; // 44 bits for time stamp, 20 subsecond resolution event Delegation(address indexed from, address indexed to); // indicates a delegation event Trade(address who, int amount, uint totPrice, uint newprice); // amount pos or neg for mint or redemption constructor(Frankencoin zchf_) ERC20(18) { zchf = zchf_; } function name() external pure override returns (string memory) { return "Frankencoin Pool Share"; } function symbol() external pure override returns (string memory) { return "FPS"; } /** * @notice Returns the price of one FPS in ZCHF with 18 decimals precision. */ function price() public view returns (uint256) { uint256 equity = zchf.equity(); if (equity == 0 || totalSupply() == 0) { return ONE_DEC18; // initial price is 1000 ZCHF for the first 1000 FPS } else { return (VALUATION_FACTOR * zchf.equity() * ONE_DEC18) / totalSupply(); } } function _beforeTokenTransfer(address from, address to, uint256 amount) internal override { super._beforeTokenTransfer(from, to, amount); if (amount > 0) { // No need to adjust the sender votes. When they send out 10% of their shares, they also lose 10% of // their votes so everything falls nicely into place. Recipient votes should stay the same, but grow // faster in the future, requiring an adjustment of the anchor. uint256 roundingLoss = _adjustRecipientVoteAnchor(to, amount); // The total also must be adjusted and kept accurate by taking into account the rounding error. _adjustTotalVotes(from, amount, roundingLoss); } } /** * @notice Returns whether the given address is allowed to redeem FPS, which is the * case after their average holding duration is larger than the required minimum. */ function canRedeem(address owner) public view returns (bool) { return _anchorTime() - voteAnchor[owner] >= MIN_HOLDING_DURATION; } /** * @notice Decrease the total votes anchor when tokens lose their voting power due to being moved * @param from sender * @param amount amount to be sent */ function _adjustTotalVotes(address from, uint256 amount, uint256 roundingLoss) internal { uint64 time = _anchorTime(); uint256 lostVotes = from == address(0x0) ? 0 : (time - voteAnchor[from]) * amount; totalVotesAtAnchor = uint192(totalVotes() - roundingLoss - lostVotes); totalVotesAnchorTime = time; } /** * @notice the vote anchor of the recipient is moved forward such that the number of calculated * votes does not change despite the higher balance. * @param to receiver address * @param amount amount to be received * @return the number of votes lost due to rounding errors */ function _adjustRecipientVoteAnchor(address to, uint256 amount) internal returns (uint256) { if (to != address(0x0)) { uint256 recipientVotes = votes(to); // for example 21 if 7 shares were held for 3 seconds uint256 newbalance = balanceOf(to) + amount; // for example 11 if 4 shares are added // new example anchor is only 21 / 11 = 1 second in the past voteAnchor[to] = uint64(_anchorTime() - recipientVotes / newbalance); return recipientVotes % newbalance; // we have lost 21 % 11 = 10 votes } else { // optimization for burn, vote anchor of null address does not matter return 0; } } /** * @notice Time stamp with some additional bits for higher resolution. */ function _anchorTime() internal view returns (uint64) { return uint64(block.timestamp << TIME_RESOLUTION_BITS); } /** * @notice The relative voting power of the address. * @return A percentage with 1e18 being 100% */ function relativeVotes(address holder) external view returns (uint256) { return (ONE_DEC18 * votes(holder)) / totalVotes(); } /** * @notice The votes of the holder, excluding votes from delegates. */ function votes(address holder) public view returns (uint256) { return balanceOf(holder) * (_anchorTime() - voteAnchor[holder]); } /** * @notice How long the holder already held onto their average FPS in seconds. */ function holdingDuration(address holder) public view returns (uint256) { return (_anchorTime() - voteAnchor[holder]) >> TIME_RESOLUTION_BITS; } /** * @notice Total number of votes in the system. */ function totalVotes() public view returns (uint256) { return totalVotesAtAnchor + totalSupply() * (_anchorTime() - totalVotesAnchorTime); } /** * @notice The number of votes the sender commands when taking the support of the helpers into account. * @param sender The address whose total voting power is of interest * @param helpers An incrementally sorted list of helpers without duplicates and without the sender. * The call fails if the list contains an address that does not delegate to sender. * For indirect delegates, i.e. a -> b -> c, both a and b must be included for both to count. * @return The total number of votes of sender at the current point in time. */ function votesDelegated(address sender, address[] calldata helpers) public view returns (uint256) { uint256 _votes = votes(sender); require(_checkDuplicatesAndSorted(helpers)); for (uint i = 0; i < helpers.length; i++) { address current = helpers[i]; require(current != sender); require(_canVoteFor(sender, current)); _votes += votes(current); } return _votes; } function _checkDuplicatesAndSorted(address[] calldata helpers) internal pure returns (bool ok) { if (helpers.length <= 1) { return true; } else { address prevAddress = helpers[0]; for (uint i = 1; i < helpers.length; i++) { if (helpers[i] <= prevAddress) { return false; } prevAddress = helpers[i]; } return true; } } /** * @notice Checks whether the sender address is qualified given a list of helpers that delegated their votes * directly or indirectly to the sender. It is the responsiblity of the caller to figure out whether * helpes are necessary and to identify them by scanning the blockchain for Delegation events. */ function checkQualified(address sender, address[] calldata helpers) public view override { uint256 _votes = votesDelegated(sender, helpers); if (_votes * 10000 < QUORUM * totalVotes()) revert NotQualified(); } error NotQualified(); /** * @notice Increases the voting power of the delegate by your number of votes without taking away any voting power * from the sender. */ function delegateVoteTo(address delegate) external { delegates[msg.sender] = delegate; emit Delegation(msg.sender, delegate); } function _canVoteFor(address delegate, address owner) internal view returns (bool) { if (owner == delegate) { return true; } else if (owner == address(0x0)) { return false; } else { return _canVoteFor(delegate, delegates[owner]); } } /** * @notice Since quorum is rather low, it is important to have a way to prevent malicious minority holders * from blocking the whole system. This method provides a way for the good guys to team up and destroy * the bad guy's votes (at the cost of also reducing their own votes). This mechanism potentially * gives full control over the system to whoever has 51% of the votes. * * Since this is a rather aggressive measure, delegation is not supported. Every holder must call this * method on their own. * @param targets The target addresses to remove votes from * @param votesToDestroy The maximum number of votes the caller is willing to sacrifice */ function kamikaze(address[] calldata targets, uint256 votesToDestroy) external { uint256 budget = _reduceVotes(msg.sender, votesToDestroy); uint256 destroyedVotes = 0; for (uint256 i = 0; i < targets.length && destroyedVotes < budget; i++) { destroyedVotes += _reduceVotes(targets[i], budget - destroyedVotes); } require(destroyedVotes > 0); // sanity check totalVotesAtAnchor = uint192(totalVotes() - destroyedVotes - budget); totalVotesAnchorTime = _anchorTime(); } function _reduceVotes(address target, uint256 amount) internal returns (uint256) { uint256 votesBefore = votes(target); if (amount >= votesBefore) { amount = votesBefore; voteAnchor[target] = _anchorTime(); return votesBefore; } else { voteAnchor[target] = uint64(_anchorTime() - (votesBefore - amount) / balanceOf(target)); return votesBefore - votes(target); } } /** * @notice Call this method to obtain newly minted pool shares in exchange for Frankencoins. * No allowance required (i.e. it is hardcoded in the Frankencoin token contract). * Make sure to invest at least 10e-12 * market cap to avoid rounding losses. * * @dev If equity is close to zero or negative, you need to send enough ZCHF to bring equity back to 1000 ZCHF. * * @param amount Frankencoins to invest * @param expectedShares Minimum amount of expected shares for frontrunning protection */ function invest(uint256 amount, uint256 expectedShares) external returns (uint256) { zchf.transferFrom(msg.sender, address(this), amount); uint256 equity = zchf.equity(); require(equity >= MINIMUM_EQUITY, "insuf equity"); // ensures that the initial deposit is at least 1000 ZCHF uint256 shares = _calculateShares(equity <= amount ? 0 : equity - amount, amount); require(shares >= expectedShares); _mint(msg.sender, shares); emit Trade(msg.sender, int(shares), amount, price()); // limit the total supply to a reasonable amount to guard against overflows with price and vote calculations // the 36 bits are 68 bits for magnitude and 60 bits for precision, as calculated in an above comment require(totalSupply() <= type(uint96).max, "total supply exceeded"); return shares; } /** * @notice Calculate shares received when investing Frankencoins * @param investment ZCHF to be invested * @return shares to be received in return */ function calculateShares(uint256 investment) external view returns (uint256) { return _calculateShares(zchf.equity(), investment); } function _calculateShares(uint256 capitalBefore, uint256 investment) internal view returns (uint256) { uint256 totalShares = totalSupply(); uint256 investmentExFees = (investment * 997) / 1000; // remove 0.3% fee // Assign 1000 FPS for the initial deposit, calculate the amount otherwise uint256 newTotalShares = capitalBefore < MINIMUM_EQUITY || totalShares == 0 ? totalShares + 1000 * ONE_DEC18 : _mulD18(totalShares, _cubicRoot(_divD18(capitalBefore + investmentExFees, capitalBefore))); return newTotalShares - totalShares; } /** * @notice Redeem the given amount of shares owned by the sender and transfer the proceeds to the target. * @return The amount of ZCHF transferred to the target */ function redeem(address target, uint256 shares) external returns (uint256) { return _redeemFrom(msg.sender, target, shares); } /** * @notice Like redeem(...), but with an extra parameter to protect against frontrunning. * @param expectedProceeds The minimum acceptable redemption proceeds. */ function redeemExpected(address target, uint256 shares, uint256 expectedProceeds) external returns (uint256) { uint256 proceeds = _redeemFrom(msg.sender, target, shares); require(proceeds >= expectedProceeds); return proceeds; } /** * @notice Redeem FPS based on an allowance from the owner to the caller. * See also redeemExpected(...). */ function redeemFrom( address owner, address target, uint256 shares, uint256 expectedProceeds ) external returns (uint256) { _useAllowance(owner, msg.sender, shares); uint256 proceeds = _redeemFrom(owner, target, shares); require(proceeds >= expectedProceeds); return proceeds; } function _redeemFrom(address owner, address target, uint256 shares) internal returns (uint256) { require(canRedeem(owner)); uint256 proceeds = calculateProceeds(shares); _burn(owner, shares); zchf.transfer(target, proceeds); emit Trade(owner, -int(shares), proceeds, price()); return proceeds; } /** * @notice Calculate ZCHF received when depositing shares * @param shares number of shares we want to exchange for ZCHF, * in dec18 format * @return amount of ZCHF received for the shares */ function calculateProceeds(uint256 shares) public view returns (uint256) { uint256 totalShares = totalSupply(); require(shares + ONE_DEC18 < totalShares, "too many shares"); // make sure there is always at least one share uint256 capital = zchf.equity(); uint256 reductionAfterFees = (shares * 997) / 1000; uint256 newCapital = _mulD18(capital, _power3(_divD18(totalShares - reductionAfterFees, totalShares))); return capital - newCapital; } /** * @notice If there is less than 1000 ZCHF in equity left (maybe even negative), the system is at risk * and we should allow qualified FPS holders to restructure the system. * * Example: there was a devastating loss and equity stands at -1'000'000. Most shareholders have lost hope in the * Frankencoin system except for a group of small FPS holders who still believes in it and is willing to provide * 2'000'000 ZCHF to save it. These brave souls are essentially donating 1'000'000 to the minter reserve and it * would be wrong to force them to share the other million with the passive FPS holders. Instead, they will get * the possibility to bootstrap the system again owning 100% of all FPS shares. * * @param helpers A list of addresses that delegate to the caller in incremental order * @param addressesToWipe A list of addresses whose FPS will be burned to zero */ function restructureCapTable(address[] calldata helpers, address[] calldata addressesToWipe) external { require(zchf.equity() < MINIMUM_EQUITY); checkQualified(msg.sender, helpers); for (uint256 i = 0; i < addressesToWipe.length; i++) { address current = addressesToWipe[i]; _burn(current, balanceOf(current)); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./utils/ERC20PermitLight.sol"; import "./Equity.sol"; import "./interface/IReserve.sol"; import "./interface/IFrankencoin.sol"; /** * @title FrankenCoin * @notice The Frankencoin (ZCHF) is an ERC-20 token that is designed to track the value of the Swiss franc. * It is not upgradable, but open to arbitrary minting plugins. These are automatically accepted if none of the * qualified pool share holders casts a veto, leading to a flexible but conservative governance. */ contract Frankencoin is ERC20PermitLight, IFrankencoin { /** * @notice Minimal fee and application period when suggesting a new minter. */ uint256 public constant MIN_FEE = 1000 * (10 ** 18); uint256 public immutable MIN_APPLICATION_PERIOD; // for example 10 days /** * @notice The contract that holds the reserve. */ IReserve public immutable override reserve; /** * @notice How much of the reserve belongs to the minters. Everything else belongs to the pool share holders. * Stored with 6 additional digits of accuracy so no rounding is necessary when dealing with parts per * million (ppm) in reserve calculations. */ uint256 private minterReserveE6; /** * @notice Map of minters to approval time stamps. If the time stamp is in the past, the minter contract is allowed * to mint Frankencoins. */ mapping(address minter => uint256 validityStart) public minters; /** * @notice List of positions that are allowed to mint and the minter that registered them. */ mapping(address position => address registeringMinter) public positions; event MinterApplied(address indexed minter, uint256 applicationPeriod, uint256 applicationFee, string message); event MinterDenied(address indexed minter, string message); event Loss(address indexed reportingMinter, uint256 amount); event Profit(address indexed reportingMinter, uint256 amount); error PeriodTooShort(); error FeeTooLow(); error AlreadyRegistered(); error NotMinter(); error TooLate(); modifier minterOnly() { if (!isMinter(msg.sender) && !isMinter(positions[msg.sender])) revert NotMinter(); _; } /** * @notice Initiates the Frankencoin with the provided minimum application period for new plugins * in seconds, for example 10 days, i.e. 3600*24*10 = 864000 */ constructor(uint256 _minApplicationPeriod) ERC20(18) { MIN_APPLICATION_PERIOD = _minApplicationPeriod; reserve = new Equity(this); } function name() external pure override returns (string memory) { return "Frankencoin"; } function symbol() external pure override returns (string memory) { return "ZCHF"; } function initialize(address _minter, string calldata _message) external { require(totalSupply() == 0 && reserve.totalSupply() == 0); minters[_minter] = block.timestamp; emit MinterApplied(_minter, 0, 0, _message); } /** * @notice Publicly accessible method to suggest a new way of minting Frankencoin. * @dev The caller has to pay an application fee that is irrevocably lost even if the new minter is vetoed. * The caller must assume that someone will veto the new minter unless there is broad consensus that the new minter * adds value to the Frankencoin system. Complex proposals should have application periods and applications fees * above the minimum. It is assumed that over time, informal ways to coordinate on new minters emerge. The message * parameter might be useful for initiating further communication. Maybe it contains a link to a website describing * the proposed minter. * * @param _minter An address that is given the permission to mint Frankencoins * @param _applicationPeriod The time others have to veto the suggestion, at least MIN_APPLICATION_PERIOD * @param _applicationFee The fee paid by the caller, at least MIN_FEE * @param _message An optional human readable message to everyone watching this contract */ function suggestMinter( address _minter, uint256 _applicationPeriod, uint256 _applicationFee, string calldata _message ) external override { if (_applicationPeriod < MIN_APPLICATION_PERIOD) revert PeriodTooShort(); if (_applicationFee < MIN_FEE) revert FeeTooLow(); if (minters[_minter] != 0) revert AlreadyRegistered(); _collectProfits(address(this), msg.sender, _applicationFee); minters[_minter] = block.timestamp + _applicationPeriod; emit MinterApplied(_minter, _applicationPeriod, _applicationFee, _message); } /** * @notice Make the system more user friendly by skipping the allowance in many cases. * @dev We trust minters and the positions they have created to mint and burn as they please, so * giving them arbitrary allowances does not pose an additional risk. */ function _allowance(address owner, address spender) internal view override returns (uint256) { uint256 explicit = super._allowance(owner, spender); if (explicit > 0) { return explicit; // don't waste gas checking minter } else if (isMinter(spender) || isMinter(getPositionParent(spender)) || spender == address(reserve)) { return INFINITY; } else { return 0; } } /** * @notice The reserve provided by the owners of collateralized positions. * @dev The minter reserve can be used to cover losses after the equity holders have been wiped out. */ function minterReserve() public view returns (uint256) { return minterReserveE6 / 1000000; } /** * @notice Allows minters to register collateralized debt positions, thereby giving them the ability to mint Frankencoins. * @dev It is assumed that the responsible minter that registers the position ensures that the position can be trusted. */ function registerPosition(address _position) external override { if (!isMinter(msg.sender)) revert NotMinter(); positions[_position] = msg.sender; } /** * @notice The amount of equity of the Frankencoin system in ZCHF, owned by the holders of Frankencoin Pool Shares. * @dev Note that the equity contract technically holds both the minter reserve as well as the equity, so the minter * reserve must be subtracted. All fees and other kind of income is added to the Equity contract and essentially * constitutes profits attributable to the pool share holders. */ function equity() public view returns (uint256) { uint256 balance = balanceOf(address(reserve)); uint256 minReserve = minterReserve(); if (balance <= minReserve) { return 0; } else { return balance - minReserve; } } /** * @notice Qualified pool share holders can deny minters during the application period. * @dev Calling this function is relatively cheap thanks to the deletion of a storage slot. */ function denyMinter(address _minter, address[] calldata _helpers, string calldata _message) external override { if (block.timestamp > minters[_minter]) revert TooLate(); reserve.checkQualified(msg.sender, _helpers); delete minters[_minter]; emit MinterDenied(_minter, _message); } /** * @notice Mints the provided amount of ZCHF to the target address, automatically forwarding * the minting fee and the reserve to the right place. */ function mintWithReserve( address _target, uint256 _amount, uint32 _reservePPM, uint32 _feesPPM ) external override minterOnly { uint256 usableMint = (_amount * (1000_000 - _feesPPM - _reservePPM)) / 1000_000; // rounding down is fine _mint(_target, usableMint); _mint(address(reserve), _amount - usableMint); // rest goes to equity as reserves or as fees minterReserveE6 += _amount * _reservePPM; emit Profit(msg.sender, (_feesPPM * _amount) / 1000_000); } function mint(address _target, uint256 _amount) external override minterOnly { _mint(_target, _amount); } /** * Anyone is allowed to burn their ZCHF. */ function burn(uint256 _amount) external { _burn(msg.sender, _amount); } /** * @notice Burn someone elses ZCHF. */ function burnFrom(address _owner, uint256 _amount) external override minterOnly { _burn(_owner, _amount); } /** * @notice Burn that amount without reclaiming the reserve, but freeing it up and thereby essentially donating it to the * pool share holders. This can make sense in combination with 'coverLoss', i.e. when it is the pool share * holders that bear the risk and depending on the outcome they make a profit or a loss. * * Design rule: Minters calling this method are only allowed to so for tokens amounts they previously minted with * the same _reservePPM amount. * * For example, if someone minted 50 ZCHF earlier with a 20% reserve requirement (200000 ppm), they got 40 ZCHF * and paid 10 ZCHF into the reserve. Now they want to repay the debt by burning 50 ZCHF. When doing so using this * method, 50 ZCHF get burned and on top of that, 10 ZCHF previously assigned to the minter's reserved are * reassigned to the pool share holders. */ function burnWithoutReserve(uint256 amount, uint32 reservePPM) public override minterOnly { _burn(msg.sender, amount); uint256 reserveReduction = amount * reservePPM; if (reserveReduction > minterReserveE6) { emit Profit(msg.sender, minterReserveE6 / 1000_000); minterReserveE6 = 0; // should never happen, but we want robust behavior in case it does } else { minterReserveE6 -= reserveReduction; emit Profit(msg.sender, reserveReduction / 1000_000); } } /** * @notice Burns the provided number of tokens plus whatever reserves are associated with that amount given the reserve * requirement. The caller is only allowed to use this method for tokens also minted through the caller with the * same _reservePPM amount. * * Example: the calling contract has previously minted 100 ZCHF with a reserve ratio of 20% (i.e. 200000 ppm). * Now they have 41 ZCHF that they do not need so they decide to repay that amount. Assuming the reserves are * only 90% covered, the call to burnWithReserve will burn the 41 plus 9 from the reserve, reducing the outstanding * 'debt' of the caller by 50 ZCHF in total. This total is returned by the method so the caller knows how much less * they owe. */ function burnWithReserve( uint256 _amountExcludingReserve, uint32 _reservePPM ) external override minterOnly returns (uint256) { uint256 freedAmount = calculateFreedAmount(_amountExcludingReserve, _reservePPM); // 50 in the example minterReserveE6 -= freedAmount * _reservePPM; // reduce reserve requirements by original ratio _transfer(address(reserve), msg.sender, freedAmount - _amountExcludingReserve); // collect assigned reserve _burn(msg.sender, freedAmount); // burn the rest of the freed amount return freedAmount; } /** * @notice Burns the target amount taking the tokens to be burned from the payer and the payer's reserve. * Only use this method for tokens also minted by the caller with the same _reservePPM. * * Example: the calling contract has previously minted 100 ZCHF with a reserve ratio of 20% (i.e. 200000 ppm). * To burn half of that again, the minter calls burnFrom with a target amount of 50 ZCHF. Assuming that reserves * are only 90% covered, this call will deduct 41 ZCHF from the payer's balance and 9 from the reserve, while * reducing the minter reserve by 10. */ function burnFromWithReserve( address payer, uint256 targetTotalBurnAmount, uint32 reservePPM ) external override minterOnly returns (uint256) { uint256 assigned = calculateAssignedReserve(targetTotalBurnAmount, reservePPM); _transfer(address(reserve), payer, assigned); // send reserve to owner _burn(payer, targetTotalBurnAmount); // and burn the full amount from the owner's address minterReserveE6 -= targetTotalBurnAmount * reservePPM; // reduce reserve requirements by original ratio return assigned; } /** * @notice Calculates the reserve attributable to someone who minted the given amount with the given reserve requirement. * Under normal circumstances, this is just the reserver requirement multiplied by the amount. However, after a * severe loss of capital that burned into the minter's reserve, this can also be less than that. */ function calculateAssignedReserve(uint256 mintedAmount, uint32 _reservePPM) public view returns (uint256) { uint256 theoreticalReserve = (_reservePPM * mintedAmount) / 1000000; uint256 currentReserve = balanceOf(address(reserve)); uint256 minterReserve_ = minterReserve(); if (currentReserve < minterReserve_) { // not enough reserves, owner has to take a loss return (theoreticalReserve * currentReserve) / minterReserve_; } else { return theoreticalReserve; } } /** * @notice Calculate the amount that is freed when returning amountExcludingReserve given a reserve ratio of reservePPM, * taking into account potential losses. Example values in the comments. */ function calculateFreedAmount( uint256 amountExcludingReserve /* 41 */, uint32 reservePPM /* 20% */ ) public view returns (uint256) { uint256 currentReserve = balanceOf(address(reserve)); // 18, 10% below what we should have uint256 minterReserve_ = minterReserve(); // 20 uint256 adjustedReservePPM = currentReserve < minterReserve_ ? (reservePPM * currentReserve) / minterReserve_ : reservePPM; // 18% return (1000000 * amountExcludingReserve) / (1000000 - adjustedReservePPM); // 41 / (1-18%) = 50 } /** * @notice Notify the Frankencoin that a minter lost economic access to some coins. This does not mean that the coins are * literally lost. It just means that some ZCHF will likely never be repaid and that in order to bring the system * back into balance, the lost amount of ZCHF must be removed from the reserve instead. * * For example, if a minter printed 1 million ZCHF for a mortgage and the mortgage turned out to be unsound with * the house only yielding 800'000 in the subsequent auction, there is a loss of 200'000 that needs to be covered * by the reserve. */ function coverLoss(address source, uint256 _amount) external override minterOnly { uint256 reserveLeft = balanceOf(address(reserve)); if (reserveLeft >= _amount) { _transfer(address(reserve), source, _amount); } else { _transfer(address(reserve), source, reserveLeft); _mint(source, _amount - reserveLeft); } emit Loss(source, _amount); } function collectProfits(address source, uint256 _amount) external override minterOnly { _collectProfits(msg.sender, source, _amount); } function _collectProfits(address minter, address source, uint256 _amount) internal { _transfer(source, address(reserve), _amount); emit Profit(minter, _amount); } /** * @notice Returns true if the address is an approved minter. */ function isMinter(address _minter) public view override returns (bool) { return minters[_minter] != 0 && block.timestamp >= minters[_minter]; } /** * @notice Returns the address of the minter that created this position or null if the provided address is unknown. */ function getPositionParent(address _position) public view override returns (address) { return positions[_position]; } } /** * SPDX-License-Identifier: MIT * * Copyright (c) 2016-2019 zOS Global Limited * */ pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. Does not include * the optional functions; to access them see `ERC20Detailed`. */ interface IERC20 { function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns always true. Throws error on failure. * * Emits a `Transfer` event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through `transferFrom`. This is * zero by default. * * This value can change when `approve` or `transferFrom` are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * > Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an `Approval` event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns always true. Throws error on failure. * * Emits a `Transfer` event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to `approve`. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IERC677Receiver { function onTokenTransfer(address from, uint256 amount, bytes calldata data) external returns (bool); }// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./IERC20.sol"; import "./IReserve.sol"; interface IFrankencoin is IERC20 { function suggestMinter(address _minter, uint256 _applicationPeriod, uint256 _applicationFee, string calldata _message) external; function registerPosition(address position) external; function denyMinter(address minter, address[] calldata helpers, string calldata message) external; function reserve() external view returns (IReserve); function minterReserve() external view returns (uint256); function calculateAssignedReserve(uint256 mintedAmount, uint32 _reservePPM) external view returns (uint256); function equity() external view returns (uint256); function isMinter(address minter) external view returns (bool); function getPositionParent(address position) external view returns (address); function mint(address target, uint256 amount) external; function mintWithReserve(address target, uint256 amount, uint32 reservePPM, uint32 feePPM) external; function burnFrom(address target, uint256 amount) external; function burnWithoutReserve(uint256 amountIncludingReserve, uint32 reservePPM) external; function burnFromWithReserve(address payer, uint256 targetTotalBurnAmount, uint32 _reservePPM) external returns (uint256); function burnWithReserve(uint256 amountExcludingReserve, uint32 reservePPM) external returns (uint256); function coverLoss(address source, uint256 amount) external; function collectProfits(address source, uint256 _amount) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./IERC20.sol"; interface IReserve is IERC20 { function invest(uint256 amount, uint256 expected) external returns (uint256); function checkQualified(address sender, address[] calldata helpers) external view; }// SPDX-License-Identifier: MIT // Copied and adjusted from OpenZeppelin // Adjustments: // - modifications to support ERC-677 // - removed require messages to save space // - removed unnecessary require statements // - removed GSN Context // - upgraded to 0.8 to drop SafeMath // - let name() and symbol() be implemented by subclass // - infinite allowance support, with 2^255 and above considered infinite pragma solidity ^0.8.0; import "../interface/IERC20.sol"; import "../interface/IERC677Receiver.sol"; /** * @dev Implementation of the `IERC20` interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using `_mint`. * For a generic mechanism see `ERC20Mintable`. * * *For a detailed writeup see our guide [How to implement supply * mechanisms](https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226).* * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an `Approval` event is emitted on calls to `transferFrom`. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * */ abstract contract ERC20 is IERC20 { mapping(address account => uint256 balance) private _balances; mapping(address account => mapping(address spender => uint256 allowance)) private _allowances; uint256 internal constant INFINITY = (1 << 255); uint256 private _totalSupply; uint8 public immutable override decimals; // Copied from https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4139/files#diff-fa792f7d08644eebc519dac2c29b00a54afc4c6a76b9ef3bba56c8401fe674f6 // Indicates an error related to the current balance of a sender. Used in transfers. error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); // Indicates a failure with the spender’s allowance. Used in transfers. error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); constructor(uint8 _decimals) { decimals = _decimals; } /** * @dev See `IERC20.totalSupply`. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See `IERC20.balanceOf`. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See `IERC20.transfer`. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(msg.sender, recipient, amount); return true; } /** * @dev See `IERC20.allowance`. */ function allowance(address owner, address spender) external view override returns (uint256) { return _allowance(owner, spender); } function _allowance(address owner, address spender) internal view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See `IERC20.approve`. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) external override returns (bool) { _approve(msg.sender, spender, value); return true; } /** * @dev See `IERC20.transferFrom`. * * Emits an `Approval` event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of `ERC20`; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `value`. * - the caller must have allowance for `sender`'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) external override returns (bool) { _transfer(sender, recipient, amount); _useAllowance(sender, msg.sender, amount); return true; } function _useAllowance(address owner, address spender, uint256 amount) internal { uint256 currentAllowance = _allowance(owner, spender); if (currentAllowance < INFINITY) { // Only decrease the allowance if it was not set to 'infinite' // Documented in github.com/aktionariat/contracts/blob/master/doc/infiniteallowance.md if (currentAllowance < amount) revert ERC20InsufficientAllowance(owner, currentAllowance, amount); _approve(owner, spender, currentAllowance - amount); } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to `transfer`, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a `Transfer` event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(recipient != address(0)); _beforeTokenTransfer(sender, recipient, amount); if (_balances[sender] < amount) revert ERC20InsufficientBalance(sender, _balances[sender], amount); _balances[sender] -= amount; _balances[recipient] += amount; emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a `Transfer` event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address recipient, uint256 amount) internal virtual { require(recipient != address(0)); _beforeTokenTransfer(address(0), recipient, amount); _totalSupply += amount; _balances[recipient] += amount; emit Transfer(address(0), recipient, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a `Transfer` event with `to` set to the zero address. */ function _burn(address account, uint256 amount) internal virtual { _beforeTokenTransfer(account, address(0), amount); _totalSupply -= amount; _balances[account] -= amount; emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an `Approval` event. */ function _approve(address owner, address spender, uint256 value) internal { _allowances[owner][spender] = value; emit Approval(owner, spender, value); } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} } // SPDX-License-Identifier: MIT // Copied from https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol // and modified it. pragma solidity ^0.8.0; import "./ERC20.sol"; abstract contract ERC20PermitLight is ERC20 { /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ mapping(address account => uint256 nonce) public nonces; /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); unchecked { // unchecked to save a little gas with the nonce increment... address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"), bytes32(0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); _approve(recoveredAddress, spender, value); } } function DOMAIN_SEPARATOR() public view returns (bytes32) { return keccak256( abi.encode( //keccak256("EIP712Domain(uint256 chainId,address verifyingContract)"); bytes32(0x47e79534a245952e8b16893a336b85a3d9ea9fa8c573f3d803afb92a79469218), block.chainid, address(this) ) ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Functions for share valuation */ contract MathUtil { uint256 internal constant ONE_DEC18 = 10 ** 18; // Let's go for 12 digits of precision (18-6) uint256 internal constant THRESH_DEC18 = 10 ** 6; /** * @notice Cubic root with Halley approximation * Number 1e18 decimal * @param _v number for which we calculate x**(1/3) * @return returns _v**(1/3) */ function _cubicRoot(uint256 _v) internal pure returns (uint256) { // Good first guess for _v slightly above 1.0, which is often the case in the Frankencoin system uint256 x = _v > ONE_DEC18 && _v < 10 ** 19 ? (_v - ONE_DEC18) / 3 + ONE_DEC18 : ONE_DEC18; uint256 diff; do { uint256 powX3 = _mulD18(_mulD18(x, x), x); uint256 xnew = x * (powX3 + 2 * _v) / (2 * powX3 + _v); diff = xnew > x ? xnew - x : x - xnew; x = xnew; } while (diff > THRESH_DEC18); return x; } function _mulD18(uint256 _a, uint256 _b) internal pure returns (uint256) { return (_a * _b) / ONE_DEC18; } function _divD18(uint256 _a, uint256 _b) internal pure returns (uint256) { return (_a * ONE_DEC18) / _b; } function _power3(uint256 _x) internal pure returns (uint256) { return _mulD18(_mulD18(_x, _x), _x); } function _min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } }
File 4 of 6: StateSender
/** Matic network contracts */ pragma solidity ^0.5.2; contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor () internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns (bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. * @notice Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } library SafeMath { /** * @dev Multiplies two unsigned integers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two unsigned integers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } contract StateSender is Ownable { using SafeMath for uint256; uint256 public counter; mapping(address => address) public registrations; event NewRegistration( address indexed user, address indexed sender, address indexed receiver ); event RegistrationUpdated( address indexed user, address indexed sender, address indexed receiver ); event StateSynced( uint256 indexed id, address indexed contractAddress, bytes data ); modifier onlyRegistered(address receiver) { require(registrations[receiver] == msg.sender, "Invalid sender"); _; } function syncState(address receiver, bytes calldata data) external onlyRegistered(receiver) { counter = counter.add(1); emit StateSynced(counter, receiver, data); } // register new contract for state sync function register(address sender, address receiver) public { require( isOwner() || registrations[receiver] == msg.sender, "StateSender.register: Not authorized to register" ); registrations[receiver] = sender; if (registrations[receiver] == address(0)) { emit NewRegistration(msg.sender, sender, receiver); } else { emit RegistrationUpdated(msg.sender, sender, receiver); } } }
File 5 of 6: RootChainManager
pragma solidity 0.6.6; import {SafeMath} from "@openzeppelin/contracts/math/SafeMath.sol"; import {IRootChainManager} from "./IRootChainManager.sol"; import {RootChainManagerStorage} from "./RootChainManagerStorage.sol"; import {IStateSender} from "../StateSender/IStateSender.sol"; import {ICheckpointManager} from "../ICheckpointManager.sol"; import {RLPReader} from "../../lib/RLPReader.sol"; import {ExitPayloadReader} from "../../lib/ExitPayloadReader.sol"; import {MerklePatriciaProof} from "../../lib/MerklePatriciaProof.sol"; import {Merkle} from "../../lib/Merkle.sol"; import {ITokenPredicate} from "../TokenPredicates/ITokenPredicate.sol"; import {Initializable} from "../../common/Initializable.sol"; import {NativeMetaTransaction} from "../../common/NativeMetaTransaction.sol"; import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol"; import {AccessControlMixin} from "../../common/AccessControlMixin.sol"; import {ContextMixin} from "../../common/ContextMixin.sol"; contract RootChainManager is IRootChainManager, Initializable, AccessControl, // included to match old storage layout while upgrading RootChainManagerStorage, // created to match old storage layout while upgrading AccessControlMixin, NativeMetaTransaction, ContextMixin { using ExitPayloadReader for bytes; using ExitPayloadReader for ExitPayloadReader.ExitPayload; using ExitPayloadReader for ExitPayloadReader.Log; using ExitPayloadReader for ExitPayloadReader.Receipt; using Merkle for bytes32; using SafeMath for uint256; // maybe DEPOSIT and MAP_TOKEN can be reduced to bytes4 bytes32 public constant DEPOSIT = keccak256("DEPOSIT"); bytes32 public constant MAP_TOKEN = keccak256("MAP_TOKEN"); address public constant ETHER_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; bytes32 public constant MAPPER_ROLE = keccak256("MAPPER_ROLE"); constructor() public { // Disable initializer on implementation contract _disableInitializer(); } function _msgSender() internal override view returns (address payable sender) { return ContextMixin.msgSender(); } /** * @notice Deposit ether by directly sending to the contract * The account sending ether receives WETH on child chain */ receive() external payable { _depositEtherFor(_msgSender()); } /** * @notice Initialize the contract after it has been proxified * @dev meant to be called once immediately after deployment * @param _owner the account that should be granted admin role */ function initialize( address _owner ) external initializer { _initializeEIP712("RootChainManager"); _setupContractId("RootChainManager"); _setupRole(DEFAULT_ADMIN_ROLE, _owner); _setupRole(MAPPER_ROLE, _owner); } // adding seperate function setupContractId since initialize is already called with old implementation function setupContractId() external only(DEFAULT_ADMIN_ROLE) { _setupContractId("RootChainManager"); } // adding seperate function initializeEIP712 since initialize is already called with old implementation function initializeEIP712() external only(DEFAULT_ADMIN_ROLE) { _setDomainSeperator("RootChainManager"); } /** * @notice Set the state sender, callable only by admins * @dev This should be the state sender from plasma contracts * It is used to send bytes from root to child chain * @param newStateSender address of state sender contract */ function setStateSender(address newStateSender) external only(DEFAULT_ADMIN_ROLE) { require(newStateSender != address(0), "RootChainManager: BAD_NEW_STATE_SENDER"); _stateSender = IStateSender(newStateSender); } /** * @notice Get the address of contract set as state sender * @return The address of state sender contract */ function stateSenderAddress() external view returns (address) { return address(_stateSender); } /** * @notice Set the checkpoint manager, callable only by admins * @dev This should be the plasma contract responsible for keeping track of checkpoints * @param newCheckpointManager address of checkpoint manager contract */ function setCheckpointManager(address newCheckpointManager) external only(DEFAULT_ADMIN_ROLE) { require(newCheckpointManager != address(0), "RootChainManager: BAD_NEW_CHECKPOINT_MANAGER"); _checkpointManager = ICheckpointManager(newCheckpointManager); } /** * @notice Get the address of contract set as checkpoint manager * @return The address of checkpoint manager contract */ function checkpointManagerAddress() external view returns (address) { return address(_checkpointManager); } /** * @notice Set the child chain manager, callable only by admins * @dev This should be the contract responsible to receive deposit bytes on child chain * @param newChildChainManager address of child chain manager contract */ function setChildChainManagerAddress(address newChildChainManager) external only(DEFAULT_ADMIN_ROLE) { require(newChildChainManager != address(0x0), "RootChainManager: INVALID_CHILD_CHAIN_ADDRESS"); childChainManagerAddress = newChildChainManager; } /** * @notice Register a token predicate address against its type, callable only by ADMIN * @dev A predicate is a contract responsible to process the token specific logic while locking or exiting tokens * @param tokenType bytes32 unique identifier for the token type * @param predicateAddress address of token predicate address */ function registerPredicate(bytes32 tokenType, address predicateAddress) external override only(DEFAULT_ADMIN_ROLE) { typeToPredicate[tokenType] = predicateAddress; emit PredicateRegistered(tokenType, predicateAddress); } /** * @notice Map a token to enable its movement via the PoS Portal, callable only by mappers * @param rootToken address of token on root chain * @param childToken address of token on child chain * @param tokenType bytes32 unique identifier for the token type */ function mapToken( address rootToken, address childToken, bytes32 tokenType ) external override only(MAPPER_ROLE) { // explicit check if token is already mapped to avoid accidental remaps require( rootToChildToken[rootToken] == address(0) && childToRootToken[childToken] == address(0), "RootChainManager: ALREADY_MAPPED" ); _mapToken(rootToken, childToken, tokenType); } /** * @notice Clean polluted token mapping * @param rootToken address of token on root chain. Since rename token was introduced later stage, * clean method is used to clean pollulated mapping */ function cleanMapToken( address rootToken, address childToken ) external override only(DEFAULT_ADMIN_ROLE) { rootToChildToken[rootToken] = address(0); childToRootToken[childToken] = address(0); tokenToType[rootToken] = bytes32(0); emit TokenMapped(rootToken, childToken, tokenToType[rootToken]); } /** * @notice Remap a token that has already been mapped, properly cleans up old mapping * Callable only by ADMIN * @param rootToken address of token on root chain * @param childToken address of token on child chain * @param tokenType bytes32 unique identifier for the token type */ function remapToken( address rootToken, address childToken, bytes32 tokenType ) external override only(DEFAULT_ADMIN_ROLE) { // cleanup old mapping address oldChildToken = rootToChildToken[rootToken]; address oldRootToken = childToRootToken[childToken]; if (rootToChildToken[oldRootToken] != address(0)) { rootToChildToken[oldRootToken] = address(0); tokenToType[oldRootToken] = bytes32(0); } if (childToRootToken[oldChildToken] != address(0)) { childToRootToken[oldChildToken] = address(0); } _mapToken(rootToken, childToken, tokenType); } function _mapToken( address rootToken, address childToken, bytes32 tokenType ) private { require( typeToPredicate[tokenType] != address(0x0), "RootChainManager: TOKEN_TYPE_NOT_SUPPORTED" ); rootToChildToken[rootToken] = childToken; childToRootToken[childToken] = rootToken; tokenToType[rootToken] = tokenType; emit TokenMapped(rootToken, childToken, tokenType); bytes memory syncData = abi.encode(rootToken, childToken, tokenType); _stateSender.syncState( childChainManagerAddress, abi.encode(MAP_TOKEN, syncData) ); } /** * @notice Move ether from root to child chain, accepts ether transfer * Keep in mind this ether cannot be used to pay gas on child chain * Use Matic tokens deposited using plasma mechanism for that * @param user address of account that should receive WETH on child chain */ function depositEtherFor(address user) external override payable { _depositEtherFor(user); } /** * @notice Move tokens from root to child chain * @dev This mechanism supports arbitrary tokens as long as its predicate has been registered and the token is mapped * @param user address of account that should receive this deposit on child chain * @param rootToken address of token that is being deposited * @param depositData bytes data that is sent to predicate and child token contracts to handle deposit */ function depositFor( address user, address rootToken, bytes calldata depositData ) external override { require( rootToken != ETHER_ADDRESS, "RootChainManager: INVALID_ROOT_TOKEN" ); _depositFor(user, rootToken, depositData); } function _depositEtherFor(address user) private { bytes memory depositData = abi.encode(msg.value); _depositFor(user, ETHER_ADDRESS, depositData); // payable(typeToPredicate[tokenToType[ETHER_ADDRESS]]).transfer(msg.value); // transfer doesn't work as expected when receiving contract is proxified so using call (bool success, /* bytes memory data */) = typeToPredicate[tokenToType[ETHER_ADDRESS]].call{value: msg.value}(""); if (!success) { revert("RootChainManager: ETHER_TRANSFER_FAILED"); } } function _depositFor( address user, address rootToken, bytes memory depositData ) private { bytes32 tokenType = tokenToType[rootToken]; require( rootToChildToken[rootToken] != address(0x0) && tokenType != 0, "RootChainManager: TOKEN_NOT_MAPPED" ); address predicateAddress = typeToPredicate[tokenType]; require( predicateAddress != address(0), "RootChainManager: INVALID_TOKEN_TYPE" ); require( user != address(0), "RootChainManager: INVALID_USER" ); ITokenPredicate(predicateAddress).lockTokens( _msgSender(), user, rootToken, depositData ); bytes memory syncData = abi.encode(user, rootToken, depositData); _stateSender.syncState( childChainManagerAddress, abi.encode(DEPOSIT, syncData) ); } /** * @notice exit tokens by providing proof * @dev This function verifies if the transaction actually happened on child chain * the transaction log is then sent to token predicate to handle it accordingly * * @param inputData RLP encoded data of the reference tx containing following list of fields * 0 - headerNumber - Checkpoint header block number containing the reference tx * 1 - blockProof - Proof that the block header (in the child chain) is a leaf in the submitted merkle root * 2 - blockNumber - Block number containing the reference tx on child chain * 3 - blockTime - Reference tx block time * 4 - txRoot - Transactions root of block * 5 - receiptRoot - Receipts root of block * 6 - receipt - Receipt of the reference transaction * 7 - receiptProof - Merkle proof of the reference receipt * 8 - branchMask - 32 bits denoting the path of receipt in merkle tree * 9 - receiptLogIndex - Log Index to read from the receipt */ function exit(bytes calldata inputData) external override { ExitPayloadReader.ExitPayload memory payload = inputData.toExitPayload(); bytes memory branchMaskBytes = payload.getBranchMaskAsBytes(); // checking if exit has already been processed // unique exit is identified using hash of (blockNumber, branchMask, receiptLogIndex) bytes32 exitHash = keccak256( abi.encodePacked( payload.getBlockNumber(), // first 2 nibbles are dropped while generating nibble array // this allows branch masks that are valid but bypass exitHash check (changing first 2 nibbles only) // so converting to nibble array and then hashing it MerklePatriciaProof._getNibbleArray(branchMaskBytes), payload.getReceiptLogIndex() ) ); require( processedExits[exitHash] == false, "RootChainManager: EXIT_ALREADY_PROCESSED" ); processedExits[exitHash] = true; ExitPayloadReader.Receipt memory receipt = payload.getReceipt(); ExitPayloadReader.Log memory log = receipt.getLog(); // log should be emmited only by the child token address rootToken = childToRootToken[log.getEmitter()]; require( rootToken != address(0), "RootChainManager: TOKEN_NOT_MAPPED" ); address predicateAddress = typeToPredicate[ tokenToType[rootToken] ]; // branch mask can be maximum 32 bits require( payload.getBranchMaskAsUint() & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000 == 0, "RootChainManager: INVALID_BRANCH_MASK" ); // verify receipt inclusion require( MerklePatriciaProof.verify( receipt.toBytes(), branchMaskBytes, payload.getReceiptProof(), payload.getReceiptRoot() ), "RootChainManager: INVALID_PROOF" ); // verify checkpoint inclusion _checkBlockMembershipInCheckpoint( payload.getBlockNumber(), payload.getBlockTime(), payload.getTxRoot(), payload.getReceiptRoot(), payload.getHeaderNumber(), payload.getBlockProof() ); ITokenPredicate(predicateAddress).exitTokens( _msgSender(), rootToken, log.toRlpBytes() ); } function _checkBlockMembershipInCheckpoint( uint256 blockNumber, uint256 blockTime, bytes32 txRoot, bytes32 receiptRoot, uint256 headerNumber, bytes memory blockProof ) private view { ( bytes32 headerRoot, uint256 startBlock, , , ) = _checkpointManager.headerBlocks(headerNumber); require( keccak256( abi.encodePacked(blockNumber, blockTime, txRoot, receiptRoot) ) .checkMembership( blockNumber.sub(startBlock), headerRoot, blockProof ), "RootChainManager: INVALID_HEADER" ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } pragma solidity 0.6.6; interface IRootChainManager { event TokenMapped( address indexed rootToken, address indexed childToken, bytes32 indexed tokenType ); event PredicateRegistered( bytes32 indexed tokenType, address indexed predicateAddress ); function registerPredicate(bytes32 tokenType, address predicateAddress) external; function mapToken( address rootToken, address childToken, bytes32 tokenType ) external; function cleanMapToken( address rootToken, address childToken ) external; function remapToken( address rootToken, address childToken, bytes32 tokenType ) external; function depositEtherFor(address user) external payable; function depositFor( address user, address rootToken, bytes calldata depositData ) external; function exit(bytes calldata inputData) external; } pragma solidity 0.6.6; import {IStateSender} from "../StateSender/IStateSender.sol"; import {ICheckpointManager} from "../ICheckpointManager.sol"; abstract contract RootChainManagerStorage { mapping(bytes32 => address) public typeToPredicate; mapping(address => address) public rootToChildToken; mapping(address => address) public childToRootToken; mapping(address => bytes32) public tokenToType; mapping(bytes32 => bool) public processedExits; IStateSender internal _stateSender; ICheckpointManager internal _checkpointManager; address public childChainManagerAddress; } pragma solidity 0.6.6; interface IStateSender { function syncState(address receiver, bytes calldata data) external; } pragma solidity 0.6.6; contract ICheckpointManager { struct HeaderBlock { bytes32 root; uint256 start; uint256 end; uint256 createdAt; address proposer; } /** * @notice mapping of checkpoint header numbers to block details * @dev These checkpoints are submited by plasma contracts */ mapping(uint256 => HeaderBlock) public headerBlocks; } /* * @author Hamdi Allam [email protected] * Please reach out with any questions or concerns * https://github.com/hamdiallam/Solidity-RLP/blob/e681e25a376dbd5426b509380bc03446f05d0f97/contracts/RLPReader.sol */ pragma solidity 0.6.6; library RLPReader { uint8 constant STRING_SHORT_START = 0x80; uint8 constant STRING_LONG_START = 0xb8; uint8 constant LIST_SHORT_START = 0xc0; uint8 constant LIST_LONG_START = 0xf8; uint8 constant WORD_SIZE = 32; struct RLPItem { uint len; uint memPtr; } struct Iterator { RLPItem item; // Item that's being iterated over. uint nextPtr; // Position of the next item in the list. } /* * @dev Returns the next element in the iteration. Reverts if it has not next element. * @param self The iterator. * @return The next element in the iteration. */ function next(Iterator memory self) internal pure returns (RLPItem memory) { require(hasNext(self)); uint ptr = self.nextPtr; uint itemLength = _itemLength(ptr); self.nextPtr = ptr + itemLength; return RLPItem(itemLength, ptr); } /* * @dev Returns true if the iteration has more elements. * @param self The iterator. * @return true if the iteration has more elements. */ function hasNext(Iterator memory self) internal pure returns (bool) { RLPItem memory item = self.item; return self.nextPtr < item.memPtr + item.len; } /* * @param item RLP encoded bytes */ function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) { uint memPtr; assembly { memPtr := add(item, 0x20) } return RLPItem(item.length, memPtr); } /* * @dev Create an iterator. Reverts if item is not a list. * @param self The RLP item. * @return An 'Iterator' over the item. */ function iterator(RLPItem memory self) internal pure returns (Iterator memory) { require(isList(self)); uint ptr = self.memPtr + _payloadOffset(self.memPtr); return Iterator(self, ptr); } /* * @param the RLP item. */ function rlpLen(RLPItem memory item) internal pure returns (uint) { return item.len; } /* * @param the RLP item. * @return (memPtr, len) pair: location of the item's payload in memory. */ function payloadLocation(RLPItem memory item) internal pure returns (uint, uint) { uint offset = _payloadOffset(item.memPtr); uint memPtr = item.memPtr + offset; uint len = item.len - offset; // data length return (memPtr, len); } /* * @param the RLP item. */ function payloadLen(RLPItem memory item) internal pure returns (uint) { (, uint len) = payloadLocation(item); return len; } /* * @param the RLP item containing the encoded list. */ function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) { require(isList(item)); uint items = numItems(item); RLPItem[] memory result = new RLPItem[](items); uint memPtr = item.memPtr + _payloadOffset(item.memPtr); uint dataLen; for (uint i = 0; i < items; i++) { dataLen = _itemLength(memPtr); result[i] = RLPItem(dataLen, memPtr); memPtr = memPtr + dataLen; } require(memPtr - item.memPtr == item.len, "Wrong total length."); return result; } // @return indicator whether encoded payload is a list. negate this function call for isData. function isList(RLPItem memory item) internal pure returns (bool) { if (item.len == 0) return false; uint8 byte0; uint memPtr = item.memPtr; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < LIST_SHORT_START) return false; return true; } /* * @dev A cheaper version of keccak256(toRlpBytes(item)) that avoids copying memory. * @return keccak256 hash of RLP encoded bytes. */ function rlpBytesKeccak256(RLPItem memory item) internal pure returns (bytes32) { uint256 ptr = item.memPtr; uint256 len = item.len; bytes32 result; assembly { result := keccak256(ptr, len) } return result; } /* * @dev A cheaper version of keccak256(toBytes(item)) that avoids copying memory. * @return keccak256 hash of the item payload. */ function payloadKeccak256(RLPItem memory item) internal pure returns (bytes32) { (uint memPtr, uint len) = payloadLocation(item); bytes32 result; assembly { result := keccak256(memPtr, len) } return result; } /** RLPItem conversions into data types **/ // @returns raw rlp encoding in bytes function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) { bytes memory result = new bytes(item.len); if (result.length == 0) return result; uint ptr; assembly { ptr := add(0x20, result) } copy(item.memPtr, ptr, item.len); return result; } // any non-zero byte except "0x80" is considered true function toBoolean(RLPItem memory item) internal pure returns (bool) { require(item.len == 1); uint result; uint memPtr = item.memPtr; assembly { result := byte(0, mload(memPtr)) } // SEE Github Issue #5. // Summary: Most commonly used RLP libraries (i.e Geth) will encode // "0" as "0x80" instead of as "0". We handle this edge case explicitly // here. if (result == 0 || result == STRING_SHORT_START) { return false; } else { return true; } } function toAddress(RLPItem memory item) internal pure returns (address) { // 1 byte for the length prefix require(item.len == 21); return address(toUint(item)); } function toUint(RLPItem memory item) internal pure returns (uint) { require(item.len > 0 && item.len <= 33); (uint memPtr, uint len) = payloadLocation(item); uint result; assembly { result := mload(memPtr) // shfit to the correct location if neccesary if lt(len, 32) { result := div(result, exp(256, sub(32, len))) } } return result; } // enforces 32 byte length function toUintStrict(RLPItem memory item) internal pure returns (uint) { // one byte prefix require(item.len == 33); uint result; uint memPtr = item.memPtr + 1; assembly { result := mload(memPtr) } return result; } function toBytes(RLPItem memory item) internal pure returns (bytes memory) { require(item.len > 0); (uint memPtr, uint len) = payloadLocation(item); bytes memory result = new bytes(len); uint destPtr; assembly { destPtr := add(0x20, result) } copy(memPtr, destPtr, len); return result; } /* * Private Helpers */ // @return number of payload items inside an encoded list. function numItems(RLPItem memory item) private pure returns (uint) { if (item.len == 0) return 0; uint count = 0; uint currPtr = item.memPtr + _payloadOffset(item.memPtr); uint endPtr = item.memPtr + item.len; while (currPtr < endPtr) { currPtr = currPtr + _itemLength(currPtr); // skip over an item count++; } return count; } // @return entire rlp item byte length function _itemLength(uint memPtr) private pure returns (uint) { uint itemLen; uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) itemLen = 1; else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1; else if (byte0 < LIST_SHORT_START) { assembly { let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is memPtr := add(memPtr, 1) // skip over the first byte /* 32 byte word size */ let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len itemLen := add(dataLen, add(byteLen, 1)) } } else if (byte0 < LIST_LONG_START) { itemLen = byte0 - LIST_SHORT_START + 1; } else { assembly { let byteLen := sub(byte0, 0xf7) memPtr := add(memPtr, 1) let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length itemLen := add(dataLen, add(byteLen, 1)) } } return itemLen; } // @return number of bytes until the data function _payloadOffset(uint memPtr) private pure returns (uint) { uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) return 0; else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1; else if (byte0 < LIST_SHORT_START) // being explicit return byte0 - (STRING_LONG_START - 1) + 1; else return byte0 - (LIST_LONG_START - 1) + 1; } /* * @param src Pointer to source * @param dest Pointer to destination * @param len Amount of memory to copy from the source */ function copy(uint src, uint dest, uint len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } if (len > 0) { // left over bytes. Mask is used to remove unwanted bytes from the word uint mask = 256 ** (WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } } } pragma solidity 0.6.6; import { RLPReader } from "./RLPReader.sol"; library ExitPayloadReader { using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; uint8 constant WORD_SIZE = 32; struct ExitPayload { RLPReader.RLPItem[] data; } struct Receipt { RLPReader.RLPItem[] data; bytes raw; uint256 logIndex; } struct Log { RLPReader.RLPItem data; RLPReader.RLPItem[] list; } struct LogTopics { RLPReader.RLPItem[] data; } // copy paste of private copy() from RLPReader to avoid changing of existing contracts function copy(uint src, uint dest, uint len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } // left over bytes. Mask is used to remove unwanted bytes from the word uint mask = 256 ** (WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } function toExitPayload(bytes memory data) internal pure returns (ExitPayload memory) { RLPReader.RLPItem[] memory payloadData = data .toRlpItem() .toList(); return ExitPayload(payloadData); } function getHeaderNumber(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[0].toUint(); } function getBlockProof(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[1].toBytes(); } function getBlockNumber(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[2].toUint(); } function getBlockTime(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[3].toUint(); } function getTxRoot(ExitPayload memory payload) internal pure returns(bytes32) { return bytes32(payload.data[4].toUint()); } function getReceiptRoot(ExitPayload memory payload) internal pure returns(bytes32) { return bytes32(payload.data[5].toUint()); } function getReceipt(ExitPayload memory payload) internal pure returns(Receipt memory receipt) { receipt.raw = payload.data[6].toBytes(); RLPReader.RLPItem memory receiptItem = receipt.raw.toRlpItem(); if (receiptItem.isList()) { // legacy tx receipt.data = receiptItem.toList(); } else { // pop first byte before parsting receipt bytes memory typedBytes = receipt.raw; bytes memory result = new bytes(typedBytes.length - 1); uint256 srcPtr; uint256 destPtr; assembly { srcPtr := add(33, typedBytes) destPtr := add(0x20, result) } copy(srcPtr, destPtr, result.length); receipt.data = result.toRlpItem().toList(); } receipt.logIndex = getReceiptLogIndex(payload); return receipt; } function getReceiptProof(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[7].toBytes(); } function getBranchMaskAsBytes(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[8].toBytes(); } function getBranchMaskAsUint(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[8].toUint(); } function getReceiptLogIndex(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[9].toUint(); } // Receipt methods function toBytes(Receipt memory receipt) internal pure returns(bytes memory) { return receipt.raw; } function getLog(Receipt memory receipt) internal pure returns(Log memory) { RLPReader.RLPItem memory logData = receipt.data[3].toList()[receipt.logIndex]; return Log(logData, logData.toList()); } // Log methods function getEmitter(Log memory log) internal pure returns(address) { return RLPReader.toAddress(log.list[0]); } function getTopics(Log memory log) internal pure returns(LogTopics memory) { return LogTopics(log.list[1].toList()); } function getData(Log memory log) internal pure returns(bytes memory) { return log.list[2].toBytes(); } function toRlpBytes(Log memory log) internal pure returns(bytes memory) { return log.data.toRlpBytes(); } // LogTopics methods function getField(LogTopics memory topics, uint256 index) internal pure returns(RLPReader.RLPItem memory) { return topics.data[index]; } } /* * @title MerklePatriciaVerifier * @author Sam Mayo ([email protected]) * * @dev Library for verifing merkle patricia proofs. */ pragma solidity 0.6.6; import {RLPReader} from "./RLPReader.sol"; library MerklePatriciaProof { /* * @dev Verifies a merkle patricia proof. * @param value The terminating value in the trie. * @param encodedPath The path in the trie leading to value. * @param rlpParentNodes The rlp encoded stack of nodes. * @param root The root hash of the trie. * @return The boolean validity of the proof. */ function verify( bytes memory value, bytes memory encodedPath, bytes memory rlpParentNodes, bytes32 root ) internal pure returns (bool) { RLPReader.RLPItem memory item = RLPReader.toRlpItem(rlpParentNodes); RLPReader.RLPItem[] memory parentNodes = RLPReader.toList(item); bytes memory currentNode; RLPReader.RLPItem[] memory currentNodeList; bytes32 nodeKey = root; uint256 pathPtr = 0; bytes memory path = _getNibbleArray(encodedPath); if (path.length == 0) { return false; } for (uint256 i = 0; i < parentNodes.length; i++) { if (pathPtr > path.length) { return false; } currentNode = RLPReader.toRlpBytes(parentNodes[i]); if (nodeKey != keccak256(currentNode)) { return false; } currentNodeList = RLPReader.toList(parentNodes[i]); if (currentNodeList.length == 17) { if (pathPtr == path.length) { if ( keccak256(RLPReader.toBytes(currentNodeList[16])) == keccak256(value) ) { return true; } else { return false; } } uint8 nextPathNibble = uint8(path[pathPtr]); if (nextPathNibble > 16) { return false; } nodeKey = bytes32( RLPReader.toUintStrict(currentNodeList[nextPathNibble]) ); pathPtr += 1; } else if (currentNodeList.length == 2) { bytes memory nodeValue = RLPReader.toBytes(currentNodeList[0]); uint256 traversed = _nibblesToTraverse( nodeValue, path, pathPtr ); //enforce correct nibble bytes1 prefix = _getNthNibbleOfBytes(0, nodeValue); if (pathPtr + traversed == path.length) { //leaf node if ( keccak256(RLPReader.toBytes(currentNodeList[1])) == keccak256(value) && (prefix == bytes1(uint8(2)) || prefix == bytes1(uint8(3))) ) { return true; } else { return false; } } //extension node if (traversed == 0 || (prefix != bytes1(uint8(0)) && prefix != bytes1(uint8(1)))) { return false; } pathPtr += traversed; nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[1])); } else { return false; } } return false; // default } function _nibblesToTraverse( bytes memory encodedPartialPath, bytes memory path, uint256 pathPtr ) private pure returns (uint256) { uint256 len = 0; // encodedPartialPath has elements that are each two hex characters (1 byte), but partialPath // and slicedPath have elements that are each one hex character (1 nibble) bytes memory partialPath = _getNibbleArray(encodedPartialPath); bytes memory slicedPath = new bytes(partialPath.length); // pathPtr counts nibbles in path // partialPath.length is a number of nibbles for (uint256 i = pathPtr; i < pathPtr + partialPath.length; i++) { bytes1 pathNibble = path[i]; slicedPath[i - pathPtr] = pathNibble; } if (keccak256(partialPath) == keccak256(slicedPath)) { len = partialPath.length; } else { len = 0; } return len; } // bytes b must be hp encoded function _getNibbleArray(bytes memory b) internal pure returns (bytes memory) { bytes memory nibbles = ""; if (b.length > 0) { uint8 offset; uint8 hpNibble = uint8(_getNthNibbleOfBytes(0, b)); if (hpNibble == 1 || hpNibble == 3) { nibbles = new bytes(b.length * 2 - 1); bytes1 oddNibble = _getNthNibbleOfBytes(1, b); nibbles[0] = oddNibble; offset = 1; } else { nibbles = new bytes(b.length * 2 - 2); offset = 0; } for (uint256 i = offset; i < nibbles.length; i++) { nibbles[i] = _getNthNibbleOfBytes(i - offset + 2, b); } } return nibbles; } function _getNthNibbleOfBytes(uint256 n, bytes memory str) private pure returns (bytes1) { return bytes1( n % 2 == 0 ? uint8(str[n / 2]) / 0x10 : uint8(str[n / 2]) % 0x10 ); } } pragma solidity 0.6.6; library Merkle { function checkMembership( bytes32 leaf, uint256 index, bytes32 rootHash, bytes memory proof ) internal pure returns (bool) { require(proof.length % 32 == 0, "Invalid proof length"); uint256 proofHeight = proof.length / 32; // Proof of size n means, height of the tree is n+1. // In a tree of height n+1, max #leafs possible is 2 ^ n require(index < 2 ** proofHeight, "Leaf index is too big"); bytes32 proofElement; bytes32 computedHash = leaf; for (uint256 i = 32; i <= proof.length; i += 32) { assembly { proofElement := mload(add(proof, i)) } if (index % 2 == 0) { computedHash = keccak256( abi.encodePacked(computedHash, proofElement) ); } else { computedHash = keccak256( abi.encodePacked(proofElement, computedHash) ); } index = index / 2; } return computedHash == rootHash; } } pragma solidity 0.6.6; import {RLPReader} from "../../lib/RLPReader.sol"; /// @title Token predicate interface for all pos portal predicates /// @notice Abstract interface that defines methods for custom predicates interface ITokenPredicate { /** * @notice Deposit tokens into pos portal * @dev When `depositor` deposits tokens into pos portal, tokens get locked into predicate contract. * @param depositor Address who wants to deposit tokens * @param depositReceiver Address (address) who wants to receive tokens on side chain * @param rootToken Token which gets deposited * @param depositData Extra data for deposit (amount for ERC20, token id for ERC721 etc.) [ABI encoded] */ function lockTokens( address depositor, address depositReceiver, address rootToken, bytes calldata depositData ) external; /** * @notice Validates and processes exit while withdraw process * @dev Validates exit log emitted on sidechain. Reverts if validation fails. * @dev Processes withdraw based on custom logic. Example: transfer ERC20/ERC721, mint ERC721 if mintable withdraw * @param sender unused for polygon predicates, being kept for abi compatability * @param rootToken Token which gets withdrawn * @param logRLPList Valid sidechain log for data like amount, token id etc. */ function exitTokens( address sender, address rootToken, bytes calldata logRLPList ) external; } pragma solidity 0.6.6; contract Initializable { bool inited = false; modifier initializer() { require(!inited, "already inited"); _; inited = true; } function _disableInitializer() internal { inited = true; } } pragma solidity 0.6.6; /** * @notice DISCLAIMER: * Do not use NativeMetaTransaction and ContextMixin together with OpenZeppelin's "multicall" * nor any other form of self delegatecall! * Risk of address spoofing attacks. * Read more: https://blog.openzeppelin.com/arbitrary-address-spoofing-vulnerability-erc2771context-multicall-public-disclosure */ import {SafeMath} from "@openzeppelin/contracts/math/SafeMath.sol"; import {EIP712Base} from "./EIP712Base.sol"; contract NativeMetaTransaction is EIP712Base { using SafeMath for uint256; bytes32 private constant META_TRANSACTION_TYPEHASH = keccak256( bytes( "MetaTransaction(uint256 nonce,address from,bytes functionSignature)" ) ); event MetaTransactionExecuted( address indexed userAddress, address payable indexed relayerAddress, bytes functionSignature ); mapping(address => uint256) nonces; /* * Meta transaction structure. * No point of including value field here as if user is doing value transfer then he has the funds to pay for gas * He should call the desired function directly in that case. */ struct MetaTransaction { uint256 nonce; address from; bytes functionSignature; } function executeMetaTransaction( address userAddress, bytes calldata functionSignature, bytes32 sigR, bytes32 sigS, uint8 sigV ) external payable returns (bytes memory) { MetaTransaction memory metaTx = MetaTransaction({ nonce: nonces[userAddress], from: userAddress, functionSignature: functionSignature }); require( verify(userAddress, metaTx, sigR, sigS, sigV), "Signer and signature do not match" ); // increase nonce for user (to avoid re-use) ++nonces[userAddress]; emit MetaTransactionExecuted( userAddress, msg.sender, functionSignature ); // Append userAddress and relayer address at the end to extract it from calling context (bool success, bytes memory returnData) = address(this).call( abi.encodePacked(functionSignature, userAddress) ); require(success, "Function call not successful"); return returnData; } function getNonce(address user) external view returns (uint256 nonce) { nonce = nonces[user]; } function hashMetaTransaction(MetaTransaction memory metaTx) internal pure returns (bytes32) { return keccak256( abi.encode( META_TRANSACTION_TYPEHASH, metaTx.nonce, metaTx.from, keccak256(metaTx.functionSignature) ) ); } function verify( address signer, MetaTransaction memory metaTx, bytes32 sigR, bytes32 sigS, uint8 sigV ) internal view returns (bool) { require(signer != address(0), "NativeMetaTransaction: INVALID_SIGNER"); return signer == ecrecover( toTypedMessageHash(hashMetaTransaction(metaTx)), sigV, sigR, sigS ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../utils/EnumerableSet.sol"; import "../utils/Address.sol"; import "../GSN/Context.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. */ abstract contract AccessControl is Context { using EnumerableSet for EnumerableSet.AddressSet; using Address for address; struct RoleData { EnumerableSet.AddressSet members; bytes32 adminRole; } mapping (bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view returns (bool) { return _roles[role].members.contains(account); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view returns (uint256) { return _roles[role].members.length(); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view returns (address) { return _roles[role].members.at(index); } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant"); _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke"); _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) public virtual { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { emit RoleAdminChanged(role, _roles[role].adminRole, adminRole); _roles[role].adminRole = adminRole; } function _grantRole(bytes32 role, address account) private { if (_roles[role].members.add(account)) { emit RoleGranted(role, account, _msgSender()); } } function _revokeRole(bytes32 role, address account) private { if (_roles[role].members.remove(account)) { emit RoleRevoked(role, account, _msgSender()); } } } pragma solidity 0.6.6; import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol"; contract AccessControlMixin is AccessControl { string private _revertMsg; function _setupContractId(string memory contractId) internal { _revertMsg = string(abi.encodePacked(contractId, ": INSUFFICIENT_PERMISSIONS")); } modifier only(bytes32 role) { require( hasRole(role, _msgSender()), _revertMsg ); _; } } pragma solidity 0.6.6; /** * @notice DISCLAIMER: * Do not use NativeMetaTransaction and ContextMixin together with OpenZeppelin's "multicall" * nor any other form of self delegatecall! * Risk of address spoofing attacks. * Read more: https://blog.openzeppelin.com/arbitrary-address-spoofing-vulnerability-erc2771context-multicall-public-disclosure */ abstract contract ContextMixin { function msgSender() internal view returns (address payable sender) { if (msg.sender == address(this)) { bytes memory array = msg.data; uint256 index = msg.data.length; assembly { // Load the 32 bytes word from memory with the address on the lower 20 bytes, and mask those. sender := and( mload(add(array, index)), 0xffffffffffffffffffffffffffffffffffffffff ) } } else { sender = msg.sender; } return sender; } } pragma solidity 0.6.6; import {Initializable} from "./Initializable.sol"; contract EIP712Base is Initializable { struct EIP712Domain { string name; string version; address verifyingContract; bytes32 salt; } string constant public ERC712_VERSION = "1"; bytes32 internal constant EIP712_DOMAIN_TYPEHASH = keccak256( bytes( "EIP712Domain(string name,string version,address verifyingContract,bytes32 salt)" ) ); bytes32 internal domainSeperator; // supposed to be called once while initializing. // one of the contractsa that inherits this contract follows proxy pattern // so it is not possible to do this in a constructor function _initializeEIP712( string memory name ) internal initializer { _setDomainSeperator(name); } function _setDomainSeperator(string memory name) internal { domainSeperator = keccak256( abi.encode( EIP712_DOMAIN_TYPEHASH, keccak256(bytes(name)), keccak256(bytes(ERC712_VERSION)), address(this), bytes32(getChainId()) ) ); } function getDomainSeperator() public view returns (bytes32) { return domainSeperator; } function getChainId() public pure returns (uint256) { uint256 id; assembly { id := chainid() } return id; } /** * Accept message hash and returns hash message in EIP712 compatible form * So that it can be used to recover signer from signature signed using EIP712 formatted data * https://eips.ethereum.org/EIPS/eip-712 * "\\\\x19" makes the encoding deterministic * "\\\\x01" is the version byte to make it compatible to EIP-191 */ function toTypedMessageHash(bytes32 messageHash) internal view returns (bytes32) { return keccak256( abi.encodePacked("\\x19\\x01", getDomainSeperator(), messageHash) ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256` * (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(value))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(value))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(value))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint256(_at(set._inner, index))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
File 6 of 6: ERC20Predicate
pragma solidity 0.6.6; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import {AccessControlMixin} from "../../common/AccessControlMixin.sol"; import {RLPReader} from "../../lib/RLPReader.sol"; import {ITokenPredicate} from "./ITokenPredicate.sol"; import {Initializable} from "../../common/Initializable.sol"; contract ERC20Predicate is ITokenPredicate, AccessControlMixin, Initializable { using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; using SafeERC20 for IERC20; bytes32 public constant MANAGER_ROLE = keccak256("MANAGER_ROLE"); bytes32 public constant TOKEN_TYPE = keccak256("ERC20"); bytes32 public constant TRANSFER_EVENT_SIG = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; event LockedERC20( address indexed depositor, address indexed depositReceiver, address indexed rootToken, uint256 amount ); event ExitedERC20( address indexed exitor, address indexed rootToken, uint256 amount ); constructor() public { // Disable initializer on implementation contract _disableInitializer(); } function initialize(address _owner) external initializer { _setupContractId("ERC20Predicate"); _setupRole(DEFAULT_ADMIN_ROLE, _owner); _setupRole(MANAGER_ROLE, _owner); } /** * @notice Lock ERC20 tokens for deposit, callable only by manager * @param depositor Address who wants to deposit tokens * @param depositReceiver Address (address) who wants to receive tokens on child chain * @param rootToken Token which gets deposited * @param depositData ABI encoded amount */ function lockTokens( address depositor, address depositReceiver, address rootToken, bytes calldata depositData ) external override only(MANAGER_ROLE) { uint256 amount = abi.decode(depositData, (uint256)); emit LockedERC20(depositor, depositReceiver, rootToken, amount); IERC20(rootToken).safeTransferFrom(depositor, address(this), amount); } /** * @notice Validates log signature, from and to address * then sends the correct amount to withdrawer * callable only by manager * @notice address unused, being kept for abi compatability * @param rootToken Token which gets withdrawn * @param log Valid ERC20 burn log from child chain */ function exitTokens( address, address rootToken, bytes calldata log ) external override only(MANAGER_ROLE) { RLPReader.RLPItem[] memory logRLPList = log.toRlpItem().toList(); RLPReader.RLPItem[] memory logTopicRLPList = logRLPList[1].toList(); // topics require( bytes32(logTopicRLPList[0].toUint()) == TRANSFER_EVENT_SIG, // topic0 is event sig "ERC20Predicate: INVALID_SIGNATURE" ); address withdrawer = address(logTopicRLPList[1].toUint()); // topic1 is from address require( address(logTopicRLPList[2].toUint()) == address(0), // topic2 is to address "ERC20Predicate: INVALID_RECEIVER" ); uint256 amount = logRLPList[2].toUint(); // log data field is the amount IERC20(rootToken).safeTransfer( withdrawer, amount ); emit ExitedERC20(withdrawer, rootToken, amount); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } pragma solidity 0.6.6; import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol"; contract AccessControlMixin is AccessControl { string private _revertMsg; function _setupContractId(string memory contractId) internal { _revertMsg = string(abi.encodePacked(contractId, ": INSUFFICIENT_PERMISSIONS")); } modifier only(bytes32 role) { require( hasRole(role, _msgSender()), _revertMsg ); _; } } /* * @author Hamdi Allam [email protected] * Please reach out with any questions or concerns * https://github.com/hamdiallam/Solidity-RLP/blob/e681e25a376dbd5426b509380bc03446f05d0f97/contracts/RLPReader.sol */ pragma solidity 0.6.6; library RLPReader { uint8 constant STRING_SHORT_START = 0x80; uint8 constant STRING_LONG_START = 0xb8; uint8 constant LIST_SHORT_START = 0xc0; uint8 constant LIST_LONG_START = 0xf8; uint8 constant WORD_SIZE = 32; struct RLPItem { uint len; uint memPtr; } struct Iterator { RLPItem item; // Item that's being iterated over. uint nextPtr; // Position of the next item in the list. } /* * @dev Returns the next element in the iteration. Reverts if it has not next element. * @param self The iterator. * @return The next element in the iteration. */ function next(Iterator memory self) internal pure returns (RLPItem memory) { require(hasNext(self)); uint ptr = self.nextPtr; uint itemLength = _itemLength(ptr); self.nextPtr = ptr + itemLength; return RLPItem(itemLength, ptr); } /* * @dev Returns true if the iteration has more elements. * @param self The iterator. * @return true if the iteration has more elements. */ function hasNext(Iterator memory self) internal pure returns (bool) { RLPItem memory item = self.item; return self.nextPtr < item.memPtr + item.len; } /* * @param item RLP encoded bytes */ function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) { uint memPtr; assembly { memPtr := add(item, 0x20) } return RLPItem(item.length, memPtr); } /* * @dev Create an iterator. Reverts if item is not a list. * @param self The RLP item. * @return An 'Iterator' over the item. */ function iterator(RLPItem memory self) internal pure returns (Iterator memory) { require(isList(self)); uint ptr = self.memPtr + _payloadOffset(self.memPtr); return Iterator(self, ptr); } /* * @param the RLP item. */ function rlpLen(RLPItem memory item) internal pure returns (uint) { return item.len; } /* * @param the RLP item. * @return (memPtr, len) pair: location of the item's payload in memory. */ function payloadLocation(RLPItem memory item) internal pure returns (uint, uint) { uint offset = _payloadOffset(item.memPtr); uint memPtr = item.memPtr + offset; uint len = item.len - offset; // data length return (memPtr, len); } /* * @param the RLP item. */ function payloadLen(RLPItem memory item) internal pure returns (uint) { (, uint len) = payloadLocation(item); return len; } /* * @param the RLP item containing the encoded list. */ function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) { require(isList(item)); uint items = numItems(item); RLPItem[] memory result = new RLPItem[](items); uint memPtr = item.memPtr + _payloadOffset(item.memPtr); uint dataLen; for (uint i = 0; i < items; i++) { dataLen = _itemLength(memPtr); result[i] = RLPItem(dataLen, memPtr); memPtr = memPtr + dataLen; } require(memPtr - item.memPtr == item.len, "Wrong total length."); return result; } // @return indicator whether encoded payload is a list. negate this function call for isData. function isList(RLPItem memory item) internal pure returns (bool) { if (item.len == 0) return false; uint8 byte0; uint memPtr = item.memPtr; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < LIST_SHORT_START) return false; return true; } /* * @dev A cheaper version of keccak256(toRlpBytes(item)) that avoids copying memory. * @return keccak256 hash of RLP encoded bytes. */ function rlpBytesKeccak256(RLPItem memory item) internal pure returns (bytes32) { uint256 ptr = item.memPtr; uint256 len = item.len; bytes32 result; assembly { result := keccak256(ptr, len) } return result; } /* * @dev A cheaper version of keccak256(toBytes(item)) that avoids copying memory. * @return keccak256 hash of the item payload. */ function payloadKeccak256(RLPItem memory item) internal pure returns (bytes32) { (uint memPtr, uint len) = payloadLocation(item); bytes32 result; assembly { result := keccak256(memPtr, len) } return result; } /** RLPItem conversions into data types **/ // @returns raw rlp encoding in bytes function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) { bytes memory result = new bytes(item.len); if (result.length == 0) return result; uint ptr; assembly { ptr := add(0x20, result) } copy(item.memPtr, ptr, item.len); return result; } // any non-zero byte except "0x80" is considered true function toBoolean(RLPItem memory item) internal pure returns (bool) { require(item.len == 1); uint result; uint memPtr = item.memPtr; assembly { result := byte(0, mload(memPtr)) } // SEE Github Issue #5. // Summary: Most commonly used RLP libraries (i.e Geth) will encode // "0" as "0x80" instead of as "0". We handle this edge case explicitly // here. if (result == 0 || result == STRING_SHORT_START) { return false; } else { return true; } } function toAddress(RLPItem memory item) internal pure returns (address) { // 1 byte for the length prefix require(item.len == 21); return address(toUint(item)); } function toUint(RLPItem memory item) internal pure returns (uint) { require(item.len > 0 && item.len <= 33); (uint memPtr, uint len) = payloadLocation(item); uint result; assembly { result := mload(memPtr) // shfit to the correct location if neccesary if lt(len, 32) { result := div(result, exp(256, sub(32, len))) } } return result; } // enforces 32 byte length function toUintStrict(RLPItem memory item) internal pure returns (uint) { // one byte prefix require(item.len == 33); uint result; uint memPtr = item.memPtr + 1; assembly { result := mload(memPtr) } return result; } function toBytes(RLPItem memory item) internal pure returns (bytes memory) { require(item.len > 0); (uint memPtr, uint len) = payloadLocation(item); bytes memory result = new bytes(len); uint destPtr; assembly { destPtr := add(0x20, result) } copy(memPtr, destPtr, len); return result; } /* * Private Helpers */ // @return number of payload items inside an encoded list. function numItems(RLPItem memory item) private pure returns (uint) { if (item.len == 0) return 0; uint count = 0; uint currPtr = item.memPtr + _payloadOffset(item.memPtr); uint endPtr = item.memPtr + item.len; while (currPtr < endPtr) { currPtr = currPtr + _itemLength(currPtr); // skip over an item count++; } return count; } // @return entire rlp item byte length function _itemLength(uint memPtr) private pure returns (uint) { uint itemLen; uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) itemLen = 1; else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1; else if (byte0 < LIST_SHORT_START) { assembly { let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is memPtr := add(memPtr, 1) // skip over the first byte /* 32 byte word size */ let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len itemLen := add(dataLen, add(byteLen, 1)) } } else if (byte0 < LIST_LONG_START) { itemLen = byte0 - LIST_SHORT_START + 1; } else { assembly { let byteLen := sub(byte0, 0xf7) memPtr := add(memPtr, 1) let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length itemLen := add(dataLen, add(byteLen, 1)) } } return itemLen; } // @return number of bytes until the data function _payloadOffset(uint memPtr) private pure returns (uint) { uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) return 0; else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1; else if (byte0 < LIST_SHORT_START) // being explicit return byte0 - (STRING_LONG_START - 1) + 1; else return byte0 - (LIST_LONG_START - 1) + 1; } /* * @param src Pointer to source * @param dest Pointer to destination * @param len Amount of memory to copy from the source */ function copy(uint src, uint dest, uint len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } if (len > 0) { // left over bytes. Mask is used to remove unwanted bytes from the word uint mask = 256 ** (WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } } } pragma solidity 0.6.6; import {RLPReader} from "../../lib/RLPReader.sol"; /// @title Token predicate interface for all pos portal predicates /// @notice Abstract interface that defines methods for custom predicates interface ITokenPredicate { /** * @notice Deposit tokens into pos portal * @dev When `depositor` deposits tokens into pos portal, tokens get locked into predicate contract. * @param depositor Address who wants to deposit tokens * @param depositReceiver Address (address) who wants to receive tokens on side chain * @param rootToken Token which gets deposited * @param depositData Extra data for deposit (amount for ERC20, token id for ERC721 etc.) [ABI encoded] */ function lockTokens( address depositor, address depositReceiver, address rootToken, bytes calldata depositData ) external; /** * @notice Validates and processes exit while withdraw process * @dev Validates exit log emitted on sidechain. Reverts if validation fails. * @dev Processes withdraw based on custom logic. Example: transfer ERC20/ERC721, mint ERC721 if mintable withdraw * @param sender unused for polygon predicates, being kept for abi compatability * @param rootToken Token which gets withdrawn * @param logRLPList Valid sidechain log for data like amount, token id etc. */ function exitTokens( address sender, address rootToken, bytes calldata logRLPList ) external; } pragma solidity 0.6.6; contract Initializable { bool inited = false; modifier initializer() { require(!inited, "already inited"); _; inited = true; } function _disableInitializer() internal { inited = true; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../utils/EnumerableSet.sol"; import "../utils/Address.sol"; import "../GSN/Context.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. */ abstract contract AccessControl is Context { using EnumerableSet for EnumerableSet.AddressSet; using Address for address; struct RoleData { EnumerableSet.AddressSet members; bytes32 adminRole; } mapping (bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view returns (bool) { return _roles[role].members.contains(account); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view returns (uint256) { return _roles[role].members.length(); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view returns (address) { return _roles[role].members.at(index); } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant"); _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke"); _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) public virtual { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { emit RoleAdminChanged(role, _roles[role].adminRole, adminRole); _roles[role].adminRole = adminRole; } function _grantRole(bytes32 role, address account) private { if (_roles[role].members.add(account)) { emit RoleGranted(role, account, _msgSender()); } } function _revokeRole(bytes32 role, address account) private { if (_roles[role].members.remove(account)) { emit RoleRevoked(role, account, _msgSender()); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256` * (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(value))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(value))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(value))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint256(_at(set._inner, index))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }