ETH Price: $2,275.96 (-6.94%)

Transaction Decoder

Block:
21886264 at Feb-20-2025 08:05:35 AM +UTC
Transaction Fee:
0.002789485566970812 ETH $6.35
Gas Used:
2,339,606 Gas / 1.192288602 Gwei

Emitted Events:

201 ERC1967Proxy.0x9808f60e3a2edf78a02b7a8e7e9a5079b31afc087b53986bad723ff3d73ca366( 0x9808f60e3a2edf78a02b7a8e7e9a5079b31afc087b53986bad723ff3d73ca366, 0x00000000000000000000000000000000000000000000000000000000000f55ed, 0000000000000000000000000000000000000000000000000000000000000020, 0000000000000000000000000000000000000000000000000000000000000064, 000000000000000000000000c7450af7588ce0bcffe3917125a2e3a8acfca243, 000000000000000000000000eb7237822d1a6388cd76b0b19a6326e5fc05a16b, 0000000000000000000000003c070bc4626578ffc34439fec8898cd1cda2a4e1, 0000000000000000000000006709652b54257b63803c36d370aeaee89f3e9656, 00000000000000000000000029511378b60a0327cdbc3bfa46c2716c6c584a52, 0000000000000000000000009a21e1ebb29f5f1bc8969ab6ae2f6a299cbf3be1, 000000000000000000000000ed7f8cb50deeae565cdfe4b8e40957307d85a509, 000000000000000000000000a4b185aebfdeddd3578de72fa7f7755c37be8567, 0000000000000000000000001445a21cee701200f3f880d23642f914ce36964c, 000000000000000000000000e790108097f87ba529cc8ac90ee079b3eff27b89, 0000000000000000000000000837885a16b3d1895245e0ef659e3c5175aee41e, 0000000000000000000000006da9f64455663e2e534775a2c9df2bc7e6275d71, 00000000000000000000000019938b491f4269428e370e73afd69ac2cc6e7d93, 0000000000000000000000003b052763fe7cb15b955ed92871792344624c084a, 000000000000000000000000b7e4a2e26b957746ee05398a7b0c9e23e7d1c7d7, 00000000000000000000000099d22386cabef415218b8f5ce6fc1a82c3cc0be3, 00000000000000000000000078811b84a251605121c3fef1e75c08fd72fccdcb, 00000000000000000000000053f80e104ba1d614444c1552b6579f0294ab751e, 00000000000000000000000074a7ae18ed7df6f61c4e8de6f474403fa7562d25, 000000000000000000000000f51109d540a67b88063fdc8b1f57228fe8443c67, 0000000000000000000000000118085b0ca78ec602f0aefbf8c60635c3efeb58, 000000000000000000000000e7740792c3cac2b8cc25f9a75e020928c22e6f0d, 000000000000000000000000e1919fee7998456eaef59ece30def1fa06b9ed42, 000000000000000000000000e4223a5ba0822c9cab75bd8601ac6734fae7c8ae, 000000000000000000000000da34422f0c298d1c4641be1b706af0148c1aa976, 000000000000000000000000ac02307f41cf1f56d1bac8db4e59ff7afe1dad16, 000000000000000000000000e26f2a174c6d77071499a503a242845f0b58ecdc, 0000000000000000000000004fc4237d776530fadf02dc12d40734023fd01524, 000000000000000000000000a147a0fac590a8dc6e5b6bcaf7f7995d6292ebf5, 000000000000000000000000617641437c31643bbe8bf10d966cb6ea2053f1c7, 00000000000000000000000068caffbc52720a1defab2d1d40569212e79fce43, 000000000000000000000000808479d82114257046b4f8a448bf67430ba9709b, 000000000000000000000000d294611f4b08f35af6f063af22b4f14c5f0eeb3b, 0000000000000000000000008170f36f8dc39e7ab4aad141853cc08bcbe6025e, 00000000000000000000000073cc06d93721c7fca047edcdd0f1a50ce19f3e10, 0000000000000000000000004cf11c60906429731a121300c9db71a71a3ece24, 000000000000000000000000169c5b518809c73cc69bfb524a48dce7314fcc88, 000000000000000000000000296644043f6e7c0f05e38650928091aee6a97c48, 0000000000000000000000002fd07e30c171729c82eb6ea06c20a89941d5490b, 0000000000000000000000000e2094fdf0116b826242aac1f58a8a4d5b503a5c, 000000000000000000000000191e5d2ce8d7bb3759990c9ca6ce8b6c4b3c2a72, 00000000000000000000000025adfa97164ddf823f9d2e82011628561f4c8f2e, 0000000000000000000000009383b1ad5c66f4ccb8720364735ad4668977e147, 000000000000000000000000aaa88310cefec1d0aaeda38ef3b426ab4eafbed5, 000000000000000000000000ea720f729141eaedc1245b371eab44c86c727596, 000000000000000000000000749d504ba0d8a64e6844fc69ae3638b4ee15303d, 0000000000000000000000001d50f474e9e6429c1291a482c3e5290efd204500, 0000000000000000000000005f80ebd4fcb6e695b65d7fa3a06a19b350070021, 000000000000000000000000013df513a8b51dbfc8a3571f226eb421dc72391a, 00000000000000000000000021d7a17f99a6deec73f589e9d4dea5fb2cdedea3, 000000000000000000000000d9694fdf54a23dc09c327d1e3e0e82772607c9fa, 000000000000000000000000a3778dc9b6fad21a1d8c25e984969890e145dedc, 000000000000000000000000ccf1c2e1016e5409afb1ba08c942ba5892fc56c9, 000000000000000000000000115152666d11adec90ab1d3932a3de079eeac47b, 00000000000000000000000060994627fb1a772ce378a81362885acc20a7fd48, 000000000000000000000000a4b505f6e033e10c82cdfbe3db1ecd266d42dbc1, 00000000000000000000000051fbcc9493bfe5cd6065ef7b7ac71f81c89151b3, 0000000000000000000000002a798dc5d6c15ac84918006471d03578526ef8bf, 000000000000000000000000abccf857a65df2432915bb428660f3e350fb5ebb, 00000000000000000000000076fbe5da5d65064ca2100005ce73a792291c9573, 0000000000000000000000001ad51ba4ea6e74d8bf3064d7d5a5d56d781bf6a5, 000000000000000000000000239d687acde7a2aa8af29586ec43c96fd99d7e6e, 0000000000000000000000003ec4e4838552f7c72b2671bbe7c65828a57add39, 0000000000000000000000007f565e2e88a9616d87eea9ac4b2e77102acbdc0a, 000000000000000000000000ca0bf386fd913e14867e7ec7834c09d54bf93176, 0000000000000000000000007c12013f4bdb4dc0df4f10f9fb4eb87324f9cf10, 000000000000000000000000ce623da8da9cf834d239643abf133eda389f9d0d, 000000000000000000000000655ebb645af0457ca1d42d5f8d77cfaca8b19331, 0000000000000000000000005ceae77fb49937c42e08f6442f89f96320f2006f, 0000000000000000000000007dffbfff9375b5887ec8ca9b635af07cc356e99c, 0000000000000000000000004d5c941166b5279ed504bdabda0e01576a7d30ca, 0000000000000000000000001fd62c7efa9390d806f7e7f2d3c129a6e5008b3a, 000000000000000000000000fa75032df5e6317a13f256839dc4f5a6a9058ec2, 00000000000000000000000043eec73dce8a5dbab55278e91b069027b7c159e8, 00000000000000000000000074e476a9657d32c8206ba0bcac588e8723b77e85, 000000000000000000000000d5f1ebfb89293311d904a82975c280053d0a301e, 000000000000000000000000e78eef4b5bb2f78dc950613b447a8e6a0c3addb8, 00000000000000000000000056bd88e6c083f685e9830b5db49cc49d70f792a5, 000000000000000000000000dcc10e84fc483ab3b43933dcd7f86f009e8f7123, 000000000000000000000000cc621bdd493f532b7c35848aa600763724d5375c, 000000000000000000000000ede70c6e78a67bc0e6f3b977ad0a47de0aba471f, 000000000000000000000000e65359bc9f4bc09f2aad3f660a64d69eac7174cc, 000000000000000000000000a7c81439643f529ea89fce00f56b8174d47b9a79, 000000000000000000000000b5e8751841dee741fa6cb5e3217f83036a491f00, 000000000000000000000000a392728551399ca70a05980177e292d2114d8db5, 00000000000000000000000030366ebafe50f9f0624dc2cdb3e2800cc54dfd93, 0000000000000000000000006bace6a4f9bd02c6d2f32cccf2ca519cb65a6306, 0000000000000000000000003ba152b2b6c9add76b26d760db293eedbee3bef1, 00000000000000000000000093c3228b964b37947a4c7da3e9fff513ded3ff49, 0000000000000000000000000157831ffb3294e0e1f84fa1900551158086ed21, 000000000000000000000000730582e60ffbe58655faeff7113c2ce7dd7c02c0, 000000000000000000000000ca8a02d2cd3fe9ac42780f49371287c696ecd541, 000000000000000000000000108bb6001b8d432fc854b7d3421e7a395124a4cb, 0000000000000000000000004a938a5488d68af32b1a023b70bf034cff9f05f0, 0000000000000000000000004b4b32171f24f10ac760d47c2be4926d7dcc6b5c, 0000000000000000000000004b0572f824faa485e65f8c73a93f9b8a2486f4eb, 00000000000000000000000097a4b608e44a402d43679d8cf8c3177e1a6241fa, 000000000000000000000000ecd1ae944d11b4380d7c17497deeb7eeb76dd805, 000000000000000000000000f9992d2f38b9c2cffb14e3009daeabb1747d64da, 000000000000000000000000932f5220a0d29f60b974c0f97c93ae4e7a2e5cc1 )

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
16.218076359175970896 Eth16.219246162175970896 Eth0.001169803
0xD6f3f022...4B9C3fa18
0.0111711741045403 Eth
Nonce: 9
0.008381688537569488 Eth
Nonce: 10
0.002789485566970812
0xF8042873...73523fa14

Execution Trace

ERC1967Proxy.ee2b9398( )
  • NFTDrop.addAllowListBatch( nftId=1005037, users=[0xc7450af7588Ce0BcffE3917125A2e3A8aCFCA243, 0xeb7237822D1A6388CD76B0B19a6326e5FC05a16B, 0x3c070bc4626578ffc34439FeC8898cD1CdA2a4e1, 0x6709652B54257b63803c36D370AeaeE89f3E9656, 0x29511378B60A0327CdbC3bfA46c2716C6C584a52, 0x9A21e1ebB29f5F1bc8969AB6ae2f6a299CBF3Be1, 0xed7f8cB50DEeaE565cdfE4b8E40957307D85A509, 0xA4b185aEBfDEddD3578De72Fa7F7755c37BE8567, 0x1445A21CeE701200F3f880D23642f914CE36964C, 0xE790108097f87bA529Cc8aC90Ee079B3EFf27b89, 0x0837885a16b3d1895245e0eF659E3C5175aEe41e, 0x6DA9f64455663E2e534775A2c9dF2BC7e6275d71, 0x19938B491f4269428E370E73AfD69ac2CC6E7D93, 0x3B052763Fe7Cb15B955ED92871792344624c084a, 0xb7e4A2E26b957746eE05398A7B0C9e23e7D1C7D7, 0x99d22386cAbeF415218B8F5Ce6fc1a82c3Cc0BE3, 0x78811B84A251605121c3fef1E75C08fd72fCCDCB, 0x53F80E104ba1d614444c1552b6579f0294AB751e, 0x74A7AE18ed7DF6f61C4e8DE6f474403FA7562d25, 0xf51109D540A67b88063fdc8b1f57228fe8443C67, 0x0118085B0CA78EC602f0aeFBF8C60635C3eFEb58, 0xE7740792c3Cac2b8Cc25F9A75e020928c22e6F0D, 0xE1919feE7998456eaEf59eCe30dEF1fa06b9ed42, 0xE4223A5Ba0822C9cAB75Bd8601ac6734FaE7c8ae, 0xda34422f0c298D1c4641BE1B706af0148c1aA976, 0xaC02307F41cF1F56D1BAc8Db4e59Ff7Afe1Dad16, 0xE26f2a174C6D77071499a503a242845F0B58ECdc, 0x4fc4237d776530fAdF02DC12d40734023fD01524, 0xa147A0fac590A8dC6e5b6BCAF7f7995D6292ebF5, 0x617641437C31643bBe8bF10D966cb6EA2053F1c7, 0x68cAFfBc52720A1DefAb2D1d40569212e79FcE43, 0x808479d82114257046B4F8a448bF67430Ba9709B, 0xD294611f4B08f35Af6F063Af22B4f14c5F0EEB3B, 0x8170f36f8dc39E7Ab4AAd141853CC08bCBE6025e, 0x73CC06d93721c7Fca047eDCdD0f1a50ce19f3e10, 0x4cF11C60906429731A121300C9dB71A71A3EcE24, 0x169C5B518809C73cc69bFb524A48Dce7314FCC88, 0x296644043f6e7c0f05E38650928091aeE6A97C48, 0x2fD07E30C171729c82EB6Ea06c20A89941D5490B, 0x0E2094fdF0116B826242aac1F58a8a4d5B503A5C, 0x191e5D2CE8d7BB3759990c9ca6Ce8b6C4b3C2a72, 0x25aDfa97164dDF823f9D2e82011628561F4C8f2E, 0x9383b1Ad5c66F4CCb8720364735Ad4668977E147, 0xAAA88310cefeC1d0aAeDa38Ef3b426aB4EAfbeD5, 0xEA720F729141EaEDc1245b371EaB44c86c727596, 0x749d504ba0d8a64E6844fc69AE3638b4EE15303D, 0x1D50f474e9e6429C1291a482c3E5290eFD204500, 0x5f80ebD4fcB6e695B65D7Fa3A06A19B350070021, 0x013DF513A8B51DBfC8a3571F226eb421Dc72391a, 0x21d7a17f99a6DEeC73F589E9D4DEa5fb2CdEDEA3, 0xd9694Fdf54a23Dc09c327d1E3e0e82772607c9fA, 0xa3778DC9B6fAd21a1D8c25e984969890e145dEdc, 0xcCF1c2E1016E5409AFb1BA08C942bA5892FC56c9, 0x115152666D11ADec90aB1d3932A3De079eeaC47b, 0x60994627FB1A772cE378a81362885Acc20A7Fd48, 0xA4B505f6E033e10c82CdFBE3Db1eCd266d42DBc1, 0x51FbCc9493BFE5CD6065EF7B7AC71F81c89151B3, 0x2a798DC5D6C15AC84918006471D03578526Ef8Bf, 0xaBCCf857A65DF2432915BB428660F3e350Fb5EbB, 0x76fbe5Da5d65064CA2100005Ce73A792291C9573, 0x1Ad51bA4eA6e74D8Bf3064D7D5a5D56D781BF6A5, 0x239d687Acde7a2Aa8AF29586eC43c96Fd99D7E6e, 0x3EC4e4838552f7C72b2671Bbe7c65828a57add39, 0x7f565e2E88a9616d87Eea9aC4b2E77102ACbDC0a, 0xca0BF386FD913E14867e7eC7834c09d54bF93176, 0x7C12013f4bDb4dc0Df4f10f9FB4eb87324f9CF10, 0xCe623DA8dA9CF834D239643Abf133eDa389F9D0D, 0x655ebB645Af0457CA1d42d5F8d77CfaCA8b19331, 0x5CEAE77Fb49937C42e08f6442F89f96320F2006F, 0x7dfFbfFF9375B5887EC8Ca9b635Af07Cc356E99c, 0x4d5c941166b5279ED504bDaBda0e01576a7d30CA, 0x1Fd62c7efA9390d806f7e7F2d3C129A6e5008b3a, 0xFA75032dF5E6317A13f256839Dc4f5a6A9058ec2, 0x43Eec73dCe8a5dbAB55278E91b069027B7c159e8, 0x74E476a9657D32c8206ba0BcaC588e8723B77E85, 0xd5F1EbFB89293311d904A82975c280053D0a301E, 0xe78eEF4b5bB2F78DC950613b447a8e6a0C3aDdb8, 0x56Bd88e6C083F685e9830B5db49cC49d70f792a5, 0xDCC10e84fC483AB3b43933Dcd7f86f009e8F7123, 0xCc621bDD493f532B7C35848aA600763724d5375C, 0xEdE70c6e78a67BC0e6f3B977AD0A47DE0abA471f, 0xE65359bc9F4bc09f2aad3F660a64d69eAC7174cC, 0xA7c81439643F529EA89fCE00f56b8174D47B9a79, 0xB5e8751841DEE741Fa6cB5E3217F83036a491F00, 0xa392728551399Ca70A05980177E292D2114D8Db5, 0x30366EBaFe50f9f0624dC2CDb3e2800CC54DfD93, 0x6bacE6a4f9Bd02C6D2F32CcCf2Ca519Cb65a6306, 0x3Ba152B2b6C9aDD76B26D760db293eEDbEE3BEF1, 0x93C3228B964b37947a4c7dA3E9FFf513dED3fF49, 0x0157831FfB3294E0E1f84FA1900551158086Ed21, 0x730582e60FfBE58655fAEfF7113c2cE7DD7c02c0, 0xCA8A02D2CD3fe9Ac42780F49371287c696eCd541, 0x108bB6001b8D432Fc854b7D3421e7a395124A4Cb, 0x4a938a5488D68Af32b1a023b70BF034Cff9f05f0, 0x4b4b32171f24f10ac760D47C2BE4926d7Dcc6b5C, 0x4b0572f824FAA485E65f8C73A93F9B8a2486F4EB, 0x97a4B608e44a402d43679d8CF8C3177E1A6241fA, 0xecD1Ae944d11b4380d7c17497DEEb7EEB76dd805, 0xf9992D2F38B9c2cFFB14E3009DAeaBb1747D64da, 0x932f5220A0d29F60B974c0f97c93AE4e7A2e5cC1] )
    • ERC1967Proxy.91d14854( )
      • RoleManager.hasRole( role=A49807205CE4D355092EF5A8A18F56E8913CF4A201FBE287825B095693C21775, account=0xD6f3f022C3Ff0621a9cbb2AeAFD44954B9C3fa18 ) => ( True )
        addAllowListBatch[NFTDrop (ln:2032)]
        File 1 of 4: ERC1967Proxy
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor() {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
         * proxy whose upgrades are fully controlled by the current implementation.
         */
        interface IERC1822Proxiable {
            /**
             * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
             * address.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy.
             */
            function proxiableUUID() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (interfaces/IERC1967.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
         *
         * _Available since v4.9._
         */
        interface IERC1967 {
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/beacon/BeaconProxy.sol)
        pragma solidity ^0.8.0;
        import "./IBeacon.sol";
        import "../Proxy.sol";
        import "../ERC1967/ERC1967Upgrade.sol";
        /**
         * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
         *
         * The beacon address is stored in storage slot `uint256(keccak256('eip1967.proxy.beacon')) - 1`, so that it doesn't
         * conflict with the storage layout of the implementation behind the proxy.
         *
         * _Available since v3.4._
         */
        contract BeaconProxy is Proxy, ERC1967Upgrade {
            /**
             * @dev Initializes the proxy with `beacon`.
             *
             * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
             * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
             * constructor.
             *
             * Requirements:
             *
             * - `beacon` must be a contract with the interface {IBeacon}.
             */
            constructor(address beacon, bytes memory data) payable {
                _upgradeBeaconToAndCall(beacon, data, false);
            }
            /**
             * @dev Returns the current beacon address.
             */
            function _beacon() internal view virtual returns (address) {
                return _getBeacon();
            }
            /**
             * @dev Returns the current implementation address of the associated beacon.
             */
            function _implementation() internal view virtual override returns (address) {
                return IBeacon(_getBeacon()).implementation();
            }
            /**
             * @dev Changes the proxy to use a new beacon. Deprecated: see {_upgradeBeaconToAndCall}.
             *
             * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon.
             *
             * Requirements:
             *
             * - `beacon` must be a contract.
             * - The implementation returned by `beacon` must be a contract.
             */
            function _setBeacon(address beacon, bytes memory data) internal virtual {
                _upgradeBeaconToAndCall(beacon, data, false);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeacon {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {BeaconProxy} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/UpgradeableBeacon.sol)
        pragma solidity ^0.8.0;
        import "./IBeacon.sol";
        import "../../access/Ownable.sol";
        import "../../utils/Address.sol";
        /**
         * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
         * implementation contract, which is where they will delegate all function calls.
         *
         * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
         */
        contract UpgradeableBeacon is IBeacon, Ownable {
            address private _implementation;
            /**
             * @dev Emitted when the implementation returned by the beacon is changed.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Sets the address of the initial implementation, and the deployer account as the owner who can upgrade the
             * beacon.
             */
            constructor(address implementation_) {
                _setImplementation(implementation_);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function implementation() public view virtual override returns (address) {
                return _implementation;
            }
            /**
             * @dev Upgrades the beacon to a new implementation.
             *
             * Emits an {Upgraded} event.
             *
             * Requirements:
             *
             * - msg.sender must be the owner of the contract.
             * - `newImplementation` must be a contract.
             */
            function upgradeTo(address newImplementation) public virtual onlyOwner {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Sets the implementation contract address for this beacon
             *
             * Requirements:
             *
             * - `newImplementation` must be a contract.
             */
            function _setImplementation(address newImplementation) private {
                require(Address.isContract(newImplementation), "UpgradeableBeacon: implementation is not a contract");
                _implementation = newImplementation;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
        pragma solidity ^0.8.0;
        import "../Proxy.sol";
        import "./ERC1967Upgrade.sol";
        /**
         * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
         * implementation address that can be changed. This address is stored in storage in the location specified by
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
         * implementation behind the proxy.
         */
        contract ERC1967Proxy is Proxy, ERC1967Upgrade {
            /**
             * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
             *
             * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
             * function call, and allows initializing the storage of the proxy like a Solidity constructor.
             */
            constructor(address _logic, bytes memory _data) payable {
                _upgradeToAndCall(_logic, _data, false);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function _implementation() internal view virtual override returns (address impl) {
                return ERC1967Upgrade._getImplementation();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol)
        pragma solidity ^0.8.2;
        import "../beacon/IBeacon.sol";
        import "../../interfaces/IERC1967.sol";
        import "../../interfaces/draft-IERC1822.sol";
        import "../../utils/Address.sol";
        import "../../utils/StorageSlot.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         *
         * _Available since v4.1._
         *
         * @custom:oz-upgrades-unsafe-allow delegatecall
         */
        abstract contract ERC1967Upgrade is IERC1967 {
            // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
            bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev Returns the current implementation address.
             */
            function _getImplementation() internal view returns (address) {
                return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Perform implementation upgrade
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Perform implementation upgrade with additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCall(
                address newImplementation,
                bytes memory data,
                bool forceCall
            ) internal {
                _upgradeTo(newImplementation);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(newImplementation, data);
                }
            }
            /**
             * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCallUUPS(
                address newImplementation,
                bytes memory data,
                bool forceCall
            ) internal {
                // Upgrades from old implementations will perform a rollback test. This test requires the new
                // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                // this special case will break upgrade paths from old UUPS implementation to new ones.
                if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                    _setImplementation(newImplementation);
                } else {
                    try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                        require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                    } catch {
                        revert("ERC1967Upgrade: new implementation is not UUPS");
                    }
                    _upgradeToAndCall(newImplementation, data, forceCall);
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Returns the current admin.
             */
            function _getAdmin() internal view returns (address) {
                return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _changeAdmin(address newAdmin) internal {
                emit AdminChanged(_getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
             */
            bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Returns the current beacon.
             */
            function _getBeacon() internal view returns (address) {
                return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                require(
                    Address.isContract(IBeacon(newBeacon).implementation()),
                    "ERC1967: beacon implementation is not a contract"
                );
                StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
            }
            /**
             * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
             * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
             *
             * Emits a {BeaconUpgraded} event.
             */
            function _upgradeBeaconToAndCall(
                address newBeacon,
                bytes memory data,
                bool forceCall
            ) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
         * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
         * be specified by overriding the virtual {_implementation} function.
         *
         * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
         * different contract through the {_delegate} function.
         *
         * The success and return data of the delegated call will be returned back to the caller of the proxy.
         */
        abstract contract Proxy {
            /**
             * @dev Delegates the current call to `implementation`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _delegate(address implementation) internal virtual {
                assembly {
                    // Copy msg.data. We take full control of memory in this inline assembly
                    // block because it will not return to Solidity code. We overwrite the
                    // Solidity scratch pad at memory position 0.
                    calldatacopy(0, 0, calldatasize())
                    // Call the implementation.
                    // out and outsize are 0 because we don't know the size yet.
                    let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                    // Copy the returned data.
                    returndatacopy(0, 0, returndatasize())
                    switch result
                    // delegatecall returns 0 on error.
                    case 0 {
                        revert(0, returndatasize())
                    }
                    default {
                        return(0, returndatasize())
                    }
                }
            }
            /**
             * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
             * and {_fallback} should delegate.
             */
            function _implementation() internal view virtual returns (address);
            /**
             * @dev Delegates the current call to the address returned by `_implementation()`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _fallback() internal virtual {
                _beforeFallback();
                _delegate(_implementation());
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
             * function in the contract matches the call data.
             */
            fallback() external payable virtual {
                _fallback();
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
             * is empty.
             */
            receive() external payable virtual {
                _fallback();
            }
            /**
             * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
             * call, or as part of the Solidity `fallback` or `receive` functions.
             *
             * If overridden should call `super._beforeFallback()`.
             */
            function _beforeFallback() internal virtual {}
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/ProxyAdmin.sol)
        pragma solidity ^0.8.0;
        import "./TransparentUpgradeableProxy.sol";
        import "../../access/Ownable.sol";
        /**
         * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
         * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
         */
        contract ProxyAdmin is Ownable {
            /**
             * @dev Returns the current implementation of `proxy`.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function getProxyImplementation(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
                // We need to manually run the static call since the getter cannot be flagged as view
                // bytes4(keccak256("implementation()")) == 0x5c60da1b
                (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
                require(success);
                return abi.decode(returndata, (address));
            }
            /**
             * @dev Returns the current admin of `proxy`.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function getProxyAdmin(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
                // We need to manually run the static call since the getter cannot be flagged as view
                // bytes4(keccak256("admin()")) == 0xf851a440
                (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
                require(success);
                return abi.decode(returndata, (address));
            }
            /**
             * @dev Changes the admin of `proxy` to `newAdmin`.
             *
             * Requirements:
             *
             * - This contract must be the current admin of `proxy`.
             */
            function changeProxyAdmin(ITransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
                proxy.changeAdmin(newAdmin);
            }
            /**
             * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function upgrade(ITransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
                proxy.upgradeTo(implementation);
            }
            /**
             * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
             * {TransparentUpgradeableProxy-upgradeToAndCall}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function upgradeAndCall(
                ITransparentUpgradeableProxy proxy,
                address implementation,
                bytes memory data
            ) public payable virtual onlyOwner {
                proxy.upgradeToAndCall{value: msg.value}(implementation, data);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/TransparentUpgradeableProxy.sol)
        pragma solidity ^0.8.0;
        import "../ERC1967/ERC1967Proxy.sol";
        /**
         * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
         * does not implement this interface directly, and some of its functions are implemented by an internal dispatch
         * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
         * include them in the ABI so this interface must be used to interact with it.
         */
        interface ITransparentUpgradeableProxy is IERC1967 {
            function admin() external view returns (address);
            function implementation() external view returns (address);
            function changeAdmin(address) external;
            function upgradeTo(address) external;
            function upgradeToAndCall(address, bytes memory) external payable;
        }
        /**
         * @dev This contract implements a proxy that is upgradeable by an admin.
         *
         * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
         * clashing], which can potentially be used in an attack, this contract uses the
         * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
         * things that go hand in hand:
         *
         * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
         * that call matches one of the admin functions exposed by the proxy itself.
         * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
         * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
         * "admin cannot fallback to proxy target".
         *
         * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
         * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
         * to sudden errors when trying to call a function from the proxy implementation.
         *
         * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
         * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
         *
         * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
         * inherit from that interface, and instead the admin functions are implicitly implemented using a custom dispatch
         * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
         * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
         * implementation.
         *
         * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the compiler
         * will not check that there are no selector conflicts, due to the note above. A selector clash between any new function
         * and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This could
         * render the admin operations inaccessible, which could prevent upgradeability. Transparency may also be compromised.
         */
        contract TransparentUpgradeableProxy is ERC1967Proxy {
            /**
             * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
             * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
             */
            constructor(
                address _logic,
                address admin_,
                bytes memory _data
            ) payable ERC1967Proxy(_logic, _data) {
                _changeAdmin(admin_);
            }
            /**
             * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
             *
             * CAUTION: This modifier is deprecated, as it could cause issues if the modified function has arguments, and the
             * implementation provides a function with the same selector.
             */
            modifier ifAdmin() {
                if (msg.sender == _getAdmin()) {
                    _;
                } else {
                    _fallback();
                }
            }
            /**
             * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior
             */
            function _fallback() internal virtual override {
                if (msg.sender == _getAdmin()) {
                    bytes memory ret;
                    bytes4 selector = msg.sig;
                    if (selector == ITransparentUpgradeableProxy.upgradeTo.selector) {
                        ret = _dispatchUpgradeTo();
                    } else if (selector == ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                        ret = _dispatchUpgradeToAndCall();
                    } else if (selector == ITransparentUpgradeableProxy.changeAdmin.selector) {
                        ret = _dispatchChangeAdmin();
                    } else if (selector == ITransparentUpgradeableProxy.admin.selector) {
                        ret = _dispatchAdmin();
                    } else if (selector == ITransparentUpgradeableProxy.implementation.selector) {
                        ret = _dispatchImplementation();
                    } else {
                        revert("TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                    }
                    assembly {
                        return(add(ret, 0x20), mload(ret))
                    }
                } else {
                    super._fallback();
                }
            }
            /**
             * @dev Returns the current admin.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
             */
            function _dispatchAdmin() private returns (bytes memory) {
                _requireZeroValue();
                address admin = _getAdmin();
                return abi.encode(admin);
            }
            /**
             * @dev Returns the current implementation.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
             */
            function _dispatchImplementation() private returns (bytes memory) {
                _requireZeroValue();
                address implementation = _implementation();
                return abi.encode(implementation);
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _dispatchChangeAdmin() private returns (bytes memory) {
                _requireZeroValue();
                address newAdmin = abi.decode(msg.data[4:], (address));
                _changeAdmin(newAdmin);
                return "";
            }
            /**
             * @dev Upgrade the implementation of the proxy.
             */
            function _dispatchUpgradeTo() private returns (bytes memory) {
                _requireZeroValue();
                address newImplementation = abi.decode(msg.data[4:], (address));
                _upgradeToAndCall(newImplementation, bytes(""), false);
                return "";
            }
            /**
             * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
             * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
             * proxied contract.
             */
            function _dispatchUpgradeToAndCall() private returns (bytes memory) {
                (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
                _upgradeToAndCall(newImplementation, data, true);
                return "";
            }
            /**
             * @dev Returns the current admin.
             */
            function _admin() internal view virtual returns (address) {
                return _getAdmin();
            }
            /**
             * @dev To keep this contract fully transparent, all `ifAdmin` functions must be payable. This helper is here to
             * emulate some proxy functions being non-payable while still allowing value to pass through.
             */
            function _requireZeroValue() private {
                require(msg.value == 0);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
        }
        

        File 2 of 4: NFTDrop
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev External interface of AccessControl declared to support ERC165 detection.
         */
        interface IAccessControlUpgradeable {
            /**
             * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
             *
             * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
             * {RoleAdminChanged} not being emitted signaling this.
             *
             * _Available since v3.1._
             */
            event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
            /**
             * @dev Emitted when `account` is granted `role`.
             *
             * `sender` is the account that originated the contract call, an admin role
             * bearer except when using {AccessControl-_setupRole}.
             */
            event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Emitted when `account` is revoked `role`.
             *
             * `sender` is the account that originated the contract call:
             *   - if using `revokeRole`, it is the admin role bearer
             *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
             */
            event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) external view returns (bool);
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {AccessControl-_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) external view returns (bytes32);
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function grantRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function revokeRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been granted `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             */
            function renounceRole(bytes32 role, address account) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
         * proxy whose upgrades are fully controlled by the current implementation.
         */
        interface IERC1822ProxiableUpgradeable {
            /**
             * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
             * address.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy.
             */
            function proxiableUUID() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
         *
         * _Available since v4.8.3._
         */
        interface IERC1967Upgradeable {
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeaconUpgradeable {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {BeaconProxy} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)
        pragma solidity ^0.8.2;
        import "../beacon/IBeaconUpgradeable.sol";
        import "../../interfaces/IERC1967Upgradeable.sol";
        import "../../interfaces/draft-IERC1822Upgradeable.sol";
        import "../../utils/AddressUpgradeable.sol";
        import "../../utils/StorageSlotUpgradeable.sol";
        import "../utils/Initializable.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         *
         * _Available since v4.1._
         */
        abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable {
            function __ERC1967Upgrade_init() internal onlyInitializing {
            }
            function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
            }
            // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
            bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev Returns the current implementation address.
             */
            function _getImplementation() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Perform implementation upgrade
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Perform implementation upgrade with additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                _upgradeTo(newImplementation);
                if (data.length > 0 || forceCall) {
                    AddressUpgradeable.functionDelegateCall(newImplementation, data);
                }
            }
            /**
             * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
                // Upgrades from old implementations will perform a rollback test. This test requires the new
                // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                // this special case will break upgrade paths from old UUPS implementation to new ones.
                if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
                    _setImplementation(newImplementation);
                } else {
                    try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                        require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                    } catch {
                        revert("ERC1967Upgrade: new implementation is not UUPS");
                    }
                    _upgradeToAndCall(newImplementation, data, forceCall);
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Returns the current admin.
             */
            function _getAdmin() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _changeAdmin(address newAdmin) internal {
                emit AdminChanged(_getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
             */
            bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Returns the current beacon.
             */
            function _getBeacon() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                require(
                    AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
                    "ERC1967: beacon implementation is not a contract"
                );
                StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
            }
            /**
             * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
             * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
             *
             * Emits a {BeaconUpgraded} event.
             */
            function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0 || forceCall) {
                    AddressUpgradeable.functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
                }
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```solidity
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         *
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts.
             *
             * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
             * constructor.
             *
             * Emits an {Initialized} event.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * A reinitializer may be used after the original initialization step. This is essential to configure modules that
             * are added through upgrades and that require initialization.
             *
             * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
             * cannot be nested. If one is invoked in the context of another, execution will revert.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             *
             * WARNING: setting the version to 255 will prevent any future reinitialization.
             *
             * Emits an {Initialized} event.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             *
             * Emits an {Initialized} event the first time it is successfully executed.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized != type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
            /**
             * @dev Returns the highest version that has been initialized. See {reinitializer}.
             */
            function _getInitializedVersion() internal view returns (uint8) {
                return _initialized;
            }
            /**
             * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
             */
            function _isInitializing() internal view returns (bool) {
                return _initializing;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/UUPSUpgradeable.sol)
        pragma solidity ^0.8.0;
        import "../../interfaces/draft-IERC1822Upgradeable.sol";
        import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
        import "./Initializable.sol";
        /**
         * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
         * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
         *
         * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
         * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
         * `UUPSUpgradeable` with a custom implementation of upgrades.
         *
         * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
         *
         * _Available since v4.1._
         */
        abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
            function __UUPSUpgradeable_init() internal onlyInitializing {
            }
            function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
            }
            /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
            address private immutable __self = address(this);
            /**
             * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
             * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
             * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
             * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
             * fail.
             */
            modifier onlyProxy() {
                require(address(this) != __self, "Function must be called through delegatecall");
                require(_getImplementation() == __self, "Function must be called through active proxy");
                _;
            }
            /**
             * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
             * callable on the implementing contract but not through proxies.
             */
            modifier notDelegated() {
                require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
                _;
            }
            /**
             * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
             * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
             */
            function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
                return _IMPLEMENTATION_SLOT;
            }
            /**
             * @dev Upgrade the implementation of the proxy to `newImplementation`.
             *
             * Calls {_authorizeUpgrade}.
             *
             * Emits an {Upgraded} event.
             *
             * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
             */
            function upgradeTo(address newImplementation) public virtual onlyProxy {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
            }
            /**
             * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
             * encoded in `data`.
             *
             * Calls {_authorizeUpgrade}.
             *
             * Emits an {Upgraded} event.
             *
             * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
             */
            function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallUUPS(newImplementation, data, true);
            }
            /**
             * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
             * {upgradeTo} and {upgradeToAndCall}.
             *
             * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
             *
             * ```solidity
             * function _authorizeUpgrade(address) internal override onlyOwner {}
             * ```
             */
            function _authorizeUpgrade(address newImplementation) internal virtual;
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC1155/ERC1155.sol)
        pragma solidity ^0.8.0;
        import "./IERC1155Upgradeable.sol";
        import "./IERC1155ReceiverUpgradeable.sol";
        import "./extensions/IERC1155MetadataURIUpgradeable.sol";
        import "../../utils/AddressUpgradeable.sol";
        import "../../utils/ContextUpgradeable.sol";
        import "../../utils/introspection/ERC165Upgradeable.sol";
        import "../../proxy/utils/Initializable.sol";
        /**
         * @dev Implementation of the basic standard multi-token.
         * See https://eips.ethereum.org/EIPS/eip-1155
         * Originally based on code by Enjin: https://github.com/enjin/erc-1155
         *
         * _Available since v3.1._
         */
        contract ERC1155Upgradeable is Initializable, ContextUpgradeable, ERC165Upgradeable, IERC1155Upgradeable, IERC1155MetadataURIUpgradeable {
            using AddressUpgradeable for address;
            // Mapping from token ID to account balances
            mapping(uint256 => mapping(address => uint256)) private _balances;
            // Mapping from account to operator approvals
            mapping(address => mapping(address => bool)) private _operatorApprovals;
            // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
            string private _uri;
            /**
             * @dev See {_setURI}.
             */
            function __ERC1155_init(string memory uri_) internal onlyInitializing {
                __ERC1155_init_unchained(uri_);
            }
            function __ERC1155_init_unchained(string memory uri_) internal onlyInitializing {
                _setURI(uri_);
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165Upgradeable) returns (bool) {
                return
                    interfaceId == type(IERC1155Upgradeable).interfaceId ||
                    interfaceId == type(IERC1155MetadataURIUpgradeable).interfaceId ||
                    super.supportsInterface(interfaceId);
            }
            /**
             * @dev See {IERC1155MetadataURI-uri}.
             *
             * This implementation returns the same URI for *all* token types. It relies
             * on the token type ID substitution mechanism
             * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
             *
             * Clients calling this function must replace the `\\{id\\}` substring with the
             * actual token type ID.
             */
            function uri(uint256) public view virtual override returns (string memory) {
                return _uri;
            }
            /**
             * @dev See {IERC1155-balanceOf}.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             */
            function balanceOf(address account, uint256 id) public view virtual override returns (uint256) {
                require(account != address(0), "ERC1155: address zero is not a valid owner");
                return _balances[id][account];
            }
            /**
             * @dev See {IERC1155-balanceOfBatch}.
             *
             * Requirements:
             *
             * - `accounts` and `ids` must have the same length.
             */
            function balanceOfBatch(
                address[] memory accounts,
                uint256[] memory ids
            ) public view virtual override returns (uint256[] memory) {
                require(accounts.length == ids.length, "ERC1155: accounts and ids length mismatch");
                uint256[] memory batchBalances = new uint256[](accounts.length);
                for (uint256 i = 0; i < accounts.length; ++i) {
                    batchBalances[i] = balanceOf(accounts[i], ids[i]);
                }
                return batchBalances;
            }
            /**
             * @dev See {IERC1155-setApprovalForAll}.
             */
            function setApprovalForAll(address operator, bool approved) public virtual override {
                _setApprovalForAll(_msgSender(), operator, approved);
            }
            /**
             * @dev See {IERC1155-isApprovedForAll}.
             */
            function isApprovedForAll(address account, address operator) public view virtual override returns (bool) {
                return _operatorApprovals[account][operator];
            }
            /**
             * @dev See {IERC1155-safeTransferFrom}.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 id,
                uint256 amount,
                bytes memory data
            ) public virtual override {
                require(
                    from == _msgSender() || isApprovedForAll(from, _msgSender()),
                    "ERC1155: caller is not token owner or approved"
                );
                _safeTransferFrom(from, to, id, amount, data);
            }
            /**
             * @dev See {IERC1155-safeBatchTransferFrom}.
             */
            function safeBatchTransferFrom(
                address from,
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) public virtual override {
                require(
                    from == _msgSender() || isApprovedForAll(from, _msgSender()),
                    "ERC1155: caller is not token owner or approved"
                );
                _safeBatchTransferFrom(from, to, ids, amounts, data);
            }
            /**
             * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
             *
             * Emits a {TransferSingle} event.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - `from` must have a balance of tokens of type `id` of at least `amount`.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
             * acceptance magic value.
             */
            function _safeTransferFrom(
                address from,
                address to,
                uint256 id,
                uint256 amount,
                bytes memory data
            ) internal virtual {
                require(to != address(0), "ERC1155: transfer to the zero address");
                address operator = _msgSender();
                uint256[] memory ids = _asSingletonArray(id);
                uint256[] memory amounts = _asSingletonArray(amount);
                _beforeTokenTransfer(operator, from, to, ids, amounts, data);
                uint256 fromBalance = _balances[id][from];
                require(fromBalance >= amount, "ERC1155: insufficient balance for transfer");
                unchecked {
                    _balances[id][from] = fromBalance - amount;
                }
                _balances[id][to] += amount;
                emit TransferSingle(operator, from, to, id, amount);
                _afterTokenTransfer(operator, from, to, ids, amounts, data);
                _doSafeTransferAcceptanceCheck(operator, from, to, id, amount, data);
            }
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
             *
             * Emits a {TransferBatch} event.
             *
             * Requirements:
             *
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
             * acceptance magic value.
             */
            function _safeBatchTransferFrom(
                address from,
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) internal virtual {
                require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
                require(to != address(0), "ERC1155: transfer to the zero address");
                address operator = _msgSender();
                _beforeTokenTransfer(operator, from, to, ids, amounts, data);
                for (uint256 i = 0; i < ids.length; ++i) {
                    uint256 id = ids[i];
                    uint256 amount = amounts[i];
                    uint256 fromBalance = _balances[id][from];
                    require(fromBalance >= amount, "ERC1155: insufficient balance for transfer");
                    unchecked {
                        _balances[id][from] = fromBalance - amount;
                    }
                    _balances[id][to] += amount;
                }
                emit TransferBatch(operator, from, to, ids, amounts);
                _afterTokenTransfer(operator, from, to, ids, amounts, data);
                _doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, amounts, data);
            }
            /**
             * @dev Sets a new URI for all token types, by relying on the token type ID
             * substitution mechanism
             * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
             *
             * By this mechanism, any occurrence of the `\\{id\\}` substring in either the
             * URI or any of the amounts in the JSON file at said URI will be replaced by
             * clients with the token type ID.
             *
             * For example, the `https://token-cdn-domain/\\{id\\}.json` URI would be
             * interpreted by clients as
             * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
             * for token type ID 0x4cce0.
             *
             * See {uri}.
             *
             * Because these URIs cannot be meaningfully represented by the {URI} event,
             * this function emits no events.
             */
            function _setURI(string memory newuri) internal virtual {
                _uri = newuri;
            }
            /**
             * @dev Creates `amount` tokens of token type `id`, and assigns them to `to`.
             *
             * Emits a {TransferSingle} event.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
             * acceptance magic value.
             */
            function _mint(address to, uint256 id, uint256 amount, bytes memory data) internal virtual {
                require(to != address(0), "ERC1155: mint to the zero address");
                address operator = _msgSender();
                uint256[] memory ids = _asSingletonArray(id);
                uint256[] memory amounts = _asSingletonArray(amount);
                _beforeTokenTransfer(operator, address(0), to, ids, amounts, data);
                _balances[id][to] += amount;
                emit TransferSingle(operator, address(0), to, id, amount);
                _afterTokenTransfer(operator, address(0), to, ids, amounts, data);
                _doSafeTransferAcceptanceCheck(operator, address(0), to, id, amount, data);
            }
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
             *
             * Emits a {TransferBatch} event.
             *
             * Requirements:
             *
             * - `ids` and `amounts` must have the same length.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
             * acceptance magic value.
             */
            function _mintBatch(
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) internal virtual {
                require(to != address(0), "ERC1155: mint to the zero address");
                require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
                address operator = _msgSender();
                _beforeTokenTransfer(operator, address(0), to, ids, amounts, data);
                for (uint256 i = 0; i < ids.length; i++) {
                    _balances[ids[i]][to] += amounts[i];
                }
                emit TransferBatch(operator, address(0), to, ids, amounts);
                _afterTokenTransfer(operator, address(0), to, ids, amounts, data);
                _doSafeBatchTransferAcceptanceCheck(operator, address(0), to, ids, amounts, data);
            }
            /**
             * @dev Destroys `amount` tokens of token type `id` from `from`
             *
             * Emits a {TransferSingle} event.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `from` must have at least `amount` tokens of token type `id`.
             */
            function _burn(address from, uint256 id, uint256 amount) internal virtual {
                require(from != address(0), "ERC1155: burn from the zero address");
                address operator = _msgSender();
                uint256[] memory ids = _asSingletonArray(id);
                uint256[] memory amounts = _asSingletonArray(amount);
                _beforeTokenTransfer(operator, from, address(0), ids, amounts, "");
                uint256 fromBalance = _balances[id][from];
                require(fromBalance >= amount, "ERC1155: burn amount exceeds balance");
                unchecked {
                    _balances[id][from] = fromBalance - amount;
                }
                emit TransferSingle(operator, from, address(0), id, amount);
                _afterTokenTransfer(operator, from, address(0), ids, amounts, "");
            }
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
             *
             * Emits a {TransferBatch} event.
             *
             * Requirements:
             *
             * - `ids` and `amounts` must have the same length.
             */
            function _burnBatch(address from, uint256[] memory ids, uint256[] memory amounts) internal virtual {
                require(from != address(0), "ERC1155: burn from the zero address");
                require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
                address operator = _msgSender();
                _beforeTokenTransfer(operator, from, address(0), ids, amounts, "");
                for (uint256 i = 0; i < ids.length; i++) {
                    uint256 id = ids[i];
                    uint256 amount = amounts[i];
                    uint256 fromBalance = _balances[id][from];
                    require(fromBalance >= amount, "ERC1155: burn amount exceeds balance");
                    unchecked {
                        _balances[id][from] = fromBalance - amount;
                    }
                }
                emit TransferBatch(operator, from, address(0), ids, amounts);
                _afterTokenTransfer(operator, from, address(0), ids, amounts, "");
            }
            /**
             * @dev Approve `operator` to operate on all of `owner` tokens
             *
             * Emits an {ApprovalForAll} event.
             */
            function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
                require(owner != operator, "ERC1155: setting approval status for self");
                _operatorApprovals[owner][operator] = approved;
                emit ApprovalForAll(owner, operator, approved);
            }
            /**
             * @dev Hook that is called before any token transfer. This includes minting
             * and burning, as well as batched variants.
             *
             * The same hook is called on both single and batched variants. For single
             * transfers, the length of the `ids` and `amounts` arrays will be 1.
             *
             * Calling conditions (for each `id` and `amount` pair):
             *
             * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
             * of token type `id` will be  transferred to `to`.
             * - When `from` is zero, `amount` tokens of token type `id` will be minted
             * for `to`.
             * - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
             * will be burned.
             * - `from` and `to` are never both zero.
             * - `ids` and `amounts` have the same, non-zero length.
             *
             * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
             */
            function _beforeTokenTransfer(
                address operator,
                address from,
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) internal virtual {}
            /**
             * @dev Hook that is called after any token transfer. This includes minting
             * and burning, as well as batched variants.
             *
             * The same hook is called on both single and batched variants. For single
             * transfers, the length of the `id` and `amount` arrays will be 1.
             *
             * Calling conditions (for each `id` and `amount` pair):
             *
             * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
             * of token type `id` will be  transferred to `to`.
             * - When `from` is zero, `amount` tokens of token type `id` will be minted
             * for `to`.
             * - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
             * will be burned.
             * - `from` and `to` are never both zero.
             * - `ids` and `amounts` have the same, non-zero length.
             *
             * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
             */
            function _afterTokenTransfer(
                address operator,
                address from,
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) internal virtual {}
            function _doSafeTransferAcceptanceCheck(
                address operator,
                address from,
                address to,
                uint256 id,
                uint256 amount,
                bytes memory data
            ) private {
                if (to.isContract()) {
                    try IERC1155ReceiverUpgradeable(to).onERC1155Received(operator, from, id, amount, data) returns (bytes4 response) {
                        if (response != IERC1155ReceiverUpgradeable.onERC1155Received.selector) {
                            revert("ERC1155: ERC1155Receiver rejected tokens");
                        }
                    } catch Error(string memory reason) {
                        revert(reason);
                    } catch {
                        revert("ERC1155: transfer to non-ERC1155Receiver implementer");
                    }
                }
            }
            function _doSafeBatchTransferAcceptanceCheck(
                address operator,
                address from,
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) private {
                if (to.isContract()) {
                    try IERC1155ReceiverUpgradeable(to).onERC1155BatchReceived(operator, from, ids, amounts, data) returns (
                        bytes4 response
                    ) {
                        if (response != IERC1155ReceiverUpgradeable.onERC1155BatchReceived.selector) {
                            revert("ERC1155: ERC1155Receiver rejected tokens");
                        }
                    } catch Error(string memory reason) {
                        revert(reason);
                    } catch {
                        revert("ERC1155: transfer to non-ERC1155Receiver implementer");
                    }
                }
            }
            function _asSingletonArray(uint256 element) private pure returns (uint256[] memory) {
                uint256[] memory array = new uint256[](1);
                array[0] = element;
                return array;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[47] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC1155/extensions/ERC1155Supply.sol)
        pragma solidity ^0.8.0;
        import "../ERC1155Upgradeable.sol";
        import "../../../proxy/utils/Initializable.sol";
        /**
         * @dev Extension of ERC1155 that adds tracking of total supply per id.
         *
         * Useful for scenarios where Fungible and Non-fungible tokens have to be
         * clearly identified. Note: While a totalSupply of 1 might mean the
         * corresponding is an NFT, there is no guarantees that no other token with the
         * same id are not going to be minted.
         */
        abstract contract ERC1155SupplyUpgradeable is Initializable, ERC1155Upgradeable {
            function __ERC1155Supply_init() internal onlyInitializing {
            }
            function __ERC1155Supply_init_unchained() internal onlyInitializing {
            }
            mapping(uint256 => uint256) private _totalSupply;
            /**
             * @dev Total amount of tokens in with a given id.
             */
            function totalSupply(uint256 id) public view virtual returns (uint256) {
                return _totalSupply[id];
            }
            /**
             * @dev Indicates whether any token exist with a given id, or not.
             */
            function exists(uint256 id) public view virtual returns (bool) {
                return ERC1155SupplyUpgradeable.totalSupply(id) > 0;
            }
            /**
             * @dev See {ERC1155-_beforeTokenTransfer}.
             */
            function _beforeTokenTransfer(
                address operator,
                address from,
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) internal virtual override {
                super._beforeTokenTransfer(operator, from, to, ids, amounts, data);
                if (from == address(0)) {
                    for (uint256 i = 0; i < ids.length; ++i) {
                        _totalSupply[ids[i]] += amounts[i];
                    }
                }
                if (to == address(0)) {
                    for (uint256 i = 0; i < ids.length; ++i) {
                        uint256 id = ids[i];
                        uint256 amount = amounts[i];
                        uint256 supply = _totalSupply[id];
                        require(supply >= amount, "ERC1155: burn amount exceeds totalSupply");
                        unchecked {
                            _totalSupply[id] = supply - amount;
                        }
                    }
                }
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC1155/extensions/IERC1155MetadataURI.sol)
        pragma solidity ^0.8.0;
        import "../IERC1155Upgradeable.sol";
        /**
         * @dev Interface of the optional ERC1155MetadataExtension interface, as defined
         * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP].
         *
         * _Available since v3.1._
         */
        interface IERC1155MetadataURIUpgradeable is IERC1155Upgradeable {
            /**
             * @dev Returns the URI for token type `id`.
             *
             * If the `\\{id\\}` substring is present in the URI, it must be replaced by
             * clients with the actual token type ID.
             */
            function uri(uint256 id) external view returns (string memory);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol)
        pragma solidity ^0.8.0;
        import "../../utils/introspection/IERC165Upgradeable.sol";
        /**
         * @dev _Available since v3.1._
         */
        interface IERC1155ReceiverUpgradeable is IERC165Upgradeable {
            /**
             * @dev Handles the receipt of a single ERC1155 token type. This function is
             * called at the end of a `safeTransferFrom` after the balance has been updated.
             *
             * NOTE: To accept the transfer, this must return
             * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
             * (i.e. 0xf23a6e61, or its own function selector).
             *
             * @param operator The address which initiated the transfer (i.e. msg.sender)
             * @param from The address which previously owned the token
             * @param id The ID of the token being transferred
             * @param value The amount of tokens being transferred
             * @param data Additional data with no specified format
             * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
             */
            function onERC1155Received(
                address operator,
                address from,
                uint256 id,
                uint256 value,
                bytes calldata data
            ) external returns (bytes4);
            /**
             * @dev Handles the receipt of a multiple ERC1155 token types. This function
             * is called at the end of a `safeBatchTransferFrom` after the balances have
             * been updated.
             *
             * NOTE: To accept the transfer(s), this must return
             * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
             * (i.e. 0xbc197c81, or its own function selector).
             *
             * @param operator The address which initiated the batch transfer (i.e. msg.sender)
             * @param from The address which previously owned the token
             * @param ids An array containing ids of each token being transferred (order and length must match values array)
             * @param values An array containing amounts of each token being transferred (order and length must match ids array)
             * @param data Additional data with no specified format
             * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
             */
            function onERC1155BatchReceived(
                address operator,
                address from,
                uint256[] calldata ids,
                uint256[] calldata values,
                bytes calldata data
            ) external returns (bytes4);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC1155/IERC1155.sol)
        pragma solidity ^0.8.0;
        import "../../utils/introspection/IERC165Upgradeable.sol";
        /**
         * @dev Required interface of an ERC1155 compliant contract, as defined in the
         * https://eips.ethereum.org/EIPS/eip-1155[EIP].
         *
         * _Available since v3.1._
         */
        interface IERC1155Upgradeable is IERC165Upgradeable {
            /**
             * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
             */
            event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
            /**
             * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
             * transfers.
             */
            event TransferBatch(
                address indexed operator,
                address indexed from,
                address indexed to,
                uint256[] ids,
                uint256[] values
            );
            /**
             * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
             * `approved`.
             */
            event ApprovalForAll(address indexed account, address indexed operator, bool approved);
            /**
             * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
             *
             * If an {URI} event was emitted for `id`, the standard
             * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
             * returned by {IERC1155MetadataURI-uri}.
             */
            event URI(string value, uint256 indexed id);
            /**
             * @dev Returns the amount of tokens of token type `id` owned by `account`.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             */
            function balanceOf(address account, uint256 id) external view returns (uint256);
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
             *
             * Requirements:
             *
             * - `accounts` and `ids` must have the same length.
             */
            function balanceOfBatch(
                address[] calldata accounts,
                uint256[] calldata ids
            ) external view returns (uint256[] memory);
            /**
             * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
             *
             * Emits an {ApprovalForAll} event.
             *
             * Requirements:
             *
             * - `operator` cannot be the caller.
             */
            function setApprovalForAll(address operator, bool approved) external;
            /**
             * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
             *
             * See {setApprovalForAll}.
             */
            function isApprovedForAll(address account, address operator) external view returns (bool);
            /**
             * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
             *
             * Emits a {TransferSingle} event.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
             * - `from` must have a balance of tokens of type `id` of at least `amount`.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
             * acceptance magic value.
             */
            function safeTransferFrom(address from, address to, uint256 id, uint256 amount, bytes calldata data) external;
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
             *
             * Emits a {TransferBatch} event.
             *
             * Requirements:
             *
             * - `ids` and `amounts` must have the same length.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
             * acceptance magic value.
             */
            function safeBatchTransferFrom(
                address from,
                address to,
                uint256[] calldata ids,
                uint256[] calldata amounts,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/utils/ERC1155Holder.sol)
        pragma solidity ^0.8.0;
        import "./ERC1155ReceiverUpgradeable.sol";
        import "../../../proxy/utils/Initializable.sol";
        /**
         * Simple implementation of `ERC1155Receiver` that will allow a contract to hold ERC1155 tokens.
         *
         * IMPORTANT: When inheriting this contract, you must include a way to use the received tokens, otherwise they will be
         * stuck.
         *
         * @dev _Available since v3.1._
         */
        contract ERC1155HolderUpgradeable is Initializable, ERC1155ReceiverUpgradeable {
            function __ERC1155Holder_init() internal onlyInitializing {
            }
            function __ERC1155Holder_init_unchained() internal onlyInitializing {
            }
            function onERC1155Received(
                address,
                address,
                uint256,
                uint256,
                bytes memory
            ) public virtual override returns (bytes4) {
                return this.onERC1155Received.selector;
            }
            function onERC1155BatchReceived(
                address,
                address,
                uint256[] memory,
                uint256[] memory,
                bytes memory
            ) public virtual override returns (bytes4) {
                return this.onERC1155BatchReceived.selector;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC1155/utils/ERC1155Receiver.sol)
        pragma solidity ^0.8.0;
        import "../IERC1155ReceiverUpgradeable.sol";
        import "../../../utils/introspection/ERC165Upgradeable.sol";
        import "../../../proxy/utils/Initializable.sol";
        /**
         * @dev _Available since v3.1._
         */
        abstract contract ERC1155ReceiverUpgradeable is Initializable, ERC165Upgradeable, IERC1155ReceiverUpgradeable {
            function __ERC1155Receiver_init() internal onlyInitializing {
            }
            function __ERC1155Receiver_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165Upgradeable) returns (bool) {
                return interfaceId == type(IERC1155ReceiverUpgradeable).interfaceId || super.supportsInterface(interfaceId);
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             *
             * Furthermore, `isContract` will also return true if the target contract within
             * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
             * which only has an effect at the end of a transaction.
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal onlyInitializing {
            }
            function __Context_init_unchained() internal onlyInitializing {
            }
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
        pragma solidity ^0.8.0;
        import "./IERC165Upgradeable.sol";
        import "../../proxy/utils/Initializable.sol";
        /**
         * @dev Implementation of the {IERC165} interface.
         *
         * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
         * for the additional interface id that will be supported. For example:
         *
         * ```solidity
         * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
         *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
         * }
         * ```
         *
         * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
         */
        abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
            function __ERC165_init() internal onlyInitializing {
            }
            function __ERC165_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IERC165Upgradeable).interfaceId;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165Upgradeable {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)
        pragma solidity ^0.8.0;
        // CAUTION
        // This version of SafeMath should only be used with Solidity 0.8 or later,
        // because it relies on the compiler's built in overflow checks.
        /**
         * @dev Wrappers over Solidity's arithmetic operations.
         *
         * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
         * now has built in overflow checking.
         */
        library SafeMathUpgradeable {
            /**
             * @dev Returns the addition of two unsigned integers, with an overflow flag.
             *
             * _Available since v3.4._
             */
            function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    uint256 c = a + b;
                    if (c < a) return (false, 0);
                    return (true, c);
                }
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
             *
             * _Available since v3.4._
             */
            function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    if (b > a) return (false, 0);
                    return (true, a - b);
                }
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
             *
             * _Available since v3.4._
             */
            function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                    // benefit is lost if 'b' is also tested.
                    // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                    if (a == 0) return (true, 0);
                    uint256 c = a * b;
                    if (c / a != b) return (false, 0);
                    return (true, c);
                }
            }
            /**
             * @dev Returns the division of two unsigned integers, with a division by zero flag.
             *
             * _Available since v3.4._
             */
            function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    if (b == 0) return (false, 0);
                    return (true, a / b);
                }
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
             *
             * _Available since v3.4._
             */
            function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                unchecked {
                    if (b == 0) return (false, 0);
                    return (true, a % b);
                }
            }
            /**
             * @dev Returns the addition of two unsigned integers, reverting on
             * overflow.
             *
             * Counterpart to Solidity's `+` operator.
             *
             * Requirements:
             *
             * - Addition cannot overflow.
             */
            function add(uint256 a, uint256 b) internal pure returns (uint256) {
                return a + b;
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, reverting on
             * overflow (when the result is negative).
             *
             * Counterpart to Solidity's `-` operator.
             *
             * Requirements:
             *
             * - Subtraction cannot overflow.
             */
            function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                return a - b;
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, reverting on
             * overflow.
             *
             * Counterpart to Solidity's `*` operator.
             *
             * Requirements:
             *
             * - Multiplication cannot overflow.
             */
            function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                return a * b;
            }
            /**
             * @dev Returns the integer division of two unsigned integers, reverting on
             * division by zero. The result is rounded towards zero.
             *
             * Counterpart to Solidity's `/` operator.
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function div(uint256 a, uint256 b) internal pure returns (uint256) {
                return a / b;
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
             * reverting when dividing by zero.
             *
             * Counterpart to Solidity's `%` operator. This function uses a `revert`
             * opcode (which leaves remaining gas untouched) while Solidity uses an
             * invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                return a % b;
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
             * overflow (when the result is negative).
             *
             * CAUTION: This function is deprecated because it requires allocating memory for the error
             * message unnecessarily. For custom revert reasons use {trySub}.
             *
             * Counterpart to Solidity's `-` operator.
             *
             * Requirements:
             *
             * - Subtraction cannot overflow.
             */
            function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                unchecked {
                    require(b <= a, errorMessage);
                    return a - b;
                }
            }
            /**
             * @dev Returns the integer division of two unsigned integers, reverting with custom message on
             * division by zero. The result is rounded towards zero.
             *
             * Counterpart to Solidity's `/` operator. Note: this function uses a
             * `revert` opcode (which leaves remaining gas untouched) while Solidity
             * uses an invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                unchecked {
                    require(b > 0, errorMessage);
                    return a / b;
                }
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
             * reverting with custom message when dividing by zero.
             *
             * CAUTION: This function is deprecated because it requires allocating memory for the error
             * message unnecessarily. For custom revert reasons use {tryMod}.
             *
             * Counterpart to Solidity's `%` operator. This function uses a `revert`
             * opcode (which leaves remaining gas untouched) while Solidity uses an
             * invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                unchecked {
                    require(b > 0, errorMessage);
                    return a % b;
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
        // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```solidity
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
         * _Available since v4.9 for `string`, `bytes`._
         */
        library StorageSlotUpgradeable {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            struct StringSlot {
                string value;
            }
            struct BytesSlot {
                bytes value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` with member `value` located at `slot`.
             */
            function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
             */
            function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` with member `value` located at `slot`.
             */
            function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
             */
            function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
        }
        // SPDX-License-Identifier: MIT
        /***
         *              _____                _____                    _____                    _____            _____                    _____          
         *             /\\    \\              /\\    \\                  /\\    \\                  /\\    \\          /\\    \\                  /\\    \\         
         *            /::\\    \\            /::\\    \\                /::\\    \\                /::\\____\\        /::\\    \\                /::\\    \\        
         *           /::::\\    \\           \\:::\\    \\              /::::\\    \\              /:::/    /       /::::\\    \\               \\:::\\    \\       
         *          /::::::\\    \\           \\:::\\    \\            /::::::\\    \\            /:::/    /       /::::::\\    \\               \\:::\\    \\      
         *         /:::/\\:::\\    \\           \\:::\\    \\          /:::/\\:::\\    \\          /:::/    /       /:::/\\:::\\    \\               \\:::\\    \\     
         *        /:::/__\\:::\\    \\           \\:::\\    \\        /:::/__\\:::\\    \\        /:::/    /       /:::/__\\:::\\    \\               \\:::\\    \\    
         *        \\:::\\   \\:::\\    \\          /::::\\    \\      /::::\\   \\:::\\    \\      /:::/    /        \\:::\\   \\:::\\    \\              /::::\\    \\   
         *      ___\\:::\\   \\:::\\    \\        /::::::\\    \\    /::::::\\   \\:::\\    \\    /:::/    /       ___\\:::\\   \\:::\\    \\    ____    /::::::\\    \\  
         *     /\\   \\:::\\   \\:::\\    \\      /:::/\\:::\\    \\  /:::/\\:::\\   \\:::\\    \\  /:::/    /       /\\   \\:::\\   \\:::\\    \\  /\\   \\  /:::/\\:::\\    \\ 
         *    /::\\   \\:::\\   \\:::\\____\\    /:::/  \\:::\\____\\/:::/__\\:::\\   \\:::\\____\\/:::/____/       /::\\   \\:::\\   \\:::\\____\\/::\\   \\/:::/  \\:::\\____\\
         *    \\:::\\   \\:::\\   \\::/    /   /:::/    \\::/    /\\:::\\   \\:::\\   \\::/    /\\:::\\    \\       \\:::\\   \\:::\\   \\::/    /\\:::\\  /:::/    \\::/    /
         *     \\:::\\   \\:::\\   \\/____/   /:::/    / \\/____/  \\:::\\   \\:::\\   \\/____/  \\:::\\    \\       \\:::\\   \\:::\\   \\/____/  \\:::\\/:::/    / \\/____/ 
         *      \\:::\\   \\:::\\    \\      /:::/    /            \\:::\\   \\:::\\    \\       \\:::\\    \\       \\:::\\   \\:::\\    \\       \\::::::/    /          
         *       \\:::\\   \\:::\\____\\    /:::/    /              \\:::\\   \\:::\\____\\       \\:::\\    \\       \\:::\\   \\:::\\____\\       \\::::/____/           
         *        \\:::\\  /:::/    /    \\::/    /                \\:::\\   \\::/    /        \\:::\\    \\       \\:::\\  /:::/    /        \\:::\\    \\           
         *         \\:::\\/:::/    /      \\/____/                  \\:::\\   \\/____/          \\:::\\    \\       \\:::\\/:::/    /          \\:::\\    \\          
         *          \\::::::/    /                                 \\:::\\    \\               \\:::\\    \\       \\::::::/    /            \\:::\\    \\         
         *           \\::::/    /                                   \\:::\\____\\               \\:::\\____\\       \\::::/    /              \\:::\\____\\        
         *            \\::/    /                                     \\::/    /                \\::/    /        \\::/    /                \\::/    /        
         *             \\/____/                                       \\/____/                  \\/____/          \\/____/                  \\/____/         
         *                                                                                                                                              
         */
        pragma solidity ^0.8.9;
        import "@openzeppelin/contracts-upgradeable/token/ERC1155/ERC1155Upgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/token/ERC1155/utils/ERC1155ReceiverUpgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/token/ERC1155/utils/ERC1155HolderUpgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/utils/math/SafeMathUpgradeable.sol";
        import "contracts/role/IRoleManager.sol";
        import "contracts/nfts/INFTBase.sol";
        contract NFTDrop is Initializable, UUPSUpgradeable, ERC1155HolderUpgradeable, ContextUpgradeable {
            using SafeMathUpgradeable for uint256;
            IRoleManager public roleManager;
            INFTBase public nftBase;
            bytes32 private constant ADMIN_ROLE = keccak256("ADMIN_ROLE");
            // NFTDrop info
            struct NFTDropInfo {
                uint256 amount;
                uint256 dropAmount;
                uint256 remain;
                uint256 start;
                uint256 end;
                bool allow;
            }
            mapping (uint256 => NFTDropInfo) public nftDrops;  //nft id => NFTDropInfo
            mapping (uint256 => address[]) public usedAddr;  //nft id => address
            mapping (uint256 => mapping (address => bool)) public allowList;  //nft id => address
            //event
            event AddedAllowList(uint256 indexed nftId, address user);
            event RemovedAllowlist(uint256 indexed nftId, address user);
            event AddedAllowListBatch(uint256 indexed nftId, address[] user);
            event RemovedAllowlistBatch(uint256 indexed nftId, address[] user);
            event Add(uint256 indexed nftId, uint256 amount, uint256 dropAmount, uint256 start, uint256 end, bool allow);
            event Set(uint256 indexed nftId, uint256 dropAmount, uint256 start, uint256 end, bool allow);
            event GetNft(uint256 indexed nftId, uint256 dropAmount);
            /// @custom:oz-upgrades-unsafe-allow constructor
            constructor() {
                _disableInitializers();
            }
            function initialize(IRoleManager _roleManager, INFTBase _nftBase) initializer public {
                __UUPSUpgradeable_init();
                roleManager = IRoleManager(_roleManager);
                nftBase = INFTBase(_nftBase);
            }
            function supportsInterface(bytes4 interfaceId) public view virtual override(ERC1155ReceiverUpgradeable) returns (bool) {
                return super.supportsInterface(interfaceId);
            }
            function _authorizeUpgrade(address newImplementation)
                internal
                onlyRole(ADMIN_ROLE)
                override
            {}
            modifier onlyRole(bytes32 role) {
                require(roleManager.hasRole(role, _msgSender()),"NFTDrop/has_no_role");
                _;
            }
            function addAllowList(uint256 nftId, address user) public onlyRole(ADMIN_ROLE) {
                require(!allowList[nftId][user], "NFTDrop/already_on_allowList");
                allowList[nftId][user] = true;
                
                emit AddedAllowList(nftId, user);
            }
            function removeAllowList(uint256 nftId, address user) public onlyRole(ADMIN_ROLE) {
                require(allowList[nftId][user], "NFTDrop/not_on_allowList");
                allowList[nftId][user] = false;
                emit RemovedAllowlist(nftId, user);
            }
            function addAllowListBatch(uint256 nftId, address[] memory users) public onlyRole(ADMIN_ROLE) {
                for (uint256 i = 0; i < users.length; i++) {
                    allowList[nftId][users[i]] = true;
                }
                emit AddedAllowListBatch(nftId, users);
            }
            function removeAllowListBatch(uint256 nftId, address[] memory users) public onlyRole(ADMIN_ROLE) {
                for (uint256 i = 0; i < users.length; i++) {
                    allowList[nftId][users[i]] = false;
                }
                emit RemovedAllowlistBatch(nftId, users);
            }
            /**
             * @dev Add NFT Drop
             */ 
            function add(uint256 _nftId, uint256 _amount, uint256 _dropAmount, uint256 _start, uint256 _end, bool _allow) public onlyRole(ADMIN_ROLE) {
                require(nftBase.balanceOf(_msgSender(), _nftId) >= _amount,"NFTDrop/insufficient_amount");
                require(_amount > 0, "NFTDrop/nft_zero");
                require(_end > _start, "NFTDrop/time_err");
                nftBase.safeTransferFrom(_msgSender(), address(this), _nftId, _amount, "");
                nftDrops[_nftId].amount = _amount;
                nftDrops[_nftId].dropAmount = _dropAmount;
                nftDrops[_nftId].remain = _amount;
                nftDrops[_nftId].start = _start;
                nftDrops[_nftId].end = _end;
                nftDrops[_nftId].allow = _allow;
                emit Add(_nftId, _amount, _dropAmount, _start, _end, _allow);
            }
            /**
             * @dev Set NFT Drop
             */ 
            function set(uint256 _nftId, uint256 _dropAmount, uint256 _start, uint256 _end, bool _allow) public onlyRole(ADMIN_ROLE) {
                require(nftDrops[_nftId].amount > 0, "NFTDrop/nft_zero");
                require(_end > _start, "NFTDrop/time_err");
                
                nftDrops[_nftId].dropAmount = _dropAmount;
                nftDrops[_nftId].start = _start;
                nftDrops[_nftId].end = _end;
                nftDrops[_nftId].allow = _allow;
                emit Set(_nftId, _dropAmount, _start, _end, _allow);
            }
            
            /**
             * @dev Get NFT
             */ 
            function getNft(uint256 _nftId) public {
                require(nftDrops[_nftId].remain >= nftDrops[_nftId].dropAmount,"NFTDrop/sold_out");
                require(nftDrops[_nftId].start <= block.timestamp ,"NFTDrop/not_yet_start");
                require(nftDrops[_nftId].end >= block.timestamp ,"NFTDrop/finished");
                //check allow list
                if (nftDrops[_nftId].allow){
                    if (!allowList[_nftId][_msgSender()])
                        revert("NFTDrop/not_allowed");
                }
                //check used addr
                uint256 length = usedAddr[_nftId].length;
                for (uint256 i = 0; i < length; ++i) {
                    if (usedAddr[_nftId][i] == _msgSender()){
                        revert("NFTDrop/already_airdrop");
                    }
                }
                usedAddr[_nftId].push(_msgSender());
                
                nftBase.safeTransferFrom(address(this), _msgSender(), _nftId, nftDrops[_nftId].dropAmount, "");
                nftDrops[_nftId].remain = nftDrops[_nftId].remain.sub(nftDrops[_nftId].dropAmount);
                emit GetNft(_nftId, nftDrops[_nftId].dropAmount);
            }
            /**
             * @dev Withdraw
             */ 
            function withdraw(uint256 _nftId) public onlyRole(ADMIN_ROLE) {
                require(nftDrops[_nftId].remain > 0, "NFTDrop/nft_zero");
                nftBase.safeTransferFrom(address(this), _msgSender(), _nftId, nftDrops[_nftId].remain, "");
                nftDrops[_nftId].remain = 0;
            }
        }// SPDX-License-Identifier: MIT
        pragma solidity ^0.8.9;
        import "@openzeppelin/contracts-upgradeable/token/ERC1155/IERC1155Upgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/access/IAccessControlUpgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/token/ERC1155/extensions/ERC1155SupplyUpgradeable.sol";
        // interface for INFTBase
        interface INFTBase is IERC1155Upgradeable, IAccessControlUpgradeable {
            function burn(uint256 tokenId, uint256 amount) external;
            
            function mint(address maker, uint256 tokenId, uint256 amount) external returns(uint256);
            function mintBatch(address maker, uint256[] memory tokenIds, uint256[] memory amounts) external returns(uint256[] memory);
            function getTotalSupply(uint256 tokenId) external view returns (uint256);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.9;
        import "@openzeppelin/contracts-upgradeable/access/IAccessControlUpgradeable.sol";
        // interface for IRoleManager
        interface IRoleManager is IAccessControlUpgradeable{
            function hasRole(bytes32 role, address account) external view returns (bool);
        }
        

        File 3 of 4: ERC1967Proxy
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor() {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
         * proxy whose upgrades are fully controlled by the current implementation.
         */
        interface IERC1822Proxiable {
            /**
             * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
             * address.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy.
             */
            function proxiableUUID() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (interfaces/IERC1967.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
         *
         * _Available since v4.9._
         */
        interface IERC1967 {
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/beacon/BeaconProxy.sol)
        pragma solidity ^0.8.0;
        import "./IBeacon.sol";
        import "../Proxy.sol";
        import "../ERC1967/ERC1967Upgrade.sol";
        /**
         * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
         *
         * The beacon address is stored in storage slot `uint256(keccak256('eip1967.proxy.beacon')) - 1`, so that it doesn't
         * conflict with the storage layout of the implementation behind the proxy.
         *
         * _Available since v3.4._
         */
        contract BeaconProxy is Proxy, ERC1967Upgrade {
            /**
             * @dev Initializes the proxy with `beacon`.
             *
             * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
             * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
             * constructor.
             *
             * Requirements:
             *
             * - `beacon` must be a contract with the interface {IBeacon}.
             */
            constructor(address beacon, bytes memory data) payable {
                _upgradeBeaconToAndCall(beacon, data, false);
            }
            /**
             * @dev Returns the current beacon address.
             */
            function _beacon() internal view virtual returns (address) {
                return _getBeacon();
            }
            /**
             * @dev Returns the current implementation address of the associated beacon.
             */
            function _implementation() internal view virtual override returns (address) {
                return IBeacon(_getBeacon()).implementation();
            }
            /**
             * @dev Changes the proxy to use a new beacon. Deprecated: see {_upgradeBeaconToAndCall}.
             *
             * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon.
             *
             * Requirements:
             *
             * - `beacon` must be a contract.
             * - The implementation returned by `beacon` must be a contract.
             */
            function _setBeacon(address beacon, bytes memory data) internal virtual {
                _upgradeBeaconToAndCall(beacon, data, false);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeacon {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {BeaconProxy} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/UpgradeableBeacon.sol)
        pragma solidity ^0.8.0;
        import "./IBeacon.sol";
        import "../../access/Ownable.sol";
        import "../../utils/Address.sol";
        /**
         * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
         * implementation contract, which is where they will delegate all function calls.
         *
         * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
         */
        contract UpgradeableBeacon is IBeacon, Ownable {
            address private _implementation;
            /**
             * @dev Emitted when the implementation returned by the beacon is changed.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Sets the address of the initial implementation, and the deployer account as the owner who can upgrade the
             * beacon.
             */
            constructor(address implementation_) {
                _setImplementation(implementation_);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function implementation() public view virtual override returns (address) {
                return _implementation;
            }
            /**
             * @dev Upgrades the beacon to a new implementation.
             *
             * Emits an {Upgraded} event.
             *
             * Requirements:
             *
             * - msg.sender must be the owner of the contract.
             * - `newImplementation` must be a contract.
             */
            function upgradeTo(address newImplementation) public virtual onlyOwner {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Sets the implementation contract address for this beacon
             *
             * Requirements:
             *
             * - `newImplementation` must be a contract.
             */
            function _setImplementation(address newImplementation) private {
                require(Address.isContract(newImplementation), "UpgradeableBeacon: implementation is not a contract");
                _implementation = newImplementation;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
        pragma solidity ^0.8.0;
        import "../Proxy.sol";
        import "./ERC1967Upgrade.sol";
        /**
         * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
         * implementation address that can be changed. This address is stored in storage in the location specified by
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
         * implementation behind the proxy.
         */
        contract ERC1967Proxy is Proxy, ERC1967Upgrade {
            /**
             * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
             *
             * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
             * function call, and allows initializing the storage of the proxy like a Solidity constructor.
             */
            constructor(address _logic, bytes memory _data) payable {
                _upgradeToAndCall(_logic, _data, false);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function _implementation() internal view virtual override returns (address impl) {
                return ERC1967Upgrade._getImplementation();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol)
        pragma solidity ^0.8.2;
        import "../beacon/IBeacon.sol";
        import "../../interfaces/IERC1967.sol";
        import "../../interfaces/draft-IERC1822.sol";
        import "../../utils/Address.sol";
        import "../../utils/StorageSlot.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         *
         * _Available since v4.1._
         *
         * @custom:oz-upgrades-unsafe-allow delegatecall
         */
        abstract contract ERC1967Upgrade is IERC1967 {
            // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
            bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev Returns the current implementation address.
             */
            function _getImplementation() internal view returns (address) {
                return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Perform implementation upgrade
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Perform implementation upgrade with additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCall(
                address newImplementation,
                bytes memory data,
                bool forceCall
            ) internal {
                _upgradeTo(newImplementation);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(newImplementation, data);
                }
            }
            /**
             * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCallUUPS(
                address newImplementation,
                bytes memory data,
                bool forceCall
            ) internal {
                // Upgrades from old implementations will perform a rollback test. This test requires the new
                // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                // this special case will break upgrade paths from old UUPS implementation to new ones.
                if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                    _setImplementation(newImplementation);
                } else {
                    try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                        require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                    } catch {
                        revert("ERC1967Upgrade: new implementation is not UUPS");
                    }
                    _upgradeToAndCall(newImplementation, data, forceCall);
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Returns the current admin.
             */
            function _getAdmin() internal view returns (address) {
                return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _changeAdmin(address newAdmin) internal {
                emit AdminChanged(_getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
             */
            bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Returns the current beacon.
             */
            function _getBeacon() internal view returns (address) {
                return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                require(
                    Address.isContract(IBeacon(newBeacon).implementation()),
                    "ERC1967: beacon implementation is not a contract"
                );
                StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
            }
            /**
             * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
             * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
             *
             * Emits a {BeaconUpgraded} event.
             */
            function _upgradeBeaconToAndCall(
                address newBeacon,
                bytes memory data,
                bool forceCall
            ) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
         * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
         * be specified by overriding the virtual {_implementation} function.
         *
         * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
         * different contract through the {_delegate} function.
         *
         * The success and return data of the delegated call will be returned back to the caller of the proxy.
         */
        abstract contract Proxy {
            /**
             * @dev Delegates the current call to `implementation`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _delegate(address implementation) internal virtual {
                assembly {
                    // Copy msg.data. We take full control of memory in this inline assembly
                    // block because it will not return to Solidity code. We overwrite the
                    // Solidity scratch pad at memory position 0.
                    calldatacopy(0, 0, calldatasize())
                    // Call the implementation.
                    // out and outsize are 0 because we don't know the size yet.
                    let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                    // Copy the returned data.
                    returndatacopy(0, 0, returndatasize())
                    switch result
                    // delegatecall returns 0 on error.
                    case 0 {
                        revert(0, returndatasize())
                    }
                    default {
                        return(0, returndatasize())
                    }
                }
            }
            /**
             * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
             * and {_fallback} should delegate.
             */
            function _implementation() internal view virtual returns (address);
            /**
             * @dev Delegates the current call to the address returned by `_implementation()`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _fallback() internal virtual {
                _beforeFallback();
                _delegate(_implementation());
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
             * function in the contract matches the call data.
             */
            fallback() external payable virtual {
                _fallback();
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
             * is empty.
             */
            receive() external payable virtual {
                _fallback();
            }
            /**
             * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
             * call, or as part of the Solidity `fallback` or `receive` functions.
             *
             * If overridden should call `super._beforeFallback()`.
             */
            function _beforeFallback() internal virtual {}
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/ProxyAdmin.sol)
        pragma solidity ^0.8.0;
        import "./TransparentUpgradeableProxy.sol";
        import "../../access/Ownable.sol";
        /**
         * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
         * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
         */
        contract ProxyAdmin is Ownable {
            /**
             * @dev Returns the current implementation of `proxy`.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function getProxyImplementation(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
                // We need to manually run the static call since the getter cannot be flagged as view
                // bytes4(keccak256("implementation()")) == 0x5c60da1b
                (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
                require(success);
                return abi.decode(returndata, (address));
            }
            /**
             * @dev Returns the current admin of `proxy`.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function getProxyAdmin(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
                // We need to manually run the static call since the getter cannot be flagged as view
                // bytes4(keccak256("admin()")) == 0xf851a440
                (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
                require(success);
                return abi.decode(returndata, (address));
            }
            /**
             * @dev Changes the admin of `proxy` to `newAdmin`.
             *
             * Requirements:
             *
             * - This contract must be the current admin of `proxy`.
             */
            function changeProxyAdmin(ITransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
                proxy.changeAdmin(newAdmin);
            }
            /**
             * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function upgrade(ITransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
                proxy.upgradeTo(implementation);
            }
            /**
             * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
             * {TransparentUpgradeableProxy-upgradeToAndCall}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function upgradeAndCall(
                ITransparentUpgradeableProxy proxy,
                address implementation,
                bytes memory data
            ) public payable virtual onlyOwner {
                proxy.upgradeToAndCall{value: msg.value}(implementation, data);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/TransparentUpgradeableProxy.sol)
        pragma solidity ^0.8.0;
        import "../ERC1967/ERC1967Proxy.sol";
        /**
         * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
         * does not implement this interface directly, and some of its functions are implemented by an internal dispatch
         * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
         * include them in the ABI so this interface must be used to interact with it.
         */
        interface ITransparentUpgradeableProxy is IERC1967 {
            function admin() external view returns (address);
            function implementation() external view returns (address);
            function changeAdmin(address) external;
            function upgradeTo(address) external;
            function upgradeToAndCall(address, bytes memory) external payable;
        }
        /**
         * @dev This contract implements a proxy that is upgradeable by an admin.
         *
         * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
         * clashing], which can potentially be used in an attack, this contract uses the
         * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
         * things that go hand in hand:
         *
         * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
         * that call matches one of the admin functions exposed by the proxy itself.
         * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
         * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
         * "admin cannot fallback to proxy target".
         *
         * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
         * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
         * to sudden errors when trying to call a function from the proxy implementation.
         *
         * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
         * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
         *
         * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
         * inherit from that interface, and instead the admin functions are implicitly implemented using a custom dispatch
         * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
         * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
         * implementation.
         *
         * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the compiler
         * will not check that there are no selector conflicts, due to the note above. A selector clash between any new function
         * and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This could
         * render the admin operations inaccessible, which could prevent upgradeability. Transparency may also be compromised.
         */
        contract TransparentUpgradeableProxy is ERC1967Proxy {
            /**
             * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
             * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
             */
            constructor(
                address _logic,
                address admin_,
                bytes memory _data
            ) payable ERC1967Proxy(_logic, _data) {
                _changeAdmin(admin_);
            }
            /**
             * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
             *
             * CAUTION: This modifier is deprecated, as it could cause issues if the modified function has arguments, and the
             * implementation provides a function with the same selector.
             */
            modifier ifAdmin() {
                if (msg.sender == _getAdmin()) {
                    _;
                } else {
                    _fallback();
                }
            }
            /**
             * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior
             */
            function _fallback() internal virtual override {
                if (msg.sender == _getAdmin()) {
                    bytes memory ret;
                    bytes4 selector = msg.sig;
                    if (selector == ITransparentUpgradeableProxy.upgradeTo.selector) {
                        ret = _dispatchUpgradeTo();
                    } else if (selector == ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                        ret = _dispatchUpgradeToAndCall();
                    } else if (selector == ITransparentUpgradeableProxy.changeAdmin.selector) {
                        ret = _dispatchChangeAdmin();
                    } else if (selector == ITransparentUpgradeableProxy.admin.selector) {
                        ret = _dispatchAdmin();
                    } else if (selector == ITransparentUpgradeableProxy.implementation.selector) {
                        ret = _dispatchImplementation();
                    } else {
                        revert("TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                    }
                    assembly {
                        return(add(ret, 0x20), mload(ret))
                    }
                } else {
                    super._fallback();
                }
            }
            /**
             * @dev Returns the current admin.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
             */
            function _dispatchAdmin() private returns (bytes memory) {
                _requireZeroValue();
                address admin = _getAdmin();
                return abi.encode(admin);
            }
            /**
             * @dev Returns the current implementation.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
             */
            function _dispatchImplementation() private returns (bytes memory) {
                _requireZeroValue();
                address implementation = _implementation();
                return abi.encode(implementation);
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _dispatchChangeAdmin() private returns (bytes memory) {
                _requireZeroValue();
                address newAdmin = abi.decode(msg.data[4:], (address));
                _changeAdmin(newAdmin);
                return "";
            }
            /**
             * @dev Upgrade the implementation of the proxy.
             */
            function _dispatchUpgradeTo() private returns (bytes memory) {
                _requireZeroValue();
                address newImplementation = abi.decode(msg.data[4:], (address));
                _upgradeToAndCall(newImplementation, bytes(""), false);
                return "";
            }
            /**
             * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
             * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
             * proxied contract.
             */
            function _dispatchUpgradeToAndCall() private returns (bytes memory) {
                (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
                _upgradeToAndCall(newImplementation, data, true);
                return "";
            }
            /**
             * @dev Returns the current admin.
             */
            function _admin() internal view virtual returns (address) {
                return _getAdmin();
            }
            /**
             * @dev To keep this contract fully transparent, all `ifAdmin` functions must be payable. This helper is here to
             * emulate some proxy functions being non-payable while still allowing value to pass through.
             */
            function _requireZeroValue() private {
                require(msg.value == 0);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
        }
        

        File 4 of 4: RoleManager
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
        pragma solidity ^0.8.0;
        import "./IAccessControlUpgradeable.sol";
        import "../utils/ContextUpgradeable.sol";
        import "../utils/StringsUpgradeable.sol";
        import "../utils/introspection/ERC165Upgradeable.sol";
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module that allows children to implement role-based access
         * control mechanisms. This is a lightweight version that doesn't allow enumerating role
         * members except through off-chain means by accessing the contract event logs. Some
         * applications may benefit from on-chain enumerability, for those cases see
         * {AccessControlEnumerable}.
         *
         * Roles are referred to by their `bytes32` identifier. These should be exposed
         * in the external API and be unique. The best way to achieve this is by
         * using `public constant` hash digests:
         *
         * ```solidity
         * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
         * ```
         *
         * Roles can be used to represent a set of permissions. To restrict access to a
         * function call, use {hasRole}:
         *
         * ```solidity
         * function foo() public {
         *     require(hasRole(MY_ROLE, msg.sender));
         *     ...
         * }
         * ```
         *
         * Roles can be granted and revoked dynamically via the {grantRole} and
         * {revokeRole} functions. Each role has an associated admin role, and only
         * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
         *
         * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
         * that only accounts with this role will be able to grant or revoke other
         * roles. More complex role relationships can be created by using
         * {_setRoleAdmin}.
         *
         * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
         * grant and revoke this role. Extra precautions should be taken to secure
         * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
         * to enforce additional security measures for this role.
         */
        abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
            function __AccessControl_init() internal onlyInitializing {
            }
            function __AccessControl_init_unchained() internal onlyInitializing {
            }
            struct RoleData {
                mapping(address => bool) members;
                bytes32 adminRole;
            }
            mapping(bytes32 => RoleData) private _roles;
            bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
            /**
             * @dev Modifier that checks that an account has a specific role. Reverts
             * with a standardized message including the required role.
             *
             * The format of the revert reason is given by the following regular expression:
             *
             *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
             *
             * _Available since v4.1._
             */
            modifier onlyRole(bytes32 role) {
                _checkRole(role);
                _;
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
            }
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
                return _roles[role].members[account];
            }
            /**
             * @dev Revert with a standard message if `_msgSender()` is missing `role`.
             * Overriding this function changes the behavior of the {onlyRole} modifier.
             *
             * Format of the revert message is described in {_checkRole}.
             *
             * _Available since v4.6._
             */
            function _checkRole(bytes32 role) internal view virtual {
                _checkRole(role, _msgSender());
            }
            /**
             * @dev Revert with a standard message if `account` is missing `role`.
             *
             * The format of the revert reason is given by the following regular expression:
             *
             *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
             */
            function _checkRole(bytes32 role, address account) internal view virtual {
                if (!hasRole(role, account)) {
                    revert(
                        string(
                            abi.encodePacked(
                                "AccessControl: account ",
                                StringsUpgradeable.toHexString(account),
                                " is missing role ",
                                StringsUpgradeable.toHexString(uint256(role), 32)
                            )
                        )
                    );
                }
            }
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
                return _roles[role].adminRole;
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             *
             * May emit a {RoleGranted} event.
             */
            function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                _grantRole(role, account);
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             *
             * May emit a {RoleRevoked} event.
             */
            function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                _revokeRole(role, account);
            }
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been revoked `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             *
             * May emit a {RoleRevoked} event.
             */
            function renounceRole(bytes32 role, address account) public virtual override {
                require(account == _msgSender(), "AccessControl: can only renounce roles for self");
                _revokeRole(role, account);
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event. Note that unlike {grantRole}, this function doesn't perform any
             * checks on the calling account.
             *
             * May emit a {RoleGranted} event.
             *
             * [WARNING]
             * ====
             * This function should only be called from the constructor when setting
             * up the initial roles for the system.
             *
             * Using this function in any other way is effectively circumventing the admin
             * system imposed by {AccessControl}.
             * ====
             *
             * NOTE: This function is deprecated in favor of {_grantRole}.
             */
            function _setupRole(bytes32 role, address account) internal virtual {
                _grantRole(role, account);
            }
            /**
             * @dev Sets `adminRole` as ``role``'s admin role.
             *
             * Emits a {RoleAdminChanged} event.
             */
            function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
                bytes32 previousAdminRole = getRoleAdmin(role);
                _roles[role].adminRole = adminRole;
                emit RoleAdminChanged(role, previousAdminRole, adminRole);
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * Internal function without access restriction.
             *
             * May emit a {RoleGranted} event.
             */
            function _grantRole(bytes32 role, address account) internal virtual {
                if (!hasRole(role, account)) {
                    _roles[role].members[account] = true;
                    emit RoleGranted(role, account, _msgSender());
                }
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * Internal function without access restriction.
             *
             * May emit a {RoleRevoked} event.
             */
            function _revokeRole(bytes32 role, address account) internal virtual {
                if (hasRole(role, account)) {
                    _roles[role].members[account] = false;
                    emit RoleRevoked(role, account, _msgSender());
                }
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev External interface of AccessControl declared to support ERC165 detection.
         */
        interface IAccessControlUpgradeable {
            /**
             * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
             *
             * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
             * {RoleAdminChanged} not being emitted signaling this.
             *
             * _Available since v3.1._
             */
            event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
            /**
             * @dev Emitted when `account` is granted `role`.
             *
             * `sender` is the account that originated the contract call, an admin role
             * bearer except when using {AccessControl-_setupRole}.
             */
            event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Emitted when `account` is revoked `role`.
             *
             * `sender` is the account that originated the contract call:
             *   - if using `revokeRole`, it is the admin role bearer
             *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
             */
            event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) external view returns (bool);
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {AccessControl-_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) external view returns (bytes32);
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function grantRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function revokeRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been granted `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             */
            function renounceRole(bytes32 role, address account) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
         * proxy whose upgrades are fully controlled by the current implementation.
         */
        interface IERC1822ProxiableUpgradeable {
            /**
             * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
             * address.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy.
             */
            function proxiableUUID() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
         *
         * _Available since v4.8.3._
         */
        interface IERC1967Upgradeable {
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeaconUpgradeable {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {BeaconProxy} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)
        pragma solidity ^0.8.2;
        import "../beacon/IBeaconUpgradeable.sol";
        import "../../interfaces/IERC1967Upgradeable.sol";
        import "../../interfaces/draft-IERC1822Upgradeable.sol";
        import "../../utils/AddressUpgradeable.sol";
        import "../../utils/StorageSlotUpgradeable.sol";
        import "../utils/Initializable.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         *
         * _Available since v4.1._
         */
        abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable {
            function __ERC1967Upgrade_init() internal onlyInitializing {
            }
            function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
            }
            // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
            bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev Returns the current implementation address.
             */
            function _getImplementation() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Perform implementation upgrade
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Perform implementation upgrade with additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                _upgradeTo(newImplementation);
                if (data.length > 0 || forceCall) {
                    AddressUpgradeable.functionDelegateCall(newImplementation, data);
                }
            }
            /**
             * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
                // Upgrades from old implementations will perform a rollback test. This test requires the new
                // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                // this special case will break upgrade paths from old UUPS implementation to new ones.
                if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
                    _setImplementation(newImplementation);
                } else {
                    try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                        require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                    } catch {
                        revert("ERC1967Upgrade: new implementation is not UUPS");
                    }
                    _upgradeToAndCall(newImplementation, data, forceCall);
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Returns the current admin.
             */
            function _getAdmin() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _changeAdmin(address newAdmin) internal {
                emit AdminChanged(_getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
             */
            bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Returns the current beacon.
             */
            function _getBeacon() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                require(
                    AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
                    "ERC1967: beacon implementation is not a contract"
                );
                StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
            }
            /**
             * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
             * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
             *
             * Emits a {BeaconUpgraded} event.
             */
            function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0 || forceCall) {
                    AddressUpgradeable.functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
                }
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```solidity
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         *
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts.
             *
             * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
             * constructor.
             *
             * Emits an {Initialized} event.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * A reinitializer may be used after the original initialization step. This is essential to configure modules that
             * are added through upgrades and that require initialization.
             *
             * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
             * cannot be nested. If one is invoked in the context of another, execution will revert.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             *
             * WARNING: setting the version to 255 will prevent any future reinitialization.
             *
             * Emits an {Initialized} event.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             *
             * Emits an {Initialized} event the first time it is successfully executed.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized != type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
            /**
             * @dev Returns the highest version that has been initialized. See {reinitializer}.
             */
            function _getInitializedVersion() internal view returns (uint8) {
                return _initialized;
            }
            /**
             * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
             */
            function _isInitializing() internal view returns (bool) {
                return _initializing;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/UUPSUpgradeable.sol)
        pragma solidity ^0.8.0;
        import "../../interfaces/draft-IERC1822Upgradeable.sol";
        import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
        import "./Initializable.sol";
        /**
         * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
         * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
         *
         * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
         * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
         * `UUPSUpgradeable` with a custom implementation of upgrades.
         *
         * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
         *
         * _Available since v4.1._
         */
        abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
            function __UUPSUpgradeable_init() internal onlyInitializing {
            }
            function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
            }
            /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
            address private immutable __self = address(this);
            /**
             * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
             * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
             * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
             * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
             * fail.
             */
            modifier onlyProxy() {
                require(address(this) != __self, "Function must be called through delegatecall");
                require(_getImplementation() == __self, "Function must be called through active proxy");
                _;
            }
            /**
             * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
             * callable on the implementing contract but not through proxies.
             */
            modifier notDelegated() {
                require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
                _;
            }
            /**
             * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
             * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
             */
            function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
                return _IMPLEMENTATION_SLOT;
            }
            /**
             * @dev Upgrade the implementation of the proxy to `newImplementation`.
             *
             * Calls {_authorizeUpgrade}.
             *
             * Emits an {Upgraded} event.
             *
             * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
             */
            function upgradeTo(address newImplementation) public virtual onlyProxy {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
            }
            /**
             * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
             * encoded in `data`.
             *
             * Calls {_authorizeUpgrade}.
             *
             * Emits an {Upgraded} event.
             *
             * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
             */
            function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallUUPS(newImplementation, data, true);
            }
            /**
             * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
             * {upgradeTo} and {upgradeToAndCall}.
             *
             * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
             *
             * ```solidity
             * function _authorizeUpgrade(address) internal override onlyOwner {}
             * ```
             */
            function _authorizeUpgrade(address newImplementation) internal virtual;
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC1155/ERC1155.sol)
        pragma solidity ^0.8.0;
        import "./IERC1155Upgradeable.sol";
        import "./IERC1155ReceiverUpgradeable.sol";
        import "./extensions/IERC1155MetadataURIUpgradeable.sol";
        import "../../utils/AddressUpgradeable.sol";
        import "../../utils/ContextUpgradeable.sol";
        import "../../utils/introspection/ERC165Upgradeable.sol";
        import "../../proxy/utils/Initializable.sol";
        /**
         * @dev Implementation of the basic standard multi-token.
         * See https://eips.ethereum.org/EIPS/eip-1155
         * Originally based on code by Enjin: https://github.com/enjin/erc-1155
         *
         * _Available since v3.1._
         */
        contract ERC1155Upgradeable is Initializable, ContextUpgradeable, ERC165Upgradeable, IERC1155Upgradeable, IERC1155MetadataURIUpgradeable {
            using AddressUpgradeable for address;
            // Mapping from token ID to account balances
            mapping(uint256 => mapping(address => uint256)) private _balances;
            // Mapping from account to operator approvals
            mapping(address => mapping(address => bool)) private _operatorApprovals;
            // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
            string private _uri;
            /**
             * @dev See {_setURI}.
             */
            function __ERC1155_init(string memory uri_) internal onlyInitializing {
                __ERC1155_init_unchained(uri_);
            }
            function __ERC1155_init_unchained(string memory uri_) internal onlyInitializing {
                _setURI(uri_);
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165Upgradeable) returns (bool) {
                return
                    interfaceId == type(IERC1155Upgradeable).interfaceId ||
                    interfaceId == type(IERC1155MetadataURIUpgradeable).interfaceId ||
                    super.supportsInterface(interfaceId);
            }
            /**
             * @dev See {IERC1155MetadataURI-uri}.
             *
             * This implementation returns the same URI for *all* token types. It relies
             * on the token type ID substitution mechanism
             * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
             *
             * Clients calling this function must replace the `\\{id\\}` substring with the
             * actual token type ID.
             */
            function uri(uint256) public view virtual override returns (string memory) {
                return _uri;
            }
            /**
             * @dev See {IERC1155-balanceOf}.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             */
            function balanceOf(address account, uint256 id) public view virtual override returns (uint256) {
                require(account != address(0), "ERC1155: address zero is not a valid owner");
                return _balances[id][account];
            }
            /**
             * @dev See {IERC1155-balanceOfBatch}.
             *
             * Requirements:
             *
             * - `accounts` and `ids` must have the same length.
             */
            function balanceOfBatch(
                address[] memory accounts,
                uint256[] memory ids
            ) public view virtual override returns (uint256[] memory) {
                require(accounts.length == ids.length, "ERC1155: accounts and ids length mismatch");
                uint256[] memory batchBalances = new uint256[](accounts.length);
                for (uint256 i = 0; i < accounts.length; ++i) {
                    batchBalances[i] = balanceOf(accounts[i], ids[i]);
                }
                return batchBalances;
            }
            /**
             * @dev See {IERC1155-setApprovalForAll}.
             */
            function setApprovalForAll(address operator, bool approved) public virtual override {
                _setApprovalForAll(_msgSender(), operator, approved);
            }
            /**
             * @dev See {IERC1155-isApprovedForAll}.
             */
            function isApprovedForAll(address account, address operator) public view virtual override returns (bool) {
                return _operatorApprovals[account][operator];
            }
            /**
             * @dev See {IERC1155-safeTransferFrom}.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 id,
                uint256 amount,
                bytes memory data
            ) public virtual override {
                require(
                    from == _msgSender() || isApprovedForAll(from, _msgSender()),
                    "ERC1155: caller is not token owner or approved"
                );
                _safeTransferFrom(from, to, id, amount, data);
            }
            /**
             * @dev See {IERC1155-safeBatchTransferFrom}.
             */
            function safeBatchTransferFrom(
                address from,
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) public virtual override {
                require(
                    from == _msgSender() || isApprovedForAll(from, _msgSender()),
                    "ERC1155: caller is not token owner or approved"
                );
                _safeBatchTransferFrom(from, to, ids, amounts, data);
            }
            /**
             * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
             *
             * Emits a {TransferSingle} event.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - `from` must have a balance of tokens of type `id` of at least `amount`.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
             * acceptance magic value.
             */
            function _safeTransferFrom(
                address from,
                address to,
                uint256 id,
                uint256 amount,
                bytes memory data
            ) internal virtual {
                require(to != address(0), "ERC1155: transfer to the zero address");
                address operator = _msgSender();
                uint256[] memory ids = _asSingletonArray(id);
                uint256[] memory amounts = _asSingletonArray(amount);
                _beforeTokenTransfer(operator, from, to, ids, amounts, data);
                uint256 fromBalance = _balances[id][from];
                require(fromBalance >= amount, "ERC1155: insufficient balance for transfer");
                unchecked {
                    _balances[id][from] = fromBalance - amount;
                }
                _balances[id][to] += amount;
                emit TransferSingle(operator, from, to, id, amount);
                _afterTokenTransfer(operator, from, to, ids, amounts, data);
                _doSafeTransferAcceptanceCheck(operator, from, to, id, amount, data);
            }
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
             *
             * Emits a {TransferBatch} event.
             *
             * Requirements:
             *
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
             * acceptance magic value.
             */
            function _safeBatchTransferFrom(
                address from,
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) internal virtual {
                require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
                require(to != address(0), "ERC1155: transfer to the zero address");
                address operator = _msgSender();
                _beforeTokenTransfer(operator, from, to, ids, amounts, data);
                for (uint256 i = 0; i < ids.length; ++i) {
                    uint256 id = ids[i];
                    uint256 amount = amounts[i];
                    uint256 fromBalance = _balances[id][from];
                    require(fromBalance >= amount, "ERC1155: insufficient balance for transfer");
                    unchecked {
                        _balances[id][from] = fromBalance - amount;
                    }
                    _balances[id][to] += amount;
                }
                emit TransferBatch(operator, from, to, ids, amounts);
                _afterTokenTransfer(operator, from, to, ids, amounts, data);
                _doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, amounts, data);
            }
            /**
             * @dev Sets a new URI for all token types, by relying on the token type ID
             * substitution mechanism
             * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
             *
             * By this mechanism, any occurrence of the `\\{id\\}` substring in either the
             * URI or any of the amounts in the JSON file at said URI will be replaced by
             * clients with the token type ID.
             *
             * For example, the `https://token-cdn-domain/\\{id\\}.json` URI would be
             * interpreted by clients as
             * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
             * for token type ID 0x4cce0.
             *
             * See {uri}.
             *
             * Because these URIs cannot be meaningfully represented by the {URI} event,
             * this function emits no events.
             */
            function _setURI(string memory newuri) internal virtual {
                _uri = newuri;
            }
            /**
             * @dev Creates `amount` tokens of token type `id`, and assigns them to `to`.
             *
             * Emits a {TransferSingle} event.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
             * acceptance magic value.
             */
            function _mint(address to, uint256 id, uint256 amount, bytes memory data) internal virtual {
                require(to != address(0), "ERC1155: mint to the zero address");
                address operator = _msgSender();
                uint256[] memory ids = _asSingletonArray(id);
                uint256[] memory amounts = _asSingletonArray(amount);
                _beforeTokenTransfer(operator, address(0), to, ids, amounts, data);
                _balances[id][to] += amount;
                emit TransferSingle(operator, address(0), to, id, amount);
                _afterTokenTransfer(operator, address(0), to, ids, amounts, data);
                _doSafeTransferAcceptanceCheck(operator, address(0), to, id, amount, data);
            }
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
             *
             * Emits a {TransferBatch} event.
             *
             * Requirements:
             *
             * - `ids` and `amounts` must have the same length.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
             * acceptance magic value.
             */
            function _mintBatch(
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) internal virtual {
                require(to != address(0), "ERC1155: mint to the zero address");
                require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
                address operator = _msgSender();
                _beforeTokenTransfer(operator, address(0), to, ids, amounts, data);
                for (uint256 i = 0; i < ids.length; i++) {
                    _balances[ids[i]][to] += amounts[i];
                }
                emit TransferBatch(operator, address(0), to, ids, amounts);
                _afterTokenTransfer(operator, address(0), to, ids, amounts, data);
                _doSafeBatchTransferAcceptanceCheck(operator, address(0), to, ids, amounts, data);
            }
            /**
             * @dev Destroys `amount` tokens of token type `id` from `from`
             *
             * Emits a {TransferSingle} event.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `from` must have at least `amount` tokens of token type `id`.
             */
            function _burn(address from, uint256 id, uint256 amount) internal virtual {
                require(from != address(0), "ERC1155: burn from the zero address");
                address operator = _msgSender();
                uint256[] memory ids = _asSingletonArray(id);
                uint256[] memory amounts = _asSingletonArray(amount);
                _beforeTokenTransfer(operator, from, address(0), ids, amounts, "");
                uint256 fromBalance = _balances[id][from];
                require(fromBalance >= amount, "ERC1155: burn amount exceeds balance");
                unchecked {
                    _balances[id][from] = fromBalance - amount;
                }
                emit TransferSingle(operator, from, address(0), id, amount);
                _afterTokenTransfer(operator, from, address(0), ids, amounts, "");
            }
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
             *
             * Emits a {TransferBatch} event.
             *
             * Requirements:
             *
             * - `ids` and `amounts` must have the same length.
             */
            function _burnBatch(address from, uint256[] memory ids, uint256[] memory amounts) internal virtual {
                require(from != address(0), "ERC1155: burn from the zero address");
                require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
                address operator = _msgSender();
                _beforeTokenTransfer(operator, from, address(0), ids, amounts, "");
                for (uint256 i = 0; i < ids.length; i++) {
                    uint256 id = ids[i];
                    uint256 amount = amounts[i];
                    uint256 fromBalance = _balances[id][from];
                    require(fromBalance >= amount, "ERC1155: burn amount exceeds balance");
                    unchecked {
                        _balances[id][from] = fromBalance - amount;
                    }
                }
                emit TransferBatch(operator, from, address(0), ids, amounts);
                _afterTokenTransfer(operator, from, address(0), ids, amounts, "");
            }
            /**
             * @dev Approve `operator` to operate on all of `owner` tokens
             *
             * Emits an {ApprovalForAll} event.
             */
            function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
                require(owner != operator, "ERC1155: setting approval status for self");
                _operatorApprovals[owner][operator] = approved;
                emit ApprovalForAll(owner, operator, approved);
            }
            /**
             * @dev Hook that is called before any token transfer. This includes minting
             * and burning, as well as batched variants.
             *
             * The same hook is called on both single and batched variants. For single
             * transfers, the length of the `ids` and `amounts` arrays will be 1.
             *
             * Calling conditions (for each `id` and `amount` pair):
             *
             * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
             * of token type `id` will be  transferred to `to`.
             * - When `from` is zero, `amount` tokens of token type `id` will be minted
             * for `to`.
             * - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
             * will be burned.
             * - `from` and `to` are never both zero.
             * - `ids` and `amounts` have the same, non-zero length.
             *
             * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
             */
            function _beforeTokenTransfer(
                address operator,
                address from,
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) internal virtual {}
            /**
             * @dev Hook that is called after any token transfer. This includes minting
             * and burning, as well as batched variants.
             *
             * The same hook is called on both single and batched variants. For single
             * transfers, the length of the `id` and `amount` arrays will be 1.
             *
             * Calling conditions (for each `id` and `amount` pair):
             *
             * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
             * of token type `id` will be  transferred to `to`.
             * - When `from` is zero, `amount` tokens of token type `id` will be minted
             * for `to`.
             * - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
             * will be burned.
             * - `from` and `to` are never both zero.
             * - `ids` and `amounts` have the same, non-zero length.
             *
             * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
             */
            function _afterTokenTransfer(
                address operator,
                address from,
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) internal virtual {}
            function _doSafeTransferAcceptanceCheck(
                address operator,
                address from,
                address to,
                uint256 id,
                uint256 amount,
                bytes memory data
            ) private {
                if (to.isContract()) {
                    try IERC1155ReceiverUpgradeable(to).onERC1155Received(operator, from, id, amount, data) returns (bytes4 response) {
                        if (response != IERC1155ReceiverUpgradeable.onERC1155Received.selector) {
                            revert("ERC1155: ERC1155Receiver rejected tokens");
                        }
                    } catch Error(string memory reason) {
                        revert(reason);
                    } catch {
                        revert("ERC1155: transfer to non-ERC1155Receiver implementer");
                    }
                }
            }
            function _doSafeBatchTransferAcceptanceCheck(
                address operator,
                address from,
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) private {
                if (to.isContract()) {
                    try IERC1155ReceiverUpgradeable(to).onERC1155BatchReceived(operator, from, ids, amounts, data) returns (
                        bytes4 response
                    ) {
                        if (response != IERC1155ReceiverUpgradeable.onERC1155BatchReceived.selector) {
                            revert("ERC1155: ERC1155Receiver rejected tokens");
                        }
                    } catch Error(string memory reason) {
                        revert(reason);
                    } catch {
                        revert("ERC1155: transfer to non-ERC1155Receiver implementer");
                    }
                }
            }
            function _asSingletonArray(uint256 element) private pure returns (uint256[] memory) {
                uint256[] memory array = new uint256[](1);
                array[0] = element;
                return array;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[47] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC1155/extensions/IERC1155MetadataURI.sol)
        pragma solidity ^0.8.0;
        import "../IERC1155Upgradeable.sol";
        /**
         * @dev Interface of the optional ERC1155MetadataExtension interface, as defined
         * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP].
         *
         * _Available since v3.1._
         */
        interface IERC1155MetadataURIUpgradeable is IERC1155Upgradeable {
            /**
             * @dev Returns the URI for token type `id`.
             *
             * If the `\\{id\\}` substring is present in the URI, it must be replaced by
             * clients with the actual token type ID.
             */
            function uri(uint256 id) external view returns (string memory);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol)
        pragma solidity ^0.8.0;
        import "../../utils/introspection/IERC165Upgradeable.sol";
        /**
         * @dev _Available since v3.1._
         */
        interface IERC1155ReceiverUpgradeable is IERC165Upgradeable {
            /**
             * @dev Handles the receipt of a single ERC1155 token type. This function is
             * called at the end of a `safeTransferFrom` after the balance has been updated.
             *
             * NOTE: To accept the transfer, this must return
             * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
             * (i.e. 0xf23a6e61, or its own function selector).
             *
             * @param operator The address which initiated the transfer (i.e. msg.sender)
             * @param from The address which previously owned the token
             * @param id The ID of the token being transferred
             * @param value The amount of tokens being transferred
             * @param data Additional data with no specified format
             * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
             */
            function onERC1155Received(
                address operator,
                address from,
                uint256 id,
                uint256 value,
                bytes calldata data
            ) external returns (bytes4);
            /**
             * @dev Handles the receipt of a multiple ERC1155 token types. This function
             * is called at the end of a `safeBatchTransferFrom` after the balances have
             * been updated.
             *
             * NOTE: To accept the transfer(s), this must return
             * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
             * (i.e. 0xbc197c81, or its own function selector).
             *
             * @param operator The address which initiated the batch transfer (i.e. msg.sender)
             * @param from The address which previously owned the token
             * @param ids An array containing ids of each token being transferred (order and length must match values array)
             * @param values An array containing amounts of each token being transferred (order and length must match ids array)
             * @param data Additional data with no specified format
             * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
             */
            function onERC1155BatchReceived(
                address operator,
                address from,
                uint256[] calldata ids,
                uint256[] calldata values,
                bytes calldata data
            ) external returns (bytes4);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC1155/IERC1155.sol)
        pragma solidity ^0.8.0;
        import "../../utils/introspection/IERC165Upgradeable.sol";
        /**
         * @dev Required interface of an ERC1155 compliant contract, as defined in the
         * https://eips.ethereum.org/EIPS/eip-1155[EIP].
         *
         * _Available since v3.1._
         */
        interface IERC1155Upgradeable is IERC165Upgradeable {
            /**
             * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
             */
            event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
            /**
             * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
             * transfers.
             */
            event TransferBatch(
                address indexed operator,
                address indexed from,
                address indexed to,
                uint256[] ids,
                uint256[] values
            );
            /**
             * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
             * `approved`.
             */
            event ApprovalForAll(address indexed account, address indexed operator, bool approved);
            /**
             * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
             *
             * If an {URI} event was emitted for `id`, the standard
             * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
             * returned by {IERC1155MetadataURI-uri}.
             */
            event URI(string value, uint256 indexed id);
            /**
             * @dev Returns the amount of tokens of token type `id` owned by `account`.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             */
            function balanceOf(address account, uint256 id) external view returns (uint256);
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
             *
             * Requirements:
             *
             * - `accounts` and `ids` must have the same length.
             */
            function balanceOfBatch(
                address[] calldata accounts,
                uint256[] calldata ids
            ) external view returns (uint256[] memory);
            /**
             * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
             *
             * Emits an {ApprovalForAll} event.
             *
             * Requirements:
             *
             * - `operator` cannot be the caller.
             */
            function setApprovalForAll(address operator, bool approved) external;
            /**
             * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
             *
             * See {setApprovalForAll}.
             */
            function isApprovedForAll(address account, address operator) external view returns (bool);
            /**
             * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
             *
             * Emits a {TransferSingle} event.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
             * - `from` must have a balance of tokens of type `id` of at least `amount`.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
             * acceptance magic value.
             */
            function safeTransferFrom(address from, address to, uint256 id, uint256 amount, bytes calldata data) external;
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
             *
             * Emits a {TransferBatch} event.
             *
             * Requirements:
             *
             * - `ids` and `amounts` must have the same length.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
             * acceptance magic value.
             */
            function safeBatchTransferFrom(
                address from,
                address to,
                uint256[] calldata ids,
                uint256[] calldata amounts,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC1155/utils/ERC1155Receiver.sol)
        pragma solidity ^0.8.0;
        import "../IERC1155ReceiverUpgradeable.sol";
        import "../../../utils/introspection/ERC165Upgradeable.sol";
        import "../../../proxy/utils/Initializable.sol";
        /**
         * @dev _Available since v3.1._
         */
        abstract contract ERC1155ReceiverUpgradeable is Initializable, ERC165Upgradeable, IERC1155ReceiverUpgradeable {
            function __ERC1155Receiver_init() internal onlyInitializing {
            }
            function __ERC1155Receiver_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165Upgradeable) returns (bool) {
                return interfaceId == type(IERC1155ReceiverUpgradeable).interfaceId || super.supportsInterface(interfaceId);
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             *
             * Furthermore, `isContract` will also return true if the target contract within
             * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
             * which only has an effect at the end of a transaction.
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal onlyInitializing {
            }
            function __Context_init_unchained() internal onlyInitializing {
            }
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
        pragma solidity ^0.8.0;
        import "./IERC165Upgradeable.sol";
        import "../../proxy/utils/Initializable.sol";
        /**
         * @dev Implementation of the {IERC165} interface.
         *
         * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
         * for the additional interface id that will be supported. For example:
         *
         * ```solidity
         * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
         *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
         * }
         * ```
         *
         * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
         */
        abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
            function __ERC165_init() internal onlyInitializing {
            }
            function __ERC165_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IERC165Upgradeable).interfaceId;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165Upgradeable {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library MathUpgradeable {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                        // The surrounding unchecked block does not change this fact.
                        // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1, "Math: mulDiv overflow");
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                //
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                //
                // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                //
                // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1 << (log2(a) >> 1);
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = sqrt(a);
                    return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 2, rounded down, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 128;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 64;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 32;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 16;
                    }
                    if (value >> 8 > 0) {
                        value >>= 8;
                        result += 8;
                    }
                    if (value >> 4 > 0) {
                        value >>= 4;
                        result += 4;
                    }
                    if (value >> 2 > 0) {
                        value >>= 2;
                        result += 2;
                    }
                    if (value >> 1 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log2(value);
                    return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 10, rounded down, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >= 10 ** 64) {
                        value /= 10 ** 64;
                        result += 64;
                    }
                    if (value >= 10 ** 32) {
                        value /= 10 ** 32;
                        result += 32;
                    }
                    if (value >= 10 ** 16) {
                        value /= 10 ** 16;
                        result += 16;
                    }
                    if (value >= 10 ** 8) {
                        value /= 10 ** 8;
                        result += 8;
                    }
                    if (value >= 10 ** 4) {
                        value /= 10 ** 4;
                        result += 4;
                    }
                    if (value >= 10 ** 2) {
                        value /= 10 ** 2;
                        result += 2;
                    }
                    if (value >= 10 ** 1) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log10(value);
                    return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 256, rounded down, of a positive value.
             * Returns 0 if given 0.
             *
             * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
             */
            function log256(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 16;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 8;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 4;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 2;
                    }
                    if (value >> 8 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log256(value);
                    return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMathUpgradeable {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
        // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```solidity
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
         * _Available since v4.9 for `string`, `bytes`._
         */
        library StorageSlotUpgradeable {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            struct StringSlot {
                string value;
            }
            struct BytesSlot {
                bytes value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` with member `value` located at `slot`.
             */
            function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
             */
            function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` with member `value` located at `slot`.
             */
            function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
             */
            function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
        pragma solidity ^0.8.0;
        import "./math/MathUpgradeable.sol";
        import "./math/SignedMathUpgradeable.sol";
        /**
         * @dev String operations.
         */
        library StringsUpgradeable {
            bytes16 private constant _SYMBOLS = "0123456789abcdef";
            uint8 private constant _ADDRESS_LENGTH = 20;
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    uint256 length = MathUpgradeable.log10(value) + 1;
                    string memory buffer = new string(length);
                    uint256 ptr;
                    /// @solidity memory-safe-assembly
                    assembly {
                        ptr := add(buffer, add(32, length))
                    }
                    while (true) {
                        ptr--;
                        /// @solidity memory-safe-assembly
                        assembly {
                            mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                        }
                        value /= 10;
                        if (value == 0) break;
                    }
                    return buffer;
                }
            }
            /**
             * @dev Converts a `int256` to its ASCII `string` decimal representation.
             */
            function toString(int256 value) internal pure returns (string memory) {
                return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    return toHexString(value, MathUpgradeable.log256(value) + 1);
                }
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = _SYMBOLS[value & 0xf];
                    value >>= 4;
                }
                require(value == 0, "Strings: hex length insufficient");
                return string(buffer);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
             */
            function toHexString(address addr) internal pure returns (string memory) {
                return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
            }
            /**
             * @dev Returns true if the two strings are equal.
             */
            function equal(string memory a, string memory b) internal pure returns (bool) {
                return keccak256(bytes(a)) == keccak256(bytes(b));
            }
        }
        // SPDX-License-Identifier: MIT
        /***
         *              _____                _____                    _____                    _____            _____                    _____          
         *             /\\    \\              /\\    \\                  /\\    \\                  /\\    \\          /\\    \\                  /\\    \\         
         *            /::\\    \\            /::\\    \\                /::\\    \\                /::\\____\\        /::\\    \\                /::\\    \\        
         *           /::::\\    \\           \\:::\\    \\              /::::\\    \\              /:::/    /       /::::\\    \\               \\:::\\    \\       
         *          /::::::\\    \\           \\:::\\    \\            /::::::\\    \\            /:::/    /       /::::::\\    \\               \\:::\\    \\      
         *         /:::/\\:::\\    \\           \\:::\\    \\          /:::/\\:::\\    \\          /:::/    /       /:::/\\:::\\    \\               \\:::\\    \\     
         *        /:::/__\\:::\\    \\           \\:::\\    \\        /:::/__\\:::\\    \\        /:::/    /       /:::/__\\:::\\    \\               \\:::\\    \\    
         *        \\:::\\   \\:::\\    \\          /::::\\    \\      /::::\\   \\:::\\    \\      /:::/    /        \\:::\\   \\:::\\    \\              /::::\\    \\   
         *      ___\\:::\\   \\:::\\    \\        /::::::\\    \\    /::::::\\   \\:::\\    \\    /:::/    /       ___\\:::\\   \\:::\\    \\    ____    /::::::\\    \\  
         *     /\\   \\:::\\   \\:::\\    \\      /:::/\\:::\\    \\  /:::/\\:::\\   \\:::\\    \\  /:::/    /       /\\   \\:::\\   \\:::\\    \\  /\\   \\  /:::/\\:::\\    \\ 
         *    /::\\   \\:::\\   \\:::\\____\\    /:::/  \\:::\\____\\/:::/__\\:::\\   \\:::\\____\\/:::/____/       /::\\   \\:::\\   \\:::\\____\\/::\\   \\/:::/  \\:::\\____\\
         *    \\:::\\   \\:::\\   \\::/    /   /:::/    \\::/    /\\:::\\   \\:::\\   \\::/    /\\:::\\    \\       \\:::\\   \\:::\\   \\::/    /\\:::\\  /:::/    \\::/    /
         *     \\:::\\   \\:::\\   \\/____/   /:::/    / \\/____/  \\:::\\   \\:::\\   \\/____/  \\:::\\    \\       \\:::\\   \\:::\\   \\/____/  \\:::\\/:::/    / \\/____/ 
         *      \\:::\\   \\:::\\    \\      /:::/    /            \\:::\\   \\:::\\    \\       \\:::\\    \\       \\:::\\   \\:::\\    \\       \\::::::/    /          
         *       \\:::\\   \\:::\\____\\    /:::/    /              \\:::\\   \\:::\\____\\       \\:::\\    \\       \\:::\\   \\:::\\____\\       \\::::/____/           
         *        \\:::\\  /:::/    /    \\::/    /                \\:::\\   \\::/    /        \\:::\\    \\       \\:::\\  /:::/    /        \\:::\\    \\           
         *         \\:::\\/:::/    /      \\/____/                  \\:::\\   \\/____/          \\:::\\    \\       \\:::\\/:::/    /          \\:::\\    \\          
         *          \\::::::/    /                                 \\:::\\    \\               \\:::\\    \\       \\::::::/    /            \\:::\\    \\         
         *           \\::::/    /                                   \\:::\\____\\               \\:::\\____\\       \\::::/    /              \\:::\\____\\        
         *            \\::/    /                                     \\::/    /                \\::/    /        \\::/    /                \\::/    /        
         *             \\/____/                                       \\/____/                  \\/____/          \\/____/                  \\/____/         
         *                                                                                                                                              
         */
        pragma solidity ^0.8.9;
        import "@openzeppelin/contracts-upgradeable/token/ERC1155/ERC1155Upgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/token/ERC1155/utils/ERC1155ReceiverUpgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
        import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
        contract RoleManager is Initializable, UUPSUpgradeable, AccessControlUpgradeable {
            
            bytes32 private constant ADMIN_ROLE = keccak256("ADMIN_ROLE");
            bytes32 private constant UPGRADER_ROLE = keccak256("UPGRADER_ROLE");
            bytes32 private constant MINTER_ROLE = keccak256("MINTER_ROLE");
            /// @custom:oz-upgrades-unsafe-allow constructor
            constructor() {
                _disableInitializers();
            }
            function initialize() initializer public {
                __AccessControl_init();
                _setupRole(DEFAULT_ADMIN_ROLE,_msgSender());        //DEFAULT_ADMIN_ROLE 설정
                _setupRole(ADMIN_ROLE,_msgSender());                //ADMIN_ROLE 설정
                _setupRole(UPGRADER_ROLE,_msgSender());             //UPGRADER_ROLE 설정
                _setupRole(MINTER_ROLE,_msgSender());               //MINTER_ROLE 설정
            }
            function supportsInterface(bytes4 interfaceId) public view virtual override(AccessControlUpgradeable) returns (bool) {
                return super.supportsInterface(interfaceId);
            }
            function _authorizeUpgrade(address newImplementation)
                internal
                onlyRole(UPGRADER_ROLE)
                override
            {}    
            function setRoleAdmin() public {
                _setRoleAdmin(DEFAULT_ADMIN_ROLE, ADMIN_ROLE);
            }
        }