ETH Price: $2,513.17 (-1.84%)

Transaction Decoder

Block:
16946838 at Mar-31-2023 11:17:47 AM +UTC
Transaction Fee:
0.003483253704715354 ETH $8.75
Gas Used:
174,682 Gas / 19.940541697 Gwei

Emitted Events:

270 GnosisSafeProxy.0x3d0ce9bfc3ed7d6862dbb28b2dea94561fe714a1b4d019aa8af39730d1ad7c3d( 0x3d0ce9bfc3ed7d6862dbb28b2dea94561fe714a1b4d019aa8af39730d1ad7c3d, 0x000000000000000000000000e6e3f947ccd0add1effde3bf3d210e5d711beace, 00000000000000000000000000000000000000000000000000018de76816d800 )
271 0xe6e3f947ccd0add1effde3bf3d210e5d711beace.0x6ded982279c8387ad8a63e73385031a3807c1862e633f06e09d11bcb6e282f60( 0x6ded982279c8387ad8a63e73385031a3807c1862e633f06e09d11bcb6e282f60, 0000000000000000000000000000000000000000000000000000000000000000, 000000000000000000000000e6b738da243e8fa2a0ed5915645789add5de5152, 00000000000000000000000000000000000000000000000000018de76816d800 )
272 WETH9.Deposit( dst=Bridge, wad=49562500000000000 )
273 Bridge.Send( transferId=CB8AA953DE2908A3C49E1CE24B3FC5A894CA3EC4B3E32EE1E7705F3CF78E7528, sender=LiFiDiamond, receiver=[Sender] 0x07f5813f95462da339f57e401e5cc12a7f602e50, token=WETH9, amount=49562500000000000, dstChainId=10, nonce=1680261441008, maxSlippage=64843 )
274 LiFiDiamond.0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1( 0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1, 0000000000000000000000000000000000000000000000000000000000000020, e7a93de5f048eed3b35ef25669b3dd90372443e56d93871152f8699f974e33d3, 0000000000000000000000000000000000000000000000000000000000000140, 0000000000000000000000000000000000000000000000000000000000000180, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 00000000000000000000000007f5813f95462da339f57e401e5cc12a7f602e50, 00000000000000000000000000000000000000000000000000b014d4c6ae2800, 000000000000000000000000000000000000000000000000000000000000000a, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000007, 6362726964676500000000000000000000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000000000f, 6d6574616d61736b2d6272696467650000000000000000000000000000000000 )
275 0xe6e3f947ccd0add1effde3bf3d210e5d711beace.0x831bac9533a2034226daa21109dbd4f887674f0fe4877e1a8b35b3ffe1bdce76( 0x831bac9533a2034226daa21109dbd4f887674f0fe4877e1a8b35b3ffe1bdce76, 00000000000000000000000007f5813f95462da339f57e401e5cc12a7f602e50, 0000000000000000000000001231deb6f5749ef6ce6943a275a1d3e7486f4eae, 000000000000000000000000000000000000000000000000000000000000000a, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 00000000000000000000000000000000000000000000000000b014d4c6ae2800 )

Account State Difference:

  Address   Before After State Difference Code
0x07F5813f...A7F602e50
0.063561774204219951 Eth
Nonce: 43
0.010078520499504597 Eth
Nonce: 44
0.053483253704715354
5.644653481916033931 Eth5.644670950116033931 Eth0.0000174682
0x5427FEFA...5E3DA1820
(Celer Network: cBridge V2)
0xC02aaA39...83C756Cc2 3,786,547.847343396694200852 Eth3,786,547.896905896694200852 Eth0.0495625
0xe6b738DA...DD5dE5152 51.1474710425 Eth51.1479085425 Eth0.0004375

Execution Trace

ETH 0.05 MetaBridge.bridge( adapterId=lifiAdapter, srcToken=0x0000000000000000000000000000000000000000, amount=50000000000000000, data=0x0000000000000000000000001231DEB6F5749EF6CE6943A275A1D3E7486F4EAE0000000000000000000000001231DEB6F5749EF6CE6943A275A1D3E7486F4EAE000000000000000000000000000000000000000000000000000000000000000A0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000B014D4C6AE2800000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000018DE76816D800000000000000000000000000E6B738DA243E8FA2A0ED5915645789ADD5DE51520000000000000000000000000000000000000000000000000000000000000224AE0B91E50000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000FD4B000000000000000000000000000000000000000000000000000001873762E5F0E7A93DE5F048EED3B35EF25669B3DD90372443E56D93871152F8699F974E33D3000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000000000000001800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007F5813F95462DA339F57E401E5CC12A7F602E5000000000000000000000000000000000000000000000000000B014D4C6AE2800000000000000000000000000000000000000000000000000000000000000000A0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000076362726964676500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000F6D6574616D61736B2D627269646765000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
  • ETH 0.05 0xe6e3f947ccd0add1effde3bf3d210e5d711beace.4cfee326( )
    • ETH 0.05 0x04c76710f64ab714bbf803f011a132481084a131.ab138240( )
      • ETH 0.0004375 GnosisSafeProxy.CALL( )
        • ETH 0.0004375 GnosisSafe.DELEGATECALL( )
        • ETH 0.0495625 LiFiDiamond.ae0b91e5( )
          • ETH 0.0495625 CBridgeFacet.startBridgeTokensViaCBridge( _bridgeData=[{name:transactionId, type:bytes32, order:1, indexed:false, value:E7A93DE5F048EED3B35EF25669B3DD90372443E56D93871152F8699F974E33D3, valueString:E7A93DE5F048EED3B35EF25669B3DD90372443E56D93871152F8699F974E33D3}, {name:bridge, type:string, order:2, indexed:false, value:cbridge, valueString:cbridge}, {name:integrator, type:string, order:3, indexed:false, value:metamask-bridge, valueString:metamask-bridge}, {name:referrer, type:address, order:4, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:sendingAssetId, type:address, order:5, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:receiver, type:address, order:6, indexed:false, value:0x07F5813f95462Da339F57e401e5cc12A7F602e50, valueString:0x07F5813f95462Da339F57e401e5cc12A7F602e50}, {name:minAmount, type:uint256, order:7, indexed:false, value:49562500000000000, valueString:49562500000000000}, {name:destinationChainId, type:uint256, order:8, indexed:false, value:10, valueString:10}, {name:hasSourceSwaps, type:bool, order:9, indexed:false, value:false, valueString:False}, {name:hasDestinationCall, type:bool, order:10, indexed:false, value:false, valueString:False}], _cBridgeData=[{name:maxSlippage, type:uint32, order:1, indexed:false, value:64843, valueString:64843}, {name:nonce, type:uint64, order:2, indexed:false, value:1680261441008, valueString:1680261441008}] )
            • ETH 0.0495625 Bridge.sendNative( _receiver=0x07F5813f95462Da339F57e401e5cc12A7F602e50, _amount=49562500000000000, _dstChainId=10, _nonce=1680261441008, _maxSlippage=64843 )
              • ETH 0.0495625 WETH9.CALL( )
                File 1 of 7: MetaBridge
                pragma solidity ^0.8.0;
                import "@openzeppelin/contracts/access/Ownable.sol";
                import "@openzeppelin/contracts/security/Pausable.sol";
                import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
                import "@openzeppelin/contracts/utils/Address.sol";
                import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
                import {IAdapter, IBridge, ISpender} from "contracts/interfaces/Exports.sol";
                import {Constants} from "contracts/utils/Exports.sol";
                import "./Spender.sol";
                contract MetaBridge is IBridge, Ownable, Pausable, ReentrancyGuard {
                    using SafeERC20 for IERC20;
                    using Address for address;
                    ISpender public immutable spender;
                    // Mapping of adapterId to adapter
                    mapping(string => address) public adapters;
                    mapping(string => bool) public adapterRemoved;
                    constructor() {
                        spender = new Spender();
                    }
                    /**
                     * @notice Sets the adapter for an aggregator. It can't be changed later.
                     * @param adapterId Aggregator's identifier
                     * @param adapterAddress Address of the contract that contains the logic for this aggregator
                     */
                    function setAdapter(string calldata adapterId, address adapterAddress)
                        external
                        override
                        onlyOwner
                    {
                        require(adapterAddress.isContract(), "ADAPTER_IS_NOT_A_CONTRACT");
                        require(!adapterRemoved[adapterId], "ADAPTER_REMOVED");
                        require(adapters[adapterId] == address(0), "ADAPTER_EXISTS");
                        require(bytes(adapterId).length > 0, "INVALID_ADAPTED_ID");
                        adapters[adapterId] = adapterAddress;
                        emit AdapterSet(adapterId, adapterAddress);
                    }
                    /**
                     * @notice Removes the adapter for an existing aggregator. This can't be undone.
                     * @param adapterId Adapter's identifier
                     */
                    function removeAdapter(string calldata adapterId)
                        external
                        override
                        onlyOwner
                    {
                        require(adapters[adapterId] != address(0), "ADAPTER_DOES_NOT_EXIST");
                        delete adapters[adapterId];
                        adapterRemoved[adapterId] = true;
                        emit AdapterRemoved(adapterId);
                    }
                    /**
                     * @notice Performs a bridge
                     * @param adapterId Identifier of the aggregator to be used for the bridge
                     * @param srcToken Identifier of the source chain
                     * @param amount Amount of tokens to be transferred from the destination chain
                     * @param data Dynamic data which is passed in to the delegatecall made to the adapter
                     */
                    function bridge(
                        string calldata adapterId,
                        address srcToken,
                        uint256 amount,
                        bytes calldata data
                    ) external payable override whenNotPaused nonReentrant {
                        address adapter = adapters[adapterId];
                        require(adapter != address(0), "ADAPTER_NOT_FOUND");
                        // Move ERC20 funds to the spender
                        if (srcToken != Constants.NATIVE_TOKEN) {
                            require(msg.value == 0, "NATIVE_ASSET_SENT");
                            IERC20(srcToken).safeTransferFrom(
                                msg.sender,
                                address(spender),
                                amount
                            );
                        } else {
                            require(msg.value == amount, "MSGVALUE_AMOUNT_MISMATCH");
                        }
                        spender.bridge{value: msg.value}(
                            adapter,
                            abi.encodePacked(
                                // bridge signature
                                IAdapter.bridge.selector,
                                abi.encode(msg.sender),
                                data
                            )
                        );
                    }
                    /**
                     * @notice Prevents the bridge function from being executed until the contract is unpaused.
                     */
                    function pauseBridge() external onlyOwner {
                        _pause();
                    }
                    /**
                     * @notice Unpauses the contract to make the bridge function callable by owner.
                     */
                    function unpauseBridge() external onlyOwner {
                        _unpause();
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
                pragma solidity ^0.8.0;
                import "../utils/Context.sol";
                /**
                 * @dev Contract module which provides a basic access control mechanism, where
                 * there is an account (an owner) that can be granted exclusive access to
                 * specific functions.
                 *
                 * By default, the owner account will be the one that deploys the contract. This
                 * can later be changed with {transferOwnership}.
                 *
                 * This module is used through inheritance. It will make available the modifier
                 * `onlyOwner`, which can be applied to your functions to restrict their use to
                 * the owner.
                 */
                abstract contract Ownable is Context {
                    address private _owner;
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    /**
                     * @dev Initializes the contract setting the deployer as the initial owner.
                     */
                    constructor() {
                        _transferOwnership(_msgSender());
                    }
                    /**
                     * @dev Returns the address of the current owner.
                     */
                    function owner() public view virtual returns (address) {
                        return _owner;
                    }
                    /**
                     * @dev Throws if called by any account other than the owner.
                     */
                    modifier onlyOwner() {
                        require(owner() == _msgSender(), "Ownable: caller is not the owner");
                        _;
                    }
                    /**
                     * @dev Leaves the contract without owner. It will not be possible to call
                     * `onlyOwner` functions anymore. Can only be called by the current owner.
                     *
                     * NOTE: Renouncing ownership will leave the contract without an owner,
                     * thereby removing any functionality that is only available to the owner.
                     */
                    function renounceOwnership() public virtual onlyOwner {
                        _transferOwnership(address(0));
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Can only be called by the current owner.
                     */
                    function transferOwnership(address newOwner) public virtual onlyOwner {
                        require(newOwner != address(0), "Ownable: new owner is the zero address");
                        _transferOwnership(newOwner);
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Internal function without access restriction.
                     */
                    function _transferOwnership(address newOwner) internal virtual {
                        address oldOwner = _owner;
                        _owner = newOwner;
                        emit OwnershipTransferred(oldOwner, newOwner);
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (security/Pausable.sol)
                pragma solidity ^0.8.0;
                import "../utils/Context.sol";
                /**
                 * @dev Contract module which allows children to implement an emergency stop
                 * mechanism that can be triggered by an authorized account.
                 *
                 * This module is used through inheritance. It will make available the
                 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
                 * the functions of your contract. Note that they will not be pausable by
                 * simply including this module, only once the modifiers are put in place.
                 */
                abstract contract Pausable is Context {
                    /**
                     * @dev Emitted when the pause is triggered by `account`.
                     */
                    event Paused(address account);
                    /**
                     * @dev Emitted when the pause is lifted by `account`.
                     */
                    event Unpaused(address account);
                    bool private _paused;
                    /**
                     * @dev Initializes the contract in unpaused state.
                     */
                    constructor() {
                        _paused = false;
                    }
                    /**
                     * @dev Returns true if the contract is paused, and false otherwise.
                     */
                    function paused() public view virtual returns (bool) {
                        return _paused;
                    }
                    /**
                     * @dev Modifier to make a function callable only when the contract is not paused.
                     *
                     * Requirements:
                     *
                     * - The contract must not be paused.
                     */
                    modifier whenNotPaused() {
                        require(!paused(), "Pausable: paused");
                        _;
                    }
                    /**
                     * @dev Modifier to make a function callable only when the contract is paused.
                     *
                     * Requirements:
                     *
                     * - The contract must be paused.
                     */
                    modifier whenPaused() {
                        require(paused(), "Pausable: not paused");
                        _;
                    }
                    /**
                     * @dev Triggers stopped state.
                     *
                     * Requirements:
                     *
                     * - The contract must not be paused.
                     */
                    function _pause() internal virtual whenNotPaused {
                        _paused = true;
                        emit Paused(_msgSender());
                    }
                    /**
                     * @dev Returns to normal state.
                     *
                     * Requirements:
                     *
                     * - The contract must be paused.
                     */
                    function _unpause() internal virtual whenPaused {
                        _paused = false;
                        emit Unpaused(_msgSender());
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Contract module that helps prevent reentrant calls to a function.
                 *
                 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
                 * available, which can be applied to functions to make sure there are no nested
                 * (reentrant) calls to them.
                 *
                 * Note that because there is a single `nonReentrant` guard, functions marked as
                 * `nonReentrant` may not call one another. This can be worked around by making
                 * those functions `private`, and then adding `external` `nonReentrant` entry
                 * points to them.
                 *
                 * TIP: If you would like to learn more about reentrancy and alternative ways
                 * to protect against it, check out our blog post
                 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
                 */
                abstract contract ReentrancyGuard {
                    // Booleans are more expensive than uint256 or any type that takes up a full
                    // word because each write operation emits an extra SLOAD to first read the
                    // slot's contents, replace the bits taken up by the boolean, and then write
                    // back. This is the compiler's defense against contract upgrades and
                    // pointer aliasing, and it cannot be disabled.
                    // The values being non-zero value makes deployment a bit more expensive,
                    // but in exchange the refund on every call to nonReentrant will be lower in
                    // amount. Since refunds are capped to a percentage of the total
                    // transaction's gas, it is best to keep them low in cases like this one, to
                    // increase the likelihood of the full refund coming into effect.
                    uint256 private constant _NOT_ENTERED = 1;
                    uint256 private constant _ENTERED = 2;
                    uint256 private _status;
                    constructor() {
                        _status = _NOT_ENTERED;
                    }
                    /**
                     * @dev Prevents a contract from calling itself, directly or indirectly.
                     * Calling a `nonReentrant` function from another `nonReentrant`
                     * function is not supported. It is possible to prevent this from happening
                     * by making the `nonReentrant` function external, and making it call a
                     * `private` function that does the actual work.
                     */
                    modifier nonReentrant() {
                        // On the first call to nonReentrant, _notEntered will be true
                        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                        // Any calls to nonReentrant after this point will fail
                        _status = _ENTERED;
                        _;
                        // By storing the original value once again, a refund is triggered (see
                        // https://eips.ethereum.org/EIPS/eip-2200)
                        _status = _NOT_ENTERED;
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library Address {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(isContract(target), "Address: delegate call to non-contract");
                        (bool success, bytes memory returndata) = target.delegatecall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 standard as defined in the EIP.
                 */
                interface IERC20 {
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `to`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address to, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `from` to `to` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 amount
                    ) external returns (bool);
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)
                pragma solidity ^0.8.0;
                import "../IERC20.sol";
                import "../../../utils/Address.sol";
                /**
                 * @title SafeERC20
                 * @dev Wrappers around ERC20 operations that throw on failure (when the token
                 * contract returns false). Tokens that return no value (and instead revert or
                 * throw on failure) are also supported, non-reverting calls are assumed to be
                 * successful.
                 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                 */
                library SafeERC20 {
                    using Address for address;
                    function safeTransfer(
                        IERC20 token,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                    }
                    function safeTransferFrom(
                        IERC20 token,
                        address from,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                    }
                    /**
                     * @dev Deprecated. This function has issues similar to the ones found in
                     * {IERC20-approve}, and its usage is discouraged.
                     *
                     * Whenever possible, use {safeIncreaseAllowance} and
                     * {safeDecreaseAllowance} instead.
                     */
                    function safeApprove(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        // safeApprove should only be called when setting an initial allowance,
                        // or when resetting it to zero. To increase and decrease it, use
                        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                        require(
                            (value == 0) || (token.allowance(address(this), spender) == 0),
                            "SafeERC20: approve from non-zero to non-zero allowance"
                        );
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                    }
                    function safeIncreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        uint256 newAllowance = token.allowance(address(this), spender) + value;
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                    function safeDecreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        unchecked {
                            uint256 oldAllowance = token.allowance(address(this), spender);
                            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                            uint256 newAllowance = oldAllowance - value;
                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                        }
                    }
                    /**
                     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                     * on the return value: the return value is optional (but if data is returned, it must not be false).
                     * @param token The token targeted by the call.
                     * @param data The call data (encoded using abi.encode or one of its variants).
                     */
                    function _callOptionalReturn(IERC20 token, bytes memory data) private {
                        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                        // the target address contains contract code and also asserts for success in the low-level call.
                        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                        if (returndata.length > 0) {
                            // Return data is optional
                            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                        }
                    }
                }
                pragma solidity ^0.8.0;
                import { IAdapter } from "./IAdapter.sol";
                import { IBridge } from "./IBridge.sol";
                import { ISpender } from "./ISpender.sol";pragma solidity ^0.8.0;
                import { Constants } from "./Constants.sol";pragma solidity ^0.8.0;
                import "@openzeppelin/contracts/utils/Address.sol";
                import {IBridge, ISpender} from "contracts/interfaces/Exports.sol";
                contract Spender is ISpender {
                    using Address for address;
                    IBridge public immutable metabridge;
                    constructor() public {
                        metabridge = IBridge(msg.sender);
                    }
                    /**
                     * @notice Performs a bridge
                     * @param adapter Address of the aggregator to be used for the bridge
                     * @param data Dynamic data which is passed in to the delegatecall made to the adapter
                     */
                    function bridge(address adapter, bytes calldata data)
                        external
                        payable
                        override
                    {
                        require(msg.sender == address(metabridge), "FORBIDDEN");
                        adapter.functionDelegateCall(data, "ADAPTER_DELEGATECALL_FAILED");
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Provides information about the current execution context, including the
                 * sender of the transaction and its data. While these are generally available
                 * via msg.sender and msg.data, they should not be accessed in such a direct
                 * manner, since when dealing with meta-transactions the account sending and
                 * paying for execution may not be the actual sender (as far as an application
                 * is concerned).
                 *
                 * This contract is only required for intermediate, library-like contracts.
                 */
                abstract contract Context {
                    function _msgSender() internal view virtual returns (address) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes calldata) {
                        return msg.data;
                    }
                }
                pragma solidity ^0.8.0;
                interface IAdapter {
                    event Bridge(
                        address recipient,
                        address aggregator,
                        uint256 destChain,
                        address srcToken,
                        address destToken,
                        uint256 srcAmount
                    );
                    event Fee(address srcToken, address feeWallet, uint256 fee);
                    function bridge(
                        address recipient,
                        address aggregator,
                        address spender,
                        uint256 destChain,
                        address srcToken,
                        address destToken,
                        uint256 srcAmount,
                        bytes calldata data,
                        uint256 fee,
                        address payable feeWallet
                    ) external payable;
                }
                pragma solidity ^0.8.0;
                interface IBridge {
                    event AdapterSet(
                        string adapterId,
                        address addr
                    );
                    event AdapterRemoved(string adapterId);
                    function setAdapter(string calldata adapterId, address adapterAddress) external;
                    function removeAdapter(string calldata adapterId) external;
                    function bridge(
                        string calldata adapterId,
                        address tokenFrom,
                        uint256 amount,
                        bytes calldata data
                    ) external payable;
                }pragma solidity ^0.8.0;
                interface ISpender {
                    function bridge(address adapterAddress, bytes calldata data) external payable;
                }pragma solidity ^0.8.0;
                library Constants {
                    address internal constant NATIVE_TOKEN = 0x0000000000000000000000000000000000000000;
                }
                

                File 2 of 7: GnosisSafeProxy
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                
                /// @title IProxy - Helper interface to access masterCopy of the Proxy on-chain
                /// @author Richard Meissner - <[email protected]>
                interface IProxy {
                    function masterCopy() external view returns (address);
                }
                
                /// @title GnosisSafeProxy - Generic proxy contract allows to execute all transactions applying the code of a master contract.
                /// @author Stefan George - <[email protected]>
                /// @author Richard Meissner - <[email protected]>
                contract GnosisSafeProxy {
                    // singleton always needs to be first declared variable, to ensure that it is at the same location in the contracts to which calls are delegated.
                    // To reduce deployment costs this variable is internal and needs to be retrieved via `getStorageAt`
                    address internal singleton;
                
                    /// @dev Constructor function sets address of singleton contract.
                    /// @param _singleton Singleton address.
                    constructor(address _singleton) {
                        require(_singleton != address(0), "Invalid singleton address provided");
                        singleton = _singleton;
                    }
                
                    /// @dev Fallback function forwards all transactions and returns all received return data.
                    fallback() external payable {
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let _singleton := and(sload(0), 0xffffffffffffffffffffffffffffffffffffffff)
                            // 0xa619486e == keccak("masterCopy()"). The value is right padded to 32-bytes with 0s
                            if eq(calldataload(0), 0xa619486e00000000000000000000000000000000000000000000000000000000) {
                                mstore(0, _singleton)
                                return(0, 0x20)
                            }
                            calldatacopy(0, 0, calldatasize())
                            let success := delegatecall(gas(), _singleton, 0, calldatasize(), 0, 0)
                            returndatacopy(0, 0, returndatasize())
                            if eq(success, 0) {
                                revert(0, returndatasize())
                            }
                            return(0, returndatasize())
                        }
                    }
                }
                
                /// @title Proxy Factory - Allows to create new proxy contact and execute a message call to the new proxy within one transaction.
                /// @author Stefan George - <[email protected]>
                contract GnosisSafeProxyFactory {
                    event ProxyCreation(GnosisSafeProxy proxy, address singleton);
                
                    /// @dev Allows to create new proxy contact and execute a message call to the new proxy within one transaction.
                    /// @param singleton Address of singleton contract.
                    /// @param data Payload for message call sent to new proxy contract.
                    function createProxy(address singleton, bytes memory data) public returns (GnosisSafeProxy proxy) {
                        proxy = new GnosisSafeProxy(singleton);
                        if (data.length > 0)
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                if eq(call(gas(), proxy, 0, add(data, 0x20), mload(data), 0, 0), 0) {
                                    revert(0, 0)
                                }
                            }
                        emit ProxyCreation(proxy, singleton);
                    }
                
                    /// @dev Allows to retrieve the runtime code of a deployed Proxy. This can be used to check that the expected Proxy was deployed.
                    function proxyRuntimeCode() public pure returns (bytes memory) {
                        return type(GnosisSafeProxy).runtimeCode;
                    }
                
                    /// @dev Allows to retrieve the creation code used for the Proxy deployment. With this it is easily possible to calculate predicted address.
                    function proxyCreationCode() public pure returns (bytes memory) {
                        return type(GnosisSafeProxy).creationCode;
                    }
                
                    /// @dev Allows to create new proxy contact using CREATE2 but it doesn't run the initializer.
                    ///      This method is only meant as an utility to be called from other methods
                    /// @param _singleton Address of singleton contract.
                    /// @param initializer Payload for message call sent to new proxy contract.
                    /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract.
                    function deployProxyWithNonce(
                        address _singleton,
                        bytes memory initializer,
                        uint256 saltNonce
                    ) internal returns (GnosisSafeProxy proxy) {
                        // If the initializer changes the proxy address should change too. Hashing the initializer data is cheaper than just concatinating it
                        bytes32 salt = keccak256(abi.encodePacked(keccak256(initializer), saltNonce));
                        bytes memory deploymentData = abi.encodePacked(type(GnosisSafeProxy).creationCode, uint256(uint160(_singleton)));
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            proxy := create2(0x0, add(0x20, deploymentData), mload(deploymentData), salt)
                        }
                        require(address(proxy) != address(0), "Create2 call failed");
                    }
                
                    /// @dev Allows to create new proxy contact and execute a message call to the new proxy within one transaction.
                    /// @param _singleton Address of singleton contract.
                    /// @param initializer Payload for message call sent to new proxy contract.
                    /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract.
                    function createProxyWithNonce(
                        address _singleton,
                        bytes memory initializer,
                        uint256 saltNonce
                    ) public returns (GnosisSafeProxy proxy) {
                        proxy = deployProxyWithNonce(_singleton, initializer, saltNonce);
                        if (initializer.length > 0)
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                if eq(call(gas(), proxy, 0, add(initializer, 0x20), mload(initializer), 0, 0), 0) {
                                    revert(0, 0)
                                }
                            }
                        emit ProxyCreation(proxy, _singleton);
                    }
                
                    /// @dev Allows to create new proxy contact, execute a message call to the new proxy and call a specified callback within one transaction
                    /// @param _singleton Address of singleton contract.
                    /// @param initializer Payload for message call sent to new proxy contract.
                    /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract.
                    /// @param callback Callback that will be invoced after the new proxy contract has been successfully deployed and initialized.
                    function createProxyWithCallback(
                        address _singleton,
                        bytes memory initializer,
                        uint256 saltNonce,
                        IProxyCreationCallback callback
                    ) public returns (GnosisSafeProxy proxy) {
                        uint256 saltNonceWithCallback = uint256(keccak256(abi.encodePacked(saltNonce, callback)));
                        proxy = createProxyWithNonce(_singleton, initializer, saltNonceWithCallback);
                        if (address(callback) != address(0)) callback.proxyCreated(proxy, _singleton, initializer, saltNonce);
                    }
                
                    /// @dev Allows to get the address for a new proxy contact created via `createProxyWithNonce`
                    ///      This method is only meant for address calculation purpose when you use an initializer that would revert,
                    ///      therefore the response is returned with a revert. When calling this method set `from` to the address of the proxy factory.
                    /// @param _singleton Address of singleton contract.
                    /// @param initializer Payload for message call sent to new proxy contract.
                    /// @param saltNonce Nonce that will be used to generate the salt to calculate the address of the new proxy contract.
                    function calculateCreateProxyWithNonceAddress(
                        address _singleton,
                        bytes calldata initializer,
                        uint256 saltNonce
                    ) external returns (GnosisSafeProxy proxy) {
                        proxy = deployProxyWithNonce(_singleton, initializer, saltNonce);
                        revert(string(abi.encodePacked(proxy)));
                    }
                }
                
                interface IProxyCreationCallback {
                    function proxyCreated(
                        GnosisSafeProxy proxy,
                        address _singleton,
                        bytes calldata initializer,
                        uint256 saltNonce
                    ) external;
                }

                File 3 of 7: WETH9
                // Copyright (C) 2015, 2016, 2017 Dapphub
                
                // This program is free software: you can redistribute it and/or modify
                // it under the terms of the GNU General Public License as published by
                // the Free Software Foundation, either version 3 of the License, or
                // (at your option) any later version.
                
                // This program is distributed in the hope that it will be useful,
                // but WITHOUT ANY WARRANTY; without even the implied warranty of
                // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                // GNU General Public License for more details.
                
                // You should have received a copy of the GNU General Public License
                // along with this program.  If not, see <http://www.gnu.org/licenses/>.
                
                pragma solidity ^0.4.18;
                
                contract WETH9 {
                    string public name     = "Wrapped Ether";
                    string public symbol   = "WETH";
                    uint8  public decimals = 18;
                
                    event  Approval(address indexed src, address indexed guy, uint wad);
                    event  Transfer(address indexed src, address indexed dst, uint wad);
                    event  Deposit(address indexed dst, uint wad);
                    event  Withdrawal(address indexed src, uint wad);
                
                    mapping (address => uint)                       public  balanceOf;
                    mapping (address => mapping (address => uint))  public  allowance;
                
                    function() public payable {
                        deposit();
                    }
                    function deposit() public payable {
                        balanceOf[msg.sender] += msg.value;
                        Deposit(msg.sender, msg.value);
                    }
                    function withdraw(uint wad) public {
                        require(balanceOf[msg.sender] >= wad);
                        balanceOf[msg.sender] -= wad;
                        msg.sender.transfer(wad);
                        Withdrawal(msg.sender, wad);
                    }
                
                    function totalSupply() public view returns (uint) {
                        return this.balance;
                    }
                
                    function approve(address guy, uint wad) public returns (bool) {
                        allowance[msg.sender][guy] = wad;
                        Approval(msg.sender, guy, wad);
                        return true;
                    }
                
                    function transfer(address dst, uint wad) public returns (bool) {
                        return transferFrom(msg.sender, dst, wad);
                    }
                
                    function transferFrom(address src, address dst, uint wad)
                        public
                        returns (bool)
                    {
                        require(balanceOf[src] >= wad);
                
                        if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                            require(allowance[src][msg.sender] >= wad);
                            allowance[src][msg.sender] -= wad;
                        }
                
                        balanceOf[src] -= wad;
                        balanceOf[dst] += wad;
                
                        Transfer(src, dst, wad);
                
                        return true;
                    }
                }
                
                
                /*
                                    GNU GENERAL PUBLIC LICENSE
                                       Version 3, 29 June 2007
                
                 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
                 Everyone is permitted to copy and distribute verbatim copies
                 of this license document, but changing it is not allowed.
                
                                            Preamble
                
                  The GNU General Public License is a free, copyleft license for
                software and other kinds of works.
                
                  The licenses for most software and other practical works are designed
                to take away your freedom to share and change the works.  By contrast,
                the GNU General Public License is intended to guarantee your freedom to
                share and change all versions of a program--to make sure it remains free
                software for all its users.  We, the Free Software Foundation, use the
                GNU General Public License for most of our software; it applies also to
                any other work released this way by its authors.  You can apply it to
                your programs, too.
                
                  When we speak of free software, we are referring to freedom, not
                price.  Our General Public Licenses are designed to make sure that you
                have the freedom to distribute copies of free software (and charge for
                them if you wish), that you receive source code or can get it if you
                want it, that you can change the software or use pieces of it in new
                free programs, and that you know you can do these things.
                
                  To protect your rights, we need to prevent others from denying you
                these rights or asking you to surrender the rights.  Therefore, you have
                certain responsibilities if you distribute copies of the software, or if
                you modify it: responsibilities to respect the freedom of others.
                
                  For example, if you distribute copies of such a program, whether
                gratis or for a fee, you must pass on to the recipients the same
                freedoms that you received.  You must make sure that they, too, receive
                or can get the source code.  And you must show them these terms so they
                know their rights.
                
                  Developers that use the GNU GPL protect your rights with two steps:
                (1) assert copyright on the software, and (2) offer you this License
                giving you legal permission to copy, distribute and/or modify it.
                
                  For the developers' and authors' protection, the GPL clearly explains
                that there is no warranty for this free software.  For both users' and
                authors' sake, the GPL requires that modified versions be marked as
                changed, so that their problems will not be attributed erroneously to
                authors of previous versions.
                
                  Some devices are designed to deny users access to install or run
                modified versions of the software inside them, although the manufacturer
                can do so.  This is fundamentally incompatible with the aim of
                protecting users' freedom to change the software.  The systematic
                pattern of such abuse occurs in the area of products for individuals to
                use, which is precisely where it is most unacceptable.  Therefore, we
                have designed this version of the GPL to prohibit the practice for those
                products.  If such problems arise substantially in other domains, we
                stand ready to extend this provision to those domains in future versions
                of the GPL, as needed to protect the freedom of users.
                
                  Finally, every program is threatened constantly by software patents.
                States should not allow patents to restrict development and use of
                software on general-purpose computers, but in those that do, we wish to
                avoid the special danger that patents applied to a free program could
                make it effectively proprietary.  To prevent this, the GPL assures that
                patents cannot be used to render the program non-free.
                
                  The precise terms and conditions for copying, distribution and
                modification follow.
                
                                       TERMS AND CONDITIONS
                
                  0. Definitions.
                
                  "This License" refers to version 3 of the GNU General Public License.
                
                  "Copyright" also means copyright-like laws that apply to other kinds of
                works, such as semiconductor masks.
                
                  "The Program" refers to any copyrightable work licensed under this
                License.  Each licensee is addressed as "you".  "Licensees" and
                "recipients" may be individuals or organizations.
                
                  To "modify" a work means to copy from or adapt all or part of the work
                in a fashion requiring copyright permission, other than the making of an
                exact copy.  The resulting work is called a "modified version" of the
                earlier work or a work "based on" the earlier work.
                
                  A "covered work" means either the unmodified Program or a work based
                on the Program.
                
                  To "propagate" a work means to do anything with it that, without
                permission, would make you directly or secondarily liable for
                infringement under applicable copyright law, except executing it on a
                computer or modifying a private copy.  Propagation includes copying,
                distribution (with or without modification), making available to the
                public, and in some countries other activities as well.
                
                  To "convey" a work means any kind of propagation that enables other
                parties to make or receive copies.  Mere interaction with a user through
                a computer network, with no transfer of a copy, is not conveying.
                
                  An interactive user interface displays "Appropriate Legal Notices"
                to the extent that it includes a convenient and prominently visible
                feature that (1) displays an appropriate copyright notice, and (2)
                tells the user that there is no warranty for the work (except to the
                extent that warranties are provided), that licensees may convey the
                work under this License, and how to view a copy of this License.  If
                the interface presents a list of user commands or options, such as a
                menu, a prominent item in the list meets this criterion.
                
                  1. Source Code.
                
                  The "source code" for a work means the preferred form of the work
                for making modifications to it.  "Object code" means any non-source
                form of a work.
                
                  A "Standard Interface" means an interface that either is an official
                standard defined by a recognized standards body, or, in the case of
                interfaces specified for a particular programming language, one that
                is widely used among developers working in that language.
                
                  The "System Libraries" of an executable work include anything, other
                than the work as a whole, that (a) is included in the normal form of
                packaging a Major Component, but which is not part of that Major
                Component, and (b) serves only to enable use of the work with that
                Major Component, or to implement a Standard Interface for which an
                implementation is available to the public in source code form.  A
                "Major Component", in this context, means a major essential component
                (kernel, window system, and so on) of the specific operating system
                (if any) on which the executable work runs, or a compiler used to
                produce the work, or an object code interpreter used to run it.
                
                  The "Corresponding Source" for a work in object code form means all
                the source code needed to generate, install, and (for an executable
                work) run the object code and to modify the work, including scripts to
                control those activities.  However, it does not include the work's
                System Libraries, or general-purpose tools or generally available free
                programs which are used unmodified in performing those activities but
                which are not part of the work.  For example, Corresponding Source
                includes interface definition files associated with source files for
                the work, and the source code for shared libraries and dynamically
                linked subprograms that the work is specifically designed to require,
                such as by intimate data communication or control flow between those
                subprograms and other parts of the work.
                
                  The Corresponding Source need not include anything that users
                can regenerate automatically from other parts of the Corresponding
                Source.
                
                  The Corresponding Source for a work in source code form is that
                same work.
                
                  2. Basic Permissions.
                
                  All rights granted under this License are granted for the term of
                copyright on the Program, and are irrevocable provided the stated
                conditions are met.  This License explicitly affirms your unlimited
                permission to run the unmodified Program.  The output from running a
                covered work is covered by this License only if the output, given its
                content, constitutes a covered work.  This License acknowledges your
                rights of fair use or other equivalent, as provided by copyright law.
                
                  You may make, run and propagate covered works that you do not
                convey, without conditions so long as your license otherwise remains
                in force.  You may convey covered works to others for the sole purpose
                of having them make modifications exclusively for you, or provide you
                with facilities for running those works, provided that you comply with
                the terms of this License in conveying all material for which you do
                not control copyright.  Those thus making or running the covered works
                for you must do so exclusively on your behalf, under your direction
                and control, on terms that prohibit them from making any copies of
                your copyrighted material outside their relationship with you.
                
                  Conveying under any other circumstances is permitted solely under
                the conditions stated below.  Sublicensing is not allowed; section 10
                makes it unnecessary.
                
                  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
                
                  No covered work shall be deemed part of an effective technological
                measure under any applicable law fulfilling obligations under article
                11 of the WIPO copyright treaty adopted on 20 December 1996, or
                similar laws prohibiting or restricting circumvention of such
                measures.
                
                  When you convey a covered work, you waive any legal power to forbid
                circumvention of technological measures to the extent such circumvention
                is effected by exercising rights under this License with respect to
                the covered work, and you disclaim any intention to limit operation or
                modification of the work as a means of enforcing, against the work's
                users, your or third parties' legal rights to forbid circumvention of
                technological measures.
                
                  4. Conveying Verbatim Copies.
                
                  You may convey verbatim copies of the Program's source code as you
                receive it, in any medium, provided that you conspicuously and
                appropriately publish on each copy an appropriate copyright notice;
                keep intact all notices stating that this License and any
                non-permissive terms added in accord with section 7 apply to the code;
                keep intact all notices of the absence of any warranty; and give all
                recipients a copy of this License along with the Program.
                
                  You may charge any price or no price for each copy that you convey,
                and you may offer support or warranty protection for a fee.
                
                  5. Conveying Modified Source Versions.
                
                  You may convey a work based on the Program, or the modifications to
                produce it from the Program, in the form of source code under the
                terms of section 4, provided that you also meet all of these conditions:
                
                    a) The work must carry prominent notices stating that you modified
                    it, and giving a relevant date.
                
                    b) The work must carry prominent notices stating that it is
                    released under this License and any conditions added under section
                    7.  This requirement modifies the requirement in section 4 to
                    "keep intact all notices".
                
                    c) You must license the entire work, as a whole, under this
                    License to anyone who comes into possession of a copy.  This
                    License will therefore apply, along with any applicable section 7
                    additional terms, to the whole of the work, and all its parts,
                    regardless of how they are packaged.  This License gives no
                    permission to license the work in any other way, but it does not
                    invalidate such permission if you have separately received it.
                
                    d) If the work has interactive user interfaces, each must display
                    Appropriate Legal Notices; however, if the Program has interactive
                    interfaces that do not display Appropriate Legal Notices, your
                    work need not make them do so.
                
                  A compilation of a covered work with other separate and independent
                works, which are not by their nature extensions of the covered work,
                and which are not combined with it such as to form a larger program,
                in or on a volume of a storage or distribution medium, is called an
                "aggregate" if the compilation and its resulting copyright are not
                used to limit the access or legal rights of the compilation's users
                beyond what the individual works permit.  Inclusion of a covered work
                in an aggregate does not cause this License to apply to the other
                parts of the aggregate.
                
                  6. Conveying Non-Source Forms.
                
                  You may convey a covered work in object code form under the terms
                of sections 4 and 5, provided that you also convey the
                machine-readable Corresponding Source under the terms of this License,
                in one of these ways:
                
                    a) Convey the object code in, or embodied in, a physical product
                    (including a physical distribution medium), accompanied by the
                    Corresponding Source fixed on a durable physical medium
                    customarily used for software interchange.
                
                    b) Convey the object code in, or embodied in, a physical product
                    (including a physical distribution medium), accompanied by a
                    written offer, valid for at least three years and valid for as
                    long as you offer spare parts or customer support for that product
                    model, to give anyone who possesses the object code either (1) a
                    copy of the Corresponding Source for all the software in the
                    product that is covered by this License, on a durable physical
                    medium customarily used for software interchange, for a price no
                    more than your reasonable cost of physically performing this
                    conveying of source, or (2) access to copy the
                    Corresponding Source from a network server at no charge.
                
                    c) Convey individual copies of the object code with a copy of the
                    written offer to provide the Corresponding Source.  This
                    alternative is allowed only occasionally and noncommercially, and
                    only if you received the object code with such an offer, in accord
                    with subsection 6b.
                
                    d) Convey the object code by offering access from a designated
                    place (gratis or for a charge), and offer equivalent access to the
                    Corresponding Source in the same way through the same place at no
                    further charge.  You need not require recipients to copy the
                    Corresponding Source along with the object code.  If the place to
                    copy the object code is a network server, the Corresponding Source
                    may be on a different server (operated by you or a third party)
                    that supports equivalent copying facilities, provided you maintain
                    clear directions next to the object code saying where to find the
                    Corresponding Source.  Regardless of what server hosts the
                    Corresponding Source, you remain obligated to ensure that it is
                    available for as long as needed to satisfy these requirements.
                
                    e) Convey the object code using peer-to-peer transmission, provided
                    you inform other peers where the object code and Corresponding
                    Source of the work are being offered to the general public at no
                    charge under subsection 6d.
                
                  A separable portion of the object code, whose source code is excluded
                from the Corresponding Source as a System Library, need not be
                included in conveying the object code work.
                
                  A "User Product" is either (1) a "consumer product", which means any
                tangible personal property which is normally used for personal, family,
                or household purposes, or (2) anything designed or sold for incorporation
                into a dwelling.  In determining whether a product is a consumer product,
                doubtful cases shall be resolved in favor of coverage.  For a particular
                product received by a particular user, "normally used" refers to a
                typical or common use of that class of product, regardless of the status
                of the particular user or of the way in which the particular user
                actually uses, or expects or is expected to use, the product.  A product
                is a consumer product regardless of whether the product has substantial
                commercial, industrial or non-consumer uses, unless such uses represent
                the only significant mode of use of the product.
                
                  "Installation Information" for a User Product means any methods,
                procedures, authorization keys, or other information required to install
                and execute modified versions of a covered work in that User Product from
                a modified version of its Corresponding Source.  The information must
                suffice to ensure that the continued functioning of the modified object
                code is in no case prevented or interfered with solely because
                modification has been made.
                
                  If you convey an object code work under this section in, or with, or
                specifically for use in, a User Product, and the conveying occurs as
                part of a transaction in which the right of possession and use of the
                User Product is transferred to the recipient in perpetuity or for a
                fixed term (regardless of how the transaction is characterized), the
                Corresponding Source conveyed under this section must be accompanied
                by the Installation Information.  But this requirement does not apply
                if neither you nor any third party retains the ability to install
                modified object code on the User Product (for example, the work has
                been installed in ROM).
                
                  The requirement to provide Installation Information does not include a
                requirement to continue to provide support service, warranty, or updates
                for a work that has been modified or installed by the recipient, or for
                the User Product in which it has been modified or installed.  Access to a
                network may be denied when the modification itself materially and
                adversely affects the operation of the network or violates the rules and
                protocols for communication across the network.
                
                  Corresponding Source conveyed, and Installation Information provided,
                in accord with this section must be in a format that is publicly
                documented (and with an implementation available to the public in
                source code form), and must require no special password or key for
                unpacking, reading or copying.
                
                  7. Additional Terms.
                
                  "Additional permissions" are terms that supplement the terms of this
                License by making exceptions from one or more of its conditions.
                Additional permissions that are applicable to the entire Program shall
                be treated as though they were included in this License, to the extent
                that they are valid under applicable law.  If additional permissions
                apply only to part of the Program, that part may be used separately
                under those permissions, but the entire Program remains governed by
                this License without regard to the additional permissions.
                
                  When you convey a copy of a covered work, you may at your option
                remove any additional permissions from that copy, or from any part of
                it.  (Additional permissions may be written to require their own
                removal in certain cases when you modify the work.)  You may place
                additional permissions on material, added by you to a covered work,
                for which you have or can give appropriate copyright permission.
                
                  Notwithstanding any other provision of this License, for material you
                add to a covered work, you may (if authorized by the copyright holders of
                that material) supplement the terms of this License with terms:
                
                    a) Disclaiming warranty or limiting liability differently from the
                    terms of sections 15 and 16 of this License; or
                
                    b) Requiring preservation of specified reasonable legal notices or
                    author attributions in that material or in the Appropriate Legal
                    Notices displayed by works containing it; or
                
                    c) Prohibiting misrepresentation of the origin of that material, or
                    requiring that modified versions of such material be marked in
                    reasonable ways as different from the original version; or
                
                    d) Limiting the use for publicity purposes of names of licensors or
                    authors of the material; or
                
                    e) Declining to grant rights under trademark law for use of some
                    trade names, trademarks, or service marks; or
                
                    f) Requiring indemnification of licensors and authors of that
                    material by anyone who conveys the material (or modified versions of
                    it) with contractual assumptions of liability to the recipient, for
                    any liability that these contractual assumptions directly impose on
                    those licensors and authors.
                
                  All other non-permissive additional terms are considered "further
                restrictions" within the meaning of section 10.  If the Program as you
                received it, or any part of it, contains a notice stating that it is
                governed by this License along with a term that is a further
                restriction, you may remove that term.  If a license document contains
                a further restriction but permits relicensing or conveying under this
                License, you may add to a covered work material governed by the terms
                of that license document, provided that the further restriction does
                not survive such relicensing or conveying.
                
                  If you add terms to a covered work in accord with this section, you
                must place, in the relevant source files, a statement of the
                additional terms that apply to those files, or a notice indicating
                where to find the applicable terms.
                
                  Additional terms, permissive or non-permissive, may be stated in the
                form of a separately written license, or stated as exceptions;
                the above requirements apply either way.
                
                  8. Termination.
                
                  You may not propagate or modify a covered work except as expressly
                provided under this License.  Any attempt otherwise to propagate or
                modify it is void, and will automatically terminate your rights under
                this License (including any patent licenses granted under the third
                paragraph of section 11).
                
                  However, if you cease all violation of this License, then your
                license from a particular copyright holder is reinstated (a)
                provisionally, unless and until the copyright holder explicitly and
                finally terminates your license, and (b) permanently, if the copyright
                holder fails to notify you of the violation by some reasonable means
                prior to 60 days after the cessation.
                
                  Moreover, your license from a particular copyright holder is
                reinstated permanently if the copyright holder notifies you of the
                violation by some reasonable means, this is the first time you have
                received notice of violation of this License (for any work) from that
                copyright holder, and you cure the violation prior to 30 days after
                your receipt of the notice.
                
                  Termination of your rights under this section does not terminate the
                licenses of parties who have received copies or rights from you under
                this License.  If your rights have been terminated and not permanently
                reinstated, you do not qualify to receive new licenses for the same
                material under section 10.
                
                  9. Acceptance Not Required for Having Copies.
                
                  You are not required to accept this License in order to receive or
                run a copy of the Program.  Ancillary propagation of a covered work
                occurring solely as a consequence of using peer-to-peer transmission
                to receive a copy likewise does not require acceptance.  However,
                nothing other than this License grants you permission to propagate or
                modify any covered work.  These actions infringe copyright if you do
                not accept this License.  Therefore, by modifying or propagating a
                covered work, you indicate your acceptance of this License to do so.
                
                  10. Automatic Licensing of Downstream Recipients.
                
                  Each time you convey a covered work, the recipient automatically
                receives a license from the original licensors, to run, modify and
                propagate that work, subject to this License.  You are not responsible
                for enforcing compliance by third parties with this License.
                
                  An "entity transaction" is a transaction transferring control of an
                organization, or substantially all assets of one, or subdividing an
                organization, or merging organizations.  If propagation of a covered
                work results from an entity transaction, each party to that
                transaction who receives a copy of the work also receives whatever
                licenses to the work the party's predecessor in interest had or could
                give under the previous paragraph, plus a right to possession of the
                Corresponding Source of the work from the predecessor in interest, if
                the predecessor has it or can get it with reasonable efforts.
                
                  You may not impose any further restrictions on the exercise of the
                rights granted or affirmed under this License.  For example, you may
                not impose a license fee, royalty, or other charge for exercise of
                rights granted under this License, and you may not initiate litigation
                (including a cross-claim or counterclaim in a lawsuit) alleging that
                any patent claim is infringed by making, using, selling, offering for
                sale, or importing the Program or any portion of it.
                
                  11. Patents.
                
                  A "contributor" is a copyright holder who authorizes use under this
                License of the Program or a work on which the Program is based.  The
                work thus licensed is called the contributor's "contributor version".
                
                  A contributor's "essential patent claims" are all patent claims
                owned or controlled by the contributor, whether already acquired or
                hereafter acquired, that would be infringed by some manner, permitted
                by this License, of making, using, or selling its contributor version,
                but do not include claims that would be infringed only as a
                consequence of further modification of the contributor version.  For
                purposes of this definition, "control" includes the right to grant
                patent sublicenses in a manner consistent with the requirements of
                this License.
                
                  Each contributor grants you a non-exclusive, worldwide, royalty-free
                patent license under the contributor's essential patent claims, to
                make, use, sell, offer for sale, import and otherwise run, modify and
                propagate the contents of its contributor version.
                
                  In the following three paragraphs, a "patent license" is any express
                agreement or commitment, however denominated, not to enforce a patent
                (such as an express permission to practice a patent or covenant not to
                sue for patent infringement).  To "grant" such a patent license to a
                party means to make such an agreement or commitment not to enforce a
                patent against the party.
                
                  If you convey a covered work, knowingly relying on a patent license,
                and the Corresponding Source of the work is not available for anyone
                to copy, free of charge and under the terms of this License, through a
                publicly available network server or other readily accessible means,
                then you must either (1) cause the Corresponding Source to be so
                available, or (2) arrange to deprive yourself of the benefit of the
                patent license for this particular work, or (3) arrange, in a manner
                consistent with the requirements of this License, to extend the patent
                license to downstream recipients.  "Knowingly relying" means you have
                actual knowledge that, but for the patent license, your conveying the
                covered work in a country, or your recipient's use of the covered work
                in a country, would infringe one or more identifiable patents in that
                country that you have reason to believe are valid.
                
                  If, pursuant to or in connection with a single transaction or
                arrangement, you convey, or propagate by procuring conveyance of, a
                covered work, and grant a patent license to some of the parties
                receiving the covered work authorizing them to use, propagate, modify
                or convey a specific copy of the covered work, then the patent license
                you grant is automatically extended to all recipients of the covered
                work and works based on it.
                
                  A patent license is "discriminatory" if it does not include within
                the scope of its coverage, prohibits the exercise of, or is
                conditioned on the non-exercise of one or more of the rights that are
                specifically granted under this License.  You may not convey a covered
                work if you are a party to an arrangement with a third party that is
                in the business of distributing software, under which you make payment
                to the third party based on the extent of your activity of conveying
                the work, and under which the third party grants, to any of the
                parties who would receive the covered work from you, a discriminatory
                patent license (a) in connection with copies of the covered work
                conveyed by you (or copies made from those copies), or (b) primarily
                for and in connection with specific products or compilations that
                contain the covered work, unless you entered into that arrangement,
                or that patent license was granted, prior to 28 March 2007.
                
                  Nothing in this License shall be construed as excluding or limiting
                any implied license or other defenses to infringement that may
                otherwise be available to you under applicable patent law.
                
                  12. No Surrender of Others' Freedom.
                
                  If conditions are imposed on you (whether by court order, agreement or
                otherwise) that contradict the conditions of this License, they do not
                excuse you from the conditions of this License.  If you cannot convey a
                covered work so as to satisfy simultaneously your obligations under this
                License and any other pertinent obligations, then as a consequence you may
                not convey it at all.  For example, if you agree to terms that obligate you
                to collect a royalty for further conveying from those to whom you convey
                the Program, the only way you could satisfy both those terms and this
                License would be to refrain entirely from conveying the Program.
                
                  13. Use with the GNU Affero General Public License.
                
                  Notwithstanding any other provision of this License, you have
                permission to link or combine any covered work with a work licensed
                under version 3 of the GNU Affero General Public License into a single
                combined work, and to convey the resulting work.  The terms of this
                License will continue to apply to the part which is the covered work,
                but the special requirements of the GNU Affero General Public License,
                section 13, concerning interaction through a network will apply to the
                combination as such.
                
                  14. Revised Versions of this License.
                
                  The Free Software Foundation may publish revised and/or new versions of
                the GNU General Public License from time to time.  Such new versions will
                be similar in spirit to the present version, but may differ in detail to
                address new problems or concerns.
                
                  Each version is given a distinguishing version number.  If the
                Program specifies that a certain numbered version of the GNU General
                Public License "or any later version" applies to it, you have the
                option of following the terms and conditions either of that numbered
                version or of any later version published by the Free Software
                Foundation.  If the Program does not specify a version number of the
                GNU General Public License, you may choose any version ever published
                by the Free Software Foundation.
                
                  If the Program specifies that a proxy can decide which future
                versions of the GNU General Public License can be used, that proxy's
                public statement of acceptance of a version permanently authorizes you
                to choose that version for the Program.
                
                  Later license versions may give you additional or different
                permissions.  However, no additional obligations are imposed on any
                author or copyright holder as a result of your choosing to follow a
                later version.
                
                  15. Disclaimer of Warranty.
                
                  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
                APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
                HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
                OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
                THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
                PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
                IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
                ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
                
                  16. Limitation of Liability.
                
                  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
                WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
                THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
                GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
                USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
                DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
                PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
                EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
                SUCH DAMAGES.
                
                  17. Interpretation of Sections 15 and 16.
                
                  If the disclaimer of warranty and limitation of liability provided
                above cannot be given local legal effect according to their terms,
                reviewing courts shall apply local law that most closely approximates
                an absolute waiver of all civil liability in connection with the
                Program, unless a warranty or assumption of liability accompanies a
                copy of the Program in return for a fee.
                
                                     END OF TERMS AND CONDITIONS
                
                            How to Apply These Terms to Your New Programs
                
                  If you develop a new program, and you want it to be of the greatest
                possible use to the public, the best way to achieve this is to make it
                free software which everyone can redistribute and change under these terms.
                
                  To do so, attach the following notices to the program.  It is safest
                to attach them to the start of each source file to most effectively
                state the exclusion of warranty; and each file should have at least
                the "copyright" line and a pointer to where the full notice is found.
                
                    <one line to give the program's name and a brief idea of what it does.>
                    Copyright (C) <year>  <name of author>
                
                    This program is free software: you can redistribute it and/or modify
                    it under the terms of the GNU General Public License as published by
                    the Free Software Foundation, either version 3 of the License, or
                    (at your option) any later version.
                
                    This program is distributed in the hope that it will be useful,
                    but WITHOUT ANY WARRANTY; without even the implied warranty of
                    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                    GNU General Public License for more details.
                
                    You should have received a copy of the GNU General Public License
                    along with this program.  If not, see <http://www.gnu.org/licenses/>.
                
                Also add information on how to contact you by electronic and paper mail.
                
                  If the program does terminal interaction, make it output a short
                notice like this when it starts in an interactive mode:
                
                    <program>  Copyright (C) <year>  <name of author>
                    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
                    This is free software, and you are welcome to redistribute it
                    under certain conditions; type `show c' for details.
                
                The hypothetical commands `show w' and `show c' should show the appropriate
                parts of the General Public License.  Of course, your program's commands
                might be different; for a GUI interface, you would use an "about box".
                
                  You should also get your employer (if you work as a programmer) or school,
                if any, to sign a "copyright disclaimer" for the program, if necessary.
                For more information on this, and how to apply and follow the GNU GPL, see
                <http://www.gnu.org/licenses/>.
                
                  The GNU General Public License does not permit incorporating your program
                into proprietary programs.  If your program is a subroutine library, you
                may consider it more useful to permit linking proprietary applications with
                the library.  If this is what you want to do, use the GNU Lesser General
                Public License instead of this License.  But first, please read
                <http://www.gnu.org/philosophy/why-not-lgpl.html>.
                
                */

                File 4 of 7: Bridge
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import "../utils/Context.sol";
                /**
                 * @dev Contract module which provides a basic access control mechanism, where
                 * there is an account (an owner) that can be granted exclusive access to
                 * specific functions.
                 *
                 * By default, the owner account will be the one that deploys the contract. This
                 * can later be changed with {transferOwnership}.
                 *
                 * This module is used through inheritance. It will make available the modifier
                 * `onlyOwner`, which can be applied to your functions to restrict their use to
                 * the owner.
                 */
                abstract contract Ownable is Context {
                    address private _owner;
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    /**
                     * @dev Initializes the contract setting the deployer as the initial owner.
                     */
                    constructor() {
                        _setOwner(_msgSender());
                    }
                    /**
                     * @dev Returns the address of the current owner.
                     */
                    function owner() public view virtual returns (address) {
                        return _owner;
                    }
                    /**
                     * @dev Throws if called by any account other than the owner.
                     */
                    modifier onlyOwner() {
                        require(owner() == _msgSender(), "Ownable: caller is not the owner");
                        _;
                    }
                    /**
                     * @dev Leaves the contract without owner. It will not be possible to call
                     * `onlyOwner` functions anymore. Can only be called by the current owner.
                     *
                     * NOTE: Renouncing ownership will leave the contract without an owner,
                     * thereby removing any functionality that is only available to the owner.
                     */
                    function renounceOwnership() public virtual onlyOwner {
                        _setOwner(address(0));
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Can only be called by the current owner.
                     */
                    function transferOwnership(address newOwner) public virtual onlyOwner {
                        require(newOwner != address(0), "Ownable: new owner is the zero address");
                        _setOwner(newOwner);
                    }
                    function _setOwner(address newOwner) private {
                        address oldOwner = _owner;
                        _owner = newOwner;
                        emit OwnershipTransferred(oldOwner, newOwner);
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import "../utils/Context.sol";
                /**
                 * @dev Contract module which allows children to implement an emergency stop
                 * mechanism that can be triggered by an authorized account.
                 *
                 * This module is used through inheritance. It will make available the
                 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
                 * the functions of your contract. Note that they will not be pausable by
                 * simply including this module, only once the modifiers are put in place.
                 */
                abstract contract Pausable is Context {
                    /**
                     * @dev Emitted when the pause is triggered by `account`.
                     */
                    event Paused(address account);
                    /**
                     * @dev Emitted when the pause is lifted by `account`.
                     */
                    event Unpaused(address account);
                    bool private _paused;
                    /**
                     * @dev Initializes the contract in unpaused state.
                     */
                    constructor() {
                        _paused = false;
                    }
                    /**
                     * @dev Returns true if the contract is paused, and false otherwise.
                     */
                    function paused() public view virtual returns (bool) {
                        return _paused;
                    }
                    /**
                     * @dev Modifier to make a function callable only when the contract is not paused.
                     *
                     * Requirements:
                     *
                     * - The contract must not be paused.
                     */
                    modifier whenNotPaused() {
                        require(!paused(), "Pausable: paused");
                        _;
                    }
                    /**
                     * @dev Modifier to make a function callable only when the contract is paused.
                     *
                     * Requirements:
                     *
                     * - The contract must be paused.
                     */
                    modifier whenPaused() {
                        require(paused(), "Pausable: not paused");
                        _;
                    }
                    /**
                     * @dev Triggers stopped state.
                     *
                     * Requirements:
                     *
                     * - The contract must not be paused.
                     */
                    function _pause() internal virtual whenNotPaused {
                        _paused = true;
                        emit Paused(_msgSender());
                    }
                    /**
                     * @dev Returns to normal state.
                     *
                     * Requirements:
                     *
                     * - The contract must be paused.
                     */
                    function _unpause() internal virtual whenPaused {
                        _paused = false;
                        emit Unpaused(_msgSender());
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /**
                 * @dev Contract module that helps prevent reentrant calls to a function.
                 *
                 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
                 * available, which can be applied to functions to make sure there are no nested
                 * (reentrant) calls to them.
                 *
                 * Note that because there is a single `nonReentrant` guard, functions marked as
                 * `nonReentrant` may not call one another. This can be worked around by making
                 * those functions `private`, and then adding `external` `nonReentrant` entry
                 * points to them.
                 *
                 * TIP: If you would like to learn more about reentrancy and alternative ways
                 * to protect against it, check out our blog post
                 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
                 */
                abstract contract ReentrancyGuard {
                    // Booleans are more expensive than uint256 or any type that takes up a full
                    // word because each write operation emits an extra SLOAD to first read the
                    // slot's contents, replace the bits taken up by the boolean, and then write
                    // back. This is the compiler's defense against contract upgrades and
                    // pointer aliasing, and it cannot be disabled.
                    // The values being non-zero value makes deployment a bit more expensive,
                    // but in exchange the refund on every call to nonReentrant will be lower in
                    // amount. Since refunds are capped to a percentage of the total
                    // transaction's gas, it is best to keep them low in cases like this one, to
                    // increase the likelihood of the full refund coming into effect.
                    uint256 private constant _NOT_ENTERED = 1;
                    uint256 private constant _ENTERED = 2;
                    uint256 private _status;
                    constructor() {
                        _status = _NOT_ENTERED;
                    }
                    /**
                     * @dev Prevents a contract from calling itself, directly or indirectly.
                     * Calling a `nonReentrant` function from another `nonReentrant`
                     * function is not supported. It is possible to prevent this from happening
                     * by making the `nonReentrant` function external, and make it call a
                     * `private` function that does the actual work.
                     */
                    modifier nonReentrant() {
                        // On the first call to nonReentrant, _notEntered will be true
                        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                        // Any calls to nonReentrant after this point will fail
                        _status = _ENTERED;
                        _;
                        // By storing the original value once again, a refund is triggered (see
                        // https://eips.ethereum.org/EIPS/eip-2200)
                        _status = _NOT_ENTERED;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 standard as defined in the EIP.
                 */
                interface IERC20 {
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `recipient`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address recipient, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `sender` to `recipient` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(
                        address sender,
                        address recipient,
                        uint256 amount
                    ) external returns (bool);
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import "../IERC20.sol";
                import "../../../utils/Address.sol";
                /**
                 * @title SafeERC20
                 * @dev Wrappers around ERC20 operations that throw on failure (when the token
                 * contract returns false). Tokens that return no value (and instead revert or
                 * throw on failure) are also supported, non-reverting calls are assumed to be
                 * successful.
                 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                 */
                library SafeERC20 {
                    using Address for address;
                    function safeTransfer(
                        IERC20 token,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                    }
                    function safeTransferFrom(
                        IERC20 token,
                        address from,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                    }
                    /**
                     * @dev Deprecated. This function has issues similar to the ones found in
                     * {IERC20-approve}, and its usage is discouraged.
                     *
                     * Whenever possible, use {safeIncreaseAllowance} and
                     * {safeDecreaseAllowance} instead.
                     */
                    function safeApprove(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        // safeApprove should only be called when setting an initial allowance,
                        // or when resetting it to zero. To increase and decrease it, use
                        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                        require(
                            (value == 0) || (token.allowance(address(this), spender) == 0),
                            "SafeERC20: approve from non-zero to non-zero allowance"
                        );
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                    }
                    function safeIncreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        uint256 newAllowance = token.allowance(address(this), spender) + value;
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                    function safeDecreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        unchecked {
                            uint256 oldAllowance = token.allowance(address(this), spender);
                            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                            uint256 newAllowance = oldAllowance - value;
                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                        }
                    }
                    /**
                     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                     * on the return value: the return value is optional (but if data is returned, it must not be false).
                     * @param token The token targeted by the call.
                     * @param data The call data (encoded using abi.encode or one of its variants).
                     */
                    function _callOptionalReturn(IERC20 token, bytes memory data) private {
                        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                        // the target address contains contract code and also asserts for success in the low-level call.
                        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                        if (returndata.length > 0) {
                            // Return data is optional
                            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library Address {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize, which returns 0 for contracts in
                        // construction, since the code is only stored at the end of the
                        // constructor execution.
                        uint256 size;
                        assembly {
                            size := extcodesize(account)
                        }
                        return size > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return _verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return _verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(isContract(target), "Address: delegate call to non-contract");
                        (bool success, bytes memory returndata) = target.delegatecall(data);
                        return _verifyCallResult(success, returndata, errorMessage);
                    }
                    function _verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) private pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /*
                 * @dev Provides information about the current execution context, including the
                 * sender of the transaction and its data. While these are generally available
                 * via msg.sender and msg.data, they should not be accessed in such a direct
                 * manner, since when dealing with meta-transactions the account sending and
                 * paying for execution may not be the actual sender (as far as an application
                 * is concerned).
                 *
                 * This contract is only required for intermediate, library-like contracts.
                 */
                abstract contract Context {
                    function _msgSender() internal view virtual returns (address) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes calldata) {
                        return msg.data;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /**
                 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
                 *
                 * These functions can be used to verify that a message was signed by the holder
                 * of the private keys of a given address.
                 */
                library ECDSA {
                    /**
                     * @dev Returns the address that signed a hashed message (`hash`) with
                     * `signature`. This address can then be used for verification purposes.
                     *
                     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
                     * this function rejects them by requiring the `s` value to be in the lower
                     * half order, and the `v` value to be either 27 or 28.
                     *
                     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
                     * verification to be secure: it is possible to craft signatures that
                     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
                     * this is by receiving a hash of the original message (which may otherwise
                     * be too long), and then calling {toEthSignedMessageHash} on it.
                     *
                     * Documentation for signature generation:
                     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
                     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
                     */
                    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
                        // Check the signature length
                        // - case 65: r,s,v signature (standard)
                        // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._
                        if (signature.length == 65) {
                            bytes32 r;
                            bytes32 s;
                            uint8 v;
                            // ecrecover takes the signature parameters, and the only way to get them
                            // currently is to use assembly.
                            assembly {
                                r := mload(add(signature, 0x20))
                                s := mload(add(signature, 0x40))
                                v := byte(0, mload(add(signature, 0x60)))
                            }
                            return recover(hash, v, r, s);
                        } else if (signature.length == 64) {
                            bytes32 r;
                            bytes32 vs;
                            // ecrecover takes the signature parameters, and the only way to get them
                            // currently is to use assembly.
                            assembly {
                                r := mload(add(signature, 0x20))
                                vs := mload(add(signature, 0x40))
                            }
                            return recover(hash, r, vs);
                        } else {
                            revert("ECDSA: invalid signature length");
                        }
                    }
                    /**
                     * @dev Overload of {ECDSA-recover} that receives the `r` and `vs` short-signature fields separately.
                     *
                     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
                     *
                     * _Available since v4.2._
                     */
                    function recover(
                        bytes32 hash,
                        bytes32 r,
                        bytes32 vs
                    ) internal pure returns (address) {
                        bytes32 s;
                        uint8 v;
                        assembly {
                            s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                            v := add(shr(255, vs), 27)
                        }
                        return recover(hash, v, r, s);
                    }
                    /**
                     * @dev Overload of {ECDSA-recover} that receives the `v`, `r` and `s` signature fields separately.
                     */
                    function recover(
                        bytes32 hash,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal pure returns (address) {
                        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
                        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
                        // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
                        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
                        //
                        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
                        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
                        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
                        // these malleable signatures as well.
                        require(
                            uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
                            "ECDSA: invalid signature 's' value"
                        );
                        require(v == 27 || v == 28, "ECDSA: invalid signature 'v' value");
                        // If the signature is valid (and not malleable), return the signer address
                        address signer = ecrecover(hash, v, r, s);
                        require(signer != address(0), "ECDSA: invalid signature");
                        return signer;
                    }
                    /**
                     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
                     * produces hash corresponding to the one signed with the
                     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
                     * JSON-RPC method as part of EIP-191.
                     *
                     * See {recover}.
                     */
                    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
                        // 32 is the length in bytes of hash,
                        // enforced by the type signature above
                        return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
                32", hash));
                    }
                    /**
                     * @dev Returns an Ethereum Signed Typed Data, created from a
                     * `domainSeparator` and a `structHash`. This produces hash corresponding
                     * to the one signed with the
                     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
                     * JSON-RPC method as part of EIP-712.
                     *
                     * See {recover}.
                     */
                    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
                        return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash));
                    }
                }
                // SPDX-License-Identifier: GPL-3.0-only
                pragma solidity 0.8.9;
                import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
                import "./libraries/PbBridge.sol";
                import "./Pool.sol";
                contract Bridge is Pool {
                    using SafeERC20 for IERC20;
                    // liquidity events
                    event Send(
                        bytes32 transferId,
                        address sender,
                        address receiver,
                        address token,
                        uint256 amount,
                        uint64 dstChainId,
                        uint64 nonce,
                        uint32 maxSlippage
                    );
                    event Relay(
                        bytes32 transferId,
                        address sender,
                        address receiver,
                        address token,
                        uint256 amount,
                        uint64 srcChainId,
                        bytes32 srcTransferId
                    );
                    // gov events
                    event MinSendUpdated(address token, uint256 amount);
                    event MaxSendUpdated(address token, uint256 amount);
                    mapping(bytes32 => bool) public transfers;
                    mapping(address => uint256) public minSend; // send _amount must > minSend
                    mapping(address => uint256) public maxSend;
                    // min allowed max slippage uint32 value is slippage * 1M, eg. 0.5% -> 5000
                    uint32 public minimalMaxSlippage;
                    function send(
                        address _receiver,
                        address _token,
                        uint256 _amount,
                        uint64 _dstChainId,
                        uint64 _nonce,
                        uint32 _maxSlippage // slippage * 1M, eg. 0.5% -> 5000
                    ) external nonReentrant whenNotPaused {
                        bytes32 transferId = _send(_receiver, _token, _amount, _dstChainId, _nonce, _maxSlippage);
                        IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);
                        emit Send(transferId, msg.sender, _receiver, _token, _amount, _dstChainId, _nonce, _maxSlippage);
                    }
                    function sendNative(
                        address _receiver,
                        uint256 _amount,
                        uint64 _dstChainId,
                        uint64 _nonce,
                        uint32 _maxSlippage
                    ) external payable nonReentrant whenNotPaused {
                        require(msg.value == _amount, "Amount mismatch");
                        require(nativeWrap != address(0), "Native wrap not set");
                        bytes32 transferId = _send(_receiver, nativeWrap, _amount, _dstChainId, _nonce, _maxSlippage);
                        IWETH(nativeWrap).deposit{value: _amount}();
                        emit Send(transferId, msg.sender, _receiver, nativeWrap, _amount, _dstChainId, _nonce, _maxSlippage);
                    }
                    function _send(
                        address _receiver,
                        address _token,
                        uint256 _amount,
                        uint64 _dstChainId,
                        uint64 _nonce,
                        uint32 _maxSlippage
                    ) private returns (bytes32) {
                        require(_amount > minSend[_token], "amount too small");
                        require(maxSend[_token] == 0 || _amount <= maxSend[_token], "amount too large");
                        require(_maxSlippage > minimalMaxSlippage, "max slippage too small");
                        bytes32 transferId = keccak256(
                            // uint64(block.chainid) for consistency as entire system uses uint64 for chain id
                            abi.encodePacked(msg.sender, _receiver, _token, _amount, _dstChainId, _nonce, uint64(block.chainid))
                        );
                        require(transfers[transferId] == false, "transfer exists");
                        transfers[transferId] = true;
                        return transferId;
                    }
                    function relay(
                        bytes calldata _relayRequest,
                        bytes[] calldata _sigs,
                        address[] calldata _signers,
                        uint256[] calldata _powers
                    ) external whenNotPaused {
                        bytes32 domain = keccak256(abi.encodePacked(block.chainid, address(this), "Relay"));
                        verifySigs(abi.encodePacked(domain, _relayRequest), _sigs, _signers, _powers);
                        PbBridge.Relay memory request = PbBridge.decRelay(_relayRequest);
                        bytes32 transferId = keccak256(
                            abi.encodePacked(
                                request.sender,
                                request.receiver,
                                request.token,
                                request.amount,
                                request.srcChainId,
                                request.dstChainId,
                                request.srcTransferId
                            )
                        );
                        require(transfers[transferId] == false, "transfer exists");
                        transfers[transferId] = true;
                        _updateVolume(request.token, request.amount);
                        uint256 delayThreshold = delayThresholds[request.token];
                        if (delayThreshold > 0 && request.amount > delayThreshold) {
                            _addDelayedTransfer(transferId, request.receiver, request.token, request.amount);
                        } else {
                            _sendToken(request.receiver, request.token, request.amount);
                        }
                        emit Relay(
                            transferId,
                            request.sender,
                            request.receiver,
                            request.token,
                            request.amount,
                            request.srcChainId,
                            request.srcTransferId
                        );
                    }
                    function setMinSend(address[] calldata _tokens, uint256[] calldata _amounts) external onlyGovernor {
                        require(_tokens.length == _amounts.length, "length mismatch");
                        for (uint256 i = 0; i < _tokens.length; i++) {
                            minSend[_tokens[i]] = _amounts[i];
                            emit MinSendUpdated(_tokens[i], _amounts[i]);
                        }
                    }
                    function setMaxSend(address[] calldata _tokens, uint256[] calldata _amounts) external onlyGovernor {
                        require(_tokens.length == _amounts.length, "length mismatch");
                        for (uint256 i = 0; i < _tokens.length; i++) {
                            maxSend[_tokens[i]] = _amounts[i];
                            emit MaxSendUpdated(_tokens[i], _amounts[i]);
                        }
                    }
                    function setMinimalMaxSlippage(uint32 _minimalMaxSlippage) external onlyGovernor {
                        minimalMaxSlippage = _minimalMaxSlippage;
                    }
                    // This is needed to receive ETH when calling `IWETH.withdraw`
                    receive() external payable {}
                }
                // SPDX-License-Identifier: GPL-3.0-only
                pragma solidity 0.8.9;
                import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
                import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
                import "./interfaces/IWETH.sol";
                import "./libraries/PbPool.sol";
                import "./safeguard/Pauser.sol";
                import "./safeguard/VolumeControl.sol";
                import "./safeguard/DelayedTransfer.sol";
                import "./Signers.sol";
                // add liquidity and withdraw
                // withdraw can be used by user or liquidity provider
                contract Pool is Signers, ReentrancyGuard, Pauser, VolumeControl, DelayedTransfer {
                    using SafeERC20 for IERC20;
                    uint64 public addseq; // ensure unique LiquidityAdded event, start from 1
                    mapping(address => uint256) public minAdd; // add _amount must > minAdd
                    // map of successful withdraws, if true means already withdrew money or added to delayedTransfers
                    mapping(bytes32 => bool) public withdraws;
                    // erc20 wrap of gas token of this chain, eg. WETH, when relay ie. pay out,
                    // if request.token equals this, will withdraw and send native token to receiver
                    // note we don't check whether it's zero address. when this isn't set, and request.token
                    // is all 0 address, guarantee fail
                    address public nativeWrap;
                    // liquidity events
                    event LiquidityAdded(
                        uint64 seqnum,
                        address provider,
                        address token,
                        uint256 amount // how many tokens were added
                    );
                    event WithdrawDone(
                        bytes32 withdrawId,
                        uint64 seqnum,
                        address receiver,
                        address token,
                        uint256 amount,
                        bytes32 refid
                    );
                    event MinAddUpdated(address token, uint256 amount);
                    function addLiquidity(address _token, uint256 _amount) external nonReentrant whenNotPaused {
                        require(_amount > minAdd[_token], "amount too small");
                        addseq += 1;
                        IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);
                        emit LiquidityAdded(addseq, msg.sender, _token, _amount);
                    }
                    function addNativeLiquidity(uint256 _amount) external payable nonReentrant whenNotPaused {
                        require(msg.value == _amount, "Amount mismatch");
                        require(nativeWrap != address(0), "Native wrap not set");
                        require(_amount > minAdd[nativeWrap], "amount too small");
                        addseq += 1;
                        IWETH(nativeWrap).deposit{value: _amount}();
                        emit LiquidityAdded(addseq, msg.sender, nativeWrap, _amount);
                    }
                    function withdraw(
                        bytes calldata _wdmsg,
                        bytes[] calldata _sigs,
                        address[] calldata _signers,
                        uint256[] calldata _powers
                    ) external whenNotPaused {
                        bytes32 domain = keccak256(abi.encodePacked(block.chainid, address(this), "WithdrawMsg"));
                        verifySigs(abi.encodePacked(domain, _wdmsg), _sigs, _signers, _powers);
                        // decode and check wdmsg
                        PbPool.WithdrawMsg memory wdmsg = PbPool.decWithdrawMsg(_wdmsg);
                        bytes32 wdId = keccak256(
                            abi.encodePacked(wdmsg.chainid, wdmsg.seqnum, wdmsg.receiver, wdmsg.token, wdmsg.amount)
                        );
                        require(withdraws[wdId] == false, "withdraw already succeeded");
                        withdraws[wdId] = true;
                        _updateVolume(wdmsg.token, wdmsg.amount);
                        uint256 delayThreshold = delayThresholds[wdmsg.token];
                        if (delayThreshold > 0 && wdmsg.amount > delayThreshold) {
                            _addDelayedTransfer(wdId, wdmsg.receiver, wdmsg.token, wdmsg.amount);
                        } else {
                            _sendToken(wdmsg.receiver, wdmsg.token, wdmsg.amount);
                        }
                        emit WithdrawDone(wdId, wdmsg.seqnum, wdmsg.receiver, wdmsg.token, wdmsg.amount, wdmsg.refid);
                    }
                    function executeDelayedTransfer(bytes32 id) external whenNotPaused {
                        delayedTransfer memory transfer = _executeDelayedTransfer(id);
                        _sendToken(transfer.receiver, transfer.token, transfer.amount);
                    }
                    function setMinAdd(address[] calldata _tokens, uint256[] calldata _amounts) external onlyGovernor {
                        require(_tokens.length == _amounts.length, "length mismatch");
                        for (uint256 i = 0; i < _tokens.length; i++) {
                            minAdd[_tokens[i]] = _amounts[i];
                            emit MinAddUpdated(_tokens[i], _amounts[i]);
                        }
                    }
                    function _sendToken(
                        address _receiver,
                        address _token,
                        uint256 _amount
                    ) internal {
                        if (_token == nativeWrap) {
                            // withdraw then transfer native to receiver
                            IWETH(nativeWrap).withdraw(_amount);
                            (bool sent, ) = _receiver.call{value: _amount, gas: 50000}("");
                            require(sent, "failed to send native token");
                        } else {
                            IERC20(_token).safeTransfer(_receiver, _amount);
                        }
                    }
                    // set nativeWrap, for relay requests, if token == nativeWrap, will withdraw first then transfer native to receiver
                    function setWrap(address _weth) external onlyOwner {
                        nativeWrap = _weth;
                    }
                }
                // SPDX-License-Identifier: GPL-3.0-only
                pragma solidity 0.8.9;
                import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
                import "@openzeppelin/contracts/access/Ownable.sol";
                import "./interfaces/ISigsVerifier.sol";
                contract Signers is Ownable, ISigsVerifier {
                    using ECDSA for bytes32;
                    bytes32 public ssHash;
                    uint256 public triggerTime; // timestamp when last update was triggered
                    // reset can be called by the owner address for emergency recovery
                    uint256 public resetTime;
                    uint256 public noticePeriod; // advance notice period as seconds for reset
                    uint256 constant MAX_INT = 2**256 - 1;
                    event SignersUpdated(address[] _signers, uint256[] _powers);
                    event ResetNotification(uint256 resetTime);
                    /**
                     * @notice Verifies that a message is signed by a quorum among the signers
                     * The sigs must be sorted by signer addresses in ascending order.
                     * @param _msg signed message
                     * @param _sigs list of signatures sorted by signer addresses
                     * @param _signers sorted list of current signers
                     * @param _powers powers of current signers
                     */
                    function verifySigs(
                        bytes memory _msg,
                        bytes[] calldata _sigs,
                        address[] calldata _signers,
                        uint256[] calldata _powers
                    ) public view override {
                        bytes32 h = keccak256(abi.encodePacked(_signers, _powers));
                        require(ssHash == h, "Mismatch current signers");
                        _verifySignedPowers(keccak256(_msg).toEthSignedMessageHash(), _sigs, _signers, _powers);
                    }
                    /**
                     * @notice Update new signers.
                     * @param _newSigners sorted list of new signers
                     * @param _curPowers powers of new signers
                     * @param _sigs list of signatures sorted by signer addresses
                     * @param _curSigners sorted list of current signers
                     * @param _curPowers powers of current signers
                     */
                    function updateSigners(
                        uint256 _triggerTime,
                        address[] calldata _newSigners,
                        uint256[] calldata _newPowers,
                        bytes[] calldata _sigs,
                        address[] calldata _curSigners,
                        uint256[] calldata _curPowers
                    ) external {
                        // use trigger time for nonce protection, must be ascending
                        require(_triggerTime > triggerTime, "Trigger time is not increasing");
                        // make sure triggerTime is not too large, as it cannot be decreased once set
                        require(_triggerTime < block.timestamp + 3600, "Trigger time is too large");
                        bytes32 domain = keccak256(abi.encodePacked(block.chainid, address(this), "UpdateSigners"));
                        verifySigs(abi.encodePacked(domain, _triggerTime, _newSigners, _newPowers), _sigs, _curSigners, _curPowers);
                        _updateSigners(_newSigners, _newPowers);
                        triggerTime = _triggerTime;
                    }
                    /**
                     * @notice reset signers, only used for init setup and emergency recovery
                     */
                    function resetSigners(address[] calldata _signers, uint256[] calldata _powers) external onlyOwner {
                        require(block.timestamp > resetTime, "not reach reset time");
                        resetTime = MAX_INT;
                        _updateSigners(_signers, _powers);
                    }
                    function notifyResetSigners() external onlyOwner {
                        resetTime = block.timestamp + noticePeriod;
                        emit ResetNotification(resetTime);
                    }
                    function increaseNoticePeriod(uint256 period) external onlyOwner {
                        require(period > noticePeriod, "notice period can only be increased");
                        noticePeriod = period;
                    }
                    // separate from verifySigs func to avoid "stack too deep" issue
                    function _verifySignedPowers(
                        bytes32 _hash,
                        bytes[] calldata _sigs,
                        address[] calldata _signers,
                        uint256[] calldata _powers
                    ) private pure {
                        require(_signers.length == _powers.length, "signers and powers length not match");
                        uint256 totalPower; // sum of all signer.power
                        for (uint256 i = 0; i < _signers.length; i++) {
                            totalPower += _powers[i];
                        }
                        uint256 quorum = (totalPower * 2) / 3 + 1;
                        uint256 signedPower; // sum of signer powers who are in sigs
                        address prev = address(0);
                        uint256 index = 0;
                        for (uint256 i = 0; i < _sigs.length; i++) {
                            address signer = _hash.recover(_sigs[i]);
                            require(signer > prev, "signers not in ascending order");
                            prev = signer;
                            // now find match signer add its power
                            while (signer > _signers[index]) {
                                index += 1;
                                require(index < _signers.length, "signer not found");
                            }
                            if (signer == _signers[index]) {
                                signedPower += _powers[index];
                            }
                            if (signedPower >= quorum) {
                                // return early to save gas
                                return;
                            }
                        }
                        revert("quorum not reached");
                    }
                    function _updateSigners(address[] calldata _signers, uint256[] calldata _powers) private {
                        require(_signers.length == _powers.length, "signers and powers length not match");
                        address prev = address(0);
                        for (uint256 i = 0; i < _signers.length; i++) {
                            require(_signers[i] > prev, "New signers not in ascending order");
                            prev = _signers[i];
                        }
                        ssHash = keccak256(abi.encodePacked(_signers, _powers));
                        emit SignersUpdated(_signers, _powers);
                    }
                }
                // SPDX-License-Identifier: GPL-3.0-only
                pragma solidity 0.8.9;
                interface ISigsVerifier {
                    /**
                     * @notice Verifies that a message is signed by a quorum among the signers.
                     * @param _msg signed message
                     * @param _sigs list of signatures sorted by signer addresses
                     * @param _signers sorted list of current signers
                     * @param _powers powers of current signers
                     */
                    function verifySigs(
                        bytes memory _msg,
                        bytes[] calldata _sigs,
                        address[] calldata _signers,
                        uint256[] calldata _powers
                    ) external view;
                }
                // SPDX-License-Identifier: GPL-3.0-only
                pragma solidity 0.8.9;
                interface IWETH {
                    function deposit() external payable;
                    function withdraw(uint256) external;
                }
                // SPDX-License-Identifier: GPL-3.0-only
                pragma solidity 0.8.9;
                // runtime proto sol library
                library Pb {
                    enum WireType {
                        Varint,
                        Fixed64,
                        LengthDelim,
                        StartGroup,
                        EndGroup,
                        Fixed32
                    }
                    struct Buffer {
                        uint256 idx; // the start index of next read. when idx=b.length, we're done
                        bytes b; // hold serialized proto msg, readonly
                    }
                    // create a new in-memory Buffer object from raw msg bytes
                    function fromBytes(bytes memory raw) internal pure returns (Buffer memory buf) {
                        buf.b = raw;
                        buf.idx = 0;
                    }
                    // whether there are unread bytes
                    function hasMore(Buffer memory buf) internal pure returns (bool) {
                        return buf.idx < buf.b.length;
                    }
                    // decode current field number and wiretype
                    function decKey(Buffer memory buf) internal pure returns (uint256 tag, WireType wiretype) {
                        uint256 v = decVarint(buf);
                        tag = v / 8;
                        wiretype = WireType(v & 7);
                    }
                    // count tag occurrences, return an array due to no memory map support
                    // have to create array for (maxtag+1) size. cnts[tag] = occurrences
                    // should keep buf.idx unchanged because this is only a count function
                    function cntTags(Buffer memory buf, uint256 maxtag) internal pure returns (uint256[] memory cnts) {
                        uint256 originalIdx = buf.idx;
                        cnts = new uint256[](maxtag + 1); // protobuf's tags are from 1 rather than 0
                        uint256 tag;
                        WireType wire;
                        while (hasMore(buf)) {
                            (tag, wire) = decKey(buf);
                            cnts[tag] += 1;
                            skipValue(buf, wire);
                        }
                        buf.idx = originalIdx;
                    }
                    // read varint from current buf idx, move buf.idx to next read, return the int value
                    function decVarint(Buffer memory buf) internal pure returns (uint256 v) {
                        bytes10 tmp; // proto int is at most 10 bytes (7 bits can be used per byte)
                        bytes memory bb = buf.b; // get buf.b mem addr to use in assembly
                        v = buf.idx; // use v to save one additional uint variable
                        assembly {
                            tmp := mload(add(add(bb, 32), v)) // load 10 bytes from buf.b[buf.idx] to tmp
                        }
                        uint256 b; // store current byte content
                        v = 0; // reset to 0 for return value
                        for (uint256 i = 0; i < 10; i++) {
                            assembly {
                                b := byte(i, tmp) // don't use tmp[i] because it does bound check and costs extra
                            }
                            v |= (b & 0x7F) << (i * 7);
                            if (b & 0x80 == 0) {
                                buf.idx += i + 1;
                                return v;
                            }
                        }
                        revert(); // i=10, invalid varint stream
                    }
                    // read length delimited field and return bytes
                    function decBytes(Buffer memory buf) internal pure returns (bytes memory b) {
                        uint256 len = decVarint(buf);
                        uint256 end = buf.idx + len;
                        require(end <= buf.b.length); // avoid overflow
                        b = new bytes(len);
                        bytes memory bufB = buf.b; // get buf.b mem addr to use in assembly
                        uint256 bStart;
                        uint256 bufBStart = buf.idx;
                        assembly {
                            bStart := add(b, 32)
                            bufBStart := add(add(bufB, 32), bufBStart)
                        }
                        for (uint256 i = 0; i < len; i += 32) {
                            assembly {
                                mstore(add(bStart, i), mload(add(bufBStart, i)))
                            }
                        }
                        buf.idx = end;
                    }
                    // return packed ints
                    function decPacked(Buffer memory buf) internal pure returns (uint256[] memory t) {
                        uint256 len = decVarint(buf);
                        uint256 end = buf.idx + len;
                        require(end <= buf.b.length); // avoid overflow
                        // array in memory must be init w/ known length
                        // so we have to create a tmp array w/ max possible len first
                        uint256[] memory tmp = new uint256[](len);
                        uint256 i = 0; // count how many ints are there
                        while (buf.idx < end) {
                            tmp[i] = decVarint(buf);
                            i++;
                        }
                        t = new uint256[](i); // init t with correct length
                        for (uint256 j = 0; j < i; j++) {
                            t[j] = tmp[j];
                        }
                        return t;
                    }
                    // move idx pass current value field, to beginning of next tag or msg end
                    function skipValue(Buffer memory buf, WireType wire) internal pure {
                        if (wire == WireType.Varint) {
                            decVarint(buf);
                        } else if (wire == WireType.LengthDelim) {
                            uint256 len = decVarint(buf);
                            buf.idx += len; // skip len bytes value data
                            require(buf.idx <= buf.b.length); // avoid overflow
                        } else {
                            revert();
                        } // unsupported wiretype
                    }
                    // type conversion help utils
                    function _bool(uint256 x) internal pure returns (bool v) {
                        return x != 0;
                    }
                    function _uint256(bytes memory b) internal pure returns (uint256 v) {
                        require(b.length <= 32); // b's length must be smaller than or equal to 32
                        assembly {
                            v := mload(add(b, 32))
                        } // load all 32bytes to v
                        v = v >> (8 * (32 - b.length)); // only first b.length is valid
                    }
                    function _address(bytes memory b) internal pure returns (address v) {
                        v = _addressPayable(b);
                    }
                    function _addressPayable(bytes memory b) internal pure returns (address payable v) {
                        require(b.length == 20);
                        //load 32bytes then shift right 12 bytes
                        assembly {
                            v := div(mload(add(b, 32)), 0x1000000000000000000000000)
                        }
                    }
                    function _bytes32(bytes memory b) internal pure returns (bytes32 v) {
                        require(b.length == 32);
                        assembly {
                            v := mload(add(b, 32))
                        }
                    }
                    // uint[] to uint8[]
                    function uint8s(uint256[] memory arr) internal pure returns (uint8[] memory t) {
                        t = new uint8[](arr.length);
                        for (uint256 i = 0; i < t.length; i++) {
                            t[i] = uint8(arr[i]);
                        }
                    }
                    function uint32s(uint256[] memory arr) internal pure returns (uint32[] memory t) {
                        t = new uint32[](arr.length);
                        for (uint256 i = 0; i < t.length; i++) {
                            t[i] = uint32(arr[i]);
                        }
                    }
                    function uint64s(uint256[] memory arr) internal pure returns (uint64[] memory t) {
                        t = new uint64[](arr.length);
                        for (uint256 i = 0; i < t.length; i++) {
                            t[i] = uint64(arr[i]);
                        }
                    }
                    function bools(uint256[] memory arr) internal pure returns (bool[] memory t) {
                        t = new bool[](arr.length);
                        for (uint256 i = 0; i < t.length; i++) {
                            t[i] = arr[i] != 0;
                        }
                    }
                }
                // SPDX-License-Identifier: GPL-3.0-only
                // Code generated by protoc-gen-sol. DO NOT EDIT.
                // source: bridge.proto
                pragma solidity 0.8.9;
                import "./Pb.sol";
                library PbBridge {
                    using Pb for Pb.Buffer; // so we can call Pb funcs on Buffer obj
                    struct Relay {
                        address sender; // tag: 1
                        address receiver; // tag: 2
                        address token; // tag: 3
                        uint256 amount; // tag: 4
                        uint64 srcChainId; // tag: 5
                        uint64 dstChainId; // tag: 6
                        bytes32 srcTransferId; // tag: 7
                    } // end struct Relay
                    function decRelay(bytes memory raw) internal pure returns (Relay memory m) {
                        Pb.Buffer memory buf = Pb.fromBytes(raw);
                        uint256 tag;
                        Pb.WireType wire;
                        while (buf.hasMore()) {
                            (tag, wire) = buf.decKey();
                            if (false) {}
                            // solidity has no switch/case
                            else if (tag == 1) {
                                m.sender = Pb._address(buf.decBytes());
                            } else if (tag == 2) {
                                m.receiver = Pb._address(buf.decBytes());
                            } else if (tag == 3) {
                                m.token = Pb._address(buf.decBytes());
                            } else if (tag == 4) {
                                m.amount = Pb._uint256(buf.decBytes());
                            } else if (tag == 5) {
                                m.srcChainId = uint64(buf.decVarint());
                            } else if (tag == 6) {
                                m.dstChainId = uint64(buf.decVarint());
                            } else if (tag == 7) {
                                m.srcTransferId = Pb._bytes32(buf.decBytes());
                            } else {
                                buf.skipValue(wire);
                            } // skip value of unknown tag
                        }
                    } // end decoder Relay
                }
                // SPDX-License-Identifier: GPL-3.0-only
                // Code generated by protoc-gen-sol. DO NOT EDIT.
                // source: contracts/libraries/proto/pool.proto
                pragma solidity 0.8.9;
                import "./Pb.sol";
                library PbPool {
                    using Pb for Pb.Buffer; // so we can call Pb funcs on Buffer obj
                    struct WithdrawMsg {
                        uint64 chainid; // tag: 1
                        uint64 seqnum; // tag: 2
                        address receiver; // tag: 3
                        address token; // tag: 4
                        uint256 amount; // tag: 5
                        bytes32 refid; // tag: 6
                    } // end struct WithdrawMsg
                    function decWithdrawMsg(bytes memory raw) internal pure returns (WithdrawMsg memory m) {
                        Pb.Buffer memory buf = Pb.fromBytes(raw);
                        uint256 tag;
                        Pb.WireType wire;
                        while (buf.hasMore()) {
                            (tag, wire) = buf.decKey();
                            if (false) {}
                            // solidity has no switch/case
                            else if (tag == 1) {
                                m.chainid = uint64(buf.decVarint());
                            } else if (tag == 2) {
                                m.seqnum = uint64(buf.decVarint());
                            } else if (tag == 3) {
                                m.receiver = Pb._address(buf.decBytes());
                            } else if (tag == 4) {
                                m.token = Pb._address(buf.decBytes());
                            } else if (tag == 5) {
                                m.amount = Pb._uint256(buf.decBytes());
                            } else if (tag == 6) {
                                m.refid = Pb._bytes32(buf.decBytes());
                            } else {
                                buf.skipValue(wire);
                            } // skip value of unknown tag
                        }
                    } // end decoder WithdrawMsg
                }
                // SPDX-License-Identifier: GPL-3.0-only
                pragma solidity 0.8.9;
                import "./Governor.sol";
                abstract contract DelayedTransfer is Governor {
                    struct delayedTransfer {
                        address receiver;
                        address token;
                        uint256 amount;
                        uint256 timestamp;
                    }
                    mapping(bytes32 => delayedTransfer) public delayedTransfers;
                    mapping(address => uint256) public delayThresholds;
                    uint256 public delayPeriod; // in seconds
                    event DelayedTransferAdded(bytes32 id);
                    event DelayedTransferExecuted(bytes32 id, address receiver, address token, uint256 amount);
                    event DelayPeriodUpdated(uint256 period);
                    event DelayThresholdUpdated(address token, uint256 threshold);
                    function setDelayThresholds(address[] calldata _tokens, uint256[] calldata _thresholds) external onlyGovernor {
                        require(_tokens.length == _thresholds.length, "length mismatch");
                        for (uint256 i = 0; i < _tokens.length; i++) {
                            delayThresholds[_tokens[i]] = _thresholds[i];
                            emit DelayThresholdUpdated(_tokens[i], _thresholds[i]);
                        }
                    }
                    function setDelayPeriod(uint256 _period) external onlyGovernor {
                        delayPeriod = _period;
                        emit DelayPeriodUpdated(_period);
                    }
                    function _addDelayedTransfer(
                        bytes32 id,
                        address receiver,
                        address token,
                        uint256 amount
                    ) internal {
                        require(delayedTransfers[id].timestamp == 0, "delayed transfer already exists");
                        delayedTransfers[id] = delayedTransfer({
                            receiver: receiver,
                            token: token,
                            amount: amount,
                            timestamp: block.timestamp
                        });
                        emit DelayedTransferAdded(id);
                    }
                    // caller needs to do the actual token transfer
                    function _executeDelayedTransfer(bytes32 id) internal returns (delayedTransfer memory) {
                        delayedTransfer memory transfer = delayedTransfers[id];
                        require(transfer.timestamp > 0, "delayed transfer not exist");
                        require(block.timestamp > transfer.timestamp + delayPeriod, "delayed transfer still locked");
                        delete delayedTransfers[id];
                        emit DelayedTransferExecuted(id, transfer.receiver, transfer.token, transfer.amount);
                        return transfer;
                    }
                }
                // SPDX-License-Identifier: GPL-3.0-only
                pragma solidity 0.8.9;
                import "@openzeppelin/contracts/access/Ownable.sol";
                abstract contract Governor is Ownable {
                    mapping(address => bool) public governors;
                    event GovernorAdded(address account);
                    event GovernorRemoved(address account);
                    modifier onlyGovernor() {
                        require(isGovernor(msg.sender), "Caller is not governor");
                        _;
                    }
                    constructor() {
                        _addGovernor(msg.sender);
                    }
                    function isGovernor(address _account) public view returns (bool) {
                        return governors[_account];
                    }
                    function addGovernor(address _account) public onlyOwner {
                        _addGovernor(_account);
                    }
                    function removeGovernor(address _account) public onlyOwner {
                        _removeGovernor(_account);
                    }
                    function renounceGovernor() public {
                        _removeGovernor(msg.sender);
                    }
                    function _addGovernor(address _account) private {
                        require(!isGovernor(_account), "Account is already governor");
                        governors[_account] = true;
                        emit GovernorAdded(_account);
                    }
                    function _removeGovernor(address _account) private {
                        require(isGovernor(_account), "Account is not governor");
                        governors[_account] = false;
                        emit GovernorRemoved(_account);
                    }
                }
                // SPDX-License-Identifier: GPL-3.0-only
                pragma solidity 0.8.9;
                import "@openzeppelin/contracts/access/Ownable.sol";
                import "@openzeppelin/contracts/security/Pausable.sol";
                abstract contract Pauser is Ownable, Pausable {
                    mapping(address => bool) public pausers;
                    event PauserAdded(address account);
                    event PauserRemoved(address account);
                    constructor() {
                        _addPauser(msg.sender);
                    }
                    modifier onlyPauser() {
                        require(isPauser(msg.sender), "Caller is not pauser");
                        _;
                    }
                    function pause() public onlyPauser {
                        _pause();
                    }
                    function unpause() public onlyPauser {
                        _unpause();
                    }
                    function isPauser(address account) public view returns (bool) {
                        return pausers[account];
                    }
                    function addPauser(address account) public onlyOwner {
                        _addPauser(account);
                    }
                    function removePauser(address account) public onlyOwner {
                        _removePauser(account);
                    }
                    function renouncePauser() public {
                        _removePauser(msg.sender);
                    }
                    function _addPauser(address account) private {
                        require(!isPauser(account), "Account is already pauser");
                        pausers[account] = true;
                        emit PauserAdded(account);
                    }
                    function _removePauser(address account) private {
                        require(isPauser(account), "Account is not pauser");
                        pausers[account] = false;
                        emit PauserRemoved(account);
                    }
                }
                // SPDX-License-Identifier: GPL-3.0-only
                pragma solidity 0.8.9;
                import "./Governor.sol";
                abstract contract VolumeControl is Governor {
                    uint256 public epochLength; // seconds
                    mapping(address => uint256) public epochVolumes; // key is token
                    mapping(address => uint256) public epochVolumeCaps; // key is token
                    mapping(address => uint256) public lastOpTimestamps; // key is token
                    event EpochLengthUpdated(uint256 length);
                    event EpochVolumeUpdated(address token, uint256 cap);
                    function setEpochLength(uint256 _length) external onlyGovernor {
                        epochLength = _length;
                        emit EpochLengthUpdated(_length);
                    }
                    function setEpochVolumeCaps(address[] calldata _tokens, uint256[] calldata _caps) external onlyGovernor {
                        require(_tokens.length == _caps.length, "length mismatch");
                        for (uint256 i = 0; i < _tokens.length; i++) {
                            epochVolumeCaps[_tokens[i]] = _caps[i];
                            emit EpochVolumeUpdated(_tokens[i], _caps[i]);
                        }
                    }
                    function _updateVolume(address _token, uint256 _amount) internal {
                        if (epochLength == 0) {
                            return;
                        }
                        uint256 cap = epochVolumeCaps[_token];
                        if (cap == 0) {
                            return;
                        }
                        uint256 volume = epochVolumes[_token];
                        uint256 timestamp = block.timestamp;
                        uint256 epochStartTime = (timestamp / epochLength) * epochLength;
                        if (lastOpTimestamps[_token] < epochStartTime) {
                            volume = _amount;
                        } else {
                            volume += _amount;
                        }
                        require(volume <= cap, "volume exceeds cap");
                        epochVolumes[_token] = volume;
                        lastOpTimestamps[_token] = timestamp;
                    }
                }
                

                File 5 of 7: LiFiDiamond
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                error TokenAddressIsZero();
                error TokenNotSupported();
                error CannotBridgeToSameNetwork();
                error ZeroPostSwapBalance();
                error NoSwapDataProvided();
                error NativeValueWithERC();
                error ContractCallNotAllowed();
                error NullAddrIsNotAValidSpender();
                error NullAddrIsNotAnERC20Token();
                error NoTransferToNullAddress();
                error NativeAssetTransferFailed();
                error InvalidBridgeConfigLength();
                error InvalidAmount();
                error InvalidContract();
                error InvalidConfig();
                error UnsupportedChainId(uint256 chainId);
                error InvalidReceiver();
                error InvalidDestinationChain();
                error InvalidSendingToken();
                error InvalidCaller();
                error AlreadyInitialized();
                error NotInitialized();
                error OnlyContractOwner();
                error CannotAuthoriseSelf();
                error RecoveryAddressCannotBeZero();
                error CannotDepositNativeToken();
                error InvalidCallData();
                error NativeAssetNotSupported();
                error UnAuthorized();
                error NoSwapFromZeroBalance();
                error InvalidFallbackAddress();
                error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
                error InsufficientBalance(uint256 required, uint256 balance);
                error ZeroAmount();
                error InvalidFee();
                error InformationMismatch();
                error NotAContract();
                error NotEnoughBalance(uint256 requested, uint256 available);
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                interface IDiamondCut {
                    enum FacetCutAction {
                        Add,
                        Replace,
                        Remove
                    }
                    // Add=0, Replace=1, Remove=2
                    struct FacetCut {
                        address facetAddress;
                        FacetCutAction action;
                        bytes4[] functionSelectors;
                    }
                    /// @notice Add/replace/remove any number of functions and optionally execute
                    ///         a function with delegatecall
                    /// @param _diamondCut Contains the facet addresses and function selectors
                    /// @param _init The address of the contract or facet to execute _calldata
                    /// @param _calldata A function call, including function selector and arguments
                    ///                  _calldata is executed with delegatecall on _init
                    function diamondCut(
                        FacetCut[] calldata _diamondCut,
                        address _init,
                        bytes calldata _calldata
                    ) external;
                    event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                import { LibDiamond } from "./Libraries/LibDiamond.sol";
                import { IDiamondCut } from "./Interfaces/IDiamondCut.sol";
                import { LibUtil } from "./Libraries/LibUtil.sol";
                contract LiFiDiamond {
                    constructor(address _contractOwner, address _diamondCutFacet) payable {
                        LibDiamond.setContractOwner(_contractOwner);
                        // Add the diamondCut external function from the diamondCutFacet
                        IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
                        bytes4[] memory functionSelectors = new bytes4[](1);
                        functionSelectors[0] = IDiamondCut.diamondCut.selector;
                        cut[0] = IDiamondCut.FacetCut({
                            facetAddress: _diamondCutFacet,
                            action: IDiamondCut.FacetCutAction.Add,
                            functionSelectors: functionSelectors
                        });
                        LibDiamond.diamondCut(cut, address(0), "");
                    }
                    // Find facet for function that is called and execute the
                    // function if a facet is found and return any value.
                    // solhint-disable-next-line no-complex-fallback
                    fallback() external payable {
                        LibDiamond.DiamondStorage storage ds;
                        bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
                        // get diamond storage
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            ds.slot := position
                        }
                        // get facet from function selector
                        address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
                        if (facet == address(0)) {
                            revert LibDiamond.FunctionDoesNotExist();
                        }
                        // Execute external function from facet using delegatecall and return any value.
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            // copy function selector and any arguments
                            calldatacopy(0, 0, calldatasize())
                            // execute function call using the facet
                            let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
                            // get any return value
                            returndatacopy(0, 0, returndatasize())
                            // return any return value or error back to the caller
                            switch result
                            case 0 {
                                revert(0, returndatasize())
                            }
                            default {
                                return(0, returndatasize())
                            }
                        }
                    }
                    // Able to receive ether
                    // solhint-disable-next-line no-empty-blocks
                    receive() external payable {}
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                library LibBytes {
                    // solhint-disable no-inline-assembly
                    // LibBytes specific errors
                    error SliceOverflow();
                    error SliceOutOfBounds();
                    error AddressOutOfBounds();
                    error UintOutOfBounds();
                    // -------------------------
                    function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
                        bytes memory tempBytes;
                        assembly {
                            // Get a location of some free memory and store it in tempBytes as
                            // Solidity does for memory variables.
                            tempBytes := mload(0x40)
                            // Store the length of the first bytes array at the beginning of
                            // the memory for tempBytes.
                            let length := mload(_preBytes)
                            mstore(tempBytes, length)
                            // Maintain a memory counter for the current write location in the
                            // temp bytes array by adding the 32 bytes for the array length to
                            // the starting location.
                            let mc := add(tempBytes, 0x20)
                            // Stop copying when the memory counter reaches the length of the
                            // first bytes array.
                            let end := add(mc, length)
                            for {
                                // Initialize a copy counter to the start of the _preBytes data,
                                // 32 bytes into its memory.
                                let cc := add(_preBytes, 0x20)
                            } lt(mc, end) {
                                // Increase both counters by 32 bytes each iteration.
                                mc := add(mc, 0x20)
                                cc := add(cc, 0x20)
                            } {
                                // Write the _preBytes data into the tempBytes memory 32 bytes
                                // at a time.
                                mstore(mc, mload(cc))
                            }
                            // Add the length of _postBytes to the current length of tempBytes
                            // and store it as the new length in the first 32 bytes of the
                            // tempBytes memory.
                            length := mload(_postBytes)
                            mstore(tempBytes, add(length, mload(tempBytes)))
                            // Move the memory counter back from a multiple of 0x20 to the
                            // actual end of the _preBytes data.
                            mc := end
                            // Stop copying when the memory counter reaches the new combined
                            // length of the arrays.
                            end := add(mc, length)
                            for {
                                let cc := add(_postBytes, 0x20)
                            } lt(mc, end) {
                                mc := add(mc, 0x20)
                                cc := add(cc, 0x20)
                            } {
                                mstore(mc, mload(cc))
                            }
                            // Update the free-memory pointer by padding our last write location
                            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
                            // next 32 byte block, then round down to the nearest multiple of
                            // 32. If the sum of the length of the two arrays is zero then add
                            // one before rounding down to leave a blank 32 bytes (the length block with 0).
                            mstore(
                                0x40,
                                and(
                                    add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                                    not(31) // Round down to the nearest 32 bytes.
                                )
                            )
                        }
                        return tempBytes;
                    }
                    function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
                        assembly {
                            // Read the first 32 bytes of _preBytes storage, which is the length
                            // of the array. (We don't need to use the offset into the slot
                            // because arrays use the entire slot.)
                            let fslot := sload(_preBytes.slot)
                            // Arrays of 31 bytes or less have an even value in their slot,
                            // while longer arrays have an odd value. The actual length is
                            // the slot divided by two for odd values, and the lowest order
                            // byte divided by two for even values.
                            // If the slot is even, bitwise and the slot with 255 and divide by
                            // two to get the length. If the slot is odd, bitwise and the slot
                            // with -1 and divide by two.
                            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                            let mlength := mload(_postBytes)
                            let newlength := add(slength, mlength)
                            // slength can contain both the length and contents of the array
                            // if length < 32 bytes so let's prepare for that
                            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                            switch add(lt(slength, 32), lt(newlength, 32))
                            case 2 {
                                // Since the new array still fits in the slot, we just need to
                                // update the contents of the slot.
                                // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                                sstore(
                                    _preBytes.slot,
                                    // all the modifications to the slot are inside this
                                    // next block
                                    add(
                                        // we can just add to the slot contents because the
                                        // bytes we want to change are the LSBs
                                        fslot,
                                        add(
                                            mul(
                                                div(
                                                    // load the bytes from memory
                                                    mload(add(_postBytes, 0x20)),
                                                    // zero all bytes to the right
                                                    exp(0x100, sub(32, mlength))
                                                ),
                                                // and now shift left the number of bytes to
                                                // leave space for the length in the slot
                                                exp(0x100, sub(32, newlength))
                                            ),
                                            // increase length by the double of the memory
                                            // bytes length
                                            mul(mlength, 2)
                                        )
                                    )
                                )
                            }
                            case 1 {
                                // The stored value fits in the slot, but the combined value
                                // will exceed it.
                                // get the keccak hash to get the contents of the array
                                mstore(0x0, _preBytes.slot)
                                let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                                // save new length
                                sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                                // The contents of the _postBytes array start 32 bytes into
                                // the structure. Our first read should obtain the `submod`
                                // bytes that can fit into the unused space in the last word
                                // of the stored array. To get this, we read 32 bytes starting
                                // from `submod`, so the data we read overlaps with the array
                                // contents by `submod` bytes. Masking the lowest-order
                                // `submod` bytes allows us to add that value directly to the
                                // stored value.
                                let submod := sub(32, slength)
                                let mc := add(_postBytes, submod)
                                let end := add(_postBytes, mlength)
                                let mask := sub(exp(0x100, submod), 1)
                                sstore(
                                    sc,
                                    add(
                                        and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
                                        and(mload(mc), mask)
                                    )
                                )
                                for {
                                    mc := add(mc, 0x20)
                                    sc := add(sc, 1)
                                } lt(mc, end) {
                                    sc := add(sc, 1)
                                    mc := add(mc, 0x20)
                                } {
                                    sstore(sc, mload(mc))
                                }
                                mask := exp(0x100, sub(mc, end))
                                sstore(sc, mul(div(mload(mc), mask), mask))
                            }
                            default {
                                // get the keccak hash to get the contents of the array
                                mstore(0x0, _preBytes.slot)
                                // Start copying to the last used word of the stored array.
                                let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                                // save new length
                                sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                                // Copy over the first `submod` bytes of the new data as in
                                // case 1 above.
                                let slengthmod := mod(slength, 32)
                                let submod := sub(32, slengthmod)
                                let mc := add(_postBytes, submod)
                                let end := add(_postBytes, mlength)
                                let mask := sub(exp(0x100, submod), 1)
                                sstore(sc, add(sload(sc), and(mload(mc), mask)))
                                for {
                                    sc := add(sc, 1)
                                    mc := add(mc, 0x20)
                                } lt(mc, end) {
                                    sc := add(sc, 1)
                                    mc := add(mc, 0x20)
                                } {
                                    sstore(sc, mload(mc))
                                }
                                mask := exp(0x100, sub(mc, end))
                                sstore(sc, mul(div(mload(mc), mask), mask))
                            }
                        }
                    }
                    function slice(
                        bytes memory _bytes,
                        uint256 _start,
                        uint256 _length
                    ) internal pure returns (bytes memory) {
                        if (_length + 31 < _length) revert SliceOverflow();
                        if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                        bytes memory tempBytes;
                        assembly {
                            switch iszero(_length)
                            case 0 {
                                // Get a location of some free memory and store it in tempBytes as
                                // Solidity does for memory variables.
                                tempBytes := mload(0x40)
                                // The first word of the slice result is potentially a partial
                                // word read from the original array. To read it, we calculate
                                // the length of that partial word and start copying that many
                                // bytes into the array. The first word we copy will start with
                                // data we don't care about, but the last `lengthmod` bytes will
                                // land at the beginning of the contents of the new array. When
                                // we're done copying, we overwrite the full first word with
                                // the actual length of the slice.
                                let lengthmod := and(_length, 31)
                                // The multiplication in the next line is necessary
                                // because when slicing multiples of 32 bytes (lengthmod == 0)
                                // the following copy loop was copying the origin's length
                                // and then ending prematurely not copying everything it should.
                                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                                let end := add(mc, _length)
                                for {
                                    // The multiplication in the next line has the same exact purpose
                                    // as the one above.
                                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                                } lt(mc, end) {
                                    mc := add(mc, 0x20)
                                    cc := add(cc, 0x20)
                                } {
                                    mstore(mc, mload(cc))
                                }
                                mstore(tempBytes, _length)
                                //update free-memory pointer
                                //allocating the array padded to 32 bytes like the compiler does now
                                mstore(0x40, and(add(mc, 31), not(31)))
                            }
                            //if we want a zero-length slice let's just return a zero-length array
                            default {
                                tempBytes := mload(0x40)
                                //zero out the 32 bytes slice we are about to return
                                //we need to do it because Solidity does not garbage collect
                                mstore(tempBytes, 0)
                                mstore(0x40, add(tempBytes, 0x20))
                            }
                        }
                        return tempBytes;
                    }
                    function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
                        if (_bytes.length < _start + 20) {
                            revert AddressOutOfBounds();
                        }
                        address tempAddress;
                        assembly {
                            tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
                        }
                        return tempAddress;
                    }
                    function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
                        if (_bytes.length < _start + 1) {
                            revert UintOutOfBounds();
                        }
                        uint8 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0x1), _start))
                        }
                        return tempUint;
                    }
                    function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
                        if (_bytes.length < _start + 2) {
                            revert UintOutOfBounds();
                        }
                        uint16 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0x2), _start))
                        }
                        return tempUint;
                    }
                    function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
                        if (_bytes.length < _start + 4) {
                            revert UintOutOfBounds();
                        }
                        uint32 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0x4), _start))
                        }
                        return tempUint;
                    }
                    function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
                        if (_bytes.length < _start + 8) {
                            revert UintOutOfBounds();
                        }
                        uint64 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0x8), _start))
                        }
                        return tempUint;
                    }
                    function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
                        if (_bytes.length < _start + 12) {
                            revert UintOutOfBounds();
                        }
                        uint96 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0xc), _start))
                        }
                        return tempUint;
                    }
                    function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
                        if (_bytes.length < _start + 16) {
                            revert UintOutOfBounds();
                        }
                        uint128 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0x10), _start))
                        }
                        return tempUint;
                    }
                    function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
                        if (_bytes.length < _start + 32) {
                            revert UintOutOfBounds();
                        }
                        uint256 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0x20), _start))
                        }
                        return tempUint;
                    }
                    function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
                        if (_bytes.length < _start + 32) {
                            revert UintOutOfBounds();
                        }
                        bytes32 tempBytes32;
                        assembly {
                            tempBytes32 := mload(add(add(_bytes, 0x20), _start))
                        }
                        return tempBytes32;
                    }
                    function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
                        bool success = true;
                        assembly {
                            let length := mload(_preBytes)
                            // if lengths don't match the arrays are not equal
                            switch eq(length, mload(_postBytes))
                            case 1 {
                                // cb is a circuit breaker in the for loop since there's
                                //  no said feature for inline assembly loops
                                // cb = 1 - don't breaker
                                // cb = 0 - break
                                let cb := 1
                                let mc := add(_preBytes, 0x20)
                                let end := add(mc, length)
                                for {
                                    let cc := add(_postBytes, 0x20)
                                    // the next line is the loop condition:
                                    // while(uint256(mc < end) + cb == 2)
                                } eq(add(lt(mc, end), cb), 2) {
                                    mc := add(mc, 0x20)
                                    cc := add(cc, 0x20)
                                } {
                                    // if any of these checks fails then arrays are not equal
                                    if iszero(eq(mload(mc), mload(cc))) {
                                        // unsuccess:
                                        success := 0
                                        cb := 0
                                    }
                                }
                            }
                            default {
                                // unsuccess:
                                success := 0
                            }
                        }
                        return success;
                    }
                    function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
                        bool success = true;
                        assembly {
                            // we know _preBytes_offset is 0
                            let fslot := sload(_preBytes.slot)
                            // Decode the length of the stored array like in concatStorage().
                            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                            let mlength := mload(_postBytes)
                            // if lengths don't match the arrays are not equal
                            switch eq(slength, mlength)
                            case 1 {
                                // slength can contain both the length and contents of the array
                                // if length < 32 bytes so let's prepare for that
                                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                                if iszero(iszero(slength)) {
                                    switch lt(slength, 32)
                                    case 1 {
                                        // blank the last byte which is the length
                                        fslot := mul(div(fslot, 0x100), 0x100)
                                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                                            // unsuccess:
                                            success := 0
                                        }
                                    }
                                    default {
                                        // cb is a circuit breaker in the for loop since there's
                                        //  no said feature for inline assembly loops
                                        // cb = 1 - don't breaker
                                        // cb = 0 - break
                                        let cb := 1
                                        // get the keccak hash to get the contents of the array
                                        mstore(0x0, _preBytes.slot)
                                        let sc := keccak256(0x0, 0x20)
                                        let mc := add(_postBytes, 0x20)
                                        let end := add(mc, mlength)
                                        // the next line is the loop condition:
                                        // while(uint256(mc < end) + cb == 2)
                                        // solhint-disable-next-line no-empty-blocks
                                        for {
                                        } eq(add(lt(mc, end), cb), 2) {
                                            sc := add(sc, 1)
                                            mc := add(mc, 0x20)
                                        } {
                                            if iszero(eq(sload(sc), mload(mc))) {
                                                // unsuccess:
                                                success := 0
                                                cb := 0
                                            }
                                        }
                                    }
                                }
                            }
                            default {
                                // unsuccess:
                                success := 0
                            }
                        }
                        return success;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
                import { LibUtil } from "../Libraries/LibUtil.sol";
                import { OnlyContractOwner } from "../Errors/GenericErrors.sol";
                /// Implementation of EIP-2535 Diamond Standard
                /// https://eips.ethereum.org/EIPS/eip-2535
                library LibDiamond {
                    bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");
                    // Diamond specific errors
                    error IncorrectFacetCutAction();
                    error NoSelectorsInFace();
                    error FunctionAlreadyExists();
                    error FacetAddressIsZero();
                    error FacetAddressIsNotZero();
                    error FacetContainsNoCode();
                    error FunctionDoesNotExist();
                    error FunctionIsImmutable();
                    error InitZeroButCalldataNotEmpty();
                    error CalldataEmptyButInitNotZero();
                    error InitReverted();
                    // ----------------
                    struct FacetAddressAndPosition {
                        address facetAddress;
                        uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
                    }
                    struct FacetFunctionSelectors {
                        bytes4[] functionSelectors;
                        uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
                    }
                    struct DiamondStorage {
                        // maps function selector to the facet address and
                        // the position of the selector in the facetFunctionSelectors.selectors array
                        mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
                        // maps facet addresses to function selectors
                        mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
                        // facet addresses
                        address[] facetAddresses;
                        // Used to query if a contract implements an interface.
                        // Used to implement ERC-165.
                        mapping(bytes4 => bool) supportedInterfaces;
                        // owner of the contract
                        address contractOwner;
                    }
                    function diamondStorage() internal pure returns (DiamondStorage storage ds) {
                        bytes32 position = DIAMOND_STORAGE_POSITION;
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            ds.slot := position
                        }
                    }
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    function setContractOwner(address _newOwner) internal {
                        DiamondStorage storage ds = diamondStorage();
                        address previousOwner = ds.contractOwner;
                        ds.contractOwner = _newOwner;
                        emit OwnershipTransferred(previousOwner, _newOwner);
                    }
                    function contractOwner() internal view returns (address contractOwner_) {
                        contractOwner_ = diamondStorage().contractOwner;
                    }
                    function enforceIsContractOwner() internal view {
                        if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
                    }
                    event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
                    // Internal function version of diamondCut
                    function diamondCut(
                        IDiamondCut.FacetCut[] memory _diamondCut,
                        address _init,
                        bytes memory _calldata
                    ) internal {
                        for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
                            IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
                            if (action == IDiamondCut.FacetCutAction.Add) {
                                addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                            } else if (action == IDiamondCut.FacetCutAction.Replace) {
                                replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                            } else if (action == IDiamondCut.FacetCutAction.Remove) {
                                removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                            } else {
                                revert IncorrectFacetCutAction();
                            }
                            unchecked {
                                ++facetIndex;
                            }
                        }
                        emit DiamondCut(_diamondCut, _init, _calldata);
                        initializeDiamondCut(_init, _calldata);
                    }
                    function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                        if (_functionSelectors.length == 0) {
                            revert NoSelectorsInFace();
                        }
                        DiamondStorage storage ds = diamondStorage();
                        if (LibUtil.isZeroAddress(_facetAddress)) {
                            revert FacetAddressIsZero();
                        }
                        uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                        // add new facet address if it does not exist
                        if (selectorPosition == 0) {
                            addFacet(ds, _facetAddress);
                        }
                        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                            bytes4 selector = _functionSelectors[selectorIndex];
                            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                            if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                                revert FunctionAlreadyExists();
                            }
                            addFunction(ds, selector, selectorPosition, _facetAddress);
                            unchecked {
                                ++selectorPosition;
                                ++selectorIndex;
                            }
                        }
                    }
                    function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                        if (_functionSelectors.length == 0) {
                            revert NoSelectorsInFace();
                        }
                        DiamondStorage storage ds = diamondStorage();
                        if (LibUtil.isZeroAddress(_facetAddress)) {
                            revert FacetAddressIsZero();
                        }
                        uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                        // add new facet address if it does not exist
                        if (selectorPosition == 0) {
                            addFacet(ds, _facetAddress);
                        }
                        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                            bytes4 selector = _functionSelectors[selectorIndex];
                            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                            if (oldFacetAddress == _facetAddress) {
                                revert FunctionAlreadyExists();
                            }
                            removeFunction(ds, oldFacetAddress, selector);
                            addFunction(ds, selector, selectorPosition, _facetAddress);
                            unchecked {
                                ++selectorPosition;
                                ++selectorIndex;
                            }
                        }
                    }
                    function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                        if (_functionSelectors.length == 0) {
                            revert NoSelectorsInFace();
                        }
                        DiamondStorage storage ds = diamondStorage();
                        // if function does not exist then do nothing and return
                        if (!LibUtil.isZeroAddress(_facetAddress)) {
                            revert FacetAddressIsNotZero();
                        }
                        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                            bytes4 selector = _functionSelectors[selectorIndex];
                            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                            removeFunction(ds, oldFacetAddress, selector);
                            unchecked {
                                ++selectorIndex;
                            }
                        }
                    }
                    function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
                        enforceHasContractCode(_facetAddress);
                        ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
                        ds.facetAddresses.push(_facetAddress);
                    }
                    function addFunction(
                        DiamondStorage storage ds,
                        bytes4 _selector,
                        uint96 _selectorPosition,
                        address _facetAddress
                    ) internal {
                        ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
                        ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
                        ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
                    }
                    function removeFunction(
                        DiamondStorage storage ds,
                        address _facetAddress,
                        bytes4 _selector
                    ) internal {
                        if (LibUtil.isZeroAddress(_facetAddress)) {
                            revert FunctionDoesNotExist();
                        }
                        // an immutable function is a function defined directly in a diamond
                        if (_facetAddress == address(this)) {
                            revert FunctionIsImmutable();
                        }
                        // replace selector with last selector, then delete last selector
                        uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
                        uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
                        // if not the same then replace _selector with lastSelector
                        if (selectorPosition != lastSelectorPosition) {
                            bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
                            ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
                            ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
                        }
                        // delete the last selector
                        ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
                        delete ds.selectorToFacetAndPosition[_selector];
                        // if no more selectors for facet address then delete the facet address
                        if (lastSelectorPosition == 0) {
                            // replace facet address with last facet address and delete last facet address
                            uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
                            uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                            if (facetAddressPosition != lastFacetAddressPosition) {
                                address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                                ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                                ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
                            }
                            ds.facetAddresses.pop();
                            delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                        }
                    }
                    function initializeDiamondCut(address _init, bytes memory _calldata) internal {
                        if (LibUtil.isZeroAddress(_init)) {
                            if (_calldata.length != 0) {
                                revert InitZeroButCalldataNotEmpty();
                            }
                        } else {
                            if (_calldata.length == 0) {
                                revert CalldataEmptyButInitNotZero();
                            }
                            if (_init != address(this)) {
                                enforceHasContractCode(_init);
                            }
                            // solhint-disable-next-line avoid-low-level-calls
                            (bool success, bytes memory error) = _init.delegatecall(_calldata);
                            if (!success) {
                                if (error.length > 0) {
                                    // bubble up the error
                                    revert(string(error));
                                } else {
                                    revert InitReverted();
                                }
                            }
                        }
                    }
                    function enforceHasContractCode(address _contract) internal view {
                        uint256 contractSize;
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            contractSize := extcodesize(_contract)
                        }
                        if (contractSize == 0) {
                            revert FacetContainsNoCode();
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                import "./LibBytes.sol";
                library LibUtil {
                    using LibBytes for bytes;
                    function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
                        // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                        if (_res.length < 68) return "Transaction reverted silently";
                        bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                        return abi.decode(revertData, (string)); // All that remains is the revert string
                    }
                    /// @notice Determines whether the given address is the zero address
                    /// @param addr The address to verify
                    /// @return Boolean indicating if the address is the zero address
                    function isZeroAddress(address addr) internal pure returns (bool) {
                        return addr == address(0);
                    }
                }
                

                File 6 of 7: GnosisSafe
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                import "./base/ModuleManager.sol";
                import "./base/OwnerManager.sol";
                import "./base/FallbackManager.sol";
                import "./base/GuardManager.sol";
                import "./common/EtherPaymentFallback.sol";
                import "./common/Singleton.sol";
                import "./common/SignatureDecoder.sol";
                import "./common/SecuredTokenTransfer.sol";
                import "./common/StorageAccessible.sol";
                import "./interfaces/ISignatureValidator.sol";
                import "./external/GnosisSafeMath.sol";
                /// @title Gnosis Safe - A multisignature wallet with support for confirmations using signed messages based on ERC191.
                /// @author Stefan George - <[email protected]>
                /// @author Richard Meissner - <[email protected]>
                contract GnosisSafe is
                    EtherPaymentFallback,
                    Singleton,
                    ModuleManager,
                    OwnerManager,
                    SignatureDecoder,
                    SecuredTokenTransfer,
                    ISignatureValidatorConstants,
                    FallbackManager,
                    StorageAccessible,
                    GuardManager
                {
                    using GnosisSafeMath for uint256;
                    string public constant VERSION = "1.3.0";
                    // keccak256(
                    //     "EIP712Domain(uint256 chainId,address verifyingContract)"
                    // );
                    bytes32 private constant DOMAIN_SEPARATOR_TYPEHASH = 0x47e79534a245952e8b16893a336b85a3d9ea9fa8c573f3d803afb92a79469218;
                    // keccak256(
                    //     "SafeTx(address to,uint256 value,bytes data,uint8 operation,uint256 safeTxGas,uint256 baseGas,uint256 gasPrice,address gasToken,address refundReceiver,uint256 nonce)"
                    // );
                    bytes32 private constant SAFE_TX_TYPEHASH = 0xbb8310d486368db6bd6f849402fdd73ad53d316b5a4b2644ad6efe0f941286d8;
                    event SafeSetup(address indexed initiator, address[] owners, uint256 threshold, address initializer, address fallbackHandler);
                    event ApproveHash(bytes32 indexed approvedHash, address indexed owner);
                    event SignMsg(bytes32 indexed msgHash);
                    event ExecutionFailure(bytes32 txHash, uint256 payment);
                    event ExecutionSuccess(bytes32 txHash, uint256 payment);
                    uint256 public nonce;
                    bytes32 private _deprecatedDomainSeparator;
                    // Mapping to keep track of all message hashes that have been approve by ALL REQUIRED owners
                    mapping(bytes32 => uint256) public signedMessages;
                    // Mapping to keep track of all hashes (message or transaction) that have been approve by ANY owners
                    mapping(address => mapping(bytes32 => uint256)) public approvedHashes;
                    // This constructor ensures that this contract can only be used as a master copy for Proxy contracts
                    constructor() {
                        // By setting the threshold it is not possible to call setup anymore,
                        // so we create a Safe with 0 owners and threshold 1.
                        // This is an unusable Safe, perfect for the singleton
                        threshold = 1;
                    }
                    /// @dev Setup function sets initial storage of contract.
                    /// @param _owners List of Safe owners.
                    /// @param _threshold Number of required confirmations for a Safe transaction.
                    /// @param to Contract address for optional delegate call.
                    /// @param data Data payload for optional delegate call.
                    /// @param fallbackHandler Handler for fallback calls to this contract
                    /// @param paymentToken Token that should be used for the payment (0 is ETH)
                    /// @param payment Value that should be paid
                    /// @param paymentReceiver Adddress that should receive the payment (or 0 if tx.origin)
                    function setup(
                        address[] calldata _owners,
                        uint256 _threshold,
                        address to,
                        bytes calldata data,
                        address fallbackHandler,
                        address paymentToken,
                        uint256 payment,
                        address payable paymentReceiver
                    ) external {
                        // setupOwners checks if the Threshold is already set, therefore preventing that this method is called twice
                        setupOwners(_owners, _threshold);
                        if (fallbackHandler != address(0)) internalSetFallbackHandler(fallbackHandler);
                        // As setupOwners can only be called if the contract has not been initialized we don't need a check for setupModules
                        setupModules(to, data);
                        if (payment > 0) {
                            // To avoid running into issues with EIP-170 we reuse the handlePayment function (to avoid adjusting code of that has been verified we do not adjust the method itself)
                            // baseGas = 0, gasPrice = 1 and gas = payment => amount = (payment + 0) * 1 = payment
                            handlePayment(payment, 0, 1, paymentToken, paymentReceiver);
                        }
                        emit SafeSetup(msg.sender, _owners, _threshold, to, fallbackHandler);
                    }
                    /// @dev Allows to execute a Safe transaction confirmed by required number of owners and then pays the account that submitted the transaction.
                    ///      Note: The fees are always transferred, even if the user transaction fails.
                    /// @param to Destination address of Safe transaction.
                    /// @param value Ether value of Safe transaction.
                    /// @param data Data payload of Safe transaction.
                    /// @param operation Operation type of Safe transaction.
                    /// @param safeTxGas Gas that should be used for the Safe transaction.
                    /// @param baseGas Gas costs that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund)
                    /// @param gasPrice Gas price that should be used for the payment calculation.
                    /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
                    /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
                    /// @param signatures Packed signature data ({bytes32 r}{bytes32 s}{uint8 v})
                    function execTransaction(
                        address to,
                        uint256 value,
                        bytes calldata data,
                        Enum.Operation operation,
                        uint256 safeTxGas,
                        uint256 baseGas,
                        uint256 gasPrice,
                        address gasToken,
                        address payable refundReceiver,
                        bytes memory signatures
                    ) public payable virtual returns (bool success) {
                        bytes32 txHash;
                        // Use scope here to limit variable lifetime and prevent `stack too deep` errors
                        {
                            bytes memory txHashData =
                                encodeTransactionData(
                                    // Transaction info
                                    to,
                                    value,
                                    data,
                                    operation,
                                    safeTxGas,
                                    // Payment info
                                    baseGas,
                                    gasPrice,
                                    gasToken,
                                    refundReceiver,
                                    // Signature info
                                    nonce
                                );
                            // Increase nonce and execute transaction.
                            nonce++;
                            txHash = keccak256(txHashData);
                            checkSignatures(txHash, txHashData, signatures);
                        }
                        address guard = getGuard();
                        {
                            if (guard != address(0)) {
                                Guard(guard).checkTransaction(
                                    // Transaction info
                                    to,
                                    value,
                                    data,
                                    operation,
                                    safeTxGas,
                                    // Payment info
                                    baseGas,
                                    gasPrice,
                                    gasToken,
                                    refundReceiver,
                                    // Signature info
                                    signatures,
                                    msg.sender
                                );
                            }
                        }
                        // We require some gas to emit the events (at least 2500) after the execution and some to perform code until the execution (500)
                        // We also include the 1/64 in the check that is not send along with a call to counteract potential shortings because of EIP-150
                        require(gasleft() >= ((safeTxGas * 64) / 63).max(safeTxGas + 2500) + 500, "GS010");
                        // Use scope here to limit variable lifetime and prevent `stack too deep` errors
                        {
                            uint256 gasUsed = gasleft();
                            // If the gasPrice is 0 we assume that nearly all available gas can be used (it is always more than safeTxGas)
                            // We only substract 2500 (compared to the 3000 before) to ensure that the amount passed is still higher than safeTxGas
                            success = execute(to, value, data, operation, gasPrice == 0 ? (gasleft() - 2500) : safeTxGas);
                            gasUsed = gasUsed.sub(gasleft());
                            // If no safeTxGas and no gasPrice was set (e.g. both are 0), then the internal tx is required to be successful
                            // This makes it possible to use `estimateGas` without issues, as it searches for the minimum gas where the tx doesn't revert
                            require(success || safeTxGas != 0 || gasPrice != 0, "GS013");
                            // We transfer the calculated tx costs to the tx.origin to avoid sending it to intermediate contracts that have made calls
                            uint256 payment = 0;
                            if (gasPrice > 0) {
                                payment = handlePayment(gasUsed, baseGas, gasPrice, gasToken, refundReceiver);
                            }
                            if (success) emit ExecutionSuccess(txHash, payment);
                            else emit ExecutionFailure(txHash, payment);
                        }
                        {
                            if (guard != address(0)) {
                                Guard(guard).checkAfterExecution(txHash, success);
                            }
                        }
                    }
                    function handlePayment(
                        uint256 gasUsed,
                        uint256 baseGas,
                        uint256 gasPrice,
                        address gasToken,
                        address payable refundReceiver
                    ) private returns (uint256 payment) {
                        // solhint-disable-next-line avoid-tx-origin
                        address payable receiver = refundReceiver == address(0) ? payable(tx.origin) : refundReceiver;
                        if (gasToken == address(0)) {
                            // For ETH we will only adjust the gas price to not be higher than the actual used gas price
                            payment = gasUsed.add(baseGas).mul(gasPrice < tx.gasprice ? gasPrice : tx.gasprice);
                            require(receiver.send(payment), "GS011");
                        } else {
                            payment = gasUsed.add(baseGas).mul(gasPrice);
                            require(transferToken(gasToken, receiver, payment), "GS012");
                        }
                    }
                    /**
                     * @dev Checks whether the signature provided is valid for the provided data, hash. Will revert otherwise.
                     * @param dataHash Hash of the data (could be either a message hash or transaction hash)
                     * @param data That should be signed (this is passed to an external validator contract)
                     * @param signatures Signature data that should be verified. Can be ECDSA signature, contract signature (EIP-1271) or approved hash.
                     */
                    function checkSignatures(
                        bytes32 dataHash,
                        bytes memory data,
                        bytes memory signatures
                    ) public view {
                        // Load threshold to avoid multiple storage loads
                        uint256 _threshold = threshold;
                        // Check that a threshold is set
                        require(_threshold > 0, "GS001");
                        checkNSignatures(dataHash, data, signatures, _threshold);
                    }
                    /**
                     * @dev Checks whether the signature provided is valid for the provided data, hash. Will revert otherwise.
                     * @param dataHash Hash of the data (could be either a message hash or transaction hash)
                     * @param data That should be signed (this is passed to an external validator contract)
                     * @param signatures Signature data that should be verified. Can be ECDSA signature, contract signature (EIP-1271) or approved hash.
                     * @param requiredSignatures Amount of required valid signatures.
                     */
                    function checkNSignatures(
                        bytes32 dataHash,
                        bytes memory data,
                        bytes memory signatures,
                        uint256 requiredSignatures
                    ) public view {
                        // Check that the provided signature data is not too short
                        require(signatures.length >= requiredSignatures.mul(65), "GS020");
                        // There cannot be an owner with address 0.
                        address lastOwner = address(0);
                        address currentOwner;
                        uint8 v;
                        bytes32 r;
                        bytes32 s;
                        uint256 i;
                        for (i = 0; i < requiredSignatures; i++) {
                            (v, r, s) = signatureSplit(signatures, i);
                            if (v == 0) {
                                // If v is 0 then it is a contract signature
                                // When handling contract signatures the address of the contract is encoded into r
                                currentOwner = address(uint160(uint256(r)));
                                // Check that signature data pointer (s) is not pointing inside the static part of the signatures bytes
                                // This check is not completely accurate, since it is possible that more signatures than the threshold are send.
                                // Here we only check that the pointer is not pointing inside the part that is being processed
                                require(uint256(s) >= requiredSignatures.mul(65), "GS021");
                                // Check that signature data pointer (s) is in bounds (points to the length of data -> 32 bytes)
                                require(uint256(s).add(32) <= signatures.length, "GS022");
                                // Check if the contract signature is in bounds: start of data is s + 32 and end is start + signature length
                                uint256 contractSignatureLen;
                                // solhint-disable-next-line no-inline-assembly
                                assembly {
                                    contractSignatureLen := mload(add(add(signatures, s), 0x20))
                                }
                                require(uint256(s).add(32).add(contractSignatureLen) <= signatures.length, "GS023");
                                // Check signature
                                bytes memory contractSignature;
                                // solhint-disable-next-line no-inline-assembly
                                assembly {
                                    // The signature data for contract signatures is appended to the concatenated signatures and the offset is stored in s
                                    contractSignature := add(add(signatures, s), 0x20)
                                }
                                require(ISignatureValidator(currentOwner).isValidSignature(data, contractSignature) == EIP1271_MAGIC_VALUE, "GS024");
                            } else if (v == 1) {
                                // If v is 1 then it is an approved hash
                                // When handling approved hashes the address of the approver is encoded into r
                                currentOwner = address(uint160(uint256(r)));
                                // Hashes are automatically approved by the sender of the message or when they have been pre-approved via a separate transaction
                                require(msg.sender == currentOwner || approvedHashes[currentOwner][dataHash] != 0, "GS025");
                            } else if (v > 30) {
                                // If v > 30 then default va (27,28) has been adjusted for eth_sign flow
                                // To support eth_sign and similar we adjust v and hash the messageHash with the Ethereum message prefix before applying ecrecover
                                currentOwner = ecrecover(keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
                32", dataHash)), v - 4, r, s);
                            } else {
                                // Default is the ecrecover flow with the provided data hash
                                // Use ecrecover with the messageHash for EOA signatures
                                currentOwner = ecrecover(dataHash, v, r, s);
                            }
                            require(currentOwner > lastOwner && owners[currentOwner] != address(0) && currentOwner != SENTINEL_OWNERS, "GS026");
                            lastOwner = currentOwner;
                        }
                    }
                    /// @dev Allows to estimate a Safe transaction.
                    ///      This method is only meant for estimation purpose, therefore the call will always revert and encode the result in the revert data.
                    ///      Since the `estimateGas` function includes refunds, call this method to get an estimated of the costs that are deducted from the safe with `execTransaction`
                    /// @param to Destination address of Safe transaction.
                    /// @param value Ether value of Safe transaction.
                    /// @param data Data payload of Safe transaction.
                    /// @param operation Operation type of Safe transaction.
                    /// @return Estimate without refunds and overhead fees (base transaction and payload data gas costs).
                    /// @notice Deprecated in favor of common/StorageAccessible.sol and will be removed in next version.
                    function requiredTxGas(
                        address to,
                        uint256 value,
                        bytes calldata data,
                        Enum.Operation operation
                    ) external returns (uint256) {
                        uint256 startGas = gasleft();
                        // We don't provide an error message here, as we use it to return the estimate
                        require(execute(to, value, data, operation, gasleft()));
                        uint256 requiredGas = startGas - gasleft();
                        // Convert response to string and return via error message
                        revert(string(abi.encodePacked(requiredGas)));
                    }
                    /**
                     * @dev Marks a hash as approved. This can be used to validate a hash that is used by a signature.
                     * @param hashToApprove The hash that should be marked as approved for signatures that are verified by this contract.
                     */
                    function approveHash(bytes32 hashToApprove) external {
                        require(owners[msg.sender] != address(0), "GS030");
                        approvedHashes[msg.sender][hashToApprove] = 1;
                        emit ApproveHash(hashToApprove, msg.sender);
                    }
                    /// @dev Returns the chain id used by this contract.
                    function getChainId() public view returns (uint256) {
                        uint256 id;
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            id := chainid()
                        }
                        return id;
                    }
                    function domainSeparator() public view returns (bytes32) {
                        return keccak256(abi.encode(DOMAIN_SEPARATOR_TYPEHASH, getChainId(), this));
                    }
                    /// @dev Returns the bytes that are hashed to be signed by owners.
                    /// @param to Destination address.
                    /// @param value Ether value.
                    /// @param data Data payload.
                    /// @param operation Operation type.
                    /// @param safeTxGas Gas that should be used for the safe transaction.
                    /// @param baseGas Gas costs for that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund)
                    /// @param gasPrice Maximum gas price that should be used for this transaction.
                    /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
                    /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
                    /// @param _nonce Transaction nonce.
                    /// @return Transaction hash bytes.
                    function encodeTransactionData(
                        address to,
                        uint256 value,
                        bytes calldata data,
                        Enum.Operation operation,
                        uint256 safeTxGas,
                        uint256 baseGas,
                        uint256 gasPrice,
                        address gasToken,
                        address refundReceiver,
                        uint256 _nonce
                    ) public view returns (bytes memory) {
                        bytes32 safeTxHash =
                            keccak256(
                                abi.encode(
                                    SAFE_TX_TYPEHASH,
                                    to,
                                    value,
                                    keccak256(data),
                                    operation,
                                    safeTxGas,
                                    baseGas,
                                    gasPrice,
                                    gasToken,
                                    refundReceiver,
                                    _nonce
                                )
                            );
                        return abi.encodePacked(bytes1(0x19), bytes1(0x01), domainSeparator(), safeTxHash);
                    }
                    /// @dev Returns hash to be signed by owners.
                    /// @param to Destination address.
                    /// @param value Ether value.
                    /// @param data Data payload.
                    /// @param operation Operation type.
                    /// @param safeTxGas Fas that should be used for the safe transaction.
                    /// @param baseGas Gas costs for data used to trigger the safe transaction.
                    /// @param gasPrice Maximum gas price that should be used for this transaction.
                    /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
                    /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
                    /// @param _nonce Transaction nonce.
                    /// @return Transaction hash.
                    function getTransactionHash(
                        address to,
                        uint256 value,
                        bytes calldata data,
                        Enum.Operation operation,
                        uint256 safeTxGas,
                        uint256 baseGas,
                        uint256 gasPrice,
                        address gasToken,
                        address refundReceiver,
                        uint256 _nonce
                    ) public view returns (bytes32) {
                        return keccak256(encodeTransactionData(to, value, data, operation, safeTxGas, baseGas, gasPrice, gasToken, refundReceiver, _nonce));
                    }
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                import "../common/Enum.sol";
                /// @title Executor - A contract that can execute transactions
                /// @author Richard Meissner - <[email protected]>
                contract Executor {
                    function execute(
                        address to,
                        uint256 value,
                        bytes memory data,
                        Enum.Operation operation,
                        uint256 txGas
                    ) internal returns (bool success) {
                        if (operation == Enum.Operation.DelegateCall) {
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0, 0)
                            }
                        } else {
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                success := call(txGas, to, value, add(data, 0x20), mload(data), 0, 0)
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                import "../common/SelfAuthorized.sol";
                /// @title Fallback Manager - A contract that manages fallback calls made to this contract
                /// @author Richard Meissner - <[email protected]>
                contract FallbackManager is SelfAuthorized {
                    event ChangedFallbackHandler(address handler);
                    // keccak256("fallback_manager.handler.address")
                    bytes32 internal constant FALLBACK_HANDLER_STORAGE_SLOT = 0x6c9a6c4a39284e37ed1cf53d337577d14212a4870fb976a4366c693b939918d5;
                    function internalSetFallbackHandler(address handler) internal {
                        bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT;
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            sstore(slot, handler)
                        }
                    }
                    /// @dev Allows to add a contract to handle fallback calls.
                    ///      Only fallback calls without value and with data will be forwarded.
                    ///      This can only be done via a Safe transaction.
                    /// @param handler contract to handle fallbacks calls.
                    function setFallbackHandler(address handler) public authorized {
                        internalSetFallbackHandler(handler);
                        emit ChangedFallbackHandler(handler);
                    }
                    // solhint-disable-next-line payable-fallback,no-complex-fallback
                    fallback() external {
                        bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT;
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let handler := sload(slot)
                            if iszero(handler) {
                                return(0, 0)
                            }
                            calldatacopy(0, 0, calldatasize())
                            // The msg.sender address is shifted to the left by 12 bytes to remove the padding
                            // Then the address without padding is stored right after the calldata
                            mstore(calldatasize(), shl(96, caller()))
                            // Add 20 bytes for the address appended add the end
                            let success := call(gas(), handler, 0, 0, add(calldatasize(), 20), 0, 0)
                            returndatacopy(0, 0, returndatasize())
                            if iszero(success) {
                                revert(0, returndatasize())
                            }
                            return(0, returndatasize())
                        }
                    }
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                import "../common/Enum.sol";
                import "../common/SelfAuthorized.sol";
                interface Guard {
                    function checkTransaction(
                        address to,
                        uint256 value,
                        bytes memory data,
                        Enum.Operation operation,
                        uint256 safeTxGas,
                        uint256 baseGas,
                        uint256 gasPrice,
                        address gasToken,
                        address payable refundReceiver,
                        bytes memory signatures,
                        address msgSender
                    ) external;
                    function checkAfterExecution(bytes32 txHash, bool success) external;
                }
                /// @title Fallback Manager - A contract that manages fallback calls made to this contract
                /// @author Richard Meissner - <[email protected]>
                contract GuardManager is SelfAuthorized {
                    event ChangedGuard(address guard);
                    // keccak256("guard_manager.guard.address")
                    bytes32 internal constant GUARD_STORAGE_SLOT = 0x4a204f620c8c5ccdca3fd54d003badd85ba500436a431f0cbda4f558c93c34c8;
                    /// @dev Set a guard that checks transactions before execution
                    /// @param guard The address of the guard to be used or the 0 address to disable the guard
                    function setGuard(address guard) external authorized {
                        bytes32 slot = GUARD_STORAGE_SLOT;
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            sstore(slot, guard)
                        }
                        emit ChangedGuard(guard);
                    }
                    function getGuard() internal view returns (address guard) {
                        bytes32 slot = GUARD_STORAGE_SLOT;
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            guard := sload(slot)
                        }
                    }
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                import "../common/Enum.sol";
                import "../common/SelfAuthorized.sol";
                import "./Executor.sol";
                /// @title Module Manager - A contract that manages modules that can execute transactions via this contract
                /// @author Stefan George - <[email protected]>
                /// @author Richard Meissner - <[email protected]>
                contract ModuleManager is SelfAuthorized, Executor {
                    event EnabledModule(address module);
                    event DisabledModule(address module);
                    event ExecutionFromModuleSuccess(address indexed module);
                    event ExecutionFromModuleFailure(address indexed module);
                    address internal constant SENTINEL_MODULES = address(0x1);
                    mapping(address => address) internal modules;
                    function setupModules(address to, bytes memory data) internal {
                        require(modules[SENTINEL_MODULES] == address(0), "GS100");
                        modules[SENTINEL_MODULES] = SENTINEL_MODULES;
                        if (to != address(0))
                            // Setup has to complete successfully or transaction fails.
                            require(execute(to, 0, data, Enum.Operation.DelegateCall, gasleft()), "GS000");
                    }
                    /// @dev Allows to add a module to the whitelist.
                    ///      This can only be done via a Safe transaction.
                    /// @notice Enables the module `module` for the Safe.
                    /// @param module Module to be whitelisted.
                    function enableModule(address module) public authorized {
                        // Module address cannot be null or sentinel.
                        require(module != address(0) && module != SENTINEL_MODULES, "GS101");
                        // Module cannot be added twice.
                        require(modules[module] == address(0), "GS102");
                        modules[module] = modules[SENTINEL_MODULES];
                        modules[SENTINEL_MODULES] = module;
                        emit EnabledModule(module);
                    }
                    /// @dev Allows to remove a module from the whitelist.
                    ///      This can only be done via a Safe transaction.
                    /// @notice Disables the module `module` for the Safe.
                    /// @param prevModule Module that pointed to the module to be removed in the linked list
                    /// @param module Module to be removed.
                    function disableModule(address prevModule, address module) public authorized {
                        // Validate module address and check that it corresponds to module index.
                        require(module != address(0) && module != SENTINEL_MODULES, "GS101");
                        require(modules[prevModule] == module, "GS103");
                        modules[prevModule] = modules[module];
                        modules[module] = address(0);
                        emit DisabledModule(module);
                    }
                    /// @dev Allows a Module to execute a Safe transaction without any further confirmations.
                    /// @param to Destination address of module transaction.
                    /// @param value Ether value of module transaction.
                    /// @param data Data payload of module transaction.
                    /// @param operation Operation type of module transaction.
                    function execTransactionFromModule(
                        address to,
                        uint256 value,
                        bytes memory data,
                        Enum.Operation operation
                    ) public virtual returns (bool success) {
                        // Only whitelisted modules are allowed.
                        require(msg.sender != SENTINEL_MODULES && modules[msg.sender] != address(0), "GS104");
                        // Execute transaction without further confirmations.
                        success = execute(to, value, data, operation, gasleft());
                        if (success) emit ExecutionFromModuleSuccess(msg.sender);
                        else emit ExecutionFromModuleFailure(msg.sender);
                    }
                    /// @dev Allows a Module to execute a Safe transaction without any further confirmations and return data
                    /// @param to Destination address of module transaction.
                    /// @param value Ether value of module transaction.
                    /// @param data Data payload of module transaction.
                    /// @param operation Operation type of module transaction.
                    function execTransactionFromModuleReturnData(
                        address to,
                        uint256 value,
                        bytes memory data,
                        Enum.Operation operation
                    ) public returns (bool success, bytes memory returnData) {
                        success = execTransactionFromModule(to, value, data, operation);
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            // Load free memory location
                            let ptr := mload(0x40)
                            // We allocate memory for the return data by setting the free memory location to
                            // current free memory location + data size + 32 bytes for data size value
                            mstore(0x40, add(ptr, add(returndatasize(), 0x20)))
                            // Store the size
                            mstore(ptr, returndatasize())
                            // Store the data
                            returndatacopy(add(ptr, 0x20), 0, returndatasize())
                            // Point the return data to the correct memory location
                            returnData := ptr
                        }
                    }
                    /// @dev Returns if an module is enabled
                    /// @return True if the module is enabled
                    function isModuleEnabled(address module) public view returns (bool) {
                        return SENTINEL_MODULES != module && modules[module] != address(0);
                    }
                    /// @dev Returns array of modules.
                    /// @param start Start of the page.
                    /// @param pageSize Maximum number of modules that should be returned.
                    /// @return array Array of modules.
                    /// @return next Start of the next page.
                    function getModulesPaginated(address start, uint256 pageSize) external view returns (address[] memory array, address next) {
                        // Init array with max page size
                        array = new address[](pageSize);
                        // Populate return array
                        uint256 moduleCount = 0;
                        address currentModule = modules[start];
                        while (currentModule != address(0x0) && currentModule != SENTINEL_MODULES && moduleCount < pageSize) {
                            array[moduleCount] = currentModule;
                            currentModule = modules[currentModule];
                            moduleCount++;
                        }
                        next = currentModule;
                        // Set correct size of returned array
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            mstore(array, moduleCount)
                        }
                    }
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                import "../common/SelfAuthorized.sol";
                /// @title OwnerManager - Manages a set of owners and a threshold to perform actions.
                /// @author Stefan George - <[email protected]>
                /// @author Richard Meissner - <[email protected]>
                contract OwnerManager is SelfAuthorized {
                    event AddedOwner(address owner);
                    event RemovedOwner(address owner);
                    event ChangedThreshold(uint256 threshold);
                    address internal constant SENTINEL_OWNERS = address(0x1);
                    mapping(address => address) internal owners;
                    uint256 internal ownerCount;
                    uint256 internal threshold;
                    /// @dev Setup function sets initial storage of contract.
                    /// @param _owners List of Safe owners.
                    /// @param _threshold Number of required confirmations for a Safe transaction.
                    function setupOwners(address[] memory _owners, uint256 _threshold) internal {
                        // Threshold can only be 0 at initialization.
                        // Check ensures that setup function can only be called once.
                        require(threshold == 0, "GS200");
                        // Validate that threshold is smaller than number of added owners.
                        require(_threshold <= _owners.length, "GS201");
                        // There has to be at least one Safe owner.
                        require(_threshold >= 1, "GS202");
                        // Initializing Safe owners.
                        address currentOwner = SENTINEL_OWNERS;
                        for (uint256 i = 0; i < _owners.length; i++) {
                            // Owner address cannot be null.
                            address owner = _owners[i];
                            require(owner != address(0) && owner != SENTINEL_OWNERS && owner != address(this) && currentOwner != owner, "GS203");
                            // No duplicate owners allowed.
                            require(owners[owner] == address(0), "GS204");
                            owners[currentOwner] = owner;
                            currentOwner = owner;
                        }
                        owners[currentOwner] = SENTINEL_OWNERS;
                        ownerCount = _owners.length;
                        threshold = _threshold;
                    }
                    /// @dev Allows to add a new owner to the Safe and update the threshold at the same time.
                    ///      This can only be done via a Safe transaction.
                    /// @notice Adds the owner `owner` to the Safe and updates the threshold to `_threshold`.
                    /// @param owner New owner address.
                    /// @param _threshold New threshold.
                    function addOwnerWithThreshold(address owner, uint256 _threshold) public authorized {
                        // Owner address cannot be null, the sentinel or the Safe itself.
                        require(owner != address(0) && owner != SENTINEL_OWNERS && owner != address(this), "GS203");
                        // No duplicate owners allowed.
                        require(owners[owner] == address(0), "GS204");
                        owners[owner] = owners[SENTINEL_OWNERS];
                        owners[SENTINEL_OWNERS] = owner;
                        ownerCount++;
                        emit AddedOwner(owner);
                        // Change threshold if threshold was changed.
                        if (threshold != _threshold) changeThreshold(_threshold);
                    }
                    /// @dev Allows to remove an owner from the Safe and update the threshold at the same time.
                    ///      This can only be done via a Safe transaction.
                    /// @notice Removes the owner `owner` from the Safe and updates the threshold to `_threshold`.
                    /// @param prevOwner Owner that pointed to the owner to be removed in the linked list
                    /// @param owner Owner address to be removed.
                    /// @param _threshold New threshold.
                    function removeOwner(
                        address prevOwner,
                        address owner,
                        uint256 _threshold
                    ) public authorized {
                        // Only allow to remove an owner, if threshold can still be reached.
                        require(ownerCount - 1 >= _threshold, "GS201");
                        // Validate owner address and check that it corresponds to owner index.
                        require(owner != address(0) && owner != SENTINEL_OWNERS, "GS203");
                        require(owners[prevOwner] == owner, "GS205");
                        owners[prevOwner] = owners[owner];
                        owners[owner] = address(0);
                        ownerCount--;
                        emit RemovedOwner(owner);
                        // Change threshold if threshold was changed.
                        if (threshold != _threshold) changeThreshold(_threshold);
                    }
                    /// @dev Allows to swap/replace an owner from the Safe with another address.
                    ///      This can only be done via a Safe transaction.
                    /// @notice Replaces the owner `oldOwner` in the Safe with `newOwner`.
                    /// @param prevOwner Owner that pointed to the owner to be replaced in the linked list
                    /// @param oldOwner Owner address to be replaced.
                    /// @param newOwner New owner address.
                    function swapOwner(
                        address prevOwner,
                        address oldOwner,
                        address newOwner
                    ) public authorized {
                        // Owner address cannot be null, the sentinel or the Safe itself.
                        require(newOwner != address(0) && newOwner != SENTINEL_OWNERS && newOwner != address(this), "GS203");
                        // No duplicate owners allowed.
                        require(owners[newOwner] == address(0), "GS204");
                        // Validate oldOwner address and check that it corresponds to owner index.
                        require(oldOwner != address(0) && oldOwner != SENTINEL_OWNERS, "GS203");
                        require(owners[prevOwner] == oldOwner, "GS205");
                        owners[newOwner] = owners[oldOwner];
                        owners[prevOwner] = newOwner;
                        owners[oldOwner] = address(0);
                        emit RemovedOwner(oldOwner);
                        emit AddedOwner(newOwner);
                    }
                    /// @dev Allows to update the number of required confirmations by Safe owners.
                    ///      This can only be done via a Safe transaction.
                    /// @notice Changes the threshold of the Safe to `_threshold`.
                    /// @param _threshold New threshold.
                    function changeThreshold(uint256 _threshold) public authorized {
                        // Validate that threshold is smaller than number of owners.
                        require(_threshold <= ownerCount, "GS201");
                        // There has to be at least one Safe owner.
                        require(_threshold >= 1, "GS202");
                        threshold = _threshold;
                        emit ChangedThreshold(threshold);
                    }
                    function getThreshold() public view returns (uint256) {
                        return threshold;
                    }
                    function isOwner(address owner) public view returns (bool) {
                        return owner != SENTINEL_OWNERS && owners[owner] != address(0);
                    }
                    /// @dev Returns array of owners.
                    /// @return Array of Safe owners.
                    function getOwners() public view returns (address[] memory) {
                        address[] memory array = new address[](ownerCount);
                        // populate return array
                        uint256 index = 0;
                        address currentOwner = owners[SENTINEL_OWNERS];
                        while (currentOwner != SENTINEL_OWNERS) {
                            array[index] = currentOwner;
                            currentOwner = owners[currentOwner];
                            index++;
                        }
                        return array;
                    }
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                /// @title Enum - Collection of enums
                /// @author Richard Meissner - <[email protected]>
                contract Enum {
                    enum Operation {Call, DelegateCall}
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                /// @title EtherPaymentFallback - A contract that has a fallback to accept ether payments
                /// @author Richard Meissner - <[email protected]>
                contract EtherPaymentFallback {
                    event SafeReceived(address indexed sender, uint256 value);
                    /// @dev Fallback function accepts Ether transactions.
                    receive() external payable {
                        emit SafeReceived(msg.sender, msg.value);
                    }
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                /// @title SecuredTokenTransfer - Secure token transfer
                /// @author Richard Meissner - <[email protected]>
                contract SecuredTokenTransfer {
                    /// @dev Transfers a token and returns if it was a success
                    /// @param token Token that should be transferred
                    /// @param receiver Receiver to whom the token should be transferred
                    /// @param amount The amount of tokens that should be transferred
                    function transferToken(
                        address token,
                        address receiver,
                        uint256 amount
                    ) internal returns (bool transferred) {
                        // 0xa9059cbb - keccack("transfer(address,uint256)")
                        bytes memory data = abi.encodeWithSelector(0xa9059cbb, receiver, amount);
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            // We write the return value to scratch space.
                            // See https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#layout-in-memory
                            let success := call(sub(gas(), 10000), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                            switch returndatasize()
                                case 0 {
                                    transferred := success
                                }
                                case 0x20 {
                                    transferred := iszero(or(iszero(success), iszero(mload(0))))
                                }
                                default {
                                    transferred := 0
                                }
                        }
                    }
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                /// @title SelfAuthorized - authorizes current contract to perform actions
                /// @author Richard Meissner - <[email protected]>
                contract SelfAuthorized {
                    function requireSelfCall() private view {
                        require(msg.sender == address(this), "GS031");
                    }
                    modifier authorized() {
                        // This is a function call as it minimized the bytecode size
                        requireSelfCall();
                        _;
                    }
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                /// @title SignatureDecoder - Decodes signatures that a encoded as bytes
                /// @author Richard Meissner - <[email protected]>
                contract SignatureDecoder {
                    /// @dev divides bytes signature into `uint8 v, bytes32 r, bytes32 s`.
                    /// @notice Make sure to peform a bounds check for @param pos, to avoid out of bounds access on @param signatures
                    /// @param pos which signature to read. A prior bounds check of this parameter should be performed, to avoid out of bounds access
                    /// @param signatures concatenated rsv signatures
                    function signatureSplit(bytes memory signatures, uint256 pos)
                        internal
                        pure
                        returns (
                            uint8 v,
                            bytes32 r,
                            bytes32 s
                        )
                    {
                        // The signature format is a compact form of:
                        //   {bytes32 r}{bytes32 s}{uint8 v}
                        // Compact means, uint8 is not padded to 32 bytes.
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let signaturePos := mul(0x41, pos)
                            r := mload(add(signatures, add(signaturePos, 0x20)))
                            s := mload(add(signatures, add(signaturePos, 0x40)))
                            // Here we are loading the last 32 bytes, including 31 bytes
                            // of 's'. There is no 'mload8' to do this.
                            //
                            // 'byte' is not working due to the Solidity parser, so lets
                            // use the second best option, 'and'
                            v := and(mload(add(signatures, add(signaturePos, 0x41))), 0xff)
                        }
                    }
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                /// @title Singleton - Base for singleton contracts (should always be first super contract)
                ///         This contract is tightly coupled to our proxy contract (see `proxies/GnosisSafeProxy.sol`)
                /// @author Richard Meissner - <[email protected]>
                contract Singleton {
                    // singleton always needs to be first declared variable, to ensure that it is at the same location as in the Proxy contract.
                    // It should also always be ensured that the address is stored alone (uses a full word)
                    address private singleton;
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                /// @title StorageAccessible - generic base contract that allows callers to access all internal storage.
                /// @notice See https://github.com/gnosis/util-contracts/blob/bb5fe5fb5df6d8400998094fb1b32a178a47c3a1/contracts/StorageAccessible.sol
                contract StorageAccessible {
                    /**
                     * @dev Reads `length` bytes of storage in the currents contract
                     * @param offset - the offset in the current contract's storage in words to start reading from
                     * @param length - the number of words (32 bytes) of data to read
                     * @return the bytes that were read.
                     */
                    function getStorageAt(uint256 offset, uint256 length) public view returns (bytes memory) {
                        bytes memory result = new bytes(length * 32);
                        for (uint256 index = 0; index < length; index++) {
                            // solhint-disable-next-line no-inline-assembly
                            assembly {
                                let word := sload(add(offset, index))
                                mstore(add(add(result, 0x20), mul(index, 0x20)), word)
                            }
                        }
                        return result;
                    }
                    /**
                     * @dev Performs a delegetecall on a targetContract in the context of self.
                     * Internally reverts execution to avoid side effects (making it static).
                     *
                     * This method reverts with data equal to `abi.encode(bool(success), bytes(response))`.
                     * Specifically, the `returndata` after a call to this method will be:
                     * `success:bool || response.length:uint256 || response:bytes`.
                     *
                     * @param targetContract Address of the contract containing the code to execute.
                     * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments).
                     */
                    function simulateAndRevert(address targetContract, bytes memory calldataPayload) external {
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let success := delegatecall(gas(), targetContract, add(calldataPayload, 0x20), mload(calldataPayload), 0, 0)
                            mstore(0x00, success)
                            mstore(0x20, returndatasize())
                            returndatacopy(0x40, 0, returndatasize())
                            revert(0, add(returndatasize(), 0x40))
                        }
                    }
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                /**
                 * @title GnosisSafeMath
                 * @dev Math operations with safety checks that revert on error
                 * Renamed from SafeMath to GnosisSafeMath to avoid conflicts
                 * TODO: remove once open zeppelin update to solc 0.5.0
                 */
                library GnosisSafeMath {
                    /**
                     * @dev Multiplies two numbers, reverts on overflow.
                     */
                    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                        // benefit is lost if 'b' is also tested.
                        // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
                        if (a == 0) {
                            return 0;
                        }
                        uint256 c = a * b;
                        require(c / a == b);
                        return c;
                    }
                    /**
                     * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend).
                     */
                    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                        require(b <= a);
                        uint256 c = a - b;
                        return c;
                    }
                    /**
                     * @dev Adds two numbers, reverts on overflow.
                     */
                    function add(uint256 a, uint256 b) internal pure returns (uint256) {
                        uint256 c = a + b;
                        require(c >= a);
                        return c;
                    }
                    /**
                     * @dev Returns the largest of two numbers.
                     */
                    function max(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a >= b ? a : b;
                    }
                }
                // SPDX-License-Identifier: LGPL-3.0-only
                pragma solidity >=0.7.0 <0.9.0;
                contract ISignatureValidatorConstants {
                    // bytes4(keccak256("isValidSignature(bytes,bytes)")
                    bytes4 internal constant EIP1271_MAGIC_VALUE = 0x20c13b0b;
                }
                abstract contract ISignatureValidator is ISignatureValidatorConstants {
                    /**
                     * @dev Should return whether the signature provided is valid for the provided data
                     * @param _data Arbitrary length data signed on the behalf of address(this)
                     * @param _signature Signature byte array associated with _data
                     *
                     * MUST return the bytes4 magic value 0x20c13b0b when function passes.
                     * MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5)
                     * MUST allow external calls
                     */
                    function isValidSignature(bytes memory _data, bytes memory _signature) public view virtual returns (bytes4);
                }
                

                File 7 of 7: CBridgeFacet
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 standard as defined in the EIP.
                 */
                interface IERC20 {
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `to`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address to, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `from` to `to` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 amount
                    ) external returns (bool);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                 *
                 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                 * need to send a transaction, and thus is not required to hold Ether at all.
                 */
                interface IERC20Permit {
                    /**
                     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                     * given ``owner``'s signed approval.
                     *
                     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                     * ordering also apply here.
                     *
                     * Emits an {Approval} event.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     * - `deadline` must be a timestamp in the future.
                     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                     * over the EIP712-formatted function arguments.
                     * - the signature must use ``owner``'s current nonce (see {nonces}).
                     *
                     * For more information on the signature format, see the
                     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                     * section].
                     */
                    function permit(
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) external;
                    /**
                     * @dev Returns the current nonce for `owner`. This value must be
                     * included whenever a signature is generated for {permit}.
                     *
                     * Every successful call to {permit} increases ``owner``'s nonce by one. This
                     * prevents a signature from being used multiple times.
                     */
                    function nonces(address owner) external view returns (uint256);
                    /**
                     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                     */
                    // solhint-disable-next-line func-name-mixedcase
                    function DOMAIN_SEPARATOR() external view returns (bytes32);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
                pragma solidity ^0.8.0;
                import "../IERC20.sol";
                import "../extensions/draft-IERC20Permit.sol";
                import "../../../utils/Address.sol";
                /**
                 * @title SafeERC20
                 * @dev Wrappers around ERC20 operations that throw on failure (when the token
                 * contract returns false). Tokens that return no value (and instead revert or
                 * throw on failure) are also supported, non-reverting calls are assumed to be
                 * successful.
                 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                 */
                library SafeERC20 {
                    using Address for address;
                    function safeTransfer(
                        IERC20 token,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                    }
                    function safeTransferFrom(
                        IERC20 token,
                        address from,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                    }
                    /**
                     * @dev Deprecated. This function has issues similar to the ones found in
                     * {IERC20-approve}, and its usage is discouraged.
                     *
                     * Whenever possible, use {safeIncreaseAllowance} and
                     * {safeDecreaseAllowance} instead.
                     */
                    function safeApprove(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        // safeApprove should only be called when setting an initial allowance,
                        // or when resetting it to zero. To increase and decrease it, use
                        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                        require(
                            (value == 0) || (token.allowance(address(this), spender) == 0),
                            "SafeERC20: approve from non-zero to non-zero allowance"
                        );
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                    }
                    function safeIncreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        uint256 newAllowance = token.allowance(address(this), spender) + value;
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                    function safeDecreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        unchecked {
                            uint256 oldAllowance = token.allowance(address(this), spender);
                            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                            uint256 newAllowance = oldAllowance - value;
                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                        }
                    }
                    function safePermit(
                        IERC20Permit token,
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal {
                        uint256 nonceBefore = token.nonces(owner);
                        token.permit(owner, spender, value, deadline, v, r, s);
                        uint256 nonceAfter = token.nonces(owner);
                        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                    }
                    /**
                     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                     * on the return value: the return value is optional (but if data is returned, it must not be false).
                     * @param token The token targeted by the call.
                     * @param data The call data (encoded using abi.encode or one of its variants).
                     */
                    function _callOptionalReturn(IERC20 token, bytes memory data) private {
                        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                        // the target address contains contract code and also asserts for success in the low-level call.
                        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                        if (returndata.length > 0) {
                            // Return data is optional
                            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library Address {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(isContract(target), "Address: delegate call to non-contract");
                        (bool success, bytes memory returndata) = target.delegatecall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                /// @solidity memory-safe-assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                error TokenAddressIsZero();
                error TokenNotSupported();
                error CannotBridgeToSameNetwork();
                error ZeroPostSwapBalance();
                error NoSwapDataProvided();
                error NativeValueWithERC();
                error ContractCallNotAllowed();
                error NullAddrIsNotAValidSpender();
                error NullAddrIsNotAnERC20Token();
                error NoTransferToNullAddress();
                error NativeAssetTransferFailed();
                error InvalidBridgeConfigLength();
                error InvalidAmount();
                error InvalidContract();
                error InvalidConfig();
                error UnsupportedChainId(uint256 chainId);
                error InvalidReceiver();
                error InvalidDestinationChain();
                error InvalidSendingToken();
                error InvalidCaller();
                error AlreadyInitialized();
                error NotInitialized();
                error OnlyContractOwner();
                error CannotAuthoriseSelf();
                error RecoveryAddressCannotBeZero();
                error CannotDepositNativeToken();
                error InvalidCallData();
                error NativeAssetNotSupported();
                error UnAuthorized();
                error NoSwapFromZeroBalance();
                error InvalidFallbackAddress();
                error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
                error InsufficientBalance(uint256 required, uint256 balance);
                error ZeroAmount();
                error InvalidFee();
                error InformationMismatch();
                error NotAContract();
                error NotEnoughBalance(uint256 requested, uint256 available);
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                import { LibAsset, IERC20 } from "../Libraries/LibAsset.sol";
                import { ILiFi } from "../Interfaces/ILiFi.sol";
                import { ICBridge } from "../Interfaces/ICBridge.sol";
                import { ReentrancyGuard } from "../Helpers/ReentrancyGuard.sol";
                import { CannotBridgeToSameNetwork } from "../Errors/GenericErrors.sol";
                import { SwapperV2, LibSwap } from "../Helpers/SwapperV2.sol";
                import { InvalidReceiver, InvalidAmount } from "../Errors/GenericErrors.sol";
                import { LibUtil } from "../Libraries/LibUtil.sol";
                import { Validatable } from "../Helpers/Validatable.sol";
                /// @title CBridge Facet
                /// @author LI.FI (https://li.fi)
                /// @notice Provides functionality for bridging through CBridge
                contract CBridgeFacet is ILiFi, ReentrancyGuard, SwapperV2, Validatable {
                    /// Storage ///
                    /// @notice The contract address of the cbridge on the source chain.
                    ICBridge private immutable cBridge;
                    /// Types ///
                    /// @param maxSlippage The max slippage accepted, given as percentage in point (pip).
                    /// @param nonce A number input to guarantee uniqueness of transferId. Can be timestamp in practice.
                    struct CBridgeData {
                        uint32 maxSlippage;
                        uint64 nonce;
                    }
                    /// Constructor ///
                    /// @notice Initialize the contract.
                    /// @param _cBridge The contract address of the cbridge on the source chain.
                    constructor(ICBridge _cBridge) {
                        cBridge = _cBridge;
                    }
                    /// External Methods ///
                    /// @notice Bridges tokens via CBridge
                    /// @param _bridgeData the core information needed for bridging
                    /// @param _cBridgeData data specific to CBridge
                    function startBridgeTokensViaCBridge(ILiFi.BridgeData memory _bridgeData, CBridgeData calldata _cBridgeData)
                        external
                        payable
                        refundExcessNative(payable(msg.sender))
                        doesNotContainSourceSwaps(_bridgeData)
                        doesNotContainDestinationCalls(_bridgeData)
                        validateBridgeData(_bridgeData)
                        nonReentrant
                    {
                        LibAsset.depositAsset(_bridgeData.sendingAssetId, _bridgeData.minAmount);
                        _startBridge(_bridgeData, _cBridgeData);
                    }
                    /// @notice Performs a swap before bridging via CBridge
                    /// @param _bridgeData the core information needed for bridging
                    /// @param _swapData an array of swap related data for performing swaps before bridging
                    /// @param _cBridgeData data specific to CBridge
                    function swapAndStartBridgeTokensViaCBridge(
                        ILiFi.BridgeData memory _bridgeData,
                        LibSwap.SwapData[] calldata _swapData,
                        CBridgeData memory _cBridgeData
                    )
                        external
                        payable
                        refundExcessNative(payable(msg.sender))
                        containsSourceSwaps(_bridgeData)
                        doesNotContainDestinationCalls(_bridgeData)
                        validateBridgeData(_bridgeData)
                        nonReentrant
                    {
                        _bridgeData.minAmount = _depositAndSwap(
                            _bridgeData.transactionId,
                            _bridgeData.minAmount,
                            _swapData,
                            payable(msg.sender)
                        );
                        _startBridge(_bridgeData, _cBridgeData);
                    }
                    /// Private Methods ///
                    /// @dev Contains the business logic for the bridge via CBridge
                    /// @param _bridgeData the core information needed for bridging
                    /// @param _cBridgeData data specific to CBridge
                    function _startBridge(ILiFi.BridgeData memory _bridgeData, CBridgeData memory _cBridgeData) private {
                        // Do CBridge stuff
                        if (uint64(block.chainid) == _bridgeData.destinationChainId) revert CannotBridgeToSameNetwork();
                        if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
                            cBridge.sendNative{ value: _bridgeData.minAmount }(
                                _bridgeData.receiver,
                                _bridgeData.minAmount,
                                uint64(_bridgeData.destinationChainId),
                                _cBridgeData.nonce,
                                _cBridgeData.maxSlippage
                            );
                        } else {
                            // Give CBridge approval to bridge tokens
                            LibAsset.maxApproveERC20(IERC20(_bridgeData.sendingAssetId), address(cBridge), _bridgeData.minAmount);
                            // solhint-disable check-send-result
                            cBridge.send(
                                _bridgeData.receiver,
                                _bridgeData.sendingAssetId,
                                _bridgeData.minAmount,
                                uint64(_bridgeData.destinationChainId),
                                _cBridgeData.nonce,
                                _cBridgeData.maxSlippage
                            );
                        }
                        emit LiFiTransferStarted(_bridgeData);
                    }
                }
                // SPDX-License-Identifier: UNLICENSED
                pragma solidity 0.8.17;
                /// @title Reentrancy Guard
                /// @author LI.FI (https://li.fi)
                /// @notice Abstract contract to provide protection against reentrancy
                abstract contract ReentrancyGuard {
                    /// Storage ///
                    bytes32 private constant NAMESPACE = keccak256("com.lifi.reentrancyguard");
                    /// Types ///
                    struct ReentrancyStorage {
                        uint256 status;
                    }
                    /// Errors ///
                    error ReentrancyError();
                    /// Constants ///
                    uint256 private constant _NOT_ENTERED = 0;
                    uint256 private constant _ENTERED = 1;
                    /// Modifiers ///
                    modifier nonReentrant() {
                        ReentrancyStorage storage s = reentrancyStorage();
                        if (s.status == _ENTERED) revert ReentrancyError();
                        s.status = _ENTERED;
                        _;
                        s.status = _NOT_ENTERED;
                    }
                    /// Private Methods ///
                    /// @dev fetch local storage
                    function reentrancyStorage() private pure returns (ReentrancyStorage storage data) {
                        bytes32 position = NAMESPACE;
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            data.slot := position
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                import { ILiFi } from "../Interfaces/ILiFi.sol";
                import { LibSwap } from "../Libraries/LibSwap.sol";
                import { LibAsset } from "../Libraries/LibAsset.sol";
                import { LibAllowList } from "../Libraries/LibAllowList.sol";
                import { InvalidAmount, ContractCallNotAllowed, NoSwapDataProvided, CumulativeSlippageTooHigh } from "../Errors/GenericErrors.sol";
                /// @title Swapper
                /// @author LI.FI (https://li.fi)
                /// @notice Abstract contract to provide swap functionality
                contract SwapperV2 is ILiFi {
                    /// Types ///
                    /// @dev only used to get around "Stack Too Deep" errors
                    struct ReserveData {
                        bytes32 transactionId;
                        address payable leftoverReceiver;
                        uint256 nativeReserve;
                    }
                    /// Modifiers ///
                    /// @dev Sends any leftover balances back to the user
                    /// @notice Sends any leftover balances to the user
                    /// @param _swaps Swap data array
                    /// @param _leftoverReceiver Address to send leftover tokens to
                    /// @param _initialBalances Array of initial token balances
                    modifier noLeftovers(
                        LibSwap.SwapData[] calldata _swaps,
                        address payable _leftoverReceiver,
                        uint256[] memory _initialBalances
                    ) {
                        uint256 numSwaps = _swaps.length;
                        if (numSwaps != 1) {
                            address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                            uint256 curBalance;
                            _;
                            for (uint256 i = 0; i < numSwaps - 1; ) {
                                address curAsset = _swaps[i].receivingAssetId;
                                // Handle multi-to-one swaps
                                if (curAsset != finalAsset) {
                                    curBalance = LibAsset.getOwnBalance(curAsset) - _initialBalances[i];
                                    if (curBalance > 0) {
                                        LibAsset.transferAsset(curAsset, _leftoverReceiver, curBalance);
                                    }
                                }
                                unchecked {
                                    ++i;
                                }
                            }
                        } else {
                            _;
                        }
                    }
                    /// @dev Sends any leftover balances back to the user reserving native tokens
                    /// @notice Sends any leftover balances to the user
                    /// @param _swaps Swap data array
                    /// @param _leftoverReceiver Address to send leftover tokens to
                    /// @param _initialBalances Array of initial token balances
                    modifier noLeftoversReserve(
                        LibSwap.SwapData[] calldata _swaps,
                        address payable _leftoverReceiver,
                        uint256[] memory _initialBalances,
                        uint256 _nativeReserve
                    ) {
                        uint256 numSwaps = _swaps.length;
                        if (numSwaps != 1) {
                            address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                            uint256 curBalance;
                            _;
                            for (uint256 i = 0; i < numSwaps - 1; ) {
                                address curAsset = _swaps[i].receivingAssetId;
                                // Handle multi-to-one swaps
                                if (curAsset != finalAsset) {
                                    curBalance = LibAsset.getOwnBalance(curAsset) - _initialBalances[i];
                                    uint256 reserve = LibAsset.isNativeAsset(curAsset) ? _nativeReserve : 0;
                                    if (curBalance > 0) {
                                        LibAsset.transferAsset(curAsset, _leftoverReceiver, curBalance - reserve);
                                    }
                                }
                                unchecked {
                                    ++i;
                                }
                            }
                        } else {
                            _;
                        }
                    }
                    /// @dev Refunds any excess native asset sent to the contract after the main function
                    /// @notice Refunds any excess native asset sent to the contract after the main function
                    /// @param _refundReceiver Address to send refunds to
                    modifier refundExcessNative(address payable _refundReceiver) {
                        uint256 initialBalance = address(this).balance - msg.value;
                        _;
                        uint256 finalBalance = address(this).balance;
                        uint256 excess = finalBalance > initialBalance ? finalBalance - initialBalance : 0;
                        if (excess > 0) {
                            LibAsset.transferAsset(LibAsset.NATIVE_ASSETID, _refundReceiver, excess);
                        }
                    }
                    /// Internal Methods ///
                    /// @dev Deposits value, executes swaps, and performs minimum amount check
                    /// @param _transactionId the transaction id associated with the operation
                    /// @param _minAmount the minimum amount of the final asset to receive
                    /// @param _swaps Array of data used to execute swaps
                    /// @param _leftoverReceiver The address to send leftover funds to
                    /// @return uint256 result of the swap
                    function _depositAndSwap(
                        bytes32 _transactionId,
                        uint256 _minAmount,
                        LibSwap.SwapData[] calldata _swaps,
                        address payable _leftoverReceiver
                    ) internal returns (uint256) {
                        uint256 numSwaps = _swaps.length;
                        if (numSwaps == 0) {
                            revert NoSwapDataProvided();
                        }
                        address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                        uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                        if (LibAsset.isNativeAsset(finalTokenId)) {
                            initialBalance -= msg.value;
                        }
                        uint256[] memory initialBalances = _fetchBalances(_swaps);
                        LibAsset.depositAssets(_swaps);
                        _executeSwaps(_transactionId, _swaps, _leftoverReceiver, initialBalances);
                        uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) - initialBalance;
                        if (newBalance < _minAmount) {
                            revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                        }
                        return newBalance;
                    }
                    /// @dev Deposits value, executes swaps, and performs minimum amount check and reserves native token for fees
                    /// @param _transactionId the transaction id associated with the operation
                    /// @param _minAmount the minimum amount of the final asset to receive
                    /// @param _swaps Array of data used to execute swaps
                    /// @param _leftoverReceiver The address to send leftover funds to
                    /// @param _nativeReserve Amount of native token to prevent from being swept back to the caller
                    function _depositAndSwap(
                        bytes32 _transactionId,
                        uint256 _minAmount,
                        LibSwap.SwapData[] calldata _swaps,
                        address payable _leftoverReceiver,
                        uint256 _nativeReserve
                    ) internal returns (uint256) {
                        uint256 numSwaps = _swaps.length;
                        if (numSwaps == 0) {
                            revert NoSwapDataProvided();
                        }
                        address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                        uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                        if (LibAsset.isNativeAsset(finalTokenId)) {
                            initialBalance -= msg.value;
                        }
                        uint256[] memory initialBalances = _fetchBalances(_swaps);
                        LibAsset.depositAssets(_swaps);
                        ReserveData memory rd = ReserveData(_transactionId, _leftoverReceiver, _nativeReserve);
                        _executeSwaps(rd, _swaps, initialBalances);
                        uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) - initialBalance;
                        if (newBalance < _minAmount) {
                            revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                        }
                        return newBalance;
                    }
                    /// Private Methods ///
                    /// @dev Executes swaps and checks that DEXs used are in the allowList
                    /// @param _transactionId the transaction id associated with the operation
                    /// @param _swaps Array of data used to execute swaps
                    /// @param _leftoverReceiver Address to send leftover tokens to
                    /// @param _initialBalances Array of initial balances
                    function _executeSwaps(
                        bytes32 _transactionId,
                        LibSwap.SwapData[] calldata _swaps,
                        address payable _leftoverReceiver,
                        uint256[] memory _initialBalances
                    ) internal noLeftovers(_swaps, _leftoverReceiver, _initialBalances) {
                        uint256 numSwaps = _swaps.length;
                        for (uint256 i = 0; i < numSwaps; ) {
                            LibSwap.SwapData calldata currentSwap = _swaps[i];
                            if (
                                !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                                    LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                                    LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                                    LibAllowList.selectorIsAllowed(bytes4(currentSwap.callData[:4])))
                            ) revert ContractCallNotAllowed();
                            LibSwap.swap(_transactionId, currentSwap);
                            unchecked {
                                ++i;
                            }
                        }
                    }
                    /// @dev Executes swaps and checks that DEXs used are in the allowList
                    /// @param _reserveData Data passed used to reserve native tokens
                    /// @param _swaps Array of data used to execute swaps
                    function _executeSwaps(
                        ReserveData memory _reserveData,
                        LibSwap.SwapData[] calldata _swaps,
                        uint256[] memory _initialBalances
                    ) internal noLeftoversReserve(_swaps, _reserveData.leftoverReceiver, _initialBalances, _reserveData.nativeReserve) {
                        uint256 numSwaps = _swaps.length;
                        for (uint256 i = 0; i < numSwaps; ) {
                            LibSwap.SwapData calldata currentSwap = _swaps[i];
                            if (
                                !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                                    LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                                    LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                                    LibAllowList.selectorIsAllowed(bytes4(currentSwap.callData[:4])))
                            ) revert ContractCallNotAllowed();
                            LibSwap.swap(_reserveData.transactionId, currentSwap);
                            unchecked {
                                ++i;
                            }
                        }
                    }
                    /// @dev Fetches balances of tokens to be swapped before swapping.
                    /// @param _swaps Array of data used to execute swaps
                    /// @return uint256[] Array of token balances.
                    function _fetchBalances(LibSwap.SwapData[] calldata _swaps) private view returns (uint256[] memory) {
                        uint256 numSwaps = _swaps.length;
                        uint256[] memory balances = new uint256[](numSwaps);
                        address asset;
                        for (uint256 i = 0; i < numSwaps; ) {
                            asset = _swaps[i].receivingAssetId;
                            balances[i] = LibAsset.getOwnBalance(asset);
                            if (LibAsset.isNativeAsset(asset)) {
                                balances[i] -= msg.value;
                            }
                            unchecked {
                                ++i;
                            }
                        }
                        return balances;
                    }
                }
                // SPDX-License-Identifier: UNLICENSED
                pragma solidity 0.8.17;
                import { LibAsset } from "../Libraries/LibAsset.sol";
                import { LibUtil } from "../Libraries/LibUtil.sol";
                import { InvalidReceiver, InformationMismatch, InvalidSendingToken, InvalidAmount, NativeAssetNotSupported, InvalidDestinationChain } from "../Errors/GenericErrors.sol";
                import { ILiFi } from "../Interfaces/ILiFi.sol";
                import { LibSwap } from "../Libraries/LibSwap.sol";
                contract Validatable {
                    modifier validateBridgeData(ILiFi.BridgeData memory _bridgeData) {
                        if (LibUtil.isZeroAddress(_bridgeData.receiver)) {
                            revert InvalidReceiver();
                        }
                        if (_bridgeData.minAmount == 0) {
                            revert InvalidAmount();
                        }
                        _;
                    }
                    modifier noNativeAsset(ILiFi.BridgeData memory _bridgeData) {
                        if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
                            revert NativeAssetNotSupported();
                        }
                        _;
                    }
                    modifier onlyAllowSourceToken(ILiFi.BridgeData memory _bridgeData, address _token) {
                        if (_bridgeData.sendingAssetId != _token) {
                            revert InvalidSendingToken();
                        }
                        _;
                    }
                    modifier onlyAllowDestinationChain(ILiFi.BridgeData memory _bridgeData, uint256 _chainId) {
                        if (_bridgeData.destinationChainId != _chainId) {
                            revert InvalidDestinationChain();
                        }
                        _;
                    }
                    modifier containsSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
                        if (!_bridgeData.hasSourceSwaps) {
                            revert InformationMismatch();
                        }
                        _;
                    }
                    modifier doesNotContainSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
                        if (_bridgeData.hasSourceSwaps) {
                            revert InformationMismatch();
                        }
                        _;
                    }
                    modifier doesNotContainDestinationCalls(ILiFi.BridgeData memory _bridgeData) {
                        if (_bridgeData.hasDestinationCall) {
                            revert InformationMismatch();
                        }
                        _;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                interface ICBridge {
                    /// @notice Send a cross-chain transfer via the liquidity pool-based bridge.
                    /// @dev This function DOES NOT SUPPORT fee-on-transfer / rebasing tokens.
                    /// @param _receiver The address of the receiver.
                    /// @param _token The address of the token.
                    /// @param _amount The amount of the transfer.
                    /// @param _dstChainId The destination chain ID.
                    /// @param _nonce A number input to guarantee uniqueness of transferId. Can be timestamp in practice.
                    /// @param _maxSlippage The max slippage accepted, given as percentage in point (pip).
                    ///                     Eg. 5000 means 0.5%. Must be greater than minimalMaxSlippage.
                    ///                     Receiver is guaranteed to receive at least (100% - max slippage percentage) * amount
                    ///                     or the transfer can be refunded.
                    function send(
                        address _receiver,
                        address _token,
                        uint256 _amount,
                        uint64 _dstChainId,
                        uint64 _nonce,
                        uint32 _maxSlippage
                    ) external;
                    /// @notice Send a cross-chain transfer via the liquidity pool-based bridge using the native token.
                    /// @param _receiver The address of the receiver.
                    /// @param _amount The amount of the transfer.
                    /// @param _dstChainId The destination chain ID.
                    /// @param _nonce A unique number. Can be timestamp in practice.
                    /// @param _maxSlippage The max slippage accepted, given as percentage in point (pip).
                    ///                     Eg. 5000 means 0.5%. Must be greater than minimalMaxSlippage.
                    ///                     Receiver is guaranteed to receive at least (100% - max slippage percentage) * amount
                    ///                     or the transfer can be refunded.
                    function sendNative(
                        address _receiver,
                        uint256 _amount,
                        uint64 _dstChainId,
                        uint64 _nonce,
                        uint32 _maxSlippage
                    ) external payable;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                interface ILiFi {
                    /// Structs ///
                    struct BridgeData {
                        bytes32 transactionId;
                        string bridge;
                        string integrator;
                        address referrer;
                        address sendingAssetId;
                        address receiver;
                        uint256 minAmount;
                        uint256 destinationChainId;
                        bool hasSourceSwaps;
                        bool hasDestinationCall;
                    }
                    /// Events ///
                    event LiFiTransferStarted(ILiFi.BridgeData bridgeData);
                    event LiFiTransferCompleted(
                        bytes32 indexed transactionId,
                        address receivingAssetId,
                        address receiver,
                        uint256 amount,
                        uint256 timestamp
                    );
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                import { InvalidContract } from "../Errors/GenericErrors.sol";
                /// @title Lib Allow List
                /// @author LI.FI (https://li.fi)
                /// @notice Library for managing and accessing the conract address allow list
                library LibAllowList {
                    /// Storage ///
                    bytes32 internal constant NAMESPACE = keccak256("com.lifi.library.allow.list");
                    struct AllowListStorage {
                        mapping(address => bool) allowlist;
                        mapping(bytes4 => bool) selectorAllowList;
                        address[] contracts;
                    }
                    /// @dev Adds a contract address to the allow list
                    /// @param _contract the contract address to add
                    function addAllowedContract(address _contract) internal {
                        _checkAddress(_contract);
                        AllowListStorage storage als = _getStorage();
                        if (als.allowlist[_contract]) return;
                        als.allowlist[_contract] = true;
                        als.contracts.push(_contract);
                    }
                    /// @dev Checks whether a contract address has been added to the allow list
                    /// @param _contract the contract address to check
                    function contractIsAllowed(address _contract) internal view returns (bool) {
                        return _getStorage().allowlist[_contract];
                    }
                    /// @dev Remove a contract address from the allow list
                    /// @param _contract the contract address to remove
                    function removeAllowedContract(address _contract) internal {
                        AllowListStorage storage als = _getStorage();
                        if (!als.allowlist[_contract]) {
                            return;
                        }
                        als.allowlist[_contract] = false;
                        uint256 length = als.contracts.length;
                        // Find the contract in the list
                        for (uint256 i = 0; i < length; i++) {
                            if (als.contracts[i] == _contract) {
                                // Move the last element into the place to delete
                                als.contracts[i] = als.contracts[length - 1];
                                // Remove the last element
                                als.contracts.pop();
                                break;
                            }
                        }
                    }
                    /// @dev Fetch contract addresses from the allow list
                    function getAllowedContracts() internal view returns (address[] memory) {
                        return _getStorage().contracts;
                    }
                    /// @dev Add a selector to the allow list
                    /// @param _selector the selector to add
                    function addAllowedSelector(bytes4 _selector) internal {
                        _getStorage().selectorAllowList[_selector] = true;
                    }
                    /// @dev Removes a selector from the allow list
                    /// @param _selector the selector to remove
                    function removeAllowedSelector(bytes4 _selector) internal {
                        _getStorage().selectorAllowList[_selector] = false;
                    }
                    /// @dev Returns if selector has been added to the allow list
                    /// @param _selector the selector to check
                    function selectorIsAllowed(bytes4 _selector) internal view returns (bool) {
                        return _getStorage().selectorAllowList[_selector];
                    }
                    /// @dev Fetch local storage struct
                    function _getStorage() internal pure returns (AllowListStorage storage als) {
                        bytes32 position = NAMESPACE;
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            als.slot := position
                        }
                    }
                    /// @dev Contains business logic for validating a contract address.
                    /// @param _contract address of the dex to check
                    function _checkAddress(address _contract) private view {
                        if (_contract == address(0)) revert InvalidContract();
                        if (_contract.code.length == 0) revert InvalidContract();
                    }
                }
                // SPDX-License-Identifier: UNLICENSED
                pragma solidity 0.8.17;
                import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeValueWithERC, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
                import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
                import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                import { LibSwap } from "./LibSwap.sol";
                /// @title LibAsset
                /// @notice This library contains helpers for dealing with onchain transfers
                ///         of assets, including accounting for the native asset `assetId`
                ///         conventions and any noncompliant ERC20 transfers
                library LibAsset {
                    uint256 private constant MAX_UINT = type(uint256).max;
                    address internal constant NULL_ADDRESS = address(0);
                    /// @dev All native assets use the empty address for their asset id
                    ///      by convention
                    address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
                    /// @notice Gets the balance of the inheriting contract for the given asset
                    /// @param assetId The asset identifier to get the balance of
                    /// @return Balance held by contracts using this library
                    function getOwnBalance(address assetId) internal view returns (uint256) {
                        return assetId == NATIVE_ASSETID ? address(this).balance : IERC20(assetId).balanceOf(address(this));
                    }
                    /// @notice Transfers ether from the inheriting contract to a given
                    ///         recipient
                    /// @param recipient Address to send ether to
                    /// @param amount Amount to send to given recipient
                    function transferNativeAsset(address payable recipient, uint256 amount) private {
                        if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
                        if (amount > address(this).balance) revert InsufficientBalance(amount, address(this).balance);
                        // solhint-disable-next-line avoid-low-level-calls
                        (bool success, ) = recipient.call{ value: amount }("");
                        if (!success) revert NativeAssetTransferFailed();
                    }
                    /// @notice If the current allowance is insufficient, the allowance for a given spender
                    /// is set to MAX_UINT.
                    /// @param assetId Token address to transfer
                    /// @param spender Address to give spend approval to
                    /// @param amount Amount to approve for spending
                    function maxApproveERC20(
                        IERC20 assetId,
                        address spender,
                        uint256 amount
                    ) internal {
                        if (address(assetId) == NATIVE_ASSETID) return;
                        if (spender == NULL_ADDRESS) revert NullAddrIsNotAValidSpender();
                        uint256 allowance = assetId.allowance(address(this), spender);
                        if (allowance < amount) SafeERC20.safeIncreaseAllowance(IERC20(assetId), spender, MAX_UINT - allowance);
                    }
                    /// @notice Transfers tokens from the inheriting contract to a given
                    ///         recipient
                    /// @param assetId Token address to transfer
                    /// @param recipient Address to send token to
                    /// @param amount Amount to send to given recipient
                    function transferERC20(
                        address assetId,
                        address recipient,
                        uint256 amount
                    ) private {
                        if (isNativeAsset(assetId)) revert NullAddrIsNotAnERC20Token();
                        uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
                        if (amount > assetBalance) revert InsufficientBalance(amount, assetBalance);
                        SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
                    }
                    /// @notice Transfers tokens from a sender to a given recipient
                    /// @param assetId Token address to transfer
                    /// @param from Address of sender/owner
                    /// @param to Address of recipient/spender
                    /// @param amount Amount to transfer from owner to spender
                    function transferFromERC20(
                        address assetId,
                        address from,
                        address to,
                        uint256 amount
                    ) internal {
                        if (assetId == NATIVE_ASSETID) revert NullAddrIsNotAnERC20Token();
                        if (to == NULL_ADDRESS) revert NoTransferToNullAddress();
                        IERC20 asset = IERC20(assetId);
                        uint256 prevBalance = asset.balanceOf(to);
                        SafeERC20.safeTransferFrom(asset, from, to, amount);
                        if (asset.balanceOf(to) - prevBalance != amount) revert InvalidAmount();
                    }
                    function depositAsset(address assetId, uint256 amount) internal {
                        if (isNativeAsset(assetId)) {
                            if (msg.value < amount) revert InvalidAmount();
                        } else {
                            if (amount == 0) revert InvalidAmount();
                            uint256 balance = IERC20(assetId).balanceOf(msg.sender);
                            if (balance < amount) revert InsufficientBalance(amount, balance);
                            transferFromERC20(assetId, msg.sender, address(this), amount);
                        }
                    }
                    function depositAssets(LibSwap.SwapData[] calldata swaps) internal {
                        for (uint256 i = 0; i < swaps.length; ) {
                            LibSwap.SwapData memory swap = swaps[i];
                            if (swap.requiresDeposit) {
                                depositAsset(swap.sendingAssetId, swap.fromAmount);
                            }
                            unchecked {
                                i++;
                            }
                        }
                    }
                    /// @notice Determines whether the given assetId is the native asset
                    /// @param assetId The asset identifier to evaluate
                    /// @return Boolean indicating if the asset is the native asset
                    function isNativeAsset(address assetId) internal pure returns (bool) {
                        return assetId == NATIVE_ASSETID;
                    }
                    /// @notice Wrapper function to transfer a given asset (native or erc20) to
                    ///         some recipient. Should handle all non-compliant return value
                    ///         tokens as well by using the SafeERC20 contract by open zeppelin.
                    /// @param assetId Asset id for transfer (address(0) for native asset,
                    ///                token address for erc20s)
                    /// @param recipient Address to send asset to
                    /// @param amount Amount to send to given recipient
                    function transferAsset(
                        address assetId,
                        address payable recipient,
                        uint256 amount
                    ) internal {
                        (assetId == NATIVE_ASSETID)
                            ? transferNativeAsset(recipient, amount)
                            : transferERC20(assetId, recipient, amount);
                    }
                    /// @dev Checks whether the given address is a contract and contains code
                    function isContract(address _contractAddr) internal view returns (bool) {
                        uint256 size;
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            size := extcodesize(_contractAddr)
                        }
                        return size > 0;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                library LibBytes {
                    // solhint-disable no-inline-assembly
                    // LibBytes specific errors
                    error SliceOverflow();
                    error SliceOutOfBounds();
                    error AddressOutOfBounds();
                    error UintOutOfBounds();
                    // -------------------------
                    function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
                        bytes memory tempBytes;
                        assembly {
                            // Get a location of some free memory and store it in tempBytes as
                            // Solidity does for memory variables.
                            tempBytes := mload(0x40)
                            // Store the length of the first bytes array at the beginning of
                            // the memory for tempBytes.
                            let length := mload(_preBytes)
                            mstore(tempBytes, length)
                            // Maintain a memory counter for the current write location in the
                            // temp bytes array by adding the 32 bytes for the array length to
                            // the starting location.
                            let mc := add(tempBytes, 0x20)
                            // Stop copying when the memory counter reaches the length of the
                            // first bytes array.
                            let end := add(mc, length)
                            for {
                                // Initialize a copy counter to the start of the _preBytes data,
                                // 32 bytes into its memory.
                                let cc := add(_preBytes, 0x20)
                            } lt(mc, end) {
                                // Increase both counters by 32 bytes each iteration.
                                mc := add(mc, 0x20)
                                cc := add(cc, 0x20)
                            } {
                                // Write the _preBytes data into the tempBytes memory 32 bytes
                                // at a time.
                                mstore(mc, mload(cc))
                            }
                            // Add the length of _postBytes to the current length of tempBytes
                            // and store it as the new length in the first 32 bytes of the
                            // tempBytes memory.
                            length := mload(_postBytes)
                            mstore(tempBytes, add(length, mload(tempBytes)))
                            // Move the memory counter back from a multiple of 0x20 to the
                            // actual end of the _preBytes data.
                            mc := end
                            // Stop copying when the memory counter reaches the new combined
                            // length of the arrays.
                            end := add(mc, length)
                            for {
                                let cc := add(_postBytes, 0x20)
                            } lt(mc, end) {
                                mc := add(mc, 0x20)
                                cc := add(cc, 0x20)
                            } {
                                mstore(mc, mload(cc))
                            }
                            // Update the free-memory pointer by padding our last write location
                            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
                            // next 32 byte block, then round down to the nearest multiple of
                            // 32. If the sum of the length of the two arrays is zero then add
                            // one before rounding down to leave a blank 32 bytes (the length block with 0).
                            mstore(
                                0x40,
                                and(
                                    add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                                    not(31) // Round down to the nearest 32 bytes.
                                )
                            )
                        }
                        return tempBytes;
                    }
                    function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
                        assembly {
                            // Read the first 32 bytes of _preBytes storage, which is the length
                            // of the array. (We don't need to use the offset into the slot
                            // because arrays use the entire slot.)
                            let fslot := sload(_preBytes.slot)
                            // Arrays of 31 bytes or less have an even value in their slot,
                            // while longer arrays have an odd value. The actual length is
                            // the slot divided by two for odd values, and the lowest order
                            // byte divided by two for even values.
                            // If the slot is even, bitwise and the slot with 255 and divide by
                            // two to get the length. If the slot is odd, bitwise and the slot
                            // with -1 and divide by two.
                            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                            let mlength := mload(_postBytes)
                            let newlength := add(slength, mlength)
                            // slength can contain both the length and contents of the array
                            // if length < 32 bytes so let's prepare for that
                            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                            switch add(lt(slength, 32), lt(newlength, 32))
                            case 2 {
                                // Since the new array still fits in the slot, we just need to
                                // update the contents of the slot.
                                // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                                sstore(
                                    _preBytes.slot,
                                    // all the modifications to the slot are inside this
                                    // next block
                                    add(
                                        // we can just add to the slot contents because the
                                        // bytes we want to change are the LSBs
                                        fslot,
                                        add(
                                            mul(
                                                div(
                                                    // load the bytes from memory
                                                    mload(add(_postBytes, 0x20)),
                                                    // zero all bytes to the right
                                                    exp(0x100, sub(32, mlength))
                                                ),
                                                // and now shift left the number of bytes to
                                                // leave space for the length in the slot
                                                exp(0x100, sub(32, newlength))
                                            ),
                                            // increase length by the double of the memory
                                            // bytes length
                                            mul(mlength, 2)
                                        )
                                    )
                                )
                            }
                            case 1 {
                                // The stored value fits in the slot, but the combined value
                                // will exceed it.
                                // get the keccak hash to get the contents of the array
                                mstore(0x0, _preBytes.slot)
                                let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                                // save new length
                                sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                                // The contents of the _postBytes array start 32 bytes into
                                // the structure. Our first read should obtain the `submod`
                                // bytes that can fit into the unused space in the last word
                                // of the stored array. To get this, we read 32 bytes starting
                                // from `submod`, so the data we read overlaps with the array
                                // contents by `submod` bytes. Masking the lowest-order
                                // `submod` bytes allows us to add that value directly to the
                                // stored value.
                                let submod := sub(32, slength)
                                let mc := add(_postBytes, submod)
                                let end := add(_postBytes, mlength)
                                let mask := sub(exp(0x100, submod), 1)
                                sstore(
                                    sc,
                                    add(
                                        and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
                                        and(mload(mc), mask)
                                    )
                                )
                                for {
                                    mc := add(mc, 0x20)
                                    sc := add(sc, 1)
                                } lt(mc, end) {
                                    sc := add(sc, 1)
                                    mc := add(mc, 0x20)
                                } {
                                    sstore(sc, mload(mc))
                                }
                                mask := exp(0x100, sub(mc, end))
                                sstore(sc, mul(div(mload(mc), mask), mask))
                            }
                            default {
                                // get the keccak hash to get the contents of the array
                                mstore(0x0, _preBytes.slot)
                                // Start copying to the last used word of the stored array.
                                let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                                // save new length
                                sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                                // Copy over the first `submod` bytes of the new data as in
                                // case 1 above.
                                let slengthmod := mod(slength, 32)
                                let submod := sub(32, slengthmod)
                                let mc := add(_postBytes, submod)
                                let end := add(_postBytes, mlength)
                                let mask := sub(exp(0x100, submod), 1)
                                sstore(sc, add(sload(sc), and(mload(mc), mask)))
                                for {
                                    sc := add(sc, 1)
                                    mc := add(mc, 0x20)
                                } lt(mc, end) {
                                    sc := add(sc, 1)
                                    mc := add(mc, 0x20)
                                } {
                                    sstore(sc, mload(mc))
                                }
                                mask := exp(0x100, sub(mc, end))
                                sstore(sc, mul(div(mload(mc), mask), mask))
                            }
                        }
                    }
                    function slice(
                        bytes memory _bytes,
                        uint256 _start,
                        uint256 _length
                    ) internal pure returns (bytes memory) {
                        if (_length + 31 < _length) revert SliceOverflow();
                        if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                        bytes memory tempBytes;
                        assembly {
                            switch iszero(_length)
                            case 0 {
                                // Get a location of some free memory and store it in tempBytes as
                                // Solidity does for memory variables.
                                tempBytes := mload(0x40)
                                // The first word of the slice result is potentially a partial
                                // word read from the original array. To read it, we calculate
                                // the length of that partial word and start copying that many
                                // bytes into the array. The first word we copy will start with
                                // data we don't care about, but the last `lengthmod` bytes will
                                // land at the beginning of the contents of the new array. When
                                // we're done copying, we overwrite the full first word with
                                // the actual length of the slice.
                                let lengthmod := and(_length, 31)
                                // The multiplication in the next line is necessary
                                // because when slicing multiples of 32 bytes (lengthmod == 0)
                                // the following copy loop was copying the origin's length
                                // and then ending prematurely not copying everything it should.
                                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                                let end := add(mc, _length)
                                for {
                                    // The multiplication in the next line has the same exact purpose
                                    // as the one above.
                                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                                } lt(mc, end) {
                                    mc := add(mc, 0x20)
                                    cc := add(cc, 0x20)
                                } {
                                    mstore(mc, mload(cc))
                                }
                                mstore(tempBytes, _length)
                                //update free-memory pointer
                                //allocating the array padded to 32 bytes like the compiler does now
                                mstore(0x40, and(add(mc, 31), not(31)))
                            }
                            //if we want a zero-length slice let's just return a zero-length array
                            default {
                                tempBytes := mload(0x40)
                                //zero out the 32 bytes slice we are about to return
                                //we need to do it because Solidity does not garbage collect
                                mstore(tempBytes, 0)
                                mstore(0x40, add(tempBytes, 0x20))
                            }
                        }
                        return tempBytes;
                    }
                    function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
                        if (_bytes.length < _start + 20) {
                            revert AddressOutOfBounds();
                        }
                        address tempAddress;
                        assembly {
                            tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
                        }
                        return tempAddress;
                    }
                    function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
                        if (_bytes.length < _start + 1) {
                            revert UintOutOfBounds();
                        }
                        uint8 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0x1), _start))
                        }
                        return tempUint;
                    }
                    function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
                        if (_bytes.length < _start + 2) {
                            revert UintOutOfBounds();
                        }
                        uint16 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0x2), _start))
                        }
                        return tempUint;
                    }
                    function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
                        if (_bytes.length < _start + 4) {
                            revert UintOutOfBounds();
                        }
                        uint32 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0x4), _start))
                        }
                        return tempUint;
                    }
                    function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
                        if (_bytes.length < _start + 8) {
                            revert UintOutOfBounds();
                        }
                        uint64 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0x8), _start))
                        }
                        return tempUint;
                    }
                    function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
                        if (_bytes.length < _start + 12) {
                            revert UintOutOfBounds();
                        }
                        uint96 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0xc), _start))
                        }
                        return tempUint;
                    }
                    function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
                        if (_bytes.length < _start + 16) {
                            revert UintOutOfBounds();
                        }
                        uint128 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0x10), _start))
                        }
                        return tempUint;
                    }
                    function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
                        if (_bytes.length < _start + 32) {
                            revert UintOutOfBounds();
                        }
                        uint256 tempUint;
                        assembly {
                            tempUint := mload(add(add(_bytes, 0x20), _start))
                        }
                        return tempUint;
                    }
                    function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
                        if (_bytes.length < _start + 32) {
                            revert UintOutOfBounds();
                        }
                        bytes32 tempBytes32;
                        assembly {
                            tempBytes32 := mload(add(add(_bytes, 0x20), _start))
                        }
                        return tempBytes32;
                    }
                    function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
                        bool success = true;
                        assembly {
                            let length := mload(_preBytes)
                            // if lengths don't match the arrays are not equal
                            switch eq(length, mload(_postBytes))
                            case 1 {
                                // cb is a circuit breaker in the for loop since there's
                                //  no said feature for inline assembly loops
                                // cb = 1 - don't breaker
                                // cb = 0 - break
                                let cb := 1
                                let mc := add(_preBytes, 0x20)
                                let end := add(mc, length)
                                for {
                                    let cc := add(_postBytes, 0x20)
                                    // the next line is the loop condition:
                                    // while(uint256(mc < end) + cb == 2)
                                } eq(add(lt(mc, end), cb), 2) {
                                    mc := add(mc, 0x20)
                                    cc := add(cc, 0x20)
                                } {
                                    // if any of these checks fails then arrays are not equal
                                    if iszero(eq(mload(mc), mload(cc))) {
                                        // unsuccess:
                                        success := 0
                                        cb := 0
                                    }
                                }
                            }
                            default {
                                // unsuccess:
                                success := 0
                            }
                        }
                        return success;
                    }
                    function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
                        bool success = true;
                        assembly {
                            // we know _preBytes_offset is 0
                            let fslot := sload(_preBytes.slot)
                            // Decode the length of the stored array like in concatStorage().
                            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                            let mlength := mload(_postBytes)
                            // if lengths don't match the arrays are not equal
                            switch eq(slength, mlength)
                            case 1 {
                                // slength can contain both the length and contents of the array
                                // if length < 32 bytes so let's prepare for that
                                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                                if iszero(iszero(slength)) {
                                    switch lt(slength, 32)
                                    case 1 {
                                        // blank the last byte which is the length
                                        fslot := mul(div(fslot, 0x100), 0x100)
                                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                                            // unsuccess:
                                            success := 0
                                        }
                                    }
                                    default {
                                        // cb is a circuit breaker in the for loop since there's
                                        //  no said feature for inline assembly loops
                                        // cb = 1 - don't breaker
                                        // cb = 0 - break
                                        let cb := 1
                                        // get the keccak hash to get the contents of the array
                                        mstore(0x0, _preBytes.slot)
                                        let sc := keccak256(0x0, 0x20)
                                        let mc := add(_postBytes, 0x20)
                                        let end := add(mc, mlength)
                                        // the next line is the loop condition:
                                        // while(uint256(mc < end) + cb == 2)
                                        // solhint-disable-next-line no-empty-blocks
                                        for {
                                        } eq(add(lt(mc, end), cb), 2) {
                                            sc := add(sc, 1)
                                            mc := add(mc, 0x20)
                                        } {
                                            if iszero(eq(sload(sc), mload(mc))) {
                                                // unsuccess:
                                                success := 0
                                                cb := 0
                                            }
                                        }
                                    }
                                }
                            }
                            default {
                                // unsuccess:
                                success := 0
                            }
                        }
                        return success;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                import { LibAsset } from "./LibAsset.sol";
                import { LibUtil } from "./LibUtil.sol";
                import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance } from "../Errors/GenericErrors.sol";
                import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                library LibSwap {
                    struct SwapData {
                        address callTo;
                        address approveTo;
                        address sendingAssetId;
                        address receivingAssetId;
                        uint256 fromAmount;
                        bytes callData;
                        bool requiresDeposit;
                    }
                    event AssetSwapped(
                        bytes32 transactionId,
                        address dex,
                        address fromAssetId,
                        address toAssetId,
                        uint256 fromAmount,
                        uint256 toAmount,
                        uint256 timestamp
                    );
                    function swap(bytes32 transactionId, SwapData calldata _swap) internal {
                        if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
                        uint256 fromAmount = _swap.fromAmount;
                        if (fromAmount == 0) revert NoSwapFromZeroBalance();
                        uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId) ? _swap.fromAmount : 0;
                        uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(_swap.sendingAssetId);
                        uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                        if (nativeValue == 0) {
                            LibAsset.maxApproveERC20(IERC20(_swap.sendingAssetId), _swap.approveTo, _swap.fromAmount);
                        }
                        if (initialSendingAssetBalance < _swap.fromAmount) {
                            revert InsufficientBalance(_swap.fromAmount, initialSendingAssetBalance);
                        }
                        // solhint-disable-next-line avoid-low-level-calls
                        (bool success, bytes memory res) = _swap.callTo.call{ value: nativeValue }(_swap.callData);
                        if (!success) {
                            string memory reason = LibUtil.getRevertMsg(res);
                            revert(reason);
                        }
                        uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                        emit AssetSwapped(
                            transactionId,
                            _swap.callTo,
                            _swap.sendingAssetId,
                            _swap.receivingAssetId,
                            _swap.fromAmount,
                            newBalance > initialReceivingAssetBalance ? newBalance - initialReceivingAssetBalance : newBalance,
                            block.timestamp
                        );
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.17;
                import "./LibBytes.sol";
                library LibUtil {
                    using LibBytes for bytes;
                    function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
                        // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                        if (_res.length < 68) return "Transaction reverted silently";
                        bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                        return abi.decode(revertData, (string)); // All that remains is the revert string
                    }
                    /// @notice Determines whether the given address is the zero address
                    /// @param addr The address to verify
                    /// @return Boolean indicating if the address is the zero address
                    function isZeroAddress(address addr) internal pure returns (bool) {
                        return addr == address(0);
                    }
                }