ETH Price: $2,754.31 (-0.18%)

Transaction Decoder

Block:
19332796 at Feb-29-2024 11:12:47 AM +UTC
Transaction Fee:
0.00405224051097468 ETH $11.16
Gas Used:
52,680 Gas / 76.921801651 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x6118006c...9B199d5B9
0.284578697097106454 Eth
Nonce: 59
0.280526456586131774 Eth
Nonce: 60
0.00405224051097468
(beaverbuild)
17.930449976402872553 Eth17.930455244402872553 Eth0.000005268

Execution Trace

L1ChugSplashProxy.87087623( )
  • ProxyAdmin.STATICCALL( )
  • L1BlastBridge.bridgeERC20( _localToken=0x6B175474E89094C44Da98b954EedeAC495271d0F, _remoteToken=0x4300000000000000000000000000000000000003, _amount=9500000, _minGasLimit=500000, _extraData=0x00000000000000000000000000000000000000000000000083D6C7AAB6360000 )
    • Dai.transferFrom( src=0x6118006cF4Ac04619083d122D9Ca68E9B199d5B9, dst=0xa230285d5683C74935aD14c446e137c8c8828438, wad=9500000 )
      File 1 of 4: L1ChugSplashProxy
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Constants } from "src/libraries/Constants.sol";
      /// @title IL1ChugSplashDeployer
      interface IL1ChugSplashDeployer {
          function isUpgrading() external view returns (bool);
      }
      /// @custom:legacy
      /// @title L1ChugSplashProxy
      /// @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
      ///         functions `setCode` and `setStorage` for changing the code or storage of the contract.
      ///         Note for future developers: do NOT make anything in this contract 'public' unless you
      ///         know what you're doing. Anything public can potentially have a function signature that
      ///         conflicts with a signature attached to the implementation contract. Public functions
      ///         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
      ///         reason not to have that modifier. And there almost certainly is not a good reason to not
      ///         have that modifier. Beware!
      contract L1ChugSplashProxy {
          /// @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
          ///         contract, the appended bytecode will be deployed as given.
          bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
          /// @notice Blocks a function from being called when the parent signals that the system should
          ///         be paused via an isUpgrading function.
          modifier onlyWhenNotPaused() {
              address owner = _getOwner();
              // We do a low-level call because there's no guarantee that the owner actually *is* an
              // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
              // it turns out that it isn't the right type of contract.
              (bool success, bytes memory returndata) =
                  owner.staticcall(abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector));
              // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
              // can just continue as normal. We also expect that the return value is exactly 32 bytes
              // long. If this isn't the case then we can safely ignore the result.
              if (success && returndata.length == 32) {
                  // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                  // case that the isUpgrading function returned something other than 0 or 1. But we only
                  // really care about the case where this value is 0 (= false).
                  uint256 ret = abi.decode(returndata, (uint256));
                  require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
              }
              _;
          }
          /// @notice Makes a proxy call instead of triggering the given function when the caller is
          ///         either the owner or the zero address. Caller can only ever be the zero address if
          ///         this function is being called off-chain via eth_call, which is totally fine and can
          ///         be convenient for client-side tooling. Avoids situations where the proxy and
          ///         implementation share a sighash and the proxy function ends up being called instead
          ///         of the implementation one.
          ///         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
          ///         there's a way for someone to send a transaction with msg.sender == address(0) in any
          ///         real context then we have much bigger problems. Primary reason to include this
          ///         additional allowed sender is because the owner address can be changed dynamically
          ///         and we do not want clients to have to keep track of the current owner in order to
          ///         make an eth_call that doesn't trigger the proxied contract.
          // slither-disable-next-line incorrect-modifier
          modifier proxyCallIfNotOwner() {
              if (msg.sender == _getOwner() || msg.sender == address(0)) {
                  _;
              } else {
                  // This WILL halt the call frame on completion.
                  _doProxyCall();
              }
          }
          /// @param _owner Address of the initial contract owner.
          constructor(address _owner) {
              _setOwner(_owner);
          }
          // slither-disable-next-line locked-ether
          receive() external payable {
              // Proxy call by default.
              _doProxyCall();
          }
          // slither-disable-next-line locked-ether
          fallback() external payable {
              // Proxy call by default.
              _doProxyCall();
          }
          /// @notice Sets the code that should be running behind this proxy.
          ///         Note: This scheme is a bit different from the standard proxy scheme where one would
          ///         typically deploy the code separately and then set the implementation address. We're
          ///         doing it this way because it gives us a lot more freedom on the client side. Can
          ///         only be triggered by the contract owner.
          /// @param _code New contract code to run inside this contract.
          function setCode(bytes memory _code) external proxyCallIfNotOwner {
              // Get the code hash of the current implementation.
              address implementation = _getImplementation();
              // If the code hash matches the new implementation then we return early.
              if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                  return;
              }
              // Create the deploycode by appending the magic prefix.
              bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
              // Deploy the code and set the new implementation address.
              address newImplementation;
              assembly {
                  newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
              }
              // Check that the code was actually deployed correctly. I'm not sure if you can ever
              // actually fail this check. Should only happen if the contract creation from above runs
              // out of gas but this parent execution thread does NOT run out of gas. Seems like we
              // should be doing this check anyway though.
              require(
                  _getAccountCodeHash(newImplementation) == keccak256(_code),
                  "L1ChugSplashProxy: code was not correctly deployed"
              );
              _setImplementation(newImplementation);
          }
          /// @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
          ///         perform upgrades in a more transparent way. Only callable by the owner.
          /// @param _key   Storage key to modify.
          /// @param _value New value for the storage key.
          function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
              assembly {
                  sstore(_key, _value)
              }
          }
          /// @notice Changes the owner of the proxy contract. Only callable by the owner.
          /// @param _owner New owner of the proxy contract.
          function setOwner(address _owner) external proxyCallIfNotOwner {
              _setOwner(_owner);
          }
          /// @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
          ///         making an eth_call and setting the "from" address to address(0).
          /// @return Owner address.
          function getOwner() external proxyCallIfNotOwner returns (address) {
              return _getOwner();
          }
          /// @notice Queries the implementation address. Can only be called by the owner OR by making an
          ///         eth_call and setting the "from" address to address(0).
          /// @return Implementation address.
          function getImplementation() external proxyCallIfNotOwner returns (address) {
              return _getImplementation();
          }
          /// @notice Sets the implementation address.
          /// @param _implementation New implementation address.
          function _setImplementation(address _implementation) internal {
              bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
              assembly {
                  sstore(proxyImplementation, _implementation)
              }
          }
          /// @notice Changes the owner of the proxy contract.
          /// @param _owner New owner of the proxy contract.
          function _setOwner(address _owner) internal {
              bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
              assembly {
                  sstore(proxyOwner, _owner)
              }
          }
          /// @notice Performs the proxy call via a delegatecall.
          function _doProxyCall() internal onlyWhenNotPaused {
              address implementation = _getImplementation();
              require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
              assembly {
                  // Copy calldata into memory at 0x0....calldatasize.
                  calldatacopy(0x0, 0x0, calldatasize())
                  // Perform the delegatecall, make sure to pass all available gas.
                  let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                  // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                  // overwrite the calldata that we just copied into memory but that doesn't really
                  // matter because we'll be returning in a second anyway.
                  returndatacopy(0x0, 0x0, returndatasize())
                  // Success == 0 means a revert. We'll revert too and pass the data up.
                  if iszero(success) { revert(0x0, returndatasize()) }
                  // Otherwise we'll just return and pass the data up.
                  return(0x0, returndatasize())
              }
          }
          /// @notice Queries the implementation address.
          /// @return Implementation address.
          function _getImplementation() internal view returns (address) {
              address implementation;
              bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
              assembly {
                  implementation := sload(proxyImplementation)
              }
              return implementation;
          }
          /// @notice Queries the owner of the proxy contract.
          /// @return Owner address.
          function _getOwner() internal view returns (address) {
              address owner;
              bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
              assembly {
                  owner := sload(proxyOwner)
              }
              return owner;
          }
          /// @notice Gets the code hash for a given account.
          /// @param _account Address of the account to get a code hash for.
          /// @return Code hash for the account.
          function _getAccountCodeHash(address _account) internal view returns (bytes32) {
              bytes32 codeHash;
              assembly {
                  codeHash := extcodehash(_account)
              }
              return codeHash;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      import { ResourceMetering } from "../L1/ResourceMetering.sol";
      /// @title Constants
      /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
      ///         the stuff used in multiple contracts. Constants that only apply to a single contract
      ///         should be defined in that contract instead.
      library Constants {
          /// @notice Special address to be used as the tx origin for gas estimation calls in the
          ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
          ///         the minimum gas limit specified by the user is not actually enough to execute the
          ///         given message and you're attempting to estimate the actual necessary gas limit. We
          ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
          ///         never have any code on any EVM chain.
          address internal constant ESTIMATION_ADDRESS = address(1);
          /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
          ///         CrossDomainMessenger contracts before an actual sender is set. This value is
          ///         non-zero to reduce the gas cost of message passing transactions.
          address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
          /// @notice The storage slot that holds the address of a proxy implementation.
          /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
          bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
              0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /// @notice The storage slot that holds the address of the owner.
          /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
          bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /// @notice Returns the default values for the ResourceConfig. These are the recommended values
          ///         for a production network.
          function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
              ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                  maxResourceLimit: 20_000_000,
                  elasticityMultiplier: 10,
                  baseFeeMaxChangeDenominator: 8,
                  minimumBaseFee: 1 gwei,
                  systemTxMaxGas: 1_000_000,
                  maximumBaseFee: type(uint128).max
              });
              return config;
          }
          /// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
          ///         each time that the contracts are deployed.
          uint8 internal constant INITIALIZER = 1;
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
      import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
      import { Burn } from "src/libraries/Burn.sol";
      import { Arithmetic } from "src/libraries/Arithmetic.sol";
      /// @custom:upgradeable
      /// @title ResourceMetering
      /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
      ///         updates automatically based on current demand.
      abstract contract ResourceMetering is Initializable {
          /// @notice Represents the various parameters that control the way in which resources are
          ///         metered. Corresponds to the EIP-1559 resource metering system.
          /// @custom:field prevBaseFee   Base fee from the previous block(s).
          /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
          /// @custom:field prevBlockNum  Last block number that the base fee was updated.
          struct ResourceParams {
              uint128 prevBaseFee;
              uint64 prevBoughtGas;
              uint64 prevBlockNum;
          }
          /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
          ///         market. These values should be set with care as it is possible to set them in
          ///         a way that breaks the deposit gas market. The target resource limit is defined as
          ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
          ///         single word. There is additional space for additions in the future.
          /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
          ///                                            can be purchased per block.
          /// @custom:field elasticityMultiplier         Determines the target resource limit along with
          ///                                            the resource limit.
          /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
          /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
          ///                                            value.
          /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
          ///                                            transaction. This should be set to the same
          ///                                            number that the op-node sets as the gas limit
          ///                                            for the system transaction.
          /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
          ///                                            value.
          struct ResourceConfig {
              uint32 maxResourceLimit;
              uint8 elasticityMultiplier;
              uint8 baseFeeMaxChangeDenominator;
              uint32 minimumBaseFee;
              uint32 systemTxMaxGas;
              uint128 maximumBaseFee;
          }
          /// @notice EIP-1559 style gas parameters.
          ResourceParams public params;
          /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
          uint256[48] private __gap;
          /// @notice Meters access to a function based an amount of a requested resource.
          /// @param _amount Amount of the resource requested.
          modifier metered(uint64 _amount) {
              // Record initial gas amount so we can refund for it later.
              uint256 initialGas = gasleft();
              // Run the underlying function.
              _;
              // Run the metering function.
              _metered(_amount, initialGas);
          }
          /// @notice An internal function that holds all of the logic for metering a resource.
          /// @param _amount     Amount of the resource requested.
          /// @param _initialGas The amount of gas before any modifier execution.
          function _metered(uint64 _amount, uint256 _initialGas) internal {
              // Update block number and base fee if necessary.
              uint256 blockDiff = block.number - params.prevBlockNum;
              ResourceConfig memory config = _resourceConfig();
              int256 targetResourceLimit =
                  int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
              if (blockDiff > 0) {
                  // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                  // at which deposits can be created and therefore limit the potential for deposits to
                  // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                  int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                  int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                      / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                  // Update base fee by adding the base fee delta and clamp the resulting value between
                  // min and max.
                  int256 newBaseFee = Arithmetic.clamp({
                      _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                      _min: int256(uint256(config.minimumBaseFee)),
                      _max: int256(uint256(config.maximumBaseFee))
                  });
                  // If we skipped more than one block, we also need to account for every empty block.
                  // Empty block means there was no demand for deposits in that block, so we should
                  // reflect this lack of demand in the fee.
                  if (blockDiff > 1) {
                      // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                      // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                      // between min and max.
                      newBaseFee = Arithmetic.clamp({
                          _value: Arithmetic.cdexp({
                              _coefficient: newBaseFee,
                              _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                              _exponent: int256(blockDiff - 1)
                          }),
                          _min: int256(uint256(config.minimumBaseFee)),
                          _max: int256(uint256(config.maximumBaseFee))
                      });
                  }
                  // Update new base fee, reset bought gas, and update block number.
                  params.prevBaseFee = uint128(uint256(newBaseFee));
                  params.prevBoughtGas = 0;
                  params.prevBlockNum = uint64(block.number);
              }
              // Make sure we can actually buy the resource amount requested by the user.
              params.prevBoughtGas += _amount;
              require(
                  int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                  "ResourceMetering: cannot buy more gas than available gas limit"
              );
              // Determine the amount of ETH to be paid.
              uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
              // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
              // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
              // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
              // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
              // during any 1 day period in the last 5 years, so should be fine.
              uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
              // Give the user a refund based on the amount of gas they used to do all of the work up to
              // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
              // effectively like a dynamic stipend (with a minimum value).
              uint256 usedGas = _initialGas - gasleft();
              if (gasCost > usedGas) {
                  Burn.gas(gasCost - usedGas);
              }
          }
          /// @notice Virtual function that returns the resource config.
          ///         Contracts that inherit this contract must implement this function.
          /// @return ResourceConfig
          function _resourceConfig() internal virtual returns (ResourceConfig memory);
          /// @notice Sets initial resource parameter values.
          ///         This function must either be called by the initializer function of an upgradeable
          ///         child contract.
          // solhint-disable-next-line func-name-mixedcase
          function __ResourceMetering_init() internal onlyInitializing {
              if (params.prevBlockNum == 0) {
                  params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.2;
      import "../../utils/Address.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           * @custom:oz-retyped-from bool
           */
          uint8 private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint8 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
           */
          modifier initializer() {
              bool isTopLevelCall = !_initializing;
              require(
                  (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                  "Initializable: contract is already initialized"
              );
              _initialized = 1;
              if (isTopLevelCall) {
                  _initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
           * initialization step. This is essential to configure modules that are added through upgrades and that require
           * initialization.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           */
          modifier reinitializer(uint8 version) {
              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
              _initialized = version;
              _initializing = true;
              _;
              _initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           */
          function _disableInitializers() internal virtual {
              require(!_initializing, "Initializable: contract is initializing");
              if (_initialized < type(uint8).max) {
                  _initialized = type(uint8).max;
                  emit Initialized(type(uint8).max);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a >= b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1);
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator,
              Rounding rounding
          ) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`.
              // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
              // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
              // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
              // good first aproximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1;
              uint256 x = a;
              if (x >> 128 > 0) {
                  x >>= 128;
                  result <<= 64;
              }
              if (x >> 64 > 0) {
                  x >>= 64;
                  result <<= 32;
              }
              if (x >> 32 > 0) {
                  x >>= 32;
                  result <<= 16;
              }
              if (x >> 16 > 0) {
                  x >>= 16;
                  result <<= 8;
              }
              if (x >> 8 > 0) {
                  x >>= 8;
                  result <<= 4;
              }
              if (x >> 4 > 0) {
                  x >>= 4;
                  result <<= 2;
              }
              if (x >> 2 > 0) {
                  result <<= 1;
              }
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              uint256 result = sqrt(a);
              if (rounding == Rounding.Up && result * result < a) {
                  result += 1;
              }
              return result;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      /// @title Burn
      /// @notice Utilities for burning stuff.
      library Burn {
          /// @notice Burns a given amount of ETH.
          /// @param _amount Amount of ETH to burn.
          function eth(uint256 _amount) internal {
              new Burner{ value: _amount }();
          }
          /// @notice Burns a given amount of gas.
          /// @param _amount Amount of gas to burn.
          function gas(uint256 _amount) internal view {
              uint256 i = 0;
              uint256 initialGas = gasleft();
              while (initialGas - gasleft() < _amount) {
                  ++i;
              }
          }
      }
      /// @title Burner
      /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
      ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
      ///         from the circulating supply.
      contract Burner {
          constructor() payable {
              selfdestruct(payable(address(this)));
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
      import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
      /// @title Arithmetic
      /// @notice Even more math than before.
      library Arithmetic {
          /// @notice Clamps a value between a minimum and maximum.
          /// @param _value The value to clamp.
          /// @param _min   The minimum value.
          /// @param _max   The maximum value.
          /// @return The clamped value.
          function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
              return SignedMath.min(SignedMath.max(_value, _min), _max);
          }
          /// @notice (c)oefficient (d)enominator (exp)onentiation function.
          ///         Returns the result of: c * (1 - 1/d)^exp.
          /// @param _coefficient Coefficient of the function.
          /// @param _denominator Fractional denominator.
          /// @param _exponent    Power function exponent.
          /// @return Result of c * (1 - 1/d)^exp.
          function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
              return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(isContract(target), "Address: delegate call to non-contract");
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return a >= b ? a : b;
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // must be unchecked in order to support `n = type(int256).min`
                  return uint256(n >= 0 ? n : -n);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.0;
      /// @notice Arithmetic library with operations for fixed-point numbers.
      /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
      library FixedPointMathLib {
          /*//////////////////////////////////////////////////////////////
                          SIMPLIFIED FIXED POINT OPERATIONS
          //////////////////////////////////////////////////////////////*/
          uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
          function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
          }
          function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
          }
          function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
          }
          function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
          }
          function powWad(int256 x, int256 y) internal pure returns (int256) {
              // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
              return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
          }
          function expWad(int256 x) internal pure returns (int256 r) {
              unchecked {
                  // When the result is < 0.5 we return zero. This happens when
                  // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                  if (x <= -42139678854452767551) return 0;
                  // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                  // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                  if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                  // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                  // for more intermediate precision and a binary basis. This base conversion
                  // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                  x = (x << 78) / 5**18;
                  // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                  // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                  // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                  int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                  x = x - k * 54916777467707473351141471128;
                  // k is in the range [-61, 195].
                  // Evaluate using a (6, 7)-term rational approximation.
                  // p is made monic, we'll multiply by a scale factor later.
                  int256 y = x + 1346386616545796478920950773328;
                  y = ((y * x) >> 96) + 57155421227552351082224309758442;
                  int256 p = y + x - 94201549194550492254356042504812;
                  p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                  p = p * x + (4385272521454847904659076985693276 << 96);
                  // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                  int256 q = x - 2855989394907223263936484059900;
                  q = ((q * x) >> 96) + 50020603652535783019961831881945;
                  q = ((q * x) >> 96) - 533845033583426703283633433725380;
                  q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                  q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                  q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                  assembly {
                      // Div in assembly because solidity adds a zero check despite the unchecked.
                      // The q polynomial won't have zeros in the domain as all its roots are complex.
                      // No scaling is necessary because p is already 2**96 too large.
                      r := sdiv(p, q)
                  }
                  // r should be in the range (0.09, 0.25) * 2**96.
                  // We now need to multiply r by:
                  // * the scale factor s = ~6.031367120.
                  // * the 2**k factor from the range reduction.
                  // * the 1e18 / 2**96 factor for base conversion.
                  // We do this all at once, with an intermediate result in 2**213
                  // basis, so the final right shift is always by a positive amount.
                  r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
              }
          }
          function lnWad(int256 x) internal pure returns (int256 r) {
              unchecked {
                  require(x > 0, "UNDEFINED");
                  // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                  // We do this by multiplying by 2**96 / 10**18. But since
                  // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                  // and add ln(2**96 / 10**18) at the end.
                  // Reduce range of x to (1, 2) * 2**96
                  // ln(2^k * x) = k * ln(2) + ln(x)
                  int256 k = int256(log2(uint256(x))) - 96;
                  x <<= uint256(159 - k);
                  x = int256(uint256(x) >> 159);
                  // Evaluate using a (8, 8)-term rational approximation.
                  // p is made monic, we will multiply by a scale factor later.
                  int256 p = x + 3273285459638523848632254066296;
                  p = ((p * x) >> 96) + 24828157081833163892658089445524;
                  p = ((p * x) >> 96) + 43456485725739037958740375743393;
                  p = ((p * x) >> 96) - 11111509109440967052023855526967;
                  p = ((p * x) >> 96) - 45023709667254063763336534515857;
                  p = ((p * x) >> 96) - 14706773417378608786704636184526;
                  p = p * x - (795164235651350426258249787498 << 96);
                  // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                  // q is monic by convention.
                  int256 q = x + 5573035233440673466300451813936;
                  q = ((q * x) >> 96) + 71694874799317883764090561454958;
                  q = ((q * x) >> 96) + 283447036172924575727196451306956;
                  q = ((q * x) >> 96) + 401686690394027663651624208769553;
                  q = ((q * x) >> 96) + 204048457590392012362485061816622;
                  q = ((q * x) >> 96) + 31853899698501571402653359427138;
                  q = ((q * x) >> 96) + 909429971244387300277376558375;
                  assembly {
                      // Div in assembly because solidity adds a zero check despite the unchecked.
                      // The q polynomial is known not to have zeros in the domain.
                      // No scaling required because p is already 2**96 too large.
                      r := sdiv(p, q)
                  }
                  // r is in the range (0, 0.125) * 2**96
                  // Finalization, we need to:
                  // * multiply by the scale factor s = 5.549…
                  // * add ln(2**96 / 10**18)
                  // * add k * ln(2)
                  // * multiply by 10**18 / 2**96 = 5**18 >> 78
                  // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                  r *= 1677202110996718588342820967067443963516166;
                  // add ln(2) * k * 5e18 * 2**192
                  r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                  // add ln(2**96 / 10**18) * 5e18 * 2**192
                  r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                  // base conversion: mul 2**18 / 2**192
                  r >>= 174;
              }
          }
          /*//////////////////////////////////////////////////////////////
                          LOW LEVEL FIXED POINT OPERATIONS
          //////////////////////////////////////////////////////////////*/
          function mulDivDown(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 z) {
              assembly {
                  // Store x * y in z for now.
                  z := mul(x, y)
                  // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                  if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                      revert(0, 0)
                  }
                  // Divide z by the denominator.
                  z := div(z, denominator)
              }
          }
          function mulDivUp(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 z) {
              assembly {
                  // Store x * y in z for now.
                  z := mul(x, y)
                  // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                  if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                      revert(0, 0)
                  }
                  // First, divide z - 1 by the denominator and add 1.
                  // We allow z - 1 to underflow if z is 0, because we multiply the
                  // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                  z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
              }
          }
          function rpow(
              uint256 x,
              uint256 n,
              uint256 scalar
          ) internal pure returns (uint256 z) {
              assembly {
                  switch x
                  case 0 {
                      switch n
                      case 0 {
                          // 0 ** 0 = 1
                          z := scalar
                      }
                      default {
                          // 0 ** n = 0
                          z := 0
                      }
                  }
                  default {
                      switch mod(n, 2)
                      case 0 {
                          // If n is even, store scalar in z for now.
                          z := scalar
                      }
                      default {
                          // If n is odd, store x in z for now.
                          z := x
                      }
                      // Shifting right by 1 is like dividing by 2.
                      let half := shr(1, scalar)
                      for {
                          // Shift n right by 1 before looping to halve it.
                          n := shr(1, n)
                      } n {
                          // Shift n right by 1 each iteration to halve it.
                          n := shr(1, n)
                      } {
                          // Revert immediately if x ** 2 would overflow.
                          // Equivalent to iszero(eq(div(xx, x), x)) here.
                          if shr(128, x) {
                              revert(0, 0)
                          }
                          // Store x squared.
                          let xx := mul(x, x)
                          // Round to the nearest number.
                          let xxRound := add(xx, half)
                          // Revert if xx + half overflowed.
                          if lt(xxRound, xx) {
                              revert(0, 0)
                          }
                          // Set x to scaled xxRound.
                          x := div(xxRound, scalar)
                          // If n is even:
                          if mod(n, 2) {
                              // Compute z * x.
                              let zx := mul(z, x)
                              // If z * x overflowed:
                              if iszero(eq(div(zx, x), z)) {
                                  // Revert if x is non-zero.
                                  if iszero(iszero(x)) {
                                      revert(0, 0)
                                  }
                              }
                              // Round to the nearest number.
                              let zxRound := add(zx, half)
                              // Revert if zx + half overflowed.
                              if lt(zxRound, zx) {
                                  revert(0, 0)
                              }
                              // Return properly scaled zxRound.
                              z := div(zxRound, scalar)
                          }
                      }
                  }
              }
          }
          /*//////////////////////////////////////////////////////////////
                              GENERAL NUMBER UTILITIES
          //////////////////////////////////////////////////////////////*/
          function sqrt(uint256 x) internal pure returns (uint256 z) {
              assembly {
                  let y := x // We start y at x, which will help us make our initial estimate.
                  z := 181 // The "correct" value is 1, but this saves a multiplication later.
                  // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                  // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                  // We check y >= 2^(k + 8) but shift right by k bits
                  // each branch to ensure that if x >= 256, then y >= 256.
                  if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                      y := shr(128, y)
                      z := shl(64, z)
                  }
                  if iszero(lt(y, 0x1000000000000000000)) {
                      y := shr(64, y)
                      z := shl(32, z)
                  }
                  if iszero(lt(y, 0x10000000000)) {
                      y := shr(32, y)
                      z := shl(16, z)
                  }
                  if iszero(lt(y, 0x1000000)) {
                      y := shr(16, y)
                      z := shl(8, z)
                  }
                  // Goal was to get z*z*y within a small factor of x. More iterations could
                  // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                  // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                  // That's not possible if x < 256 but we can just verify those cases exhaustively.
                  // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                  // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                  // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                  // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                  // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                  // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                  // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                  // There is no overflow risk here since y < 2^136 after the first branch above.
                  z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                  // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  // If x+1 is a perfect square, the Babylonian method cycles between
                  // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                  // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                  // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                  // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                  z := sub(z, lt(div(x, z), z))
              }
          }
          function log2(uint256 x) internal pure returns (uint256 r) {
              require(x > 0, "UNDEFINED");
              assembly {
                  r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                  r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                  r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                  r := or(r, shl(4, lt(0xffff, shr(r, x))))
                  r := or(r, shl(3, lt(0xff, shr(r, x))))
                  r := or(r, shl(2, lt(0xf, shr(r, x))))
                  r := or(r, shl(1, lt(0x3, shr(r, x))))
                  r := or(r, lt(0x1, shr(r, x)))
              }
          }
      }
      

      File 2 of 4: ProxyAdmin
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
      import { Proxy } from "src/universal/Proxy.sol";
      import { AddressManager } from "src/legacy/AddressManager.sol";
      import { L1ChugSplashProxy } from "src/legacy/L1ChugSplashProxy.sol";
      import { Constants } from "src/libraries/Constants.sol";
      /// @title IStaticERC1967Proxy
      /// @notice IStaticERC1967Proxy is a static version of the ERC1967 proxy interface.
      interface IStaticERC1967Proxy {
          function implementation() external view returns (address);
          function admin() external view returns (address);
      }
      /// @title IStaticL1ChugSplashProxy
      /// @notice IStaticL1ChugSplashProxy is a static version of the ChugSplash proxy interface.
      interface IStaticL1ChugSplashProxy {
          function getImplementation() external view returns (address);
          function getOwner() external view returns (address);
      }
      /// @title ProxyAdmin
      /// @notice This is an auxiliary contract meant to be assigned as the admin of an ERC1967 Proxy,
      ///         based on the OpenZeppelin implementation. It has backwards compatibility logic to work
      ///         with the various types of proxies that have been deployed by Optimism in the past.
      contract ProxyAdmin is Ownable {
          /// @notice The proxy types that the ProxyAdmin can manage.
          /// @custom:value ERC1967    Represents an ERC1967 compliant transparent proxy interface.
          /// @custom:value CHUGSPLASH Represents the Chugsplash proxy interface (legacy).
          /// @custom:value RESOLVED   Represents the ResolvedDelegate proxy (legacy).
          enum ProxyType {
              ERC1967,
              CHUGSPLASH,
              RESOLVED
          }
          /// @notice A mapping of proxy types, used for backwards compatibility.
          mapping(address => ProxyType) public proxyType;
          /// @notice A reverse mapping of addresses to names held in the AddressManager. This must be
          ///         manually kept up to date with changes in the AddressManager for this contract
          ///         to be able to work as an admin for the ResolvedDelegateProxy type.
          mapping(address => string) public implementationName;
          /// @notice The address of the address manager, this is required to manage the
          ///         ResolvedDelegateProxy type.
          AddressManager public addressManager;
          /// @notice A legacy upgrading indicator used by the old Chugsplash Proxy.
          bool internal upgrading;
          /// @param _owner Address of the initial owner of this contract.
          constructor(address _owner) Ownable() {
              _transferOwnership(_owner);
          }
          /// @notice Sets the proxy type for a given address. Only required for non-standard (legacy)
          ///         proxy types.
          /// @param _address Address of the proxy.
          /// @param _type    Type of the proxy.
          function setProxyType(address _address, ProxyType _type) external onlyOwner {
              proxyType[_address] = _type;
          }
          /// @notice Sets the implementation name for a given address. Only required for
          ///         ResolvedDelegateProxy type proxies that have an implementation name.
          /// @param _address Address of the ResolvedDelegateProxy.
          /// @param _name    Name of the implementation for the proxy.
          function setImplementationName(address _address, string memory _name) external onlyOwner {
              implementationName[_address] = _name;
          }
          /// @notice Set the address of the AddressManager. This is required to manage legacy
          ///         ResolvedDelegateProxy type proxy contracts.
          /// @param _address Address of the AddressManager.
          function setAddressManager(AddressManager _address) external onlyOwner {
              addressManager = _address;
          }
          /// @custom:legacy
          /// @notice Set an address in the address manager. Since only the owner of the AddressManager
          ///         can directly modify addresses and the ProxyAdmin will own the AddressManager, this
          ///         gives the owner of the ProxyAdmin the ability to modify addresses directly.
          /// @param _name    Name to set within the AddressManager.
          /// @param _address Address to attach to the given name.
          function setAddress(string memory _name, address _address) external onlyOwner {
              addressManager.setAddress(_name, _address);
          }
          /// @custom:legacy
          /// @notice Set the upgrading status for the Chugsplash proxy type.
          /// @param _upgrading Whether or not the system is upgrading.
          function setUpgrading(bool _upgrading) external onlyOwner {
              upgrading = _upgrading;
          }
          /// @custom:legacy
          /// @notice Legacy function used to tell ChugSplashProxy contracts if an upgrade is happening.
          /// @return Whether or not there is an upgrade going on. May not actually tell you whether an
          ///         upgrade is going on, since we don't currently plan to use this variable for anything
          ///         other than a legacy indicator to fix a UX bug in the ChugSplash proxy.
          function isUpgrading() external view returns (bool) {
              return upgrading;
          }
          /// @notice Returns the implementation of the given proxy address.
          /// @param _proxy Address of the proxy to get the implementation of.
          /// @return Address of the implementation of the proxy.
          function getProxyImplementation(address _proxy) external view returns (address) {
              ProxyType ptype = proxyType[_proxy];
              if (ptype == ProxyType.ERC1967) {
                  return IStaticERC1967Proxy(_proxy).implementation();
              } else if (ptype == ProxyType.CHUGSPLASH) {
                  return IStaticL1ChugSplashProxy(_proxy).getImplementation();
              } else if (ptype == ProxyType.RESOLVED) {
                  return addressManager.getAddress(implementationName[_proxy]);
              } else {
                  revert("ProxyAdmin: unknown proxy type");
              }
          }
          /// @notice Returns the admin of the given proxy address.
          /// @param _proxy Address of the proxy to get the admin of.
          /// @return Address of the admin of the proxy.
          function getProxyAdmin(address payable _proxy) external view returns (address) {
              ProxyType ptype = proxyType[_proxy];
              if (ptype == ProxyType.ERC1967) {
                  return IStaticERC1967Proxy(_proxy).admin();
              } else if (ptype == ProxyType.CHUGSPLASH) {
                  return IStaticL1ChugSplashProxy(_proxy).getOwner();
              } else if (ptype == ProxyType.RESOLVED) {
                  return addressManager.owner();
              } else {
                  revert("ProxyAdmin: unknown proxy type");
              }
          }
          /// @notice Updates the admin of the given proxy address.
          /// @param _proxy    Address of the proxy to update.
          /// @param _newAdmin Address of the new proxy admin.
          function changeProxyAdmin(address payable _proxy, address _newAdmin) external onlyOwner {
              ProxyType ptype = proxyType[_proxy];
              if (ptype == ProxyType.ERC1967) {
                  Proxy(_proxy).changeAdmin(_newAdmin);
              } else if (ptype == ProxyType.CHUGSPLASH) {
                  L1ChugSplashProxy(_proxy).setOwner(_newAdmin);
              } else if (ptype == ProxyType.RESOLVED) {
                  addressManager.transferOwnership(_newAdmin);
              } else {
                  revert("ProxyAdmin: unknown proxy type");
              }
          }
          /// @notice Changes a proxy's implementation contract.
          /// @param _proxy          Address of the proxy to upgrade.
          /// @param _implementation Address of the new implementation address.
          function upgrade(address payable _proxy, address _implementation) public onlyOwner {
              ProxyType ptype = proxyType[_proxy];
              if (ptype == ProxyType.ERC1967) {
                  Proxy(_proxy).upgradeTo(_implementation);
              } else if (ptype == ProxyType.CHUGSPLASH) {
                  L1ChugSplashProxy(_proxy).setStorage(
                      Constants.PROXY_IMPLEMENTATION_ADDRESS, bytes32(uint256(uint160(_implementation)))
                  );
              } else if (ptype == ProxyType.RESOLVED) {
                  string memory name = implementationName[_proxy];
                  addressManager.setAddress(name, _implementation);
              } else {
                  // It should not be possible to retrieve a ProxyType value which is not matched by
                  // one of the previous conditions.
                  assert(false);
              }
          }
          /// @notice Changes a proxy's implementation contract and delegatecalls the new implementation
          ///         with some given data. Useful for atomic upgrade-and-initialize calls.
          /// @param _proxy          Address of the proxy to upgrade.
          /// @param _implementation Address of the new implementation address.
          /// @param _data           Data to trigger the new implementation with.
          function upgradeAndCall(
              address payable _proxy,
              address _implementation,
              bytes memory _data
          )
              external
              payable
              onlyOwner
          {
              ProxyType ptype = proxyType[_proxy];
              if (ptype == ProxyType.ERC1967) {
                  Proxy(_proxy).upgradeToAndCall{ value: msg.value }(_implementation, _data);
              } else {
                  // reverts if proxy type is unknown
                  upgrade(_proxy, _implementation);
                  (bool success,) = _proxy.call{ value: msg.value }(_data);
                  require(success, "ProxyAdmin: call to proxy after upgrade failed");
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor() {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Constants } from "src/libraries/Constants.sol";
      /// @title Proxy
      /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
      ///         if the caller is address(0), meaning that the call originated from an off-chain
      ///         simulation.
      contract Proxy {
          /// @notice An event that is emitted each time the implementation is changed. This event is part
          ///         of the EIP-1967 specification.
          /// @param implementation The address of the implementation contract
          event Upgraded(address indexed implementation);
          /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
          ///         EIP-1967 specification.
          /// @param previousAdmin The previous owner of the contract
          /// @param newAdmin      The new owner of the contract
          event AdminChanged(address previousAdmin, address newAdmin);
          /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
          ///         eth_call to interact with this proxy without needing to use low-level storage
          ///         inspection. We assume that nobody is able to trigger calls from address(0) during
          ///         normal EVM execution.
          modifier proxyCallIfNotAdmin() {
              if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                  _;
              } else {
                  // This WILL halt the call frame on completion.
                  _doProxyCall();
              }
          }
          /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
          ///         EIP-1967 admin storage slot so that accidental storage collision with the
          ///         implementation is not possible.
          /// @param _admin Address of the initial contract admin. Admin as the ability to access the
          ///               transparent proxy interface.
          constructor(address _admin) {
              _changeAdmin(_admin);
          }
          // slither-disable-next-line locked-ether
          receive() external payable {
              // Proxy call by default.
              _doProxyCall();
          }
          // slither-disable-next-line locked-ether
          fallback() external payable {
              // Proxy call by default.
              _doProxyCall();
          }
          /// @notice Set the implementation contract address. The code at the given address will execute
          ///         when this contract is called.
          /// @param _implementation Address of the implementation contract.
          function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
              _setImplementation(_implementation);
          }
          /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
          ///         atomic execution of initialization-based upgrades.
          /// @param _implementation Address of the implementation contract.
          /// @param _data           Calldata to delegatecall the new implementation with.
          function upgradeToAndCall(
              address _implementation,
              bytes calldata _data
          )
              public
              payable
              virtual
              proxyCallIfNotAdmin
              returns (bytes memory)
          {
              _setImplementation(_implementation);
              (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
              require(success, "Proxy: delegatecall to new implementation contract failed");
              return returndata;
          }
          /// @notice Changes the owner of the proxy contract. Only callable by the owner.
          /// @param _admin New owner of the proxy contract.
          function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
              _changeAdmin(_admin);
          }
          /// @notice Gets the owner of the proxy contract.
          /// @return Owner address.
          function admin() public virtual proxyCallIfNotAdmin returns (address) {
              return _getAdmin();
          }
          //// @notice Queries the implementation address.
          /// @return Implementation address.
          function implementation() public virtual proxyCallIfNotAdmin returns (address) {
              return _getImplementation();
          }
          /// @notice Sets the implementation address.
          /// @param _implementation New implementation address.
          function _setImplementation(address _implementation) internal {
              bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
              assembly {
                  sstore(proxyImplementation, _implementation)
              }
              emit Upgraded(_implementation);
          }
          /// @notice Changes the owner of the proxy contract.
          /// @param _admin New owner of the proxy contract.
          function _changeAdmin(address _admin) internal {
              address previous = _getAdmin();
              bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
              assembly {
                  sstore(proxyOwner, _admin)
              }
              emit AdminChanged(previous, _admin);
          }
          /// @notice Performs the proxy call via a delegatecall.
          function _doProxyCall() internal {
              address impl = _getImplementation();
              require(impl != address(0), "Proxy: implementation not initialized");
              assembly {
                  // Copy calldata into memory at 0x0....calldatasize.
                  calldatacopy(0x0, 0x0, calldatasize())
                  // Perform the delegatecall, make sure to pass all available gas.
                  let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                  // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                  // overwrite the calldata that we just copied into memory but that doesn't really
                  // matter because we'll be returning in a second anyway.
                  returndatacopy(0x0, 0x0, returndatasize())
                  // Success == 0 means a revert. We'll revert too and pass the data up.
                  if iszero(success) { revert(0x0, returndatasize()) }
                  // Otherwise we'll just return and pass the data up.
                  return(0x0, returndatasize())
              }
          }
          /// @notice Queries the implementation address.
          /// @return Implementation address.
          function _getImplementation() internal view returns (address) {
              address impl;
              bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
              assembly {
                  impl := sload(proxyImplementation)
              }
              return impl;
          }
          /// @notice Queries the owner of the proxy contract.
          /// @return Owner address.
          function _getAdmin() internal view returns (address) {
              address owner;
              bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
              assembly {
                  owner := sload(proxyOwner)
              }
              return owner;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
      /// @custom:legacy
      /// @title AddressManager
      /// @notice AddressManager is a legacy contract that was used in the old version of the Optimism
      ///         system to manage a registry of string names to addresses. We now use a more standard
      ///         proxy system instead, but this contract is still necessary for backwards compatibility
      ///         with several older contracts.
      contract AddressManager is Ownable {
          /// @notice Mapping of the hashes of string names to addresses.
          mapping(bytes32 => address) private addresses;
          /// @notice Emitted when an address is modified in the registry.
          /// @param name       String name being set in the registry.
          /// @param newAddress Address set for the given name.
          /// @param oldAddress Address that was previously set for the given name.
          event AddressSet(string indexed name, address newAddress, address oldAddress);
          /// @notice Changes the address associated with a particular name.
          /// @param _name    String name to associate an address with.
          /// @param _address Address to associate with the name.
          function setAddress(string memory _name, address _address) external onlyOwner {
              bytes32 nameHash = _getNameHash(_name);
              address oldAddress = addresses[nameHash];
              addresses[nameHash] = _address;
              emit AddressSet(_name, _address, oldAddress);
          }
          /// @notice Retrieves the address associated with a given name.
          /// @param _name Name to retrieve an address for.
          /// @return Address associated with the given name.
          function getAddress(string memory _name) external view returns (address) {
              return addresses[_getNameHash(_name)];
          }
          /// @notice Computes the hash of a name.
          /// @param _name Name to compute a hash for.
          /// @return Hash of the given name.
          function _getNameHash(string memory _name) internal pure returns (bytes32) {
              return keccak256(abi.encodePacked(_name));
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Constants } from "src/libraries/Constants.sol";
      /// @title IL1ChugSplashDeployer
      interface IL1ChugSplashDeployer {
          function isUpgrading() external view returns (bool);
      }
      /// @custom:legacy
      /// @title L1ChugSplashProxy
      /// @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
      ///         functions `setCode` and `setStorage` for changing the code or storage of the contract.
      ///         Note for future developers: do NOT make anything in this contract 'public' unless you
      ///         know what you're doing. Anything public can potentially have a function signature that
      ///         conflicts with a signature attached to the implementation contract. Public functions
      ///         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
      ///         reason not to have that modifier. And there almost certainly is not a good reason to not
      ///         have that modifier. Beware!
      contract L1ChugSplashProxy {
          /// @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
          ///         contract, the appended bytecode will be deployed as given.
          bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
          /// @notice Blocks a function from being called when the parent signals that the system should
          ///         be paused via an isUpgrading function.
          modifier onlyWhenNotPaused() {
              address owner = _getOwner();
              // We do a low-level call because there's no guarantee that the owner actually *is* an
              // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
              // it turns out that it isn't the right type of contract.
              (bool success, bytes memory returndata) =
                  owner.staticcall(abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector));
              // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
              // can just continue as normal. We also expect that the return value is exactly 32 bytes
              // long. If this isn't the case then we can safely ignore the result.
              if (success && returndata.length == 32) {
                  // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                  // case that the isUpgrading function returned something other than 0 or 1. But we only
                  // really care about the case where this value is 0 (= false).
                  uint256 ret = abi.decode(returndata, (uint256));
                  require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
              }
              _;
          }
          /// @notice Makes a proxy call instead of triggering the given function when the caller is
          ///         either the owner or the zero address. Caller can only ever be the zero address if
          ///         this function is being called off-chain via eth_call, which is totally fine and can
          ///         be convenient for client-side tooling. Avoids situations where the proxy and
          ///         implementation share a sighash and the proxy function ends up being called instead
          ///         of the implementation one.
          ///         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
          ///         there's a way for someone to send a transaction with msg.sender == address(0) in any
          ///         real context then we have much bigger problems. Primary reason to include this
          ///         additional allowed sender is because the owner address can be changed dynamically
          ///         and we do not want clients to have to keep track of the current owner in order to
          ///         make an eth_call that doesn't trigger the proxied contract.
          // slither-disable-next-line incorrect-modifier
          modifier proxyCallIfNotOwner() {
              if (msg.sender == _getOwner() || msg.sender == address(0)) {
                  _;
              } else {
                  // This WILL halt the call frame on completion.
                  _doProxyCall();
              }
          }
          /// @param _owner Address of the initial contract owner.
          constructor(address _owner) {
              _setOwner(_owner);
          }
          // slither-disable-next-line locked-ether
          receive() external payable {
              // Proxy call by default.
              _doProxyCall();
          }
          // slither-disable-next-line locked-ether
          fallback() external payable {
              // Proxy call by default.
              _doProxyCall();
          }
          /// @notice Sets the code that should be running behind this proxy.
          ///         Note: This scheme is a bit different from the standard proxy scheme where one would
          ///         typically deploy the code separately and then set the implementation address. We're
          ///         doing it this way because it gives us a lot more freedom on the client side. Can
          ///         only be triggered by the contract owner.
          /// @param _code New contract code to run inside this contract.
          function setCode(bytes memory _code) external proxyCallIfNotOwner {
              // Get the code hash of the current implementation.
              address implementation = _getImplementation();
              // If the code hash matches the new implementation then we return early.
              if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                  return;
              }
              // Create the deploycode by appending the magic prefix.
              bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
              // Deploy the code and set the new implementation address.
              address newImplementation;
              assembly {
                  newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
              }
              // Check that the code was actually deployed correctly. I'm not sure if you can ever
              // actually fail this check. Should only happen if the contract creation from above runs
              // out of gas but this parent execution thread does NOT run out of gas. Seems like we
              // should be doing this check anyway though.
              require(
                  _getAccountCodeHash(newImplementation) == keccak256(_code),
                  "L1ChugSplashProxy: code was not correctly deployed"
              );
              _setImplementation(newImplementation);
          }
          /// @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
          ///         perform upgrades in a more transparent way. Only callable by the owner.
          /// @param _key   Storage key to modify.
          /// @param _value New value for the storage key.
          function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
              assembly {
                  sstore(_key, _value)
              }
          }
          /// @notice Changes the owner of the proxy contract. Only callable by the owner.
          /// @param _owner New owner of the proxy contract.
          function setOwner(address _owner) external proxyCallIfNotOwner {
              _setOwner(_owner);
          }
          /// @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
          ///         making an eth_call and setting the "from" address to address(0).
          /// @return Owner address.
          function getOwner() external proxyCallIfNotOwner returns (address) {
              return _getOwner();
          }
          /// @notice Queries the implementation address. Can only be called by the owner OR by making an
          ///         eth_call and setting the "from" address to address(0).
          /// @return Implementation address.
          function getImplementation() external proxyCallIfNotOwner returns (address) {
              return _getImplementation();
          }
          /// @notice Sets the implementation address.
          /// @param _implementation New implementation address.
          function _setImplementation(address _implementation) internal {
              bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
              assembly {
                  sstore(proxyImplementation, _implementation)
              }
          }
          /// @notice Changes the owner of the proxy contract.
          /// @param _owner New owner of the proxy contract.
          function _setOwner(address _owner) internal {
              bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
              assembly {
                  sstore(proxyOwner, _owner)
              }
          }
          /// @notice Performs the proxy call via a delegatecall.
          function _doProxyCall() internal onlyWhenNotPaused {
              address implementation = _getImplementation();
              require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
              assembly {
                  // Copy calldata into memory at 0x0....calldatasize.
                  calldatacopy(0x0, 0x0, calldatasize())
                  // Perform the delegatecall, make sure to pass all available gas.
                  let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                  // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                  // overwrite the calldata that we just copied into memory but that doesn't really
                  // matter because we'll be returning in a second anyway.
                  returndatacopy(0x0, 0x0, returndatasize())
                  // Success == 0 means a revert. We'll revert too and pass the data up.
                  if iszero(success) { revert(0x0, returndatasize()) }
                  // Otherwise we'll just return and pass the data up.
                  return(0x0, returndatasize())
              }
          }
          /// @notice Queries the implementation address.
          /// @return Implementation address.
          function _getImplementation() internal view returns (address) {
              address implementation;
              bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
              assembly {
                  implementation := sload(proxyImplementation)
              }
              return implementation;
          }
          /// @notice Queries the owner of the proxy contract.
          /// @return Owner address.
          function _getOwner() internal view returns (address) {
              address owner;
              bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
              assembly {
                  owner := sload(proxyOwner)
              }
              return owner;
          }
          /// @notice Gets the code hash for a given account.
          /// @param _account Address of the account to get a code hash for.
          /// @return Code hash for the account.
          function _getAccountCodeHash(address _account) internal view returns (bytes32) {
              bytes32 codeHash;
              assembly {
                  codeHash := extcodehash(_account)
              }
              return codeHash;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      import { ResourceMetering } from "../L1/ResourceMetering.sol";
      /// @title Constants
      /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
      ///         the stuff used in multiple contracts. Constants that only apply to a single contract
      ///         should be defined in that contract instead.
      library Constants {
          /// @notice Special address to be used as the tx origin for gas estimation calls in the
          ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
          ///         the minimum gas limit specified by the user is not actually enough to execute the
          ///         given message and you're attempting to estimate the actual necessary gas limit. We
          ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
          ///         never have any code on any EVM chain.
          address internal constant ESTIMATION_ADDRESS = address(1);
          /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
          ///         CrossDomainMessenger contracts before an actual sender is set. This value is
          ///         non-zero to reduce the gas cost of message passing transactions.
          address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
          /// @notice The storage slot that holds the address of a proxy implementation.
          /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
          bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
              0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /// @notice The storage slot that holds the address of the owner.
          /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
          bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /// @notice Returns the default values for the ResourceConfig. These are the recommended values
          ///         for a production network.
          function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
              ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                  maxResourceLimit: 20_000_000,
                  elasticityMultiplier: 10,
                  baseFeeMaxChangeDenominator: 8,
                  minimumBaseFee: 1 gwei,
                  systemTxMaxGas: 1_000_000,
                  maximumBaseFee: type(uint128).max
              });
              return config;
          }
          /// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
          ///         each time that the contracts are deployed.
          uint8 internal constant INITIALIZER = 1;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
      import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
      import { Burn } from "src/libraries/Burn.sol";
      import { Arithmetic } from "src/libraries/Arithmetic.sol";
      /// @custom:upgradeable
      /// @title ResourceMetering
      /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
      ///         updates automatically based on current demand.
      abstract contract ResourceMetering is Initializable {
          /// @notice Represents the various parameters that control the way in which resources are
          ///         metered. Corresponds to the EIP-1559 resource metering system.
          /// @custom:field prevBaseFee   Base fee from the previous block(s).
          /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
          /// @custom:field prevBlockNum  Last block number that the base fee was updated.
          struct ResourceParams {
              uint128 prevBaseFee;
              uint64 prevBoughtGas;
              uint64 prevBlockNum;
          }
          /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
          ///         market. These values should be set with care as it is possible to set them in
          ///         a way that breaks the deposit gas market. The target resource limit is defined as
          ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
          ///         single word. There is additional space for additions in the future.
          /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
          ///                                            can be purchased per block.
          /// @custom:field elasticityMultiplier         Determines the target resource limit along with
          ///                                            the resource limit.
          /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
          /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
          ///                                            value.
          /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
          ///                                            transaction. This should be set to the same
          ///                                            number that the op-node sets as the gas limit
          ///                                            for the system transaction.
          /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
          ///                                            value.
          struct ResourceConfig {
              uint32 maxResourceLimit;
              uint8 elasticityMultiplier;
              uint8 baseFeeMaxChangeDenominator;
              uint32 minimumBaseFee;
              uint32 systemTxMaxGas;
              uint128 maximumBaseFee;
          }
          /// @notice EIP-1559 style gas parameters.
          ResourceParams public params;
          /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
          uint256[48] private __gap;
          /// @notice Meters access to a function based an amount of a requested resource.
          /// @param _amount Amount of the resource requested.
          modifier metered(uint64 _amount) {
              // Record initial gas amount so we can refund for it later.
              uint256 initialGas = gasleft();
              // Run the underlying function.
              _;
              // Run the metering function.
              _metered(_amount, initialGas);
          }
          /// @notice An internal function that holds all of the logic for metering a resource.
          /// @param _amount     Amount of the resource requested.
          /// @param _initialGas The amount of gas before any modifier execution.
          function _metered(uint64 _amount, uint256 _initialGas) internal {
              // Update block number and base fee if necessary.
              uint256 blockDiff = block.number - params.prevBlockNum;
              ResourceConfig memory config = _resourceConfig();
              int256 targetResourceLimit =
                  int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
              if (blockDiff > 0) {
                  // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                  // at which deposits can be created and therefore limit the potential for deposits to
                  // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                  int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                  int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                      / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                  // Update base fee by adding the base fee delta and clamp the resulting value between
                  // min and max.
                  int256 newBaseFee = Arithmetic.clamp({
                      _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                      _min: int256(uint256(config.minimumBaseFee)),
                      _max: int256(uint256(config.maximumBaseFee))
                  });
                  // If we skipped more than one block, we also need to account for every empty block.
                  // Empty block means there was no demand for deposits in that block, so we should
                  // reflect this lack of demand in the fee.
                  if (blockDiff > 1) {
                      // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                      // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                      // between min and max.
                      newBaseFee = Arithmetic.clamp({
                          _value: Arithmetic.cdexp({
                              _coefficient: newBaseFee,
                              _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                              _exponent: int256(blockDiff - 1)
                          }),
                          _min: int256(uint256(config.minimumBaseFee)),
                          _max: int256(uint256(config.maximumBaseFee))
                      });
                  }
                  // Update new base fee, reset bought gas, and update block number.
                  params.prevBaseFee = uint128(uint256(newBaseFee));
                  params.prevBoughtGas = 0;
                  params.prevBlockNum = uint64(block.number);
              }
              // Make sure we can actually buy the resource amount requested by the user.
              params.prevBoughtGas += _amount;
              require(
                  int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                  "ResourceMetering: cannot buy more gas than available gas limit"
              );
              // Determine the amount of ETH to be paid.
              uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
              // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
              // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
              // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
              // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
              // during any 1 day period in the last 5 years, so should be fine.
              uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
              // Give the user a refund based on the amount of gas they used to do all of the work up to
              // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
              // effectively like a dynamic stipend (with a minimum value).
              uint256 usedGas = _initialGas - gasleft();
              if (gasCost > usedGas) {
                  Burn.gas(gasCost - usedGas);
              }
          }
          /// @notice Virtual function that returns the resource config.
          ///         Contracts that inherit this contract must implement this function.
          /// @return ResourceConfig
          function _resourceConfig() internal virtual returns (ResourceConfig memory);
          /// @notice Sets initial resource parameter values.
          ///         This function must either be called by the initializer function of an upgradeable
          ///         child contract.
          // solhint-disable-next-line func-name-mixedcase
          function __ResourceMetering_init() internal onlyInitializing {
              if (params.prevBlockNum == 0) {
                  params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.2;
      import "../../utils/Address.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           * @custom:oz-retyped-from bool
           */
          uint8 private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint8 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
           */
          modifier initializer() {
              bool isTopLevelCall = !_initializing;
              require(
                  (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                  "Initializable: contract is already initialized"
              );
              _initialized = 1;
              if (isTopLevelCall) {
                  _initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
           * initialization step. This is essential to configure modules that are added through upgrades and that require
           * initialization.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           */
          modifier reinitializer(uint8 version) {
              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
              _initialized = version;
              _initializing = true;
              _;
              _initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           */
          function _disableInitializers() internal virtual {
              require(!_initializing, "Initializable: contract is initializing");
              if (_initialized < type(uint8).max) {
                  _initialized = type(uint8).max;
                  emit Initialized(type(uint8).max);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a >= b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1);
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator,
              Rounding rounding
          ) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`.
              // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
              // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
              // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
              // good first aproximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1;
              uint256 x = a;
              if (x >> 128 > 0) {
                  x >>= 128;
                  result <<= 64;
              }
              if (x >> 64 > 0) {
                  x >>= 64;
                  result <<= 32;
              }
              if (x >> 32 > 0) {
                  x >>= 32;
                  result <<= 16;
              }
              if (x >> 16 > 0) {
                  x >>= 16;
                  result <<= 8;
              }
              if (x >> 8 > 0) {
                  x >>= 8;
                  result <<= 4;
              }
              if (x >> 4 > 0) {
                  x >>= 4;
                  result <<= 2;
              }
              if (x >> 2 > 0) {
                  result <<= 1;
              }
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              uint256 result = sqrt(a);
              if (rounding == Rounding.Up && result * result < a) {
                  result += 1;
              }
              return result;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      /// @title Burn
      /// @notice Utilities for burning stuff.
      library Burn {
          /// @notice Burns a given amount of ETH.
          /// @param _amount Amount of ETH to burn.
          function eth(uint256 _amount) internal {
              new Burner{ value: _amount }();
          }
          /// @notice Burns a given amount of gas.
          /// @param _amount Amount of gas to burn.
          function gas(uint256 _amount) internal view {
              uint256 i = 0;
              uint256 initialGas = gasleft();
              while (initialGas - gasleft() < _amount) {
                  ++i;
              }
          }
      }
      /// @title Burner
      /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
      ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
      ///         from the circulating supply.
      contract Burner {
          constructor() payable {
              selfdestruct(payable(address(this)));
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
      import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
      /// @title Arithmetic
      /// @notice Even more math than before.
      library Arithmetic {
          /// @notice Clamps a value between a minimum and maximum.
          /// @param _value The value to clamp.
          /// @param _min   The minimum value.
          /// @param _max   The maximum value.
          /// @return The clamped value.
          function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
              return SignedMath.min(SignedMath.max(_value, _min), _max);
          }
          /// @notice (c)oefficient (d)enominator (exp)onentiation function.
          ///         Returns the result of: c * (1 - 1/d)^exp.
          /// @param _coefficient Coefficient of the function.
          /// @param _denominator Fractional denominator.
          /// @param _exponent    Power function exponent.
          /// @return Result of c * (1 - 1/d)^exp.
          function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
              return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(isContract(target), "Address: delegate call to non-contract");
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return a >= b ? a : b;
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // must be unchecked in order to support `n = type(int256).min`
                  return uint256(n >= 0 ? n : -n);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.0;
      /// @notice Arithmetic library with operations for fixed-point numbers.
      /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
      library FixedPointMathLib {
          /*//////////////////////////////////////////////////////////////
                          SIMPLIFIED FIXED POINT OPERATIONS
          //////////////////////////////////////////////////////////////*/
          uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
          function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
          }
          function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
          }
          function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
          }
          function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
          }
          function powWad(int256 x, int256 y) internal pure returns (int256) {
              // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
              return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
          }
          function expWad(int256 x) internal pure returns (int256 r) {
              unchecked {
                  // When the result is < 0.5 we return zero. This happens when
                  // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                  if (x <= -42139678854452767551) return 0;
                  // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                  // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                  if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                  // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                  // for more intermediate precision and a binary basis. This base conversion
                  // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                  x = (x << 78) / 5**18;
                  // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                  // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                  // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                  int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                  x = x - k * 54916777467707473351141471128;
                  // k is in the range [-61, 195].
                  // Evaluate using a (6, 7)-term rational approximation.
                  // p is made monic, we'll multiply by a scale factor later.
                  int256 y = x + 1346386616545796478920950773328;
                  y = ((y * x) >> 96) + 57155421227552351082224309758442;
                  int256 p = y + x - 94201549194550492254356042504812;
                  p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                  p = p * x + (4385272521454847904659076985693276 << 96);
                  // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                  int256 q = x - 2855989394907223263936484059900;
                  q = ((q * x) >> 96) + 50020603652535783019961831881945;
                  q = ((q * x) >> 96) - 533845033583426703283633433725380;
                  q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                  q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                  q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                  assembly {
                      // Div in assembly because solidity adds a zero check despite the unchecked.
                      // The q polynomial won't have zeros in the domain as all its roots are complex.
                      // No scaling is necessary because p is already 2**96 too large.
                      r := sdiv(p, q)
                  }
                  // r should be in the range (0.09, 0.25) * 2**96.
                  // We now need to multiply r by:
                  // * the scale factor s = ~6.031367120.
                  // * the 2**k factor from the range reduction.
                  // * the 1e18 / 2**96 factor for base conversion.
                  // We do this all at once, with an intermediate result in 2**213
                  // basis, so the final right shift is always by a positive amount.
                  r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
              }
          }
          function lnWad(int256 x) internal pure returns (int256 r) {
              unchecked {
                  require(x > 0, "UNDEFINED");
                  // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                  // We do this by multiplying by 2**96 / 10**18. But since
                  // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                  // and add ln(2**96 / 10**18) at the end.
                  // Reduce range of x to (1, 2) * 2**96
                  // ln(2^k * x) = k * ln(2) + ln(x)
                  int256 k = int256(log2(uint256(x))) - 96;
                  x <<= uint256(159 - k);
                  x = int256(uint256(x) >> 159);
                  // Evaluate using a (8, 8)-term rational approximation.
                  // p is made monic, we will multiply by a scale factor later.
                  int256 p = x + 3273285459638523848632254066296;
                  p = ((p * x) >> 96) + 24828157081833163892658089445524;
                  p = ((p * x) >> 96) + 43456485725739037958740375743393;
                  p = ((p * x) >> 96) - 11111509109440967052023855526967;
                  p = ((p * x) >> 96) - 45023709667254063763336534515857;
                  p = ((p * x) >> 96) - 14706773417378608786704636184526;
                  p = p * x - (795164235651350426258249787498 << 96);
                  // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                  // q is monic by convention.
                  int256 q = x + 5573035233440673466300451813936;
                  q = ((q * x) >> 96) + 71694874799317883764090561454958;
                  q = ((q * x) >> 96) + 283447036172924575727196451306956;
                  q = ((q * x) >> 96) + 401686690394027663651624208769553;
                  q = ((q * x) >> 96) + 204048457590392012362485061816622;
                  q = ((q * x) >> 96) + 31853899698501571402653359427138;
                  q = ((q * x) >> 96) + 909429971244387300277376558375;
                  assembly {
                      // Div in assembly because solidity adds a zero check despite the unchecked.
                      // The q polynomial is known not to have zeros in the domain.
                      // No scaling required because p is already 2**96 too large.
                      r := sdiv(p, q)
                  }
                  // r is in the range (0, 0.125) * 2**96
                  // Finalization, we need to:
                  // * multiply by the scale factor s = 5.549…
                  // * add ln(2**96 / 10**18)
                  // * add k * ln(2)
                  // * multiply by 10**18 / 2**96 = 5**18 >> 78
                  // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                  r *= 1677202110996718588342820967067443963516166;
                  // add ln(2) * k * 5e18 * 2**192
                  r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                  // add ln(2**96 / 10**18) * 5e18 * 2**192
                  r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                  // base conversion: mul 2**18 / 2**192
                  r >>= 174;
              }
          }
          /*//////////////////////////////////////////////////////////////
                          LOW LEVEL FIXED POINT OPERATIONS
          //////////////////////////////////////////////////////////////*/
          function mulDivDown(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 z) {
              assembly {
                  // Store x * y in z for now.
                  z := mul(x, y)
                  // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                  if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                      revert(0, 0)
                  }
                  // Divide z by the denominator.
                  z := div(z, denominator)
              }
          }
          function mulDivUp(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 z) {
              assembly {
                  // Store x * y in z for now.
                  z := mul(x, y)
                  // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                  if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                      revert(0, 0)
                  }
                  // First, divide z - 1 by the denominator and add 1.
                  // We allow z - 1 to underflow if z is 0, because we multiply the
                  // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                  z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
              }
          }
          function rpow(
              uint256 x,
              uint256 n,
              uint256 scalar
          ) internal pure returns (uint256 z) {
              assembly {
                  switch x
                  case 0 {
                      switch n
                      case 0 {
                          // 0 ** 0 = 1
                          z := scalar
                      }
                      default {
                          // 0 ** n = 0
                          z := 0
                      }
                  }
                  default {
                      switch mod(n, 2)
                      case 0 {
                          // If n is even, store scalar in z for now.
                          z := scalar
                      }
                      default {
                          // If n is odd, store x in z for now.
                          z := x
                      }
                      // Shifting right by 1 is like dividing by 2.
                      let half := shr(1, scalar)
                      for {
                          // Shift n right by 1 before looping to halve it.
                          n := shr(1, n)
                      } n {
                          // Shift n right by 1 each iteration to halve it.
                          n := shr(1, n)
                      } {
                          // Revert immediately if x ** 2 would overflow.
                          // Equivalent to iszero(eq(div(xx, x), x)) here.
                          if shr(128, x) {
                              revert(0, 0)
                          }
                          // Store x squared.
                          let xx := mul(x, x)
                          // Round to the nearest number.
                          let xxRound := add(xx, half)
                          // Revert if xx + half overflowed.
                          if lt(xxRound, xx) {
                              revert(0, 0)
                          }
                          // Set x to scaled xxRound.
                          x := div(xxRound, scalar)
                          // If n is even:
                          if mod(n, 2) {
                              // Compute z * x.
                              let zx := mul(z, x)
                              // If z * x overflowed:
                              if iszero(eq(div(zx, x), z)) {
                                  // Revert if x is non-zero.
                                  if iszero(iszero(x)) {
                                      revert(0, 0)
                                  }
                              }
                              // Round to the nearest number.
                              let zxRound := add(zx, half)
                              // Revert if zx + half overflowed.
                              if lt(zxRound, zx) {
                                  revert(0, 0)
                              }
                              // Return properly scaled zxRound.
                              z := div(zxRound, scalar)
                          }
                      }
                  }
              }
          }
          /*//////////////////////////////////////////////////////////////
                              GENERAL NUMBER UTILITIES
          //////////////////////////////////////////////////////////////*/
          function sqrt(uint256 x) internal pure returns (uint256 z) {
              assembly {
                  let y := x // We start y at x, which will help us make our initial estimate.
                  z := 181 // The "correct" value is 1, but this saves a multiplication later.
                  // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                  // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                  // We check y >= 2^(k + 8) but shift right by k bits
                  // each branch to ensure that if x >= 256, then y >= 256.
                  if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                      y := shr(128, y)
                      z := shl(64, z)
                  }
                  if iszero(lt(y, 0x1000000000000000000)) {
                      y := shr(64, y)
                      z := shl(32, z)
                  }
                  if iszero(lt(y, 0x10000000000)) {
                      y := shr(32, y)
                      z := shl(16, z)
                  }
                  if iszero(lt(y, 0x1000000)) {
                      y := shr(16, y)
                      z := shl(8, z)
                  }
                  // Goal was to get z*z*y within a small factor of x. More iterations could
                  // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                  // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                  // That's not possible if x < 256 but we can just verify those cases exhaustively.
                  // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                  // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                  // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                  // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                  // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                  // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                  // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                  // There is no overflow risk here since y < 2^136 after the first branch above.
                  z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                  // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  // If x+1 is a perfect square, the Babylonian method cycles between
                  // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                  // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                  // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                  // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                  z := sub(z, lt(div(x, z), z))
              }
          }
          function log2(uint256 x) internal pure returns (uint256 r) {
              require(x > 0, "UNDEFINED");
              assembly {
                  r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                  r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                  r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                  r := or(r, shl(4, lt(0xffff, shr(r, x))))
                  r := or(r, shl(3, lt(0xff, shr(r, x))))
                  r := or(r, shl(2, lt(0xf, shr(r, x))))
                  r := or(r, shl(1, lt(0x3, shr(r, x))))
                  r := or(r, lt(0x1, shr(r, x)))
              }
          }
      }
      

      File 3 of 4: L1BlastBridge
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Address } from "@openzeppelin/contracts/utils/Address.sol";
      import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
      import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
      import { Predeploys } from "src/libraries/Predeploys.sol";
      import { SafeCall } from "src/libraries/SafeCall.sol";
      import { StandardBridge } from "src/universal/StandardBridge.sol";
      import { L2BlastBridge } from "src/mainnet-bridge/L2BlastBridge.sol";
      import { ISemver } from "src/universal/ISemver.sol";
      import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
      import { OptimismPortal } from "src/L1/OptimismPortal.sol";
      import { Predeploys } from "src/libraries/Predeploys.sol";
      import { USDYieldManager } from "src/mainnet-bridge/USDYieldManager.sol";
      import { ETHYieldManager } from "src/mainnet-bridge/ETHYieldManager.sol";
      import { USDB } from "src/L2/USDB.sol";
      import { USDConversions } from "src/mainnet-bridge/USDConversions.sol";
      /// @custom:proxied
      /// @title L1BlastBridge
      /// @notice The L1BlastBridge is responsible for transferring ETH and yield-bearing ERC20 tokens between L1 and L2.
      ///
      ///         The current implementation converts all deposited USD tokens to DAI before bridging them to L2 to mint USDB.
      ///         Hence, the amount of USDB that is minted on L2 will be equal to the amount of DAI that is received on L1.
      ///         This is done to simplify the yield management, as DSR is the only yield provider that is currently supported.
      ///         When non-DAI USD tokens are deposited, the user is expected to provide the minimum amount of DAI that should
      ///         be received (i.e. the minimum amount of USDB that should be minted on L2). This amount must be specified
      ///         in the extraData field of the deposit transaction (uint256 minAmountInWad).
      contract L1BlastBridge is StandardBridge, ISemver {
          using SafeERC20 for IERC20;
          struct YieldToken {
              bool approved;
              uint8 decimals;
              address provider;
              bool reportStakedBalance;
          }
          /// @notice Numerator for dynamic overhead added to the base gas for a message.
          uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
          /// @notice Denominator for dynamic overhead added to the base gas for a message.
          uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
          /// @notice Mapping of potential deposit tokens to whether they're
          ///         approved as USD yield tokens and additional metadata.
          mapping(address => YieldToken) public usdYieldTokens;
          /// @notice Mapping of potential deposit tokens to whether they're
          ///         approved as ETH yield tokens and additional metadata.
          mapping(address => YieldToken) public ethYieldTokens;
          /// @notice Address of the USD Yield Manager.
          USDYieldManager public usdYieldManager;
          /// @notice Address of the ETH Yield Manager.
          ETHYieldManager public ethYieldManager;
          /// @notice Address of the OptimismPortal.
          OptimismPortal public portal;
          /// @notice Semantic version.
          /// @custom:semver 1.0.0
          string public constant version = "1.0.0";
          /// @custom:semver 1.0.0
          /// @notice Constructs the L1BlastBridge contract.
          constructor() StandardBridge(StandardBridge(payable(Predeploys.L2_BLAST_BRIDGE))) {
              initialize({
                  _portal: OptimismPortal(payable(address(0))),
                  _messenger: CrossDomainMessenger(address(0)),
                  _usdYieldManager: USDYieldManager(payable(address(0))),
                  _ethYieldManager: ETHYieldManager(payable(address(0)))
              });
          }
          /// @notice Initializer
          /// @param _portal          Address of the OptimismPortal.
          /// @param _messenger       Address of the L1CrossDomainMessenger.
          /// @param _usdYieldManager Address of the USDYieldManager.
          /// @param _ethYieldManager Address of the ETHYieldManager.
          function initialize(
              OptimismPortal _portal,
              CrossDomainMessenger _messenger,
              USDYieldManager _usdYieldManager,
              ETHYieldManager _ethYieldManager
          ) public initializer {
              portal = _portal;
              __StandardBridge_init(_messenger);
              usdYieldManager = _usdYieldManager;
              ethYieldManager = _ethYieldManager;
          }
          /// @notice Add/remove an approved USD yield token.
          /// @param token               Address of token.
          /// @param approved            Whether the token is an approved yield token.
          /// @param decimals            Number of token decimals.
          /// @param provider            Address of the yield provider for the token.
          /// @param reportStakedBalance Whether a deposit needs to be reported to the yield provider.
          function setUSDYieldToken(
              address token,
              bool approved,
              uint8 decimals,
              address provider,
              bool reportStakedBalance
          ) external {
              require(msg.sender == usdYieldManager.owner(), "L1BlastBridge: only USDYieldManager owner can call");
              usdYieldTokens[token] = YieldToken({
                  approved: approved,
                  decimals: decimals,
                  provider: provider,
                  reportStakedBalance: reportStakedBalance
              });
          }
          /// @notice Add/remove an approved ETH yield token.
          /// @param token               Address of token.
          /// @param approved            Whether the token is an approved yield token.
          /// @param decimals            Number of token decimals.
          /// @param provider            Address of the yield provider for the token.
          /// @param reportStakedBalance Whether a deposit needs to be reported to the yield provider.
          function setETHYieldToken(
              address token,
              bool approved,
              uint8 decimals,
              address provider,
              bool reportStakedBalance
          ) external {
              require(msg.sender == ethYieldManager.owner(), "L1BlastBridge: only ETHYieldManager owner can call");
              require(token != address(0));
              ethYieldTokens[token] = YieldToken({
                  approved: approved,
                  decimals: decimals,
                  provider: provider,
                  reportStakedBalance: reportStakedBalance
              });
          }
          /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
          receive() external payable override onlyEOA {
              _initiateBridgeETH(msg.sender, msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, hex"");
          }
          /// Blast: This function is modified from StandardBridge to enable
          /// discounted withdrawals on L1. The `msg.value` check is
          /// less strict and `msg.value` is used instead of `_amount`
          /// in the following steps.
          /// @inheritdoc StandardBridge
          function finalizeBridgeETH(
              address _from,
              address _to,
              uint256 _amount,
              bytes calldata _extraData
          )
              public
              payable
              override
              onlyOtherBridge
          {
              // Blast: Accept discounted `msg.value`
              require(msg.value <= _amount, "L1BlastBridge: amount sent exceeds amount required");
              require(_to != address(this), "L1BlastBridge: cannot send to self");
              require(_to != address(messenger), "L1BlastBridge: cannot send to messenger");
              // Emit the correct events. By default this will be _amount, but child
              // contracts may override this function in order to emit legacy events as well.
              // Blast: replace `_amount` with `msg.value`
              _emitETHBridgeFinalized(_from, _to, msg.value, _extraData);
              // Blast: replace `_amount` with `msg.value`
              bool success = SafeCall.call(_to, gasleft(), msg.value, hex"");
              require(success, "L2BlastBridge: ETH transfer failed");
          }
          /// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
          ///         BlastBridge contract on the remote chain.
          /// @param _localToken  Address of the ERC20 on this chain.
          /// @param _remoteToken Address of the corresponding token on the remote chain.
          /// @param _from        Address of the sender.
          /// @param _to          Address of the receiver.
          /// @param _amount      Amount of the ERC20 being bridged.
          /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
          ///                     not be triggered with this data, but it will be emitted and can be used
          ///                     to identify the transaction.
          function finalizeBridgeERC20(
              address _localToken,
              address _remoteToken,
              address _from,
              address _to,
              uint256 _amount,
              bytes calldata _extraData
          )
              public
              override
              onlyOtherBridge
          {
              require(_to != address(this), "StandardBridge: cannot send to self");
              require(_to != address(messenger), "StandardBridge: cannot send to messenger");
              require(_localToken == usdYieldManager.TOKEN(), "L1BlastBridge: unsupported local token");
              require(_remoteToken == Predeploys.USDB, "L1BlastBridge: only USDB can be withdrawn through this bridge");
              // Emit the correct events. By default this will be ERC20BridgeFinalized, but child
              // contracts may override this function in order to emit legacy events as well.
              _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
              usdYieldManager.requestWithdrawal(_to, _amount);
          }
          /// @notice Sends approved yield-bearing ERC20 tokens to a receiver's address on the other chain.
          ///         Only USDB or ETH are accepted as _remoteToken. ETH-based tokens are sent to the
          ///         Optimism Portal.
          /// @param _localToken  Address of the ERC20 on this chain.
          /// @param _remoteToken Address of the corresponding token on the remote chain.
          /// @param _to          Address of the receiver.
          /// @param _amount      Amount of local tokens to deposit.
          /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
          /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
          ///                     not be triggered with this data, but it will be emitted and can be used
          ///                     to identify the transaction. For bridging yield-bearing USD tokens (except DAI),
          ///                     the extra data should contain the minimum amount of tokens in WAD to be minted.
          ///                     When the deposited USD tokens are converted to DAI, it ensures that the amount
          ///                     of DAI received (and hence the amount of USDB minted) is at least the minimum
          ///                     amount specified.
          function _initiateBridgeERC20(
              address _localToken,
              address _remoteToken,
              address _from,
              address _to,
              uint256 _amount,
              uint32 _minGasLimit,
              bytes memory _extraData
          )
              internal
              override
          {
              YieldToken memory usdYieldToken = usdYieldTokens[_localToken];
              YieldToken memory ethYieldToken = ethYieldTokens[_localToken];
              if (usdYieldToken.approved) {
                  require(_remoteToken == Predeploys.USDB, "L1BlastBridge: this token can only be bridged to USDB");
                  IERC20(_localToken).safeTransferFrom(_from, address(usdYieldManager), _amount);
                  uint256 amountWad = USDConversions._convertDecimals(_amount, usdYieldToken.decimals, USDConversions.WAD_DECIMALS);
                  uint256 amountToMintWad = usdYieldManager.convert(_localToken, amountWad, _extraData);
                  // Update the yield provider with the staked deposit.
                  if (usdYieldToken.reportStakedBalance) {
                      require(usdYieldToken.provider != address(0));
                      usdYieldManager.recordStakedDeposit(usdYieldToken.provider, amountToMintWad);
                  }
                  // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
                  // contracts may override this function in order to emit legacy events as well.
                  _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, amountToMintWad, _extraData);
                  messenger.sendMessage(
                      Predeploys.L2_BLAST_BRIDGE,
                      abi.encodeWithSelector(
                          StandardBridge.finalizeBridgeERC20.selector,
                          Predeploys.USDB,
                          usdYieldManager.TOKEN(),
                          _from,
                          _to,
                          amountToMintWad,
                          _extraData
                      ),
                      _minGasLimit
                  );
              } else if (ethYieldToken.approved) {
                  require(_remoteToken == address(0), "L1BlastBridge: this token can only be bridged to ETH");
                  IERC20(_localToken).safeTransferFrom(_from, address(ethYieldManager), _amount);
                  // Update the yield provider with the staked deposit.
                  if (ethYieldToken.reportStakedBalance) {
                      require(ethYieldToken.provider != address(0));
                      ethYieldManager.recordStakedDeposit(ethYieldToken.provider, _amount);
                  }
                  uint256 amountWad = USDConversions._convertDecimals(_amount, ethYieldToken.decimals, USDConversions.WAD_DECIMALS);
                  // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
                  // contracts may override this function in order to emit legacy events as well.
                  _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, amountWad, _extraData);
                  // Message has to be sent to the OptimismPortal directly because we have to
                  // request the L2 message has value without sending ETH.
                  portal.depositTransaction(
                      Predeploys.L2_BLAST_BRIDGE,
                      amountWad,
                      baseGas(_minGasLimit),
                      false,
                      abi.encodeWithSelector(
                          L2BlastBridge.finalizeBridgeETHDirect.selector,
                          _from,
                          _to,
                          amountWad,
                          _extraData
                      )
                  );
              } else {
                  revert("L1BlastBridge: bridge token is not supported");
              }
          }
          /// @notice Computes the amount of gas required to guarantee that a given deposit will be
          ///         received on the other chain without running out of gas.
          /// @param _minGasLimit Minimum desired gas limit when deposit goes to target.
          /// @return Amount of gas required to guarantee deposit receipt.
          function baseGas(uint32 _minGasLimit) public pure returns (uint64) {
              return
              // Constant overhead
              RECEIVE_DEFAULT_GAS_LIMIT
              // Dynamic overhead (EIP-150)
              + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(isContract(target), "Address: delegate call to non-contract");
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)
      pragma solidity ^0.8.0;
      import "../token/ERC20/IERC20.sol";
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
      pragma solidity ^0.8.0;
      import "../IERC20.sol";
      import "../extensions/draft-IERC20Permit.sol";
      import "../../../utils/Address.sol";
      /**
       * @title SafeERC20
       * @dev Wrappers around ERC20 operations that throw on failure (when the token
       * contract returns false). Tokens that return no value (and instead revert or
       * throw on failure) are also supported, non-reverting calls are assumed to be
       * successful.
       * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
       * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
       */
      library SafeERC20 {
          using Address for address;
          function safeTransfer(
              IERC20 token,
              address to,
              uint256 value
          ) internal {
              _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
          }
          function safeTransferFrom(
              IERC20 token,
              address from,
              address to,
              uint256 value
          ) internal {
              _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
          }
          /**
           * @dev Deprecated. This function has issues similar to the ones found in
           * {IERC20-approve}, and its usage is discouraged.
           *
           * Whenever possible, use {safeIncreaseAllowance} and
           * {safeDecreaseAllowance} instead.
           */
          function safeApprove(
              IERC20 token,
              address spender,
              uint256 value
          ) internal {
              // safeApprove should only be called when setting an initial allowance,
              // or when resetting it to zero. To increase and decrease it, use
              // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
              require(
                  (value == 0) || (token.allowance(address(this), spender) == 0),
                  "SafeERC20: approve from non-zero to non-zero allowance"
              );
              _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
          }
          function safeIncreaseAllowance(
              IERC20 token,
              address spender,
              uint256 value
          ) internal {
              uint256 newAllowance = token.allowance(address(this), spender) + value;
              _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
          }
          function safeDecreaseAllowance(
              IERC20 token,
              address spender,
              uint256 value
          ) internal {
              unchecked {
                  uint256 oldAllowance = token.allowance(address(this), spender);
                  require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                  uint256 newAllowance = oldAllowance - value;
                  _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
              }
          }
          function safePermit(
              IERC20Permit token,
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal {
              uint256 nonceBefore = token.nonces(owner);
              token.permit(owner, spender, value, deadline, v, r, s);
              uint256 nonceAfter = token.nonces(owner);
              require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
          }
          /**
           * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
           * on the return value: the return value is optional (but if data is returned, it must not be false).
           * @param token The token targeted by the call.
           * @param data The call data (encoded using abi.encode or one of its variants).
           */
          function _callOptionalReturn(IERC20 token, bytes memory data) private {
              // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
              // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
              // the target address contains contract code and also asserts for success in the low-level call.
              bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
              if (returndata.length > 0) {
                  // Return data is optional
                  require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
              }
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      /// @title Predeploys
      /// @notice Contains constant addresses for contracts that are pre-deployed to the L2 system.
      library Predeploys {
          /// @notice Address of the L2ToL1MessagePasser predeploy.
          address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
          /// @notice Address of the L2CrossDomainMessenger predeploy.
          address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
          /// @notice Address of the L2StandardBridge predeploy.
          address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
          /// @notice Address of the L2ERC721Bridge predeploy.
          address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
          //// @notice Address of the SequencerFeeWallet predeploy.
          address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
          /// @notice Address of the OptimismMintableERC20Factory predeploy.
          address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
          /// @notice Address of the OptimismMintableERC721Factory predeploy.
          address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
          /// @notice Address of the L1Block predeploy.
          address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
          /// @notice Address of the GasPriceOracle predeploy. Includes fee information
          ///         and helpers for computing the L1 portion of the transaction fee.
          address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
          /// @custom:legacy
          /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
          ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
          address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
          /// @custom:legacy
          /// @notice Address of the DeployerWhitelist predeploy. No longer active.
          address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
          /// @custom:legacy
          /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
          ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
          ///         can no longer be accessed.
          address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
          /// @custom:legacy
          /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
          ///         instead, which exposes more information about the L1 state.
          address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
          /// @custom:legacy
          /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
          ///         L2ToL1MessagePasser contract instead.
          address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
          /// @notice Address of the ProxyAdmin predeploy.
          address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
          /// @notice Address of the BaseFeeVault predeploy.
          address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
          /// @notice Address of the L1FeeVault predeploy.
          address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
          /// @notice Address of the GovernanceToken predeploy.
          address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
          /// @notice Address of the SchemaRegistry predeploy.
          address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
          /// @notice Address of the EAS predeploy.
          address internal constant EAS = 0x4200000000000000000000000000000000000021;
          /// @notice Address of the Shares predeploy.
          address internal constant SHARES = 0x4300000000000000000000000000000000000000;
          /// @notice Address of the Gas predeploy.
          address internal constant GAS = 0x4300000000000000000000000000000000000001;
          /// @notice Address of the Blast predeploy.
          address internal constant BLAST = 0x4300000000000000000000000000000000000002;
          /// @notice Address of the USDB predeploy.
          address internal constant USDB = 0x4300000000000000000000000000000000000003;
          /// @notice Address of the WETH predeploy.
          address internal constant WETH_REBASING = 0x4300000000000000000000000000000000000004;
          /// @notice Address of the L2BlastBridge predeploy.
          address internal constant L2_BLAST_BRIDGE = 0x4300000000000000000000000000000000000005;
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      /// @title SafeCall
      /// @notice Perform low level safe calls
      library SafeCall {
          /// @notice Performs a low level call without copying any returndata.
          /// @dev Passes no calldata to the call context.
          /// @param _target   Address to call
          /// @param _gas      Amount of gas to pass to the call
          /// @param _value    Amount of value to pass to the call
          function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
              bool _success;
              assembly {
                  _success :=
                      call(
                          _gas, // gas
                          _target, // recipient
                          _value, // ether value
                          0, // inloc
                          0, // inlen
                          0, // outloc
                          0 // outlen
                      )
              }
              return _success;
          }
          /// @notice Perform a low level call without copying any returndata
          /// @param _target   Address to call
          /// @param _gas      Amount of gas to pass to the call
          /// @param _value    Amount of value to pass to the call
          /// @param _calldata Calldata to pass to the call
          function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
              bool _success;
              assembly {
                  _success :=
                      call(
                          _gas, // gas
                          _target, // recipient
                          _value, // ether value
                          add(_calldata, 32), // inloc
                          mload(_calldata), // inlen
                          0, // outloc
                          0 // outlen
                      )
              }
              return _success;
          }
          /// @notice Helper function to determine if there is sufficient gas remaining within the context
          ///         to guarantee that the minimum gas requirement for a call will be met as well as
          ///         optionally reserving a specified amount of gas for after the call has concluded.
          /// @param _minGas      The minimum amount of gas that may be passed to the target context.
          /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
          ///                     of the target context.
          /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
          ///         context as well as reserve `_reservedGas` for the caller after the execution of
          ///         the target context.
          /// @dev !!!!! FOOTGUN ALERT !!!!!
          ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
          ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
          ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
          ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
          ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
          ///          factors of the dynamic cost of the `CALL` opcode.
          ///      2.) This function should *directly* precede the external call if possible. There is an
          ///          added buffer to account for gas consumed between this check and the call, but it
          ///          is only 5,700 gas.
          ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
          ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
          ///          truncated.
          ///      4.) Use wisely. This function is not a silver bullet.
          function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
              bool _hasMinGas;
              assembly {
                  // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                  _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
              }
              return _hasMinGas;
          }
          /// @notice Perform a low level call without copying any returndata. This function
          ///         will revert if the call cannot be performed with the specified minimum
          ///         gas.
          /// @param _target   Address to call
          /// @param _minGas   The minimum amount of gas that may be passed to the call
          /// @param _value    Amount of value to pass to the call
          /// @param _calldata Calldata to pass to the call
          function callWithMinGas(
              address _target,
              uint256 _minGas,
              uint256 _value,
              bytes memory _calldata
          )
              internal
              returns (bool)
          {
              bool _success;
              bool _hasMinGas = hasMinGas(_minGas, 0);
              assembly {
                  // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                  if iszero(_hasMinGas) {
                      // Store the "Error(string)" selector in scratch space.
                      mstore(0, 0x08c379a0)
                      // Store the pointer to the string length in scratch space.
                      mstore(32, 32)
                      // Store the string.
                      //
                      // SAFETY:
                      // - We pad the beginning of the string with two zero bytes as well as the
                      // length (24) to ensure that we override the free memory pointer at offset
                      // 0x40. This is necessary because the free memory pointer is likely to
                      // be greater than 1 byte when this function is called, but it is incredibly
                      // unlikely that it will be greater than 3 bytes. As for the data within
                      // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                      // - It's fine to clobber the free memory pointer, we're reverting.
                      mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                      // Revert with 'Error("SafeCall: Not enough gas")'
                      revert(28, 100)
                  }
                  // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                  // above assertion. This ensures that, in all circumstances (except for when the
                  // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                  // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                  // the minimum amount of gas specified.
                  _success :=
                      call(
                          gas(), // gas
                          _target, // recipient
                          _value, // ether value
                          add(_calldata, 32), // inloc
                          mload(_calldata), // inlen
                          0x00, // outloc
                          0x00 // outlen
                      )
              }
              return _success;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
      import { Address } from "@openzeppelin/contracts/utils/Address.sol";
      import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
      import { SafeCall } from "src/libraries/SafeCall.sol";
      import { IOptimismMintableERC20, ILegacyMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
      import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
      import { OptimismMintableERC20 } from "src/universal/OptimismMintableERC20.sol";
      import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      /// @custom:upgradeable
      /// @title StandardBridge
      /// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
      ///         the core bridging logic, including escrowing tokens that are native to the local chain
      ///         and minting/burning tokens that are native to the remote chain.
      abstract contract StandardBridge is Initializable {
          using SafeERC20 for IERC20;
          /// @notice The L2 gas limit set when eth is depoisited using the receive() function.
          uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;
          /// @notice Corresponding bridge on the other domain. This public getter is deprecated
          ///         and will be removed in the future. Please use `otherBridge` instead.
          ///         This can safely be an immutable because for the L1StandardBridge, it will
          ///         be set to the L2StandardBridge address, which is the same for all OP Stack
          ///         chains. For the L2StandardBridge, there are not multiple proxies using the
          ///         same implementation.
          /// @custom:legacy
          /// @custom:network-specific
          StandardBridge public immutable OTHER_BRIDGE;
          /// @custom:legacy
          /// @custom:spacer messenger
          /// @notice Spacer for backwards compatibility.
          address private spacer_0_2_20;
          /// @custom:legacy
          /// @custom:spacer l2TokenBridge
          /// @notice Spacer for backwards compatibility.
          address private spacer_1_0_20;
          /// @notice Mapping that stores deposits for a given pair of local and remote tokens.
          mapping(address => mapping(address => uint256)) public deposits;
          /// @notice Messenger contract on this domain. This public getter is deprecated
          ///         and will be removed in the future. Please use `messenger` instead.
          /// @custom:network-specific
          CrossDomainMessenger public messenger;
          /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
          ///         A gap size of 46 was chosen here, so that the first slot used in a child contract
          ///         would be a multiple of 50.
          uint256[46] private __gap;
          /// @notice Emitted when an ETH bridge is initiated to the other chain.
          /// @param from      Address of the sender.
          /// @param to        Address of the receiver.
          /// @param amount    Amount of ETH sent.
          /// @param extraData Extra data sent with the transaction.
          event ETHBridgeInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
          /// @notice Emitted when an ETH bridge is finalized on this chain.
          /// @param from      Address of the sender.
          /// @param to        Address of the receiver.
          /// @param amount    Amount of ETH sent.
          /// @param extraData Extra data sent with the transaction.
          event ETHBridgeFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
          /// @notice Emitted when an ERC20 bridge is initiated to the other chain.
          /// @param localToken  Address of the ERC20 on this chain.
          /// @param remoteToken Address of the ERC20 on the remote chain.
          /// @param from        Address of the sender.
          /// @param to          Address of the receiver.
          /// @param amount      Amount of the ERC20 sent.
          /// @param extraData   Extra data sent with the transaction.
          event ERC20BridgeInitiated(
              address indexed localToken,
              address indexed remoteToken,
              address indexed from,
              address to,
              uint256 amount,
              bytes extraData
          );
          /// @notice Emitted when an ERC20 bridge is finalized on this chain.
          /// @param localToken  Address of the ERC20 on this chain.
          /// @param remoteToken Address of the ERC20 on the remote chain.
          /// @param from        Address of the sender.
          /// @param to          Address of the receiver.
          /// @param amount      Amount of the ERC20 sent.
          /// @param extraData   Extra data sent with the transaction.
          event ERC20BridgeFinalized(
              address indexed localToken,
              address indexed remoteToken,
              address indexed from,
              address to,
              uint256 amount,
              bytes extraData
          );
          /// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
          ///         calling code within their constructors, but also doesn't really matter since we're
          ///         just trying to prevent users accidentally depositing with smart contract wallets.
          modifier onlyEOA() {
              require(!Address.isContract(msg.sender), "StandardBridge: function can only be called from an EOA");
              _;
          }
          /// @notice Ensures that the caller is a cross-chain message from the other bridge.
          modifier onlyOtherBridge() {
              require(
                  msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(OTHER_BRIDGE),
                  "StandardBridge: function can only be called from the other bridge"
              );
              _;
          }
          /// @param _otherBridge Address of the other StandardBridge contract.
          constructor(StandardBridge _otherBridge) {
              OTHER_BRIDGE = _otherBridge;
          }
          /// @notice Initializer.
          /// @param _messenger   Address of CrossDomainMessenger on this network.
          // solhint-disable-next-line func-name-mixedcase
          function __StandardBridge_init(CrossDomainMessenger _messenger) internal onlyInitializing {
              messenger = _messenger;
          }
          /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
          ///         Must be implemented by contracts that inherit.
          receive() external payable virtual;
          /// @notice Getter for messenger contract.
          /// @custom:legacy
          /// @return Messenger contract on this domain.
          function MESSENGER() external view returns (CrossDomainMessenger) {
              return messenger;
          }
          /// @notice Getter for the remote domain bridge contract.
          function otherBridge() external view returns (StandardBridge) {
              return OTHER_BRIDGE;
          }
          /// @notice Sends ETH to the sender's address on the other chain.
          /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
          /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
          ///                     not be triggered with this data, but it will be emitted and can be used
          ///                     to identify the transaction.
          function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA {
              _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
          }
          /// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
          ///         smart contract and the call fails, the ETH will be temporarily locked in the
          ///         StandardBridge on the other chain until the call is replayed. If the call cannot be
          ///         replayed with any amount of gas (call always reverts), then the ETH will be
          ///         permanently locked in the StandardBridge on the other chain. ETH will also
          ///         be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
          ///         in that case.
          /// @param _to          Address of the receiver.
          /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
          /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
          ///                     not be triggered with this data, but it will be emitted and can be used
          ///                     to identify the transaction.
          function bridgeETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) public payable {
              _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
          }
          /// @notice Sends ERC20 tokens to the sender's address on the other chain. Note that if the
          ///         ERC20 token on the other chain does not recognize the local token as the correct
          ///         pair token, the ERC20 bridge will fail and the tokens will be returned to sender on
          ///         this chain.
          /// @param _localToken  Address of the ERC20 on this chain.
          /// @param _remoteToken Address of the corresponding token on the remote chain.
          /// @param _amount      Amount of local tokens to deposit.
          /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
          /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
          ///                     not be triggered with this data, but it will be emitted and can be used
          ///                     to identify the transaction.
          function bridgeERC20(
              address _localToken,
              address _remoteToken,
              uint256 _amount,
              uint32 _minGasLimit,
              bytes calldata _extraData
          )
              public
              virtual
              onlyEOA
          {
              _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
          }
          /// @notice Sends ERC20 tokens to a receiver's address on the other chain. Note that if the
          ///         ERC20 token on the other chain does not recognize the local token as the correct
          ///         pair token, the ERC20 bridge will fail and the tokens will be returned to sender on
          ///         this chain.
          /// @param _localToken  Address of the ERC20 on this chain.
          /// @param _remoteToken Address of the corresponding token on the remote chain.
          /// @param _to          Address of the receiver.
          /// @param _amount      Amount of local tokens to deposit.
          /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
          /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
          ///                     not be triggered with this data, but it will be emitted and can be used
          ///                     to identify the transaction.
          function bridgeERC20To(
              address _localToken,
              address _remoteToken,
              address _to,
              uint256 _amount,
              uint32 _minGasLimit,
              bytes calldata _extraData
          )
              public
              virtual
          {
              _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData);
          }
          /// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
          ///         StandardBridge contract on the remote chain.
          /// @param _from      Address of the sender.
          /// @param _to        Address of the receiver.
          /// @param _amount    Amount of ETH being bridged.
          /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
          ///                   not be triggered with this data, but it will be emitted and can be used
          ///                   to identify the transaction.
          function finalizeBridgeETH(
              address _from,
              address _to,
              uint256 _amount,
              bytes calldata _extraData
          )
              public
              payable
              virtual
              onlyOtherBridge
          {
              require(msg.value == _amount, "StandardBridge: amount sent does not match amount required");
              require(_to != address(this), "StandardBridge: cannot send to self");
              require(_to != address(messenger), "StandardBridge: cannot send to messenger");
              // Emit the correct events. By default this will be _amount, but child
              // contracts may override this function in order to emit legacy events as well.
              _emitETHBridgeFinalized(_from, _to, _amount, _extraData);
              bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
              require(success, "StandardBridge: ETH transfer failed");
          }
          /// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
          ///         StandardBridge contract on the remote chain.
          /// @param _localToken  Address of the ERC20 on this chain.
          /// @param _remoteToken Address of the corresponding token on the remote chain.
          /// @param _from        Address of the sender.
          /// @param _to          Address of the receiver.
          /// @param _amount      Amount of the ERC20 being bridged.
          /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
          ///                     not be triggered with this data, but it will be emitted and can be used
          ///                     to identify the transaction.
          function finalizeBridgeERC20(
              address _localToken,
              address _remoteToken,
              address _from,
              address _to,
              uint256 _amount,
              bytes calldata _extraData
          )
              public
              virtual
              onlyOtherBridge
          {
              if (_isOptimismMintableERC20(_localToken)) {
                  require(
                      _isCorrectTokenPair(_localToken, _remoteToken),
                      "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                  );
                  OptimismMintableERC20(_localToken).mint(_to, _amount);
              } else {
                  deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount;
                  IERC20(_localToken).safeTransfer(_to, _amount);
              }
              // Emit the correct events. By default this will be ERC20BridgeFinalized, but child
              // contracts may override this function in order to emit legacy events as well.
              _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
          }
          /// @notice Initiates a bridge of ETH through the CrossDomainMessenger.
          /// @param _from        Address of the sender.
          /// @param _to          Address of the receiver.
          /// @param _amount      Amount of ETH being bridged.
          /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
          /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
          ///                     not be triggered with this data, but it will be emitted and can be used
          ///                     to identify the transaction.
          function _initiateBridgeETH(
              address _from,
              address _to,
              uint256 _amount,
              uint32 _minGasLimit,
              bytes memory _extraData
          )
              internal
          {
              require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value");
              // Emit the correct events. By default this will be _amount, but child
              // contracts may override this function in order to emit legacy events as well.
              _emitETHBridgeInitiated(_from, _to, _amount, _extraData);
              messenger.sendMessage{ value: _amount }(
                  address(OTHER_BRIDGE),
                  abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData),
                  _minGasLimit
              );
          }
          /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
          /// @param _localToken  Address of the ERC20 on this chain.
          /// @param _remoteToken Address of the corresponding token on the remote chain.
          /// @param _to          Address of the receiver.
          /// @param _amount      Amount of local tokens to deposit.
          /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
          /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
          ///                     not be triggered with this data, but it will be emitted and can be used
          ///                     to identify the transaction.
          function _initiateBridgeERC20(
              address _localToken,
              address _remoteToken,
              address _from,
              address _to,
              uint256 _amount,
              uint32 _minGasLimit,
              bytes memory _extraData
          )
              internal
              virtual
          {
              if (_isOptimismMintableERC20(_localToken)) {
                  require(
                      _isCorrectTokenPair(_localToken, _remoteToken),
                      "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                  );
                  OptimismMintableERC20(_localToken).burn(_from, _amount);
              } else {
                  IERC20(_localToken).safeTransferFrom(_from, address(this), _amount);
                  deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount;
              }
              // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
              // contracts may override this function in order to emit legacy events as well.
              _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
              messenger.sendMessage(
                  address(OTHER_BRIDGE),
                  abi.encodeWithSelector(
                      this.finalizeBridgeERC20.selector,
                      // Because this call will be executed on the remote chain, we reverse the order of
                      // the remote and local token addresses relative to their order in the
                      // finalizeBridgeERC20 function.
                      _remoteToken,
                      _localToken,
                      _from,
                      _to,
                      _amount,
                      _extraData
                  ),
                  _minGasLimit
              );
          }
          /// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
          ///         Just the way we like it.
          /// @param _token Address of the token to check.
          /// @return True if the token is an OptimismMintableERC20.
          function _isOptimismMintableERC20(address _token) internal view returns (bool) {
              return ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId)
                  || ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
          }
          /// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
          ///         Calls can be saved in the future by combining this logic with
          ///         `_isOptimismMintableERC20`.
          /// @param _mintableToken OptimismMintableERC20 to check against.
          /// @param _otherToken    Pair token to check.
          /// @return True if the other token is the correct pair token for the OptimismMintableERC20.
          function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) {
              if (ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId)) {
                  return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token();
              } else {
                  return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
              }
          }
          /// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
          ///         when an ETH bridge is finalized on this chain.
          /// @param _from      Address of the sender.
          /// @param _to        Address of the receiver.
          /// @param _amount    Amount of ETH sent.
          /// @param _extraData Extra data sent with the transaction.
          function _emitETHBridgeInitiated(
              address _from,
              address _to,
              uint256 _amount,
              bytes memory _extraData
          )
              internal
              virtual
          {
              emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
          }
          /// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
          ///         ETH bridge is finalized on this chain.
          /// @param _from      Address of the sender.
          /// @param _to        Address of the receiver.
          /// @param _amount    Amount of ETH sent.
          /// @param _extraData Extra data sent with the transaction.
          function _emitETHBridgeFinalized(
              address _from,
              address _to,
              uint256 _amount,
              bytes memory _extraData
          )
              internal
              virtual
          {
              emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
          }
          /// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
          ///         event when an ERC20 bridge is initiated to the other chain.
          /// @param _localToken  Address of the ERC20 on this chain.
          /// @param _remoteToken Address of the ERC20 on the remote chain.
          /// @param _from        Address of the sender.
          /// @param _to          Address of the receiver.
          /// @param _amount      Amount of the ERC20 sent.
          /// @param _extraData   Extra data sent with the transaction.
          function _emitERC20BridgeInitiated(
              address _localToken,
              address _remoteToken,
              address _from,
              address _to,
              uint256 _amount,
              bytes memory _extraData
          )
              internal
              virtual
          {
              emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
          }
          /// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
          ///         event when an ERC20 bridge is initiated to the other chain.
          /// @param _localToken  Address of the ERC20 on this chain.
          /// @param _remoteToken Address of the ERC20 on the remote chain.
          /// @param _from        Address of the sender.
          /// @param _to          Address of the receiver.
          /// @param _amount      Amount of the ERC20 sent.
          /// @param _extraData   Extra data sent with the transaction.
          function _emitERC20BridgeFinalized(
              address _localToken,
              address _remoteToken,
              address _from,
              address _to,
              uint256 _amount,
              bytes memory _extraData
          )
              internal
              virtual
          {
              emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Predeploys } from "src/libraries/Predeploys.sol";
      import { StandardBridge } from "src/universal/StandardBridge.sol";
      import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
      import { ISemver } from "src/universal/ISemver.sol";
      import { SafeCall } from "src/libraries/SafeCall.sol";
      import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
      import { Blast, YieldMode, GasMode } from "src/L2/Blast.sol";
      /// @custom:proxied
      /// @custom:predeploy 0x4300000000000000000000000000000000000005
      /// @title L2BlastBridge
      /// @notice The L2BlastBridge is responsible for transfering ETH and USDB tokens between L1 and
      ///         L2. In the case that an ERC20 token is native to L2, it will be escrowed within this
      ///         contract.
      contract L2BlastBridge is StandardBridge, ISemver {
          /// @custom:semver 1.0.0
          string public constant version = "1.0.0";
          /// @notice Constructs the L2BlastBridge contract.
          /// @param _otherBridge Address of the L1BlastBridge.
          constructor(StandardBridge _otherBridge) StandardBridge(_otherBridge) {
              _disableInitializers();
          }
          /// @notice Initializer
          function initialize() public initializer {
              __StandardBridge_init({ _messenger: CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER) });
              Blast(Predeploys.BLAST).configureContract(
                  address(this),
                  YieldMode.VOID,
                  GasMode.VOID,
                  address(0xdead) /// don't set a governor
              );
          }
          /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
          receive() external payable override onlyEOA {
              _initiateBridgeETH(msg.sender, msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, hex"");
          }
          /// @notice Modified StandardBridge.finalizeBridgeETH function to allow calls directly from
          ///         the L1BlastBridge without going through a messenger.
          /// @notice See { StandardBridge-finalizeBridgeETH }
          function finalizeBridgeETHDirect(
              address _from,
              address _to,
              uint256 _amount,
              bytes calldata _extraData
          )
              public
              payable
          {
              require(AddressAliasHelper.undoL1ToL2Alias(msg.sender) == address(OTHER_BRIDGE), "L2BlastBridge: function can only be called from the other bridge");
              require(msg.value == _amount, "L2BlastBridge: amount sent does not match amount required");
              require(_to != address(this), "L2BlastBridge: cannot send to self");
              require(_to != address(messenger), "L2BlastBridge: cannot send to messenger");
              // Emit the correct events. By default this will be _amount, but child
              // contracts may override this function in order to emit legacy events as well.
              _emitETHBridgeFinalized(_from, _to, _amount, _extraData);
              bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
              require(success, "L2BlastBridge: ETH transfer failed");
          }
          /// @notice Wrapper to only accept USDB withdrawals.
          /// @notice See { StandardBridge-_initiateBridgeERC20 }
          function _initiateBridgeERC20(
              address _localToken,
              address _remoteToken,
              address _from,
              address _to,
              uint256 _amount,
              uint32 _minGasLimit,
              bytes memory _extraData
          )
              internal
              override
          {
              require(_localToken == Predeploys.USDB, "L2BlastBridge: only USDB can be withdrawn from this bridge.");
              require(_isCorrectTokenPair(Predeploys.USDB, _remoteToken), "L2BlastBridge: wrong remote token for USDB.");
              super._initiateBridgeERC20(_localToken, _remoteToken, _from, _to, _amount, _minGasLimit, _extraData);
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      /// @title ISemver
      /// @notice ISemver is a simple contract for ensuring that contracts are
      ///         versioned using semantic versioning.
      interface ISemver {
          /// @notice Getter for the semantic version of the contract. This is not
          ///         meant to be used onchain but instead meant to be used by offchain
          ///         tooling.
          /// @return Semver contract version as a string.
          function version() external view returns (string memory);
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      import { SafeCall } from "src/libraries/SafeCall.sol";
      import { Hashing } from "src/libraries/Hashing.sol";
      import { Encoding } from "src/libraries/Encoding.sol";
      import { Constants } from "src/libraries/Constants.sol";
      /// @custom:legacy
      /// @title CrossDomainMessengerLegacySpacer0
      /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
      ///         libAddressManager variable used to exist. Must be the first contract in the inheritance
      ///         tree of the CrossDomainMessenger.
      contract CrossDomainMessengerLegacySpacer0 {
          /// @custom:legacy
          /// @custom:spacer libAddressManager
          /// @notice Spacer for backwards compatibility.
          address private spacer_0_0_20;
      }
      /// @custom:legacy
      /// @title CrossDomainMessengerLegacySpacer1
      /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
      ///         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
      ///         the third contract in the inheritance tree of the CrossDomainMessenger.
      contract CrossDomainMessengerLegacySpacer1 {
          /// @custom:legacy
          /// @custom:spacer ContextUpgradable's __gap
          /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
          ///         ContextUpgradable.
          uint256[50] private spacer_1_0_1600;
          /// @custom:legacy
          /// @custom:spacer OwnableUpgradeable's _owner
          /// @notice Spacer for backwards compatibility.
          ///         Come from OpenZeppelin OwnableUpgradeable.
          address private spacer_51_0_20;
          /// @custom:legacy
          /// @custom:spacer OwnableUpgradeable's __gap
          /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
          ///         OwnableUpgradeable.
          uint256[49] private spacer_52_0_1568;
          /// @custom:legacy
          /// @custom:spacer PausableUpgradable's _paused
          /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
          ///         PausableUpgradable.
          bool private spacer_101_0_1;
          /// @custom:legacy
          /// @custom:spacer PausableUpgradable's __gap
          /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
          ///         PausableUpgradable.
          uint256[49] private spacer_102_0_1568;
          /// @custom:legacy
          /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
          /// @notice Spacer for backwards compatibility.
          uint256 private spacer_151_0_32;
          /// @custom:legacy
          /// @custom:spacer ReentrancyGuardUpgradeable's __gap
          /// @notice Spacer for backwards compatibility.
          uint256[49] private spacer_152_0_1568;
          /// @custom:legacy
          /// @custom:spacer blockedMessages
          /// @notice Spacer for backwards compatibility.
          mapping(bytes32 => bool) private spacer_201_0_32;
          /// @custom:legacy
          /// @custom:spacer relayedMessages
          /// @notice Spacer for backwards compatibility.
          mapping(bytes32 => bool) private spacer_202_0_32;
      }
      /// @custom:upgradeable
      /// @title CrossDomainMessenger
      /// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
      ///         cross-chain messenger contracts. It's designed to be a universal interface that only
      ///         needs to be extended slightly to provide low-level message passing functionality on each
      ///         chain it's deployed on. Currently only designed for message passing between two paired
      ///         chains and does not support one-to-many interactions.
      ///         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
      abstract contract CrossDomainMessenger is
          CrossDomainMessengerLegacySpacer0,
          Initializable,
          CrossDomainMessengerLegacySpacer1
      {
          /// @notice Current message version identifier.
          uint16 public constant MESSAGE_VERSION = 1;
          /// @notice Constant overhead added to the base gas for a message.
          uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
          /// @notice Numerator for dynamic overhead added to the base gas for a message.
          uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
          /// @notice Denominator for dynamic overhead added to the base gas for a message.
          uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
          /// @notice Extra gas added to base gas for each byte of calldata in a message.
          uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
          /// @notice Gas reserved for performing the external call in `relayMessage`.
          uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
          /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
          uint64 public constant RELAY_RESERVED_GAS = 60_000;
          /// @notice Gas reserved for the execution between the `hasMinGas` check and the external
          ///         call in `relayMessage`.
          uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
          /// @notice Address of the paired CrossDomainMessenger contract on the other chain.
          address public immutable OTHER_MESSENGER;
          /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
          ///         be present in this mapping if it has successfully been relayed on this chain, and
          ///         can therefore not be relayed again.
          mapping(bytes32 => bool) public successfulMessages;
          /// @notice Address of the sender of the currently executing message on the other chain. If the
          ///         value of this variable is the default value (0x00000000...dead) then no message is
          ///         currently being executed. Use the xDomainMessageSender getter which will throw an
          ///         error if this is the case.
          address internal xDomainMsgSender;
          /// @notice Nonce for the next message to be sent, without the message version applied. Use the
          ///         messageNonce getter which will insert the message version into the nonce to give you
          ///         the actual nonce to be used for the message.
          uint240 internal msgNonce;
          /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
          ///         executed at least once. A message will not be present in this mapping if it
          ///         successfully executed on the first attempt.
          mapping(bytes32 => bool) public failedMessages;
          /// @notice Reserve extra slots in the storage layout for future upgrades.
          ///         A gap size of 42 was chosen here, so that the first slot used in a child contract
          ///         would be a multiple of 50.
          uint256[42] private __gap;
          /// @notice Emitted whenever a message is sent to the other chain.
          /// @param target       Address of the recipient of the message.
          /// @param sender       Address of the sender of the message.
          /// @param message      Message to trigger the recipient address with.
          /// @param messageNonce Unique nonce attached to the message.
          /// @param gasLimit     Minimum gas limit that the message can be executed with.
          event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
          /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
          ///         SentMessage event without breaking the ABI of this contract, this is good enough.
          /// @param sender Address of the sender of the message.
          /// @param value  ETH value sent along with the message to the recipient.
          event SentMessageExtension1(address indexed sender, uint256 value);
          /// @notice Emitted whenever a message is successfully relayed on this chain.
          /// @param msgHash Hash of the message that was relayed.
          event RelayedMessage(bytes32 indexed msgHash);
          /// @notice Emitted whenever a message fails to be relayed on this chain.
          /// @param msgHash Hash of the message that failed to be relayed.
          event FailedRelayedMessage(bytes32 indexed msgHash);
          /// @param _otherMessenger Address of the messenger on the paired chain.
          constructor(address _otherMessenger) {
              OTHER_MESSENGER = _otherMessenger;
          }
          /// @notice Sends a message to some target address on the other chain. Note that if the call
          ///         always reverts, then the message will be unrelayable, and any ETH sent will be
          ///         permanently locked. The same will occur if the target on the other chain is
          ///         considered unsafe (see the _isUnsafeTarget() function).
          /// @param _target      Target contract or wallet address.
          /// @param _message     Message to trigger the target address with.
          /// @param _minGasLimit Minimum gas limit that the message can be executed with.
          function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
              // Triggers a message to the other messenger. Note that the amount of gas provided to the
              // message is the amount of gas requested by the user PLUS the base gas value. We want to
              // guarantee the property that the call to the target contract will always have at least
              // the minimum gas limit specified by the user.
              _sendMessage(
                  OTHER_MESSENGER,
                  baseGas(_message, _minGasLimit),
                  msg.value,
                  abi.encodeWithSelector(
                      this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
                  )
              );
              emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
              emit SentMessageExtension1(msg.sender, msg.value);
              unchecked {
                  ++msgNonce;
              }
          }
          /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
          ///         be executed via cross-chain call from the other messenger OR if the message was
          ///         already received once and is currently being replayed.
          /// @param _nonce       Nonce of the message being relayed.
          /// @param _sender      Address of the user who sent the message.
          /// @param _target      Address that the message is targeted at.
          /// @param _value       ETH value to send with the message.
          /// @param _minGasLimit Minimum amount of gas that the message can be executed with.
          /// @param _message     Message to send to the target.
          function relayMessage(
              uint256 _nonce,
              address _sender,
              address _target,
              uint256 _value,
              uint256 _minGasLimit,
              bytes calldata _message
          )
              external
              payable
              virtual
          {
              (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
              require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
              // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
              // to check that the legacy version of the message has not already been relayed.
              if (version == 0) {
                  bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
                  require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
              }
              // We use the v1 message hash as the unique identifier for the message because it commits
              // to the value and minimum gas limit of the message.
              bytes32 versionedHash =
                  Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
              if (_isOtherMessenger()) {
                  // These properties should always hold when the message is first submitted (as
                  // opposed to being replayed).
                  assert(msg.value == _value);
                  assert(!failedMessages[versionedHash]);
              } else {
                  require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
                  require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
              }
              require(
                  _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
              );
              require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
              // If there is not enough gas left to perform the external call and finish the execution,
              // return early and assign the message to the failedMessages mapping.
              // We are asserting that we have enough gas to:
              // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
              //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
              // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
              //
              // If `xDomainMsgSender` is not the default L2 sender, this function
              // is being re-entered. This marks the message as failed to allow it to be replayed.
              if (
                  !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
                      || xDomainMsgSender != Constants.DEFAULT_L2_SENDER
              ) {
                  failedMessages[versionedHash] = true;
                  emit FailedRelayedMessage(versionedHash);
                  // Revert in this case if the transaction was triggered by the estimation address. This
                  // should only be possible during gas estimation or we have bigger problems. Reverting
                  // here will make the behavior of gas estimation change such that the gas limit
                  // computed will be the amount required to relay the message, even if that amount is
                  // greater than the minimum gas limit specified by the user.
                  if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                      revert("CrossDomainMessenger: failed to relay message");
                  }
                  return;
              }
              xDomainMsgSender = _sender;
              bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
              xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
              if (success) {
                  // This check is identical to one above, but it ensures that the same message cannot be relayed
                  // twice, and adds a layer of protection against rentrancy.
                  assert(successfulMessages[versionedHash] == false);
                  successfulMessages[versionedHash] = true;
                  emit RelayedMessage(versionedHash);
              } else {
                  failedMessages[versionedHash] = true;
                  emit FailedRelayedMessage(versionedHash);
                  // Revert in this case if the transaction was triggered by the estimation address. This
                  // should only be possible during gas estimation or we have bigger problems. Reverting
                  // here will make the behavior of gas estimation change such that the gas limit
                  // computed will be the amount required to relay the message, even if that amount is
                  // greater than the minimum gas limit specified by the user.
                  if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                      revert("CrossDomainMessenger: failed to relay message");
                  }
              }
          }
          /// @notice Retrieves the address of the contract or wallet that initiated the currently
          ///         executing message on the other chain. Will throw an error if there is no message
          ///         currently being executed. Allows the recipient of a call to see who triggered it.
          /// @return Address of the sender of the currently executing message on the other chain.
          function xDomainMessageSender() external view returns (address) {
              require(
                  xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
              );
              return xDomainMsgSender;
          }
          /// @notice Retrieves the next message nonce. Message version will be added to the upper two
          ///         bytes of the message nonce. Message version allows us to treat messages as having
          ///         different structures.
          /// @return Nonce of the next message to be sent, with added message version.
          function messageNonce() public view returns (uint256) {
              return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
          }
          /// @notice Computes the amount of gas required to guarantee that a given message will be
          ///         received on the other chain without running out of gas. Guaranteeing that a message
          ///         will not run out of gas is important because this ensures that a message can always
          ///         be replayed on the other chain if it fails to execute completely.
          /// @param _message     Message to compute the amount of required gas for.
          /// @param _minGasLimit Minimum desired gas limit when message goes to target.
          /// @return Amount of gas required to guarantee message receipt.
          function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
              return
              // Constant overhead
              RELAY_CONSTANT_OVERHEAD
              // Calldata overhead
              + (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD)
              // Dynamic overhead (EIP-150)
              + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
              // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
              // factors. (Conservative)
              + RELAY_CALL_OVERHEAD
              // Relay reserved gas (to ensure execution of `relayMessage` completes after the
              // subcontext finishes executing) (Conservative)
              + RELAY_RESERVED_GAS
              // Gas reserved for the execution between the `hasMinGas` check and the `CALL`
              // opcode. (Conservative)
              + RELAY_GAS_CHECK_BUFFER;
          }
          /// @notice Initializer.
          // solhint-disable-next-line func-name-mixedcase
          function __CrossDomainMessenger_init() internal onlyInitializing {
              // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
              // meaning that this is a fresh contract deployment.
              // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
              // a reentrant withdrawal to sandwich the upgrade replay a withdrawal twice.
              if (xDomainMsgSender == address(0)) {
                  xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
              }
          }
          /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
          ///         contracts because the logic for this depends on the network where the messenger is
          ///         being deployed.
          /// @param _to       Recipient of the message on the other chain.
          /// @param _gasLimit Minimum gas limit the message can be executed with.
          /// @param _value    Amount of ETH to send with the message.
          /// @param _data     Message data.
          function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
          /// @notice Checks whether the message is coming from the other messenger. Implemented by child
          ///         contracts because the logic for this depends on the network where the messenger is
          ///         being deployed.
          /// @return Whether the message is coming from the other messenger.
          function _isOtherMessenger() internal view virtual returns (bool);
          /// @notice Checks whether a given call target is a system address that could cause the
          ///         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
          ///         addresses. This is ONLY used to prevent the execution of messages to specific
          ///         system addresses that could cause security issues, e.g., having the
          ///         CrossDomainMessenger send messages to itself.
          /// @param _target Address of the contract to check.
          /// @return Whether or not the address is an unsafe system address.
          function _isUnsafeTarget(address _target) internal view virtual returns (bool);
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
      import { SafeCall } from "src/libraries/SafeCall.sol";
      import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
      import { SystemConfig } from "src/L1/SystemConfig.sol";
      import { Constants } from "src/libraries/Constants.sol";
      import { Types } from "src/libraries/Types.sol";
      import { Hashing } from "src/libraries/Hashing.sol";
      import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
      import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
      import { ResourceMetering } from "src/L1/ResourceMetering.sol";
      import { ISemver } from "src/universal/ISemver.sol";
      import { ETHYieldManager } from "src/mainnet-bridge/ETHYieldManager.sol";
      import { Predeploys } from "src/libraries/Predeploys.sol";
      /// @custom:proxied
      /// @title OptimismPortal
      /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
      ///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
      ///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
      contract OptimismPortal is Initializable, ResourceMetering, ISemver {
          /// @notice Represents a proven withdrawal.
          /// @custom:field outputRoot    Root of the L2 output this was proven against.
          /// @custom:field timestamp     Timestamp at which the withdrawal was proven.
          /// @custom:field l2OutputIndex Index of the output this was proven against.
          struct ProvenWithdrawal {
              bytes32 outputRoot;
              uint128 timestamp;
              uint128 l2OutputIndex;
              uint256 requestId;
          }
          /// @notice Version of the deposit event.
          uint256 internal constant DEPOSIT_VERSION = 0;
          /// @notice The L2 gas limit set when eth is deposited using the receive() function.
          uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
          /// @notice The L1 gas limit set when sending eth to the YieldManager.
          uint64 internal constant SEND_DEFAULT_GAS_LIMIT = 100_000;
          /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
          ///         If the address of this variable is the default L2 sender address, then we
          ///         are NOT inside of a call to finalizeWithdrawalTransaction.
          address public l2Sender;
          /// @notice A list of withdrawal hashes which have been successfully finalized.
          mapping(bytes32 => bool) public finalizedWithdrawals;
          /// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
          mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
          /// @notice Determines if cross domain messaging is paused.
          ///         When set to true, withdrawals are paused.
          ///         This may be removed in the future.
          bool public paused;
          /// @notice Address of the L2OutputOracle contract.
          /// @custom:network-specific
          L2OutputOracle public l2Oracle;
          /// @notice Address of the SystemConfig contract.
          /// @custom:network-specific
          SystemConfig public systemConfig;
          /// @notice Address that has the ability to pause and unpause withdrawals.
          /// @custom:network-specific
          address public guardian;
          /// @notice Address of the ETH yield manager.
          ETHYieldManager public yieldManager;
          /// @notice Emitted when a transaction is deposited from L1 to L2.
          ///         The parameters of this event are read by the rollup node and used to derive deposit
          ///         transactions on L2.
          /// @param from       Address that triggered the deposit transaction.
          /// @param to         Address that the deposit transaction is directed to.
          /// @param version    Version of this deposit transaction event.
          /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
          event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
          /// @notice Emitted when a withdrawal transaction is proven.
          /// @param withdrawalHash Hash of the withdrawal transaction.
          /// @param from           Address that triggered the withdrawal transaction.
          /// @param to             Address that the withdrawal transaction is directed to.
          /// @param requestId      Id of the withdrawal request
          event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to, uint256 requestId);
          /// @notice Emitted when a withdrawal transaction is finalized.
          /// @param withdrawalHash Hash of the withdrawal transaction.
          /// @param hintId is the checkpoint ID produce by YieldManager
          /// @param success        Whether the withdrawal transaction was successful.
          event WithdrawalFinalized(bytes32 indexed withdrawalHash, uint256 indexed hintId, bool success);
          /// @notice Emitted when the pause is triggered.
          /// @param account Address of the account triggering the pause.
          event Paused(address account);
          /// @notice Emitted when the pause is lifted.
          /// @param account Address of the account triggering the unpause.
          event Unpaused(address account);
          /// @notice Reverts when paused.
          modifier whenNotPaused() {
              require(paused == false, "OptimismPortal: paused");
              _;
          }
          /// @notice Semantic version.
          /// @custom:semver 1.10.0
          string public constant version = "1.10.0";
          /// @notice Constructs the OptimismPortal contract.
          constructor() {
              initialize({
                  _l2Oracle: L2OutputOracle(address(0)),
                  _guardian: address(0),
                  _systemConfig: SystemConfig(address(0)),
                  _paused: true,
                  _yieldManager: ETHYieldManager(payable(address(0)))
              });
          }
          /// @notice Initializer.
          /// @param _l2Oracle Address of the L2OutputOracle contract.
          /// @param _guardian Address that can pause withdrawals.
          /// @param _paused Sets the contract's pausability state.
          /// @param _systemConfig Address of the SystemConfig contract.
          function initialize(
              L2OutputOracle _l2Oracle,
              address _guardian,
              SystemConfig _systemConfig,
              bool _paused,
              ETHYieldManager _yieldManager
          )
              public
              reinitializer(Constants.INITIALIZER)
          {
              if (l2Sender == address(0)) {
                  l2Sender = Constants.DEFAULT_L2_SENDER;
              }
              l2Oracle = _l2Oracle;
              systemConfig = _systemConfig;
              guardian = _guardian;
              paused = _paused;
              yieldManager = _yieldManager;
              __ResourceMetering_init();
          }
          /// @notice Getter for the L2OutputOracle
          /// @custom:legacy
          function L2_ORACLE() external view returns (L2OutputOracle) {
              return l2Oracle;
          }
          /// @notice Getter for the SystemConfig
          /// @custom:legacy
          function SYSTEM_CONFIG() external view returns (SystemConfig) {
              return systemConfig;
          }
          /// @notice Getter for the Guardian
          /// @custom:legacy
          function GUARDIAN() external view returns (address) {
              return guardian;
          }
          /// @notice Pauses withdrawals.
          function pause() external {
              require(msg.sender == guardian, "OptimismPortal: only guardian can pause");
              paused = true;
              emit Paused(msg.sender);
          }
          /// @notice Unpauses withdrawals.
          function unpause() external {
              require(msg.sender == guardian, "OptimismPortal: only guardian can unpause");
              paused = false;
              emit Unpaused(msg.sender);
          }
          /// @notice Computes the minimum gas limit for a deposit.
          ///         The minimum gas limit linearly increases based on the size of the calldata.
          ///         This is to prevent users from creating L2 resource usage without paying for it.
          ///         This function can be used when interacting with the portal to ensure forwards
          ///         compatibility.
          /// @param _byteCount Number of bytes in the calldata.
          /// @return The minimum gas limit for a deposit.
          function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
              return _byteCount * 16 + 21000;
          }
          /// @notice Accepts value so that users can send ETH directly to this contract and have the
          ///         funds be deposited to their address on L2. This is intended as a convenience
          ///         function for EOAs. Contracts should call the depositTransaction() function directly
          ///         otherwise any deposited funds will be lost due to address aliasing.
          // solhint-disable-next-line ordering
          receive() external payable {
              if (msg.sender != address(yieldManager)) {
                  depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
              }
          }
          /// @notice Getter for the resource config.
          ///         Used internally by the ResourceMetering contract.
          ///         The SystemConfig is the source of truth for the resource config.
          /// @return ResourceMetering ResourceConfig
          function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) {
              return systemConfig.resourceConfig();
          }
          /// @notice Proves a withdrawal transaction.
          /// @param _tx              Withdrawal transaction to finalize.
          /// @param _l2OutputIndex   L2 output index to prove against.
          /// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
          /// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
          function proveWithdrawalTransaction(
              Types.WithdrawalTransaction memory _tx,
              uint256 _l2OutputIndex,
              Types.OutputRootProof calldata _outputRootProof,
              bytes[] calldata _withdrawalProof
          )
              external
              whenNotPaused
          {
              // Prevent users from creating a deposit transaction where this address is the message
              // sender on L2. Because this is checked here, we do not need to check again in
              // `finalizeWithdrawalTransaction`.
              require(_tx.target != address(this), "OptimismPortal: you cannot send messages to the portal contract");
              // Get the output root and load onto the stack to prevent multiple mloads. This will
              // revert if there is no output root for the given block number.
              bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot;
              // Verify that the output root can be generated with the elements in the proof.
              require(
                  outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof"
              );
              // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
              bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
              ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
              // We generally want to prevent users from proving the same withdrawal multiple times
              // because each successive proof will update the timestamp. A malicious user can take
              // advantage of this to prevent other users from finalizing their withdrawal. However,
              // since withdrawals are proven before an output root is finalized, we need to allow users
              // to re-prove their withdrawal only in the case that the output root for their specified
              // output index has been updated.
              require(
                  provenWithdrawal.timestamp == 0
                      || l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot,
                  "OptimismPortal: withdrawal hash has already been proven"
              );
              // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
              // Refer to the Solidity documentation for more information on how storage layouts are
              // computed for mappings.
              bytes32 storageKey = keccak256(
                  abi.encode(
                      withdrawalHash,
                      uint256(0) // The withdrawals mapping is at the first slot in the layout.
                  )
              );
              // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
              // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
              // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
              // be relayed on L1.
              require(
                  SecureMerkleTrie.verifyInclusionProof(
                      abi.encode(storageKey), hex"01", _withdrawalProof, _outputRootProof.messagePasserStorageRoot
                  ),
                  "OptimismPortal: invalid withdrawal inclusion proof"
              );
              // Blast: request ether withdrawal from the yield manager. Should not request a withdrawal
              // when the withdrawal is being re-proven.
              uint256 requestId;
              if (_tx.value > 0 && provenWithdrawal.timestamp == 0) {
                  requestId = yieldManager.requestWithdrawal(_tx.value);
              } else {
                  // If withdrawal is being re-proven, then set original requestId.
                  requestId = provenWithdrawal.requestId;
              }
              require(_tx.target != address(yieldManager), "OptimismPortal: unauthorized call to yield manager");
              // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
              // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
              // proven once unless it is submitted again with a different outputRoot.
              provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
                  outputRoot: outputRoot,
                  timestamp: uint128(block.timestamp),
                  l2OutputIndex: uint128(_l2OutputIndex),
                  requestId: requestId
              });
              // Emit a `WithdrawalProven` event.
              emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target, requestId);
          }
          /// @notice Finalizes a withdrawal transaction.
          /// @param hintId Hint ID of the withdrawal transaction to finalize. The caller can find this
          ///               value by calling ETHYieldManager.findCheckpointHint().
          /// @param _tx Withdrawal transaction to finalize.
          function finalizeWithdrawalTransaction(uint256 hintId, Types.WithdrawalTransaction memory _tx) external whenNotPaused {
              // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
              // than the default value when a withdrawal transaction is being finalized. This check is
              // a defacto reentrancy guard.
              require(
                  l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: can only trigger one withdrawal per transaction"
              );
              // Grab the proven withdrawal from the `provenWithdrawals` map.
              bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
              ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
              // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
              // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
              // a timestamp of zero.
              require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet");
              // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
              // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
              // safety against weird bugs in the proving step.
              require(
                  provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(),
                  "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
              );
              // A proven withdrawal must wait at least the finalization period before it can be
              // finalized. This waiting period can elapse in parallel with the waiting period for the
              // output the withdrawal was proven against. In effect, this means that the minimum
              // withdrawal time is proposal submission time + finalization period.
              require(
                  _isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
                  "OptimismPortal: proven withdrawal finalization period has not elapsed"
              );
              // Grab the OutputProposal from the L2OutputOracle, will revert if the output that
              // corresponds to the given index has not been proposed yet.
              Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex);
              // Check that the output root that was used to prove the withdrawal is the same as the
              // current output root for the given output index. An output root may change if it is
              // deleted by the challenger address and then re-proposed.
              require(
                  proposal.outputRoot == provenWithdrawal.outputRoot,
                  "OptimismPortal: output root proven is not the same as current output root"
              );
              // Check that the output proposal has also been finalized.
              require(
                  _isFinalizationPeriodElapsed(proposal.timestamp),
                  "OptimismPortal: output proposal finalization period has not elapsed"
              );
              // Check that this withdrawal has not already been finalized, this is replay protection.
              require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized");
              // Mark the withdrawal as finalized so it can't be replayed.
              finalizedWithdrawals[withdrawalHash] = true;
              // Set the l2Sender so contracts know who triggered this withdrawal on L2.
              l2Sender = _tx.sender;
              // Blast: claim withdrawal for ether
              uint256 txValueWithDiscount;
              if (_tx.value > 0) {
                  uint256 etherBalance = address(this).balance;
                  yieldManager.claimWithdrawal(provenWithdrawal.requestId, hintId);
                  txValueWithDiscount = address(this).balance - etherBalance;
              }
              // Trigger the call to the target contract. We use a custom low level method
              // SafeCall.callWithMinGas to ensure two key properties
              //   1. Target contracts cannot force this call to run out of gas by returning a very large
              //      amount of data (and this is OK because we don't care about the returndata here).
              //   2. The amount of gas provided to the execution context of the target is at least the
              //      gas limit specified by the user. If there is not enough gas in the current context
              //      to accomplish this, `callWithMinGas` will revert.
              bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, txValueWithDiscount, _tx.data);
              // Reset the l2Sender back to the default value.
              l2Sender = Constants.DEFAULT_L2_SENDER;
              // All withdrawals are immediately finalized. Replayability can
              // be achieved through contracts built on top of this contract
              emit WithdrawalFinalized(withdrawalHash, hintId, success);
              // Reverting here is useful for determining the exact gas cost to successfully execute the
              // sub call to the target contract if the minimum gas limit specified by the user would not
              // be sufficient to execute the sub call.
              if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
                  revert("OptimismPortal: withdrawal failed");
              }
          }
          /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
          ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
          ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
          ///         using the CrossDomainMessenger contracts for a simpler developer experience.
          /// @param _to         Target address on L2.
          /// @param _value      ETH value to send to the recipient.
          /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
          /// @param _isCreation Whether or not the transaction is a contract creation.
          /// @param _data       Data to trigger the recipient with.
          function depositTransaction(
              address _to,
              uint256 _value,
              uint64 _gasLimit,
              bool _isCreation,
              bytes memory _data
          )
              public
              payable
              metered(_gasLimit)
          {
              // Just to be safe, make sure that people specify address(0) as the target when doing
              // contract creations.
              if (_isCreation) {
                  require(_to == address(0), "OptimismPortal: must send to address(0) when creating a contract");
              }
              // Prevent depositing transactions that have too small of a gas limit. Users should pay
              // more for more resource usage.
              require(_gasLimit >= minimumGasLimit(uint64(_data.length)), "OptimismPortal: gas limit too small");
              // Prevent the creation of deposit transactions that have too much calldata. This gives an
              // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
              // that the transaction can fit into the p2p network policy of 128kb even though deposit
              // transactions are not gossipped over the p2p network.
              require(_data.length <= 120_000, "OptimismPortal: data too large");
              // Transform the from-address to its alias if the caller is a contract.
              address from = msg.sender;
              if (msg.sender != tx.origin) {
                  from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
              }
              // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
              // We use opaque data so that we can update the TransactionDeposited event in the future
              // without breaking the current interface.
              bytes memory opaqueData;
              // Blast: When receiving already staked funds (stETH) to be bridged for ether on L2, we
              // have to request that `_value` is minted on L2 without an equivalent `msg.value` being
              // sent in the call. This bypass allows the L1BlastBridge to request `_value` to be minted
              // in exchange for a deposit of the equivalent amount of a staked ether asset.
              if (_to == Predeploys.L2_BLAST_BRIDGE) {
                  if (msg.sender != yieldManager.blastBridge() || yieldManager.blastBridge() == address(0)) {
                      // second case is when the blast bridge address has not been set on the yield manager
                      revert("OptimismPortal: only the BlastBridge can deposit");
                  }
                  opaqueData = abi.encodePacked(_value, _value, _gasLimit, _isCreation, _data);
              } else {
                  opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
              }
              // Blast: Send the received ether to the yield manager to handle staking the funds.
              if (msg.value > 0) {
                  (bool success) = SafeCall.send(address(yieldManager), SEND_DEFAULT_GAS_LIMIT, msg.value);
                  require(success, "OptimismPortal: ETH transfer to YieldManager failed");
              }
              // Emit a TransactionDeposited event so that the rollup node can derive a deposit
              // transaction for this deposit.
              emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
          }
          /// @notice Determine if a given output is finalized.
          ///         Reverts if the call to L2_ORACLE.getL2Output reverts.
          ///         Returns a boolean otherwise.
          /// @param _l2OutputIndex Index of the L2 output to check.
          /// @return Whether or not the output is finalized.
          function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
              return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp);
          }
          /// @notice Determines whether the finalization period has elapsed with respect to
          ///         the provided block timestamp.
          /// @param _timestamp Timestamp to check.
          /// @return Whether or not the finalization period has elapsed.
          function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
              return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS();
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
      import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
      import { OptimismPortal } from "src/L1/OptimismPortal.sol";
      import { USDConversions } from "src/mainnet-bridge/USDConversions.sol";
      import { Semver } from "src/universal/Semver.sol";
      import { Predeploys } from "src/libraries/Predeploys.sol";
      /// @custom:proxied
      /// @title USDYieldManager
      /// @notice Coordinates the accounting, asset management and
      ///         yield reporting from USD yield providers.
      contract USDYieldManager is YieldManager, Semver {
          /// @param _token Address of withdrawal token. It is assumed that the token
          ///               has 18 decimals.
          constructor(address _token) YieldManager(_token) Semver(1, 0, 0) {
              _disableInitializers();
          }
          /// @notice initializer
          /// @param _portal Address of the OptimismPortal.
          /// @param _owner  Address of the YieldManager owner.
          function initialize(OptimismPortal _portal, address _owner) public initializer {
              __YieldManager_init(_portal, _owner);
              if (TOKEN == address(USDConversions.DAI)) {
                  USDConversions._init();
              }
          }
          /// @inheritdoc YieldManager
          function tokenBalance() public view override returns (uint256) {
              return IERC20(TOKEN).balanceOf(address(this));
          }
          /// @notice Wrapper for WithdrawalQueue._requestWithdrawal
          function requestWithdrawal(address recipient, uint256 amount)
              external
              onlyBlastBridge
              returns (uint256)
          {
              return _requestWithdrawal(address(recipient), amount);
          }
          /// @notice Wrapper for USDConversions._convertTo
          function convert(
              address inputTokenAddress,
              uint256 inputAmountWad,
              bytes memory _extraData
          ) external onlyBlastBridge returns (uint256) {
              return USDConversions._convertTo(
                  inputTokenAddress,
                  TOKEN,
                  inputAmountWad,
                  _extraData
              );
          }
          /// @notice Sends the yield report to the USDB contract.
          /// @param data Calldata to send in the message.
          function _reportYield(bytes memory data) internal override {
              portal.depositTransaction(Predeploys.USDB, 0, REPORT_YIELD_DEFAULT_GAS_LIMIT, false, data);
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
      import { OptimismPortal } from "src/L1/OptimismPortal.sol";
      import { Semver } from "src/universal/Semver.sol";
      import { Predeploys } from "src/libraries/Predeploys.sol";
      /// @custom:proxied
      /// @title ETHYieldManager
      /// @notice Coordinates the accounting, asset management and
      ///         yield reporting from ETH yield providers.
      contract ETHYieldManager is YieldManager, Semver {
          error CallerIsNotPortal();
          constructor() YieldManager(address(0)) Semver(1, 0, 0) {
              initialize(OptimismPortal(payable(address(0))), address(0));
          }
          receive() external payable {}
          /// @notice initializer
          /// @param _portal Address of the OptimismPortal.
          /// @param _owner  Address of the YieldManager owner.
          function initialize(OptimismPortal _portal, address _owner) public initializer {
              __YieldManager_init(_portal, _owner);
          }
          /// @inheritdoc YieldManager
          function tokenBalance() public view override returns (uint256) {
              return address(this).balance;
          }
          /// @notice Wrapper for WithdrawalQueue._requestWithdrawal
          function requestWithdrawal(uint256 amount)
              external
              returns (uint256)
          {
              if (msg.sender != address(portal)) {
                  revert CallerIsNotPortal();
              }
              return _requestWithdrawal(address(portal), amount);
          }
          /// @notice Sends the yield report to the Shares contract.
          /// @param data Calldata to send in the message.
          function _reportYield(bytes memory data) internal override {
              portal.depositTransaction(Predeploys.SHARES, 0, REPORT_YIELD_DEFAULT_GAS_LIMIT, false, data);
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
      import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
      import { ERC20Rebasing } from "src/L2/ERC20Rebasing.sol";
      import { SharesBase } from "src/L2/Shares.sol";
      import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
      import { StandardBridge } from "src/universal/StandardBridge.sol";
      import { IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
      import { Semver } from "src/universal/Semver.sol";
      import { Blast, YieldMode, GasMode } from "src/L2/Blast.sol";
      import { Predeploys } from "src/libraries/Predeploys.sol";
      /// @custom:proxied
      /// @custom:predeploy 0x4300000000000000000000000000000000000003
      /// @title USDB
      /// @notice Rebasing ERC20 token with the share price determined by an L1
      ///         REPORTER. Conforms to OptimismMintableERC20 interface to allow mint/burn
      ///         interactions from the L1BlastBridge.
      contract USDB is ERC20Rebasing, Semver, IOptimismMintableERC20 {
          /// @notice Address of the corresponding version of this token on the remote chain.
          address public immutable REMOTE_TOKEN;
          /// @notice Address of the BlastBridge on this network.
          address public immutable BRIDGE;
          error CallerIsNotBridge();
          /// @notice A modifier that only allows the bridge to call
          modifier onlyBridge() {
              if (msg.sender != BRIDGE) {
                  revert CallerIsNotBridge();
              }
              _;
          }
          /// @custom:semver 1.0.0
          /// @param _usdYieldManager Address of the USD Yield Manager. SharesBase yield reporter.
          /// @param _l2Bridge        Address of the L2 Blast bridge.
          /// @param _remoteToken     Address of the corresponding L1 token.
          constructor(address _usdYieldManager, address _l2Bridge, address _remoteToken)
              ERC20Rebasing(_usdYieldManager, 18)
              Semver(1, 0, 0)
          {
              BRIDGE = _l2Bridge;
              REMOTE_TOKEN = _remoteToken;
              _disableInitializers();
          }
          /// @notice Initializer
          function initialize() public initializer {
              __ERC20Rebasing_init("USDB", "USDB", 1e9);
              Blast(Predeploys.BLAST).configureContract(
                  address(this),
                  YieldMode.VOID,
                  GasMode.VOID,
                  address(0xdead) /// don't set a governor
              );
          }
          /// @notice ERC165 interface check function.
          /// @param _interfaceId Interface ID to check.
          /// @return Whether or not the interface is supported by this contract.
          function supportsInterface(bytes4 _interfaceId) external pure returns (bool) {
              bytes4 iface1 = type(IERC165).interfaceId;
              // Interface corresponding to the updated OptimismMintableERC20.
              bytes4 iface2 = type(IOptimismMintableERC20).interfaceId;
              return _interfaceId == iface1 || _interfaceId == iface2;
          }
          /// @custom:legacy
          /// @notice Legacy getter for REMOTE_TOKEN.
          function remoteToken() public view returns (address) {
              return REMOTE_TOKEN;
          }
          /// @custom:legacy
          /// @notice Legacy getter for BRIDGE.
          function bridge() public view returns (address) {
              return BRIDGE;
          }
          /// @notice Allows the StandardBridge on this network to mint tokens.
          /// @param _to     Address to mint tokens to.
          /// @param _amount Amount of tokens to mint.
          function mint(address _to, uint256 _amount)
              external
              virtual
              onlyBridge
          {
              if (_to == address(0)) {
                  revert TransferToZeroAddress();
              }
              _deposit(_to, _amount);
              emit Transfer(address(0), _to, _amount);
          }
          /// @notice Allows the StandardBridge on this network to burn tokens.
          /// @param _from   Address to burn tokens from.
          /// @param _amount Amount of tokens to burn.
          function burn(address _from, uint256 _amount)
              external
              virtual
              onlyBridge
          {
              if (_from == address(0)) {
                  revert TransferFromZeroAddress();
              }
              _withdraw(_from, _amount);
              emit Transfer(_from, address(0), _amount);
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
      import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
      interface IUSDT {
          function approve(address spender, uint256 amount) external;
          function balanceOf(address) external view returns (uint256);
      }
      interface IDssPsm {
          function sellGem(address usr, uint256 gemAmt) external;
          function buyGem(address usr, uint256 gemAmt) external;
          function gemJoin() external view returns (address);
      }
      interface ICurve3Pool {
          function exchange(int128 i, int128 j, uint256 dx, uint256 min_dy) external;
      }
      /// @title USDConversions
      /// @notice Stateless helper module for converting between USD tokens (DAI/USDC/USDT).
      ///
      ///         DAI and USDC are converted 1-to-1 using Maker's Peg Stability Mechanism.
      ///         All other tokens conversions are completed through Curve's 3Pool.
      library USDConversions {
          uint256 constant WAD_DECIMALS = 18;
          uint256 constant USD_DECIMALS = 6;
          int128 constant DAI_INDEX = 0;
          int128 constant USDC_INDEX = 1;
          int128 constant USDT_INDEX = 2;
          IERC20 constant DAI = IERC20(0x6B175474E89094C44Da98b954EedeAC495271d0F);
          IERC20 constant USDC = IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48);
          IUSDT constant USDT = IUSDT(0xdAC17F958D2ee523a2206206994597C13D831ec7);
          IDssPsm constant PSM = IDssPsm(0x89B78CfA322F6C5dE0aBcEecab66Aee45393cC5A);
          ICurve3Pool constant CURVE_3POOL = ICurve3Pool(0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7);
          /// @notice immutable address of PSM's GemJoin contract
          address constant GEM_JOIN = 0x0A59649758aa4d66E25f08Dd01271e891fe52199;
          error InsufficientBalance();
          error MinimumAmountNotMet();
          error IncorrectInputAmountUsed();
          error UnsupportedToken();
          error InvalidExtraData();
          error InvalidTokenIndex();
          /// @notice Initializer
          function _init() internal {
              USDC.approve(address(CURVE_3POOL), type(uint256).max);
              USDC.approve(GEM_JOIN, type(uint256).max);
              USDT.approve(address(CURVE_3POOL), type(uint256).max);
              DAI.approve(address(CURVE_3POOL), type(uint256).max);
              DAI.approve(GEM_JOIN, type(uint256).max);
              DAI.approve(address(PSM), type(uint256).max);
          }
          /// @notice Convert between the 3 stablecoin tokens using Curve's 3Pool and Maker's
          ///         Peg Stability Mechanism.
          /// @param inputToken         Input token index.
          /// @param outputToken        Output token index.
          /// @param inputAmountWad     Input amount in WAD.
          /// @param minOutputAmountWad Minimum amount of output token accepted in WAD.
          /// @return amountReceived Amount of output token received in the token's
          ///         decimal representation.
          function _convert(int128 inputToken, int128 outputToken, uint256 inputAmountWad, uint256 minOutputAmountWad) internal returns (uint256 amountReceived) {
              require(inputToken >= 0 && inputToken < 3 && outputToken >= 0 && outputToken < 3);
              require(inputToken != outputToken);
              if (inputAmountWad > 0) {
                  uint256 inputAmount = _convertDecimals(inputAmountWad, inputToken);
                  uint256 minOutputAmount = _convertDecimals(minOutputAmountWad, outputToken);
                  if (_tokenBalance(inputToken) < inputAmount) {
                      revert InsufficientBalance();
                  }
                  uint256 beforeBalance = _tokenBalance(outputToken);
                  if (inputToken == USDC_INDEX && outputToken == DAI_INDEX) {
                      PSM.sellGem(address(this), inputAmount);
                  } else if (inputToken == DAI_INDEX && outputToken == USDC_INDEX) {
                      uint256 beforeInputBalance = _tokenBalance(inputToken);
                      PSM.buyGem(address(this), _wadToUSD(minOutputAmountWad)); // buyGem expects the input amount in USDC
                      uint256 amountSent = beforeInputBalance - _tokenBalance(inputToken);
                      if (amountSent != inputAmountWad) {
                          revert IncorrectInputAmountUsed();
                      }
                  } else {
                      CURVE_3POOL.exchange(
                          inputToken,
                          outputToken,
                          inputAmount,
                          minOutputAmount
                      );
                  }
                  amountReceived = _tokenBalance(outputToken) - beforeBalance;
                  if (amountReceived < minOutputAmount) {
                      revert MinimumAmountNotMet();
                  }
              }
          }
          /// @notice Convert between supported token pairs, reverting if not supported.
          /// @param inputTokenAddress  Address of the input token.
          /// @param outputTokenAddress Address of the output token.
          /// @param inputAmountWad     Amount of input token to convert in WAD.
          /// @param _extraData         Extra data containing the minimum amount of output token to receive in WAD.
          /// @return amountReceived Amount of output token received in WAD.
          function _convertTo(
              address inputTokenAddress,
              address outputTokenAddress,
              uint256 inputAmountWad,
              bytes memory _extraData
          ) internal returns (uint256 amountReceived) {
              if (inputTokenAddress == outputTokenAddress) {
                  return inputAmountWad;
              }
              if (outputTokenAddress == address(DAI)) {
                  return _convertToDAI(inputTokenAddress, inputAmountWad, _extraData);
              } else {
                  revert UnsupportedToken();
              }
          }
          /// @notice Convert USDC, USDT, and DAI to DAI. If the input token is DAI,
          ///         the input amount is returned without conversion.
          /// @param inputTokenAddress Address of the input token.
          /// @param inputAmountWad    Amount of input token to convert in WAD.
          /// @param _extraData        Extra data containing the minimum amount of USDB to be minted in WAD.
          ///                          Only needed for USDC and USDT. The expected format is: (uint256 minOutputAmountWad).
          /// @return amountReceived Amount of DAI received.
          function _convertToDAI(address inputTokenAddress, uint256 inputAmountWad, bytes memory _extraData) internal returns (uint256 amountReceived) {
              if (inputTokenAddress == address(DAI)) {
                  return inputAmountWad;
              }
              if (_extraData.length != 32) {
                  revert InvalidExtraData();
              }
              uint256 minOutputAmountWad = abi.decode(_extraData, (uint256));
              if (inputTokenAddress == address(USDC)) {
                  return USDConversions._convert(USDC_INDEX, DAI_INDEX, inputAmountWad, minOutputAmountWad);
              } else if (inputTokenAddress == address(USDT)) {
                  return USDConversions._convert(USDT_INDEX, DAI_INDEX, inputAmountWad, minOutputAmountWad);
              } else {
                  revert UnsupportedToken();
              }
          }
          /// @notice Get the token address from the Curve token index.
          /// @param index Curve token index.
          /// @return Address of the token.
          function _token(int128 index) private pure returns (address) {
              if (index == USDC_INDEX) {
                  return address(USDC);
              } else if (index == USDT_INDEX) {
                  return address(USDT);
              } else if (index == DAI_INDEX) {
                  return address(DAI);
              } else {
                  revert InvalidTokenIndex();
              }
          }
          /// @notice Get the contract's token balance from the Curve token index.
          /// @param index Curve token index.
          /// @return Token balance.
          function _tokenBalance(int128 index) internal view returns (uint256) {
              if (_token(index) == YieldManager(address(this)).TOKEN()) {
                  return YieldManager(address(this)).availableBalance();
              } else {
                  return IERC20(_token(index)).balanceOf(address(this));
              }
          }
          /// @notice Convert WAD representation to the token's native decimal representation.
          ///         USDT and USDC are both 6 decimals and are converted.
          /// @param wad   Amount in WAD.
          /// @param index Curve 3Pool index of the token.
          /// @return result Amount in native decimals representation.
          function _convertDecimals(uint256 wad, int128 index) internal pure returns (uint256 result) {
              if (index == USDT_INDEX || index == USDC_INDEX) {
                  result = _wadToUSD(wad);
              } else {
                  result = wad;
              }
          }
          /// @notice Convert value in WAD (18 decimals) to USD (6 decimals).
          /// @param wad Amount to convert in WAD.
          /// @return Amount in USD.
          function _wadToUSD(uint256 wad) internal pure returns (uint256) {
              return _convertDecimals(wad, WAD_DECIMALS, USD_DECIMALS);
          }
          /// @notice Convert value in USD (6 decimals) to WAD (18 decimals).
          /// @param usd Amount to convert in USD.
          /// @return Amount in WAD.
          function _usdToWad(uint256 usd) internal pure returns (uint256) {
              return _convertDecimals(usd, USD_DECIMALS, WAD_DECIMALS);
          }
          /// @notice Convert value to desired output decimals representation.
          /// @param input          Input amount.
          /// @param inputDecimals  Number of decimals in the input.
          /// @param outputDecimals Desired number of decimals in the output.
          /// @return `input` in `outputDecimals`.
          function _convertDecimals(uint256 input, uint256 inputDecimals, uint256 outputDecimals) internal pure returns (uint256) {
              if (inputDecimals > outputDecimals) {
                  return input / (10 ** (inputDecimals - outputDecimals));
              } else {
                  return input * (10 ** (outputDecimals - inputDecimals));
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)
      pragma solidity ^0.8.0;
      import "./IERC165.sol";
      /**
       * @dev Library used to query support of an interface declared via {IERC165}.
       *
       * Note that these functions return the actual result of the query: they do not
       * `revert` if an interface is not supported. It is up to the caller to decide
       * what to do in these cases.
       */
      library ERC165Checker {
          // As per the EIP-165 spec, no interface should ever match 0xffffffff
          bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
          /**
           * @dev Returns true if `account` supports the {IERC165} interface,
           */
          function supportsERC165(address account) internal view returns (bool) {
              // Any contract that implements ERC165 must explicitly indicate support of
              // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
              return
                  _supportsERC165Interface(account, type(IERC165).interfaceId) &&
                  !_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
          }
          /**
           * @dev Returns true if `account` supports the interface defined by
           * `interfaceId`. Support for {IERC165} itself is queried automatically.
           *
           * See {IERC165-supportsInterface}.
           */
          function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
              // query support of both ERC165 as per the spec and support of _interfaceId
              return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
          }
          /**
           * @dev Returns a boolean array where each value corresponds to the
           * interfaces passed in and whether they're supported or not. This allows
           * you to batch check interfaces for a contract where your expectation
           * is that some interfaces may not be supported.
           *
           * See {IERC165-supportsInterface}.
           *
           * _Available since v3.4._
           */
          function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
              internal
              view
              returns (bool[] memory)
          {
              // an array of booleans corresponding to interfaceIds and whether they're supported or not
              bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
              // query support of ERC165 itself
              if (supportsERC165(account)) {
                  // query support of each interface in interfaceIds
                  for (uint256 i = 0; i < interfaceIds.length; i++) {
                      interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
                  }
              }
              return interfaceIdsSupported;
          }
          /**
           * @dev Returns true if `account` supports all the interfaces defined in
           * `interfaceIds`. Support for {IERC165} itself is queried automatically.
           *
           * Batch-querying can lead to gas savings by skipping repeated checks for
           * {IERC165} support.
           *
           * See {IERC165-supportsInterface}.
           */
          function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
              // query support of ERC165 itself
              if (!supportsERC165(account)) {
                  return false;
              }
              // query support of each interface in _interfaceIds
              for (uint256 i = 0; i < interfaceIds.length; i++) {
                  if (!_supportsERC165Interface(account, interfaceIds[i])) {
                      return false;
                  }
              }
              // all interfaces supported
              return true;
          }
          /**
           * @notice Query if a contract implements an interface, does not check ERC165 support
           * @param account The address of the contract to query for support of an interface
           * @param interfaceId The interface identifier, as specified in ERC-165
           * @return true if the contract at account indicates support of the interface with
           * identifier interfaceId, false otherwise
           * @dev Assumes that account contains a contract that supports ERC165, otherwise
           * the behavior of this method is undefined. This precondition can be checked
           * with {supportsERC165}.
           * Interface identification is specified in ERC-165.
           */
          function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
              // prepare call
              bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
              // perform static call
              bool success;
              uint256 returnSize;
              uint256 returnValue;
              assembly {
                  success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
                  returnSize := returndatasize()
                  returnValue := mload(0x00)
              }
              return success && returnSize >= 0x20 && returnValue > 0;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
      /// @title IOptimismMintableERC20
      /// @notice This interface is available on the OptimismMintableERC20 contract.
      ///         We declare it as a separate interface so that it can be used in
      ///         custom implementations of OptimismMintableERC20.
      interface IOptimismMintableERC20 is IERC165 {
          function remoteToken() external view returns (address);
          function bridge() external returns (address);
          function mint(address _to, uint256 _amount) external;
          function burn(address _from, uint256 _amount) external;
      }
      /// @custom:legacy
      /// @title ILegacyMintableERC20
      /// @notice This interface was available on the legacy L2StandardERC20 contract.
      ///         It remains available on the OptimismMintableERC20 contract for
      ///         backwards compatibility.
      interface ILegacyMintableERC20 is IERC165 {
          function l1Token() external view returns (address);
          function mint(address _to, uint256 _amount) external;
          function burn(address _from, uint256 _amount) external;
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
      import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
      import { ILegacyMintableERC20, IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
      import { Semver } from "src/universal/Semver.sol";
      /// @title OptimismMintableERC20
      /// @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed
      ///         to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to
      ///         use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa.
      ///         Designed to be backwards compatible with the older StandardL2ERC20 token which was only
      ///         meant for use on L2.
      contract OptimismMintableERC20 is IOptimismMintableERC20, ILegacyMintableERC20, ERC20, Semver {
          /// @notice Address of the corresponding version of this token on the remote chain.
          address public immutable REMOTE_TOKEN;
          /// @notice Address of the StandardBridge on this network.
          address public immutable BRIDGE;
          /// @notice Decimals of the token
          uint8 private immutable DECIMALS;
          /// @notice Emitted whenever tokens are minted for an account.
          /// @param account Address of the account tokens are being minted for.
          /// @param amount  Amount of tokens minted.
          event Mint(address indexed account, uint256 amount);
          /// @notice Emitted whenever tokens are burned from an account.
          /// @param account Address of the account tokens are being burned from.
          /// @param amount  Amount of tokens burned.
          event Burn(address indexed account, uint256 amount);
          /// @notice A modifier that only allows the bridge to call
          modifier onlyBridge() {
              require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn");
              _;
          }
          /// @custom:semver 1.2.1
          /// @param _bridge      Address of the L2 standard bridge.
          /// @param _remoteToken Address of the corresponding L1 token.
          /// @param _name        ERC20 name.
          /// @param _symbol      ERC20 symbol.
          constructor(
              address _bridge,
              address _remoteToken,
              string memory _name,
              string memory _symbol,
              uint8 _decimals
          )
              ERC20(_name, _symbol)
              Semver(1, 2, 1)
          {
              REMOTE_TOKEN = _remoteToken;
              BRIDGE = _bridge;
              DECIMALS = _decimals;
          }
          /// @notice Allows the StandardBridge on this network to mint tokens.
          /// @param _to     Address to mint tokens to.
          /// @param _amount Amount of tokens to mint.
          function mint(
              address _to,
              uint256 _amount
          )
              external
              virtual
              override(IOptimismMintableERC20, ILegacyMintableERC20)
              onlyBridge
          {
              _mint(_to, _amount);
              emit Mint(_to, _amount);
          }
          /// @notice Allows the StandardBridge on this network to burn tokens.
          /// @param _from   Address to burn tokens from.
          /// @param _amount Amount of tokens to burn.
          function burn(
              address _from,
              uint256 _amount
          )
              external
              virtual
              override(IOptimismMintableERC20, ILegacyMintableERC20)
              onlyBridge
          {
              _burn(_from, _amount);
              emit Burn(_from, _amount);
          }
          /// @notice ERC165 interface check function.
          /// @param _interfaceId Interface ID to check.
          /// @return Whether or not the interface is supported by this contract.
          function supportsInterface(bytes4 _interfaceId) external pure virtual returns (bool) {
              bytes4 iface1 = type(IERC165).interfaceId;
              // Interface corresponding to the legacy L2StandardERC20.
              bytes4 iface2 = type(ILegacyMintableERC20).interfaceId;
              // Interface corresponding to the updated OptimismMintableERC20 (this contract).
              bytes4 iface3 = type(IOptimismMintableERC20).interfaceId;
              return _interfaceId == iface1 || _interfaceId == iface2 || _interfaceId == iface3;
          }
          /// @custom:legacy
          /// @notice Legacy getter for the remote token. Use REMOTE_TOKEN going forward.
          function l1Token() public view returns (address) {
              return REMOTE_TOKEN;
          }
          /// @custom:legacy
          /// @notice Legacy getter for the bridge. Use BRIDGE going forward.
          function l2Bridge() public view returns (address) {
              return BRIDGE;
          }
          /// @custom:legacy
          /// @notice Legacy getter for REMOTE_TOKEN.
          function remoteToken() public view returns (address) {
              return REMOTE_TOKEN;
          }
          /// @custom:legacy
          /// @notice Legacy getter for BRIDGE.
          function bridge() public view returns (address) {
              return BRIDGE;
          }
          /// @dev Returns the number of decimals used to get its user representation.
          /// For example, if `decimals` equals `2`, a balance of `505` tokens should
          /// be displayed to a user as `5.05` (`505 / 10 ** 2`).
          /// NOTE: This information is only used for _display_ purposes: it in
          /// no way affects any of the arithmetic of the contract, including
          /// {IERC20-balanceOf} and {IERC20-transfer}.
          function decimals() public view override returns (uint8) {
              return DECIMALS;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.2;
      import "../../utils/AddressUpgradeable.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```solidity
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       *
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           * @custom:oz-retyped-from bool
           */
          uint8 private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint8 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts.
           *
           * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
           * constructor.
           *
           * Emits an {Initialized} event.
           */
          modifier initializer() {
              bool isTopLevelCall = !_initializing;
              require(
                  (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                  "Initializable: contract is already initialized"
              );
              _initialized = 1;
              if (isTopLevelCall) {
                  _initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * A reinitializer may be used after the original initialization step. This is essential to configure modules that
           * are added through upgrades and that require initialization.
           *
           * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
           * cannot be nested. If one is invoked in the context of another, execution will revert.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           *
           * WARNING: setting the version to 255 will prevent any future reinitialization.
           *
           * Emits an {Initialized} event.
           */
          modifier reinitializer(uint8 version) {
              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
              _initialized = version;
              _initializing = true;
              _;
              _initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           *
           * Emits an {Initialized} event the first time it is successfully executed.
           */
          function _disableInitializers() internal virtual {
              require(!_initializing, "Initializable: contract is initializing");
              if (_initialized != type(uint8).max) {
                  _initialized = type(uint8).max;
                  emit Initialized(type(uint8).max);
              }
          }
          /**
           * @dev Returns the highest version that has been initialized. See {reinitializer}.
           */
          function _getInitializedVersion() internal view returns (uint8) {
              return _initialized;
          }
          /**
           * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
           */
          function _isInitializing() internal view returns (bool) {
              return _initializing;
          }
      }
      // SPDX-License-Identifier: Apache-2.0
      /*
       * Copyright 2019-2021, Offchain Labs, Inc.
       *
       * Licensed under the Apache License, Version 2.0 (the "License");
       * you may not use this file except in compliance with the License.
       * You may obtain a copy of the License at
       *
       *    http://www.apache.org/licenses/LICENSE-2.0
       *
       * Unless required by applicable law or agreed to in writing, software
       * distributed under the License is distributed on an "AS IS" BASIS,
       * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
       * See the License for the specific language governing permissions and
       * limitations under the License.
       */
      pragma solidity ^0.8.0;
      library AddressAliasHelper {
          uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
          /// @notice Utility function that converts the address in the L1 that submitted a tx to
          /// the inbox to the msg.sender viewed in the L2
          /// @param l1Address the address in the L1 that triggered the tx to L2
          /// @return l2Address L2 address as viewed in msg.sender
          function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
              unchecked {
                  l2Address = address(uint160(l1Address) + offset);
              }
          }
          /// @notice Utility function that converts the msg.sender viewed in the L2 to the
          /// address in the L1 that submitted a tx to the inbox
          /// @param l2Address L2 address as viewed in msg.sender
          /// @return l1Address the address in the L1 that triggered the tx to L2
          function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
              unchecked {
                  l1Address = address(uint160(l2Address) - offset);
              }
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      import { Semver } from "src/universal/Semver.sol";
      import { GasMode, IGas } from "src/L2/Gas.sol";
      enum YieldMode {
          AUTOMATIC,
          VOID,
          CLAIMABLE
      }
      interface IYield {
          function configure(address contractAddress, uint8 flags) external returns (uint256);
          function claim(address contractAddress, address recipientOfYield, uint256 desiredAmount) external returns (uint256);
          function getClaimableAmount(address contractAddress) external view returns (uint256);
          function getConfiguration(address contractAddress) external view returns (uint8);
      }
      interface IBlast{
          // configure
          function configureContract(address contractAddress, YieldMode _yield, GasMode gasMode, address governor) external;
          function configure(YieldMode _yield, GasMode gasMode, address governor) external;
          // base configuration options
          function configureClaimableYield() external;
          function configureClaimableYieldOnBehalf(address contractAddress) external;
          function configureAutomaticYield() external;
          function configureAutomaticYieldOnBehalf(address contractAddress) external;
          function configureVoidYield() external;
          function configureVoidYieldOnBehalf(address contractAddress) external;
          function configureClaimableGas() external;
          function configureClaimableGasOnBehalf(address contractAddress) external;
          function configureVoidGas() external;
          function configureVoidGasOnBehalf(address contractAddress) external;
          function configureGovernor(address _governor) external;
          function configureGovernorOnBehalf(address _newGovernor, address contractAddress) external;
          // claim yield
          function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256);
          function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256);
          // claim gas
          function claimAllGas(address contractAddress, address recipientOfGas) external returns (uint256);
          // NOTE: can be off by 1 bip
          function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) external returns (uint256);
          function claimMaxGas(address contractAddress, address recipientOfGas) external returns (uint256);
          function claimGas(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256);
          // read functions
          function readClaimableYield(address contractAddress) external view returns (uint256);
          function readYieldConfiguration(address contractAddress) external view returns (uint8);
          function readGasParams(address contractAddress) external view returns (uint256 etherSeconds, uint256 etherBalance, uint256 lastUpdated, GasMode);
      }
      /// @custom:predeploy 0x4300000000000000000000000000000000000002
      /// @title Blast
      contract Blast is IBlast, Initializable, Semver {
          address public immutable YIELD_CONTRACT;
          address public immutable GAS_CONTRACT;
          mapping(address => address) public governorMap;
          constructor(address _gasContract, address _yieldContract) Semver(1, 0, 0) {
              GAS_CONTRACT = _gasContract;
              YIELD_CONTRACT = _yieldContract;
              _disableInitializers();
          }
          function initialize() public initializer {}
          /**
           * @notice Checks if the caller is the governor of the contract
           * @param contractAddress The address of the contract
           * @return A boolean indicating if the caller is the governor
           */
          function isGovernor(address contractAddress) public view returns (bool) {
              return msg.sender == governorMap[contractAddress];
          }
          /**
           * @notice Checks if the governor is not set for the contract
           * @param contractAddress The address of the contract
           * @return boolean indicating if the governor is not set
           */
          function governorNotSet(address contractAddress) internal view returns (bool) {
              return governorMap[contractAddress] == address(0);
          }
          /**
           * @notice Checks if the caller is authorized
           * @param contractAddress The address of the contract
           * @return A boolean indicating if the caller is authorized
           */
          function isAuthorized(address contractAddress) public view returns (bool) {
              return isGovernor(contractAddress) || (governorNotSet(contractAddress) && msg.sender == contractAddress);
          }
          /**
           * @notice contract configures its yield and gas modes and sets the governor. called by contract
           * @param _yieldMode The yield mode to be set
           * @param _gasMode The gas mode to be set
           * @param governor The address of the governor to be set
           */
          function configure(YieldMode _yieldMode, GasMode _gasMode, address governor) external {
              // requires that no governor is set for contract
              require(isAuthorized(msg.sender), "not authorized to configure contract");
              // set governor
              governorMap[msg.sender] = governor;
              // set gas mode
              IGas(GAS_CONTRACT).setGasMode(msg.sender, _gasMode);
              // set yield mode
              IYield(YIELD_CONTRACT).configure(msg.sender, uint8(_yieldMode));
          }
          /**
           * @notice Configures the yield and gas modes and sets the governor for a specific contract. called by authorized user
           * @param contractAddress The address of the contract to be configured
           * @param _yieldMode The yield mode to be set
           * @param _gasMode The gas mode to be set
           * @param _newGovernor The address of the new governor to be set
           */
          function configureContract(address contractAddress, YieldMode _yieldMode, GasMode _gasMode, address _newGovernor) external {
              // only allow governor, or if no governor is set, the contract itself to configure
              require(isAuthorized(contractAddress), "not authorized to configure contract");
              // set governor
              governorMap[contractAddress] = _newGovernor;
              // set gas mode
              IGas(GAS_CONTRACT).setGasMode(contractAddress, _gasMode);
              // set yield mode
              IYield(YIELD_CONTRACT).configure(contractAddress, uint8(_yieldMode));
          }
          /**
           * @notice Configures the yield mode to CLAIMABLE for the contract that calls this function
           */
          function configureClaimableYield() external {
              require(isAuthorized(msg.sender), "not authorized to configure contract");
              IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.CLAIMABLE));
          }
          /**
           * @notice Configures the yield mode to CLAIMABLE for a specific contract. Called by an authorized user
           * @param contractAddress The address of the contract to be configured
           */
          function configureClaimableYieldOnBehalf(address contractAddress) external {
              require(isAuthorized(contractAddress), "not authorized to configure contract");
              IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.CLAIMABLE));
          }
          /**
           * @notice Configures the yield mode to AUTOMATIC for the contract that calls this function
           */
          function configureAutomaticYield() external {
              require(isAuthorized(msg.sender), "not authorized to configure contract");
              IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.AUTOMATIC));
          }
          /**
           * @notice Configures the yield mode to AUTOMATIC for a specific contract. Called by an authorized user
           * @param contractAddress The address of the contract to be configured
           */
          function configureAutomaticYieldOnBehalf(address contractAddress) external {
              require(isAuthorized(contractAddress), "not authorized to configure contract");
              IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.AUTOMATIC));
          }
          /**
           * @notice Configures the yield mode to VOID for the contract that calls this function
           */
          function configureVoidYield() external {
              require(isAuthorized(msg.sender), "not authorized to configure contract");
              IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.VOID));
          }
          /**
           * @notice Configures the yield mode to VOID for a specific contract. Called by an authorized user
           * @param contractAddress The address of the contract to be configured
           */
          function configureVoidYieldOnBehalf(address contractAddress) external {
              require(isAuthorized(contractAddress), "not authorized to configure contract");
              IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.VOID));
          }
          /**
           * @notice Configures the gas mode to CLAIMABLE for the contract that calls this function
           */
          function configureClaimableGas() external {
              require(isAuthorized(msg.sender), "not authorized to configure contract");
              IGas(GAS_CONTRACT).setGasMode(msg.sender, GasMode.CLAIMABLE);
          }
          /**
           * @notice Configures the gas mode to CLAIMABLE for a specific contract. Called by an authorized user
           * @param contractAddress The address of the contract to be configured
           */
          function configureClaimableGasOnBehalf(address contractAddress) external {
              require(isAuthorized(contractAddress), "not authorized to configure contract");
              IGas(GAS_CONTRACT).setGasMode(contractAddress, GasMode.CLAIMABLE);
          }
          /**
           * @notice Configures the gas mode to VOID for the contract that calls this function
           */
          function configureVoidGas() external {
              require(isAuthorized(msg.sender), "not authorized to configure contract");
              IGas(GAS_CONTRACT).setGasMode(msg.sender, GasMode.VOID);
          }
          /**
           * @notice Configures the gas mode to void for a specific contract. Called by an authorized user
           * @param contractAddress The address of the contract to be configured
           */
          function configureVoidGasOnBehalf(address contractAddress) external {
              require(isAuthorized(contractAddress), "not authorized to configure contract");
              IGas(GAS_CONTRACT).setGasMode(contractAddress, GasMode.VOID);
          }
          /**
           * @notice Configures the governor for the contract that calls this function
           */
          function configureGovernor(address _governor) external {
              require(isAuthorized(msg.sender), "not authorized to configure contract");
              governorMap[msg.sender] = _governor;
          }
          /**
           * @notice Configures the governor for a specific contract. Called by an authorized user
           * @param contractAddress The address of the contract to be configured
           */
          function configureGovernorOnBehalf(address _newGovernor, address contractAddress) external {
              require(isAuthorized(contractAddress), "not authorized to configure contract");
              governorMap[contractAddress] = _newGovernor;
          }
          // claim methods
          /**
           * @notice Claims yield for a specific contract. Called by an authorized user
           * @param contractAddress The address of the contract for which yield is to be claimed
           * @param recipientOfYield The address of the recipient of the yield
           * @param amount The amount of yield to be claimed
           * @return The amount of yield that was claimed
           */
          function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256) {
              require(isAuthorized(contractAddress), "Not authorized to claim yield");
              return  IYield(YIELD_CONTRACT).claim(contractAddress, recipientOfYield, amount);
          }
          /**
           * @notice Claims all yield for a specific contract. Called by an authorized user
           * @param contractAddress The address of the contract for which all yield is to be claimed
           * @param recipientOfYield The address of the recipient of the yield
           * @return The amount of yield that was claimed
           */
          function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256) {
              require(isAuthorized(contractAddress), "Not authorized to claim yield");
              uint256 amount = IYield(YIELD_CONTRACT).getClaimableAmount(contractAddress);
              return  IYield(YIELD_CONTRACT).claim(contractAddress, recipientOfYield, amount);
          }
          /**
           * @notice Claims all gas for a specific contract. Called by an authorized user
           * @param contractAddress The address of the contract for which all gas is to be claimed
           * @param recipientOfGas The address of the recipient of the gas
           * @return The amount of gas that was claimed
           */
          function claimAllGas(address contractAddress, address recipientOfGas) external returns (uint256) {
              require(isAuthorized(contractAddress), "Not allowed to claim all gas");
              return IGas(GAS_CONTRACT).claimAll(contractAddress, recipientOfGas);
          }
          /**
           * @notice Claims gas at a minimum claim rate for a specific contract, with error rate '1'. Called by an authorized user
           * @param contractAddress The address of the contract for which gas is to be claimed
           * @param recipientOfGas The address of the recipient of the gas
           * @param minClaimRateBips The minimum claim rate in basis points
           * @return The amount of gas that was claimed
           */
          function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) external returns (uint256) {
              require(isAuthorized(contractAddress), "Not allowed to claim gas at min claim rate");
              return IGas(GAS_CONTRACT).claimGasAtMinClaimRate(contractAddress, recipientOfGas, minClaimRateBips);
          }
          /**
           * @notice Claims gas available to be claimed at max claim rate for a specific contract. Called by an authorized user
           * @param contractAddress The address of the contract for which maximum gas is to be claimed
           * @param recipientOfGas The address of the recipient of the gas
           * @return The amount of gas that was claimed
           */
          function claimMaxGas(address contractAddress, address recipientOfGas) external returns (uint256) {
              require(isAuthorized(contractAddress), "Not allowed to claim max gas");
              return IGas(GAS_CONTRACT).claimMax(contractAddress, recipientOfGas);
          }
          /**
           * @notice Claims a specific amount of gas for a specific contract. claim rate governed by integral of gas over time
           * @param contractAddress The address of the contract for which gas is to be claimed
           * @param recipientOfGas The address of the recipient of the gas
           * @param gasToClaim The amount of gas to be claimed
           * @param gasSecondsToConsume The amount of gas seconds to consume
           * @return The amount of gas that was claimed
           */
          function claimGas(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256) {
              require(isAuthorized(contractAddress), "Not allowed to claim gas");
              return IGas(GAS_CONTRACT).claim(contractAddress, recipientOfGas, gasToClaim, gasSecondsToConsume);
          }
          /**
           * @notice Reads the claimable yield for a specific contract
           * @param contractAddress The address of the contract for which the claimable yield is to be read
           * @return claimable yield
           */
          function readClaimableYield(address contractAddress) public view returns (uint256) {
              return IYield(YIELD_CONTRACT).getClaimableAmount(contractAddress);
          }
          /**
           * @notice Reads the yield configuration for a specific contract
           * @param contractAddress The address of the contract for which the yield configuration is to be read
           * @return uint8 representing yield enum
           */
          function readYieldConfiguration(address contractAddress) public view returns (uint8) {
              return IYield(YIELD_CONTRACT).getConfiguration(contractAddress);
          }
          /**
           * @notice Reads the gas parameters for a specific contract
           * @param contractAddress The address of the contract for which the gas parameters are to be read
           * @return uint256 representing the accumulated ether seconds
           * @return uint256 representing ether balance
           * @return uint256 representing last update timestamp
           * @return GasMode representing the gas mode (VOID, CLAIMABLE)
           */
          function readGasParams(address contractAddress) public view returns (uint256, uint256, uint256, GasMode) {
              return IGas(GAS_CONTRACT).readGasParams(contractAddress);
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      import { Types } from "./Types.sol";
      import { Encoding } from "./Encoding.sol";
      /// @title Hashing
      /// @notice Hashing handles Optimism's various different hashing schemes.
      library Hashing {
          /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
          ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
          ///         system.
          /// @param _tx User deposit transaction to hash.
          /// @return Hash of the RLP encoded L2 deposit transaction.
          function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
              return keccak256(Encoding.encodeDepositTransaction(_tx));
          }
          /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
          ///         of the L2 transaction that corresponds to a deposit is unique and is
          ///         deterministically generated from L1 transaction data.
          /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
          /// @param _logIndex    The index of the log that created the deposit transaction.
          /// @return Hash of the deposit transaction's "source hash".
          function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
              bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
              return keccak256(abi.encode(bytes32(0), depositId));
          }
          /// @notice Hashes the cross domain message based on the version that is encoded into the
          ///         message nonce.
          /// @param _nonce    Message nonce with version encoded into the first two bytes.
          /// @param _sender   Address of the sender of the message.
          /// @param _target   Address of the target of the message.
          /// @param _value    ETH value to send to the target.
          /// @param _gasLimit Gas limit to use for the message.
          /// @param _data     Data to send with the message.
          /// @return Hashed cross domain message.
          function hashCrossDomainMessage(
              uint256 _nonce,
              address _sender,
              address _target,
              uint256 _value,
              uint256 _gasLimit,
              bytes memory _data
          )
              internal
              pure
              returns (bytes32)
          {
              (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
              if (version == 0) {
                  return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
              } else if (version == 1) {
                  return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
              } else {
                  revert("Hashing: unknown cross domain message version");
              }
          }
          /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
          /// @param _target Address of the target of the message.
          /// @param _sender Address of the sender of the message.
          /// @param _data   Data to send with the message.
          /// @param _nonce  Message nonce.
          /// @return Hashed cross domain message.
          function hashCrossDomainMessageV0(
              address _target,
              address _sender,
              bytes memory _data,
              uint256 _nonce
          )
              internal
              pure
              returns (bytes32)
          {
              return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
          }
          /// @notice Hashes a cross domain message based on the V1 (current) encoding.
          /// @param _nonce    Message nonce.
          /// @param _sender   Address of the sender of the message.
          /// @param _target   Address of the target of the message.
          /// @param _value    ETH value to send to the target.
          /// @param _gasLimit Gas limit to use for the message.
          /// @param _data     Data to send with the message.
          /// @return Hashed cross domain message.
          function hashCrossDomainMessageV1(
              uint256 _nonce,
              address _sender,
              address _target,
              uint256 _value,
              uint256 _gasLimit,
              bytes memory _data
          )
              internal
              pure
              returns (bytes32)
          {
              return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
          }
          /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
          /// @param _tx Withdrawal transaction to hash.
          /// @return Hashed withdrawal transaction.
          function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
              return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
          }
          /// @notice Hashes the various elements of an output root proof into an output root hash which
          ///         can be used to check if the proof is valid.
          /// @param _outputRootProof Output root proof which should hash to an output root.
          /// @return Hashed output root proof.
          function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
              return keccak256(
                  abi.encode(
                      _outputRootProof.version,
                      _outputRootProof.stateRoot,
                      _outputRootProof.messagePasserStorageRoot,
                      _outputRootProof.latestBlockhash
                  )
              );
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      import { Types } from "./Types.sol";
      import { Hashing } from "./Hashing.sol";
      import { RLPWriter } from "./rlp/RLPWriter.sol";
      /// @title Encoding
      /// @notice Encoding handles Optimism's various different encoding schemes.
      library Encoding {
          /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
          ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
          ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
          /// @param _tx User deposit transaction to encode.
          /// @return RLP encoded L2 deposit transaction.
          function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
              bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
              bytes[] memory raw = new bytes[](8);
              raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
              raw[1] = RLPWriter.writeAddress(_tx.from);
              raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
              raw[3] = RLPWriter.writeUint(_tx.mint);
              raw[4] = RLPWriter.writeUint(_tx.value);
              raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
              raw[6] = RLPWriter.writeBool(false);
              raw[7] = RLPWriter.writeBytes(_tx.data);
              return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
          }
          /// @notice Encodes the cross domain message based on the version that is encoded into the
          ///         message nonce.
          /// @param _nonce    Message nonce with version encoded into the first two bytes.
          /// @param _sender   Address of the sender of the message.
          /// @param _target   Address of the target of the message.
          /// @param _value    ETH value to send to the target.
          /// @param _gasLimit Gas limit to use for the message.
          /// @param _data     Data to send with the message.
          /// @return Encoded cross domain message.
          function encodeCrossDomainMessage(
              uint256 _nonce,
              address _sender,
              address _target,
              uint256 _value,
              uint256 _gasLimit,
              bytes memory _data
          )
              internal
              pure
              returns (bytes memory)
          {
              (, uint16 version) = decodeVersionedNonce(_nonce);
              if (version == 0) {
                  return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
              } else if (version == 1) {
                  return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
              } else {
                  revert("Encoding: unknown cross domain message version");
              }
          }
          /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
          /// @param _target Address of the target of the message.
          /// @param _sender Address of the sender of the message.
          /// @param _data   Data to send with the message.
          /// @param _nonce  Message nonce.
          /// @return Encoded cross domain message.
          function encodeCrossDomainMessageV0(
              address _target,
              address _sender,
              bytes memory _data,
              uint256 _nonce
          )
              internal
              pure
              returns (bytes memory)
          {
              return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
          }
          /// @notice Encodes a cross domain message based on the V1 (current) encoding.
          /// @param _nonce    Message nonce.
          /// @param _sender   Address of the sender of the message.
          /// @param _target   Address of the target of the message.
          /// @param _value    ETH value to send to the target.
          /// @param _gasLimit Gas limit to use for the message.
          /// @param _data     Data to send with the message.
          /// @return Encoded cross domain message.
          function encodeCrossDomainMessageV1(
              uint256 _nonce,
              address _sender,
              address _target,
              uint256 _value,
              uint256 _gasLimit,
              bytes memory _data
          )
              internal
              pure
              returns (bytes memory)
          {
              return abi.encodeWithSignature(
                  "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                  _nonce,
                  _sender,
                  _target,
                  _value,
                  _gasLimit,
                  _data
              );
          }
          /// @notice Adds a version number into the first two bytes of a message nonce.
          /// @param _nonce   Message nonce to encode into.
          /// @param _version Version number to encode into the message nonce.
          /// @return Message nonce with version encoded into the first two bytes.
          function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
              uint256 nonce;
              assembly {
                  nonce := or(shl(240, _version), _nonce)
              }
              return nonce;
          }
          /// @notice Pulls the version out of a version-encoded nonce.
          /// @param _nonce Message nonce with version encoded into the first two bytes.
          /// @return Nonce without encoded version.
          /// @return Version of the message.
          function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
              uint240 nonce;
              uint16 version;
              assembly {
                  nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                  version := shr(240, _nonce)
              }
              return (nonce, version);
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      import { ResourceMetering } from "../L1/ResourceMetering.sol";
      /// @title Constants
      /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
      ///         the stuff used in multiple contracts. Constants that only apply to a single contract
      ///         should be defined in that contract instead.
      library Constants {
          /// @notice Special address to be used as the tx origin for gas estimation calls in the
          ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
          ///         the minimum gas limit specified by the user is not actually enough to execute the
          ///         given message and you're attempting to estimate the actual necessary gas limit. We
          ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
          ///         never have any code on any EVM chain.
          address internal constant ESTIMATION_ADDRESS = address(1);
          /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
          ///         CrossDomainMessenger contracts before an actual sender is set. This value is
          ///         non-zero to reduce the gas cost of message passing transactions.
          address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
          /// @notice The storage slot that holds the address of a proxy implementation.
          /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
          bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
              0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /// @notice The storage slot that holds the address of the owner.
          /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
          bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /// @notice Returns the default values for the ResourceConfig. These are the recommended values
          ///         for a production network.
          function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
              ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                  maxResourceLimit: 20_000_000,
                  elasticityMultiplier: 10,
                  baseFeeMaxChangeDenominator: 8,
                  minimumBaseFee: 1 gwei,
                  systemTxMaxGas: 1_000_000,
                  maximumBaseFee: type(uint128).max
              });
              return config;
          }
          /// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
          ///         each time that the contracts are deployed.
          uint8 internal constant INITIALIZER = 1;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.2;
      import "../../utils/Address.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           * @custom:oz-retyped-from bool
           */
          uint8 private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint8 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
           */
          modifier initializer() {
              bool isTopLevelCall = !_initializing;
              require(
                  (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                  "Initializable: contract is already initialized"
              );
              _initialized = 1;
              if (isTopLevelCall) {
                  _initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
           * initialization step. This is essential to configure modules that are added through upgrades and that require
           * initialization.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           */
          modifier reinitializer(uint8 version) {
              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
              _initialized = version;
              _initializing = true;
              _;
              _initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           */
          function _disableInitializers() internal virtual {
              require(!_initializing, "Initializable: contract is initializing");
              if (_initialized < type(uint8).max) {
                  _initialized = type(uint8).max;
                  emit Initialized(type(uint8).max);
              }
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
      import { ISemver } from "src/universal/ISemver.sol";
      import { Types } from "src/libraries/Types.sol";
      import { Constants } from "src/libraries/Constants.sol";
      /// @custom:proxied
      /// @title L2OutputOracle
      /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
      ///         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
      ///         these outputs to verify information about the state of L2.
      contract L2OutputOracle is Initializable, ISemver {
          /// @notice The interval in L2 blocks at which checkpoints must be submitted.
          ///         Although this is immutable, it can safely be modified by upgrading the
          ///         implementation contract.
          ///         Public getter is legacy and will be removed in the future. Use `submissionInterval`
          ///         instead.
          /// @custom:legacy
          uint256 public immutable SUBMISSION_INTERVAL;
          /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
          ///         Public getter is legacy and will be removed in the future. Use `l2BlockTime`
          ///         instead.
          /// @custom:legacy
          uint256 public immutable L2_BLOCK_TIME;
          /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
          ///         Public getter is legacy and will be removed in the future. Use
          //          `finalizationPeriodSeconds` instead.
          /// @custom:legacy
          uint256 public immutable FINALIZATION_PERIOD_SECONDS;
          /// @notice The number of the first L2 block recorded in this contract.
          uint256 public startingBlockNumber;
          /// @notice The timestamp of the first L2 block recorded in this contract.
          uint256 public startingTimestamp;
          /// @notice An array of L2 output proposals.
          Types.OutputProposal[] internal l2Outputs;
          /// @notice The address of the challenger. Can be updated via reinitialize.
          /// @custom:network-specific
          address public challenger;
          /// @notice The address of the proposer. Can be updated via reinitialize.
          /// @custom:network-specific
          address public proposer;
          /// @notice Emitted when an output is proposed.
          /// @param outputRoot    The output root.
          /// @param l2OutputIndex The index of the output in the l2Outputs array.
          /// @param l2BlockNumber The L2 block number of the output root.
          /// @param l1Timestamp   The L1 timestamp when proposed.
          event OutputProposed(
              bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
          );
          /// @notice Emitted when outputs are deleted.
          /// @param prevNextOutputIndex Next L2 output index before the deletion.
          /// @param newNextOutputIndex  Next L2 output index after the deletion.
          event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
          /// @notice Semantic version.
          /// @custom:semver 1.6.0
          string public constant version = "1.6.0";
          /// @notice Constructs the L2OutputOracle contract.
          /// @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
          /// @param _l2BlockTime         The time per L2 block, in seconds.
          /// @param _finalizationPeriodSeconds The amount of time that must pass for an output proposal
          //                                    to be considered canonical.
          constructor(uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _finalizationPeriodSeconds) {
              require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
              require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");
              SUBMISSION_INTERVAL = _submissionInterval;
              L2_BLOCK_TIME = _l2BlockTime;
              FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds;
              initialize({ _startingBlockNumber: 0, _startingTimestamp: 0, _proposer: address(0), _challenger: address(0) });
          }
          /// @notice Initializer.
          /// @param _startingBlockNumber Block number for the first recoded L2 block.
          /// @param _startingTimestamp   Timestamp for the first recoded L2 block.
          /// @param _proposer            The address of the proposer.
          /// @param _challenger          The address of the challenger.
          function initialize(
              uint256 _startingBlockNumber,
              uint256 _startingTimestamp,
              address _proposer,
              address _challenger
          )
              public
              reinitializer(Constants.INITIALIZER)
          {
              require(
                  _startingTimestamp <= block.timestamp,
                  "L2OutputOracle: starting L2 timestamp must be less than current time"
              );
              startingTimestamp = _startingTimestamp;
              startingBlockNumber = _startingBlockNumber;
              proposer = _proposer;
              challenger = _challenger;
          }
          /// @notice Getter for the output proposal submission interval.
          function submissionInterval() external view returns (uint256) {
              return SUBMISSION_INTERVAL;
          }
          /// @notice Getter for the L2 block time.
          function l2BlockTime() external view returns (uint256) {
              return L2_BLOCK_TIME;
          }
          /// @notice Getter for the finalization period.
          function finalizationPeriodSeconds() external view returns (uint256) {
              return FINALIZATION_PERIOD_SECONDS;
          }
          /// @notice Getter for the challenger address. This will be removed
          ///         in the future, use `challenger` instead.
          /// @custom:legacy
          function CHALLENGER() external view returns (address) {
              return challenger;
          }
          /// @notice Getter for the proposer address. This will be removed in the
          ///         future, use `proposer` instead.
          /// @custom:legacy
          function PROPOSER() external view returns (address) {
              return proposer;
          }
          /// @notice Deletes all output proposals after and including the proposal that corresponds to
          ///         the given output index. Only the challenger address can delete outputs.
          /// @param _l2OutputIndex Index of the first L2 output to be deleted.
          ///                       All outputs after this output will also be deleted.
          // solhint-disable-next-line ordering
          function deleteL2Outputs(uint256 _l2OutputIndex) external {
              require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
              // Make sure we're not *increasing* the length of the array.
              require(
                  _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
              );
              // Do not allow deleting any outputs that have already been finalized.
              require(
                  block.timestamp - l2Outputs[_l2OutputIndex].timestamp < FINALIZATION_PERIOD_SECONDS,
                  "L2OutputOracle: cannot delete outputs that have already been finalized"
              );
              uint256 prevNextL2OutputIndex = nextOutputIndex();
              // Use assembly to delete the array elements because Solidity doesn't allow it.
              assembly {
                  sstore(l2Outputs.slot, _l2OutputIndex)
              }
              emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
          }
          /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
          ///         The timestamp must be equal to the current value returned by `nextTimestamp()` in
          ///         order to be accepted. This function may only be called by the Proposer.
          /// @param _outputRoot    The L2 output of the checkpoint block.
          /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
          /// @param _l1BlockHash   A block hash which must be included in the current chain.
          /// @param _l1BlockNumber The block number with the specified block hash.
          function proposeL2Output(
              bytes32 _outputRoot,
              uint256 _l2BlockNumber,
              bytes32 _l1BlockHash,
              uint256 _l1BlockNumber
          )
              external
              payable
          {
              require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
              require(
                  _l2BlockNumber == nextBlockNumber(),
                  "L2OutputOracle: block number must be equal to next expected block number"
              );
              require(
                  computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                  "L2OutputOracle: cannot propose L2 output in the future"
              );
              require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
              if (_l1BlockHash != bytes32(0)) {
                  // This check allows the proposer to propose an output based on a given L1 block,
                  // without fear that it will be reorged out.
                  // It will also revert if the blockheight provided is more than 256 blocks behind the
                  // chain tip (as the hash will return as zero). This does open the door to a griefing
                  // attack in which the proposer's submission is censored until the block is no longer
                  // retrievable, if the proposer is experiencing this attack it can simply leave out the
                  // blockhash value, and delay submission until it is confident that the L1 block is
                  // finalized.
                  require(
                      blockhash(_l1BlockNumber) == _l1BlockHash,
                      "L2OutputOracle: block hash does not match the hash at the expected height"
                  );
              }
              emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
              l2Outputs.push(
                  Types.OutputProposal({
                      outputRoot: _outputRoot,
                      timestamp: uint128(block.timestamp),
                      l2BlockNumber: uint128(_l2BlockNumber)
                  })
              );
          }
          /// @notice Returns an output by index. Needed to return a struct instead of a tuple.
          /// @param _l2OutputIndex Index of the output to return.
          /// @return The output at the given index.
          function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
              return l2Outputs[_l2OutputIndex];
          }
          /// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
          ///         Uses a binary search to find the first output greater than or equal to the given
          ///         block.
          /// @param _l2BlockNumber L2 block number to find a checkpoint for.
          /// @return Index of the first checkpoint that commits to the given L2 block number.
          function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
              // Make sure an output for this block number has actually been proposed.
              require(
                  _l2BlockNumber <= latestBlockNumber(),
                  "L2OutputOracle: cannot get output for a block that has not been proposed"
              );
              // Make sure there's at least one output proposed.
              require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");
              // Find the output via binary search, guaranteed to exist.
              uint256 lo = 0;
              uint256 hi = l2Outputs.length;
              while (lo < hi) {
                  uint256 mid = (lo + hi) / 2;
                  if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                      lo = mid + 1;
                  } else {
                      hi = mid;
                  }
              }
              return lo;
          }
          /// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
          ///         Uses a binary search to find the first output greater than or equal to the given
          ///         block.
          /// @param _l2BlockNumber L2 block number to find a checkpoint for.
          /// @return First checkpoint that commits to the given L2 block number.
          function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
              return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
          }
          /// @notice Returns the number of outputs that have been proposed.
          ///         Will revert if no outputs have been proposed yet.
          /// @return The number of outputs that have been proposed.
          function latestOutputIndex() external view returns (uint256) {
              return l2Outputs.length - 1;
          }
          /// @notice Returns the index of the next output to be proposed.
          /// @return The index of the next output to be proposed.
          function nextOutputIndex() public view returns (uint256) {
              return l2Outputs.length;
          }
          /// @notice Returns the block number of the latest submitted L2 output proposal.
          ///         If no proposals been submitted yet then this function will return the starting
          ///         block number.
          /// @return Latest submitted L2 block number.
          function latestBlockNumber() public view returns (uint256) {
              return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
          }
          /// @notice Computes the block number of the next L2 block that needs to be checkpointed.
          /// @return Next L2 block number.
          function nextBlockNumber() public view returns (uint256) {
              return latestBlockNumber() + SUBMISSION_INTERVAL;
          }
          /// @notice Returns the L2 timestamp corresponding to a given L2 block number.
          /// @param _l2BlockNumber The L2 block number of the target block.
          /// @return L2 timestamp of the given block.
          function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
              return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME);
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
      import { ISemver } from "src/universal/ISemver.sol";
      import { ResourceMetering } from "src/L1/ResourceMetering.sol";
      import { Storage } from "src/libraries/Storage.sol";
      import { Constants } from "src/libraries/Constants.sol";
      /// @title SystemConfig
      /// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
      ///         All configuration is stored on L1 and picked up by L2 as part of the derviation of
      ///         the L2 chain.
      contract SystemConfig is OwnableUpgradeable, ISemver {
          /// @notice Enum representing different types of updates.
          /// @custom:value BATCHER              Represents an update to the batcher hash.
          /// @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
          /// @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
          /// @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
          ///                                    block distrubution.
          enum UpdateType {
              BATCHER,
              GAS_CONFIG,
              GAS_LIMIT,
              UNSAFE_BLOCK_SIGNER
          }
          /// @notice Struct representing the addresses of L1 system contracts. These should be the
          ///         proxies and will differ for each OP Stack chain.
          struct Addresses {
              address l1CrossDomainMessenger;
              address l1ERC721Bridge;
              address l1StandardBridge;
              address l2OutputOracle;
              address optimismPortal;
              address optimismMintableERC20Factory;
          }
          /// @notice Version identifier, used for upgrades.
          uint256 public constant VERSION = 0;
          /// @notice Storage slot that the unsafe block signer is stored at.
          ///         Storing it at this deterministic storage slot allows for decoupling the storage
          ///         layout from the way that `solc` lays out storage. The `op-node` uses a storage
          ///         proof to fetch this value.
          /// @dev    NOTE: this value will be migrated to another storage slot in a future version.
          ///         User input should not be placed in storage in this contract until this migration
          ///         happens. It is unlikely that keccak second preimage resistance will be broken,
          ///         but it is better to be safe than sorry.
          bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
          /// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
          bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
              bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
          /// @notice Storage slot that the L1ERC721Bridge address is stored at.
          bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
          /// @notice Storage slot that the L1StandardBridge address is stored at.
          bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
          /// @notice Storage slot that the L2OutputOracle address is stored at.
          bytes32 public constant L2_OUTPUT_ORACLE_SLOT = bytes32(uint256(keccak256("systemconfig.l2outputoracle")) - 1);
          /// @notice Storage slot that the OptimismPortal address is stored at.
          bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
          /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
          bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
              bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
          /// @notice Storage slot that the batch inbox address is stored at.
          bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
          /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
          uint256 public overhead;
          /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
          uint256 public scalar;
          /// @notice Identifier for the batcher.
          ///         For version 1 of this configuration, this is represented as an address left-padded
          ///         with zeros to 32 bytes.
          bytes32 public batcherHash;
          /// @notice L2 block gas limit.
          uint64 public gasLimit;
          /// @notice The configuration for the deposit fee market.
          ///         Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
          ///         Set as internal with a getter so that the struct is returned instead of a tuple.
          ResourceMetering.ResourceConfig internal _resourceConfig;
          /// @notice Emitted when configuration is updated.
          /// @param version    SystemConfig version.
          /// @param updateType Type of update.
          /// @param data       Encoded update data.
          event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
          /// @notice The block at which the op-node can start searching for logs from.
          uint256 public startBlock;
          /// @notice Semantic version.
          /// @custom:semver 1.10.0
          string public constant version = "1.10.0";
          /// @notice Constructs the SystemConfig contract. Cannot set
          ///         the owner to `address(0)` due to the Ownable contract's
          ///         implementation, so set it to `address(0xdEaD)`
          constructor() {
              initialize({
                  _owner: address(0xdEaD),
                  _overhead: 0,
                  _scalar: 0,
                  _batcherHash: bytes32(0),
                  _gasLimit: 1,
                  _unsafeBlockSigner: address(0),
                  _config: ResourceMetering.ResourceConfig({
                      maxResourceLimit: 1,
                      elasticityMultiplier: 1,
                      baseFeeMaxChangeDenominator: 2,
                      minimumBaseFee: 0,
                      systemTxMaxGas: 0,
                      maximumBaseFee: 0
                  }),
                  _startBlock: type(uint256).max,
                  _batchInbox: address(0),
                  _addresses: SystemConfig.Addresses({
                      l1CrossDomainMessenger: address(0),
                      l1ERC721Bridge: address(0),
                      l1StandardBridge: address(0),
                      l2OutputOracle: address(0),
                      optimismPortal: address(0),
                      optimismMintableERC20Factory: address(0)
                  })
              });
          }
          /// @notice Initializer.
          ///         The resource config must be set before the require check.
          /// @param _owner             Initial owner of the contract.
          /// @param _overhead          Initial overhead value.
          /// @param _scalar            Initial scalar value.
          /// @param _batcherHash       Initial batcher hash.
          /// @param _gasLimit          Initial gas limit.
          /// @param _unsafeBlockSigner Initial unsafe block signer address.
          /// @param _config            Initial ResourceConfig.
          /// @param _startBlock        Starting block for the op-node to search for logs from.
          ///                           Contracts that were deployed before this field existed
          ///                           need to have this field set manually via an override.
          ///                           Newly deployed contracts should set this value to uint256(0).
          /// @param _batchInbox        Batch inbox address. An identifier for the op-node to find
          ///                           canonical data.
          /// @param _addresses         Set of L1 contract addresses. These should be the proxies.
          function initialize(
              address _owner,
              uint256 _overhead,
              uint256 _scalar,
              bytes32 _batcherHash,
              uint64 _gasLimit,
              address _unsafeBlockSigner,
              ResourceMetering.ResourceConfig memory _config,
              uint256 _startBlock,
              address _batchInbox,
              SystemConfig.Addresses memory _addresses
          )
              public
              reinitializer(Constants.INITIALIZER)
          {
              __Ownable_init();
              transferOwnership(_owner);
              // These are set in ascending order of their UpdateTypes.
              _setBatcherHash(_batcherHash);
              _setGasConfig({ _overhead: _overhead, _scalar: _scalar });
              _setGasLimit(_gasLimit);
              _setUnsafeBlockSigner(_unsafeBlockSigner);
              Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
              Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
              Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
              Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
              Storage.setAddress(L2_OUTPUT_ORACLE_SLOT, _addresses.l2OutputOracle);
              Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
              Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
              _setStartBlock(_startBlock);
              _setResourceConfig(_config);
              require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
          }
          /// @notice Returns the minimum L2 gas limit that can be safely set for the system to
          ///         operate. The L2 gas limit must be larger than or equal to the amount of
          ///         gas that is allocated for deposits per block plus the amount of gas that
          ///         is allocated for the system transaction.
          ///         This function is used to determine if changes to parameters are safe.
          /// @return uint64 Minimum gas limit.
          function minimumGasLimit() public view returns (uint64) {
              return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
          }
          /// @notice High level getter for the unsafe block signer address.
          ///         Unsafe blocks can be propagated across the p2p network if they are signed by the
          ///         key corresponding to this address.
          /// @return addr_ Address of the unsafe block signer.
          // solhint-disable-next-line ordering
          function unsafeBlockSigner() public view returns (address addr_) {
              addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
          }
          /// @notice Getter for the L1CrossDomainMessenger address.
          function l1CrossDomainMessenger() external view returns (address addr_) {
              addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
          }
          /// @notice Getter for the L1ERC721Bridge address.
          function l1ERC721Bridge() external view returns (address addr_) {
              addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
          }
          /// @notice Getter for the L1StandardBridge address.
          function l1StandardBridge() external view returns (address addr_) {
              addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
          }
          /// @notice Getter for the L2OutputOracle address.
          function l2OutputOracle() external view returns (address addr_) {
              addr_ = Storage.getAddress(L2_OUTPUT_ORACLE_SLOT);
          }
          /// @notice Getter for the OptimismPortal address.
          function optimismPortal() external view returns (address addr_) {
              addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
          }
          /// @notice Getter for the OptimismMintableERC20Factory address.
          function optimismMintableERC20Factory() external view returns (address addr_) {
              addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
          }
          /// @notice Getter for the BatchInbox address.
          function batchInbox() external view returns (address addr_) {
              addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
          }
          /// @notice Sets the start block in a backwards compatible way. Proxies
          ///         that were initialized before the startBlock existed in storage
          ///         can have their start block set by a user provided override.
          ///         A start block of 0 indicates that there is no override and the
          ///         start block will be set by `block.number`.
          /// @dev    This logic is used to patch legacy deployments with new storage values.
          ///         Use the override if it is provided as a non zero value and the value
          ///         has not already been set in storage. Use `block.number` if the value
          ///         has already been set in storage
          /// @param  _startBlock The start block override to set in storage.
          function _setStartBlock(uint256 _startBlock) internal {
              if (_startBlock != 0 && startBlock == 0) {
                  // There is an override and it is not already set, this is for legacy chains.
                  startBlock = _startBlock;
              } else if (startBlock == 0) {
                  // There is no override and it is not set in storage. Set it to the block number.
                  // This is for newly deployed chains.
                  startBlock = block.number;
              }
          }
          /// @notice Updates the unsafe block signer address. Can only be called by the owner.
          /// @param _unsafeBlockSigner New unsafe block signer address.
          function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
              _setUnsafeBlockSigner(_unsafeBlockSigner);
          }
          /// @notice Updates the unsafe block signer address.
          /// @param _unsafeBlockSigner New unsafe block signer address.
          function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
              Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
              bytes memory data = abi.encode(_unsafeBlockSigner);
              emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
          }
          /// @notice Updates the batcher hash. Can only be called by the owner.
          /// @param _batcherHash New batcher hash.
          function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
              _setBatcherHash(_batcherHash);
          }
          /// @notice Internal function for updating the batcher hash.
          /// @param _batcherHash New batcher hash.
          function _setBatcherHash(bytes32 _batcherHash) internal {
              batcherHash = _batcherHash;
              bytes memory data = abi.encode(_batcherHash);
              emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
          }
          /// @notice Updates gas config. Can only be called by the owner.
          /// @param _overhead New overhead value.
          /// @param _scalar   New scalar value.
          function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
              _setGasConfig(_overhead, _scalar);
          }
          /// @notice Internal function for updating the gas config.
          /// @param _overhead New overhead value.
          /// @param _scalar   New scalar value.
          function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
              overhead = _overhead;
              scalar = _scalar;
              bytes memory data = abi.encode(_overhead, _scalar);
              emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
          }
          /// @notice Updates the L2 gas limit. Can only be called by the owner.
          /// @param _gasLimit New gas limit.
          function setGasLimit(uint64 _gasLimit) external onlyOwner {
              _setGasLimit(_gasLimit);
          }
          /// @notice Internal function for updating the L2 gas limit.
          /// @param _gasLimit New gas limit.
          function _setGasLimit(uint64 _gasLimit) internal {
              require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
              gasLimit = _gasLimit;
              bytes memory data = abi.encode(_gasLimit);
              emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
          }
          /// @notice A getter for the resource config.
          ///         Ensures that the struct is returned instead of a tuple.
          /// @return ResourceConfig
          function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
              return _resourceConfig;
          }
          /// @notice An external setter for the resource config.
          ///         In the future, this method may emit an event that the `op-node` picks up
          ///         for when the resource config is changed.
          /// @param _config The new resource config values.
          function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
              _setResourceConfig(_config);
          }
          /// @notice An internal setter for the resource config.
          ///         Ensures that the config is sane before storing it by checking for invariants.
          /// @param _config The new resource config.
          function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
              // Min base fee must be less than or equal to max base fee.
              require(
                  _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
              );
              // Base fee change denominator must be greater than 1.
              require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
              // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
              // The gas limit must be increased before these values can be increased.
              require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
              // Elasticity multiplier must be greater than 0.
              require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
              // No precision loss when computing target resource limit.
              require(
                  ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
                      == _config.maxResourceLimit,
                  "SystemConfig: precision loss with target resource limit"
              );
              _resourceConfig = _config;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      /// @title Types
      /// @notice Contains various types used throughout the Optimism contract system.
      library Types {
          /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
          ///         timestamp that the output root is posted. This timestamp is used to verify that the
          ///         finalization period has passed since the output root was submitted.
          /// @custom:field outputRoot    Hash of the L2 output.
          /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
          /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
          struct OutputProposal {
              bytes32 outputRoot;
              uint128 timestamp;
              uint128 l2BlockNumber;
          }
          /// @notice Struct representing the elements that are hashed together to generate an output root
          ///         which itself represents a snapshot of the L2 state.
          /// @custom:field version                  Version of the output root.
          /// @custom:field stateRoot                Root of the state trie at the block of this output.
          /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
          /// @custom:field latestBlockhash          Hash of the block this output was generated from.
          struct OutputRootProof {
              bytes32 version;
              bytes32 stateRoot;
              bytes32 messagePasserStorageRoot;
              bytes32 latestBlockhash;
          }
          /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
          ///         user (as opposed to a system deposit transaction generated by the system).
          /// @custom:field from        Address of the sender of the transaction.
          /// @custom:field to          Address of the recipient of the transaction.
          /// @custom:field isCreation  True if the transaction is a contract creation.
          /// @custom:field value       Value to send to the recipient.
          /// @custom:field mint        Amount of ETH to mint.
          /// @custom:field gasLimit    Gas limit of the transaction.
          /// @custom:field data        Data of the transaction.
          /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
          /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
          struct UserDepositTransaction {
              address from;
              address to;
              bool isCreation;
              uint256 value;
              uint256 mint;
              uint64 gasLimit;
              bytes data;
              bytes32 l1BlockHash;
              uint256 logIndex;
          }
          /// @notice Struct representing a withdrawal transaction.
          /// @custom:field nonce    Nonce of the withdrawal transaction
          /// @custom:field sender   Address of the sender of the transaction.
          /// @custom:field target   Address of the recipient of the transaction.
          /// @custom:field value    Value to send to the recipient.
          /// @custom:field gasLimit Gas limit of the transaction.
          /// @custom:field data     Data of the transaction.
          struct WithdrawalTransaction {
              uint256 nonce;
              address sender;
              address target;
              uint256 value;
              uint256 gasLimit;
              bytes data;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      import { MerkleTrie } from "./MerkleTrie.sol";
      /// @title SecureMerkleTrie
      /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
      ///         keys. Ethereum's state trie hashes input keys before storing them.
      library SecureMerkleTrie {
          /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
          /// @param _key   Key of the node to search for, as a hex string.
          /// @param _value Value of the node to search for, as a hex string.
          /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
          ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
          ///               nodes that make a path down to the target node.
          /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
          ///               correctly constructed.
          /// @return valid_ Whether or not the proof is valid.
          function verifyInclusionProof(
              bytes memory _key,
              bytes memory _value,
              bytes[] memory _proof,
              bytes32 _root
          )
              internal
              pure
              returns (bool valid_)
          {
              bytes memory key = _getSecureKey(_key);
              valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
          }
          /// @notice Retrieves the value associated with a given key.
          /// @param _key   Key to search for, as hex bytes.
          /// @param _proof Merkle trie inclusion proof for the key.
          /// @param _root  Known root of the Merkle trie.
          /// @return value_ Value of the key if it exists.
          function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
              bytes memory key = _getSecureKey(_key);
              value_ = MerkleTrie.get(key, _proof, _root);
          }
          /// @notice Computes the hashed version of the input key.
          /// @param _key Key to hash.
          /// @return hash_ Hashed version of the key.
          function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
              hash_ = abi.encodePacked(keccak256(_key));
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
      import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
      import { Burn } from "src/libraries/Burn.sol";
      import { Arithmetic } from "src/libraries/Arithmetic.sol";
      /// @custom:upgradeable
      /// @title ResourceMetering
      /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
      ///         updates automatically based on current demand.
      abstract contract ResourceMetering is Initializable {
          /// @notice Represents the various parameters that control the way in which resources are
          ///         metered. Corresponds to the EIP-1559 resource metering system.
          /// @custom:field prevBaseFee   Base fee from the previous block(s).
          /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
          /// @custom:field prevBlockNum  Last block number that the base fee was updated.
          struct ResourceParams {
              uint128 prevBaseFee;
              uint64 prevBoughtGas;
              uint64 prevBlockNum;
          }
          /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
          ///         market. These values should be set with care as it is possible to set them in
          ///         a way that breaks the deposit gas market. The target resource limit is defined as
          ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
          ///         single word. There is additional space for additions in the future.
          /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
          ///                                            can be purchased per block.
          /// @custom:field elasticityMultiplier         Determines the target resource limit along with
          ///                                            the resource limit.
          /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
          /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
          ///                                            value.
          /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
          ///                                            transaction. This should be set to the same
          ///                                            number that the op-node sets as the gas limit
          ///                                            for the system transaction.
          /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
          ///                                            value.
          struct ResourceConfig {
              uint32 maxResourceLimit;
              uint8 elasticityMultiplier;
              uint8 baseFeeMaxChangeDenominator;
              uint32 minimumBaseFee;
              uint32 systemTxMaxGas;
              uint128 maximumBaseFee;
          }
          /// @notice EIP-1559 style gas parameters.
          ResourceParams public params;
          /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
          uint256[48] private __gap;
          /// @notice Meters access to a function based an amount of a requested resource.
          /// @param _amount Amount of the resource requested.
          modifier metered(uint64 _amount) {
              // Record initial gas amount so we can refund for it later.
              uint256 initialGas = gasleft();
              // Run the underlying function.
              _;
              // Run the metering function.
              _metered(_amount, initialGas);
          }
          /// @notice An internal function that holds all of the logic for metering a resource.
          /// @param _amount     Amount of the resource requested.
          /// @param _initialGas The amount of gas before any modifier execution.
          function _metered(uint64 _amount, uint256 _initialGas) internal {
              // Update block number and base fee if necessary.
              uint256 blockDiff = block.number - params.prevBlockNum;
              ResourceConfig memory config = _resourceConfig();
              int256 targetResourceLimit =
                  int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
              if (blockDiff > 0) {
                  // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                  // at which deposits can be created and therefore limit the potential for deposits to
                  // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                  int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                  int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                      / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                  // Update base fee by adding the base fee delta and clamp the resulting value between
                  // min and max.
                  int256 newBaseFee = Arithmetic.clamp({
                      _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                      _min: int256(uint256(config.minimumBaseFee)),
                      _max: int256(uint256(config.maximumBaseFee))
                  });
                  // If we skipped more than one block, we also need to account for every empty block.
                  // Empty block means there was no demand for deposits in that block, so we should
                  // reflect this lack of demand in the fee.
                  if (blockDiff > 1) {
                      // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                      // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                      // between min and max.
                      newBaseFee = Arithmetic.clamp({
                          _value: Arithmetic.cdexp({
                              _coefficient: newBaseFee,
                              _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                              _exponent: int256(blockDiff - 1)
                          }),
                          _min: int256(uint256(config.minimumBaseFee)),
                          _max: int256(uint256(config.maximumBaseFee))
                      });
                  }
                  // Update new base fee, reset bought gas, and update block number.
                  params.prevBaseFee = uint128(uint256(newBaseFee));
                  params.prevBoughtGas = 0;
                  params.prevBlockNum = uint64(block.number);
              }
              // Make sure we can actually buy the resource amount requested by the user.
              params.prevBoughtGas += _amount;
              require(
                  int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                  "ResourceMetering: cannot buy more gas than available gas limit"
              );
              // Determine the amount of ETH to be paid.
              uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
              // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
              // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
              // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
              // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
              // during any 1 day period in the last 5 years, so should be fine.
              uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
              // Give the user a refund based on the amount of gas they used to do all of the work up to
              // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
              // effectively like a dynamic stipend (with a minimum value).
              uint256 usedGas = _initialGas - gasleft();
              if (gasCost > usedGas) {
                  Burn.gas(gasCost - usedGas);
              }
          }
          /// @notice Virtual function that returns the resource config.
          ///         Contracts that inherit this contract must implement this function.
          /// @return ResourceConfig
          function _resourceConfig() internal virtual returns (ResourceConfig memory);
          /// @notice Sets initial resource parameter values.
          ///         This function must either be called by the initializer function of an upgradeable
          ///         child contract.
          // solhint-disable-next-line func-name-mixedcase
          function __ResourceMetering_init() internal onlyInitializing {
              if (params.prevBlockNum == 0) {
                  params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
              }
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
      import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      import { Ownable2StepUpgradeable } from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
      import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
      import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
      import { WithdrawalQueue } from "src/mainnet-bridge/withdrawal-queue/WithdrawalQueue.sol";
      import { YieldProvider } from "src/mainnet-bridge/yield-providers/YieldProvider.sol";
      import { Types } from "src/libraries/Types.sol";
      import { SafeCall } from "src/libraries/SafeCall.sol";
      import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
      import { SharesBase } from "src/L2/Shares.sol";
      import { DelegateCalls } from "src/mainnet-bridge/DelegateCalls.sol";
      import { USDConversions } from "src/mainnet-bridge/USDConversions.sol";
      import { Semver } from "src/universal/Semver.sol";
      import { OptimismPortal } from "src/L1/OptimismPortal.sol";
      import { Predeploys } from "src/libraries/Predeploys.sol";
      interface IInsurance {
          function coverLoss(address token, uint256 amount) external;
      }
      /// @title YieldManager
      /// @notice Base contract to centralize accounting, asset management and
      ///         yield reporting from yield providers of a common base asset.
      abstract contract YieldManager is Ownable2StepUpgradeable, WithdrawalQueue, DelegateCalls {
          using EnumerableSet for EnumerableSet.AddressSet;
          /// @notice Maximum gas limit for the yield report call on L2.
          uint32 internal constant REPORT_YIELD_DEFAULT_GAS_LIMIT = 200_000;
          /// @notice Maximum insurance fee the owner is allowed to set.
          uint256 public constant MAX_INSURANCE_FEE_BIPS = 10_000; // 100%
          /// @notice Number of basis points representing 100 percent.
          uint256 internal constant BASIS_POINTS = 10_000;
          /// @notice Set of provider addresses.
          EnumerableSet.AddressSet private _providers;
          /// @notice Address of the admin handling regular tasks such as
          ///         `stake`, `unstake`, `claim`, `commitYieldReport`, and
          ///         `finalize`.
          address public admin;
          /// @notice Address of the insurance module.
          address public insurance;
          /// @notice Address of the L1BlastBridge.
          address public blastBridge;
          /// @notice Sum of negative yields to track the slippage between L2-L1 share price.
          ///         If negative yields accumulate, L1 withdrawals are discounted to cover the
          ///         loss.
          uint256 public accumulatedNegativeYields;
          /// @notice Current insurance fee in bips.
          uint256 public insuranceFeeBips;
          /// @notice Amount of additional funds to withdraw from insurance.
          ///         This buffer addresses the scenario where the transfer of the exact amount of accumulated
          ///         negative yields from insurance does not fully pay off the outstanding amount. In Lido's
          ///         system, the transfer logic is based on shares, which may lead to discrepancies in the
          ///         withdrawal of insurance funds. By including this buffer, the system ensures that when
          ///         insurance funds are withdrawn, the total amount withdrawn is the exact required amount
          ///         plus an additional buffer. This approach guarantees the complete payoff of any negative
          ///         yields, accommodating for any potential rounding discrepancies inherent in the share-based
          ///         transfer logic.
          uint256 public insuranceWithdrawalBuffer;
          /// @notice Address of the OptimismPortal.
          OptimismPortal public portal;
          /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
          ///         A gap size of 41 was chosen here, so that the first slot used in a child contract
          ///         would be a multiple of 50.
          uint256[41] private __gap;
          struct ProviderInfo {
              bytes32 id;
              address providerAddress;
              uint256 stakedBalance;
              uint256 pendingBalance;
              uint256 stakedPrincipal;
              uint256 totalValue;
              int256 yield;
          }
          /// @notice Emitted when the yield report is committed on L1 and
          ///         the yield is communicated to L2.
          /// @param yield                Amount of yield generated at this checkpoint.
          /// @param insurancePremiumPaid Amount paid in insurance.
          /// @param insuranceWithdrawn   Amount withdrawn from insurance.
          event YieldReport(
              int256  yield,
              uint256 insurancePremiumPaid,
              uint256 insuranceWithdrawn
          );
          error CallerIsNotAdmin();
          error FailedToInitializeProvider();
          error ProviderAddressDoesNotMatchIndex();
          error InsufficientInsuranceBalance();
          error NegativeYieldFromInsuredProvider();
          error TotalValueIsZero();
          error CallerIsNotBlastBridge();
          error ProviderNotFound();
          error YieldProviderIsNotMeantForThisManager();
          error NegativeYieldIncrease();
          modifier onlyAdmin() {
              if (msg.sender != admin) {
                  revert CallerIsNotAdmin();
              }
              _;
          }
          /// @notice Modifier only allowing the L1BlastBridge to call a function.
          modifier onlyBlastBridge() {
              if (msg.sender != blastBridge) {
                  revert CallerIsNotBlastBridge();
              }
              _;
          }
          /// @param _token Address of withdrawal token.
          constructor(address _token) WithdrawalQueue(_token) {}
          /// @notice initializer
          /// @param _portal Address of the OptimismPortal.
          /// @param _owner  Address of the YieldManager owner.
          function __YieldManager_init(OptimismPortal _portal, address _owner) internal onlyInitializing {
              __Ownable2Step_init();
              __WithdrawalQueue_init();
              _transferOwnership(_owner);
              portal = _portal;
          }
          /* ========== OWNER FUNCTIONS ========== */
          /// @notice Set new admin account to handle regular tasks including
          ///         (stake, unstake, claim).
          /// @param _admin Address of new admin
          function setAdmin(address _admin) external onlyOwner {
              require(_admin != address(0));
              admin = _admin;
          }
          /// @notice Set the yield insurance parameters.
          /// @param _insurance        Address of the insurance module.
          /// @param _insuranceFeeBips Insurance fee to take from positive yields.
          /// @param _withdrawalBuffer Amount of additional funds to withdraw from insurance.
          function setInsurance(address _insurance, uint256 _insuranceFeeBips, uint256 _withdrawalBuffer) external onlyOwner {
              require(_insurance != address(0));
              require(_insuranceFeeBips <= MAX_INSURANCE_FEE_BIPS);
              insurance = _insurance;
              insuranceFeeBips = _insuranceFeeBips;
              insuranceWithdrawalBuffer = _withdrawalBuffer;
          }
          /// @notice Set the address of the L1BlastBridge.
          /// @param _blastBridge Address of the L1BlastBridge.
          function setBlastBridge(address _blastBridge) external onlyOwner {
              require(_blastBridge != address(0));
              blastBridge = _blastBridge;
          }
          /// @notice Add a yield provider contract.
          /// @param provider Address of the yield provider.
          function addProvider(address provider) external onlyOwner {
              if (address(YieldProvider(provider).YIELD_MANAGER()) != address(this)) {
                  revert YieldProviderIsNotMeantForThisManager();
              }
              _providers.add(provider);
              (bool success,) = provider.delegatecall(abi.encodeWithSignature("initialize()"));
              if (!success) {
                  revert FailedToInitializeProvider();
              }
          }
          /// @notice Remove a yield provider contract.
          /// @param provider Address of the yield provider.
          function removeProvider(address provider) external onlyOwner {
              _providers.remove(provider);
          }
          /* ========== ADMIN FUNCTIONS ========== */
          /// @notice Stake funds for a particular yield provider and record the
          ///         staked deposit. The stake call is made via 'delegatecall'
          ///         so the yield provider implementation is executed with the
          ///         yield manager's funds.
          /// @param idx             Index of the provider.
          /// @param providerAddress Address of the provider at index 'idx'.
          /// @param amount          Amount to stake (wad).
          function stake(uint256 idx, address providerAddress, uint256 amount) external onlyAdmin {
              if (_providers.at(idx) != providerAddress) {
                  revert ProviderAddressDoesNotMatchIndex();
              }
              _delegatecall_stake(providerAddress, amount);
              YieldProvider(providerAddress).recordStakedDeposit(amount);
          }
          /// @notice Unstake funds for a particular yield provider and record the
          ///         staked withdraw. The stake call is made via 'delegatecall'
          ///         so the yield provider implementation is executed with the
          ///         yield manager's funds.
          /// @param idx             Index of the provider.
          /// @param providerAddress Address of the provider at index 'idx'.
          /// @param amount          Amount to stake (wad).
          function unstake(uint256 idx, address providerAddress, uint256 amount) external onlyAdmin {
              if (_providers.at(idx) != providerAddress) {
                  revert ProviderAddressDoesNotMatchIndex();
              }
              (uint256 pending, uint256 claimed) = _delegatecall_unstake(providerAddress, amount);
              YieldProvider(providerAddress).recordUnstaked(pending, claimed, amount);
          }
          /// @notice Commit yield report.
          /// @param enableInsurance Whether insurance should be taken from positive yields
          ///        and paid out for negative yields. If false, negative yields will
          ///        accumulate and withdrawals will be discounted. If true (and insurance
          ///        is supported by the provider), it will guarantee that committed yield
          ///        is always non-negative, or else revert. It also guarantees that
          ///        accumulated negative yields never increase.
          function commitYieldReport(bool enableInsurance) public onlyAdmin {
              uint256 providersLength = _providers.length();
              uint256 negativeYieldBefore = accumulatedNegativeYields;
              uint256 totalInsurancePremiumPaid;
              uint256 totalInsuranceWithdrawal;
              int256 totalYield;
              // For each provider, commit yield after paying to/from the insurance as necessary
              for (uint256 i; i < providersLength; i++) {
                  // run the pre-commit yield report hook
                  _delegatecall_preCommitYieldReportDelegateCallHook(_providers.at(i));
                  // read the current yield from the provider
                  int256 yield = YieldProvider(_providers.at(i)).yield();
                  uint256 insurancePayment;
                  // take care of insurance payments and withdrawals
                  if (
                      enableInsurance &&
                      YieldProvider(_providers.at(i)).supportsInsurancePayment() &&
                      insurance != address(0)
                  ) {
                      if (yield > 0) {
                          // pay the insurance premium
                          insurancePayment = uint256(yield) * insuranceFeeBips / BASIS_POINTS;
                          _delegatecall_payInsurancePremium(_providers.at(i), insurancePayment);
                          totalInsurancePremiumPaid += insurancePayment;
                      } else if (yield < 0) {
                          // withdraw from the insurance to cover the loss
                          uint256 insuranceWithdrawal = SignedMath.abs(yield) + insuranceWithdrawalBuffer;
                          uint256 insuranceBalance = YieldProvider(_providers.at(i)).insuranceBalance();
                          if (insuranceBalance < insuranceWithdrawal) {
                              revert InsufficientInsuranceBalance();
                          }
                          _delegatecall_withdrawFromInsurance(_providers.at(i), insuranceWithdrawal);
                          totalInsuranceWithdrawal += insuranceWithdrawal;
                      }
                  }
                  // Commit the yield for the provider
                  int256 committedYield = YieldProvider(_providers.at(i)).commitYield();
                  // Sanity check
                  if (
                      enableInsurance &&
                      YieldProvider(_providers.at(i)).supportsInsurancePayment() &&
                      insurance != address(0)
                  ) {
                      if (committedYield < 0) {
                          revert NegativeYieldFromInsuredProvider();
                      }
                  }
                  // update totalYield
                  totalYield += committedYield;
              }
              // reflect the accumulated negative yield in totalYield
              if (accumulatedNegativeYields > 0) {
                  totalYield -= SafeCast.toInt256(accumulatedNegativeYields);
              }
              emit YieldReport(totalYield, totalInsurancePremiumPaid, totalInsuranceWithdrawal);
              if (totalYield < 0) {
                  accumulatedNegativeYields = uint256(-1 * totalYield);
              } else {
                  accumulatedNegativeYields = 0;
                  if (totalYield > 0) {
                      _reportYield(
                          abi.encodeWithSelector(
                              SharesBase.addValue.selector,
                              totalYield
                          )
                      );
                  }
              }
              if (enableInsurance && accumulatedNegativeYields > negativeYieldBefore) {
                  revert NegativeYieldIncrease();
              }
          }
          /// @notice Helper function to atomically withdraw from insurance and commit yield report.
          ///         This function can be used to maintain share price = 1e27 when yield from
          ///         the registered providers is not sufficient to cover negative yield from
          ///         LidoYieldProvider._claim().
          function commitYieldReportAfterInsuranceWithdrawal(
              address token,
              uint256 amount
          ) external onlyAdmin {
              require(insurance != address(0));
              IInsurance(insurance).coverLoss(token, amount);
              commitYieldReport(true);
          }
          /// @notice Report realized negative yield. This is meant to be called inside a YieldProvider
          ///         method that is executed via 'delegatecall' by the YieldManager.
          function recordNegativeYield(uint256 amount) external {
              require(msg.sender == address(this), "Caller is not this contract");
              accumulatedNegativeYields += amount;
          }
          /// @notice Finalize withdrawal requests up to 'requestId'.
          /// @param requestId Last request id to finalize in this batch.
          function finalize(uint256 requestId) external onlyAdmin returns (uint256 checkpointId) {
              uint256 nominalAmount; uint256 realAmount;
              (nominalAmount, realAmount, checkpointId) = _finalize(requestId, availableBalance(), sharePrice());
              // nominalAmount - realAmount is the share of the accumulated negative yield
              // that should be paid by the current withdrawal
              if (nominalAmount > realAmount) {
                  accumulatedNegativeYields = _subClamped(accumulatedNegativeYields, nominalAmount - realAmount);
              }
          }
          /* ========== VIRTUAL FUNCTIONS ========== */
          /// @notice Get the amount of the withdrawal token that is held by the yield manager.
          function tokenBalance() public view virtual returns (uint256);
          /// @notice Send the yield report to the L2 contract that is responsible for
          ///         updating the L2 share price.
          /// @param data Calldata to send in the message.
          function _reportYield(bytes memory data) internal virtual;
          /* ========== VIEW FUNCTIONS ========== */
          /// @notice Available balance.
          function availableBalance() public view returns (uint256) {
              return tokenBalance() - getLockedBalance();
          }
          /// @notice Get the total value of all yield providers denominated in the withdrawal token.
          function totalProviderValue() public view returns (uint256 sum) {
              uint256 providersLength = _providers.length();
              for (uint256 i; i < providersLength; i++) {
                  sum += YieldProvider(_providers.at(i)).totalValue();
              }
          }
          /// @notice Get the total value of all yield providers plus the available balance value.
          function totalValue() public view returns (uint256) {
              return availableBalance() + totalProviderValue();
          }
          /// @notice Get the share price of the withdrawal token with 1e27 precision.
          ///         The share price is capped at 1e27 and can only go down if there
          ///         are accumulated negative yields.
          function sharePrice() public view returns (uint256) {
              uint256 value = totalValue();
              if (value == 0) {
                  revert TotalValueIsZero();
              }
              return value * E27_PRECISION_BASE / (value + accumulatedNegativeYields);
          }
          /// @notice Get an accounting report on the current state of a yield provider.
          ///         Due to how EnumerableSet works, 'idx' is not guaranteed to be stable
          ///         across add/remove operations so admin should verify the idx before
          ///         calling state-changing functions (e.g. stake, unstake).
          /// @param idx Index of the provider.
          /// @return info Accounting report on the yield provider.
          function getProviderInfoAt(uint256 idx) external view returns (ProviderInfo memory info) {
              YieldProvider provider = YieldProvider(_providers.at(idx));
              info.id = provider.id();
              info.providerAddress = address(provider);
              info.stakedBalance = provider.stakedBalance();
              info.pendingBalance = provider.pendingBalance();
              info.stakedPrincipal = provider.stakedPrincipal();
              info.totalValue = provider.totalValue();
              info.yield = provider.yield();
          }
          /// @notice Record an increase to the staked funds represented
          ///         by the provider.
          /// @param providerAddress Address of yield provider.
          /// @param amount          Amount of additional staked funds.
          function recordStakedDeposit(address providerAddress, uint256 amount) external onlyBlastBridge {
              if (!_providers.contains(providerAddress)) {
                  revert ProviderNotFound();
              }
              YieldProvider(providerAddress).recordStakedDeposit(amount);
          }
          /// @notice Returns max(0, x - y) without reverting on underflow.
          function _subClamped(uint256 x, uint256 y) internal pure returns (uint256 z) {
              unchecked {
                  z = x > y ? x - y : 0;
              }
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
      /// @title Semver
      /// @notice Semver is a simple contract for managing contract versions.
      contract Semver {
          /// @notice Contract version number (major).
          uint256 private immutable MAJOR_VERSION;
          /// @notice Contract version number (minor).
          uint256 private immutable MINOR_VERSION;
          /// @notice Contract version number (patch).
          uint256 private immutable PATCH_VERSION;
          /// @param _major Version number (major).
          /// @param _minor Version number (minor).
          /// @param _patch Version number (patch).
          constructor(uint256 _major, uint256 _minor, uint256 _patch) {
              MAJOR_VERSION = _major;
              MINOR_VERSION = _minor;
              PATCH_VERSION = _patch;
          }
          /// @notice Returns the full semver contract version.
          /// @return Semver contract version as a string.
          function version() public view returns (string memory) {
              return string(
                  abi.encodePacked(
                      Strings.toString(MAJOR_VERSION),
                      ".",
                      Strings.toString(MINOR_VERSION),
                      ".",
                      Strings.toString(PATCH_VERSION)
                  )
              );
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[EIP].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165 {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
      import { SharesBase } from "src/L2/Shares.sol";
      import { YieldMode } from "src/L2/Blast.sol";
      import { ERC20PermitUpgradeable } from "src/L2/ERC20PermitUpgradeable.sol";
      /// @custom:upgradeable
      /// @title ERC20Rebasing
      /// @notice ERC20 implementation with rebasing token balances. There are 3 yield
      /// modes with different rebasing behaviors.
      ///
      /// AUTOMATIC dynamically updates the balance as the share price increases.
      ///
      /// VOID fixes the balance and exempts the account from receiving yields.
      ///
      /// CLAIMABLE fixes the balance and allows the account to claim yields to
      /// another account.
      ///
      /// The child implementation is responsible for deciding how the share price is set.
      abstract contract ERC20Rebasing is ERC20PermitUpgradeable, SharesBase, IERC20 {
          /// @notice Number of decimals.
          uint8 public immutable decimals;
          /// @notice Name of the token.
          string public name;
          /// @notice Symbol of the token.
          string public symbol;
          /// @notice Mapping that stores the number of shares for each account.
          mapping(address => uint256) private _shares;
          /// @notice Total number of shares distributed.
          uint256 internal _totalShares;
          /// @notice Mapping that stores the number of remainder tokens for each account.
          mapping(address => uint256) private _remainders;
          /// @notice Mapping that stores the number of fixed tokens for each account.
          mapping(address => uint256) private _fixed;
          /// @notice Total number of non-rebasing tokens.
          uint256 internal _totalVoidAndRemainders;
          /// @notice Mapping that stores the configured yield mode for each account.
          mapping(address => YieldMode) private _yieldMode;
          /// @notice Mapping that stores the allowance for a given spender and operator pair.
          mapping(address => mapping(address => uint256)) private _allowances;
          /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
          ///         A gap size of 41 was chosen here, so that the first slot used in a child contract
          ///         would be a multiple of 50.
          uint256[41] private __gap;
          /// @notice Emitted when an account configures their yield mode.
          /// @param account   Address of the account.
          /// @param yieldMode Yield mode that was configured.
          event Configure(address indexed account, YieldMode yieldMode);
          /// @notice Emitted when a CLAIMABLE account claims their yield.
          /// @param account   Address of the account.
          /// @param recipient Address of the recipient.
          /// @param amount    Amount of yield claimed.
          event Claim(address indexed account, address indexed recipient, uint256 amount);
          error InsufficientBalance();
          error InsufficientAllowance();
          error TransferFromZeroAddress();
          error TransferToZeroAddress();
          error ApproveFromZeroAddress();
          error ApproveToZeroAddress();
          error ClaimToZeroAddress();
          error NotClaimableAccount();
          /// @param _decimals Number of decimals.
          constructor(address _reporter, uint8 _decimals) SharesBase(_reporter) {
              decimals = _decimals;
          }
          /// @param _name     Token name.
          /// @param _symbol   Token symbol.
          /// @param _price    Initial share price.
          function __ERC20Rebasing_init(string memory _name, string memory _symbol, uint256 _price) internal onlyInitializing {
              __ERC20Permit_init(_name);
              __SharesBase_init({ _price: _price });
              name = _name;
              symbol = _symbol;
          }
          /// @inheritdoc SharesBase
          function count() public view override returns (uint256) {
              return _totalShares;
          }
          /// @notice --- ERC20 Interface ---
          /// @inheritdoc IERC20
          function totalSupply() external view returns (uint256) {
              return price * _totalShares + _totalVoidAndRemainders;
          }
          /// @inheritdoc IERC20
          function balanceOf(address account)
              public
              view
              virtual
              returns (uint256 value)
          {
              YieldMode yieldMode = _yieldMode[account];
              if (yieldMode == YieldMode.AUTOMATIC) {
                  value = _computeShareValue(_shares[account], _remainders[account]);
              } else {
                  value = _fixed[account];
              }
          }
          /// @inheritdoc IERC20
          function allowance(address owner, address spender)
              public
              view
              virtual
              returns (uint256)
          {
              return _allowances[owner][spender];
          }
          /// @inheritdoc IERC20
          function transfer(address to, uint256 amount)
              public
              virtual
              returns (bool)
          {
              _transfer(msg.sender, to, amount);
              return true;
          }
          /// @inheritdoc IERC20
          function approve(address spender, uint256 amount)
              public
              virtual
              returns (bool)
          {
              address owner = msg.sender;
              _approve(owner, spender, amount);
              return true;
          }
          /// @inheritdoc IERC20
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) public virtual returns (bool) {
              _spendAllowance(from, msg.sender, amount);
              _transfer(from, to, amount);
              return true;
          }
          /// @notice --- Blast Interface ---
          /// @notice Query an account's configured yield mode.
          /// @param account Address to query the configuration.
          /// @return Configured yield mode.
          function getConfiguration(address account) public view returns (YieldMode) {
              return _yieldMode[account];
          }
          /// @notice Query an CLAIMABLE account's claimable yield.
          /// @param account Address to query the claimable amount.
          /// @return amount Claimable amount.
          function getClaimableAmount(address account) public view returns (uint256) {
              if (getConfiguration(account) != YieldMode.CLAIMABLE) {
                  revert NotClaimableAccount();
              }
              uint256 shareValue = _computeShareValue(_shares[account], _remainders[account]);
              return shareValue - _fixed[account];
          }
          /// @notice Claim yield from a CLAIMABLE account and send to
          ///         a recipient.
          /// @param recipient Address to receive the claimed balance.
          /// @param amount    Amount to claim.
          /// @return Amount claimed.
          function claim(address recipient, uint256 amount) external returns (uint256) {
              address account = msg.sender;
              if (recipient == address(0)) {
                  revert ClaimToZeroAddress();
              }
              if (getConfiguration(account) != YieldMode.CLAIMABLE) {
                  revert NotClaimableAccount();
              }
              uint256 shareValue = _computeShareValue(_shares[account], _remainders[account]);
              uint256 claimableAmount = shareValue - _fixed[account];
              if (amount > claimableAmount) {
                  revert InsufficientBalance();
              }
              (uint256 newShares, uint256 newRemainder) = _computeSharesAndRemainder(shareValue - amount);
              _updateBalance(account, newShares, newRemainder, _fixed[account]);
              _deposit(recipient, amount);
              emit Claim(msg.sender, recipient, amount);
              return amount;
          }
          /// @notice Change the yield mode of the caller and update the
          ///         balance to reflect the configuration.
          /// @param yieldMode Yield mode to configure
          /// @return Current user balance
          function configure(YieldMode yieldMode) external returns (uint256) {
              _configure(msg.sender, yieldMode);
              emit Configure(msg.sender, yieldMode);
              return balanceOf(msg.sender);
          }
          /// @notice Moves `amount` of tokens from `from` to `to`.
          /// @param from   Address of the sender.
          /// @param to     Address of the recipient.
          /// @param amount Amount of tokens to send.
          function _transfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {
              if (from == address(0)) revert TransferFromZeroAddress();
              if (to == address(0)) revert TransferToZeroAddress();
              _withdraw(from, amount);
              _deposit(to, amount);
              emit Transfer(from, to, amount);
          }
          /// @notice Sets `amount` as the allowance of `spender` over the `owner` s tokens.
          /// @param owner   Address of the owner.
          /// @param spender Address of the spender.
          /// @param amount  Amount of tokens to approve.
          function _approve(
              address owner,
              address spender,
              uint256 amount
          ) internal override {
              if (owner == address(0)) revert ApproveFromZeroAddress();
              if (spender == address(0)) revert ApproveToZeroAddress();
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
          /// @notice Updates `owner` s allowance for `spender` based on spent `amount`.
          /// @param owner   Address of the owner.
          /// @param spender Address of the spender.
          /// @param amount  Amount of tokens to spender.
          function _spendAllowance(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              uint256 currentAllowance = allowance(owner, spender);
              if (currentAllowance != type(uint256).max) {
                  if (amount > currentAllowance) revert InsufficientAllowance();
                  unchecked {
                      _approve(owner, spender, currentAllowance - amount);
                  }
              }
          }
          /// @notice Deposit to an account.
          /// @param account Address of the account to deposit to.
          /// @param amount  Amount to deposit to the account.
          function _deposit(address account, uint256 amount) internal {
              uint256 balanceAfter = balanceOf(account) + amount;
              _setBalance(account, balanceAfter, false);
              /// If the user is configured as VOID, then the amount
              /// is added to the total voided funds.
              YieldMode yieldMode = getConfiguration(account);
              if (yieldMode == YieldMode.VOID) {
                  _totalVoidAndRemainders += amount;
              }
          }
          /// @notice Withdraw from an account.
          /// @param account Address of the account to withdraw from.
          /// @param amount  Amount to withdraw to the account.
          function _withdraw(address account, uint256 amount) internal {
              uint256 balance = balanceOf(account);
              if (amount > balance) {
                  revert InsufficientBalance();
              }
              unchecked {
                  _setBalance(account, balance - amount, false);
              }
              /// If the user is configured as VOID, then the amount
              /// is deducted from the total voided funds.
              YieldMode yieldMode = getConfiguration(account);
              if (yieldMode == YieldMode.VOID) {
                  _totalVoidAndRemainders -= amount;
              }
          }
          /// @notice Configures a new yield mode for an account and updates
          ///         the balance storage to reflect the change.
          /// @param account      Address of the account to configure.
          /// @param newYieldMode New yield mode to configure.
          function _configure(address account, YieldMode newYieldMode) internal {
              YieldMode prevYieldMode = getConfiguration(account);
              uint256 balance;
              if (prevYieldMode == YieldMode.CLAIMABLE) {
                  /// If the balance is claimable, we need to use their share balance so they
                  /// don't lose their claimable yield.
                  balance = _computeShareValue(_shares[account], _remainders[account]);
              } else {
                  balance = balanceOf(account);
              }
              _yieldMode[account] = newYieldMode;
              uint256 prevFixed = _fixed[account];
              _setBalance(account, balance, true);
              /// If the previous yield mode was VOID, then the amount
              /// is deducted from the total voided funds.
              if (prevYieldMode == YieldMode.VOID) {
                  _totalVoidAndRemainders -= prevFixed;
              }
              /// If the new yield mode is VOID, then the amount
              /// is added to the total voided funds.
              if (newYieldMode == YieldMode.VOID) {
                  _totalVoidAndRemainders += balance;
              }
          }
          /// @notice Sets the balance of an account according to its yield mode
          ///         configuration.
          /// @param account           Address of the account to set the balance of.
          /// @param amount            Balance to set for the account.
          /// @param resetClaimable    If the account is CLAIMABLE, true if the share
          ///                          balance should be set to the amount. Should only be true when
          ///                          configuring the account.
          function _setBalance(address account, uint256 amount, bool resetClaimable) internal {
              uint256 newShares; uint256 newRemainder; uint256 newFixed;
              YieldMode yieldMode = getConfiguration(account);
              if (yieldMode == YieldMode.AUTOMATIC) {
                  (newShares, newRemainder) = _computeSharesAndRemainder(amount);
              } else if (yieldMode == YieldMode.VOID) {
                  newFixed = amount;
              } else if (yieldMode == YieldMode.CLAIMABLE) {
                  newFixed = amount;
                  uint256 shareValue = amount;
                  if (!resetClaimable) {
                      /// In order to not reset the claimable balance, we have to compute
                      /// the user's current share balance and add or subtract the change in
                      /// fixed balance before computing the new shares balance parameters.
                      shareValue = _computeShareValue(_shares[account], _remainders[account]);
                      shareValue = shareValue + amount - _fixed[account];
                  }
                  (newShares, newRemainder) = _computeSharesAndRemainder(shareValue);
              }
              _updateBalance(account, newShares, newRemainder, newFixed);
          }
          /// @notice Update the balance parameters of an account and appropriately refresh the global sums
          ///         to reflect the change of allocation.
          /// @param account      Address of account to update.
          /// @param newShares    New shares value for account.
          /// @param newRemainder New remainder value for account.
          /// @param newFixed     New fixed value for account.
          function _updateBalance(address account, uint256 newShares, uint256 newRemainder, uint256 newFixed) internal {
              _totalShares = _totalShares + newShares - _shares[account];
              _totalVoidAndRemainders = _totalVoidAndRemainders + newRemainder - _remainders[account];
              _shares[account] = newShares;
              _remainders[account] = newRemainder;
              _fixed[account] = newFixed;
          }
          /// @notice Convert nominal value to number of shares with remainder.
          /// @param value Amount to convert to shares (wad).
          /// @return shares Number of shares (wad), remainder Remainder (wad).
          function _computeSharesAndRemainder(uint256 value) internal view returns (uint256 shares, uint256 remainder) {
              if (price == 0) {
                  remainder = value;
              } else {
                  shares = value / price;
                  remainder = value % price;
              }
          }
          /// @notice Compute nominal value from number of shares.
          /// @param shares     Number of shares (wad).
          /// @param remainders Amount of remainder (wad).
          /// @return value (wad).
          function _computeShareValue(uint256 shares, uint256 remainders) internal view returns (uint256) {
              return price * shares + remainders;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      import { Semver } from "src/universal/Semver.sol";
      import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
      import { Predeploys } from "src/libraries/Predeploys.sol";
      import { Blast, YieldMode, GasMode } from "src/L2/Blast.sol";
      /// @custom:predeploy 0x4300000000000000000000000000000000000000
      /// @title SharesBase
      /// @notice Base contract to track share rebasing and yield reporting.
      abstract contract SharesBase is Initializable {
          /// @notice Approved yield reporter.
          address public immutable REPORTER;
          /// @notice Share price. This value can only increase.
          uint256 public price;
          /// @notice Accumulated yield that has not been distributed
          ///         to the share price.
          uint256 public pending;
          /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
          ///         A gap size of 48 was chosen here, so that the first slot used in a child contract
          ///         would be a multiple of 50.
          uint256[48] private __gap;
          /// @notice Emitted when a new share price is set after a yield event.
          event NewPrice(uint256 price);
          error InvalidReporter();
          error DistributeFailed(uint256 count, uint256 pending);
          error PriceIsInitialized();
          /// @param _reporter Address of the approved yield reporter.
          constructor(address _reporter) {
              REPORTER = _reporter;
          }
          /// @notice Initializer.
          /// @param _price Initial share price.
          // solhint-disable-next-line func-name-mixedcase
          function __SharesBase_init(uint256 _price) internal onlyInitializing {
              if (price != 0) {
                  revert PriceIsInitialized();
              }
              price = _price;
          }
          /// @notice Get the total number of shares. Needs to be
          ///         overridden by the child contract.
          /// @return Total number of shares.
          function count() public view virtual returns (uint256);
          /// @notice Report a yield event and update the share price.
          /// @param value Amount of new yield
          function addValue(uint256 value) external {
              _addValue(value);
          }
          function _addValue(uint256 value) internal virtual {
              if (AddressAliasHelper.undoL1ToL2Alias(msg.sender) != REPORTER) {
                  revert InvalidReporter();
              }
              if (value > 0) {
                  pending += value;
              }
              _tryDistributePending();
          }
          /// @notice Attempt to distribute pending yields if there
          ///         are sufficient pending yields to increase the
          ///         share price.
          /// @return True if there were sufficient pending yields to
          ///         increase the share price.
          function _tryDistributePending() internal returns (bool) {
              if (pending < count() || count() == 0) {
                  return false;
              }
              price += pending / count();
              pending = pending % count();
              emit NewPrice(price);
              return true;
          }
      }
      /// @custom:predeploy 0x4300000000000000000000000000000000000000
      /// @title Shares
      /// @notice Integrated EVM contract to manage native ether share
      ///         rebasing from yield reports.
      contract Shares is SharesBase, Semver {
          /// @notice Total number of shares. This value is modified directly
          ///         by the sequencer EVM.
          uint256 private _count;
          /// @notice _reporter Address of approved yield reporter.
          constructor(address _reporter) SharesBase(_reporter) Semver(1, 0, 0) {
              _disableInitializers();
          }
          /// @notice Initializer.
          function initialize(uint256 _price) public initializer {
              __SharesBase_init({ _price: _price });
              Blast(Predeploys.BLAST).configureContract(
                  address(this),
                  YieldMode.VOID,
                  GasMode.VOID,
                  address(0xdead) /// don't set a governor
              );
          }
          /// @inheritdoc SharesBase
          function count() public view override returns (uint256) {
              return _count;
          }
          function _addValue(uint256 value) internal override {
              super._addValue(value);
              SharesBase(Predeploys.WETH_REBASING).addValue(value);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
      pragma solidity ^0.8.0;
      import "./IERC20.sol";
      import "./extensions/IERC20Metadata.sol";
      import "../../utils/Context.sol";
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       * For a generic mechanism see {ERC20PresetMinterPauser}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * We have followed general OpenZeppelin Contracts guidelines: functions revert
       * instead returning `false` on failure. This behavior is nonetheless
       * conventional and does not conflict with the expectations of ERC20
       * applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       *
       * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
       * functions have been added to mitigate the well-known issues around setting
       * allowances. See {IERC20-approve}.
       */
      contract ERC20 is Context, IERC20, IERC20Metadata {
          mapping(address => uint256) private _balances;
          mapping(address => mapping(address => uint256)) private _allowances;
          uint256 private _totalSupply;
          string private _name;
          string private _symbol;
          /**
           * @dev Sets the values for {name} and {symbol}.
           *
           * The default value of {decimals} is 18. To select a different value for
           * {decimals} you should overload it.
           *
           * All two of these values are immutable: they can only be set once during
           * construction.
           */
          constructor(string memory name_, string memory symbol_) {
              _name = name_;
              _symbol = symbol_;
          }
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual override returns (string memory) {
              return _name;
          }
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual override returns (string memory) {
              return _symbol;
          }
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5.05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the value {ERC20} uses, unless this function is
           * overridden;
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual override returns (uint8) {
              return 18;
          }
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual override returns (uint256) {
              return _totalSupply;
          }
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view virtual override returns (uint256) {
              return _balances[account];
          }
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(address to, uint256 amount) public virtual override returns (bool) {
              address owner = _msgSender();
              _transfer(owner, to, amount);
              return true;
          }
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual override returns (uint256) {
              return _allowances[owner][spender];
          }
          /**
           * @dev See {IERC20-approve}.
           *
           * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
           * `transferFrom`. This is semantically equivalent to an infinite approval.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 amount) public virtual override returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, amount);
              return true;
          }
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20}.
           *
           * NOTE: Does not update the allowance if the current allowance
           * is the maximum `uint256`.
           *
           * Requirements:
           *
           * - `from` and `to` cannot be the zero address.
           * - `from` must have a balance of at least `amount`.
           * - the caller must have allowance for ``from``'s tokens of at least
           * `amount`.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) public virtual override returns (bool) {
              address spender = _msgSender();
              _spendAllowance(from, spender, amount);
              _transfer(from, to, amount);
              return true;
          }
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, allowance(owner, spender) + addedValue);
              return true;
          }
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
              address owner = _msgSender();
              uint256 currentAllowance = allowance(owner, spender);
              require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
              unchecked {
                  _approve(owner, spender, currentAllowance - subtractedValue);
              }
              return true;
          }
          /**
           * @dev Moves `amount` of tokens from `from` to `to`.
           *
           * This internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `from` must have a balance of at least `amount`.
           */
          function _transfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {
              require(from != address(0), "ERC20: transfer from the zero address");
              require(to != address(0), "ERC20: transfer to the zero address");
              _beforeTokenTransfer(from, to, amount);
              uint256 fromBalance = _balances[from];
              require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
              unchecked {
                  _balances[from] = fromBalance - amount;
              }
              _balances[to] += amount;
              emit Transfer(from, to, amount);
              _afterTokenTransfer(from, to, amount);
          }
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: mint to the zero address");
              _beforeTokenTransfer(address(0), account, amount);
              _totalSupply += amount;
              _balances[account] += amount;
              emit Transfer(address(0), account, amount);
              _afterTokenTransfer(address(0), account, amount);
          }
          /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: burn from the zero address");
              _beforeTokenTransfer(account, address(0), amount);
              uint256 accountBalance = _balances[account];
              require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
              unchecked {
                  _balances[account] = accountBalance - amount;
              }
              _totalSupply -= amount;
              emit Transfer(account, address(0), amount);
              _afterTokenTransfer(account, address(0), amount);
          }
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
          /**
           * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
           *
           * Does not update the allowance amount in case of infinite allowance.
           * Revert if not enough allowance is available.
           *
           * Might emit an {Approval} event.
           */
          function _spendAllowance(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              uint256 currentAllowance = allowance(owner, spender);
              if (currentAllowance != type(uint256).max) {
                  require(currentAllowance >= amount, "ERC20: insufficient allowance");
                  unchecked {
                      _approve(owner, spender, currentAllowance - amount);
                  }
              }
          }
          /**
           * @dev Hook that is called before any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * will be transferred to `to`.
           * - when `from` is zero, `amount` tokens will be minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _beforeTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
          /**
           * @dev Hook that is called after any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * has been transferred to `to`.
           * - when `from` is zero, `amount` tokens have been minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _afterTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library AddressUpgradeable {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           *
           * Furthermore, `isContract` will also return true if the target contract within
           * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
           * which only has an effect at the end of a transaction.
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
           *
           * _Available since v4.8._
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              if (success) {
                  if (returndata.length == 0) {
                      // only check isContract if the call was successful and the return data is empty
                      // otherwise we already know that it was a contract
                      require(isContract(target), "Address: call to non-contract");
                  }
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason or using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          function _revert(bytes memory returndata, string memory errorMessage) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert(errorMessage);
              }
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { SafeTransferLib } from "solmate/utils/SafeTransferLib.sol";
      import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
      import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      import { Semver } from "src/universal/Semver.sol";
      enum GasMode {
          VOID,
          CLAIMABLE
      }
      interface IGas {
          function readGasParams(address contractAddress) external view returns (uint256, uint256, uint256, GasMode);
          function setGasMode(address contractAddress, GasMode mode) external;
          function claimGasAtMinClaimRate(address contractAddress, address recipient, uint256 minClaimRateBips) external returns (uint256);
          function claimAll(address contractAddress, address recipient) external returns (uint256);
          function claimMax(address contractAddress, address recipient) external returns (uint256);
          function claim(address contractAddress, address recipient, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256);
      }
      /// @custom:predeploy 0x4300000000000000000000000000000000000001
      /// @title Gas
      contract Gas is IGas, Initializable, Semver {
          address public immutable admin;
          // Blast.sol --> controls all dAPP accesses to Gas.sol
          address public immutable blastConfigurationContract;
          // BaseFeeVault.sol -> fees from gas claims directed here
          address public immutable blastFeeVault;
          // zero claim rate in bps -> percent of gas user is able to claim
          // without consuming any gas seconds
          uint256 public zeroClaimRate; // bps
          // base claim rate in bps -> percent of gas user is able to claim
          // by consuming base gas seconds
          uint256 public baseGasSeconds;
          uint256 public baseClaimRate; // bps
          // ceil claim rate in bps -> percent of gas user is able to claim
          // by consuming ceil gas seconds or more
          uint256 public ceilGasSeconds;
          uint256 public ceilClaimRate; // bps
          /**
           * @notice Constructs the blast gas contract.
           * @param _admin The address of the admin.
           * @param _blastConfigurationContract The address of the Blast configuration contract.
           * @param _blastFeeVault The address of the Blast fee vault.
          */
          constructor (
              address _admin,
              address _blastConfigurationContract,
              address _blastFeeVault
          ) Semver(1, 0, 0) {
              admin =  _admin;
              blastConfigurationContract = _blastConfigurationContract;
              blastFeeVault = _blastFeeVault;
              _disableInitializers();
          }
          /**
           * @notice Initializer.
           * @param _zeroClaimRate The zero claim rate.
           * @param _baseGasSeconds The base gas seconds.
           * @param _baseClaimRate The base claim rate.
           * @param _ceilGasSeconds The ceiling gas seconds.
           * @param _ceilClaimRate The ceiling claim rate.
           */
          function initialize(
              uint256 _zeroClaimRate,
              uint256 _baseGasSeconds,
              uint256 _baseClaimRate,
              uint256 _ceilGasSeconds,
              uint256 _ceilClaimRate
          ) public initializer {
              require(_zeroClaimRate < _baseClaimRate, "zero claim rate must be < base claim rate");
              require(_baseClaimRate < _ceilClaimRate, "base claim rate must be < ceil claim rate");
              require(_baseGasSeconds < _ceilGasSeconds, "base gas seconds must be < ceil gas seconds");
              require(_baseGasSeconds > 0, "base gas seconds must be > 0");
              require(_ceilClaimRate <= 10000, "ceil claim rate must be less than or equal to 10_000 bips");
              // admin vars
              zeroClaimRate = _zeroClaimRate;
              baseGasSeconds = _baseGasSeconds;
              baseClaimRate = _baseClaimRate;
              ceilGasSeconds = _ceilGasSeconds;
              ceilClaimRate = _ceilClaimRate;
          }
          /**
           * @notice Allows only the admin to call a function
           */
          modifier onlyAdmin() {
              require(msg.sender == admin, "Caller is not the admin");
              _;
          }
          /**
           * @notice Allows only the Blast Configuration Contract to call a function
           */
          modifier onlyBlastConfigurationContract() {
              require(msg.sender == blastConfigurationContract, "Caller must be blast configuration contract");
              _;
          }
          /**
           * @notice Allows the admin to update the parameters
           * @param _zeroClaimRate The new zero claim rate
           * @param _baseGasSeconds The new base gas seconds
           * @param _baseClaimRate The new base claim rate
           * @param _ceilGasSeconds The new ceiling gas seconds
           * @param _ceilClaimRate The new ceiling claim rate
           */
          function updateAdminParameters(
              uint256 _zeroClaimRate,
              uint256 _baseGasSeconds,
              uint256 _baseClaimRate,
              uint256 _ceilGasSeconds,
              uint256 _ceilClaimRate
          ) external onlyAdmin {
              require(_zeroClaimRate < _baseClaimRate, "zero claim rate must be < base claim rate");
              require(_baseClaimRate < _ceilClaimRate, "base claim rate must be < ceil claim rate");
              require(_baseGasSeconds < _ceilGasSeconds, "base gas seconds must be < ceil gas seconds");
              require(_baseGasSeconds > 0, "base gas seconds must be > 0");
              require(_ceilClaimRate <= 10000, "ceil claim rate must be less than or equal to 10_000 bips");
              zeroClaimRate = _zeroClaimRate;
              baseGasSeconds = _baseGasSeconds;
              baseClaimRate = _baseClaimRate;
              ceilGasSeconds = _ceilGasSeconds;
              ceilClaimRate = _ceilClaimRate;
          }
          /**
           * @notice Allows the admin to claim the gas of any address
           * @param contractAddress The address of the contract
           * @return The amount of ether balance claimed
           */
          function adminClaimGas(address contractAddress) external onlyAdmin returns (uint256) {
              (, uint256 etherBalance,,) = readGasParams(contractAddress);
              _updateGasParams(contractAddress, 0, 0, GasMode.VOID);
              SafeTransferLib.safeTransferETH(blastFeeVault, etherBalance);
              return etherBalance;
          }
          /**
           * @notice Allows an authorized user to set the gas mode for a contract via the BlastConfigurationContract
           * @param contractAddress The address of the contract
           * @param mode The new gas mode for the contract
           */
          function setGasMode(address contractAddress, GasMode mode) external onlyBlastConfigurationContract {
              // retrieve gas params
              (uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
              _updateGasParams(contractAddress, etherSeconds, etherBalance, mode);
          }
          /**
           * @notice Allows a user to claim gas at a minimum claim rate (error = 1 bip)
           * @param contractAddress The address of the contract
           * @param recipientOfGas The address of the recipient of the gas
           * @param minClaimRateBips The minimum claim rate in basis points
           * @return The amount of gas claimed
           */
          function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) public returns (uint256) {
              require(minClaimRateBips <= ceilClaimRate, "desired claim rate exceeds maximum");
              (uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
              if (minClaimRateBips <= zeroClaimRate) {
                  return claimAll(contractAddress, recipientOfGas);
              }
              // set minClaimRate to baseClaimRate in this case
              if (minClaimRateBips < baseClaimRate) {
                  minClaimRateBips = baseClaimRate;
              }
              uint256 bipsDiff = minClaimRateBips - baseClaimRate;
              uint256 secondsDiff = ceilGasSeconds - baseGasSeconds;
              uint256 rateDiff = ceilClaimRate - baseClaimRate;
              uint256 minSecondsStaked = baseGasSeconds + Math.ceilDiv(bipsDiff * secondsDiff, rateDiff);
              uint256 maxEtherClaimable = etherSeconds / minSecondsStaked;
              if (maxEtherClaimable > etherBalance)  {
                  maxEtherClaimable = etherBalance;
              }
              uint256 secondsToConsume = maxEtherClaimable * minSecondsStaked;
              return claim(contractAddress, recipientOfGas, maxEtherClaimable, secondsToConsume);
          }
          /**
           * @notice Allows a contract to claim all gas
           * @param contractAddress The address of the contract
           * @param recipientOfGas The address of the recipient of the gas
           * @return The amount of gas claimed
           */
          function claimAll(address contractAddress, address recipientOfGas) public returns (uint256) {
              (uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
              return claim(contractAddress, recipientOfGas, etherBalance, etherSeconds);
          }
          /**
           * @notice Allows a contract to claim all gas at the highest possible claim rate
           * @param contractAddress The address of the contract
           * @param recipientOfGas The address of the recipient of the gas
           * @return The amount of gas claimed
           */
          function claimMax(address contractAddress, address recipientOfGas) public returns (uint256) {
              return claimGasAtMinClaimRate(contractAddress, recipientOfGas, ceilClaimRate);
          }
          /**
           * @notice Allows a contract to claim a specified amount of gas, at a claim rate set by the number of gas seconds
           * @param contractAddress The address of the contract
           * @param recipientOfGas The address of the recipient of the gas
           * @param gasToClaim The amount of gas to claim
           * @param gasSecondsToConsume The amount of gas seconds to consume
           * @return The amount of gas claimed (gasToClaim - penalty)
           */
          function claim(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) public onlyBlastConfigurationContract() returns (uint256)  {
              // retrieve gas params
              (uint256 etherSeconds, uint256 etherBalance,, GasMode mode) = readGasParams(contractAddress);
              // check validity requirements
              require(gasToClaim > 0, "must withdraw non-zero amount");
              require(gasToClaim <= etherBalance, "too much to withdraw");
              require(gasSecondsToConsume <= etherSeconds, "not enough gas seconds");
              // get claim rate
              (uint256 claimRate, uint256 gasSecondsToConsumeNormalized) = getClaimRateBps(gasSecondsToConsume, gasToClaim);
              // calculate tax
              uint256 userEther = gasToClaim * claimRate / 10_000;
              uint256 penalty = gasToClaim - userEther;
              _updateGasParams(contractAddress, etherSeconds - gasSecondsToConsumeNormalized, etherBalance - gasToClaim, mode);
              SafeTransferLib.safeTransferETH(recipientOfGas, userEther);
              if (penalty > 0) {
                  SafeTransferLib.safeTransferETH(blastFeeVault, penalty);
              }
              return userEther;
          }
          /**
           * @notice Calculates the claim rate in basis points based on gasSeconds, gasToClaim
           * @param gasSecondsToConsume The amount of gas seconds to consume
           * @param gasToClaim The amount of gas to claim
           * @return claimRate The calculated claim rate in basis points
           * @return gasSecondsToConsume The normalized gas seconds to consume (<= gasSecondsToConsume)
           */
          function getClaimRateBps(uint256 gasSecondsToConsume, uint256 gasToClaim) public view returns (uint256, uint256) {
              uint256 secondsStaked = gasSecondsToConsume / gasToClaim;
              if (secondsStaked < baseGasSeconds) {
                  return (zeroClaimRate, 0);
              }
              if (secondsStaked >= ceilGasSeconds) {
                  uint256 gasToConsumeNormalized = gasToClaim * ceilGasSeconds;
                  return (ceilClaimRate, gasToConsumeNormalized);
              }
              uint256 rateDiff = ceilClaimRate - baseClaimRate;
              uint256 secondsDiff = ceilGasSeconds - baseGasSeconds;
              uint256 secondsStakedDiff = secondsStaked - baseGasSeconds;
              uint256 additionalClaimRate = rateDiff * secondsStakedDiff / secondsDiff;
              uint256 claimRate = baseClaimRate + additionalClaimRate;
              return (claimRate, gasSecondsToConsume);
          }
          /**
           * @notice Reads the gas parameters for a given user
           * @param user The address of the user
           * @return etherSeconds The integral of ether over time (ether * seconds vested)
           * @return etherBalance The total ether balance for the user
           * @return lastUpdated The last updated timestamp for the user's gas parameters
           * @return mode The current gas mode for the user
           */
           function readGasParams(address user) public view returns (uint256 etherSeconds, uint256 etherBalance, uint256 lastUpdated, GasMode mode) {
              bytes32 paramsHash = keccak256(abi.encodePacked(user, "parameters"));
              bytes32 packedParams;
              // read params
              assembly {
                  packedParams := sload(paramsHash)
              }
              // unpack params
              // - The first byte (most significant byte) represents the mode
              // - The next 12 bytes represent the etherBalance
              // - The following 15 bytes represent the etherSeconds
              // - The last 4 bytes (least significant bytes) represent the lastUpdated timestamp
              mode         = GasMode(uint8(packedParams[0]));
              etherBalance = uint256((packedParams << (1             * 8)) >> ((32 - 12) * 8));
              etherSeconds = uint256((packedParams << ((1 + 12)      * 8)) >> ((32 - 15) * 8));
              lastUpdated  = uint256((packedParams << ((1 + 12 + 15) * 8)) >> ((32 -  4) * 8));
              // update ether seconds
              etherSeconds = etherSeconds + etherBalance * (block.timestamp - lastUpdated);
          }
          /**
           * @notice Updates the gas parameters for a given contract address
           * @param contractAddress The address of the contract
           * @param etherSeconds The integral of ether over time (ether * seconds vested)
           * @param etherBalance The total ether balance for the contract
           */
          function _updateGasParams(address contractAddress, uint256 etherSeconds, uint256 etherBalance, GasMode mode) internal {
              if (
                  etherBalance >= 1 << (12 * 8) ||
                  etherSeconds >= 1 << (15 * 8)
              ) {
                  revert("Unexpected packing issue due to overflow");
              }
              uint256 updatedTimestamp = block.timestamp; // Known to fit in 4 bytes
              bytes32 paramsHash = keccak256(abi.encodePacked(contractAddress, "parameters"));
              bytes32 packedParams;
              packedParams = (
                  (bytes32(uint256(mode)) << ((12 + 15 + 4) * 8)) | // Shift mode to the most significant byte
                  (bytes32(etherBalance)  << ((15 + 4) * 8))      | // Shift etherBalance to start after 1 byte of mode
                  (bytes32(etherSeconds)  << (4 * 8))             | // Shift etherSeconds to start after mode and etherBalance
                  bytes32(updatedTimestamp)                         // Keep updatedTimestamp in the least significant bytes
              );
              assembly {
                  sstore(paramsHash, packedParams)
              }
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
      /// @title RLPWriter
      /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
      ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
      ///         modifications to improve legibility.
      library RLPWriter {
          /// @notice RLP encodes a byte string.
          /// @param _in The byte string to encode.
          /// @return out_ The RLP encoded string in bytes.
          function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
              if (_in.length == 1 && uint8(_in[0]) < 128) {
                  out_ = _in;
              } else {
                  out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
              }
          }
          /// @notice RLP encodes a list of RLP encoded byte byte strings.
          /// @param _in The list of RLP encoded byte strings.
          /// @return list_ The RLP encoded list of items in bytes.
          function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
              list_ = _flatten(_in);
              list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
          }
          /// @notice RLP encodes a string.
          /// @param _in The string to encode.
          /// @return out_ The RLP encoded string in bytes.
          function writeString(string memory _in) internal pure returns (bytes memory out_) {
              out_ = writeBytes(bytes(_in));
          }
          /// @notice RLP encodes an address.
          /// @param _in The address to encode.
          /// @return out_ The RLP encoded address in bytes.
          function writeAddress(address _in) internal pure returns (bytes memory out_) {
              out_ = writeBytes(abi.encodePacked(_in));
          }
          /// @notice RLP encodes a uint.
          /// @param _in The uint256 to encode.
          /// @return out_ The RLP encoded uint256 in bytes.
          function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
              out_ = writeBytes(_toBinary(_in));
          }
          /// @notice RLP encodes a bool.
          /// @param _in The bool to encode.
          /// @return out_ The RLP encoded bool in bytes.
          function writeBool(bool _in) internal pure returns (bytes memory out_) {
              out_ = new bytes(1);
              out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
          }
          /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
          /// @param _len    The length of the string or the payload.
          /// @param _offset 128 if item is string, 192 if item is list.
          /// @return out_ RLP encoded bytes.
          function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
              if (_len < 56) {
                  out_ = new bytes(1);
                  out_[0] = bytes1(uint8(_len) + uint8(_offset));
              } else {
                  uint256 lenLen;
                  uint256 i = 1;
                  while (_len / i != 0) {
                      lenLen++;
                      i *= 256;
                  }
                  out_ = new bytes(lenLen + 1);
                  out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                  for (i = 1; i <= lenLen; i++) {
                      out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                  }
              }
          }
          /// @notice Encode integer in big endian binary form with no leading zeroes.
          /// @param _x The integer to encode.
          /// @return out_ RLP encoded bytes.
          function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
              bytes memory b = abi.encodePacked(_x);
              uint256 i = 0;
              for (; i < 32; i++) {
                  if (b[i] != 0) {
                      break;
                  }
              }
              out_ = new bytes(32 - i);
              for (uint256 j = 0; j < out_.length; j++) {
                  out_[j] = b[i++];
              }
          }
          /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
          /// @notice Copies a piece of memory to another location.
          /// @param _dest Destination location.
          /// @param _src  Source location.
          /// @param _len  Length of memory to copy.
          function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
              uint256 dest = _dest;
              uint256 src = _src;
              uint256 len = _len;
              for (; len >= 32; len -= 32) {
                  assembly {
                      mstore(dest, mload(src))
                  }
                  dest += 32;
                  src += 32;
              }
              uint256 mask;
              unchecked {
                  mask = 256 ** (32 - len) - 1;
              }
              assembly {
                  let srcpart := and(mload(src), not(mask))
                  let destpart := and(mload(dest), mask)
                  mstore(dest, or(destpart, srcpart))
              }
          }
          /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
          /// @notice Flattens a list of byte strings into one byte string.
          /// @param _list List of byte strings to flatten.
          /// @return out_ The flattened byte string.
          function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
              if (_list.length == 0) {
                  return new bytes(0);
              }
              uint256 len;
              uint256 i = 0;
              for (; i < _list.length; i++) {
                  len += _list[i].length;
              }
              out_ = new bytes(len);
              uint256 flattenedPtr;
              assembly {
                  flattenedPtr := add(out_, 0x20)
              }
              for (i = 0; i < _list.length; i++) {
                  bytes memory item = _list[i];
                  uint256 listPtr;
                  assembly {
                      listPtr := add(item, 0x20)
                  }
                  _memcpy(flattenedPtr, listPtr, item.length);
                  flattenedPtr += _list[i].length;
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/ContextUpgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          function __Ownable_init() internal onlyInitializing {
              __Ownable_init_unchained();
          }
          function __Ownable_init_unchained() internal onlyInitializing {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby disabling any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      /// @title Storage
      /// @notice Storage handles reading and writing to arbitary storage locations
      library Storage {
          /// @notice Returns an address stored in an arbitrary storage slot.
          ///         These storage slots decouple the storage layout from
          ///         solc's automation.
          /// @param _slot The storage slot to retrieve the address from.
          function getAddress(bytes32 _slot) internal view returns (address addr_) {
              assembly {
                  addr_ := sload(_slot)
              }
          }
          /// @notice Stores an address in an arbitrary storage slot, `_slot`.
          /// @param _slot The storage slot to store the address in.
          /// @param _address The protocol version to store
          /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
          ///      in arbitrary storage slots.
          function setAddress(bytes32 _slot, address _address) internal {
              assembly {
                  sstore(_slot, _address)
              }
          }
          /// @notice Returns a uint256 stored in an arbitrary storage slot.
          ///         These storage slots decouple the storage layout from
          ///         solc's automation.
          /// @param _slot The storage slot to retrieve the address from.
          function getUint(bytes32 _slot) internal view returns (uint256 value_) {
              assembly {
                  value_ := sload(_slot)
              }
          }
          /// @notice Stores a value in an arbitrary storage slot, `_slot`.
          /// @param _slot The storage slot to store the address in.
          /// @param _value The protocol version to store
          /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
          ///      in arbitrary storage slots.
          function setUint(bytes32 _slot, uint256 _value) internal {
              assembly {
                  sstore(_slot, _value)
              }
          }
          /// @notice Returns a bytes32 stored in an arbitrary storage slot.
          ///         These storage slots decouple the storage layout from
          ///         solc's automation.
          /// @param _slot The storage slot to retrieve the address from.
          function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
              assembly {
                  value_ := sload(_slot)
              }
          }
          /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
          /// @param _slot The storage slot to store the address in.
          /// @param _value The protocol version to store
          /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
          ///      in arbitrary storage slots.
          function setBytes32(bytes32 _slot, bytes32 _value) internal {
              assembly {
                  sstore(_slot, _value)
              }
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      import { Bytes } from "../Bytes.sol";
      import { RLPReader } from "../rlp/RLPReader.sol";
      /// @title MerkleTrie
      /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
      ///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
      ///         trie radix constant to support other trie radixes.
      library MerkleTrie {
          /// @notice Struct representing a node in the trie.
          /// @custom:field encoded The RLP-encoded node.
          /// @custom:field decoded The RLP-decoded node.
          struct TrieNode {
              bytes encoded;
              RLPReader.RLPItem[] decoded;
          }
          /// @notice Determines the number of elements per branch node.
          uint256 internal constant TREE_RADIX = 16;
          /// @notice Branch nodes have TREE_RADIX elements and one value element.
          uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
          /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
          uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
          /// @notice Prefix for even-nibbled extension node paths.
          uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
          /// @notice Prefix for odd-nibbled extension node paths.
          uint8 internal constant PREFIX_EXTENSION_ODD = 1;
          /// @notice Prefix for even-nibbled leaf node paths.
          uint8 internal constant PREFIX_LEAF_EVEN = 2;
          /// @notice Prefix for odd-nibbled leaf node paths.
          uint8 internal constant PREFIX_LEAF_ODD = 3;
          /// @notice Verifies a proof that a given key/value pair is present in the trie.
          /// @param _key   Key of the node to search for, as a hex string.
          /// @param _value Value of the node to search for, as a hex string.
          /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
          ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
          ///               nodes that make a path down to the target node.
          /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
          ///               correctly constructed.
          /// @return valid_ Whether or not the proof is valid.
          function verifyInclusionProof(
              bytes memory _key,
              bytes memory _value,
              bytes[] memory _proof,
              bytes32 _root
          )
              internal
              pure
              returns (bool valid_)
          {
              valid_ = Bytes.equal(_value, get(_key, _proof, _root));
          }
          /// @notice Retrieves the value associated with a given key.
          /// @param _key   Key to search for, as hex bytes.
          /// @param _proof Merkle trie inclusion proof for the key.
          /// @param _root  Known root of the Merkle trie.
          /// @return value_ Value of the key if it exists.
          function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
              require(_key.length > 0, "MerkleTrie: empty key");
              TrieNode[] memory proof = _parseProof(_proof);
              bytes memory key = Bytes.toNibbles(_key);
              bytes memory currentNodeID = abi.encodePacked(_root);
              uint256 currentKeyIndex = 0;
              // Proof is top-down, so we start at the first element (root).
              for (uint256 i = 0; i < proof.length; i++) {
                  TrieNode memory currentNode = proof[i];
                  // Key index should never exceed total key length or we'll be out of bounds.
                  require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
                  if (currentKeyIndex == 0) {
                      // First proof element is always the root node.
                      require(
                          Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                          "MerkleTrie: invalid root hash"
                      );
                  } else if (currentNode.encoded.length >= 32) {
                      // Nodes 32 bytes or larger are hashed inside branch nodes.
                      require(
                          Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                          "MerkleTrie: invalid large internal hash"
                      );
                  } else {
                      // Nodes smaller than 32 bytes aren't hashed.
                      require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
                  }
                  if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                      if (currentKeyIndex == key.length) {
                          // Value is the last element of the decoded list (for branch nodes). There's
                          // some ambiguity in the Merkle trie specification because bytes(0) is a
                          // valid value to place into the trie, but for branch nodes bytes(0) can exist
                          // even when the value wasn't explicitly placed there. Geth treats a value of
                          // bytes(0) as "key does not exist" and so we do the same.
                          value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                          require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
                          // Extra proof elements are not allowed.
                          require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
                          return value_;
                      } else {
                          // We're not at the end of the key yet.
                          // Figure out what the next node ID should be and continue.
                          uint8 branchKey = uint8(key[currentKeyIndex]);
                          RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                          currentNodeID = _getNodeID(nextNode);
                          currentKeyIndex += 1;
                      }
                  } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                      bytes memory path = _getNodePath(currentNode);
                      uint8 prefix = uint8(path[0]);
                      uint8 offset = 2 - (prefix % 2);
                      bytes memory pathRemainder = Bytes.slice(path, offset);
                      bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                      uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                      // Whether this is a leaf node or an extension node, the path remainder MUST be a
                      // prefix of the key remainder (or be equal to the key remainder) or the proof is
                      // considered invalid.
                      require(
                          pathRemainder.length == sharedNibbleLength,
                          "MerkleTrie: path remainder must share all nibbles with key"
                      );
                      if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                          // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                          // the key remainder must be exactly equal to the path remainder. We already
                          // did the necessary byte comparison, so it's more efficient here to check that
                          // the key remainder length equals the shared nibble length, which implies
                          // equality with the path remainder (since we already did the same check with
                          // the path remainder and the shared nibble length).
                          require(
                              keyRemainder.length == sharedNibbleLength,
                              "MerkleTrie: key remainder must be identical to path remainder"
                          );
                          // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                          // state trie. Empty values are not allowed in the state trie, so we can safely
                          // say that if the value is empty, the key should not exist and the proof is
                          // invalid.
                          value_ = RLPReader.readBytes(currentNode.decoded[1]);
                          require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
                          // Extra proof elements are not allowed.
                          require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
                          return value_;
                      } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                          // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                          // in the proof and increment the key index by the length of the path remainder
                          // which is equal to the shared nibble length.
                          currentNodeID = _getNodeID(currentNode.decoded[1]);
                          currentKeyIndex += sharedNibbleLength;
                      } else {
                          revert("MerkleTrie: received a node with an unknown prefix");
                      }
                  } else {
                      revert("MerkleTrie: received an unparseable node");
                  }
              }
              revert("MerkleTrie: ran out of proof elements");
          }
          /// @notice Parses an array of proof elements into a new array that contains both the original
          ///         encoded element and the RLP-decoded element.
          /// @param _proof Array of proof elements to parse.
          /// @return proof_ Proof parsed into easily accessible structs.
          function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
              uint256 length = _proof.length;
              proof_ = new TrieNode[](length);
              for (uint256 i = 0; i < length;) {
                  proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                  unchecked {
                      ++i;
                  }
              }
          }
          /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
          ///         specification, but nodes < 32 bytes are not actually hashed.
          /// @param _node Node to pull an ID for.
          /// @return id_ ID for the node, depending on the size of its contents.
          function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
              id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
          }
          /// @notice Gets the path for a leaf or extension node.
          /// @param _node Node to get a path for.
          /// @return nibbles_ Node path, converted to an array of nibbles.
          function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
              nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
          }
          /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
          /// @param _a First nibble array.
          /// @param _b Second nibble array.
          /// @return shared_ Number of shared nibbles.
          function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
              uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
              for (; shared_ < max && _a[shared_] == _b[shared_];) {
                  unchecked {
                      ++shared_;
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a >= b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1);
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator,
              Rounding rounding
          ) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`.
              // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
              // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
              // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
              // good first aproximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1;
              uint256 x = a;
              if (x >> 128 > 0) {
                  x >>= 128;
                  result <<= 64;
              }
              if (x >> 64 > 0) {
                  x >>= 64;
                  result <<= 32;
              }
              if (x >> 32 > 0) {
                  x >>= 32;
                  result <<= 16;
              }
              if (x >> 16 > 0) {
                  x >>= 16;
                  result <<= 8;
              }
              if (x >> 8 > 0) {
                  x >>= 8;
                  result <<= 4;
              }
              if (x >> 4 > 0) {
                  x >>= 4;
                  result <<= 2;
              }
              if (x >> 2 > 0) {
                  result <<= 1;
              }
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              uint256 result = sqrt(a);
              if (rounding == Rounding.Up && result * result < a) {
                  result += 1;
              }
              return result;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      /// @title Burn
      /// @notice Utilities for burning stuff.
      library Burn {
          /// @notice Burns a given amount of ETH.
          /// @param _amount Amount of ETH to burn.
          function eth(uint256 _amount) internal {
              new Burner{ value: _amount }();
          }
          /// @notice Burns a given amount of gas.
          /// @param _amount Amount of gas to burn.
          function gas(uint256 _amount) internal view {
              uint256 i = 0;
              uint256 initialGas = gasleft();
              while (initialGas - gasleft() < _amount) {
                  ++i;
              }
          }
      }
      /// @title Burner
      /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
      ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
      ///         from the circulating supply.
      contract Burner {
          constructor() payable {
              selfdestruct(payable(address(this)));
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
      import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
      /// @title Arithmetic
      /// @notice Even more math than before.
      library Arithmetic {
          /// @notice Clamps a value between a minimum and maximum.
          /// @param _value The value to clamp.
          /// @param _min   The minimum value.
          /// @param _max   The maximum value.
          /// @return The clamped value.
          function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
              return SignedMath.min(SignedMath.max(_value, _min), _max);
          }
          /// @notice (c)oefficient (d)enominator (exp)onentiation function.
          ///         Returns the result of: c * (1 - 1/d)^exp.
          /// @param _coefficient Coefficient of the function.
          /// @param _denominator Fractional denominator.
          /// @param _exponent    Power function exponent.
          /// @return Result of c * (1 - 1/d)^exp.
          function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
              return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/structs/EnumerableSet.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Library for managing
       * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
       * types.
       *
       * Sets have the following properties:
       *
       * - Elements are added, removed, and checked for existence in constant time
       * (O(1)).
       * - Elements are enumerated in O(n). No guarantees are made on the ordering.
       *
       * ```
       * contract Example {
       *     // Add the library methods
       *     using EnumerableSet for EnumerableSet.AddressSet;
       *
       *     // Declare a set state variable
       *     EnumerableSet.AddressSet private mySet;
       * }
       * ```
       *
       * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
       * and `uint256` (`UintSet`) are supported.
       *
       * [WARNING]
       * ====
       *  Trying to delete such a structure from storage will likely result in data corruption, rendering the structure unusable.
       *  See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
       *
       *  In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an array of EnumerableSet.
       * ====
       */
      library EnumerableSet {
          // To implement this library for multiple types with as little code
          // repetition as possible, we write it in terms of a generic Set type with
          // bytes32 values.
          // The Set implementation uses private functions, and user-facing
          // implementations (such as AddressSet) are just wrappers around the
          // underlying Set.
          // This means that we can only create new EnumerableSets for types that fit
          // in bytes32.
          struct Set {
              // Storage of set values
              bytes32[] _values;
              // Position of the value in the `values` array, plus 1 because index 0
              // means a value is not in the set.
              mapping(bytes32 => uint256) _indexes;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function _add(Set storage set, bytes32 value) private returns (bool) {
              if (!_contains(set, value)) {
                  set._values.push(value);
                  // The value is stored at length-1, but we add 1 to all indexes
                  // and use 0 as a sentinel value
                  set._indexes[value] = set._values.length;
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function _remove(Set storage set, bytes32 value) private returns (bool) {
              // We read and store the value's index to prevent multiple reads from the same storage slot
              uint256 valueIndex = set._indexes[value];
              if (valueIndex != 0) {
                  // Equivalent to contains(set, value)
                  // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                  // the array, and then remove the last element (sometimes called as 'swap and pop').
                  // This modifies the order of the array, as noted in {at}.
                  uint256 toDeleteIndex = valueIndex - 1;
                  uint256 lastIndex = set._values.length - 1;
                  if (lastIndex != toDeleteIndex) {
                      bytes32 lastValue = set._values[lastIndex];
                      // Move the last value to the index where the value to delete is
                      set._values[toDeleteIndex] = lastValue;
                      // Update the index for the moved value
                      set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
                  }
                  // Delete the slot where the moved value was stored
                  set._values.pop();
                  // Delete the index for the deleted slot
                  delete set._indexes[value];
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function _contains(Set storage set, bytes32 value) private view returns (bool) {
              return set._indexes[value] != 0;
          }
          /**
           * @dev Returns the number of values on the set. O(1).
           */
          function _length(Set storage set) private view returns (uint256) {
              return set._values.length;
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function _at(Set storage set, uint256 index) private view returns (bytes32) {
              return set._values[index];
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function _values(Set storage set) private view returns (bytes32[] memory) {
              return set._values;
          }
          // Bytes32Set
          struct Bytes32Set {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _add(set._inner, value);
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _remove(set._inner, value);
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
              return _contains(set._inner, value);
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(Bytes32Set storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
              return _at(set._inner, index);
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
              return _values(set._inner);
          }
          // AddressSet
          struct AddressSet {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(AddressSet storage set, address value) internal returns (bool) {
              return _add(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(AddressSet storage set, address value) internal returns (bool) {
              return _remove(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(AddressSet storage set, address value) internal view returns (bool) {
              return _contains(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(AddressSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(AddressSet storage set, uint256 index) internal view returns (address) {
              return address(uint160(uint256(_at(set._inner, index))));
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(AddressSet storage set) internal view returns (address[] memory) {
              bytes32[] memory store = _values(set._inner);
              address[] memory result;
              /// @solidity memory-safe-assembly
              assembly {
                  result := store
              }
              return result;
          }
          // UintSet
          struct UintSet {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(UintSet storage set, uint256 value) internal returns (bool) {
              return _add(set._inner, bytes32(value));
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(UintSet storage set, uint256 value) internal returns (bool) {
              return _remove(set._inner, bytes32(value));
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(UintSet storage set, uint256 value) internal view returns (bool) {
              return _contains(set._inner, bytes32(value));
          }
          /**
           * @dev Returns the number of values on the set. O(1).
           */
          function length(UintSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(UintSet storage set, uint256 index) internal view returns (uint256) {
              return uint256(_at(set._inner, index));
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(UintSet storage set) internal view returns (uint256[] memory) {
              bytes32[] memory store = _values(set._inner);
              uint256[] memory result;
              /// @solidity memory-safe-assembly
              assembly {
                  result := store
              }
              return result;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
      pragma solidity ^0.8.0;
      import "./OwnableUpgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which provides access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership} and {acceptOwnership}.
       *
       * This module is used through inheritance. It will make available all functions
       * from parent (Ownable).
       */
      abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
          function __Ownable2Step_init() internal onlyInitializing {
              __Ownable_init_unchained();
          }
          function __Ownable2Step_init_unchained() internal onlyInitializing {
          }
          address private _pendingOwner;
          event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Returns the address of the pending owner.
           */
          function pendingOwner() public view virtual returns (address) {
              return _pendingOwner;
          }
          /**
           * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual override onlyOwner {
              _pendingOwner = newOwner;
              emit OwnershipTransferStarted(owner(), newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual override {
              delete _pendingOwner;
              super._transferOwnership(newOwner);
          }
          /**
           * @dev The new owner accepts the ownership transfer.
           */
          function acceptOwnership() public virtual {
              address sender = _msgSender();
              require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
              _transferOwnership(sender);
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return a >= b ? a : b;
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // must be unchecked in order to support `n = type(int256).min`
                  return uint256(n >= 0 ? n : -n);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/SafeCast.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
       * checks.
       *
       * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
       * easily result in undesired exploitation or bugs, since developers usually
       * assume that overflows raise errors. `SafeCast` restores this intuition by
       * reverting the transaction when such an operation overflows.
       *
       * Using this library instead of the unchecked operations eliminates an entire
       * class of bugs, so it's recommended to use it always.
       *
       * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
       * all math on `uint256` and `int256` and then downcasting.
       */
      library SafeCast {
          /**
           * @dev Returns the downcasted uint248 from uint256, reverting on
           * overflow (when the input is greater than largest uint248).
           *
           * Counterpart to Solidity's `uint248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           *
           * _Available since v4.7._
           */
          function toUint248(uint256 value) internal pure returns (uint248) {
              require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
              return uint248(value);
          }
          /**
           * @dev Returns the downcasted uint240 from uint256, reverting on
           * overflow (when the input is greater than largest uint240).
           *
           * Counterpart to Solidity's `uint240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           *
           * _Available since v4.7._
           */
          function toUint240(uint256 value) internal pure returns (uint240) {
              require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
              return uint240(value);
          }
          /**
           * @dev Returns the downcasted uint232 from uint256, reverting on
           * overflow (when the input is greater than largest uint232).
           *
           * Counterpart to Solidity's `uint232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           *
           * _Available since v4.7._
           */
          function toUint232(uint256 value) internal pure returns (uint232) {
              require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
              return uint232(value);
          }
          /**
           * @dev Returns the downcasted uint224 from uint256, reverting on
           * overflow (when the input is greater than largest uint224).
           *
           * Counterpart to Solidity's `uint224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           *
           * _Available since v4.2._
           */
          function toUint224(uint256 value) internal pure returns (uint224) {
              require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
              return uint224(value);
          }
          /**
           * @dev Returns the downcasted uint216 from uint256, reverting on
           * overflow (when the input is greater than largest uint216).
           *
           * Counterpart to Solidity's `uint216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           *
           * _Available since v4.7._
           */
          function toUint216(uint256 value) internal pure returns (uint216) {
              require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
              return uint216(value);
          }
          /**
           * @dev Returns the downcasted uint208 from uint256, reverting on
           * overflow (when the input is greater than largest uint208).
           *
           * Counterpart to Solidity's `uint208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           *
           * _Available since v4.7._
           */
          function toUint208(uint256 value) internal pure returns (uint208) {
              require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
              return uint208(value);
          }
          /**
           * @dev Returns the downcasted uint200 from uint256, reverting on
           * overflow (when the input is greater than largest uint200).
           *
           * Counterpart to Solidity's `uint200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           *
           * _Available since v4.7._
           */
          function toUint200(uint256 value) internal pure returns (uint200) {
              require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
              return uint200(value);
          }
          /**
           * @dev Returns the downcasted uint192 from uint256, reverting on
           * overflow (when the input is greater than largest uint192).
           *
           * Counterpart to Solidity's `uint192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           *
           * _Available since v4.7._
           */
          function toUint192(uint256 value) internal pure returns (uint192) {
              require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
              return uint192(value);
          }
          /**
           * @dev Returns the downcasted uint184 from uint256, reverting on
           * overflow (when the input is greater than largest uint184).
           *
           * Counterpart to Solidity's `uint184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           *
           * _Available since v4.7._
           */
          function toUint184(uint256 value) internal pure returns (uint184) {
              require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
              return uint184(value);
          }
          /**
           * @dev Returns the downcasted uint176 from uint256, reverting on
           * overflow (when the input is greater than largest uint176).
           *
           * Counterpart to Solidity's `uint176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           *
           * _Available since v4.7._
           */
          function toUint176(uint256 value) internal pure returns (uint176) {
              require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
              return uint176(value);
          }
          /**
           * @dev Returns the downcasted uint168 from uint256, reverting on
           * overflow (when the input is greater than largest uint168).
           *
           * Counterpart to Solidity's `uint168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           *
           * _Available since v4.7._
           */
          function toUint168(uint256 value) internal pure returns (uint168) {
              require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
              return uint168(value);
          }
          /**
           * @dev Returns the downcasted uint160 from uint256, reverting on
           * overflow (when the input is greater than largest uint160).
           *
           * Counterpart to Solidity's `uint160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           *
           * _Available since v4.7._
           */
          function toUint160(uint256 value) internal pure returns (uint160) {
              require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
              return uint160(value);
          }
          /**
           * @dev Returns the downcasted uint152 from uint256, reverting on
           * overflow (when the input is greater than largest uint152).
           *
           * Counterpart to Solidity's `uint152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           *
           * _Available since v4.7._
           */
          function toUint152(uint256 value) internal pure returns (uint152) {
              require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
              return uint152(value);
          }
          /**
           * @dev Returns the downcasted uint144 from uint256, reverting on
           * overflow (when the input is greater than largest uint144).
           *
           * Counterpart to Solidity's `uint144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           *
           * _Available since v4.7._
           */
          function toUint144(uint256 value) internal pure returns (uint144) {
              require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
              return uint144(value);
          }
          /**
           * @dev Returns the downcasted uint136 from uint256, reverting on
           * overflow (when the input is greater than largest uint136).
           *
           * Counterpart to Solidity's `uint136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           *
           * _Available since v4.7._
           */
          function toUint136(uint256 value) internal pure returns (uint136) {
              require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
              return uint136(value);
          }
          /**
           * @dev Returns the downcasted uint128 from uint256, reverting on
           * overflow (when the input is greater than largest uint128).
           *
           * Counterpart to Solidity's `uint128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           *
           * _Available since v2.5._
           */
          function toUint128(uint256 value) internal pure returns (uint128) {
              require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
              return uint128(value);
          }
          /**
           * @dev Returns the downcasted uint120 from uint256, reverting on
           * overflow (when the input is greater than largest uint120).
           *
           * Counterpart to Solidity's `uint120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           *
           * _Available since v4.7._
           */
          function toUint120(uint256 value) internal pure returns (uint120) {
              require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
              return uint120(value);
          }
          /**
           * @dev Returns the downcasted uint112 from uint256, reverting on
           * overflow (when the input is greater than largest uint112).
           *
           * Counterpart to Solidity's `uint112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           *
           * _Available since v4.7._
           */
          function toUint112(uint256 value) internal pure returns (uint112) {
              require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
              return uint112(value);
          }
          /**
           * @dev Returns the downcasted uint104 from uint256, reverting on
           * overflow (when the input is greater than largest uint104).
           *
           * Counterpart to Solidity's `uint104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           *
           * _Available since v4.7._
           */
          function toUint104(uint256 value) internal pure returns (uint104) {
              require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
              return uint104(value);
          }
          /**
           * @dev Returns the downcasted uint96 from uint256, reverting on
           * overflow (when the input is greater than largest uint96).
           *
           * Counterpart to Solidity's `uint96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           *
           * _Available since v4.2._
           */
          function toUint96(uint256 value) internal pure returns (uint96) {
              require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
              return uint96(value);
          }
          /**
           * @dev Returns the downcasted uint88 from uint256, reverting on
           * overflow (when the input is greater than largest uint88).
           *
           * Counterpart to Solidity's `uint88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           *
           * _Available since v4.7._
           */
          function toUint88(uint256 value) internal pure returns (uint88) {
              require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
              return uint88(value);
          }
          /**
           * @dev Returns the downcasted uint80 from uint256, reverting on
           * overflow (when the input is greater than largest uint80).
           *
           * Counterpart to Solidity's `uint80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           *
           * _Available since v4.7._
           */
          function toUint80(uint256 value) internal pure returns (uint80) {
              require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
              return uint80(value);
          }
          /**
           * @dev Returns the downcasted uint72 from uint256, reverting on
           * overflow (when the input is greater than largest uint72).
           *
           * Counterpart to Solidity's `uint72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           *
           * _Available since v4.7._
           */
          function toUint72(uint256 value) internal pure returns (uint72) {
              require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
              return uint72(value);
          }
          /**
           * @dev Returns the downcasted uint64 from uint256, reverting on
           * overflow (when the input is greater than largest uint64).
           *
           * Counterpart to Solidity's `uint64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           *
           * _Available since v2.5._
           */
          function toUint64(uint256 value) internal pure returns (uint64) {
              require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
              return uint64(value);
          }
          /**
           * @dev Returns the downcasted uint56 from uint256, reverting on
           * overflow (when the input is greater than largest uint56).
           *
           * Counterpart to Solidity's `uint56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           *
           * _Available since v4.7._
           */
          function toUint56(uint256 value) internal pure returns (uint56) {
              require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
              return uint56(value);
          }
          /**
           * @dev Returns the downcasted uint48 from uint256, reverting on
           * overflow (when the input is greater than largest uint48).
           *
           * Counterpart to Solidity's `uint48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           *
           * _Available since v4.7._
           */
          function toUint48(uint256 value) internal pure returns (uint48) {
              require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
              return uint48(value);
          }
          /**
           * @dev Returns the downcasted uint40 from uint256, reverting on
           * overflow (when the input is greater than largest uint40).
           *
           * Counterpart to Solidity's `uint40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           *
           * _Available since v4.7._
           */
          function toUint40(uint256 value) internal pure returns (uint40) {
              require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
              return uint40(value);
          }
          /**
           * @dev Returns the downcasted uint32 from uint256, reverting on
           * overflow (when the input is greater than largest uint32).
           *
           * Counterpart to Solidity's `uint32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           *
           * _Available since v2.5._
           */
          function toUint32(uint256 value) internal pure returns (uint32) {
              require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
              return uint32(value);
          }
          /**
           * @dev Returns the downcasted uint24 from uint256, reverting on
           * overflow (when the input is greater than largest uint24).
           *
           * Counterpart to Solidity's `uint24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           *
           * _Available since v4.7._
           */
          function toUint24(uint256 value) internal pure returns (uint24) {
              require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
              return uint24(value);
          }
          /**
           * @dev Returns the downcasted uint16 from uint256, reverting on
           * overflow (when the input is greater than largest uint16).
           *
           * Counterpart to Solidity's `uint16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           *
           * _Available since v2.5._
           */
          function toUint16(uint256 value) internal pure returns (uint16) {
              require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
              return uint16(value);
          }
          /**
           * @dev Returns the downcasted uint8 from uint256, reverting on
           * overflow (when the input is greater than largest uint8).
           *
           * Counterpart to Solidity's `uint8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           *
           * _Available since v2.5._
           */
          function toUint8(uint256 value) internal pure returns (uint8) {
              require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
              return uint8(value);
          }
          /**
           * @dev Converts a signed int256 into an unsigned uint256.
           *
           * Requirements:
           *
           * - input must be greater than or equal to 0.
           *
           * _Available since v3.0._
           */
          function toUint256(int256 value) internal pure returns (uint256) {
              require(value >= 0, "SafeCast: value must be positive");
              return uint256(value);
          }
          /**
           * @dev Returns the downcasted int248 from int256, reverting on
           * overflow (when the input is less than smallest int248 or
           * greater than largest int248).
           *
           * Counterpart to Solidity's `int248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           *
           * _Available since v4.7._
           */
          function toInt248(int256 value) internal pure returns (int248) {
              require(value >= type(int248).min && value <= type(int248).max, "SafeCast: value doesn't fit in 248 bits");
              return int248(value);
          }
          /**
           * @dev Returns the downcasted int240 from int256, reverting on
           * overflow (when the input is less than smallest int240 or
           * greater than largest int240).
           *
           * Counterpart to Solidity's `int240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           *
           * _Available since v4.7._
           */
          function toInt240(int256 value) internal pure returns (int240) {
              require(value >= type(int240).min && value <= type(int240).max, "SafeCast: value doesn't fit in 240 bits");
              return int240(value);
          }
          /**
           * @dev Returns the downcasted int232 from int256, reverting on
           * overflow (when the input is less than smallest int232 or
           * greater than largest int232).
           *
           * Counterpart to Solidity's `int232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           *
           * _Available since v4.7._
           */
          function toInt232(int256 value) internal pure returns (int232) {
              require(value >= type(int232).min && value <= type(int232).max, "SafeCast: value doesn't fit in 232 bits");
              return int232(value);
          }
          /**
           * @dev Returns the downcasted int224 from int256, reverting on
           * overflow (when the input is less than smallest int224 or
           * greater than largest int224).
           *
           * Counterpart to Solidity's `int224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           *
           * _Available since v4.7._
           */
          function toInt224(int256 value) internal pure returns (int224) {
              require(value >= type(int224).min && value <= type(int224).max, "SafeCast: value doesn't fit in 224 bits");
              return int224(value);
          }
          /**
           * @dev Returns the downcasted int216 from int256, reverting on
           * overflow (when the input is less than smallest int216 or
           * greater than largest int216).
           *
           * Counterpart to Solidity's `int216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           *
           * _Available since v4.7._
           */
          function toInt216(int256 value) internal pure returns (int216) {
              require(value >= type(int216).min && value <= type(int216).max, "SafeCast: value doesn't fit in 216 bits");
              return int216(value);
          }
          /**
           * @dev Returns the downcasted int208 from int256, reverting on
           * overflow (when the input is less than smallest int208 or
           * greater than largest int208).
           *
           * Counterpart to Solidity's `int208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           *
           * _Available since v4.7._
           */
          function toInt208(int256 value) internal pure returns (int208) {
              require(value >= type(int208).min && value <= type(int208).max, "SafeCast: value doesn't fit in 208 bits");
              return int208(value);
          }
          /**
           * @dev Returns the downcasted int200 from int256, reverting on
           * overflow (when the input is less than smallest int200 or
           * greater than largest int200).
           *
           * Counterpart to Solidity's `int200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           *
           * _Available since v4.7._
           */
          function toInt200(int256 value) internal pure returns (int200) {
              require(value >= type(int200).min && value <= type(int200).max, "SafeCast: value doesn't fit in 200 bits");
              return int200(value);
          }
          /**
           * @dev Returns the downcasted int192 from int256, reverting on
           * overflow (when the input is less than smallest int192 or
           * greater than largest int192).
           *
           * Counterpart to Solidity's `int192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           *
           * _Available since v4.7._
           */
          function toInt192(int256 value) internal pure returns (int192) {
              require(value >= type(int192).min && value <= type(int192).max, "SafeCast: value doesn't fit in 192 bits");
              return int192(value);
          }
          /**
           * @dev Returns the downcasted int184 from int256, reverting on
           * overflow (when the input is less than smallest int184 or
           * greater than largest int184).
           *
           * Counterpart to Solidity's `int184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           *
           * _Available since v4.7._
           */
          function toInt184(int256 value) internal pure returns (int184) {
              require(value >= type(int184).min && value <= type(int184).max, "SafeCast: value doesn't fit in 184 bits");
              return int184(value);
          }
          /**
           * @dev Returns the downcasted int176 from int256, reverting on
           * overflow (when the input is less than smallest int176 or
           * greater than largest int176).
           *
           * Counterpart to Solidity's `int176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           *
           * _Available since v4.7._
           */
          function toInt176(int256 value) internal pure returns (int176) {
              require(value >= type(int176).min && value <= type(int176).max, "SafeCast: value doesn't fit in 176 bits");
              return int176(value);
          }
          /**
           * @dev Returns the downcasted int168 from int256, reverting on
           * overflow (when the input is less than smallest int168 or
           * greater than largest int168).
           *
           * Counterpart to Solidity's `int168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           *
           * _Available since v4.7._
           */
          function toInt168(int256 value) internal pure returns (int168) {
              require(value >= type(int168).min && value <= type(int168).max, "SafeCast: value doesn't fit in 168 bits");
              return int168(value);
          }
          /**
           * @dev Returns the downcasted int160 from int256, reverting on
           * overflow (when the input is less than smallest int160 or
           * greater than largest int160).
           *
           * Counterpart to Solidity's `int160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           *
           * _Available since v4.7._
           */
          function toInt160(int256 value) internal pure returns (int160) {
              require(value >= type(int160).min && value <= type(int160).max, "SafeCast: value doesn't fit in 160 bits");
              return int160(value);
          }
          /**
           * @dev Returns the downcasted int152 from int256, reverting on
           * overflow (when the input is less than smallest int152 or
           * greater than largest int152).
           *
           * Counterpart to Solidity's `int152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           *
           * _Available since v4.7._
           */
          function toInt152(int256 value) internal pure returns (int152) {
              require(value >= type(int152).min && value <= type(int152).max, "SafeCast: value doesn't fit in 152 bits");
              return int152(value);
          }
          /**
           * @dev Returns the downcasted int144 from int256, reverting on
           * overflow (when the input is less than smallest int144 or
           * greater than largest int144).
           *
           * Counterpart to Solidity's `int144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           *
           * _Available since v4.7._
           */
          function toInt144(int256 value) internal pure returns (int144) {
              require(value >= type(int144).min && value <= type(int144).max, "SafeCast: value doesn't fit in 144 bits");
              return int144(value);
          }
          /**
           * @dev Returns the downcasted int136 from int256, reverting on
           * overflow (when the input is less than smallest int136 or
           * greater than largest int136).
           *
           * Counterpart to Solidity's `int136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           *
           * _Available since v4.7._
           */
          function toInt136(int256 value) internal pure returns (int136) {
              require(value >= type(int136).min && value <= type(int136).max, "SafeCast: value doesn't fit in 136 bits");
              return int136(value);
          }
          /**
           * @dev Returns the downcasted int128 from int256, reverting on
           * overflow (when the input is less than smallest int128 or
           * greater than largest int128).
           *
           * Counterpart to Solidity's `int128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           *
           * _Available since v3.1._
           */
          function toInt128(int256 value) internal pure returns (int128) {
              require(value >= type(int128).min && value <= type(int128).max, "SafeCast: value doesn't fit in 128 bits");
              return int128(value);
          }
          /**
           * @dev Returns the downcasted int120 from int256, reverting on
           * overflow (when the input is less than smallest int120 or
           * greater than largest int120).
           *
           * Counterpart to Solidity's `int120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           *
           * _Available since v4.7._
           */
          function toInt120(int256 value) internal pure returns (int120) {
              require(value >= type(int120).min && value <= type(int120).max, "SafeCast: value doesn't fit in 120 bits");
              return int120(value);
          }
          /**
           * @dev Returns the downcasted int112 from int256, reverting on
           * overflow (when the input is less than smallest int112 or
           * greater than largest int112).
           *
           * Counterpart to Solidity's `int112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           *
           * _Available since v4.7._
           */
          function toInt112(int256 value) internal pure returns (int112) {
              require(value >= type(int112).min && value <= type(int112).max, "SafeCast: value doesn't fit in 112 bits");
              return int112(value);
          }
          /**
           * @dev Returns the downcasted int104 from int256, reverting on
           * overflow (when the input is less than smallest int104 or
           * greater than largest int104).
           *
           * Counterpart to Solidity's `int104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           *
           * _Available since v4.7._
           */
          function toInt104(int256 value) internal pure returns (int104) {
              require(value >= type(int104).min && value <= type(int104).max, "SafeCast: value doesn't fit in 104 bits");
              return int104(value);
          }
          /**
           * @dev Returns the downcasted int96 from int256, reverting on
           * overflow (when the input is less than smallest int96 or
           * greater than largest int96).
           *
           * Counterpart to Solidity's `int96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           *
           * _Available since v4.7._
           */
          function toInt96(int256 value) internal pure returns (int96) {
              require(value >= type(int96).min && value <= type(int96).max, "SafeCast: value doesn't fit in 96 bits");
              return int96(value);
          }
          /**
           * @dev Returns the downcasted int88 from int256, reverting on
           * overflow (when the input is less than smallest int88 or
           * greater than largest int88).
           *
           * Counterpart to Solidity's `int88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           *
           * _Available since v4.7._
           */
          function toInt88(int256 value) internal pure returns (int88) {
              require(value >= type(int88).min && value <= type(int88).max, "SafeCast: value doesn't fit in 88 bits");
              return int88(value);
          }
          /**
           * @dev Returns the downcasted int80 from int256, reverting on
           * overflow (when the input is less than smallest int80 or
           * greater than largest int80).
           *
           * Counterpart to Solidity's `int80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           *
           * _Available since v4.7._
           */
          function toInt80(int256 value) internal pure returns (int80) {
              require(value >= type(int80).min && value <= type(int80).max, "SafeCast: value doesn't fit in 80 bits");
              return int80(value);
          }
          /**
           * @dev Returns the downcasted int72 from int256, reverting on
           * overflow (when the input is less than smallest int72 or
           * greater than largest int72).
           *
           * Counterpart to Solidity's `int72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           *
           * _Available since v4.7._
           */
          function toInt72(int256 value) internal pure returns (int72) {
              require(value >= type(int72).min && value <= type(int72).max, "SafeCast: value doesn't fit in 72 bits");
              return int72(value);
          }
          /**
           * @dev Returns the downcasted int64 from int256, reverting on
           * overflow (when the input is less than smallest int64 or
           * greater than largest int64).
           *
           * Counterpart to Solidity's `int64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           *
           * _Available since v3.1._
           */
          function toInt64(int256 value) internal pure returns (int64) {
              require(value >= type(int64).min && value <= type(int64).max, "SafeCast: value doesn't fit in 64 bits");
              return int64(value);
          }
          /**
           * @dev Returns the downcasted int56 from int256, reverting on
           * overflow (when the input is less than smallest int56 or
           * greater than largest int56).
           *
           * Counterpart to Solidity's `int56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           *
           * _Available since v4.7._
           */
          function toInt56(int256 value) internal pure returns (int56) {
              require(value >= type(int56).min && value <= type(int56).max, "SafeCast: value doesn't fit in 56 bits");
              return int56(value);
          }
          /**
           * @dev Returns the downcasted int48 from int256, reverting on
           * overflow (when the input is less than smallest int48 or
           * greater than largest int48).
           *
           * Counterpart to Solidity's `int48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           *
           * _Available since v4.7._
           */
          function toInt48(int256 value) internal pure returns (int48) {
              require(value >= type(int48).min && value <= type(int48).max, "SafeCast: value doesn't fit in 48 bits");
              return int48(value);
          }
          /**
           * @dev Returns the downcasted int40 from int256, reverting on
           * overflow (when the input is less than smallest int40 or
           * greater than largest int40).
           *
           * Counterpart to Solidity's `int40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           *
           * _Available since v4.7._
           */
          function toInt40(int256 value) internal pure returns (int40) {
              require(value >= type(int40).min && value <= type(int40).max, "SafeCast: value doesn't fit in 40 bits");
              return int40(value);
          }
          /**
           * @dev Returns the downcasted int32 from int256, reverting on
           * overflow (when the input is less than smallest int32 or
           * greater than largest int32).
           *
           * Counterpart to Solidity's `int32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           *
           * _Available since v3.1._
           */
          function toInt32(int256 value) internal pure returns (int32) {
              require(value >= type(int32).min && value <= type(int32).max, "SafeCast: value doesn't fit in 32 bits");
              return int32(value);
          }
          /**
           * @dev Returns the downcasted int24 from int256, reverting on
           * overflow (when the input is less than smallest int24 or
           * greater than largest int24).
           *
           * Counterpart to Solidity's `int24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           *
           * _Available since v4.7._
           */
          function toInt24(int256 value) internal pure returns (int24) {
              require(value >= type(int24).min && value <= type(int24).max, "SafeCast: value doesn't fit in 24 bits");
              return int24(value);
          }
          /**
           * @dev Returns the downcasted int16 from int256, reverting on
           * overflow (when the input is less than smallest int16 or
           * greater than largest int16).
           *
           * Counterpart to Solidity's `int16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           *
           * _Available since v3.1._
           */
          function toInt16(int256 value) internal pure returns (int16) {
              require(value >= type(int16).min && value <= type(int16).max, "SafeCast: value doesn't fit in 16 bits");
              return int16(value);
          }
          /**
           * @dev Returns the downcasted int8 from int256, reverting on
           * overflow (when the input is less than smallest int8 or
           * greater than largest int8).
           *
           * Counterpart to Solidity's `int8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           *
           * _Available since v3.1._
           */
          function toInt8(int256 value) internal pure returns (int8) {
              require(value >= type(int8).min && value <= type(int8).max, "SafeCast: value doesn't fit in 8 bits");
              return int8(value);
          }
          /**
           * @dev Converts an unsigned uint256 into a signed int256.
           *
           * Requirements:
           *
           * - input must be less than or equal to maxInt256.
           *
           * _Available since v3.0._
           */
          function toInt256(uint256 value) internal pure returns (int256) {
              // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
              require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
              return int256(value);
          }
      }
      // SPDX-FileCopyrightText: 2023 Lido <[email protected]>
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity 0.8.15;
      import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
      import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
      import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
      import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
      import { SafeCall } from "src/libraries/SafeCall.sol";
      /// @title WithdrawalQueue
      /// @notice Queue for storing and managing withdrawal requests.
      ///         This contract is based on Lido's WithdrawalQueue and has been
      ///         modified to support Blast specific logic such as withdrawal discounts.
      contract WithdrawalQueue is Initializable {
          using EnumerableSet for EnumerableSet.UintSet;
          using SafeERC20 for IERC20;
          /// @notice The L1 gas limit set when sending eth to the YieldManager.
          uint256 internal constant SEND_DEFAULT_GAS_LIMIT = 100_000;
          /// @notice precision base for share rate
          uint256 internal constant E27_PRECISION_BASE = 1e27;
          /// @notice return value for the `find...` methods in case of no result
          uint256 internal constant NOT_FOUND = 0;
          address public immutable TOKEN;
          WithdrawalRequest[] private _requests;
          mapping(address => EnumerableSet.UintSet) private _requestsByOwner;
          Checkpoint[] private _checkpoints;
          uint256 private lastRequestId;
          uint256 private lastFinalizedRequestId;
          uint256 private lastCheckpointId;
          uint256 private lockedBalance;
          /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
          ///         A gap size of 42 was chosen here, so that the first slot used in a child contract
          ///         would be a multiple of 50.
          uint256[42] private __gap;
          /// @notice structure representing a request for withdrawal
          struct WithdrawalRequest {
              /// @notice sum of the all tokens submitted for withdrawals including this request (nominal amount)
              uint128 cumulativeAmount;
              /// @notice address that can claim the request and receives the funds
              address recipient;
              /// @notice block.timestamp when the request was created
              uint40 timestamp;
              /// @notice flag if the request was claimed
              bool claimed;
          }
          /// @notice output format struct for `_getWithdrawalStatus()` method
          struct WithdrawalRequestStatus {
              /// @notice nominal token amount that was locked on withdrawal queue for this request
              uint256 amount;
              /// @notice address that can claim or transfer this request
              address recipient;
              /// @notice timestamp of when the request was created, in seconds
              uint256 timestamp;
              /// @notice true, if request is finalized
              bool isFinalized;
              /// @notice true, if request is claimed. Request is claimable if (isFinalized && !isClaimed)
              bool isClaimed;
          }
          /// @notice structure to store discounts for requests that are affected by negative rebase
          /// All requests covered by the checkpoint are affected by the same discount rate `sharePrice`.
          struct Checkpoint {
              uint256 fromRequestId;
              uint256 sharePrice;
          }
          /// @dev amount represents the nominal amount of tokens that were withdrawn (burned) on L2.
          event WithdrawalRequested(
              uint256 indexed requestId,
              address indexed requestor,
              address indexed recipient,
              uint256 amount
          );
          /// @dev amountOfETHLocked represents the real amount of ETH that was locked in the queue and will be
          ///      transferred to the recipient on claim.
          event WithdrawalsFinalized(
              uint256 indexed from,
              uint256 indexed to,
              uint256 indexed checkpointId,
              uint256 amountOfETHLocked,
              uint256 timestamp,
              uint256 sharePrice
          );
          /// @dev amount represents the real amount of ETH that was transferred to the recipient.
          event WithdrawalClaimed(
              uint256 indexed requestId, address indexed recipient, uint256 amountOfETH
          );
          error InvalidRequestId(uint256 _requestId);
          error InvalidRequestIdRange(uint256 startId, uint256 endId);
          error InvalidSharePrice();
          error RequestNotFoundOrNotFinalized(uint256 _requestId);
          error RequestAlreadyClaimed(uint256 _requestId);
          error InvalidHint(uint256 _hint);
          error RequestIdsNotSorted();
          error CallerIsNotRecipient();
          error WithdrawalTransferFailed();
          error InsufficientBalance();
          constructor(address _token) {
              TOKEN = _token;
          }
          /// @notice initialize the contract with the dummy request and checkpoint
          ///         as the zero elements of the corresponding arrays so that
          ///         the first element of the array has index 1
          function __WithdrawalQueue_init() internal onlyInitializing {
              _requests.push(WithdrawalRequest(0, address(0), uint40(block.timestamp), true));
              _checkpoints.push(Checkpoint(0, 0));
          }
          function getWithdrawalStatus(uint256[] calldata _requestIds)
              external
              view
              returns (WithdrawalRequestStatus[] memory statuses)
          {
              statuses = new WithdrawalRequestStatus[](_requestIds.length);
              for (uint256 i = 0; i < _requestIds.length; ++i) {
                  statuses[i] = _getStatus(_requestIds[i]);
              }
          }
          function getWithdrawalRequests(address _owner) external view returns (uint256[] memory requestIds) {
              return _requestsByOwner[_owner].values();
          }
          function getClaimableEther(uint256[] calldata _requestIds, uint256[] calldata _hintIds)
              external
              view
              returns (uint256[] memory claimableEthValues)
          {
              claimableEthValues = new uint256[](_requestIds.length);
              for (uint256 i = 0; i < _requestIds.length; ++i) {
                  claimableEthValues[i] = _getClaimableEther(_requestIds[i], _hintIds[i]);
              }
          }
          function _getClaimableEther(uint256 _requestId, uint256 _hintId) internal view returns (uint256) {
              if (_requestId == 0 || _requestId > lastRequestId) revert InvalidRequestId(_requestId);
              if (_requestId > lastFinalizedRequestId) return 0;
              WithdrawalRequest storage request = _requests[_requestId];
              if (request.claimed) return 0;
              return _calculateClaimableEther(_requestId, _hintId);
          }
          /// @notice id of the last request
          ///  NB! requests are indexed from 1, so it returns 0 if there is no requests in the queue
          function getLastRequestId() external view returns (uint256) {
              return lastRequestId;
          }
          /// @notice id of the last finalized request
          ///  NB! requests are indexed from 1, so it returns 0 if there is no finalized requests in the queue
          function getLastFinalizedRequestId() external view returns (uint256) {
              return lastFinalizedRequestId;
          }
          /// @notice amount of ETH on this contract balance that is locked for withdrawal and available to claim
          ///  NB! this is the real amount of ETH (i.e. sum of (nominal amount of ETH burned on L2 * sharePrice))
          function getLockedBalance() public view returns (uint256) {
              return lockedBalance;
          }
          /// @notice return the last checkpoint id in the queue
          function getLastCheckpointId() external view returns (uint256) {
              return lastCheckpointId;
          }
          /// @notice return the number of unfinalized requests in the queue
          function unfinalizedRequestNumber() public view returns (uint256) {
              return lastRequestId - lastFinalizedRequestId;
          }
          /// @notice Returns the amount of ETH in the queue yet to be finalized
          ///  NB! this is the nominal amount of ETH burned on L2
          function unfinalizedAmount() internal view returns (uint256) {
              return
                  _requests[lastRequestId].cumulativeAmount - _requests[lastFinalizedRequestId].cumulativeAmount;
          }
          /// @dev Finalize requests in the queue
          /// @notice sharePrice has 1e27 precision
          ///  Emits WithdrawalsFinalized event.
          function _finalize(
              uint256 _lastRequestIdToBeFinalized,
              uint256 availableBalance,
              uint256 sharePrice
          ) internal returns (uint256 nominalAmountToFinalize, uint256 realAmountToFinalize, uint256 checkpointId) {
              // share price cannot be larger than 1e27
              if (sharePrice > E27_PRECISION_BASE) {
                  revert InvalidSharePrice();
              }
              if (_lastRequestIdToBeFinalized != 0) {
                  if (_lastRequestIdToBeFinalized > lastRequestId) revert InvalidRequestId(_lastRequestIdToBeFinalized);
                  uint256 _lastFinalizedRequestId = lastFinalizedRequestId;
                  if (_lastRequestIdToBeFinalized <= _lastFinalizedRequestId) revert InvalidRequestId(_lastRequestIdToBeFinalized);
                  WithdrawalRequest memory lastFinalizedRequest = _requests[_lastFinalizedRequestId];
                  WithdrawalRequest memory requestToFinalize = _requests[_lastRequestIdToBeFinalized];
                  nominalAmountToFinalize = requestToFinalize.cumulativeAmount - lastFinalizedRequest.cumulativeAmount;
                  realAmountToFinalize = (nominalAmountToFinalize * sharePrice) / E27_PRECISION_BASE;
                  if (realAmountToFinalize > availableBalance) {
                      revert InsufficientBalance();
                  }
                  uint256 firstRequestIdToFinalize = _lastFinalizedRequestId + 1;
                  lockedBalance += realAmountToFinalize;
                  lastFinalizedRequestId = _lastRequestIdToBeFinalized;
                  checkpointId = _createCheckpoint(firstRequestIdToFinalize, sharePrice);
                  emit WithdrawalsFinalized(
                      firstRequestIdToFinalize,
                      _lastRequestIdToBeFinalized,
                      checkpointId,
                      realAmountToFinalize,
                      block.timestamp,
                      sharePrice
                  );
              }
          }
          /// @notice Finds the list of hints for the given `_requestIds` searching among the checkpoints with indices
          ///  in the range  `[_firstIndex, _lastIndex]`.
          ///  NB! Array of request ids should be sorted
          ///  NB! `_firstIndex` should be greater than 0, because checkpoint list is 1-based array
          ///  Usage: findCheckpointHints(_requestIds, 1, getLastCheckpointIndex())
          /// @param _requestIds ids of the requests sorted in the ascending order to get hints for
          /// @param _firstIndex left boundary of the search range. Should be greater than 0
          /// @param _lastIndex right boundary of the search range. Should be less than or equal to getLastCheckpointIndex()
          /// @return hintIds array of hints used to find required checkpoint for the request
          function findCheckpointHints(uint256[] calldata _requestIds, uint256 _firstIndex, uint256 _lastIndex)
              external
              view
              returns (uint256[] memory hintIds)
          {
              hintIds = new uint256[](_requestIds.length);
              uint256 prevRequestId = 0;
              for (uint256 i = 0; i < _requestIds.length; ++i) {
                  if (_requestIds[i] < prevRequestId) {
                      revert RequestIdsNotSorted();
                  }
                  hintIds[i] = findCheckpointHint(_requestIds[i], _firstIndex, _lastIndex);
                  _firstIndex = hintIds[i];
                  prevRequestId = _requestIds[i];
              }
          }
          /// @dev View function to find a checkpoint hint to use in `claimWithdrawal()` and `getClaimableEther()`
          ///  Search will be performed in the range of `[_firstIndex, _lastIndex]`
          ///
          /// @param _requestId request id to search the checkpoint for
          /// @param _start index of the left boundary of the search range, should be greater than 0
          /// @param _end index of the right boundary of the search range, should be less than or equal
          ///  to queue.lastCheckpointId
          ///
          /// @return hint for later use in other methods or 0 if hint not found in the range
          function findCheckpointHint(uint256 _requestId, uint256 _start, uint256 _end) public view returns (uint256) {
              if (_requestId == 0 || _requestId > lastRequestId) {
                  revert InvalidRequestId(_requestId);
              }
              uint256 lastCheckpointIndex = lastCheckpointId;
              if (_start == 0 || _end > lastCheckpointIndex) {
                  revert InvalidRequestIdRange(_start, _end);
              }
              if (lastCheckpointIndex == 0 || _requestId > lastFinalizedRequestId || _start > _end) {
                  return NOT_FOUND;
              }
              // Right boundary
              if (_requestId >= _checkpoints[_end].fromRequestId) {
                  // it's the last checkpoint, so it's valid
                  if (_end == lastCheckpointIndex) {
                      return _end;
                  }
                  // it fits right before the next checkpoint
                  if (_requestId < _checkpoints[_end + 1].fromRequestId) {
                      return _end;
                  }
                  return NOT_FOUND;
              }
              // Left boundary
              if (_requestId < _checkpoints[_start].fromRequestId) {
                  return NOT_FOUND;
              }
              // Binary search
              uint256 min = _start;
              uint256 max = _end - 1;
              while (max > min) {
                  uint256 mid = (max + min + 1) / 2;
                  if (_checkpoints[mid].fromRequestId <= _requestId) {
                      min = mid;
                  } else {
                      max = mid - 1;
                  }
              }
              return min;
          }
          /// @dev Returns the status of the withdrawal request with `_requestId` id
          function _getStatus(uint256 _requestId) internal view returns (WithdrawalRequestStatus memory status) {
              if (_requestId == 0 || _requestId > lastRequestId) revert InvalidRequestId(_requestId);
              WithdrawalRequest memory request = _requests[_requestId];
              WithdrawalRequest memory previousRequest = _requests[_requestId - 1];
              status = WithdrawalRequestStatus(
                  request.cumulativeAmount - previousRequest.cumulativeAmount,
                  request.recipient,
                  request.timestamp,
                  _requestId <= lastFinalizedRequestId,
                  request.claimed
              );
          }
          /// @dev creates a new `WithdrawalRequest` in the queue
          ///  Emits WithdrawalRequested event
          function _requestWithdrawal(address recipient, uint256 amount)
              internal
              returns (uint256 requestId)
          {
              uint256 _lastRequestId = lastRequestId;
              WithdrawalRequest memory lastRequest = _requests[_lastRequestId];
              uint128 cumulativeAmount = lastRequest.cumulativeAmount + SafeCast.toUint128(amount);
              requestId = _lastRequestId + 1;
              lastRequestId = requestId;
              WithdrawalRequest memory newRequest = WithdrawalRequest(
                  cumulativeAmount,
                  recipient,
                  uint40(block.timestamp),
                  false
              );
              _requests.push(newRequest);
              _requestsByOwner[recipient].add(requestId);
              emit WithdrawalRequested(requestId, msg.sender, recipient, amount);
          }
          /// @dev assumes firstRequestIdToFinalize > _lastFinalizedRequestId && sharePrice <= 1e27
          function _createCheckpoint(uint256 firstRequestIdToFinalize, uint256 sharePrice) internal returns (uint256) {
              _checkpoints.push(Checkpoint(firstRequestIdToFinalize, sharePrice));
              lastCheckpointId += 1;
              return lastCheckpointId;
          }
          /// @dev can only be called by request.recipient (YieldManager)
          function claimWithdrawal(uint256 _requestId, uint256 _hintId) external returns (bool success) {
              if (_requestId == 0) revert InvalidRequestId(_requestId);
              if (_requestId > lastFinalizedRequestId) revert RequestNotFoundOrNotFinalized(_requestId);
              WithdrawalRequest storage request = _requests[_requestId];
              if (request.claimed) revert RequestAlreadyClaimed(_requestId);
              request.claimed = true;
              address recipient = request.recipient;
              if (msg.sender != recipient) {
                  revert CallerIsNotRecipient();
              }
              uint256 realAmount = _calculateClaimableEther(_requestId, _hintId);
              lockedBalance -= realAmount;
              if (TOKEN == address(0)) {
                  (success) = SafeCall.send(recipient, SEND_DEFAULT_GAS_LIMIT, realAmount);
              } else {
                  IERC20(TOKEN).safeTransfer(recipient, realAmount);
                  success = true;
              }
              if (!success) {
                  revert WithdrawalTransferFailed();
              }
              emit WithdrawalClaimed(_requestId, recipient, realAmount);
          }
          /// @dev Calculate the amount of ETH that can be claimed for the withdrawal request with `_requestId`.
          ///  NB! This function returns the real amount of ETH that can be claimed by the recipient, not the nominal amount
          ///  that was burned on L2. The real amount is calculated as nominal amount * share price, which can be found
          ///  in the checkpoint with `_hintId`.
          function _calculateClaimableEther(uint256 _requestId, uint256 _hintId)
              internal
              view
              returns (uint256)
          {
              if (_hintId == 0) {
                  revert InvalidHint(_hintId);
              }
              uint256 lastCheckpointIndex = lastCheckpointId;
              if (_hintId > lastCheckpointIndex) {
                  revert InvalidHint(_hintId);
              }
              Checkpoint memory checkpoint = _checkpoints[_hintId];
              if (_requestId < checkpoint.fromRequestId) {
                  revert InvalidHint(_hintId);
              }
              if (_hintId < lastCheckpointIndex) {
                  Checkpoint memory nextCheckpoint = _checkpoints[_hintId + 1];
                  if (_requestId >= nextCheckpoint.fromRequestId) {
                      revert InvalidHint(_hintId);
                  }
              }
              WithdrawalRequest storage prevRequest = _requests[_requestId - 1];
              WithdrawalRequest storage request = _requests[_requestId];
              uint256 nominalAmount = request.cumulativeAmount - prevRequest.cumulativeAmount;
              return (nominalAmount * checkpoint.sharePrice) / E27_PRECISION_BASE;
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
      import { Semver } from "src/universal/Semver.sol";
      /// @title YieldProvider
      /// @notice Base contract for interacting and accounting for a
      ///         specific yield source.
      abstract contract YieldProvider is Semver {
          YieldManager public immutable YIELD_MANAGER;
          uint256 public stakedPrincipal;
          uint256 public pendingBalance;
          event YieldCommit(bytes32 indexed provider, int256 yield);
          event Staked(bytes32 indexed provider, uint256 amount);
          event Unstaked(bytes32 indexed provider, uint256 amount);
          event Pending(bytes32 indexed provider, uint256 amount);
          event Claimed(bytes32 indexed provider, uint256 claimedAmount, uint256 expectedAmount);
          event InsurancePremiumPaid(bytes32 indexed provider, uint256 amount);
          event InsuranceWithdrawn(bytes32 indexed provider, uint256 amount);
          error InsufficientStakableFunds();
          error CallerIsNotYieldManager();
          error ContextIsNotYieldManager();
          error NotSupported();
          modifier onlyYieldManager() {
              if (msg.sender != address(YIELD_MANAGER)) {
                  revert CallerIsNotYieldManager();
              }
              _;
          }
          modifier onlyDelegateCall() {
              if (address(this) != address(YIELD_MANAGER)) {
                  revert ContextIsNotYieldManager();
              }
              _;
          }
          /// @param _yieldManager Address of the yield manager for the underlying
          ///        yield asset of this provider.
          constructor(YieldManager _yieldManager) Semver(1, 0, 0) {
              require(address(_yieldManager) != address(this));
              YIELD_MANAGER = _yieldManager;
          }
          /// @notice initialize
          function initialize() external onlyDelegateCall virtual {}
          function name() public pure virtual returns (string memory);
          function id() public view returns (bytes32) {
              return keccak256(abi.encodePacked(name(), version()));
          }
          /// @notice Whether staking is enabled for the given asset.
          function isStakingEnabled(address token) external view virtual returns (bool);
          /// @notice Current balance of the provider's staked funds.
          function stakedBalance() public view virtual returns (uint256);
          /// @notice Total value in the provider's yield method/protocol.
          function totalValue() public view returns (uint256) {
              return stakedBalance() + pendingBalance;
          }
          /// @notice Current amount of yield gained since the previous commit.
          function yield() public view virtual returns (int256);
          /// @notice Whether the provider supports yield insurance.
          function supportsInsurancePayment() public view virtual returns (bool) {
              return false;
          }
          /// @notice Gets insurance balance available for the provider's assets.
          function insuranceBalance() public view virtual returns (uint256) {
              revert("not supported");
          }
          /// @notice Commit the current amount of yield and checkpoint the accounting
          ///         variables.
          /// @return Amount of yield at this checkpoint.
          function commitYield() external onlyYieldManager returns (int256) {
              _beforeCommitYield();
              int256 _yield = yield();
              stakedPrincipal = stakedBalance();
              _afterCommitYield();
              emit YieldCommit(id(), _yield);
              return _yield;
          }
          /// @notice Stake YieldManager funds using the provider's yield method/protocol.
          ///         Must be called via `delegatecall` from the YieldManager.
          function stake(uint256) external virtual;
          /// @notice Unstake YieldManager funds from the provider's yield method/protocol.
          ///         Must be called via `delegatecall` from the YieldManager.
          /// @return pending Amount of funds pending in an unstaking delay
          /// @return claimed Amount of funds that have been claimed.
          ///         The yield provider is expected to return
          ///         (pending = 0, claimed = non-zero) if the funds are immediately
          ///         available for withdrawal, and (pending = non-zero, claimed = 0)
          ///         if the funds are in an unstaking delay.
          function unstake(uint256) external virtual returns (uint256 pending, uint256 claimed);
          /// @notice Pay insurance premium during a yield report. Must be called via
          ///         `delegatecall` from the YieldManager.
          function payInsurancePremium(uint256) external virtual onlyDelegateCall {
              revert NotSupported();
          }
          /// @notice Withdraw insurance funds to cover yield losses during a yield report.
          ///         Must be called via `delegatecall` from the YieldManager.
          function withdrawFromInsurance(uint256) external virtual onlyDelegateCall {
              revert NotSupported();
          }
          /// @notice Record a deposit to the stake balance of the provider to track the
          ///         principal balance.
          /// @param amount Amount of new staked balance to record.
          function recordStakedDeposit(uint256 amount) external virtual onlyYieldManager {
              stakedPrincipal += amount;
              emit Staked(id(), amount);
          }
          /// @notice Record a withdraw to the stake balance of the provider to track the
          ///         principal balance. This method should be called by the Yield Manager
          ///         after delegate-calling the provider's `unstake` method, which should
          ///         return the arguments to this method.
          function recordUnstaked(uint256 pending, uint256 claimed, uint256 expected) external virtual onlyYieldManager {
              _recordStakedWithdraw(expected);
              if (pending > 0) {
                  require(claimed == 0 && pending == expected, "invalid yield provider implementation");
                  _recordPending(pending);
              }
              if (claimed > 0) {
                  require(pending == 0 && claimed == expected, "invalid yield provider implementation");
                  _recordClaimed(claimed, expected);
              }
          }
          /// @notice A hook that is DELEGATE-CALLed by the Yield Manager for the provider
          ///         to perform any actions before the yield report process begins.
          function preCommitYieldReportDelegateCallHook() external virtual onlyDelegateCall {}
          /// @notice Record a withdraw the stake balance of the provider.
          /// @param amount Amount of staked balance to remove.
          function _recordStakedWithdraw(uint256 amount) internal virtual {
              stakedPrincipal -= amount;
              emit Unstaked(id(), amount);
          }
          /// @notice Record a pending balance to the provider. Needed only for providers
          ///         that use two-step withdrawals (e.g. Lido).
          function _recordPending(uint256 amount) internal virtual {
              pendingBalance += amount;
              emit Pending(id(), amount);
          }
          /// @notice Record a claimed balance to the provider. For providers with one-step
          ///         withdrawals, this method should be overriden to just emit the event
          ///         to avoid integer underflow.
          function _recordClaimed(uint256 claimed, uint256 expected) internal virtual {
              require(claimed <= expected, "invalid yield provider implementation");
              // Decrements pending balance by the expected amount, not the claimed amount.
              // If claimed < expected, the difference (expected - claimed) must be considered
              // as realized negative yield. To correctly reflect this, the difference is
              // subtracted from the pending balance (and totalProviderValue).
              pendingBalance -= expected;
              emit Claimed(id(), claimed, expected);
          }
          function _beforeCommitYield() internal virtual {}
          function _afterCommitYield() internal virtual {}
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity 0.8.15;
      interface IDelegateCalls {
          function payInsurancePremium(uint256) external;
          function withdrawFromInsurance(uint256) external;
          function stake(uint256) external;
          function unstake(uint256) external returns (uint256, uint256);
          function preCommitYieldReportDelegateCallHook() external;
      }
      abstract contract DelegateCalls {
          function _delegatecall_payInsurancePremium(address provider, uint256 arg) internal {
              (bool success,) = provider.delegatecall(
                  abi.encodeCall(IDelegateCalls.payInsurancePremium, (arg))
              );
              require(success, "delegatecall failed");
          }
          function _delegatecall_withdrawFromInsurance(address provider, uint256 arg) internal {
              (bool success,) = provider.delegatecall(
                  abi.encodeCall(IDelegateCalls.withdrawFromInsurance, (arg))
              );
              require(success, "delegatecall failed");
          }
          function _delegatecall_stake(address provider, uint256 arg) internal {
              (bool success,) = provider.delegatecall(
                  abi.encodeCall(IDelegateCalls.stake, (arg))
              );
              require(success, "delegatecall failed");
          }
          function _delegatecall_unstake(address provider, uint256 arg) internal returns (uint256, uint256) {
              (bool success, bytes memory res) = provider.delegatecall(
                  abi.encodeCall(IDelegateCalls.unstake, (arg))
              );
              require(success, "delegatecall failed");
              return abi.decode(res, (uint256, uint256));
          }
          function _delegatecall_preCommitYieldReportDelegateCallHook(address provider) internal {
              (bool success,) = provider.delegatecall(
                  abi.encodeCall(IDelegateCalls.preCommitYieldReportDelegateCallHook, ())
              );
              require(success, "delegatecall failed");
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
          uint8 private constant _ADDRESS_LENGTH = 20;
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              // Inspired by OraclizeAPI's implementation - MIT licence
              // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
              if (value == 0) {
                  return "0";
              }
              uint256 temp = value;
              uint256 digits;
              while (temp != 0) {
                  digits++;
                  temp /= 10;
              }
              bytes memory buffer = new bytes(digits);
              while (value != 0) {
                  digits -= 1;
                  buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                  value /= 10;
              }
              return string(buffer);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              if (value == 0) {
                  return "0x00";
              }
              uint256 temp = value;
              uint256 length = 0;
              while (temp != 0) {
                  length++;
                  temp >>= 8;
              }
              return toHexString(value, length);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = _HEX_SYMBOLS[value & 0xf];
                  value >>= 4;
              }
              require(value == 0, "Strings: hex length insufficient");
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Permit.sol)
      pragma solidity ^0.8.0;
      import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/IERC20PermitUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/cryptography/ECDSAUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/cryptography/EIP712Upgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/CountersUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       *
       * _Available since v3.4._
       *
       * @custom:storage-size 51
       */
      abstract contract ERC20PermitUpgradeable is Initializable, IERC20PermitUpgradeable, EIP712Upgradeable {
          using CountersUpgradeable for CountersUpgradeable.Counter;
          mapping(address => CountersUpgradeable.Counter) private _nonces;
          // solhint-disable-next-line var-name-mixedcase
          bytes32 public constant PERMIT_TYPEHASH =
              keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
          /**
           * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
           * However, to ensure consistency with the upgradeable transpiler, we will continue
           * to reserve a slot.
           * @custom:oz-renamed-from _PERMIT_TYPEHASH
           */
          // solhint-disable-next-line var-name-mixedcase
          bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;
          /**
           * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
           *
           * It's a good idea to use the same `name` that is defined as the ERC20 token name.
           */
          function __ERC20Permit_init(string memory name) internal onlyInitializing {
              __EIP712_init_unchained(name, "1");
          }
          function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {}
          /**
           * @dev See {IERC20Permit-permit}.
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) public virtual override {
              require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
              bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
              bytes32 hash = _hashTypedDataV4(structHash);
              address signer = ECDSAUpgradeable.recover(hash, v, r, s);
              require(signer == owner, "ERC20Permit: invalid signature");
              _approve(owner, spender, value);
          }
          /**
           * @dev See {IERC20Permit-nonces}.
           */
          function nonces(address owner) public view virtual override returns (uint256) {
              return _nonces[owner].current();
          }
          /**
           * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view override returns (bytes32) {
              return _domainSeparatorV4();
          }
          /**
           * @dev "Consume a nonce": return the current value and increment.
           *
           * _Available since v4.1._
           */
          function _useNonce(address owner) internal virtual returns (uint256 current) {
              CountersUpgradeable.Counter storage nonce = _nonces[owner];
              current = nonce.current();
              nonce.increment();
          }
          /**
           * @dev See {ERC20-_approve}.
           */
          function _approve(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual;
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
      pragma solidity ^0.8.0;
      import "../IERC20.sol";
      /**
       * @dev Interface for the optional metadata functions from the ERC20 standard.
       *
       * _Available since v4.1._
       */
      interface IERC20Metadata is IERC20 {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.0;
      import {ERC20} from "../tokens/ERC20.sol";
      /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
      /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/SafeTransferLib.sol)
      /// @dev Caution! This library won't check that a token has code, responsibility is delegated to the caller.
      library SafeTransferLib {
          /*//////////////////////////////////////////////////////////////
                                   ETH OPERATIONS
          //////////////////////////////////////////////////////////////*/
          function safeTransferETH(address to, uint256 amount) internal {
              bool success;
              assembly {
                  // Transfer the ETH and store if it succeeded or not.
                  success := call(gas(), to, amount, 0, 0, 0, 0)
              }
              require(success, "ETH_TRANSFER_FAILED");
          }
          /*//////////////////////////////////////////////////////////////
                                  ERC20 OPERATIONS
          //////////////////////////////////////////////////////////////*/
          function safeTransferFrom(
              ERC20 token,
              address from,
              address to,
              uint256 amount
          ) internal {
              bool success;
              assembly {
                  // We'll write our calldata to this slot below, but restore it later.
                  let memPointer := mload(0x40)
                  // Write the abi-encoded calldata into memory, beginning with the function selector.
                  mstore(0, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                  mstore(4, from) // Append the "from" argument.
                  mstore(36, to) // Append the "to" argument.
                  mstore(68, amount) // Append the "amount" argument.
                  success := and(
                      // Set success to whether the call reverted, if not we check it either
                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                      // We use 100 because that's the total length of our calldata (4 + 32 * 3)
                      // Counterintuitively, this call() must be positioned after the or() in the
                      // surrounding and() because and() evaluates its arguments from right to left.
                      call(gas(), token, 0, 0, 100, 0, 32)
                  )
                  mstore(0x60, 0) // Restore the zero slot to zero.
                  mstore(0x40, memPointer) // Restore the memPointer.
              }
              require(success, "TRANSFER_FROM_FAILED");
          }
          function safeTransfer(
              ERC20 token,
              address to,
              uint256 amount
          ) internal {
              bool success;
              assembly {
                  // We'll write our calldata to this slot below, but restore it later.
                  let memPointer := mload(0x40)
                  // Write the abi-encoded calldata into memory, beginning with the function selector.
                  mstore(0, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                  mstore(4, to) // Append the "to" argument.
                  mstore(36, amount) // Append the "amount" argument.
                  success := and(
                      // Set success to whether the call reverted, if not we check it either
                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                      // We use 68 because that's the total length of our calldata (4 + 32 * 2)
                      // Counterintuitively, this call() must be positioned after the or() in the
                      // surrounding and() because and() evaluates its arguments from right to left.
                      call(gas(), token, 0, 0, 68, 0, 32)
                  )
                  mstore(0x60, 0) // Restore the zero slot to zero.
                  mstore(0x40, memPointer) // Restore the memPointer.
              }
              require(success, "TRANSFER_FAILED");
          }
          function safeApprove(
              ERC20 token,
              address to,
              uint256 amount
          ) internal {
              bool success;
              assembly {
                  // We'll write our calldata to this slot below, but restore it later.
                  let memPointer := mload(0x40)
                  // Write the abi-encoded calldata into memory, beginning with the function selector.
                  mstore(0, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
                  mstore(4, to) // Append the "to" argument.
                  mstore(36, amount) // Append the "amount" argument.
                  success := and(
                      // Set success to whether the call reverted, if not we check it either
                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                      // We use 68 because that's the total length of our calldata (4 + 32 * 2)
                      // Counterintuitively, this call() must be positioned after the or() in the
                      // surrounding and() because and() evaluates its arguments from right to left.
                      call(gas(), token, 0, 0, 68, 0, 32)
                  )
                  mstore(0x60, 0) // Restore the zero slot to zero.
                  mstore(0x40, memPointer) // Restore the memPointer.
              }
              require(success, "APPROVE_FAILED");
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal onlyInitializing {
          }
          function __Context_init_unchained() internal onlyInitializing {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.0;
      /// @title Bytes
      /// @notice Bytes is a library for manipulating byte arrays.
      library Bytes {
          /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
          /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
          ///         as opposed to a pointer to the original array. Will throw if trying to slice more
          ///         bytes than exist in the array.
          /// @param _bytes Byte array to slice.
          /// @param _start Starting index of the slice.
          /// @param _length Length of the slice.
          /// @return Slice of the input byte array.
          function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
              unchecked {
                  require(_length + 31 >= _length, "slice_overflow");
                  require(_start + _length >= _start, "slice_overflow");
                  require(_bytes.length >= _start + _length, "slice_outOfBounds");
              }
              bytes memory tempBytes;
              assembly {
                  switch iszero(_length)
                  case 0 {
                      // Get a location of some free memory and store it in tempBytes as
                      // Solidity does for memory variables.
                      tempBytes := mload(0x40)
                      // The first word of the slice result is potentially a partial
                      // word read from the original array. To read it, we calculate
                      // the length of that partial word and start copying that many
                      // bytes into the array. The first word we copy will start with
                      // data we don't care about, but the last `lengthmod` bytes will
                      // land at the beginning of the contents of the new array. When
                      // we're done copying, we overwrite the full first word with
                      // the actual length of the slice.
                      let lengthmod := and(_length, 31)
                      // The multiplication in the next line is necessary
                      // because when slicing multiples of 32 bytes (lengthmod == 0)
                      // the following copy loop was copying the origin's length
                      // and then ending prematurely not copying everything it should.
                      let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                      let end := add(mc, _length)
                      for {
                          // The multiplication in the next line has the same exact purpose
                          // as the one above.
                          let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                      } lt(mc, end) {
                          mc := add(mc, 0x20)
                          cc := add(cc, 0x20)
                      } { mstore(mc, mload(cc)) }
                      mstore(tempBytes, _length)
                      //update free-memory pointer
                      //allocating the array padded to 32 bytes like the compiler does now
                      mstore(0x40, and(add(mc, 31), not(31)))
                  }
                  //if we want a zero-length slice let's just return a zero-length array
                  default {
                      tempBytes := mload(0x40)
                      //zero out the 32 bytes slice we are about to return
                      //we need to do it because Solidity does not garbage collect
                      mstore(tempBytes, 0)
                      mstore(0x40, add(tempBytes, 0x20))
                  }
              }
              return tempBytes;
          }
          /// @notice Slices a byte array with a given starting index up to the end of the original byte
          ///         array. Returns a new array rathern than a pointer to the original.
          /// @param _bytes Byte array to slice.
          /// @param _start Starting index of the slice.
          /// @return Slice of the input byte array.
          function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
              if (_start >= _bytes.length) {
                  return bytes("");
              }
              return slice(_bytes, _start, _bytes.length - _start);
          }
          /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
          ///         Resulting nibble array will be exactly twice as long as the input byte array.
          /// @param _bytes Input byte array to convert.
          /// @return Resulting nibble array.
          function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
              bytes memory _nibbles;
              assembly {
                  // Grab a free memory offset for the new array
                  _nibbles := mload(0x40)
                  // Load the length of the passed bytes array from memory
                  let bytesLength := mload(_bytes)
                  // Calculate the length of the new nibble array
                  // This is the length of the input array times 2
                  let nibblesLength := shl(0x01, bytesLength)
                  // Update the free memory pointer to allocate memory for the new array.
                  // To do this, we add the length of the new array + 32 bytes for the array length
                  // rounded up to the nearest 32 byte boundary to the current free memory pointer.
                  mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
                  // Store the length of the new array in memory
                  mstore(_nibbles, nibblesLength)
                  // Store the memory offset of the _bytes array's contents on the stack
                  let bytesStart := add(_bytes, 0x20)
                  // Store the memory offset of the nibbles array's contents on the stack
                  let nibblesStart := add(_nibbles, 0x20)
                  // Loop through each byte in the input array
                  for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                      // Get the starting offset of the next 2 bytes in the nibbles array
                      let offset := add(nibblesStart, shl(0x01, i))
                      // Load the byte at the current index within the `_bytes` array
                      let b := byte(0x00, mload(add(bytesStart, i)))
                      // Pull out the first nibble and store it in the new array
                      mstore8(offset, shr(0x04, b))
                      // Pull out the second nibble and store it in the new array
                      mstore8(add(offset, 0x01), and(b, 0x0F))
                  }
              }
              return _nibbles;
          }
          /// @notice Compares two byte arrays by comparing their keccak256 hashes.
          /// @param _bytes First byte array to compare.
          /// @param _other Second byte array to compare.
          /// @return True if the two byte arrays are equal, false otherwise.
          function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
              return keccak256(_bytes) == keccak256(_other);
          }
      }
      // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
      pragma solidity ^0.8.8;
      /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
      /// @title RLPReader
      /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
      ///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
      ///         various tweaks to improve readability.
      library RLPReader {
          /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
          type MemoryPointer is uint256;
          /// @notice RLP item types.
          /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
          /// @custom:value LIST_ITEM Represents an RLP list item.
          enum RLPItemType {
              DATA_ITEM,
              LIST_ITEM
          }
          /// @notice Struct representing an RLP item.
          /// @custom:field length Length of the RLP item.
          /// @custom:field ptr    Pointer to the RLP item in memory.
          struct RLPItem {
              uint256 length;
              MemoryPointer ptr;
          }
          /// @notice Max list length that this library will accept.
          uint256 internal constant MAX_LIST_LENGTH = 32;
          /// @notice Converts bytes to a reference to memory position and length.
          /// @param _in Input bytes to convert.
          /// @return out_ Output memory reference.
          function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
              // Empty arrays are not RLP items.
              require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
              MemoryPointer ptr;
              assembly {
                  ptr := add(_in, 32)
              }
              out_ = RLPItem({ length: _in.length, ptr: ptr });
          }
          /// @notice Reads an RLP list value into a list of RLP items.
          /// @param _in RLP list value.
          /// @return out_ Decoded RLP list items.
          function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
              (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
              require(itemType == RLPItemType.LIST_ITEM, "RLPReader: decoded item type for list is not a list item");
              require(listOffset + listLength == _in.length, "RLPReader: list item has an invalid data remainder");
              // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
              // writing to the length. Since we can't know the number of RLP items without looping over
              // the entire input, we'd have to loop twice to accurately size this array. It's easier to
              // simply set a reasonable maximum list length and decrease the size before we finish.
              out_ = new RLPItem[](MAX_LIST_LENGTH);
              uint256 itemCount = 0;
              uint256 offset = listOffset;
              while (offset < _in.length) {
                  (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                      RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
                  );
                  // We don't need to check itemCount < out.length explicitly because Solidity already
                  // handles this check on our behalf, we'd just be wasting gas.
                  out_[itemCount] = RLPItem({
                      length: itemLength + itemOffset,
                      ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                  });
                  itemCount += 1;
                  offset += itemOffset + itemLength;
              }
              // Decrease the array size to match the actual item count.
              assembly {
                  mstore(out_, itemCount)
              }
          }
          /// @notice Reads an RLP list value into a list of RLP items.
          /// @param _in RLP list value.
          /// @return out_ Decoded RLP list items.
          function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
              out_ = readList(toRLPItem(_in));
          }
          /// @notice Reads an RLP bytes value into bytes.
          /// @param _in RLP bytes value.
          /// @return out_ Decoded bytes.
          function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
              (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
              require(itemType == RLPItemType.DATA_ITEM, "RLPReader: decoded item type for bytes is not a data item");
              require(_in.length == itemOffset + itemLength, "RLPReader: bytes value contains an invalid remainder");
              out_ = _copy(_in.ptr, itemOffset, itemLength);
          }
          /// @notice Reads an RLP bytes value into bytes.
          /// @param _in RLP bytes value.
          /// @return out_ Decoded bytes.
          function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
              out_ = readBytes(toRLPItem(_in));
          }
          /// @notice Reads the raw bytes of an RLP item.
          /// @param _in RLP item to read.
          /// @return out_ Raw RLP bytes.
          function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
              out_ = _copy(_in.ptr, 0, _in.length);
          }
          /// @notice Decodes the length of an RLP item.
          /// @param _in RLP item to decode.
          /// @return offset_ Offset of the encoded data.
          /// @return length_ Length of the encoded data.
          /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
          function _decodeLength(RLPItem memory _in)
              private
              pure
              returns (uint256 offset_, uint256 length_, RLPItemType type_)
          {
              // Short-circuit if there's nothing to decode, note that we perform this check when
              // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
              // that function and create an RLP item directly. So we need to check this anyway.
              require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
              MemoryPointer ptr = _in.ptr;
              uint256 prefix;
              assembly {
                  prefix := byte(0, mload(ptr))
              }
              if (prefix <= 0x7f) {
                  // Single byte.
                  return (0, 1, RLPItemType.DATA_ITEM);
              } else if (prefix <= 0xb7) {
                  // Short string.
                  // slither-disable-next-line variable-scope
                  uint256 strLen = prefix - 0x80;
                  require(
                      _in.length > strLen, "RLPReader: length of content must be greater than string length (short string)"
                  );
                  bytes1 firstByteOfContent;
                  assembly {
                      firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                  }
                  require(
                      strLen != 1 || firstByteOfContent >= 0x80,
                      "RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)"
                  );
                  return (1, strLen, RLPItemType.DATA_ITEM);
              } else if (prefix <= 0xbf) {
                  // Long string.
                  uint256 lenOfStrLen = prefix - 0xb7;
                  require(
                      _in.length > lenOfStrLen,
                      "RLPReader: length of content must be > than length of string length (long string)"
                  );
                  bytes1 firstByteOfContent;
                  assembly {
                      firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                  }
                  require(
                      firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long string)"
                  );
                  uint256 strLen;
                  assembly {
                      strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                  }
                  require(strLen > 55, "RLPReader: length of content must be greater than 55 bytes (long string)");
                  require(
                      _in.length > lenOfStrLen + strLen,
                      "RLPReader: length of content must be greater than total length (long string)"
                  );
                  return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
              } else if (prefix <= 0xf7) {
                  // Short list.
                  // slither-disable-next-line variable-scope
                  uint256 listLen = prefix - 0xc0;
                  require(_in.length > listLen, "RLPReader: length of content must be greater than list length (short list)");
                  return (1, listLen, RLPItemType.LIST_ITEM);
              } else {
                  // Long list.
                  uint256 lenOfListLen = prefix - 0xf7;
                  require(
                      _in.length > lenOfListLen,
                      "RLPReader: length of content must be > than length of list length (long list)"
                  );
                  bytes1 firstByteOfContent;
                  assembly {
                      firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                  }
                  require(
                      firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long list)"
                  );
                  uint256 listLen;
                  assembly {
                      listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                  }
                  require(listLen > 55, "RLPReader: length of content must be greater than 55 bytes (long list)");
                  require(
                      _in.length > lenOfListLen + listLen,
                      "RLPReader: length of content must be greater than total length (long list)"
                  );
                  return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
              }
          }
          /// @notice Copies the bytes from a memory location.
          /// @param _src    Pointer to the location to read from.
          /// @param _offset Offset to start reading from.
          /// @param _length Number of bytes to read.
          /// @return out_ Copied bytes.
          function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
              out_ = new bytes(_length);
              if (_length == 0) {
                  return out_;
              }
              // Mostly based on Solidity's copy_memory_to_memory:
              // solhint-disable max-line-length
              // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
              uint256 src = MemoryPointer.unwrap(_src) + _offset;
              assembly {
                  let dest := add(out_, 32)
                  let i := 0
                  for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
                  if gt(i, _length) { mstore(add(dest, _length), 0) }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.0;
      /// @notice Arithmetic library with operations for fixed-point numbers.
      /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
      library FixedPointMathLib {
          /*//////////////////////////////////////////////////////////////
                          SIMPLIFIED FIXED POINT OPERATIONS
          //////////////////////////////////////////////////////////////*/
          uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
          function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
          }
          function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
          }
          function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
          }
          function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
          }
          function powWad(int256 x, int256 y) internal pure returns (int256) {
              // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
              return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
          }
          function expWad(int256 x) internal pure returns (int256 r) {
              unchecked {
                  // When the result is < 0.5 we return zero. This happens when
                  // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                  if (x <= -42139678854452767551) return 0;
                  // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                  // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                  if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                  // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                  // for more intermediate precision and a binary basis. This base conversion
                  // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                  x = (x << 78) / 5**18;
                  // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                  // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                  // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                  int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                  x = x - k * 54916777467707473351141471128;
                  // k is in the range [-61, 195].
                  // Evaluate using a (6, 7)-term rational approximation.
                  // p is made monic, we'll multiply by a scale factor later.
                  int256 y = x + 1346386616545796478920950773328;
                  y = ((y * x) >> 96) + 57155421227552351082224309758442;
                  int256 p = y + x - 94201549194550492254356042504812;
                  p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                  p = p * x + (4385272521454847904659076985693276 << 96);
                  // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                  int256 q = x - 2855989394907223263936484059900;
                  q = ((q * x) >> 96) + 50020603652535783019961831881945;
                  q = ((q * x) >> 96) - 533845033583426703283633433725380;
                  q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                  q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                  q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                  assembly {
                      // Div in assembly because solidity adds a zero check despite the unchecked.
                      // The q polynomial won't have zeros in the domain as all its roots are complex.
                      // No scaling is necessary because p is already 2**96 too large.
                      r := sdiv(p, q)
                  }
                  // r should be in the range (0.09, 0.25) * 2**96.
                  // We now need to multiply r by:
                  // * the scale factor s = ~6.031367120.
                  // * the 2**k factor from the range reduction.
                  // * the 1e18 / 2**96 factor for base conversion.
                  // We do this all at once, with an intermediate result in 2**213
                  // basis, so the final right shift is always by a positive amount.
                  r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
              }
          }
          function lnWad(int256 x) internal pure returns (int256 r) {
              unchecked {
                  require(x > 0, "UNDEFINED");
                  // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                  // We do this by multiplying by 2**96 / 10**18. But since
                  // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                  // and add ln(2**96 / 10**18) at the end.
                  // Reduce range of x to (1, 2) * 2**96
                  // ln(2^k * x) = k * ln(2) + ln(x)
                  int256 k = int256(log2(uint256(x))) - 96;
                  x <<= uint256(159 - k);
                  x = int256(uint256(x) >> 159);
                  // Evaluate using a (8, 8)-term rational approximation.
                  // p is made monic, we will multiply by a scale factor later.
                  int256 p = x + 3273285459638523848632254066296;
                  p = ((p * x) >> 96) + 24828157081833163892658089445524;
                  p = ((p * x) >> 96) + 43456485725739037958740375743393;
                  p = ((p * x) >> 96) - 11111509109440967052023855526967;
                  p = ((p * x) >> 96) - 45023709667254063763336534515857;
                  p = ((p * x) >> 96) - 14706773417378608786704636184526;
                  p = p * x - (795164235651350426258249787498 << 96);
                  // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                  // q is monic by convention.
                  int256 q = x + 5573035233440673466300451813936;
                  q = ((q * x) >> 96) + 71694874799317883764090561454958;
                  q = ((q * x) >> 96) + 283447036172924575727196451306956;
                  q = ((q * x) >> 96) + 401686690394027663651624208769553;
                  q = ((q * x) >> 96) + 204048457590392012362485061816622;
                  q = ((q * x) >> 96) + 31853899698501571402653359427138;
                  q = ((q * x) >> 96) + 909429971244387300277376558375;
                  assembly {
                      // Div in assembly because solidity adds a zero check despite the unchecked.
                      // The q polynomial is known not to have zeros in the domain.
                      // No scaling required because p is already 2**96 too large.
                      r := sdiv(p, q)
                  }
                  // r is in the range (0, 0.125) * 2**96
                  // Finalization, we need to:
                  // * multiply by the scale factor s = 5.549…
                  // * add ln(2**96 / 10**18)
                  // * add k * ln(2)
                  // * multiply by 10**18 / 2**96 = 5**18 >> 78
                  // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                  r *= 1677202110996718588342820967067443963516166;
                  // add ln(2) * k * 5e18 * 2**192
                  r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                  // add ln(2**96 / 10**18) * 5e18 * 2**192
                  r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                  // base conversion: mul 2**18 / 2**192
                  r >>= 174;
              }
          }
          /*//////////////////////////////////////////////////////////////
                          LOW LEVEL FIXED POINT OPERATIONS
          //////////////////////////////////////////////////////////////*/
          function mulDivDown(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 z) {
              assembly {
                  // Store x * y in z for now.
                  z := mul(x, y)
                  // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                  if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                      revert(0, 0)
                  }
                  // Divide z by the denominator.
                  z := div(z, denominator)
              }
          }
          function mulDivUp(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 z) {
              assembly {
                  // Store x * y in z for now.
                  z := mul(x, y)
                  // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                  if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                      revert(0, 0)
                  }
                  // First, divide z - 1 by the denominator and add 1.
                  // We allow z - 1 to underflow if z is 0, because we multiply the
                  // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                  z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
              }
          }
          function rpow(
              uint256 x,
              uint256 n,
              uint256 scalar
          ) internal pure returns (uint256 z) {
              assembly {
                  switch x
                  case 0 {
                      switch n
                      case 0 {
                          // 0 ** 0 = 1
                          z := scalar
                      }
                      default {
                          // 0 ** n = 0
                          z := 0
                      }
                  }
                  default {
                      switch mod(n, 2)
                      case 0 {
                          // If n is even, store scalar in z for now.
                          z := scalar
                      }
                      default {
                          // If n is odd, store x in z for now.
                          z := x
                      }
                      // Shifting right by 1 is like dividing by 2.
                      let half := shr(1, scalar)
                      for {
                          // Shift n right by 1 before looping to halve it.
                          n := shr(1, n)
                      } n {
                          // Shift n right by 1 each iteration to halve it.
                          n := shr(1, n)
                      } {
                          // Revert immediately if x ** 2 would overflow.
                          // Equivalent to iszero(eq(div(xx, x), x)) here.
                          if shr(128, x) {
                              revert(0, 0)
                          }
                          // Store x squared.
                          let xx := mul(x, x)
                          // Round to the nearest number.
                          let xxRound := add(xx, half)
                          // Revert if xx + half overflowed.
                          if lt(xxRound, xx) {
                              revert(0, 0)
                          }
                          // Set x to scaled xxRound.
                          x := div(xxRound, scalar)
                          // If n is even:
                          if mod(n, 2) {
                              // Compute z * x.
                              let zx := mul(z, x)
                              // If z * x overflowed:
                              if iszero(eq(div(zx, x), z)) {
                                  // Revert if x is non-zero.
                                  if iszero(iszero(x)) {
                                      revert(0, 0)
                                  }
                              }
                              // Round to the nearest number.
                              let zxRound := add(zx, half)
                              // Revert if zx + half overflowed.
                              if lt(zxRound, zx) {
                                  revert(0, 0)
                              }
                              // Return properly scaled zxRound.
                              z := div(zxRound, scalar)
                          }
                      }
                  }
              }
          }
          /*//////////////////////////////////////////////////////////////
                              GENERAL NUMBER UTILITIES
          //////////////////////////////////////////////////////////////*/
          function sqrt(uint256 x) internal pure returns (uint256 z) {
              assembly {
                  let y := x // We start y at x, which will help us make our initial estimate.
                  z := 181 // The "correct" value is 1, but this saves a multiplication later.
                  // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                  // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                  // We check y >= 2^(k + 8) but shift right by k bits
                  // each branch to ensure that if x >= 256, then y >= 256.
                  if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                      y := shr(128, y)
                      z := shl(64, z)
                  }
                  if iszero(lt(y, 0x1000000000000000000)) {
                      y := shr(64, y)
                      z := shl(32, z)
                  }
                  if iszero(lt(y, 0x10000000000)) {
                      y := shr(32, y)
                      z := shl(16, z)
                  }
                  if iszero(lt(y, 0x1000000)) {
                      y := shr(16, y)
                      z := shl(8, z)
                  }
                  // Goal was to get z*z*y within a small factor of x. More iterations could
                  // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                  // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                  // That's not possible if x < 256 but we can just verify those cases exhaustively.
                  // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                  // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                  // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                  // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                  // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                  // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                  // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                  // There is no overflow risk here since y < 2^136 after the first branch above.
                  z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                  // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  // If x+1 is a perfect square, the Babylonian method cycles between
                  // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                  // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                  // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                  // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                  z := sub(z, lt(div(x, z), z))
              }
          }
          function log2(uint256 x) internal pure returns (uint256 r) {
              require(x > 0, "UNDEFINED");
              assembly {
                  r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                  r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                  r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                  r := or(r, shl(4, lt(0xffff, shr(r, x))))
                  r := or(r, shl(3, lt(0xff, shr(r, x))))
                  r := or(r, shl(2, lt(0xf, shr(r, x))))
                  r := or(r, shl(1, lt(0x3, shr(r, x))))
                  r := or(r, lt(0x1, shr(r, x)))
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      interface IERC20PermitUpgradeable {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
      pragma solidity ^0.8.0;
      import "./IERC20Upgradeable.sol";
      import "./extensions/IERC20MetadataUpgradeable.sol";
      import "../../utils/ContextUpgradeable.sol";
      import "../../proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       * For a generic mechanism see {ERC20PresetMinterPauser}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * The default value of {decimals} is 18. To change this, you should override
       * this function so it returns a different value.
       *
       * We have followed general OpenZeppelin Contracts guidelines: functions revert
       * instead returning `false` on failure. This behavior is nonetheless
       * conventional and does not conflict with the expectations of ERC20
       * applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       *
       * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
       * functions have been added to mitigate the well-known issues around setting
       * allowances. See {IERC20-approve}.
       */
      contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
          mapping(address => uint256) private _balances;
          mapping(address => mapping(address => uint256)) private _allowances;
          uint256 private _totalSupply;
          string private _name;
          string private _symbol;
          /**
           * @dev Sets the values for {name} and {symbol}.
           *
           * All two of these values are immutable: they can only be set once during
           * construction.
           */
          function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
              __ERC20_init_unchained(name_, symbol_);
          }
          function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
              _name = name_;
              _symbol = symbol_;
          }
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual override returns (string memory) {
              return _name;
          }
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual override returns (string memory) {
              return _symbol;
          }
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5.05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the default value returned by this function, unless
           * it's overridden.
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual override returns (uint8) {
              return 18;
          }
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual override returns (uint256) {
              return _totalSupply;
          }
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view virtual override returns (uint256) {
              return _balances[account];
          }
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(address to, uint256 amount) public virtual override returns (bool) {
              address owner = _msgSender();
              _transfer(owner, to, amount);
              return true;
          }
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual override returns (uint256) {
              return _allowances[owner][spender];
          }
          /**
           * @dev See {IERC20-approve}.
           *
           * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
           * `transferFrom`. This is semantically equivalent to an infinite approval.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 amount) public virtual override returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, amount);
              return true;
          }
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20}.
           *
           * NOTE: Does not update the allowance if the current allowance
           * is the maximum `uint256`.
           *
           * Requirements:
           *
           * - `from` and `to` cannot be the zero address.
           * - `from` must have a balance of at least `amount`.
           * - the caller must have allowance for ``from``'s tokens of at least
           * `amount`.
           */
          function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
              address spender = _msgSender();
              _spendAllowance(from, spender, amount);
              _transfer(from, to, amount);
              return true;
          }
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, allowance(owner, spender) + addedValue);
              return true;
          }
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
              address owner = _msgSender();
              uint256 currentAllowance = allowance(owner, spender);
              require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
              unchecked {
                  _approve(owner, spender, currentAllowance - subtractedValue);
              }
              return true;
          }
          /**
           * @dev Moves `amount` of tokens from `from` to `to`.
           *
           * This internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `from` must have a balance of at least `amount`.
           */
          function _transfer(address from, address to, uint256 amount) internal virtual {
              require(from != address(0), "ERC20: transfer from the zero address");
              require(to != address(0), "ERC20: transfer to the zero address");
              _beforeTokenTransfer(from, to, amount);
              uint256 fromBalance = _balances[from];
              require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
              unchecked {
                  _balances[from] = fromBalance - amount;
                  // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                  // decrementing then incrementing.
                  _balances[to] += amount;
              }
              emit Transfer(from, to, amount);
              _afterTokenTransfer(from, to, amount);
          }
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: mint to the zero address");
              _beforeTokenTransfer(address(0), account, amount);
              _totalSupply += amount;
              unchecked {
                  // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                  _balances[account] += amount;
              }
              emit Transfer(address(0), account, amount);
              _afterTokenTransfer(address(0), account, amount);
          }
          /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: burn from the zero address");
              _beforeTokenTransfer(account, address(0), amount);
              uint256 accountBalance = _balances[account];
              require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
              unchecked {
                  _balances[account] = accountBalance - amount;
                  // Overflow not possible: amount <= accountBalance <= totalSupply.
                  _totalSupply -= amount;
              }
              emit Transfer(account, address(0), amount);
              _afterTokenTransfer(account, address(0), amount);
          }
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(address owner, address spender, uint256 amount) internal virtual {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
          /**
           * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
           *
           * Does not update the allowance amount in case of infinite allowance.
           * Revert if not enough allowance is available.
           *
           * Might emit an {Approval} event.
           */
          function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
              uint256 currentAllowance = allowance(owner, spender);
              if (currentAllowance != type(uint256).max) {
                  require(currentAllowance >= amount, "ERC20: insufficient allowance");
                  unchecked {
                      _approve(owner, spender, currentAllowance - amount);
                  }
              }
          }
          /**
           * @dev Hook that is called before any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * will be transferred to `to`.
           * - when `from` is zero, `amount` tokens will be minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
          /**
           * @dev Hook that is called after any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * has been transferred to `to`.
           * - when `from` is zero, `amount` tokens have been minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[45] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
      pragma solidity ^0.8.0;
      import "../StringsUpgradeable.sol";
      /**
       * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
       *
       * These functions can be used to verify that a message was signed by the holder
       * of the private keys of a given address.
       */
      library ECDSAUpgradeable {
          enum RecoverError {
              NoError,
              InvalidSignature,
              InvalidSignatureLength,
              InvalidSignatureS,
              InvalidSignatureV // Deprecated in v4.8
          }
          function _throwError(RecoverError error) private pure {
              if (error == RecoverError.NoError) {
                  return; // no error: do nothing
              } else if (error == RecoverError.InvalidSignature) {
                  revert("ECDSA: invalid signature");
              } else if (error == RecoverError.InvalidSignatureLength) {
                  revert("ECDSA: invalid signature length");
              } else if (error == RecoverError.InvalidSignatureS) {
                  revert("ECDSA: invalid signature 's' value");
              }
          }
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with
           * `signature` or error string. This address can then be used for verification purposes.
           *
           * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {toEthSignedMessageHash} on it.
           *
           * Documentation for signature generation:
           * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
           * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
           *
           * _Available since v4.3._
           */
          function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
              if (signature.length == 65) {
                  bytes32 r;
                  bytes32 s;
                  uint8 v;
                  // ecrecover takes the signature parameters, and the only way to get them
                  // currently is to use assembly.
                  /// @solidity memory-safe-assembly
                  assembly {
                      r := mload(add(signature, 0x20))
                      s := mload(add(signature, 0x40))
                      v := byte(0, mload(add(signature, 0x60)))
                  }
                  return tryRecover(hash, v, r, s);
              } else {
                  return (address(0), RecoverError.InvalidSignatureLength);
              }
          }
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with
           * `signature`. This address can then be used for verification purposes.
           *
           * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {toEthSignedMessageHash} on it.
           */
          function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
              (address recovered, RecoverError error) = tryRecover(hash, signature);
              _throwError(error);
              return recovered;
          }
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
           *
           * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
           *
           * _Available since v4.3._
           */
          function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
              bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
              uint8 v = uint8((uint256(vs) >> 255) + 27);
              return tryRecover(hash, v, r, s);
          }
          /**
           * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
           *
           * _Available since v4.2._
           */
          function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
              (address recovered, RecoverError error) = tryRecover(hash, r, vs);
              _throwError(error);
              return recovered;
          }
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
           * `r` and `s` signature fields separately.
           *
           * _Available since v4.3._
           */
          function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
              // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
              // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
              // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
              // signatures from current libraries generate a unique signature with an s-value in the lower half order.
              //
              // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
              // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
              // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
              // these malleable signatures as well.
              if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                  return (address(0), RecoverError.InvalidSignatureS);
              }
              // If the signature is valid (and not malleable), return the signer address
              address signer = ecrecover(hash, v, r, s);
              if (signer == address(0)) {
                  return (address(0), RecoverError.InvalidSignature);
              }
              return (signer, RecoverError.NoError);
          }
          /**
           * @dev Overload of {ECDSA-recover} that receives the `v`,
           * `r` and `s` signature fields separately.
           */
          function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
              (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
              _throwError(error);
              return recovered;
          }
          /**
           * @dev Returns an Ethereum Signed Message, created from a `hash`. This
           * produces hash corresponding to the one signed with the
           * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
           * JSON-RPC method as part of EIP-191.
           *
           * See {recover}.
           */
          function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
              // 32 is the length in bytes of hash,
              // enforced by the type signature above
              /// @solidity memory-safe-assembly
              assembly {
                  mstore(0x00, "\\x19Ethereum Signed Message:\
      32")
                  mstore(0x1c, hash)
                  message := keccak256(0x00, 0x3c)
              }
          }
          /**
           * @dev Returns an Ethereum Signed Message, created from `s`. This
           * produces hash corresponding to the one signed with the
           * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
           * JSON-RPC method as part of EIP-191.
           *
           * See {recover}.
           */
          function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
              return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
      ", StringsUpgradeable.toString(s.length), s));
          }
          /**
           * @dev Returns an Ethereum Signed Typed Data, created from a
           * `domainSeparator` and a `structHash`. This produces hash corresponding
           * to the one signed with the
           * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
           * JSON-RPC method as part of EIP-712.
           *
           * See {recover}.
           */
          function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
              /// @solidity memory-safe-assembly
              assembly {
                  let ptr := mload(0x40)
                  mstore(ptr, "\\x19\\x01")
                  mstore(add(ptr, 0x02), domainSeparator)
                  mstore(add(ptr, 0x22), structHash)
                  data := keccak256(ptr, 0x42)
              }
          }
          /**
           * @dev Returns an Ethereum Signed Data with intended validator, created from a
           * `validator` and `data` according to the version 0 of EIP-191.
           *
           * See {recover}.
           */
          function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
              return keccak256(abi.encodePacked("\\x19\\x00", validator, data));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
      pragma solidity ^0.8.8;
      import "./ECDSAUpgradeable.sol";
      import "../../interfaces/IERC5267Upgradeable.sol";
      import "../../proxy/utils/Initializable.sol";
      /**
       * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
       *
       * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
       * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
       * they need in their contracts using a combination of `abi.encode` and `keccak256`.
       *
       * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
       * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
       * ({_hashTypedDataV4}).
       *
       * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
       * the chain id to protect against replay attacks on an eventual fork of the chain.
       *
       * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
       * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
       *
       * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
       * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
       * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
       *
       * _Available since v3.4._
       *
       * @custom:storage-size 52
       */
      abstract contract EIP712Upgradeable is Initializable, IERC5267Upgradeable {
          bytes32 private constant _TYPE_HASH =
              keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
          /// @custom:oz-renamed-from _HASHED_NAME
          bytes32 private _hashedName;
          /// @custom:oz-renamed-from _HASHED_VERSION
          bytes32 private _hashedVersion;
          string private _name;
          string private _version;
          /**
           * @dev Initializes the domain separator and parameter caches.
           *
           * The meaning of `name` and `version` is specified in
           * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
           *
           * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
           * - `version`: the current major version of the signing domain.
           *
           * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
           * contract upgrade].
           */
          function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
              __EIP712_init_unchained(name, version);
          }
          function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
              _name = name;
              _version = version;
              // Reset prior values in storage if upgrading
              _hashedName = 0;
              _hashedVersion = 0;
          }
          /**
           * @dev Returns the domain separator for the current chain.
           */
          function _domainSeparatorV4() internal view returns (bytes32) {
              return _buildDomainSeparator();
          }
          function _buildDomainSeparator() private view returns (bytes32) {
              return keccak256(abi.encode(_TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
          }
          /**
           * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
           * function returns the hash of the fully encoded EIP712 message for this domain.
           *
           * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
           *
           * ```solidity
           * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
           *     keccak256("Mail(address to,string contents)"),
           *     mailTo,
           *     keccak256(bytes(mailContents))
           * )));
           * address signer = ECDSA.recover(digest, signature);
           * ```
           */
          function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
              return ECDSAUpgradeable.toTypedDataHash(_domainSeparatorV4(), structHash);
          }
          /**
           * @dev See {EIP-5267}.
           *
           * _Available since v4.9._
           */
          function eip712Domain()
              public
              view
              virtual
              override
              returns (
                  bytes1 fields,
                  string memory name,
                  string memory version,
                  uint256 chainId,
                  address verifyingContract,
                  bytes32 salt,
                  uint256[] memory extensions
              )
          {
              // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
              // and the EIP712 domain is not reliable, as it will be missing name and version.
              require(_hashedName == 0 && _hashedVersion == 0, "EIP712: Uninitialized");
              return (
                  hex"0f", // 01111
                  _EIP712Name(),
                  _EIP712Version(),
                  block.chainid,
                  address(this),
                  bytes32(0),
                  new uint256[](0)
              );
          }
          /**
           * @dev The name parameter for the EIP712 domain.
           *
           * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
           * are a concern.
           */
          function _EIP712Name() internal virtual view returns (string memory) {
              return _name;
          }
          /**
           * @dev The version parameter for the EIP712 domain.
           *
           * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
           * are a concern.
           */
          function _EIP712Version() internal virtual view returns (string memory) {
              return _version;
          }
          /**
           * @dev The hash of the name parameter for the EIP712 domain.
           *
           * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
           */
          function _EIP712NameHash() internal view returns (bytes32) {
              string memory name = _EIP712Name();
              if (bytes(name).length > 0) {
                  return keccak256(bytes(name));
              } else {
                  // If the name is empty, the contract may have been upgraded without initializing the new storage.
                  // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
                  bytes32 hashedName = _hashedName;
                  if (hashedName != 0) {
                      return hashedName;
                  } else {
                      return keccak256("");
                  }
              }
          }
          /**
           * @dev The hash of the version parameter for the EIP712 domain.
           *
           * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
           */
          function _EIP712VersionHash() internal view returns (bytes32) {
              string memory version = _EIP712Version();
              if (bytes(version).length > 0) {
                  return keccak256(bytes(version));
              } else {
                  // If the version is empty, the contract may have been upgraded without initializing the new storage.
                  // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
                  bytes32 hashedVersion = _hashedVersion;
                  if (hashedVersion != 0) {
                      return hashedVersion;
                  } else {
                      return keccak256("");
                  }
              }
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[48] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
      pragma solidity ^0.8.0;
      /**
       * @title Counters
       * @author Matt Condon (@shrugs)
       * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
       * of elements in a mapping, issuing ERC721 ids, or counting request ids.
       *
       * Include with `using Counters for Counters.Counter;`
       */
      library CountersUpgradeable {
          struct Counter {
              // This variable should never be directly accessed by users of the library: interactions must be restricted to
              // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
              // this feature: see https://github.com/ethereum/solidity/issues/4637
              uint256 _value; // default: 0
          }
          function current(Counter storage counter) internal view returns (uint256) {
              return counter._value;
          }
          function increment(Counter storage counter) internal {
              unchecked {
                  counter._value += 1;
              }
          }
          function decrement(Counter storage counter) internal {
              uint256 value = counter._value;
              require(value > 0, "Counter: decrement overflow");
              unchecked {
                  counter._value = value - 1;
              }
          }
          function reset(Counter storage counter) internal {
              counter._value = 0;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.0;
      /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
      /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC20.sol)
      /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
      /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
      abstract contract ERC20 {
          /*//////////////////////////////////////////////////////////////
                                       EVENTS
          //////////////////////////////////////////////////////////////*/
          event Transfer(address indexed from, address indexed to, uint256 amount);
          event Approval(address indexed owner, address indexed spender, uint256 amount);
          /*//////////////////////////////////////////////////////////////
                                  METADATA STORAGE
          //////////////////////////////////////////////////////////////*/
          string public name;
          string public symbol;
          uint8 public immutable decimals;
          /*//////////////////////////////////////////////////////////////
                                    ERC20 STORAGE
          //////////////////////////////////////////////////////////////*/
          uint256 public totalSupply;
          mapping(address => uint256) public balanceOf;
          mapping(address => mapping(address => uint256)) public allowance;
          /*//////////////////////////////////////////////////////////////
                                  EIP-2612 STORAGE
          //////////////////////////////////////////////////////////////*/
          uint256 internal immutable INITIAL_CHAIN_ID;
          bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
          mapping(address => uint256) public nonces;
          /*//////////////////////////////////////////////////////////////
                                     CONSTRUCTOR
          //////////////////////////////////////////////////////////////*/
          constructor(
              string memory _name,
              string memory _symbol,
              uint8 _decimals
          ) {
              name = _name;
              symbol = _symbol;
              decimals = _decimals;
              INITIAL_CHAIN_ID = block.chainid;
              INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
          }
          /*//////////////////////////////////////////////////////////////
                                     ERC20 LOGIC
          //////////////////////////////////////////////////////////////*/
          function approve(address spender, uint256 amount) public virtual returns (bool) {
              allowance[msg.sender][spender] = amount;
              emit Approval(msg.sender, spender, amount);
              return true;
          }
          function transfer(address to, uint256 amount) public virtual returns (bool) {
              balanceOf[msg.sender] -= amount;
              // Cannot overflow because the sum of all user
              // balances can't exceed the max uint256 value.
              unchecked {
                  balanceOf[to] += amount;
              }
              emit Transfer(msg.sender, to, amount);
              return true;
          }
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) public virtual returns (bool) {
              uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
              if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
              balanceOf[from] -= amount;
              // Cannot overflow because the sum of all user
              // balances can't exceed the max uint256 value.
              unchecked {
                  balanceOf[to] += amount;
              }
              emit Transfer(from, to, amount);
              return true;
          }
          /*//////////////////////////////////////////////////////////////
                                   EIP-2612 LOGIC
          //////////////////////////////////////////////////////////////*/
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) public virtual {
              require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
              // Unchecked because the only math done is incrementing
              // the owner's nonce which cannot realistically overflow.
              unchecked {
                  address recoveredAddress = ecrecover(
                      keccak256(
                          abi.encodePacked(
                              "\\x19\\x01",
                              DOMAIN_SEPARATOR(),
                              keccak256(
                                  abi.encode(
                                      keccak256(
                                          "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                      ),
                                      owner,
                                      spender,
                                      value,
                                      nonces[owner]++,
                                      deadline
                                  )
                              )
                          )
                      ),
                      v,
                      r,
                      s
                  );
                  require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
                  allowance[recoveredAddress][spender] = value;
              }
              emit Approval(owner, spender, value);
          }
          function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
              return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
          }
          function computeDomainSeparator() internal view virtual returns (bytes32) {
              return
                  keccak256(
                      abi.encode(
                          keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                          keccak256(bytes(name)),
                          keccak256("1"),
                          block.chainid,
                          address(this)
                      )
                  );
          }
          /*//////////////////////////////////////////////////////////////
                              INTERNAL MINT/BURN LOGIC
          //////////////////////////////////////////////////////////////*/
          function _mint(address to, uint256 amount) internal virtual {
              totalSupply += amount;
              // Cannot overflow because the sum of all user
              // balances can't exceed the max uint256 value.
              unchecked {
                  balanceOf[to] += amount;
              }
              emit Transfer(address(0), to, amount);
          }
          function _burn(address from, uint256 amount) internal virtual {
              balanceOf[from] -= amount;
              // Cannot underflow because a user's balance
              // will never be larger than the total supply.
              unchecked {
                  totalSupply -= amount;
              }
              emit Transfer(from, address(0), amount);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20Upgradeable {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 amount) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
      pragma solidity ^0.8.0;
      import "../IERC20Upgradeable.sol";
      /**
       * @dev Interface for the optional metadata functions from the ERC20 standard.
       *
       * _Available since v4.1._
       */
      interface IERC20MetadataUpgradeable is IERC20Upgradeable {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
      pragma solidity ^0.8.0;
      import "./math/MathUpgradeable.sol";
      import "./math/SignedMathUpgradeable.sol";
      /**
       * @dev String operations.
       */
      library StringsUpgradeable {
          bytes16 private constant _SYMBOLS = "0123456789abcdef";
          uint8 private constant _ADDRESS_LENGTH = 20;
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  uint256 length = MathUpgradeable.log10(value) + 1;
                  string memory buffer = new string(length);
                  uint256 ptr;
                  /// @solidity memory-safe-assembly
                  assembly {
                      ptr := add(buffer, add(32, length))
                  }
                  while (true) {
                      ptr--;
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                      }
                      value /= 10;
                      if (value == 0) break;
                  }
                  return buffer;
              }
          }
          /**
           * @dev Converts a `int256` to its ASCII `string` decimal representation.
           */
          function toString(int256 value) internal pure returns (string memory) {
              return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  return toHexString(value, MathUpgradeable.log256(value) + 1);
              }
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = _SYMBOLS[value & 0xf];
                  value >>= 4;
              }
              require(value == 0, "Strings: hex length insufficient");
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
          }
          /**
           * @dev Returns true if the two strings are equal.
           */
          function equal(string memory a, string memory b) internal pure returns (bool) {
              return keccak256(bytes(a)) == keccak256(bytes(b));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
      pragma solidity ^0.8.0;
      interface IERC5267Upgradeable {
          /**
           * @dev MAY be emitted to signal that the domain could have changed.
           */
          event EIP712DomainChanged();
          /**
           * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
           * signature.
           */
          function eip712Domain()
              external
              view
              returns (
                  bytes1 fields,
                  string memory name,
                  string memory version,
                  uint256 chainId,
                  address verifyingContract,
                  bytes32 salt,
                  uint256[] memory extensions
              );
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library MathUpgradeable {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                      // The surrounding unchecked block does not change this fact.
                      // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1, "Math: mulDiv overflow");
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              //
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
              //
              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
              //
              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1 << (log2(a) >> 1);
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 2, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 128;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 64;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 32;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 16;
                  }
                  if (value >> 8 > 0) {
                      value >>= 8;
                      result += 8;
                  }
                  if (value >> 4 > 0) {
                      value >>= 4;
                      result += 4;
                  }
                  if (value >> 2 > 0) {
                      value >>= 2;
                      result += 2;
                  }
                  if (value >> 1 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 10, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10 ** 64) {
                      value /= 10 ** 64;
                      result += 64;
                  }
                  if (value >= 10 ** 32) {
                      value /= 10 ** 32;
                      result += 32;
                  }
                  if (value >= 10 ** 16) {
                      value /= 10 ** 16;
                      result += 16;
                  }
                  if (value >= 10 ** 8) {
                      value /= 10 ** 8;
                      result += 8;
                  }
                  if (value >= 10 ** 4) {
                      value /= 10 ** 4;
                      result += 4;
                  }
                  if (value >= 10 ** 2) {
                      value /= 10 ** 2;
                      result += 2;
                  }
                  if (value >= 10 ** 1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 256, rounded down, of a positive value.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 16;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 8;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 4;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 2;
                  }
                  if (value >> 8 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMathUpgradeable {
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // must be unchecked in order to support `n = type(int256).min`
                  return uint256(n >= 0 ? n : -n);
              }
          }
      }
      

      File 4 of 4: Dai
      // hevm: flattened sources of /nix/store/8xb41r4qd0cjb63wcrxf1qmfg88p0961-dss-6fd7de0/src/dai.sol
      pragma solidity =0.5.12;
      
      ////// /nix/store/8xb41r4qd0cjb63wcrxf1qmfg88p0961-dss-6fd7de0/src/lib.sol
      // This program is free software: you can redistribute it and/or modify
      // it under the terms of the GNU General Public License as published by
      // the Free Software Foundation, either version 3 of the License, or
      // (at your option) any later version.
      
      // This program is distributed in the hope that it will be useful,
      // but WITHOUT ANY WARRANTY; without even the implied warranty of
      // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      // GNU General Public License for more details.
      
      // You should have received a copy of the GNU General Public License
      // along with this program.  If not, see <http://www.gnu.org/licenses/>.
      
      /* pragma solidity 0.5.12; */
      
      contract LibNote {
          event LogNote(
              bytes4   indexed  sig,
              address  indexed  usr,
              bytes32  indexed  arg1,
              bytes32  indexed  arg2,
              bytes             data
          ) anonymous;
      
          modifier note {
              _;
              assembly {
                  // log an 'anonymous' event with a constant 6 words of calldata
                  // and four indexed topics: selector, caller, arg1 and arg2
                  let mark := msize                         // end of memory ensures zero
                  mstore(0x40, add(mark, 288))              // update free memory pointer
                  mstore(mark, 0x20)                        // bytes type data offset
                  mstore(add(mark, 0x20), 224)              // bytes size (padded)
                  calldatacopy(add(mark, 0x40), 0, 224)     // bytes payload
                  log4(mark, 288,                           // calldata
                       shl(224, shr(224, calldataload(0))), // msg.sig
                       caller,                              // msg.sender
                       calldataload(4),                     // arg1
                       calldataload(36)                     // arg2
                      )
              }
          }
      }
      
      ////// /nix/store/8xb41r4qd0cjb63wcrxf1qmfg88p0961-dss-6fd7de0/src/dai.sol
      // Copyright (C) 2017, 2018, 2019 dbrock, rain, mrchico
      
      // This program is free software: you can redistribute it and/or modify
      // it under the terms of the GNU Affero General Public License as published by
      // the Free Software Foundation, either version 3 of the License, or
      // (at your option) any later version.
      //
      // This program is distributed in the hope that it will be useful,
      // but WITHOUT ANY WARRANTY; without even the implied warranty of
      // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      // GNU Affero General Public License for more details.
      //
      // You should have received a copy of the GNU Affero General Public License
      // along with this program.  If not, see <https://www.gnu.org/licenses/>.
      
      /* pragma solidity 0.5.12; */
      
      /* import "./lib.sol"; */
      
      contract Dai is LibNote {
          // --- Auth ---
          mapping (address => uint) public wards;
          function rely(address guy) external note auth { wards[guy] = 1; }
          function deny(address guy) external note auth { wards[guy] = 0; }
          modifier auth {
              require(wards[msg.sender] == 1, "Dai/not-authorized");
              _;
          }
      
          // --- ERC20 Data ---
          string  public constant name     = "Dai Stablecoin";
          string  public constant symbol   = "DAI";
          string  public constant version  = "1";
          uint8   public constant decimals = 18;
          uint256 public totalSupply;
      
          mapping (address => uint)                      public balanceOf;
          mapping (address => mapping (address => uint)) public allowance;
          mapping (address => uint)                      public nonces;
      
          event Approval(address indexed src, address indexed guy, uint wad);
          event Transfer(address indexed src, address indexed dst, uint wad);
      
          // --- Math ---
          function add(uint x, uint y) internal pure returns (uint z) {
              require((z = x + y) >= x);
          }
          function sub(uint x, uint y) internal pure returns (uint z) {
              require((z = x - y) <= x);
          }
      
          // --- EIP712 niceties ---
          bytes32 public DOMAIN_SEPARATOR;
          // bytes32 public constant PERMIT_TYPEHASH = keccak256("Permit(address holder,address spender,uint256 nonce,uint256 expiry,bool allowed)");
          bytes32 public constant PERMIT_TYPEHASH = 0xea2aa0a1be11a07ed86d755c93467f4f82362b452371d1ba94d1715123511acb;
      
          constructor(uint256 chainId_) public {
              wards[msg.sender] = 1;
              DOMAIN_SEPARATOR = keccak256(abi.encode(
                  keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                  keccak256(bytes(name)),
                  keccak256(bytes(version)),
                  chainId_,
                  address(this)
              ));
          }
      
          // --- Token ---
          function transfer(address dst, uint wad) external returns (bool) {
              return transferFrom(msg.sender, dst, wad);
          }
          function transferFrom(address src, address dst, uint wad)
              public returns (bool)
          {
              require(balanceOf[src] >= wad, "Dai/insufficient-balance");
              if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                  require(allowance[src][msg.sender] >= wad, "Dai/insufficient-allowance");
                  allowance[src][msg.sender] = sub(allowance[src][msg.sender], wad);
              }
              balanceOf[src] = sub(balanceOf[src], wad);
              balanceOf[dst] = add(balanceOf[dst], wad);
              emit Transfer(src, dst, wad);
              return true;
          }
          function mint(address usr, uint wad) external auth {
              balanceOf[usr] = add(balanceOf[usr], wad);
              totalSupply    = add(totalSupply, wad);
              emit Transfer(address(0), usr, wad);
          }
          function burn(address usr, uint wad) external {
              require(balanceOf[usr] >= wad, "Dai/insufficient-balance");
              if (usr != msg.sender && allowance[usr][msg.sender] != uint(-1)) {
                  require(allowance[usr][msg.sender] >= wad, "Dai/insufficient-allowance");
                  allowance[usr][msg.sender] = sub(allowance[usr][msg.sender], wad);
              }
              balanceOf[usr] = sub(balanceOf[usr], wad);
              totalSupply    = sub(totalSupply, wad);
              emit Transfer(usr, address(0), wad);
          }
          function approve(address usr, uint wad) external returns (bool) {
              allowance[msg.sender][usr] = wad;
              emit Approval(msg.sender, usr, wad);
              return true;
          }
      
          // --- Alias ---
          function push(address usr, uint wad) external {
              transferFrom(msg.sender, usr, wad);
          }
          function pull(address usr, uint wad) external {
              transferFrom(usr, msg.sender, wad);
          }
          function move(address src, address dst, uint wad) external {
              transferFrom(src, dst, wad);
          }
      
          // --- Approve by signature ---
          function permit(address holder, address spender, uint256 nonce, uint256 expiry,
                          bool allowed, uint8 v, bytes32 r, bytes32 s) external
          {
              bytes32 digest =
                  keccak256(abi.encodePacked(
                      "\x19\x01",
                      DOMAIN_SEPARATOR,
                      keccak256(abi.encode(PERMIT_TYPEHASH,
                                           holder,
                                           spender,
                                           nonce,
                                           expiry,
                                           allowed))
              ));
      
              require(holder != address(0), "Dai/invalid-address-0");
              require(holder == ecrecover(digest, v, r, s), "Dai/invalid-permit");
              require(expiry == 0 || now <= expiry, "Dai/permit-expired");
              require(nonce == nonces[holder]++, "Dai/invalid-nonce");
              uint wad = allowed ? uint(-1) : 0;
              allowance[holder][spender] = wad;
              emit Approval(holder, spender, wad);
          }
      }