Transaction Hash:
Block:
22844883 at Jul-04-2025 09:12:47 AM +UTC
Transaction Fee:
0.000779936397051452 ETH
$1.97
Gas Used:
46,708 Gas / 16.698133019 Gwei
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 14.426316364637167366 Eth | 14.427063692637167366 Eth | 0.000747328 | |
0xbE7e372e...b3f1E869d |
0.109776101766614378 Eth
Nonce: 21736
|
0.108996165369562926 Eth
Nonce: 21737
| 0.000779936397051452 | ||
0xd865f24B...8Fca9a3C6 |
Execution Trace
0xd865f24b1c258568fc381564f0a3c1d8fca9a3c6.e5f454c8( )
-
Token.balanceOf( account=0xd865f24B1C258568Fc381564F0A3c1D8Fca9a3C6 ) => ( 0 )
// SPDX-License-Identifier: MIT pragma solidity 0.8.9; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); } /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), 'Ownable: caller is not the owner'); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), 'Ownable: new owner is the zero address'); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } contract Token is Context, IERC20Metadata, Ownable { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private constant _decimals = 18; uint256 public constant treasuryReserve = 27_609_200_000 * (10 ** _decimals); uint256 public constant marketingReserve = 20_706_900_000 * (10 ** _decimals); uint256 public constant rewardsReserve = 34_511_500_000 * (10 ** _decimals); uint256 public constant listingsReserve = 13_804_600_000 * (10 ** _decimals); uint256 public constant developmentReserve = 41_413_800_000 * (10 ** _decimals); bool public firstBuyCompleted = false; // Flag to track if the first buy has been completed address public uniswapPool; event FirstBuyDone(); // Event emitted when the first buy is done /** * @dev Contract constructor. */ constructor() { _name = 'Solaxy'; _symbol = 'SOLX'; _mint(0x51f8dcA2aFe4894Ce8B7aAB752CF97374662EEfD, treasuryReserve); _mint(0x509e7249dad865852677d6455dE63A3882ea8E13, marketingReserve); _mint(0xBfE68afaF59C7b89ebbEcc9e2936e7167d16F648, rewardsReserve); _mint(0x8c597c1E502049bac882368C3e29943d0D7E78b9, listingsReserve); _mint(0x697B23CA9C1bF14d89dCeA311Ee34f4Dce8ed018, developmentReserve); } /** * @dev Returns the name of the token. * @return The name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token. * @return The symbol of the token. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used for token display. * @return The number of decimals. */ function decimals() public view virtual override returns (uint8) { return _decimals; } // Admin function to update the Uniswap pool if needed function setUniswapPool(address _uniswapPool) external onlyOwner { require(_uniswapPool != address(0), 'Uniswap pool address cannot be zero'); uniswapPool = _uniswapPool; } /** * @dev Returns the total supply of the token. * @return The total supply. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev Returns the balance of the specified account. * @param account The address to check the balance for. * @return The balance of the account. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev Transfers tokens from the caller to a specified recipient. * @param recipient The address to transfer tokens to. * @param amount The amount of tokens to transfer. * @return A boolean value indicating whether the transfer was successful. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev Returns the amount of tokens that the spender is allowed to spend on behalf of the owner. * @param from The address that approves the spending. * @param to The address that is allowed to spend. * @return The remaining allowance for the spender. */ function allowance(address from, address to) public view virtual override returns (uint256) { return _allowances[from][to]; } /** * @dev Approves the specified address to spend the specified amount of tokens on behalf of the caller. * @param to The address to approve the spending for. * @param amount The amount of tokens to approve. * @return A boolean value indicating whether the approval was successful. */ function approve(address to, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), to, amount); return true; } /** * @dev Transfers tokens from one address to another. * @param sender The address to transfer tokens from. * @param recipient The address to transfer tokens to. * @param amount The amount of tokens to transfer. * @return A boolean value indicating whether the transfer was successful. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); uint256 currentAllowance = _allowances[sender][_msgSender()]; require(currentAllowance >= amount, 'ERC20: transfer amount exceeds allowance'); unchecked { _approve(sender, _msgSender(), currentAllowance - amount); } return true; } /** * @dev Increases the allowance of the specified address to spend tokens on behalf of the caller. * @param to The address to increase the allowance for. * @param addedValue The amount of tokens to increase the allowance by. * @return A boolean value indicating whether the increase was successful. */ function increaseAllowance(address to, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), to, _allowances[_msgSender()][to] + addedValue); return true; } /** * @dev Decreases the allowance granted by the owner of the tokens to `to` account. * @param to The account allowed to spend the tokens. * @param subtractedValue The amount of tokens to decrease the allowance by. * @return A boolean value indicating whether the operation succeeded. */ function decreaseAllowance(address to, uint256 subtractedValue) public virtual returns (bool) { uint256 currentAllowance = _allowances[_msgSender()][to]; require(currentAllowance >= subtractedValue, 'ERC20: decreased allowance below zero'); unchecked { _approve(_msgSender(), to, currentAllowance - subtractedValue); } return true; } /** * @dev Transfers `amount` tokens from `sender` to `recipient`. * @param sender The account to transfer tokens from. * @param recipient The account to transfer tokens to. * @param amount The amount of tokens to transfer. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(amount > 0, 'ERC20: transfer amount zero'); require(sender != address(0), 'ERC20: transfer from the zero address'); require(recipient != address(0), 'ERC20: transfer to the zero address'); uint256 senderBalance = _balances[sender]; require(senderBalance >= amount, 'ERC20: transfer amount exceeds balance'); if (!firstBuyCompleted && sender == uniswapPool) { require(tx.origin == owner(), 'First Buy Pending'); firstBuyCompleted = true; emit FirstBuyDone(); } unchecked { _balances[sender] = senderBalance - amount; } _balances[recipient] += amount; emit Transfer(sender, recipient, amount); } /** * @dev Creates `amount` tokens and assigns them to `account`. * @param account The account to assign the newly created tokens to. * @param amount The amount of tokens to create. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), 'ERC20: mint to the zero address'); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the total supply. * @param account The account to burn tokens from. * @param amount The amount of tokens to burn. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), 'ERC20: burn from the zero address'); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, 'ERC20: burn amount exceeds balance'); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); } /** * @dev Destroys `amount` tokens from the caller's account, reducing the total supply. * @param amount The amount of tokens to burn. */ function burn(uint256 amount) external { _burn(_msgSender(), amount); } /** * @dev Sets `amount` as the allowance of `to` over the caller's tokens. * @param from The account granting the allowance. * @param to The account allowed to spend the tokens. * @param amount The amount of tokens to allow. */ function _approve(address from, address to, uint256 amount) internal virtual { require(from != address(0), 'ERC20: approve from the zero address'); require(to != address(0), 'ERC20: approve to the zero address'); _allowances[from][to] = amount; emit Approval(from, to, amount); } }