Transaction Hash:
Block:
17486476 at Jun-15-2023 04:30:23 PM +UTC
Transaction Fee:
0.001327063669881026 ETH
$5.02
Gas Used:
46,603 Gas / 28.475927942 Gwei
Emitted Events:
122 |
UNCX.Approval( owner=[Sender] 0xa8c18c24c5a8a1070677c42e12e735b6976ccad0, spender=0x881D4023...dC08D300C, value=115792089237316195423570985008687907853269984665640564039457584007913129639935 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x690B9A9E...Db4FaC990
Miner
| (builder0x69) | 1.68748166987346373 Eth | 1.687489819212428113 Eth | 0.000008149338964383 | |
0xA8C18C24...6976ccad0 |
0.009181696348174898 Eth
Nonce: 16
|
0.007854632678293872 Eth
Nonce: 17
| 0.001327063669881026 | ||
0xaDB2437e...508A7B1D0 |
Execution Trace
UNCX.approve( spender=0x881D40237659C251811CEC9c364ef91dC08D300C, amount=115792089237316195423570985008687907853269984665640564039457584007913129639935 ) => ( True )
{"Address.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.2;\n\n/**\n * @dev Collection of functions related to the address type\n */\nlibrary Address {\n /**\n * @dev Returns true if `account` is a contract.\n *\n * [IMPORTANT]\n * ====\n * It is unsafe to assume that an address for which this function returns\n * false is an externally-owned account (EOA) and not a contract.\n *\n * Among others, `isContract` will return false for the following\n * types of addresses:\n *\n * - an externally-owned account\n * - a contract in construction\n * - an address where a contract will be created\n * - an address where a contract lived, but was destroyed\n * ====\n */\n function isContract(address account) internal view returns (bool) {\n // This method relies in extcodesize, which returns 0 for contracts in\n // construction, since the code is only stored at the end of the\n // constructor execution.\n\n uint256 size;\n // solhint-disable-next-line no-inline-assembly\n assembly { size := extcodesize(account) }\n return size \u003e 0;\n }\n\n /**\n * @dev Replacement for Solidity\u0027s `transfer`: sends `amount` wei to\n * `recipient`, forwarding all available gas and reverting on errors.\n *\n * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost\n * of certain opcodes, possibly making contracts go over the 2300 gas limit\n * imposed by `transfer`, making them unable to receive funds via\n * `transfer`. {sendValue} removes this limitation.\n *\n * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].\n *\n * IMPORTANT: because control is transferred to `recipient`, care must be\n * taken to not create reentrancy vulnerabilities. Consider using\n * {ReentrancyGuard} or the\n * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].\n */\n function sendValue(address payable recipient, uint256 amount) internal {\n require(address(this).balance \u003e= amount, \"Address: insufficient balance\");\n\n // solhint-disable-next-line avoid-low-level-calls, avoid-call-value\n (bool success, ) = recipient.call{ value: amount }(\"\");\n require(success, \"Address: unable to send value, recipient may have reverted\");\n }\n\n /**\n * @dev Performs a Solidity function call using a low level `call`. A\n * plain`call` is an unsafe replacement for a function call: use this\n * function instead.\n *\n * If `target` reverts with a revert reason, it is bubbled up by this\n * function (like regular Solidity function calls).\n *\n * Returns the raw returned data. To convert to the expected return value,\n * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].\n *\n * Requirements:\n *\n * - `target` must be a contract.\n * - calling `target` with `data` must not revert.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionCall(target, data, \"Address: low-level call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with\n * `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {\n return _functionCallWithValue(target, data, 0, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but also transferring `value` wei to `target`.\n *\n * Requirements:\n *\n * - the calling contract must have an ETH balance of at least `value`.\n * - the called Solidity function must be `payable`.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {\n return functionCallWithValue(target, data, value, \"Address: low-level call with value failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but\n * with `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {\n require(address(this).balance \u003e= value, \"Address: insufficient balance for call\");\n return _functionCallWithValue(target, data, value, errorMessage);\n }\n\n function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {\n require(isContract(target), \"Address: call to non-contract\");\n\n // solhint-disable-next-line avoid-low-level-calls\n (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);\n if (success) {\n return returndata;\n } else {\n // Look for revert reason and bubble it up if present\n if (returndata.length \u003e 0) {\n // The easiest way to bubble the revert reason is using memory via assembly\n\n // solhint-disable-next-line no-inline-assembly\n assembly {\n let returndata_size := mload(returndata)\n revert(add(32, returndata), returndata_size)\n }\n } else {\n revert(errorMessage);\n }\n }\n }\n}\n"},"Context.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\n/*\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with GSN meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n function _msgSender() internal view virtual returns (address payable) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes memory) {\n this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691\n return msg.data;\n }\n}\n"},"ERC20.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\nimport \"./Context.sol\";\nimport \"./IERC20.sol\";\nimport \"./SafeMath.sol\";\nimport \"./Address.sol\";\n\n/**\n * @dev Implementation of the {IERC20} interface.\n *\n * This implementation is agnostic to the way tokens are created. This means\n * that a supply mechanism has to be added in a derived contract using {_mint}.\n * For a generic mechanism see {ERC20PresetMinterPauser}.\n *\n * TIP: For a detailed writeup see our guide\n * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How\n * to implement supply mechanisms].\n *\n * We have followed general OpenZeppelin guidelines: functions revert instead\n * of returning `false` on failure. This behavior is nonetheless conventional\n * and does not conflict with the expectations of ERC20 applications.\n *\n * Additionally, an {Approval} event is emitted on calls to {transferFrom}.\n * This allows applications to reconstruct the allowance for all accounts just\n * by listening to said events. Other implementations of the EIP may not emit\n * these events, as it isn\u0027t required by the specification.\n *\n * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}\n * functions have been added to mitigate the well-known issues around setting\n * allowances. See {IERC20-approve}.\n */\ncontract ERC20 is Context, IERC20 {\n using SafeMath for uint256;\n using Address for address;\n\n mapping (address =\u003e uint256) private _balances;\n\n mapping (address =\u003e mapping (address =\u003e uint256)) private _allowances;\n\n uint256 private _totalSupply;\n\n string private _name;\n string private _symbol;\n uint8 private _decimals;\n\n /**\n * @dev Sets the values for {name} and {symbol}, initializes {decimals} with\n * a default value of 18.\n *\n * To select a different value for {decimals}, use {_setupDecimals}.\n *\n * All three of these values are immutable: they can only be set once during\n * construction.\n */\n constructor (string memory name, string memory symbol) public {\n _name = name;\n _symbol = symbol;\n _decimals = 18;\n }\n\n /**\n * @dev Returns the name of the token.\n */\n function name() public view returns (string memory) {\n return _name;\n }\n\n /**\n * @dev Returns the symbol of the token, usually a shorter version of the\n * name.\n */\n function symbol() public view returns (string memory) {\n return _symbol;\n }\n\n /**\n * @dev Returns the number of decimals used to get its user representation.\n * For example, if `decimals` equals `2`, a balance of `505` tokens should\n * be displayed to a user as `5,05` (`505 / 10 ** 2`).\n *\n * Tokens usually opt for a value of 18, imitating the relationship between\n * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is\n * called.\n *\n * NOTE: This information is only used for _display_ purposes: it in\n * no way affects any of the arithmetic of the contract, including\n * {IERC20-balanceOf} and {IERC20-transfer}.\n */\n function decimals() public view returns (uint8) {\n return _decimals;\n }\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public view override returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public view override returns (uint256) {\n return _balances[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `recipient` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner, address spender) public view virtual override returns (uint256) {\n return _allowances[owner][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function approve(address spender, uint256 amount) public virtual override returns (bool) {\n _approve(_msgSender(), spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20};\n *\n * Requirements:\n * - `sender` and `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n * - the caller must have allowance for ``sender``\u0027s tokens of at least\n * `amount`.\n */\n function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(sender, recipient, amount);\n _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, \"ERC20: transfer amount exceeds allowance\"));\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, \"ERC20: decreased allowance below zero\"));\n return true;\n }\n\n /**\n * @dev Moves tokens `amount` from `sender` to `recipient`.\n *\n * This is internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token fees, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `sender` cannot be the zero address.\n * - `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n */\n function _transfer(address sender, address recipient, uint256 amount) internal virtual {\n require(sender != address(0), \"ERC20: transfer from the zero address\");\n require(recipient != address(0), \"ERC20: transfer to the zero address\");\n\n _beforeTokenTransfer(sender, recipient, amount);\n\n _balances[sender] = _balances[sender].sub(amount, \"ERC20: transfer amount exceeds balance\");\n _balances[recipient] = _balances[recipient].add(amount);\n emit Transfer(sender, recipient, amount);\n }\n\n /** @dev Creates `amount` tokens and assigns them to `account`, increasing\n * the total supply.\n *\n * Emits a {Transfer} event with `from` set to the zero address.\n *\n * Requirements\n *\n * - `to` cannot be the zero address.\n */\n function _mint(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: mint to the zero address\");\n\n _beforeTokenTransfer(address(0), account, amount);\n\n _totalSupply = _totalSupply.add(amount);\n _balances[account] = _balances[account].add(amount);\n emit Transfer(address(0), account, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _beforeTokenTransfer(account, address(0), amount);\n\n _balances[account] = _balances[account].sub(amount, \"ERC20: burn amount exceeds balance\");\n _totalSupply = _totalSupply.sub(amount);\n emit Transfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.\n *\n * This internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function _approve(address owner, address spender, uint256 amount) internal virtual {\n require(owner != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner][spender] = amount;\n emit Approval(owner, spender, amount);\n }\n\n /**\n * @dev Sets {decimals} to a value other than the default one of 18.\n *\n * WARNING: This function should only be called from the constructor. Most\n * applications that interact with token contracts will not expect\n * {decimals} to ever change, and may work incorrectly if it does.\n */\n function _setupDecimals(uint8 decimals_) internal {\n _decimals = decimals_;\n }\n\n /**\n * @dev Hook that is called before any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of ``from``\u0027s tokens\n * will be to transferred to `to`.\n * - when `from` is zero, `amount` tokens will be minted for `to`.\n * - when `to` is zero, `amount` of ``from``\u0027s tokens will be burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].\n */\n function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }\n}\n"},"IERC20.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP.\n */\ninterface IERC20 {\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller\u0027s account to `recipient`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address recipient, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller\u0027s tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender\u0027s allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `sender` to `recipient` using the\n * allowance mechanism. `amount` is then deducted from the caller\u0027s\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);\n\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n}\n"},"Ownable.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\nimport \"./Context.sol\";\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\ncontract Ownable is Context {\n address private _owner;\n\n event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n /**\n * @dev Initializes the contract setting the deployer as the initial owner.\n */\n constructor () internal {\n address msgSender = _msgSender();\n _owner = msgSender;\n emit OwnershipTransferred(address(0), msgSender);\n }\n\n /**\n * @dev Returns the address of the current owner.\n */\n function owner() public view returns (address) {\n return _owner;\n }\n\n /**\n * @dev Throws if called by any account other than the owner.\n */\n modifier onlyOwner() {\n require(_owner == _msgSender(), \"Ownable: caller is not the owner\");\n _;\n }\n\n /**\n * @dev Leaves the contract without owner. It will not be possible to call\n * `onlyOwner` functions anymore. Can only be called by the current owner.\n *\n * NOTE: Renouncing ownership will leave the contract without an owner,\n * thereby removing any functionality that is only available to the owner.\n */\n function renounceOwnership() public virtual onlyOwner {\n emit OwnershipTransferred(_owner, address(0));\n _owner = address(0);\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Can only be called by the current owner.\n */\n function transferOwnership(address newOwner) public virtual onlyOwner {\n require(newOwner != address(0), \"Ownable: new owner is the zero address\");\n emit OwnershipTransferred(_owner, newOwner);\n _owner = newOwner;\n }\n}\n"},"SafeMath.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\n/**\n * @dev Wrappers over Solidity\u0027s arithmetic operations with added overflow\n * checks.\n *\n * Arithmetic operations in Solidity wrap on overflow. This can easily result\n * in bugs, because programmers usually assume that an overflow raises an\n * error, which is the standard behavior in high level programming languages.\n * `SafeMath` restores this intuition by reverting the transaction when an\n * operation overflows.\n *\n * Using this library instead of the unchecked operations eliminates an entire\n * class of bugs, so it\u0027s recommended to use it always.\n */\nlibrary SafeMath {\n /**\n * @dev Returns the addition of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity\u0027s `+` operator.\n *\n * Requirements:\n *\n * - Addition cannot overflow.\n */\n function add(uint256 a, uint256 b) internal pure returns (uint256) {\n uint256 c = a + b;\n require(c \u003e= a, \"SafeMath: addition overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting on\n * overflow (when the result is negative).\n *\n * Counterpart to Solidity\u0027s `-` operator.\n *\n * Requirements:\n *\n * - Subtraction cannot overflow.\n */\n function sub(uint256 a, uint256 b) internal pure returns (uint256) {\n return sub(a, b, \"SafeMath: subtraction overflow\");\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting with custom message on\n * overflow (when the result is negative).\n *\n * Counterpart to Solidity\u0027s `-` operator.\n *\n * Requirements:\n *\n * - Subtraction cannot overflow.\n */\n function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b \u003c= a, errorMessage);\n uint256 c = a - b;\n\n return c;\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity\u0027s `*` operator.\n *\n * Requirements:\n *\n * - Multiplication cannot overflow.\n */\n function mul(uint256 a, uint256 b) internal pure returns (uint256) {\n // Gas optimization: this is cheaper than requiring \u0027a\u0027 not being zero, but the\n // benefit is lost if \u0027b\u0027 is also tested.\n // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522\n if (a == 0) {\n return 0;\n }\n\n uint256 c = a * b;\n require(c / a == b, \"SafeMath: multiplication overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers. Reverts on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity\u0027s `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function div(uint256 a, uint256 b) internal pure returns (uint256) {\n return div(a, b, \"SafeMath: division by zero\");\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers. Reverts with custom message on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity\u0027s `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b \u003e 0, errorMessage);\n uint256 c = a / b;\n // assert(a == b * c + a % b); // There is no case in which this doesn\u0027t hold\n\n return c;\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts when dividing by zero.\n *\n * Counterpart to Solidity\u0027s `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function mod(uint256 a, uint256 b) internal pure returns (uint256) {\n return mod(a, b, \"SafeMath: modulo by zero\");\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts with custom message when dividing by zero.\n *\n * Counterpart to Solidity\u0027s `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b != 0, errorMessage);\n return a % b;\n }\n}\n"},"UNCX.sol":{"content":"// SPDX-License-Identifier: MIT\r\n\r\npragma solidity 0.6.12;\r\n\r\nimport \"./Ownable.sol\";\r\nimport \"./ERC20.sol\";\r\n\r\n\r\n// UNCX - UniCrypt with Governance.\r\n// No minting functions exposed in this token contract, max supply is 50k, burn function enabled\r\n\r\ncontract UNCX is ERC20(\"UniCrypt\", \"UNCX\"), Ownable {\r\n\r\n constructor () public {\r\n uint256 totalSupply = 50_000e18; // 50k Total supply, no minting functions\r\n _mint(msg.sender, totalSupply);\r\n _moveDelegates(address(0), _delegates[msg.sender], totalSupply);\r\n }\r\n \r\n function burn(uint256 amount) public virtual {\r\n _burn(_msgSender(), amount);\r\n _moveDelegates(_delegates[msg.sender], address(0), amount);\r\n }\r\n \r\n function _transfer(address sender, address recipient, uint256 amount) internal virtual override {\r\n super._transfer(sender, recipient, amount);\r\n _moveDelegates(_delegates[sender], _delegates[recipient], amount);\r\n }\r\n\r\n // Copied and modified from YAM code:\r\n // https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernanceStorage.sol\r\n // https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernance.sol\r\n // Which is copied and modified from COMPOUND:\r\n // https://github.com/compound-finance/compound-protocol/blob/master/contracts/Governance/Comp.sol\r\n\r\n /// @notice A record of each accounts delegate\r\n mapping (address =\u003e address) internal _delegates;\r\n\r\n /// @notice A checkpoint for marking number of votes from a given block\r\n struct Checkpoint {\r\n uint32 fromBlock;\r\n uint256 votes;\r\n }\r\n\r\n /// @notice A record of votes checkpoints for each account, by index\r\n mapping (address =\u003e mapping (uint32 =\u003e Checkpoint)) public checkpoints;\r\n\r\n /// @notice The number of checkpoints for each account\r\n mapping (address =\u003e uint32) public numCheckpoints;\r\n\r\n /// @notice The EIP-712 typehash for the contract\u0027s domain\r\n bytes32 public constant DOMAIN_TYPEHASH = keccak256(\"EIP712Domain(string name,uint256 chainId,address verifyingContract)\");\r\n\r\n /// @notice The EIP-712 typehash for the delegation struct used by the contract\r\n bytes32 public constant DELEGATION_TYPEHASH = keccak256(\"Delegation(address delegatee,uint256 nonce,uint256 expiry)\");\r\n\r\n /// @notice A record of states for signing / validating signatures\r\n mapping (address =\u003e uint) public nonces;\r\n\r\n /// @notice An event thats emitted when an account changes its delegate\r\n event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);\r\n\r\n /// @notice An event thats emitted when a delegate account\u0027s vote balance changes\r\n event DelegateVotesChanged(address indexed delegate, uint previousBalance, uint newBalance);\r\n\r\n /**\r\n * @notice Delegate votes from `msg.sender` to `delegatee`\r\n * @param delegator The address to get delegatee for\r\n */\r\n function delegates(address delegator)\r\n external\r\n view\r\n returns (address)\r\n {\r\n return _delegates[delegator];\r\n }\r\n\r\n /**\r\n * @notice Delegate votes from `msg.sender` to `delegatee`\r\n * @param delegatee The address to delegate votes to\r\n */\r\n function delegate(address delegatee) external {\r\n return _delegate(msg.sender, delegatee);\r\n }\r\n\r\n /**\r\n * @notice Delegates votes from signatory to `delegatee`\r\n * @param delegatee The address to delegate votes to\r\n * @param nonce The contract state required to match the signature\r\n * @param expiry The time at which to expire the signature\r\n * @param v The recovery byte of the signature\r\n * @param r Half of the ECDSA signature pair\r\n * @param s Half of the ECDSA signature pair\r\n */\r\n function delegateBySig(\r\n address delegatee,\r\n uint nonce,\r\n uint expiry,\r\n uint8 v,\r\n bytes32 r,\r\n bytes32 s\r\n )\r\n external\r\n {\r\n bytes32 domainSeparator = keccak256(\r\n abi.encode(\r\n DOMAIN_TYPEHASH,\r\n keccak256(bytes(name())),\r\n getChainId(),\r\n address(this)\r\n )\r\n );\r\n\r\n bytes32 structHash = keccak256(\r\n abi.encode(\r\n DELEGATION_TYPEHASH,\r\n delegatee,\r\n nonce,\r\n expiry\r\n )\r\n );\r\n\r\n bytes32 digest = keccak256(\r\n abi.encodePacked(\r\n \"\\x19\\x01\",\r\n domainSeparator,\r\n structHash\r\n )\r\n );\r\n\r\n address signatory = ecrecover(digest, v, r, s);\r\n require(signatory != address(0), \"UNCX::delegateBySig: invalid signature\");\r\n require(nonce == nonces[signatory]++, \"UNCX::delegateBySig: invalid nonce\");\r\n require(now \u003c= expiry, \"UNCX::delegateBySig: signature expired\");\r\n return _delegate(signatory, delegatee);\r\n }\r\n\r\n /**\r\n * @notice Gets the current votes balance for `account`\r\n * @param account The address to get votes balance\r\n * @return The number of current votes for `account`\r\n */\r\n function getCurrentVotes(address account)\r\n external\r\n view\r\n returns (uint256)\r\n {\r\n uint32 nCheckpoints = numCheckpoints[account];\r\n return nCheckpoints \u003e 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;\r\n }\r\n\r\n /**\r\n * @notice Determine the prior number of votes for an account as of a block number\r\n * @dev Block number must be a finalized block or else this function will revert to prevent misinformation.\r\n * @param account The address of the account to check\r\n * @param blockNumber The block number to get the vote balance at\r\n * @return The number of votes the account had as of the given block\r\n */\r\n function getPriorVotes(address account, uint blockNumber)\r\n external\r\n view\r\n returns (uint256)\r\n {\r\n require(blockNumber \u003c block.number, \"UNCX::getPriorVotes: not yet determined\");\r\n\r\n uint32 nCheckpoints = numCheckpoints[account];\r\n if (nCheckpoints == 0) {\r\n return 0;\r\n }\r\n\r\n // First check most recent balance\r\n if (checkpoints[account][nCheckpoints - 1].fromBlock \u003c= blockNumber) {\r\n return checkpoints[account][nCheckpoints - 1].votes;\r\n }\r\n\r\n // Next check implicit zero balance\r\n if (checkpoints[account][0].fromBlock \u003e blockNumber) {\r\n return 0;\r\n }\r\n\r\n uint32 lower = 0;\r\n uint32 upper = nCheckpoints - 1;\r\n while (upper \u003e lower) {\r\n uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow\r\n Checkpoint memory cp = checkpoints[account][center];\r\n if (cp.fromBlock == blockNumber) {\r\n return cp.votes;\r\n } else if (cp.fromBlock \u003c blockNumber) {\r\n lower = center;\r\n } else {\r\n upper = center - 1;\r\n }\r\n }\r\n return checkpoints[account][lower].votes;\r\n }\r\n\r\n function _delegate(address delegator, address delegatee)\r\n internal\r\n {\r\n address currentDelegate = _delegates[delegator];\r\n uint256 delegatorBalance = balanceOf(delegator); // balance of underlying UNCX (not scaled);\r\n _delegates[delegator] = delegatee;\r\n\r\n emit DelegateChanged(delegator, currentDelegate, delegatee);\r\n\r\n _moveDelegates(currentDelegate, delegatee, delegatorBalance);\r\n }\r\n\r\n function _moveDelegates(address srcRep, address dstRep, uint256 amount) internal {\r\n if (srcRep != dstRep \u0026\u0026 amount \u003e 0) {\r\n if (srcRep != address(0)) {\r\n // decrease old representative\r\n uint32 srcRepNum = numCheckpoints[srcRep];\r\n uint256 srcRepOld = srcRepNum \u003e 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;\r\n uint256 srcRepNew = srcRepOld.sub(amount);\r\n _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);\r\n }\r\n\r\n if (dstRep != address(0)) {\r\n // increase new representative\r\n uint32 dstRepNum = numCheckpoints[dstRep];\r\n uint256 dstRepOld = dstRepNum \u003e 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;\r\n uint256 dstRepNew = dstRepOld.add(amount);\r\n _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);\r\n }\r\n }\r\n }\r\n\r\n function _writeCheckpoint(\r\n address delegatee,\r\n uint32 nCheckpoints,\r\n uint256 oldVotes,\r\n uint256 newVotes\r\n )\r\n internal\r\n {\r\n uint32 blockNumber = safe32(block.number, \"UNCX::_writeCheckpoint: block number exceeds 32 bits\");\r\n\r\n if (nCheckpoints \u003e 0 \u0026\u0026 checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {\r\n checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;\r\n } else {\r\n checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);\r\n numCheckpoints[delegatee] = nCheckpoints + 1;\r\n }\r\n\r\n emit DelegateVotesChanged(delegatee, oldVotes, newVotes);\r\n }\r\n\r\n function safe32(uint n, string memory errorMessage) internal pure returns (uint32) {\r\n require(n \u003c 2**32, errorMessage);\r\n return uint32(n);\r\n }\r\n\r\n function getChainId() internal pure returns (uint) {\r\n uint256 chainId;\r\n assembly { chainId := chainid() }\r\n return chainId;\r\n }\r\n}"}}