ETH Price: $2,554.47 (-1.10%)

Transaction Decoder

Block:
22506171 at May-17-2025 11:58:11 PM +UTC
Transaction Fee:
0.000093470826925697 ETH $0.24
Gas Used:
226,759 Gas / 0.412203383 Gwei

Emitted Events:

88 OneInch.Approval( owner=[Sender] 0xa3ab1c8c6202e0f33073ac8986442c58d6c8aa0b, spender=[Receiver] St1inch, value=115792089237316195423570985008687907853269984665640564039457584007913129639935 )
89 St1inch.Transfer( from=0x0000000000000000000000000000000000000000, to=[Sender] 0xa3ab1c8c6202e0f33073ac8986442c58d6c8aa0b, value=2900105689100064615786 )
90 OneInch.Transfer( from=[Sender] 0xa3ab1c8c6202e0f33073ac8986442c58d6c8aa0b, to=[Receiver] St1inch, value=1395348837209302200000 )
91 OneInch.Approval( owner=[Sender] 0xa3ab1c8c6202e0f33073ac8986442c58d6c8aa0b, spender=[Receiver] St1inch, value=115792089237316195423570985008687907853269984665640564038062235170703827439935 )
92 St1inch.PodAdded( account=[Sender] 0xa3ab1c8c6202e0f33073ac8986442c58d6c8aa0b, pod=StakingFarmingPod )

Account State Difference:

  Address   Before After State Difference Code
0x11111111...34120C302
0x1A87c0F9...A6B0260bE
(1inch: Staking farm)
(beaverbuild)
18.661806297147808227 Eth18.661806378538416097 Eth0.00000008139060787
0x9A0C8Ff8...D717501D7
0xa3ab1c8c...8D6c8AA0B
0.008910260633233006 Eth
Nonce: 24
0.008816789806307309 Eth
Nonce: 25
0.000093470826925697

Execution Trace

St1inch.depositWithPermit( amount=1395348837209302200000, duration=2678400, permit=0x000000000000000000000000A3AB1C8C6202E0F33073AC8986442C58D6C8AA0B0000000000000000000000009A0C8FF858D273F57072D714BCA7411D717501D7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000000000000682A73C8000000000000000000000000000000000000000000000000000000000000001B374DD5B1CF4272BEFB310F253B7B55CC1833025FCFE7E5B1FBAE08912A76757C11F886E44DC8EA5F18179DB6779BFD57E1EA63919C385803B56ADE7E9697D561 )
  • OneInch.permit( owner=0xa3ab1c8c6202e0F33073aC8986442c58D6c8AA0B, spender=0x9A0C8Ff858d273f57072D714bca7411D717501D7, value=115792089237316195423570985008687907853269984665640564039457584007913129639935, deadline=1747612616, v=27, r=374DD5B1CF4272BEFB310F253B7B55CC1833025FCFE7E5B1FBAE08912A76757C, s=11F886E44DC8EA5F18179DB6779BFD57E1EA63919C385803B56ADE7E9697D561 )
    • Null: 0x000...001.317450e7( )
    • OneInch.transferFrom( sender=0xa3ab1c8c6202e0F33073aC8986442c58D6c8AA0B, recipient=0x9A0C8Ff858d273f57072D714bca7411D717501D7, amount=1395348837209302200000 ) => ( True )
    • StakingFarmingPod.updateBalances( from=0x0000000000000000000000000000000000000000, to=0xa3ab1c8c6202e0F33073aC8986442c58D6c8AA0B, amount=2900105689100064615786 )
      File 1 of 3: St1inch
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
      import "@1inch/solidity-utils/contracts/libraries/AddressSet.sol";
      import "./interfaces/IERC20Pods.sol";
      import "./interfaces/IPod.sol";
      import "./libs/ReentrancyGuard.sol";
      abstract contract ERC20Pods is ERC20, IERC20Pods, ReentrancyGuardExt {
          using AddressSet for AddressSet.Data;
          using AddressArray for AddressArray.Data;
          using ReentrancyGuardLib for ReentrancyGuardLib.Data;
          error PodAlreadyAdded();
          error PodNotFound();
          error InvalidPodAddress();
          error PodsLimitReachedForAccount();
          error InsufficientGas();
          error ZeroPodsLimit();
          uint256 public immutable podsLimit;
          uint256 public immutable podCallGasLimit;
          ReentrancyGuardLib.Data private _guard;
          mapping(address => AddressSet.Data) private _pods;
          constructor(uint256 podsLimit_, uint256 podCallGasLimit_) {
              if (podsLimit_ == 0) revert ZeroPodsLimit();
              podsLimit = podsLimit_;
              podCallGasLimit = podCallGasLimit_;
              _guard.init();
          }
          function hasPod(address account, address pod) public view virtual returns(bool) {
              return _pods[account].contains(pod);
          }
          function podsCount(address account) public view virtual returns(uint256) {
              return _pods[account].length();
          }
          function podAt(address account, uint256 index) public view virtual returns(address) {
              return _pods[account].at(index);
          }
          function pods(address account) public view virtual returns(address[] memory) {
              return _pods[account].items.get();
          }
          function balanceOf(address account) public nonReentrantView(_guard) view override(IERC20, ERC20) virtual returns(uint256) {
              return super.balanceOf(account);
          }
          function podBalanceOf(address pod, address account) public nonReentrantView(_guard) view virtual returns(uint256) {
              if (hasPod(account, pod)) {
                  return super.balanceOf(account);
              }
              return 0;
          }
          function addPod(address pod) public virtual {
              _addPod(msg.sender, pod);
          }
          function removePod(address pod) public virtual {
              _removePod(msg.sender, pod);
          }
          function removeAllPods() public virtual {
              _removeAllPods(msg.sender);
          }
          function _addPod(address account, address pod) internal virtual {
              if (pod == address(0)) revert InvalidPodAddress();
              if (!_pods[account].add(pod)) revert PodAlreadyAdded();
              if (_pods[account].length() > podsLimit) revert PodsLimitReachedForAccount();
              emit PodAdded(account, pod);
              uint256 balance = balanceOf(account);
              if (balance > 0) {
                  _updateBalances(pod, address(0), account, balance);
              }
          }
          function _removePod(address account, address pod) internal virtual {
              if (!_pods[account].remove(pod)) revert PodNotFound();
              emit PodRemoved(account, pod);
              uint256 balance = balanceOf(account);
              if (balance > 0) {
                  _updateBalances(pod, account, address(0), balance);
              }
          }
          function _removeAllPods(address account) internal virtual {
              address[] memory items = _pods[account].items.get();
              uint256 balance = balanceOf(account);
              unchecked {
                  for (uint256 i = items.length; i > 0; i--) {
                      _pods[account].remove(items[i - 1]);
                      emit PodRemoved(account, items[i - 1]);
                      if (balance > 0) {
                          _updateBalances(items[i - 1], account, address(0), balance);
                      }
                  }
              }
          }
          /// @notice Assembly implementation of the gas limited call to avoid return gas bomb,
          // moreover call to a destructed pod would also revert even inside try-catch block in Solidity 0.8.17
          /// @dev try IPod(pod).updateBalances{gas: _POD_CALL_GAS_LIMIT}(from, to, amount) {} catch {}
          function _updateBalances(address pod, address from, address to, uint256 amount) private {
              bytes4 selector = IPod.updateBalances.selector;
              bytes4 exception = InsufficientGas.selector;
              uint256 gasLimit = podCallGasLimit;
              assembly {  // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  mstore(ptr, selector)
                  mstore(add(ptr, 0x04), from)
                  mstore(add(ptr, 0x24), to)
                  mstore(add(ptr, 0x44), amount)
                  if lt(div(mul(gas(), 63), 64), gasLimit) {
                      mstore(0, exception)
                      revert(0, 4)
                  }
                  pop(call(gasLimit, pod, 0, ptr, 0x64, 0, 0))
              }
          }
          // ERC20 Overrides
          function _afterTokenTransfer(address from, address to, uint256 amount) internal nonReentrant(_guard) override virtual {
              super._afterTokenTransfer(from, to, amount);
              unchecked {
                  if (amount > 0 && from != to) {
                      address[] memory a = _pods[from].items.get();
                      address[] memory b = _pods[to].items.get();
                      uint256 aLength = a.length;
                      uint256 bLength = b.length;
                      for (uint256 i = 0; i < aLength; i++) {
                          address pod = a[i];
                          uint256 j;
                          for (j = 0; j < bLength; j++) {
                              if (pod == b[j]) {
                                  // Both parties are participating of the same Pod
                                  _updateBalances(pod, from, to, amount);
                                  b[j] = address(0);
                                  break;
                              }
                          }
                          if (j == bLength) {
                              // Sender is participating in a Pod, but receiver is not
                              _updateBalances(pod, from, address(0), amount);
                          }
                      }
                      for (uint256 j = 0; j < bLength; j++) {
                          address pod = b[j];
                          if (pod != address(0)) {
                              // Receiver is participating in a Pod, but sender is not
                              _updateBalances(pod, address(0), to, amount);
                          }
                      }
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      interface IERC20Pods is IERC20 {
          event PodAdded(address account, address pod);
          event PodRemoved(address account, address pod);
          function hasPod(address account, address pod) external view returns(bool);
          function podsCount(address account) external view returns(uint256);
          function podAt(address account, uint256 index) external view returns(address);
          function pods(address account) external view returns(address[] memory);
          function podBalanceOf(address pod, address account) external view returns(uint256);
          function addPod(address pod) external;
          function removePod(address pod) external;
          function removeAllPods() external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      interface IPod {
          function updateBalances(address from, address to, uint256 amount) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      library ReentrancyGuardLib {
          error ReentrantCall();
          uint256 private constant _NOT_ENTERED = 1;
          uint256 private constant _ENTERED = 2;
          struct Data {
              uint256 _status;
          }
          function init(Data storage self) internal {
              self._status = _NOT_ENTERED;
          }
          function enter(Data storage self) internal {
              if (self._status == _ENTERED) revert ReentrantCall();
              self._status = _ENTERED;
          }
          function exit(Data storage self) internal {
              self._status = _NOT_ENTERED;
          }
          function check(Data storage self) internal view returns (bool) {
              return self._status == _ENTERED;
          }
      }
      contract ReentrancyGuardExt {
          using ReentrancyGuardLib for ReentrancyGuardLib.Data;
          modifier nonReentrant(ReentrancyGuardLib.Data storage self) {
              self.enter();
              _;
              self.exit();
          }
          modifier nonReentrantView(ReentrancyGuardLib.Data storage self) {
              if (self.check()) revert ReentrancyGuardLib.ReentrantCall();
              _;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "./interfaces/IPod.sol";
      import "./interfaces/IERC20Pods.sol";
      abstract contract Pod is IPod {
          error AccessDenied();
          IERC20Pods public immutable token;
          modifier onlyToken {
              if (msg.sender != address(token)) revert AccessDenied();
              _;
          }
          constructor(IERC20Pods token_) {
              token = token_;
          }
          function updateBalances(address from, address to, uint256 amount) external onlyToken {
              _updateBalances(from, to, amount);
          }
          function _updateBalances(address from, address to, uint256 amount) internal virtual;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v1;
      interface IDaiLikePermit {
          function permit(
              address holder,
              address spender,
              uint256 nonce,
              uint256 expiry,
              bool allowed,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v1;
      /// @title Library that implements address array on mapping, stores array length at 0 index.
      library AddressArray {
          error IndexOutOfBounds();
          error PopFromEmptyArray();
          error OutputArrayTooSmall();
          /// @dev Data struct containing raw mapping.
          struct Data {
              mapping(uint256 => uint256) _raw;
          }
          /// @dev Length of array.
          function length(Data storage self) internal view returns (uint256) {
              return self._raw[0] >> 160;
          }
          /// @dev Returns data item from `self` storage at `i`.
          function at(Data storage self, uint256 i) internal view returns (address) {
              return address(uint160(self._raw[i]));
          }
          /// @dev Returns list of addresses from storage `self`.
          function get(Data storage self) internal view returns (address[] memory arr) {
              uint256 lengthAndFirst = self._raw[0];
              arr = new address[](lengthAndFirst >> 160);
              _get(self, arr, lengthAndFirst);
          }
          /// @dev Puts list of addresses from `self` storage into `output` array.
          function get(Data storage self, address[] memory output) internal view returns (address[] memory) {
              return _get(self, output, self._raw[0]);
          }
          function _get(
              Data storage self,
              address[] memory output,
              uint256 lengthAndFirst
          ) private view returns (address[] memory) {
              uint256 len = lengthAndFirst >> 160;
              if (len > output.length) revert OutputArrayTooSmall();
              if (len > 0) {
                  output[0] = address(uint160(lengthAndFirst));
                  unchecked {
                      for (uint256 i = 1; i < len; i++) {
                          output[i] = address(uint160(self._raw[i]));
                      }
                  }
              }
              return output;
          }
          /// @dev Array push back `account` operation on storage `self`.
          function push(Data storage self, address account) internal returns (uint256) {
              unchecked {
                  uint256 lengthAndFirst = self._raw[0];
                  uint256 len = lengthAndFirst >> 160;
                  if (len == 0) {
                      self._raw[0] = (1 << 160) + uint160(account);
                  } else {
                      self._raw[0] = lengthAndFirst + (1 << 160);
                      self._raw[len] = uint160(account);
                  }
                  return len + 1;
              }
          }
          /// @dev Array pop back operation for storage `self`.
          function pop(Data storage self) internal {
              unchecked {
                  uint256 lengthAndFirst = self._raw[0];
                  uint256 len = lengthAndFirst >> 160;
                  if (len == 0) revert PopFromEmptyArray();
                  self._raw[len - 1] = 0;
                  if (len > 1) {
                      self._raw[0] = lengthAndFirst - (1 << 160);
                  }
              }
          }
          /// @dev Set element for storage `self` at `index` to `account`.
          function set(
              Data storage self,
              uint256 index,
              address account
          ) internal {
              uint256 len = length(self);
              if (index >= len) revert IndexOutOfBounds();
              if (index == 0) {
                  self._raw[0] = (len << 160) | uint160(account);
              } else {
                  self._raw[index] = uint160(account);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v1;
      import "./AddressArray.sol";
      /** @title Library that is using AddressArray library for AddressArray.Data
       * and allows Set operations on address storage data:
       * 1. add
       * 2. remove
       * 3. contains
       */
      library AddressSet {
          using AddressArray for AddressArray.Data;
          /** @dev Data struct from AddressArray.Data items
           * and lookup mapping address => index in data array.
           */
          struct Data {
              AddressArray.Data items;
              mapping(address => uint256) lookup;
          }
          /// @dev Length of data storage.
          function length(Data storage s) internal view returns (uint256) {
              return s.items.length();
          }
          /// @dev Returns data item from `s` storage at `index`.
          function at(Data storage s, uint256 index) internal view returns (address) {
              return s.items.at(index);
          }
          /// @dev Returns true if storage `s` has `item`.
          function contains(Data storage s, address item) internal view returns (bool) {
              return s.lookup[item] != 0;
          }
          /// @dev Adds `item` into storage `s` and returns true if successful.
          function add(Data storage s, address item) internal returns (bool) {
              if (s.lookup[item] > 0) {
                  return false;
              }
              s.lookup[item] = s.items.push(item);
              return true;
          }
          /// @dev Removes `item` from storage `s` and returns true if successful.
          function remove(Data storage s, address item) internal returns (bool) {
              uint256 index = s.lookup[item];
              if (index == 0) {
                  return false;
              }
              if (index < s.items.length()) {
                  unchecked {
                      address lastItem = s.items.at(s.items.length() - 1);
                      s.items.set(index - 1, lastItem);
                      s.lookup[lastItem] = index;
                  }
              }
              s.items.pop();
              delete s.lookup[item];
              return true;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v1;
      /// @title Revert reason forwarder.
      library RevertReasonForwarder {
          /// @dev Forwards latest externall call revert.
          function reRevert() internal pure {
              // bubble up revert reason from latest external call
              /// @solidity memory-safe-assembly
              assembly { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  returndatacopy(ptr, 0, returndatasize())
                  revert(ptr, returndatasize())
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v1;
      import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
      import "../interfaces/IDaiLikePermit.sol";
      import "../libraries/RevertReasonForwarder.sol";
      /// @title Implements efficient safe methods for ERC20 interface.
      library SafeERC20 {
          error SafeTransferFailed();
          error SafeTransferFromFailed();
          error ForceApproveFailed();
          error SafeIncreaseAllowanceFailed();
          error SafeDecreaseAllowanceFailed();
          error SafePermitBadLength();
          /// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.
          function safeTransferFrom(
              IERC20 token,
              address from,
              address to,
              uint256 amount
          ) internal {
              bytes4 selector = token.transferFrom.selector;
              bool success;
              /// @solidity memory-safe-assembly
              assembly { // solhint-disable-line no-inline-assembly
                  let data := mload(0x40)
                  mstore(data, selector)
                  mstore(add(data, 0x04), from)
                  mstore(add(data, 0x24), to)
                  mstore(add(data, 0x44), amount)
                  success := call(gas(), token, 0, data, 100, 0x0, 0x20)
                  if success {
                      switch returndatasize()
                      case 0 {
                          success := gt(extcodesize(token), 0)
                      }
                      default {
                          success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                      }
                  }
              }
              if (!success) revert SafeTransferFromFailed();
          }
          /// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.
          function safeTransfer(
              IERC20 token,
              address to,
              uint256 value
          ) internal {
              if (!_makeCall(token, token.transfer.selector, to, value)) {
                  revert SafeTransferFailed();
              }
          }
          /// @dev If `approve(from, to, amount)` fails, try to `approve(from, to, 0)` before retry.
          function forceApprove(
              IERC20 token,
              address spender,
              uint256 value
          ) internal {
              if (!_makeCall(token, token.approve.selector, spender, value)) {
                  if (
                      !_makeCall(token, token.approve.selector, spender, 0) ||
                      !_makeCall(token, token.approve.selector, spender, value)
                  ) {
                      revert ForceApproveFailed();
                  }
              }
          }
          /// @dev Allowance increase with safe math check.
          function safeIncreaseAllowance(
              IERC20 token,
              address spender,
              uint256 value
          ) internal {
              uint256 allowance = token.allowance(address(this), spender);
              if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
              forceApprove(token, spender, allowance + value);
          }
          /// @dev Allowance decrease with safe math check.
          function safeDecreaseAllowance(
              IERC20 token,
              address spender,
              uint256 value
          ) internal {
              uint256 allowance = token.allowance(address(this), spender);
              if (value > allowance) revert SafeDecreaseAllowanceFailed();
              forceApprove(token, spender, allowance - value);
          }
          /// @dev Calls either ERC20 or Dai `permit` for `token`, if unsuccessful forwards revert from external call.
          function safePermit(IERC20 token, bytes calldata permit) internal {
              if (!tryPermit(token, permit)) RevertReasonForwarder.reRevert();
          }
          function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool) {
              if (permit.length == 32 * 7) {
                  return _makeCalldataCall(token, IERC20Permit.permit.selector, permit);
              }
              if (permit.length == 32 * 8) {
                  return _makeCalldataCall(token, IDaiLikePermit.permit.selector, permit);
              }
              revert SafePermitBadLength();
          }
          function _makeCall(
              IERC20 token,
              bytes4 selector,
              address to,
              uint256 amount
          ) private returns (bool success) {
              /// @solidity memory-safe-assembly
              assembly { // solhint-disable-line no-inline-assembly
                  let data := mload(0x40)
                  mstore(data, selector)
                  mstore(add(data, 0x04), to)
                  mstore(add(data, 0x24), amount)
                  success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
                  if success {
                      switch returndatasize()
                      case 0 {
                          success := gt(extcodesize(token), 0)
                      }
                      default {
                          success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                      }
                  }
              }
          }
          function _makeCalldataCall(
              IERC20 token,
              bytes4 selector,
              bytes calldata args
          ) private returns (bool success) {
              /// @solidity memory-safe-assembly
              assembly { // solhint-disable-line no-inline-assembly
                  let len := add(4, args.length)
                  let data := mload(0x40)
                  mstore(data, selector)
                  calldatacopy(add(data, 0x04), args.offset, args.length)
                  success := call(gas(), token, 0, data, len, 0x0, 0x20)
                  if success {
                      switch returndatasize()
                      case 0 {
                          success := gt(extcodesize(token), 0)
                      }
                      default {
                          success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                      }
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor() {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
      pragma solidity ^0.8.0;
      import "./IERC20.sol";
      import "./extensions/IERC20Metadata.sol";
      import "../../utils/Context.sol";
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       * For a generic mechanism see {ERC20PresetMinterPauser}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * We have followed general OpenZeppelin Contracts guidelines: functions revert
       * instead returning `false` on failure. This behavior is nonetheless
       * conventional and does not conflict with the expectations of ERC20
       * applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       *
       * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
       * functions have been added to mitigate the well-known issues around setting
       * allowances. See {IERC20-approve}.
       */
      contract ERC20 is Context, IERC20, IERC20Metadata {
          mapping(address => uint256) private _balances;
          mapping(address => mapping(address => uint256)) private _allowances;
          uint256 private _totalSupply;
          string private _name;
          string private _symbol;
          /**
           * @dev Sets the values for {name} and {symbol}.
           *
           * The default value of {decimals} is 18. To select a different value for
           * {decimals} you should overload it.
           *
           * All two of these values are immutable: they can only be set once during
           * construction.
           */
          constructor(string memory name_, string memory symbol_) {
              _name = name_;
              _symbol = symbol_;
          }
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual override returns (string memory) {
              return _name;
          }
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual override returns (string memory) {
              return _symbol;
          }
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5.05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the value {ERC20} uses, unless this function is
           * overridden;
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual override returns (uint8) {
              return 18;
          }
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual override returns (uint256) {
              return _totalSupply;
          }
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view virtual override returns (uint256) {
              return _balances[account];
          }
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(address to, uint256 amount) public virtual override returns (bool) {
              address owner = _msgSender();
              _transfer(owner, to, amount);
              return true;
          }
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual override returns (uint256) {
              return _allowances[owner][spender];
          }
          /**
           * @dev See {IERC20-approve}.
           *
           * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
           * `transferFrom`. This is semantically equivalent to an infinite approval.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 amount) public virtual override returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, amount);
              return true;
          }
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20}.
           *
           * NOTE: Does not update the allowance if the current allowance
           * is the maximum `uint256`.
           *
           * Requirements:
           *
           * - `from` and `to` cannot be the zero address.
           * - `from` must have a balance of at least `amount`.
           * - the caller must have allowance for ``from``'s tokens of at least
           * `amount`.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) public virtual override returns (bool) {
              address spender = _msgSender();
              _spendAllowance(from, spender, amount);
              _transfer(from, to, amount);
              return true;
          }
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, allowance(owner, spender) + addedValue);
              return true;
          }
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
              address owner = _msgSender();
              uint256 currentAllowance = allowance(owner, spender);
              require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
              unchecked {
                  _approve(owner, spender, currentAllowance - subtractedValue);
              }
              return true;
          }
          /**
           * @dev Moves `amount` of tokens from `from` to `to`.
           *
           * This internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `from` must have a balance of at least `amount`.
           */
          function _transfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {
              require(from != address(0), "ERC20: transfer from the zero address");
              require(to != address(0), "ERC20: transfer to the zero address");
              _beforeTokenTransfer(from, to, amount);
              uint256 fromBalance = _balances[from];
              require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
              unchecked {
                  _balances[from] = fromBalance - amount;
                  // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                  // decrementing then incrementing.
                  _balances[to] += amount;
              }
              emit Transfer(from, to, amount);
              _afterTokenTransfer(from, to, amount);
          }
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: mint to the zero address");
              _beforeTokenTransfer(address(0), account, amount);
              _totalSupply += amount;
              unchecked {
                  // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                  _balances[account] += amount;
              }
              emit Transfer(address(0), account, amount);
              _afterTokenTransfer(address(0), account, amount);
          }
          /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: burn from the zero address");
              _beforeTokenTransfer(account, address(0), amount);
              uint256 accountBalance = _balances[account];
              require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
              unchecked {
                  _balances[account] = accountBalance - amount;
                  // Overflow not possible: amount <= accountBalance <= totalSupply.
                  _totalSupply -= amount;
              }
              emit Transfer(account, address(0), amount);
              _afterTokenTransfer(account, address(0), amount);
          }
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
          /**
           * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
           *
           * Does not update the allowance amount in case of infinite allowance.
           * Revert if not enough allowance is available.
           *
           * Might emit an {Approval} event.
           */
          function _spendAllowance(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              uint256 currentAllowance = allowance(owner, spender);
              if (currentAllowance != type(uint256).max) {
                  require(currentAllowance >= amount, "ERC20: insufficient allowance");
                  unchecked {
                      _approve(owner, spender, currentAllowance - amount);
                  }
              }
          }
          /**
           * @dev Hook that is called before any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * will be transferred to `to`.
           * - when `from` is zero, `amount` tokens will be minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _beforeTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
          /**
           * @dev Hook that is called after any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * has been transferred to `to`.
           * - when `from` is zero, `amount` tokens have been minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _afterTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
      pragma solidity ^0.8.0;
      import "../IERC20.sol";
      /**
       * @dev Interface for the optional metadata functions from the ERC20 standard.
       *
       * _Available since v4.1._
       */
      interface IERC20Metadata is IERC20 {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
           *
           * _Available since v4.8._
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              if (success) {
                  if (returndata.length == 0) {
                      // only check isContract if the call was successful and the return data is empty
                      // otherwise we already know that it was a contract
                      require(isContract(target), "Address: call to non-contract");
                  }
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason or using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          function _revert(bytes memory returndata, string memory errorMessage) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert(errorMessage);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1);
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator,
              Rounding rounding
          ) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              //
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
              //
              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
              //
              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1 << (log2(a) >> 1);
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 2, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 128;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 64;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 32;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 16;
                  }
                  if (value >> 8 > 0) {
                      value >>= 8;
                      result += 8;
                  }
                  if (value >> 4 > 0) {
                      value >>= 4;
                      result += 4;
                  }
                  if (value >> 2 > 0) {
                      value >>= 2;
                      result += 2;
                  }
                  if (value >> 1 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 10, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10**64) {
                      value /= 10**64;
                      result += 64;
                  }
                  if (value >= 10**32) {
                      value /= 10**32;
                      result += 32;
                  }
                  if (value >= 10**16) {
                      value /= 10**16;
                      result += 16;
                  }
                  if (value >= 10**8) {
                      value /= 10**8;
                      result += 8;
                  }
                  if (value >= 10**4) {
                      value /= 10**4;
                      result += 4;
                  }
                  if (value >= 10**2) {
                      value /= 10**2;
                      result += 2;
                  }
                  if (value >= 10**1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 256, rounded down, of a positive value.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 16;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 8;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 4;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 2;
                  }
                  if (value >> 8 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      contract VotingPowerCalculator {
          error OriginInTheFuture();
          uint256 private constant _ONE = 1e18;
          uint256 public immutable origin;
          uint256 public immutable expBase;
          uint256 private immutable _expTable0;
          uint256 private immutable _expTable1;
          uint256 private immutable _expTable2;
          uint256 private immutable _expTable3;
          uint256 private immutable _expTable4;
          uint256 private immutable _expTable5;
          uint256 private immutable _expTable6;
          uint256 private immutable _expTable7;
          uint256 private immutable _expTable8;
          uint256 private immutable _expTable9;
          uint256 private immutable _expTable10;
          uint256 private immutable _expTable11;
          uint256 private immutable _expTable12;
          uint256 private immutable _expTable13;
          uint256 private immutable _expTable14;
          uint256 private immutable _expTable15;
          uint256 private immutable _expTable16;
          uint256 private immutable _expTable17;
          uint256 private immutable _expTable18;
          uint256 private immutable _expTable19;
          uint256 private immutable _expTable20;
          uint256 private immutable _expTable21;
          uint256 private immutable _expTable22;
          uint256 private immutable _expTable23;
          uint256 private immutable _expTable24;
          uint256 private immutable _expTable25;
          uint256 private immutable _expTable26;
          uint256 private immutable _expTable27;
          uint256 private immutable _expTable28;
          uint256 private immutable _expTable29;
          constructor(uint256 expBase_, uint256 origin_) {
              if (origin_ > block.timestamp) revert OriginInTheFuture();
              origin = origin_;
              expBase = expBase_;
              _expTable0 = expBase_;
              _expTable1 = (_expTable0 * _expTable0) / _ONE;
              _expTable2 = (_expTable1 * _expTable1) / _ONE;
              _expTable3 = (_expTable2 * _expTable2) / _ONE;
              _expTable4 = (_expTable3 * _expTable3) / _ONE;
              _expTable5 = (_expTable4 * _expTable4) / _ONE;
              _expTable6 = (_expTable5 * _expTable5) / _ONE;
              _expTable7 = (_expTable6 * _expTable6) / _ONE;
              _expTable8 = (_expTable7 * _expTable7) / _ONE;
              _expTable9 = (_expTable8 * _expTable8) / _ONE;
              _expTable10 = (_expTable9 * _expTable9) / _ONE;
              _expTable11 = (_expTable10 * _expTable10) / _ONE;
              _expTable12 = (_expTable11 * _expTable11) / _ONE;
              _expTable13 = (_expTable12 * _expTable12) / _ONE;
              _expTable14 = (_expTable13 * _expTable13) / _ONE;
              _expTable15 = (_expTable14 * _expTable14) / _ONE;
              _expTable16 = (_expTable15 * _expTable15) / _ONE;
              _expTable17 = (_expTable16 * _expTable16) / _ONE;
              _expTable18 = (_expTable17 * _expTable17) / _ONE;
              _expTable19 = (_expTable18 * _expTable18) / _ONE;
              _expTable20 = (_expTable19 * _expTable19) / _ONE;
              _expTable21 = (_expTable20 * _expTable20) / _ONE;
              _expTable22 = (_expTable21 * _expTable21) / _ONE;
              _expTable23 = (_expTable22 * _expTable22) / _ONE;
              _expTable24 = (_expTable23 * _expTable23) / _ONE;
              _expTable25 = (_expTable24 * _expTable24) / _ONE;
              _expTable26 = (_expTable25 * _expTable25) / _ONE;
              _expTable27 = (_expTable26 * _expTable26) / _ONE;
              _expTable28 = (_expTable27 * _expTable27) / _ONE;
              _expTable29 = (_expTable28 * _expTable28) / _ONE;
          }
          function _votingPowerAt(uint256 balance, uint256 timestamp) internal view returns (uint256 votingPower) {
              timestamp = timestamp < origin ? origin : timestamp;  // logic in timestamps before origin is undefined
              unchecked {
                  uint256 t = timestamp - origin;
                  votingPower = balance;
                  if (t & 0x01 != 0) {
                      votingPower = (votingPower * _expTable0) / _ONE;
                  }
                  if (t & 0x02 != 0) {
                      votingPower = (votingPower * _expTable1) / _ONE;
                  }
                  if (t & 0x04 != 0) {
                      votingPower = (votingPower * _expTable2) / _ONE;
                  }
                  if (t & 0x08 != 0) {
                      votingPower = (votingPower * _expTable3) / _ONE;
                  }
                  if (t & 0x10 != 0) {
                      votingPower = (votingPower * _expTable4) / _ONE;
                  }
                  if (t & 0x20 != 0) {
                      votingPower = (votingPower * _expTable5) / _ONE;
                  }
                  if (t & 0x40 != 0) {
                      votingPower = (votingPower * _expTable6) / _ONE;
                  }
                  if (t & 0x80 != 0) {
                      votingPower = (votingPower * _expTable7) / _ONE;
                  }
                  if (t & 0x100 != 0) {
                      votingPower = (votingPower * _expTable8) / _ONE;
                  }
                  if (t & 0x200 != 0) {
                      votingPower = (votingPower * _expTable9) / _ONE;
                  }
                  if (t & 0x400 != 0) {
                      votingPower = (votingPower * _expTable10) / _ONE;
                  }
                  if (t & 0x800 != 0) {
                      votingPower = (votingPower * _expTable11) / _ONE;
                  }
                  if (t & 0x1000 != 0) {
                      votingPower = (votingPower * _expTable12) / _ONE;
                  }
                  if (t & 0x2000 != 0) {
                      votingPower = (votingPower * _expTable13) / _ONE;
                  }
                  if (t & 0x4000 != 0) {
                      votingPower = (votingPower * _expTable14) / _ONE;
                  }
                  if (t & 0x8000 != 0) {
                      votingPower = (votingPower * _expTable15) / _ONE;
                  }
                  if (t & 0x10000 != 0) {
                      votingPower = (votingPower * _expTable16) / _ONE;
                  }
                  if (t & 0x20000 != 0) {
                      votingPower = (votingPower * _expTable17) / _ONE;
                  }
                  if (t & 0x40000 != 0) {
                      votingPower = (votingPower * _expTable18) / _ONE;
                  }
                  if (t & 0x80000 != 0) {
                      votingPower = (votingPower * _expTable19) / _ONE;
                  }
                  if (t & 0x100000 != 0) {
                      votingPower = (votingPower * _expTable20) / _ONE;
                  }
                  if (t & 0x200000 != 0) {
                      votingPower = (votingPower * _expTable21) / _ONE;
                  }
                  if (t & 0x400000 != 0) {
                      votingPower = (votingPower * _expTable22) / _ONE;
                  }
                  if (t & 0x800000 != 0) {
                      votingPower = (votingPower * _expTable23) / _ONE;
                  }
                  if (t & 0x1000000 != 0) {
                      votingPower = (votingPower * _expTable24) / _ONE;
                  }
                  if (t & 0x2000000 != 0) {
                      votingPower = (votingPower * _expTable25) / _ONE;
                  }
                  if (t & 0x4000000 != 0) {
                      votingPower = (votingPower * _expTable26) / _ONE;
                  }
                  if (t & 0x8000000 != 0) {
                      votingPower = (votingPower * _expTable27) / _ONE;
                  }
                  if (t & 0x10000000 != 0) {
                      votingPower = (votingPower * _expTable28) / _ONE;
                  }
                  if (t & 0x20000000 != 0) {
                      votingPower = (votingPower * _expTable29) / _ONE;
                  }
              }
              return votingPower;
          }
          function _balanceAt(uint256 votingPower, uint256 timestamp) internal view returns (uint256 balance) {
              timestamp = timestamp < origin ? origin : timestamp;  // logic in timestamps before origin is undefined
              unchecked {
                  uint256 t = timestamp - origin;
                  balance = votingPower;
                  if (t & 0x01 != 0) {
                      balance = (balance * _ONE) / _expTable0;
                  }
                  if (t & 0x02 != 0) {
                      balance = (balance * _ONE) / _expTable1;
                  }
                  if (t & 0x04 != 0) {
                      balance = (balance * _ONE) / _expTable2;
                  }
                  if (t & 0x08 != 0) {
                      balance = (balance * _ONE) / _expTable3;
                  }
                  if (t & 0x10 != 0) {
                      balance = (balance * _ONE) / _expTable4;
                  }
                  if (t & 0x20 != 0) {
                      balance = (balance * _ONE) / _expTable5;
                  }
                  if (t & 0x40 != 0) {
                      balance = (balance * _ONE) / _expTable6;
                  }
                  if (t & 0x80 != 0) {
                      balance = (balance * _ONE) / _expTable7;
                  }
                  if (t & 0x100 != 0) {
                      balance = (balance * _ONE) / _expTable8;
                  }
                  if (t & 0x200 != 0) {
                      balance = (balance * _ONE) / _expTable9;
                  }
                  if (t & 0x400 != 0) {
                      balance = (balance * _ONE) / _expTable10;
                  }
                  if (t & 0x800 != 0) {
                      balance = (balance * _ONE) / _expTable11;
                  }
                  if (t & 0x1000 != 0) {
                      balance = (balance * _ONE) / _expTable12;
                  }
                  if (t & 0x2000 != 0) {
                      balance = (balance * _ONE) / _expTable13;
                  }
                  if (t & 0x4000 != 0) {
                      balance = (balance * _ONE) / _expTable14;
                  }
                  if (t & 0x8000 != 0) {
                      balance = (balance * _ONE) / _expTable15;
                  }
                  if (t & 0x10000 != 0) {
                      balance = (balance * _ONE) / _expTable16;
                  }
                  if (t & 0x20000 != 0) {
                      balance = (balance * _ONE) / _expTable17;
                  }
                  if (t & 0x40000 != 0) {
                      balance = (balance * _ONE) / _expTable18;
                  }
                  if (t & 0x80000 != 0) {
                      balance = (balance * _ONE) / _expTable19;
                  }
                  if (t & 0x100000 != 0) {
                      balance = (balance * _ONE) / _expTable20;
                  }
                  if (t & 0x200000 != 0) {
                      balance = (balance * _ONE) / _expTable21;
                  }
                  if (t & 0x400000 != 0) {
                      balance = (balance * _ONE) / _expTable22;
                  }
                  if (t & 0x800000 != 0) {
                      balance = (balance * _ONE) / _expTable23;
                  }
                  if (t & 0x1000000 != 0) {
                      balance = (balance * _ONE) / _expTable24;
                  }
                  if (t & 0x2000000 != 0) {
                      balance = (balance * _ONE) / _expTable25;
                  }
                  if (t & 0x4000000 != 0) {
                      balance = (balance * _ONE) / _expTable26;
                  }
                  if (t & 0x8000000 != 0) {
                      balance = (balance * _ONE) / _expTable27;
                  }
                  if (t & 0x10000000 != 0) {
                      balance = (balance * _ONE) / _expTable28;
                  }
                  if (t & 0x20000000 != 0) {
                      balance = (balance * _ONE) / _expTable29;
                  }
              }
              return balance;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      pragma abicoder v1;
      import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      interface IVotable is IERC20 {
          /// @dev we assume that voting power is a function of balance that preserves order
          function votingPowerOf(address account) external view returns (uint256);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
      import "@openzeppelin/contracts/utils/math/Math.sol";
      import "@openzeppelin/contracts/utils/Address.sol";
      import "@openzeppelin/contracts/access/Ownable.sol";
      import "@1inch/erc20-pods/contracts/ERC20Pods.sol";
      import "@1inch/erc20-pods/contracts/Pod.sol";
      import "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";
      import "./helpers/VotingPowerCalculator.sol";
      import "./interfaces/IVotable.sol";
      /**
       * @title 1inch staking contract
       * @notice The contract provides the following features: staking, delegation, farming
       * How lock period works:
       * - balances and voting power
       * - Lock min and max
       * - Add lock
       * - earlyWithdrawal
       * - penalty math
       */
      contract St1inch is ERC20Pods, Ownable, VotingPowerCalculator, IVotable {
          using SafeERC20 for IERC20;
          event EmergencyExitSet(bool status);
          event MaxLossRatioSet(uint256 ratio);
          event MinLockPeriodRatioSet(uint256 ratio);
          event FeeReceiverSet(address receiver);
          event DefaultFarmSet(address defaultFarm);
          error ApproveDisabled();
          error TransferDisabled();
          error LockTimeMoreMaxLock();
          error LockTimeLessMinLock();
          error UnlockTimeHasNotCome();
          error StakeUnlocked();
          error MinLockPeriodRatioNotReached();
          error MinReturnIsNotMet();
          error MaxLossIsNotMet();
          error MaxLossOverflow();
          error LossIsTooBig();
          error RescueAmountIsTooLarge();
          error ExpBaseTooBig();
          error ExpBaseTooSmall();
          error DefaultFarmTokenMismatch();
          error DepositsDisabled();
          error ZeroAddress();
          /// @notice The minimum allowed staking period
          uint256 public constant MIN_LOCK_PERIOD = 30 days;
          /// @notice The maximum allowed staking period
          /// @dev WARNING: It is not enough to change the constant only but voting power decrease curve should be revised also
          uint256 public constant MAX_LOCK_PERIOD = 2 * 365 days;
          /// @notice Voting power decreased to 1/_VOTING_POWER_DIVIDER after lock expires
          /// @dev WARNING: It is not enough to change the constant only but voting power decrease curve should be revised also
          uint256 private constant _VOTING_POWER_DIVIDER = 20;
          uint256 private constant _PODS_LIMIT = 5;
          /// @notice Maximum allowed gas spent by each attached pod. If there not enough gas for pod execution then
          /// transaction is reverted. If pod uses more gas then its execution is reverted silently, not affection the
          /// main transaction
          uint256 private constant _POD_CALL_GAS_LIMIT = 500_000;
          uint256 private constant _ONE = 1e9;
          IERC20 public immutable oneInch;
          /// @notice The stucture to store stake information for a staker
          struct Depositor {
              uint40 lockTime;    // Unix time in seconds
              uint40 unlockTime;  // Unix time in seconds
              uint176 amount;     // Staked 1inch token amount
          }
          mapping(address => Depositor) public depositors;
          uint256 public totalDeposits;
          bool public emergencyExit;
          uint256 public maxLossRatio;
          uint256 public minLockPeriodRatio;
          address public feeReceiver;
          address public defaultFarm;
          /**
           * @notice Initializes the contract
           * @param oneInch_ The token to be staked
           * @param expBase_ The rate for the voting power decrease over time
           */
          constructor(IERC20 oneInch_, uint256 expBase_)
              ERC20Pods(_PODS_LIMIT, _POD_CALL_GAS_LIMIT)
              ERC20("Staking 1INCH v2", "st1INCH")
              VotingPowerCalculator(expBase_, block.timestamp)
          {
              // voting power after MAX_LOCK_PERIOD should be equal to staked amount divided by _VOTING_POWER_DIVIDER
              if (_votingPowerAt(1e18, block.timestamp + MAX_LOCK_PERIOD) * _VOTING_POWER_DIVIDER < 1e18) revert ExpBaseTooBig();
              if (_votingPowerAt(1e18, block.timestamp + MAX_LOCK_PERIOD + 1) * _VOTING_POWER_DIVIDER > 1e18) revert ExpBaseTooSmall();
              oneInch = oneInch_;
          }
          /**
           * @notice Sets the new contract that would recieve early withdrawal fees
           * @param feeReceiver_ The receiver contract address
           */
          function setFeeReceiver(address feeReceiver_) external onlyOwner {
              if (feeReceiver_ == address(0)) revert ZeroAddress();
              feeReceiver = feeReceiver_;
              emit FeeReceiverSet(feeReceiver_);
          }
          /**
           * @notice Sets the new farm that all staking users will automatically join after staking for reward farming
           * @param defaultFarm_ The farm contract address
           */
          function setDefaultFarm(address defaultFarm_) external onlyOwner {
              if (defaultFarm_ != address(0) && Pod(defaultFarm_).token() != this) revert DefaultFarmTokenMismatch();
              defaultFarm = defaultFarm_;
              emit DefaultFarmSet(defaultFarm_);
          }
          /**
           * @notice Sets the maximum allowed loss ratio for early withdrawal. If the ratio is not met, actual is more than allowed,
           * then early withdrawal will revert.
           * Example: maxLossRatio = 90% and 1000 staked 1inch tokens means that a user can execute early withdrawal only
           * if his loss is less than or equals 90% of his stake, which is 900 tokens. Thus, if a user loses 900 tokens he is allowed
           * to do early withdrawal and not if the loss is greater.
           * @param maxLossRatio_ The maximum loss allowed (9 decimals).
           */
          function setMaxLossRatio(uint256 maxLossRatio_) external onlyOwner {
              if (maxLossRatio_ > _ONE) revert MaxLossOverflow();
              maxLossRatio = maxLossRatio_;
              emit MaxLossRatioSet(maxLossRatio_);
          }
          /**
           * @notice Sets the minimum allowed lock period ratio for early withdrawal. If the ratio is not met, actual is more than allowed,
           * then early withdrawal will revert.
           * @param minLockPeriodRatio_ The maximum loss allowed (9 decimals).
           */
          function setMinLockPeriodRatio(uint256 minLockPeriodRatio_) external onlyOwner {
              if (minLockPeriodRatio_ > _ONE) revert MaxLossOverflow();
              minLockPeriodRatio = minLockPeriodRatio_;
              emit MinLockPeriodRatioSet(minLockPeriodRatio_);
          }
          /**
           * @notice Sets the emergency exit mode. In emergency mode any stake may withdraw its stake regardless of lock.
           * The mode is intended to use only for migration to a new version of staking contract.
           * @param emergencyExit_ set `true` to enter emergency exit mode and `false` to return to normal operations
           */
          function setEmergencyExit(bool emergencyExit_) external onlyOwner {
              emergencyExit = emergencyExit_;
              emit EmergencyExitSet(emergencyExit_);
          }
          /**
           * @notice Gets the voting power of the provided account
           * @param account The address of an account to get voting power for
           * @return votingPower The voting power available at the block timestamp
           */
          function votingPowerOf(address account) external view returns (uint256) {
              return _votingPowerAt(balanceOf(account), block.timestamp);
          }
          /**
           * @notice Gets the voting power of the provided account at the given timestamp
           * @dev To calculate voting power at any timestamp provided the contract stores each balance
           * as it was staked for the maximum lock time. If a staker locks its stake for less than the maximum
           * then at the moment of deposit its balance is recorded as it was staked for the maximum but time
           * equal to `max lock period-lock time` has passed. It makes available voting power calculation
           * available at any point in time within the maximum lock period.
           * @param account The address of an account to get voting power for
           * @param timestamp The timestamp to calculate voting power at
           * @return votingPower The voting power available at the moment of `timestamp`
           */
          function votingPowerOfAt(address account, uint256 timestamp) external view returns (uint256) {
              return _votingPowerAt(balanceOf(account), timestamp);
          }
          /**
           * @notice Gets the voting power for the provided balance at the current timestamp assuming that
           * the balance is a balance at the moment of the maximum lock time
           * @param balance The balance for the maximum lock time
           * @return votingPower The voting power available at the block timestamp
           */
          function votingPower(uint256 balance) external view returns (uint256) {
              return _votingPowerAt(balance, block.timestamp);
          }
          /**
           * @notice Gets the voting power for the provided balance at the current timestamp assuming that
           * the balance is a balance at the moment of the maximum lock time
           * @param balance The balance for the maximum lock time
           * @param timestamp The timestamp to calculate the voting power at
           * @return votingPower The voting power available at the block timestamp
           */
          function votingPowerAt(uint256 balance, uint256 timestamp) external view returns (uint256) {
              return _votingPowerAt(balance, timestamp);
          }
          /**
           * @notice Stakes given amount and locks it for the given duration
           * @param amount The amount of tokens to stake
           * @param duration The lock period in seconds. If there is a stake locked then the lock period is extended by the duration.
           * To keep the current lock period unchanged pass 0 for the duration.
           */
          function deposit(uint256 amount, uint256 duration) external {
              _deposit(msg.sender, amount, duration);
          }
          /**
           * @notice Stakes given amount and locks it for the given duration with permit
           * @param amount The amount of tokens to stake
           * @param duration The lock period in seconds. If there is a stake locked then the lock period is extended by the duration.
           * To keep the current lock period unchanged pass 0 for the duration
           * @param permit Permit given by the staker
           */
          function depositWithPermit(uint256 amount, uint256 duration, bytes calldata permit) external {
              oneInch.safePermit(permit);
              _deposit(msg.sender, amount, duration);
          }
          /**
           * @notice Stakes given amount on behalf of provided account without locking or extending lock
           * @param account The account to stake for
           * @param amount The amount to stake
           */
          function depositFor(address account, uint256 amount) external {
              _deposit(account, amount, 0);
          }
          /**
           * @notice Stakes given amount on behalf of provided account without locking or extending lock with permit
           * @param account The account to stake for
           * @param amount The amount to stake
           * @param permit Permit given by the caller
           */
          function depositForWithPermit(address account, uint256 amount, bytes calldata permit) external {
              oneInch.safePermit(permit);
              _deposit(account, amount, 0);
          }
          function _deposit(address account, uint256 amount, uint256 duration) private {
              if (emergencyExit) revert DepositsDisabled();
              Depositor memory depositor = depositors[account]; // SLOAD
              uint256 lockedTill = Math.max(depositor.unlockTime, block.timestamp) + duration;
              uint256 lockLeft = lockedTill - block.timestamp;
              if (lockLeft < MIN_LOCK_PERIOD) revert LockTimeLessMinLock();
              if (lockLeft > MAX_LOCK_PERIOD) revert LockTimeMoreMaxLock();
              uint256 balanceDiff = _balanceAt(depositor.amount + amount, lockedTill) / _VOTING_POWER_DIVIDER - balanceOf(account);
              depositor.lockTime = uint40(duration == 0 ? depositor.lockTime : block.timestamp);
              depositor.unlockTime = uint40(lockedTill);
              depositor.amount += uint176(amount);
              depositors[account] = depositor; // SSTORE
              totalDeposits += amount;
              _mint(account, balanceDiff);
              if (amount > 0) {
                  oneInch.safeTransferFrom(msg.sender, address(this), amount);
              }
              if (defaultFarm != address(0) && !hasPod(account, defaultFarm)) {
                  _addPod(account, defaultFarm);
              }
          }
          /**
           * @notice Withdraw stake before lock period expires at the cost of losing part of a stake.
           * The stake loss is proportional to the time passed from the maximum lock period to the lock expiration and voting power.
           * The more time is passed the less would be the loss.
           * Formula to calculate return amount = (deposit - voting power)) / 0.95
           * @param minReturn The minumum amount of stake acceptable for return. If actual amount is less then the transaction is reverted
           * @param maxLoss The maximum amount of loss acceptable. If actual loss is bigger then the transaction is reverted
           */
          function earlyWithdraw(uint256 minReturn, uint256 maxLoss) external {
              earlyWithdrawTo(msg.sender, minReturn, maxLoss);
          }
          /**
           * @notice Withdraw stake before lock period expires at the cost of losing part of a stake to the specified account
           * The stake loss is proportional to the time passed from the maximum lock period to the lock expiration and voting power.
           * The more time is passed the less would be the loss.
           * Formula to calculate return amount = (deposit - voting power)) / 0.95
           * @param to The account to withdraw the stake to
           * @param minReturn The minumum amount of stake acceptable for return. If actual amount is less then the transaction is reverted
           * @param maxLoss The maximum amount of loss acceptable. If actual loss is bigger then the transaction is reverted
           */
          // ret(balance) = (deposit - vp(balance)) / 0.95
          function earlyWithdrawTo(address to, uint256 minReturn, uint256 maxLoss) public {
              Depositor memory depositor = depositors[msg.sender]; // SLOAD
              if (emergencyExit || block.timestamp >= depositor.unlockTime) revert StakeUnlocked();
              uint256 allowedExitTime = depositor.lockTime + (depositor.unlockTime - depositor.lockTime) * minLockPeriodRatio / _ONE;
              if (block.timestamp < allowedExitTime) revert MinLockPeriodRatioNotReached();
              uint256 amount = depositor.amount;
              if (amount > 0) {
                  uint256 balance = balanceOf(msg.sender);
                  (uint256 loss, uint256 ret) = _earlyWithdrawLoss(amount, balance);
                  if (ret < minReturn) revert MinReturnIsNotMet();
                  if (loss > maxLoss) revert MaxLossIsNotMet();
                  if (loss > amount * maxLossRatio / _ONE) revert LossIsTooBig();
                  _withdraw(depositor, balance);
                  oneInch.safeTransfer(to, ret);
                  oneInch.safeTransfer(feeReceiver, loss);
              }
          }
          /**
           * @notice Gets the loss amount if the staker do early withdrawal at the current block
           * @param account The account to calculate early withdrawal loss for
           * @return loss The loss amount amount
           * @return ret The return amount
           * @return canWithdraw  True if the staker can withdraw without penalty, false otherwise
           */
          function earlyWithdrawLoss(address account) external view returns (uint256 loss, uint256 ret, bool canWithdraw) {
              uint256 amount = depositors[account].amount;
              (loss, ret) = _earlyWithdrawLoss(amount, balanceOf(account));
              canWithdraw = loss <= amount * maxLossRatio / _ONE;
          }
          function _earlyWithdrawLoss(uint256 depAmount, uint256 stBalance) private view returns (uint256 loss, uint256 ret) {
              ret = (depAmount - _votingPowerAt(stBalance, block.timestamp)) * 100 / 95;
              loss = depAmount - ret;
          }
          /**
           * @notice Withdraws stake if lock period expired
           */
          function withdraw() external {
              withdrawTo(msg.sender);
          }
          /**
           * @notice Withdraws stake if lock period expired to the given address
           */
          function withdrawTo(address to) public {
              Depositor memory depositor = depositors[msg.sender]; // SLOAD
              if (!emergencyExit && block.timestamp < depositor.unlockTime) revert UnlockTimeHasNotCome();
              uint256 amount = depositor.amount;
              if (amount > 0) {
                  _withdraw(depositor, balanceOf(msg.sender));
                  oneInch.safeTransfer(to, amount);
              }
          }
          function _withdraw(Depositor memory depositor, uint256 balance) private {
              totalDeposits -= depositor.amount;
              depositor.amount = 0;
              // keep unlockTime in storage for next tx optimization
              depositor.unlockTime = uint40(Math.min(depositor.unlockTime, block.timestamp));
              depositors[msg.sender] = depositor; // SSTORE
              _burn(msg.sender, balance);
          }
          /**
           * @notice Retrieves funds from the contract in emergency situations
           * @param token The token to retrieve
           * @param amount The amount of funds to transfer
           */
          function rescueFunds(IERC20 token, uint256 amount) external onlyOwner {
              if (address(token) == address(0)) {
                  Address.sendValue(payable(msg.sender), amount);
              } else {
                  if (token == oneInch) {
                      if (amount > oneInch.balanceOf(address(this)) - totalDeposits) revert RescueAmountIsTooLarge();
                  }
                  token.safeTransfer(msg.sender, amount);
              }
          }
          // ERC20 methods disablers
          function approve(address, uint256) public pure override(IERC20, ERC20) returns (bool) {
              revert ApproveDisabled();
          }
          function transfer(address, uint256) public pure override(IERC20, ERC20) returns (bool) {
              revert TransferDisabled();
          }
          function transferFrom(address, address, uint256) public pure override(IERC20, ERC20) returns (bool) {
              revert TransferDisabled();
          }
          function increaseAllowance(address, uint256) public pure override returns (bool) {
              revert ApproveDisabled();
          }
          function decreaseAllowance(address, uint256) public pure override returns (bool) {
              revert ApproveDisabled();
          }
      }
      

      File 2 of 3: OneInch
      /*
                                              ,▄m    ,▄▄▄▄▄▄▄▄▄▄╖
                                          ╓▄▓██▌╓▄▓███████████▀└
                                        ▄████████████▓╬▓███████████▓▓▓▄▄▄,
                    ╓,              ,▄▄███▓╣██████▓╬╬▓████████████▀▓████████▓▄,
                     ▀█▓▄╥       xΘ╙╠╠███▓╬▓█████╬╬╬▓██████▓╬╬╬▓▀  ▐█╬╬╬╬▓██████▌╖
                       ╙████▓▄Q  ,φ▒▒▒███╬╬█████╬╬╬▓████▓╬╬╬▓▓▀  ╕ ▐█▓▓▓╬╬╬╬╬▓█████▄
                         ╙▓██████▓▄▄▒▒███╬╬╣████╬╬╣███╬╬▓███▀  ▄█⌐ ╫████████▓▓╬╬╬████▌
                         /  ▀███▓████████▓╬╬▓████╬███▓████▀  ▄██▀ ╔██████████████▓▓▓███▄
                       ▄╙     ╙██▓▄╙▀▓█████▓▓▓██████████▀  ª▀▀└ ,▓███████▓╬╬╬▓██████████▌
                     ,▓   ╓╠▒≥  ╙▓██▓╖ └▀▓███████▓███▓╙       ▄▓████████████▓╬╬╬╬▓███████▌
                    ▄█   ╔▒▒▒▒"   └▀███▌,  ╙████▀         ~Φ▓██▓▀▀╩▓██╙▀██████▓╬╬╬╬▓██████▌
                   ▓█   φ▒▒▒╙    ╔╔  ╙████▄▄███▀          ,         ██▌   ╙▓█████╬╬╬╬▓██▓└▀b
                  ▓█   ╔▒▒▒`    φ▒▒▒ⁿ  ╫██████`         ,▌          ╫██      ╙█████╬╬╬╬██▓
                 ╫█─  .▒▒▒     ╠▒▒╚   ]██████¬         ▓█            ██▌       └▓███▓╬╬╬██▓
                ▐█▌   ╠▒▒     φ▒▒"    ▐█████─        ▓█▀██▌          ███       ╬ └████╬╬╬██▌
                ██   ]▒▒⌐    .▒▒       ▓████       ▄█▀┤░▐██        ╓███▀      /╫▒ε ╙███╬╬╣██
               ▐██   ╚▒╚     ╠▒        ║████⌐ ╟▄,▓█▓┤Q▄▓█▀        ▄▀▓▓`      ╓▒▓▌▒╔ └███╬╬██▌
               ▓█▌   ▒▒      ▒╙        ██████ ╫████▓▀▀╙          ▓         ,φ▒║█▌▒▒≥  ███╬▓██
               ██▌   ▒▒      ▒        ▐███╙██b └╙          ▄ÆR▀▀▀       ╓φ╠▒▒▄██▒▒▒▒  ╙███╣██
               ██▌   ▒Γ      ╙        ███▌ ╟█            ,▓,φφ╠▒▒▒▒▒▒▒▒▒▒▒▄▓███▀▒▒▒▒╠  ▓██▓██─
               ██▌   ╚⌐      ⌐       ▓███               ╔▌«▒▒▒▒▄▓████████████▀░▒▒▒▒▒▒  ▐█████
               ███   'ε             ]███⌐             ╓▄▀φ▒▒▒▄▓█████████▓▀╬░▒▒▒▒▒▒▒▒▒   █████
               ╫██µ   φ             ███▌        ╓╔φ╠▒░▓,╠▒▒▒▓███████▀  ╙█▓▄`╙╠▒▒▒▒▒▒▒   █████
               └███                ╫███       ,╠▒▒▄▓▓█▓▓▓▄▄███████▀      ▓██▌,`╚▒▒▒▒▒  ]████▌
                ▓██▌              ▓███¬   ╔  φ▒▒▒╠╠╠╠╬▓████████▓╙         ████▌  ╚▒▒╙  ▓████
                 ███▄           ▄███▀  ╒  ╠≥╠▒▒▒░▄▓▌╨╚▒╚▓█████└           ║█████  └▒  ]████`
                 └███▌         ▓███╙  ▓▄  ╠▒▒▒▒▒██╙╙▓▓ ▒▒████             ▐██████    ,████╨
                  └███▌       ▐███  ╔███  ╠▒▒▒▒╫█⌐,▄▓▓ ▒▒▓██▌             ╫██████▓  ╓████▀
                    ████µ      ███b  ▀╙  φ▒▒▒▒▄██▓▓╠φ╠▒▒▓███             ]████████⌐▄████┘
                     ▀███▌     ╫███  .╔φ▒▒▒▒▒▓█▓╬░▒▒▄▓████▀              █████████████▓
                      ╙████▌    ▓██▓▄,   ▐▓▓██▄▄▄▄▓████▀└              ,█████████████▀
                        ╙████▌µ  ╙▀████████████████▓▀                 ▄████████████▀
                          ╙█████▄,   └╙╙▀▀╙                         ▄████████████▀
                            └▀█████▓▄                            ▄▓███████████▀╙
                               ╙▀██████▓▄▄,                 ,▄▓▓███████████▀╙
                                   ╙▀█████████▓▓▓▓▓▓▓▓▓▓▓██████████████▀▀└
                                       ╙╙▀▓███████████████████████▀▀╙
                                              └╙╙╙▀▀▀▀▀▀▀▀▀╙╙└
      
               ██╗██╗███╗   ██╗ ██████╗██╗  ██╗    ████████╗ ██████╗ ██╗  ██╗███████╗███╗   ██╗
              ███║██║████╗  ██║██╔════╝██║  ██║    ╚══██╔══╝██╔═══██╗██║ ██╔╝██╔════╝████╗  ██║
              ╚██║██║██╔██╗ ██║██║     ███████║       ██║   ██║   ██║█████╔╝ █████╗  ██╔██╗ ██║
               ██║██║██║╚██╗██║██║     ██╔══██║       ██║   ██║   ██║██╔═██╗ ██╔══╝  ██║╚██╗██║
               ██║██║██║ ╚████║╚██████╗██║  ██║       ██║   ╚██████╔╝██║  ██╗███████╗██║ ╚████║
               ╚═╝╚═╝╚═╝  ╚═══╝ ╚═════╝╚═╝  ╚═╝       ╚═╝    ╚═════╝ ╚═╝  ╚═╝╚══════╝╚═╝  ╚═══╝
      */
      // File: @openzeppelin/contracts/GSN/Context.sol
      
      // SPDX-License-Identifier: MIT
      
      pragma solidity >=0.6.0 <0.8.0;
      
      /*
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with GSN meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address payable) {
              return msg.sender;
          }
      
          function _msgData() internal view virtual returns (bytes memory) {
              this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
              return msg.data;
          }
      }
      
      // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
      
      
      pragma solidity >=0.6.0 <0.8.0;
      
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
      
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
      
          /**
           * @dev Moves `amount` tokens from the caller's account to `recipient`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address recipient, uint256 amount) external returns (bool);
      
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
      
          /**
           * @dev Moves `amount` tokens from `sender` to `recipient` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
      
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
      
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
      }
      
      // File: @openzeppelin/contracts/math/SafeMath.sol
      
      
      pragma solidity >=0.6.0 <0.8.0;
      
      /**
       * @dev Wrappers over Solidity's arithmetic operations with added overflow
       * checks.
       *
       * Arithmetic operations in Solidity wrap on overflow. This can easily result
       * in bugs, because programmers usually assume that an overflow raises an
       * error, which is the standard behavior in high level programming languages.
       * `SafeMath` restores this intuition by reverting the transaction when an
       * operation overflows.
       *
       * Using this library instead of the unchecked operations eliminates an entire
       * class of bugs, so it's recommended to use it always.
       */
      library SafeMath {
          /**
           * @dev Returns the addition of two unsigned integers, reverting on
           * overflow.
           *
           * Counterpart to Solidity's `+` operator.
           *
           * Requirements:
           *
           * - Addition cannot overflow.
           */
          function add(uint256 a, uint256 b) internal pure returns (uint256) {
              uint256 c = a + b;
              require(c >= a, "SafeMath: addition overflow");
      
              return c;
          }
      
          /**
           * @dev Returns the subtraction of two unsigned integers, reverting on
           * overflow (when the result is negative).
           *
           * Counterpart to Solidity's `-` operator.
           *
           * Requirements:
           *
           * - Subtraction cannot overflow.
           */
          function sub(uint256 a, uint256 b) internal pure returns (uint256) {
              return sub(a, b, "SafeMath: subtraction overflow");
          }
      
          /**
           * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
           * overflow (when the result is negative).
           *
           * Counterpart to Solidity's `-` operator.
           *
           * Requirements:
           *
           * - Subtraction cannot overflow.
           */
          function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
              require(b <= a, errorMessage);
              uint256 c = a - b;
      
              return c;
          }
      
          /**
           * @dev Returns the multiplication of two unsigned integers, reverting on
           * overflow.
           *
           * Counterpart to Solidity's `*` operator.
           *
           * Requirements:
           *
           * - Multiplication cannot overflow.
           */
          function mul(uint256 a, uint256 b) internal pure returns (uint256) {
              // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
              // benefit is lost if 'b' is also tested.
              // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
              if (a == 0) {
                  return 0;
              }
      
              uint256 c = a * b;
              require(c / a == b, "SafeMath: multiplication overflow");
      
              return c;
          }
      
          /**
           * @dev Returns the integer division of two unsigned integers. Reverts on
           * division by zero. The result is rounded towards zero.
           *
           * Counterpart to Solidity's `/` operator. Note: this function uses a
           * `revert` opcode (which leaves remaining gas untouched) while Solidity
           * uses an invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function div(uint256 a, uint256 b) internal pure returns (uint256) {
              return div(a, b, "SafeMath: division by zero");
          }
      
          /**
           * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
           * division by zero. The result is rounded towards zero.
           *
           * Counterpart to Solidity's `/` operator. Note: this function uses a
           * `revert` opcode (which leaves remaining gas untouched) while Solidity
           * uses an invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
              require(b > 0, errorMessage);
              uint256 c = a / b;
              // assert(a == b * c + a % b); // There is no case in which this doesn't hold
      
              return c;
          }
      
          /**
           * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
           * Reverts when dividing by zero.
           *
           * Counterpart to Solidity's `%` operator. This function uses a `revert`
           * opcode (which leaves remaining gas untouched) while Solidity uses an
           * invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function mod(uint256 a, uint256 b) internal pure returns (uint256) {
              return mod(a, b, "SafeMath: modulo by zero");
          }
      
          /**
           * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
           * Reverts with custom message when dividing by zero.
           *
           * Counterpart to Solidity's `%` operator. This function uses a `revert`
           * opcode (which leaves remaining gas untouched) while Solidity uses an
           * invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
              require(b != 0, errorMessage);
              return a % b;
          }
      }
      
      // File: @openzeppelin/contracts/token/ERC20/ERC20.sol
      
      
      pragma solidity >=0.6.0 <0.8.0;
      
      
      
      
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       * For a generic mechanism see {ERC20PresetMinterPauser}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * We have followed general OpenZeppelin guidelines: functions revert instead
       * of returning `false` on failure. This behavior is nonetheless conventional
       * and does not conflict with the expectations of ERC20 applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       *
       * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
       * functions have been added to mitigate the well-known issues around setting
       * allowances. See {IERC20-approve}.
       */
      contract ERC20 is Context, IERC20 {
          using SafeMath for uint256;
      
          mapping (address => uint256) private _balances;
      
          mapping (address => mapping (address => uint256)) private _allowances;
      
          uint256 private _totalSupply;
      
          string private _name;
          string private _symbol;
          uint8 private _decimals;
      
          /**
           * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
           * a default value of 18.
           *
           * To select a different value for {decimals}, use {_setupDecimals}.
           *
           * All three of these values are immutable: they can only be set once during
           * construction.
           */
          constructor (string memory name_, string memory symbol_) public {
              _name = name_;
              _symbol = symbol_;
              _decimals = 18;
          }
      
          /**
           * @dev Returns the name of the token.
           */
          function name() public view returns (string memory) {
              return _name;
          }
      
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view returns (string memory) {
              return _symbol;
          }
      
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5,05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
           * called.
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view returns (uint8) {
              return _decimals;
          }
      
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view override returns (uint256) {
              return _totalSupply;
          }
      
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view override returns (uint256) {
              return _balances[account];
          }
      
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `recipient` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
              _transfer(_msgSender(), recipient, amount);
              return true;
          }
      
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual override returns (uint256) {
              return _allowances[owner][spender];
          }
      
          /**
           * @dev See {IERC20-approve}.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 amount) public virtual override returns (bool) {
              _approve(_msgSender(), spender, amount);
              return true;
          }
      
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20}.
           *
           * Requirements:
           *
           * - `sender` and `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           * - the caller must have allowance for ``sender``'s tokens of at least
           * `amount`.
           */
          function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
              _transfer(sender, recipient, amount);
              _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
              return true;
          }
      
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
              _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
              return true;
          }
      
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
              _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
              return true;
          }
      
          /**
           * @dev Moves tokens `amount` from `sender` to `recipient`.
           *
           * This is internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `sender` cannot be the zero address.
           * - `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           */
          function _transfer(address sender, address recipient, uint256 amount) internal virtual {
              require(sender != address(0), "ERC20: transfer from the zero address");
              require(recipient != address(0), "ERC20: transfer to the zero address");
      
              _beforeTokenTransfer(sender, recipient, amount);
      
              _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
              _balances[recipient] = _balances[recipient].add(amount);
              emit Transfer(sender, recipient, amount);
          }
      
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: mint to the zero address");
      
              _beforeTokenTransfer(address(0), account, amount);
      
              _totalSupply = _totalSupply.add(amount);
              _balances[account] = _balances[account].add(amount);
              emit Transfer(address(0), account, amount);
          }
      
          /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: burn from the zero address");
      
              _beforeTokenTransfer(account, address(0), amount);
      
              _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
              _totalSupply = _totalSupply.sub(amount);
              emit Transfer(account, address(0), amount);
          }
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(address owner, address spender, uint256 amount) internal virtual {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
      
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
      
          /**
           * @dev Sets {decimals} to a value other than the default one of 18.
           *
           * WARNING: This function should only be called from the constructor. Most
           * applications that interact with token contracts will not expect
           * {decimals} to ever change, and may work incorrectly if it does.
           */
          function _setupDecimals(uint8 decimals_) internal {
              _decimals = decimals_;
          }
      
          /**
           * @dev Hook that is called before any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * will be to transferred to `to`.
           * - when `from` is zero, `amount` tokens will be minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
      }
      
      // File: @openzeppelin/contracts/token/ERC20/ERC20Burnable.sol
      
      
      pragma solidity >=0.6.0 <0.8.0;
      
      
      
      /**
       * @dev Extension of {ERC20} that allows token holders to destroy both their own
       * tokens and those that they have an allowance for, in a way that can be
       * recognized off-chain (via event analysis).
       */
      abstract contract ERC20Burnable is Context, ERC20 {
          using SafeMath for uint256;
      
          /**
           * @dev Destroys `amount` tokens from the caller.
           *
           * See {ERC20-_burn}.
           */
          function burn(uint256 amount) public virtual {
              _burn(_msgSender(), amount);
          }
      
          /**
           * @dev Destroys `amount` tokens from `account`, deducting from the caller's
           * allowance.
           *
           * See {ERC20-_burn} and {ERC20-allowance}.
           *
           * Requirements:
           *
           * - the caller must have allowance for ``accounts``'s tokens of at least
           * `amount`.
           */
          function burnFrom(address account, uint256 amount) public virtual {
              uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");
      
              _approve(account, _msgSender(), decreasedAllowance);
              _burn(account, amount);
          }
      }
      
      // File: @openzeppelin/contracts/access/Ownable.sol
      
      
      pragma solidity >=0.6.0 <0.8.0;
      
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
      
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
      
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor () internal {
              address msgSender = _msgSender();
              _owner = msgSender;
              emit OwnershipTransferred(address(0), msgSender);
          }
      
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view returns (address) {
              return _owner;
          }
      
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              require(_owner == _msgSender(), "Ownable: caller is not the owner");
              _;
          }
      
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              emit OwnershipTransferred(_owner, address(0));
              _owner = address(0);
          }
      
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              emit OwnershipTransferred(_owner, newOwner);
              _owner = newOwner;
          }
      }
      
      // File: @openzeppelin/contracts/utils/Counters.sol
      
      
      pragma solidity >=0.6.0 <0.8.0;
      
      
      /**
       * @title Counters
       * @author Matt Condon (@shrugs)
       * @dev Provides counters that can only be incremented or decremented by one. This can be used e.g. to track the number
       * of elements in a mapping, issuing ERC721 ids, or counting request ids.
       *
       * Include with `using Counters for Counters.Counter;`
       * Since it is not possible to overflow a 256 bit integer with increments of one, `increment` can skip the {SafeMath}
       * overflow check, thereby saving gas. This does assume however correct usage, in that the underlying `_value` is never
       * directly accessed.
       */
      library Counters {
          using SafeMath for uint256;
      
          struct Counter {
              // This variable should never be directly accessed by users of the library: interactions must be restricted to
              // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
              // this feature: see https://github.com/ethereum/solidity/issues/4637
              uint256 _value; // default: 0
          }
      
          function current(Counter storage counter) internal view returns (uint256) {
              return counter._value;
          }
      
          function increment(Counter storage counter) internal {
              // The {SafeMath} overflow check can be skipped here, see the comment at the top
              counter._value += 1;
          }
      
          function decrement(Counter storage counter) internal {
              counter._value = counter._value.sub(1);
          }
      }
      
      // File: contracts/IERC20Permit.sol
      
      
      pragma solidity ^0.6.0;
      
      // A copy of https://github.com/OpenZeppelin/openzeppelin-contracts/blob/ecc66719bd7681ed4eb8bf406f89a7408569ba9b/contracts/drafts/IERC20Permit.sol
      
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
           * given `owner`'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           */
          function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external;
      
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
      
          /**
           * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      
      // File: contracts/ECDSA.sol
      
      
      pragma solidity ^0.6.0;
      
      // A copy of https://github.com/OpenZeppelin/openzeppelin-contracts/blob/ecc66719bd7681ed4eb8bf406f89a7408569ba9b/contracts/cryptography/ECDSA.sol
      
      /**
       * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
       *
       * These functions can be used to verify that a message was signed by the holder
       * of the private keys of a given address.
       */
      library ECDSA {
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with
           * `signature`. This address can then be used for verification purposes.
           *
           * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {toEthSignedMessageHash} on it.
           */
          function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
              // Check the signature length
              if (signature.length != 65) {
                  revert("ECDSA: invalid signature length");
              }
      
              // Divide the signature in r, s and v variables
              bytes32 r;
              bytes32 s;
              uint8 v;
      
              // ecrecover takes the signature parameters, and the only way to get them
              // currently is to use assembly.
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  r := mload(add(signature, 0x20))
                  s := mload(add(signature, 0x40))
                  v := byte(0, mload(add(signature, 0x60)))
              }
      
              return recover(hash, v, r, s);
          }
      
          /**
           * @dev Overload of {ECDSA-recover-bytes32-bytes-} that receives the `v`,
           * `r` and `s` signature fields separately.
           */
          function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
              // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
              // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
              // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
              // signatures from current libraries generate a unique signature with an s-value in the lower half order.
              //
              // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
              // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
              // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
              // these malleable signatures as well.
              require(uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, "ECDSA: invalid signature s value");
              require(v == 27 || v == 28, "ECDSA: invalid signature v value");
      
              // If the signature is valid (and not malleable), return the signer address
              address signer = ecrecover(hash, v, r, s);
              require(signer != address(0), "ECDSA: invalid signature");
      
              return signer;
          }
      
          /**
           * @dev Returns an Ethereum Signed Message, created from a `hash`. This
           * replicates the behavior of the
           * https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign[`eth_sign`]
           * JSON-RPC method.
           *
           * See {recover}.
           */
          function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
              // 32 is the length in bytes of hash,
              // enforced by the type signature above
              return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
          }
      }
      
      // File: contracts/EIP712.sol
      
      
      pragma solidity ^0.6.0;
      
      // A copy of https://github.com/OpenZeppelin/openzeppelin-contracts/blob/ecc66719bd7681ed4eb8bf406f89a7408569ba9b/contracts/drafts/EIP712.sol
      
      /**
       * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
       *
       * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
       * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
       * they need in their contracts using a combination of `abi.encode` and `keccak256`.
       *
       * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
       * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
       * ({_hashTypedDataV4}).
       *
       * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
       * the chain id to protect against replay attacks on an eventual fork of the chain.
       *
       * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
       * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
       */
      abstract contract EIP712 {
          /* solhint-disable var-name-mixedcase */
          // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
          // invalidate the cached domain separator if the chain id changes.
          bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
          uint256 private immutable _CACHED_CHAIN_ID;
      
          bytes32 private immutable _HASHED_NAME;
          bytes32 private immutable _HASHED_VERSION;
          bytes32 private immutable _TYPE_HASH;
          /* solhint-enable var-name-mixedcase */
      
          /**
           * @dev Initializes the domain separator and parameter caches.
           *
           * The meaning of `name` and `version` is specified in
           * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
           *
           * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
           * - `version`: the current major version of the signing domain.
           *
           * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
           * contract upgrade].
           */
          constructor(string memory name, string memory version) internal {
              bytes32 hashedName = keccak256(bytes(name));
              bytes32 hashedVersion = keccak256(bytes(version));
              bytes32 typeHash = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
              _HASHED_NAME = hashedName;
              _HASHED_VERSION = hashedVersion;
              _CACHED_CHAIN_ID = _getChainId();
              _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
              _TYPE_HASH = typeHash;
          }
      
          /**
           * @dev Returns the domain separator for the current chain.
           */
          function _domainSeparatorV4() internal view returns (bytes32) {
              if (_getChainId() == _CACHED_CHAIN_ID) {
                  return _CACHED_DOMAIN_SEPARATOR;
              } else {
                  return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
              }
          }
      
          function _buildDomainSeparator(bytes32 typeHash, bytes32 name, bytes32 version) private view returns (bytes32) {
              return keccak256(
                  abi.encode(
                      typeHash,
                      name,
                      version,
                      _getChainId(),
                      address(this)
                  )
              );
          }
      
          /**
           * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
           * function returns the hash of the fully encoded EIP712 message for this domain.
           *
           * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
           *
           * ```solidity
           * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
           *     keccak256("Mail(address to,string contents)"),
           *     mailTo,
           *     keccak256(bytes(mailContents))
           * )));
           * address signer = ECDSA.recover(digest, signature);
           * ```
           */
          function _hashTypedDataV4(bytes32 structHash) internal view returns (bytes32) {
              return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash));
          }
      
          function _getChainId() private pure returns (uint256 chainId) {
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  chainId := chainid()
              }
          }
      }
      
      // File: contracts/ERC20Permit.sol
      
      
      pragma solidity ^0.6.0;
      
      
      
      
      
      
      // An adapted copy of https://github.com/OpenZeppelin/openzeppelin-contracts/blob/ecc66719bd7681ed4eb8bf406f89a7408569ba9b/contracts/drafts/ERC20Permit.sol
      
      /**
       * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
          using Counters for Counters.Counter;
      
          mapping (address => Counters.Counter) private _nonces;
      
          // solhint-disable-next-line var-name-mixedcase
          bytes32 private immutable _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
      
          /**
           * @dev See {IERC20Permit-permit}.
           */
          function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public virtual override {
              // solhint-disable-next-line not-rely-on-time
              require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
      
              bytes32 structHash = keccak256(
                  abi.encode(
                      _PERMIT_TYPEHASH,
                      owner,
                      spender,
                      value,
                      _nonces[owner].current(),
                      deadline
                  )
              );
      
              bytes32 hash = _hashTypedDataV4(structHash);
      
              address signer = ECDSA.recover(hash, v, r, s);
              require(signer == owner, "ERC20Permit: invalid signature");
      
              _nonces[owner].increment();
              _approve(owner, spender, value);
          }
      
          /**
           * @dev See {IERC20Permit-nonces}.
           */
          function nonces(address owner) public view override returns (uint256) {
              return _nonces[owner].current();
          }
      
          /**
           * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view override returns (bytes32) {
              return _domainSeparatorV4();
          }
      }
      
      // File: contracts/OneInch.sol
      
      
      pragma solidity ^0.6.0;
      
      
      
      
      
      contract OneInch is ERC20Permit, ERC20Burnable, Ownable {
          constructor(address _owner) public ERC20("1INCH Token", "1INCH") EIP712("1INCH Token", "1") {
              _mint(_owner, 1.5e9 ether);
              transferOwnership(_owner);
          }
      
          function mint(address to, uint256 amount) external onlyOwner {
              _mint(to, amount);
          }
      }

      File 3 of 3: StakingFarmingPod
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      interface IERC20Pods is IERC20 {
          event PodAdded(address account, address pod);
          event PodRemoved(address account, address pod);
          function hasPod(address account, address pod) external view returns(bool);
          function podsCount(address account) external view returns(uint256);
          function podAt(address account, uint256 index) external view returns(address);
          function pods(address account) external view returns(address[] memory);
          function podBalanceOf(address pod, address account) external view returns(uint256);
          function addPod(address pod) external;
          function removePod(address pod) external;
          function removeAllPods() external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      interface IPod {
          function updateBalances(address from, address to, uint256 amount) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "./interfaces/IPod.sol";
      import "./interfaces/IERC20Pods.sol";
      abstract contract Pod is IPod {
          error AccessDenied();
          IERC20Pods public immutable token;
          modifier onlyToken {
              if (msg.sender != address(token)) revert AccessDenied();
              _;
          }
          constructor(IERC20Pods token_) {
              token = token_;
          }
          function updateBalances(address from, address to, uint256 amount) external onlyToken {
              _updateBalances(from, to, amount);
          }
          function _updateBalances(address from, address to, uint256 amount) internal virtual;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "@openzeppelin/contracts/utils/math/Math.sol";
      library FarmAccounting {
          error ZeroDuration();
          error DurationTooLarge();
          error AmountTooLarge();
          struct Info {
              uint40 finished;
              uint32 duration;
              uint184 reward;
          }
          uint256 internal constant _MAX_REWARD_AMOUNT = 1e32;  // 108 bits
          uint256 internal constant _SCALE = 1e18;  // 60 bits
          /// @dev Requires extra 18 decimals for precision, result fits in 168 bits
          function farmedSinceCheckpointScaled(Info memory info, uint256 checkpoint) internal view returns(uint256 amount) {
              unchecked {
                  if (info.duration > 0) {
                      uint256 elapsed = Math.min(block.timestamp, info.finished) - Math.min(checkpoint, info.finished);
                      // size of (type(uint32).max * _MAX_REWARD_AMOUNT * _SCALE) is less than 200 bits, so there is no overflow
                      return elapsed * info.reward * _SCALE / info.duration;
                  }
              }
          }
          function startFarming(Info storage info, uint256 amount, uint256 period) internal returns(uint256) {
              if (period == 0) revert ZeroDuration();
              if (period > type(uint32).max) revert DurationTooLarge();
              if (amount > _MAX_REWARD_AMOUNT) revert AmountTooLarge();
              // If something left from prev farming add it to the new farming
              Info memory prev = info;
              if (block.timestamp < prev.finished) {
                  amount += prev.reward - farmedSinceCheckpointScaled(prev, prev.finished - prev.duration) / _SCALE;
              }
              (info.finished, info.duration, info.reward) = (uint40(block.timestamp + period), uint32(period), uint184(amount));
              return amount;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "./FarmAccounting.sol";
      library UserAccounting {
          struct Info {
              uint40 checkpoint;
              uint216 farmedPerTokenStored;
              mapping(address => int256) corrections;
          }
          function farmedPerToken(
              Info storage info,
              bytes32 context,
              function(bytes32) internal view returns(uint256) lazyGetSupply,
              function(bytes32, uint256) internal view returns(uint256) lazyGetFarmed
          ) internal view returns(uint256) {
              (uint256 checkpoint, uint256 fpt) = (info.checkpoint, info.farmedPerTokenStored);
              if (block.timestamp != checkpoint) {
                  uint256 supply = lazyGetSupply(context);
                  if (supply > 0) {
                      // fpt increases by 168 bit / supply
                      unchecked { fpt += lazyGetFarmed(context, checkpoint) / supply; }
                  }
              }
              return fpt;
          }
          function farmed(Info storage info, address account, uint256 balance, uint256 fpt) internal view returns(uint256) {
              // balance * fpt is less than 168 bit
              return uint256(int256(balance * fpt) - info.corrections[account]) / FarmAccounting._SCALE;
          }
          function eraseFarmed(Info storage info, address account, uint256 balance, uint256 fpt) internal {
              // balance * fpt is less than 168 bit
              info.corrections[account] = int256(balance * fpt);
          }
          function updateFarmedPerToken(Info storage info, uint256 fpt) internal {
              (info.checkpoint, info.farmedPerTokenStored) = (uint40(block.timestamp), uint216(fpt));
          }
          function updateBalances(Info storage info, address from, address to, uint256 amount, uint256 fpt) internal {
              bool fromZero = (from == address(0));
              bool toZero = (to == address(0));
              if (amount > 0 && from != to) {
                  if (fromZero || toZero) {
                      updateFarmedPerToken(info, fpt);
                  }
                  // fpt is less than 168 bit, so amount should be less 98 bit
                  int256 diff = int256(amount * fpt);
                  if (!fromZero) {
                      info.corrections[from] -= diff;
                  }
                  if (!toZero) {
                      info.corrections[to] += diff;
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "./accounting/FarmAccounting.sol";
      import "./accounting/UserAccounting.sol";
      library FarmingLib {
          using FarmAccounting for FarmAccounting.Info;
          using UserAccounting for UserAccounting.Info;
          using FarmingLib for FarmingLib.Info;
          struct Data {
              FarmAccounting.Info farmInfo;
              UserAccounting.Info userInfo;
          }
          struct Info {
              function() internal view returns(uint256) getTotalSupply;
              bytes32 dataSlot;
          }
          function makeInfo(function() internal view returns(uint256) getTotalSupply, Data storage data) internal pure returns(Info memory info) {
              info.getTotalSupply = getTotalSupply;
              bytes32 dataSlot;
              assembly {  // solhint-disable-line no-inline-assembly
                  dataSlot := data.slot
              }
              info.dataSlot = dataSlot;
          }
          function getData(Info memory self) internal pure returns(Data storage data) {
              bytes32 dataSlot = self.dataSlot;
              assembly {  // solhint-disable-line no-inline-assembly
                  data.slot := dataSlot
              }
          }
          function startFarming(Info memory self, uint256 amount, uint256 period) internal returns(uint256 reward) {
              Data storage data = self.getData();
              data.userInfo.updateFarmedPerToken(_farmedPerToken(self));
              reward = data.farmInfo.startFarming(amount, period);
          }
          function farmed(Info memory self, address account, uint256 balance) internal view returns(uint256) {
              return self.getData().userInfo.farmed(account, balance, _farmedPerToken(self));
          }
          function claim(Info memory self, address account, uint256 balance) internal returns(uint256 amount) {
              Data storage data = self.getData();
              uint256 fpt = _farmedPerToken(self);
              amount = data.userInfo.farmed(account, balance, fpt);
              if (amount > 0) {
                  data.userInfo.eraseFarmed(account, balance, fpt);
              }
          }
          function updateBalances(Info memory self, address from, address to, uint256 amount) internal {
              self.getData().userInfo.updateBalances(from, to, amount, _farmedPerToken(self));
          }
          function _farmedPerToken(Info memory self) private view returns (uint256) {
              return self.getData().userInfo.farmedPerToken(_infoToContext(self), _lazyGetSupply, _lazyGetFarmed);
          }
          // UserAccounting bindings
          function _lazyGetSupply(bytes32 context) private view returns(uint256) {
              Info memory self = _contextToInfo(context);
              return self.getTotalSupply();
          }
          function _lazyGetFarmed(bytes32 context, uint256 checkpoint) private view returns(uint256) {
              Info memory self = _contextToInfo(context);
              return self.getData().farmInfo.farmedSinceCheckpointScaled(checkpoint);
          }
          function _contextToInfo(bytes32 context) private pure returns(Info memory self) {
              assembly {  // solhint-disable-line no-inline-assembly
                  self := context
              }
          }
          function _infoToContext(Info memory self) private pure returns(bytes32 context) {
              assembly {  // solhint-disable-line no-inline-assembly
                  context := self
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "@openzeppelin/contracts/access/Ownable.sol";
      import "@openzeppelin/contracts/utils/Address.sol";
      import "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";
      import "@1inch/erc20-pods/contracts/Pod.sol";
      import "@1inch/erc20-pods/contracts/interfaces/IERC20Pods.sol";
      import "./interfaces/IFarmingPod.sol";
      import "./FarmingLib.sol";
      contract FarmingPod is Pod, IFarmingPod, Ownable {
          using SafeERC20 for IERC20;
          using FarmingLib for FarmingLib.Info;
          using Address for address payable;
          error ZeroFarmableTokenAddress();
          error ZeroRewardsTokenAddress();
          error SameDistributor();
          IERC20 public immutable rewardsToken;
          address private _distributor;
          uint256 private _totalSupply;
          FarmingLib.Data private _farm;
          modifier onlyDistributor {
              if (msg.sender != _distributor) revert AccessDenied();
              _;
          }
          constructor(IERC20Pods farmableToken_, IERC20 rewardsToken_)
              Pod(farmableToken_)
          {
              if (address(farmableToken_) == address(0)) revert ZeroFarmableTokenAddress();
              if (address(rewardsToken_) == address(0)) revert ZeroRewardsTokenAddress();
              rewardsToken = rewardsToken_;
              emit FarmCreated(address(farmableToken_), address(rewardsToken_));
          }
          function farmInfo() public view returns(FarmAccounting.Info memory) {
              return _farm.farmInfo;
          }
          function totalSupply() public view returns(uint256) {
              return _totalSupply;
          }
          function distributor() public view returns(address) {
              return _distributor;
          }
          function setDistributor(address distributor_) public virtual onlyOwner {
              address oldDistributor = _distributor;
              if (distributor_ == oldDistributor) revert SameDistributor();
              emit DistributorChanged(oldDistributor, distributor_);
              _distributor = distributor_;
          }
          function startFarming(uint256 amount, uint256 period) public virtual onlyDistributor {
              uint256 reward = _makeInfo().startFarming(amount, period);
              emit RewardAdded(reward, period);
              rewardsToken.safeTransferFrom(msg.sender, address(this), amount);
          }
          function farmed(address account) public view virtual returns(uint256) {
              uint256 balance = IERC20Pods(token).podBalanceOf(address(this), account);
              return _makeInfo().farmed(account, balance);
          }
          function claim() public virtual {
              uint256 podBalance = IERC20Pods(token).podBalanceOf(address(this), msg.sender);
              uint256 amount = _makeInfo().claim(msg.sender, podBalance);
              if (amount > 0) {
                  _transferReward(rewardsToken, msg.sender, amount);
              }
          }
          function _transferReward(IERC20 reward, address to, uint256 amount) internal virtual {
              reward.safeTransfer(to, amount);
          }
          function _updateBalances(address from, address to, uint256 amount) internal virtual override {
              _makeInfo().updateBalances(from, to, amount);
              if (from == address(0)) {
                  _totalSupply += amount;
              }
              if (to == address(0)) {
                  _totalSupply -= amount;
              }
          }
          function rescueFunds(IERC20 token, uint256 amount) public virtual onlyDistributor {
              if(token == IERC20(address(0))) {
                  payable(_distributor).sendValue(amount);
              } else {
                  token.safeTransfer(_distributor, amount);
              }
          }
          function _makeInfo() private view returns(FarmingLib.Info memory) {
              return FarmingLib.makeInfo(totalSupply, _farm);
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      import "@1inch/erc20-pods/contracts/interfaces/IPod.sol";
      import "../accounting/FarmAccounting.sol";
      interface IFarmingPod is IPod {
          event FarmCreated(address token, address reward);
          event DistributorChanged(address oldDistributor, address newDistributor);
          event RewardAdded(uint256 reward, uint256 duration);
          // View functions
          function totalSupply() external view returns(uint256);
          function distributor() external view returns(address);
          function farmInfo() external view returns(FarmAccounting.Info memory);
          function farmed(address account) external view returns(uint256);
          // User functions
          function claim() external;
          // Owner functions
          function setDistributor(address distributor_) external;
          // Distributor functions
          function startFarming(uint256 amount, uint256 period) external;
          function rescueFunds(IERC20 token, uint256 amount) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v1;
      interface IDaiLikePermit {
          function permit(
              address holder,
              address spender,
              uint256 nonce,
              uint256 expiry,
              bool allowed,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v1;
      /// @title Revert reason forwarder.
      library RevertReasonForwarder {
          /// @dev Forwards latest externall call revert.
          function reRevert() internal pure {
              // bubble up revert reason from latest external call
              /// @solidity memory-safe-assembly
              assembly { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  returndatacopy(ptr, 0, returndatasize())
                  revert(ptr, returndatasize())
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v1;
      import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
      import "../interfaces/IDaiLikePermit.sol";
      import "../libraries/RevertReasonForwarder.sol";
      /// @title Implements efficient safe methods for ERC20 interface.
      library SafeERC20 {
          error SafeTransferFailed();
          error SafeTransferFromFailed();
          error ForceApproveFailed();
          error SafeIncreaseAllowanceFailed();
          error SafeDecreaseAllowanceFailed();
          error SafePermitBadLength();
          /// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.
          function safeTransferFrom(
              IERC20 token,
              address from,
              address to,
              uint256 amount
          ) internal {
              bytes4 selector = token.transferFrom.selector;
              bool success;
              /// @solidity memory-safe-assembly
              assembly { // solhint-disable-line no-inline-assembly
                  let data := mload(0x40)
                  mstore(data, selector)
                  mstore(add(data, 0x04), from)
                  mstore(add(data, 0x24), to)
                  mstore(add(data, 0x44), amount)
                  success := call(gas(), token, 0, data, 100, 0x0, 0x20)
                  if success {
                      switch returndatasize()
                      case 0 {
                          success := gt(extcodesize(token), 0)
                      }
                      default {
                          success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                      }
                  }
              }
              if (!success) revert SafeTransferFromFailed();
          }
          /// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.
          function safeTransfer(
              IERC20 token,
              address to,
              uint256 value
          ) internal {
              if (!_makeCall(token, token.transfer.selector, to, value)) {
                  revert SafeTransferFailed();
              }
          }
          /// @dev If `approve(from, to, amount)` fails, try to `approve(from, to, 0)` before retry.
          function forceApprove(
              IERC20 token,
              address spender,
              uint256 value
          ) internal {
              if (!_makeCall(token, token.approve.selector, spender, value)) {
                  if (
                      !_makeCall(token, token.approve.selector, spender, 0) ||
                      !_makeCall(token, token.approve.selector, spender, value)
                  ) {
                      revert ForceApproveFailed();
                  }
              }
          }
          /// @dev Allowance increase with safe math check.
          function safeIncreaseAllowance(
              IERC20 token,
              address spender,
              uint256 value
          ) internal {
              uint256 allowance = token.allowance(address(this), spender);
              if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
              forceApprove(token, spender, allowance + value);
          }
          /// @dev Allowance decrease with safe math check.
          function safeDecreaseAllowance(
              IERC20 token,
              address spender,
              uint256 value
          ) internal {
              uint256 allowance = token.allowance(address(this), spender);
              if (value > allowance) revert SafeDecreaseAllowanceFailed();
              forceApprove(token, spender, allowance - value);
          }
          /// @dev Calls either ERC20 or Dai `permit` for `token`, if unsuccessful forwards revert from external call.
          function safePermit(IERC20 token, bytes calldata permit) internal {
              if (!tryPermit(token, permit)) RevertReasonForwarder.reRevert();
          }
          function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool) {
              if (permit.length == 32 * 7) {
                  return _makeCalldataCall(token, IERC20Permit.permit.selector, permit);
              }
              if (permit.length == 32 * 8) {
                  return _makeCalldataCall(token, IDaiLikePermit.permit.selector, permit);
              }
              revert SafePermitBadLength();
          }
          function _makeCall(
              IERC20 token,
              bytes4 selector,
              address to,
              uint256 amount
          ) private returns (bool success) {
              /// @solidity memory-safe-assembly
              assembly { // solhint-disable-line no-inline-assembly
                  let data := mload(0x40)
                  mstore(data, selector)
                  mstore(add(data, 0x04), to)
                  mstore(add(data, 0x24), amount)
                  success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
                  if success {
                      switch returndatasize()
                      case 0 {
                          success := gt(extcodesize(token), 0)
                      }
                      default {
                          success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                      }
                  }
              }
          }
          function _makeCalldataCall(
              IERC20 token,
              bytes4 selector,
              bytes calldata args
          ) private returns (bool success) {
              /// @solidity memory-safe-assembly
              assembly { // solhint-disable-line no-inline-assembly
                  let len := add(4, args.length)
                  let data := mload(0x40)
                  mstore(data, selector)
                  calldatacopy(add(data, 0x04), args.offset, args.length)
                  success := call(gas(), token, 0, data, len, 0x0, 0x20)
                  if success {
                      switch returndatasize()
                      case 0 {
                          success := gt(extcodesize(token), 0)
                      }
                      default {
                          success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                      }
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor() {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
           *
           * _Available since v4.8._
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              if (success) {
                  if (returndata.length == 0) {
                      // only check isContract if the call was successful and the return data is empty
                      // otherwise we already know that it was a contract
                      require(isContract(target), "Address: call to non-contract");
                  }
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason or using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          function _revert(bytes memory returndata, string memory errorMessage) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert(errorMessage);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1);
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator,
              Rounding rounding
          ) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              //
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
              //
              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
              //
              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1 << (log2(a) >> 1);
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 2, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 128;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 64;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 32;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 16;
                  }
                  if (value >> 8 > 0) {
                      value >>= 8;
                      result += 8;
                  }
                  if (value >> 4 > 0) {
                      value >>= 4;
                      result += 4;
                  }
                  if (value >> 2 > 0) {
                      value >>= 2;
                      result += 2;
                  }
                  if (value >> 1 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 10, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10**64) {
                      value /= 10**64;
                      result += 64;
                  }
                  if (value >= 10**32) {
                      value /= 10**32;
                      result += 32;
                  }
                  if (value >= 10**16) {
                      value /= 10**16;
                      result += 16;
                  }
                  if (value >= 10**8) {
                      value /= 10**8;
                      result += 8;
                  }
                  if (value >= 10**4) {
                      value /= 10**4;
                      result += 4;
                  }
                  if (value >= 10**2) {
                      value /= 10**2;
                      result += 2;
                  }
                  if (value >= 10**1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 256, rounded down, of a positive value.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 16;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 8;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 4;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 2;
                  }
                  if (value >> 8 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      pragma abicoder v1;
      import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      import "@1inch/erc20-pods/contracts/interfaces/IERC20Pods.sol";
      interface ISt1inch is IERC20Pods {
          function oneInch() external view returns (IERC20);
          function emergencyExit() external view returns (bool);
          function depositFor(address account, uint256 amount) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import "@1inch/farming/contracts/FarmingPod.sol";
      import "./interfaces/ISt1inch.sol";
      contract StakingFarmingPod is FarmingPod {
          using SafeERC20 for IERC20;
          ISt1inch public immutable st1inch;
          constructor(ISt1inch st1inch_) FarmingPod(st1inch_, st1inch_.oneInch()) {
              st1inch = st1inch_;
          }
          function _transferReward(IERC20 reward, address to, uint256 amount) internal override {
              if (st1inch.emergencyExit()) {
                  reward.safeTransfer(to, amount);
              } else {
                  st1inch.depositFor(to, amount);
              }
          }
      }