ETH Price: $3,124.18 (+4.36%)

Transaction Decoder

Block:
20726469 at Sep-11-2024 09:26:47 AM +UTC
Transaction Fee:
0.00026796598648442 ETH $0.84
Gas Used:
110,122 Gas / 2.43335561 Gwei

Emitted Events:

414 Proxy.0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32( 0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32, 0x0000000000000000000000001111000000002bdbf1bf3279983603ec279cd7f0, 0x000000000000000000000000276275ce1af32327bc800c4c1945ac15d15ce97a, 0x0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000020, 0000000000000000000000000000000000000000000000000000000000000049, 00000000000000000000000000000000000000000000000000254db1c2244000, 00000000000000000000000000000000000000000000000000254db1c2244000, 00000000000186a0000000000000000000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x1a0ad011...fD9551054
(Zora: Bridge)
7,677.884482216454442231 Eth7,677.894982216454442231 Eth0.0105
0x276275ce...5d15Ce97A
0.01138284930269228 Eth
Nonce: 1
0.00061488331620786 Eth
Nonce: 2
0.01076796598648442
(beaverbuild)
16.667158621416790366 Eth16.667230450440449766 Eth0.0000718290236594

Execution Trace

ETH 0.0105 Multicaller.66e0daa0( )
  • ETH 0.0105 Multicaller.aggregate( targets=[0x1a0ad011913A150f69f6A19DF447A0CfD9551054], data=[6eBcQgAAAAAAAAAAAAAAACdidc4a8yMnvIAMTBlFrBXRXOl6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVNscIkQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA==], values=[10500000000000000], refundTo=0x0000000000000000000000000000000000000001 ) => ( [] )
    • ETH 0.0105 Proxy.e9e05c42( )
      • ETH 0.0105 OptimismPortal.depositTransaction( _to=0x276275ce1Af32327Bc800C4C1945AC15d15Ce97A, _value=10500000000000000, _gasLimit=100000, _isCreation=False, _data=0x )
        • Proxy.STATICCALL( )
          • SystemConfig.DELEGATECALL( )
            File 1 of 5: Multicaller
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.4;
            /**
             * @title Multicaller
             * @author vectorized.eth
             * @notice Contract that allows for efficient aggregation
             *         of multiple calls in a single transaction.
             */
            contract Multicaller {
                // =============================================================
                //                            ERRORS
                // =============================================================
                /**
                 * @dev The lengths of the input arrays are not the same.
                 */
                error ArrayLengthsMismatch();
                // =============================================================
                //                    AGGREGATION OPERATIONS
                // =============================================================
                /**
                 * @dev Aggregates multiple calls in a single transaction.
                 * @param targets  An array of addresses to call.
                 * @param data     An array of calldata to forward to the targets.
                 * @param values   How much ETH to forward to each target.
                 * @param refundTo The address to transfer any remaining ETH in the contract after the calls.
                 *                 If `address(0)`, remaining ETH will NOT be refunded.
                 *                 If `address(1)`, remaining ETH will be refunded to `msg.sender`.
                 *                 If anything else, remaining ETH will be refunded to `refundTo`.
                 * @return An array of the returndata from each call.
                 */
                function aggregate(
                    address[] calldata targets,
                    bytes[] calldata data,
                    uint256[] calldata values,
                    address refundTo
                ) external payable returns (bytes[] memory) {
                    assembly {
                        if iszero(and(eq(targets.length, data.length), eq(data.length, values.length))) {
                            // Store the function selector of `ArrayLengthsMismatch()`.
                            mstore(returndatasize(), 0x3b800a46)
                            // Revert with (offset, size).
                            revert(0x1c, 0x04)
                        }
                        let resultsSize := 0x40
                        if data.length {
                            let results := 0x40
                            // Left shift by 5 is equivalent to multiplying by 0x20.
                            data.length := shl(5, data.length)
                            // Copy the offsets from calldata into memory.
                            calldatacopy(results, data.offset, data.length)
                            // Offset into `results`.
                            let resultsOffset := data.length
                            // Pointer to the end of `results`.
                            let end := add(results, data.length)
                            // For deriving the calldata offsets from the `results` pointer.
                            let valuesOffsetDiff := sub(values.offset, results)
                            let targetsOffsetDiff := sub(targets.offset, results)
                            for {} 1 {} {
                                // The offset of the current bytes in the calldata.
                                let o := add(data.offset, mload(results))
                                let memPtr := add(resultsOffset, 0x40)
                                // Copy the current bytes from calldata to the memory.
                                calldatacopy(
                                    memPtr,
                                    add(o, 0x20), // The offset of the current bytes' bytes.
                                    calldataload(o) // The length of the current bytes.
                                )
                                if iszero(
                                    call(
                                        gas(), // Remaining gas.
                                        calldataload(add(targetsOffsetDiff, results)), // Address to call.
                                        calldataload(add(valuesOffsetDiff, results)), // ETH to send.
                                        memPtr, // Start of input calldata in memory.
                                        calldataload(o), // Size of input calldata.
                                        0x00, // We will use returndatacopy instead.
                                        0x00 // We will use returndatacopy instead.
                                    )
                                ) {
                                    // Bubble up the revert if the call reverts.
                                    returndatacopy(0x00, 0x00, returndatasize())
                                    revert(0x00, returndatasize())
                                }
                                // Append the current `resultsOffset` into `results`.
                                mstore(results, resultsOffset)
                                // Append the returndatasize, and the returndata.
                                mstore(memPtr, returndatasize())
                                returndatacopy(add(memPtr, 0x20), 0x00, returndatasize())
                                // Advance the `resultsOffset` by `returndatasize() + 0x20`,
                                // rounded up to the next multiple of 0x20.
                                resultsOffset := and(add(add(resultsOffset, returndatasize()), 0x3f), not(0x1f))
                                // Advance the `results` pointer.
                                results := add(results, 0x20)
                                if eq(results, end) { break }
                            }
                            resultsSize := add(resultsOffset, 0x40)
                        }
                        if refundTo {
                            // Force transfers all the remaining ETH in the contract to `refundTo`,
                            // with a gas stipend of 100000, which should be enough for most use cases.
                            // If sending via a regular call fails, force sends the ETH by
                            // creating a temporary contract which uses `SELFDESTRUCT` to force send the ETH.
                            if selfbalance() {
                                // If `refundTo` is `address(1)`, replace it with the `msg.sender`.
                                refundTo := xor(refundTo, mul(eq(refundTo, 1), xor(refundTo, caller())))
                                // Transfer the ETH and check if it succeeded or not.
                                if iszero(
                                    call(100000, refundTo, selfbalance(), codesize(), 0x00, codesize(), 0x00)
                                ) {
                                    mstore(0x00, refundTo) // Store the address in scratch space.
                                    mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                    mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                    // We can directly use `SELFDESTRUCT` in the contract creation.
                                    // Compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758
                                    if iszero(create(selfbalance(), 0x0b, 0x16)) {
                                        // Coerce gas estimation to provide enough gas for the `create` above.
                                        revert(codesize(), codesize())
                                    }
                                }
                            }
                        }
                        mstore(0x00, 0x20) // Store the memory offset of the `results`.
                        mstore(0x20, targets.length) // Store `targets.length` into `results`.
                        // Direct return.
                        return(0x00, resultsSize)
                    }
                }
                /**
                 * @dev For receiving ETH.
                 *      Does nothing and returns nothing.
                 *      Called instead of `fallback()` if the calldatasize is zero.
                 */
                receive() external payable {}
                /**
                 * @dev Decompresses the calldata and performs a delegatecall
                 *      with the decompressed calldata to itself.
                 *
                 *      Accompanying JavaScript library to compress the calldata:
                 *      https://github.com/vectorized/solady/blob/main/js/solady.js
                 *      (See: `LibZip.cdCompress`)
                 */
                fallback() external payable {
                    assembly {
                        // If the calldata starts with the bitwise negation of
                        // `bytes4(keccak256("aggregate(address[],bytes[],uint256[],address)"))`.
                        let s := calldataload(returndatasize())
                        if eq(shr(224, s), 0x66e0daa0) {
                            mstore(returndatasize(), not(s))
                            let o := 4
                            for { let i := o } lt(i, calldatasize()) {} {
                                let c := byte(returndatasize(), calldataload(i))
                                i := add(i, 1)
                                if iszero(c) {
                                    let d := byte(returndatasize(), calldataload(i))
                                    i := add(i, 1)
                                    // Fill with either 0xff or 0x00.
                                    mstore(o, not(returndatasize()))
                                    if iszero(gt(d, 0x7f)) { codecopy(o, codesize(), add(d, 1)) }
                                    o := add(o, add(and(d, 0x7f), 1))
                                    continue
                                }
                                mstore8(o, c)
                                o := add(o, 1)
                            }
                            let success := delegatecall(gas(), address(), 0x00, o, 0x00, 0x00)
                            returndatacopy(0x00, 0x00, returndatasize())
                            if iszero(success) { revert(0x00, returndatasize()) }
                            return(0x00, returndatasize())
                        }
                        revert(returndatasize(), returndatasize())
                    }
                }
            }
            

            File 2 of 5: Proxy
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            /**
             * @title Proxy
             * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
             *         if the caller is address(0), meaning that the call originated from an off-chain
             *         simulation.
             */
            contract Proxy {
                /**
                 * @notice The storage slot that holds the address of the implementation.
                 *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                 */
                bytes32 internal constant IMPLEMENTATION_KEY =
                    0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                /**
                 * @notice The storage slot that holds the address of the owner.
                 *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                 */
                bytes32 internal constant OWNER_KEY =
                    0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                /**
                 * @notice An event that is emitted each time the implementation is changed. This event is part
                 *         of the EIP-1967 specification.
                 *
                 * @param implementation The address of the implementation contract
                 */
                event Upgraded(address indexed implementation);
                /**
                 * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                 *         EIP-1967 specification.
                 *
                 * @param previousAdmin The previous owner of the contract
                 * @param newAdmin      The new owner of the contract
                 */
                event AdminChanged(address previousAdmin, address newAdmin);
                /**
                 * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                 *         eth_call to interact with this proxy without needing to use low-level storage
                 *         inspection. We assume that nobody is able to trigger calls from address(0) during
                 *         normal EVM execution.
                 */
                modifier proxyCallIfNotAdmin() {
                    if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                        _;
                    } else {
                        // This WILL halt the call frame on completion.
                        _doProxyCall();
                    }
                }
                /**
                 * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                 *         EIP-1967 admin storage slot so that accidental storage collision with the
                 *         implementation is not possible.
                 *
                 * @param _admin Address of the initial contract admin. Admin as the ability to access the
                 *               transparent proxy interface.
                 */
                constructor(address _admin) {
                    _changeAdmin(_admin);
                }
                // slither-disable-next-line locked-ether
                receive() external payable {
                    // Proxy call by default.
                    _doProxyCall();
                }
                // slither-disable-next-line locked-ether
                fallback() external payable {
                    // Proxy call by default.
                    _doProxyCall();
                }
                /**
                 * @notice Set the implementation contract address. The code at the given address will execute
                 *         when this contract is called.
                 *
                 * @param _implementation Address of the implementation contract.
                 */
                function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                    _setImplementation(_implementation);
                }
                /**
                 * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                 *         atomic execution of initialization-based upgrades.
                 *
                 * @param _implementation Address of the implementation contract.
                 * @param _data           Calldata to delegatecall the new implementation with.
                 */
                function upgradeToAndCall(address _implementation, bytes calldata _data)
                    public
                    payable
                    virtual
                    proxyCallIfNotAdmin
                    returns (bytes memory)
                {
                    _setImplementation(_implementation);
                    (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                    require(success, "Proxy: delegatecall to new implementation contract failed");
                    return returndata;
                }
                /**
                 * @notice Changes the owner of the proxy contract. Only callable by the owner.
                 *
                 * @param _admin New owner of the proxy contract.
                 */
                function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                    _changeAdmin(_admin);
                }
                /**
                 * @notice Gets the owner of the proxy contract.
                 *
                 * @return Owner address.
                 */
                function admin() public virtual proxyCallIfNotAdmin returns (address) {
                    return _getAdmin();
                }
                /**
                 * @notice Queries the implementation address.
                 *
                 * @return Implementation address.
                 */
                function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                    return _getImplementation();
                }
                /**
                 * @notice Sets the implementation address.
                 *
                 * @param _implementation New implementation address.
                 */
                function _setImplementation(address _implementation) internal {
                    assembly {
                        sstore(IMPLEMENTATION_KEY, _implementation)
                    }
                    emit Upgraded(_implementation);
                }
                /**
                 * @notice Changes the owner of the proxy contract.
                 *
                 * @param _admin New owner of the proxy contract.
                 */
                function _changeAdmin(address _admin) internal {
                    address previous = _getAdmin();
                    assembly {
                        sstore(OWNER_KEY, _admin)
                    }
                    emit AdminChanged(previous, _admin);
                }
                /**
                 * @notice Performs the proxy call via a delegatecall.
                 */
                function _doProxyCall() internal {
                    address impl = _getImplementation();
                    require(impl != address(0), "Proxy: implementation not initialized");
                    assembly {
                        // Copy calldata into memory at 0x0....calldatasize.
                        calldatacopy(0x0, 0x0, calldatasize())
                        // Perform the delegatecall, make sure to pass all available gas.
                        let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                        // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                        // overwrite the calldata that we just copied into memory but that doesn't really
                        // matter because we'll be returning in a second anyway.
                        returndatacopy(0x0, 0x0, returndatasize())
                        // Success == 0 means a revert. We'll revert too and pass the data up.
                        if iszero(success) {
                            revert(0x0, returndatasize())
                        }
                        // Otherwise we'll just return and pass the data up.
                        return(0x0, returndatasize())
                    }
                }
                /**
                 * @notice Queries the implementation address.
                 *
                 * @return Implementation address.
                 */
                function _getImplementation() internal view returns (address) {
                    address impl;
                    assembly {
                        impl := sload(IMPLEMENTATION_KEY)
                    }
                    return impl;
                }
                /**
                 * @notice Queries the owner of the proxy contract.
                 *
                 * @return Owner address.
                 */
                function _getAdmin() internal view returns (address) {
                    address owner;
                    assembly {
                        owner := sload(OWNER_KEY)
                    }
                    return owner;
                }
            }
            

            File 3 of 5: OptimismPortal
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { SafeCall } from "src/libraries/SafeCall.sol";
            import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
            import { SystemConfig } from "src/L1/SystemConfig.sol";
            import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
            import { Constants } from "src/libraries/Constants.sol";
            import { Types } from "src/libraries/Types.sol";
            import { Hashing } from "src/libraries/Hashing.sol";
            import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
            import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
            import { ResourceMetering } from "src/L1/ResourceMetering.sol";
            import { ISemver } from "src/universal/ISemver.sol";
            import { Constants } from "src/libraries/Constants.sol";
            /// @custom:proxied
            /// @title OptimismPortal
            /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
            ///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
            ///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
            contract OptimismPortal is Initializable, ResourceMetering, ISemver {
                /// @notice Represents a proven withdrawal.
                /// @custom:field outputRoot    Root of the L2 output this was proven against.
                /// @custom:field timestamp     Timestamp at whcih the withdrawal was proven.
                /// @custom:field l2OutputIndex Index of the output this was proven against.
                struct ProvenWithdrawal {
                    bytes32 outputRoot;
                    uint128 timestamp;
                    uint128 l2OutputIndex;
                }
                /// @notice Version of the deposit event.
                uint256 internal constant DEPOSIT_VERSION = 0;
                /// @notice The L2 gas limit set when eth is deposited using the receive() function.
                uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
                /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
                ///         If the of this variable is the default L2 sender address, then we are NOT inside of
                ///         a call to finalizeWithdrawalTransaction.
                address public l2Sender;
                /// @notice A list of withdrawal hashes which have been successfully finalized.
                mapping(bytes32 => bool) public finalizedWithdrawals;
                /// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
                mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
                /// @custom:legacy
                /// @custom:spacer paused
                /// @notice Spacer for backwards compatibility.
                bool private spacer_53_0_1;
                /// @notice Contract of the Superchain Config.
                SuperchainConfig public superchainConfig;
                /// @notice Contract of the L2OutputOracle.
                /// @custom:network-specific
                L2OutputOracle public l2Oracle;
                /// @notice Contract of the SystemConfig.
                /// @custom:network-specific
                SystemConfig public systemConfig;
                /// @notice Emitted when a transaction is deposited from L1 to L2.
                ///         The parameters of this event are read by the rollup node and used to derive deposit
                ///         transactions on L2.
                /// @param from       Address that triggered the deposit transaction.
                /// @param to         Address that the deposit transaction is directed to.
                /// @param version    Version of this deposit transaction event.
                /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
                event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                /// @notice Emitted when a withdrawal transaction is proven.
                /// @param withdrawalHash Hash of the withdrawal transaction.
                /// @param from           Address that triggered the withdrawal transaction.
                /// @param to             Address that the withdrawal transaction is directed to.
                event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                /// @notice Emitted when a withdrawal transaction is finalized.
                /// @param withdrawalHash Hash of the withdrawal transaction.
                /// @param success        Whether the withdrawal transaction was successful.
                event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                /// @notice Reverts when paused.
                modifier whenNotPaused() {
                    require(paused() == false, "OptimismPortal: paused");
                    _;
                }
                /// @notice Semantic version.
                /// @custom:semver 2.5.0
                string public constant version = "2.5.0";
                /// @notice Constructs the OptimismPortal contract.
                constructor() {
                    initialize({
                        _l2Oracle: L2OutputOracle(address(0)),
                        _systemConfig: SystemConfig(address(0)),
                        _superchainConfig: SuperchainConfig(address(0))
                    });
                }
                /// @notice Initializer.
                /// @param _l2Oracle Contract of the L2OutputOracle.
                /// @param _systemConfig Contract of the SystemConfig.
                /// @param _superchainConfig Contract of the SuperchainConfig.
                function initialize(
                    L2OutputOracle _l2Oracle,
                    SystemConfig _systemConfig,
                    SuperchainConfig _superchainConfig
                )
                    public
                    initializer
                {
                    l2Oracle = _l2Oracle;
                    systemConfig = _systemConfig;
                    superchainConfig = _superchainConfig;
                    if (l2Sender == address(0)) {
                        l2Sender = Constants.DEFAULT_L2_SENDER;
                    }
                    __ResourceMetering_init();
                }
                /// @notice Getter function for the contract of the L2OutputOracle on this chain.
                ///         Public getter is legacy and will be removed in the future. Use `l2Oracle()` instead.
                /// @return Contract of the L2OutputOracle on this chain.
                /// @custom:legacy
                function L2_ORACLE() external view returns (L2OutputOracle) {
                    return l2Oracle;
                }
                /// @notice Getter function for the contract of the SystemConfig on this chain.
                ///         Public getter is legacy and will be removed in the future. Use `systemConfig()` instead.
                /// @return Contract of the SystemConfig on this chain.
                /// @custom:legacy
                function SYSTEM_CONFIG() external view returns (SystemConfig) {
                    return systemConfig;
                }
                /// @notice Getter function for the address of the guardian.
                ///         Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
                /// @return Address of the guardian.
                /// @custom:legacy
                function GUARDIAN() external view returns (address) {
                    return guardian();
                }
                /// @notice Getter function for the address of the guardian.
                ///         Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
                /// @return Address of the guardian.
                /// @custom:legacy
                function guardian() public view returns (address) {
                    return superchainConfig.guardian();
                }
                /// @notice Getter for the current paused status.
                /// @return paused_ Whether or not the contract is paused.
                function paused() public view returns (bool paused_) {
                    paused_ = superchainConfig.paused();
                }
                /// @notice Computes the minimum gas limit for a deposit.
                ///         The minimum gas limit linearly increases based on the size of the calldata.
                ///         This is to prevent users from creating L2 resource usage without paying for it.
                ///         This function can be used when interacting with the portal to ensure forwards
                ///         compatibility.
                /// @param _byteCount Number of bytes in the calldata.
                /// @return The minimum gas limit for a deposit.
                function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
                    return _byteCount * 16 + 21000;
                }
                /// @notice Accepts value so that users can send ETH directly to this contract and have the
                ///         funds be deposited to their address on L2. This is intended as a convenience
                ///         function for EOAs. Contracts should call the depositTransaction() function directly
                ///         otherwise any deposited funds will be lost due to address aliasing.
                // solhint-disable-next-line ordering
                receive() external payable {
                    depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
                }
                /// @notice Accepts ETH value without triggering a deposit to L2.
                ///         This function mainly exists for the sake of the migration between the legacy
                ///         Optimism system and Bedrock.
                function donateETH() external payable {
                    // Intentionally empty.
                }
                /// @notice Getter for the resource config.
                ///         Used internally by the ResourceMetering contract.
                ///         The SystemConfig is the source of truth for the resource config.
                /// @return ResourceMetering ResourceConfig
                function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) {
                    return systemConfig.resourceConfig();
                }
                /// @notice Proves a withdrawal transaction.
                /// @param _tx              Withdrawal transaction to finalize.
                /// @param _l2OutputIndex   L2 output index to prove against.
                /// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
                /// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
                function proveWithdrawalTransaction(
                    Types.WithdrawalTransaction memory _tx,
                    uint256 _l2OutputIndex,
                    Types.OutputRootProof calldata _outputRootProof,
                    bytes[] calldata _withdrawalProof
                )
                    external
                    whenNotPaused
                {
                    // Prevent users from creating a deposit transaction where this address is the message
                    // sender on L2. Because this is checked here, we do not need to check again in
                    // `finalizeWithdrawalTransaction`.
                    require(_tx.target != address(this), "OptimismPortal: you cannot send messages to the portal contract");
                    // Get the output root and load onto the stack to prevent multiple mloads. This will
                    // revert if there is no output root for the given block number.
                    bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot;
                    // Verify that the output root can be generated with the elements in the proof.
                    require(
                        outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof"
                    );
                    // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
                    bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                    ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
                    // We generally want to prevent users from proving the same withdrawal multiple times
                    // because each successive proof will update the timestamp. A malicious user can take
                    // advantage of this to prevent other users from finalizing their withdrawal. However,
                    // since withdrawals are proven before an output root is finalized, we need to allow users
                    // to re-prove their withdrawal only in the case that the output root for their specified
                    // output index has been updated.
                    require(
                        provenWithdrawal.timestamp == 0
                            || l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot,
                        "OptimismPortal: withdrawal hash has already been proven"
                    );
                    // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
                    // Refer to the Solidity documentation for more information on how storage layouts are
                    // computed for mappings.
                    bytes32 storageKey = keccak256(
                        abi.encode(
                            withdrawalHash,
                            uint256(0) // The withdrawals mapping is at the first slot in the layout.
                        )
                    );
                    // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
                    // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
                    // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
                    // be relayed on L1.
                    require(
                        SecureMerkleTrie.verifyInclusionProof(
                            abi.encode(storageKey), hex"01", _withdrawalProof, _outputRootProof.messagePasserStorageRoot
                        ),
                        "OptimismPortal: invalid withdrawal inclusion proof"
                    );
                    // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
                    // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
                    // proven once unless it is submitted again with a different outputRoot.
                    provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
                        outputRoot: outputRoot,
                        timestamp: uint128(block.timestamp),
                        l2OutputIndex: uint128(_l2OutputIndex)
                    });
                    // Emit a `WithdrawalProven` event.
                    emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
                }
                /// @notice Finalizes a withdrawal transaction.
                /// @param _tx Withdrawal transaction to finalize.
                function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused {
                    // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
                    // than the default value when a withdrawal transaction is being finalized. This check is
                    // a defacto reentrancy guard.
                    require(
                        l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: can only trigger one withdrawal per transaction"
                    );
                    // Grab the proven withdrawal from the `provenWithdrawals` map.
                    bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                    ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
                    // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
                    // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
                    // a timestamp of zero.
                    require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet");
                    // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
                    // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
                    // safety against weird bugs in the proving step.
                    require(
                        provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(),
                        "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
                    );
                    // A proven withdrawal must wait at least the finalization period before it can be
                    // finalized. This waiting period can elapse in parallel with the waiting period for the
                    // output the withdrawal was proven against. In effect, this means that the minimum
                    // withdrawal time is proposal submission time + finalization period.
                    require(
                        _isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
                        "OptimismPortal: proven withdrawal finalization period has not elapsed"
                    );
                    // Grab the OutputProposal from the L2OutputOracle, will revert if the output that
                    // corresponds to the given index has not been proposed yet.
                    Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex);
                    // Check that the output root that was used to prove the withdrawal is the same as the
                    // current output root for the given output index. An output root may change if it is
                    // deleted by the challenger address and then re-proposed.
                    require(
                        proposal.outputRoot == provenWithdrawal.outputRoot,
                        "OptimismPortal: output root proven is not the same as current output root"
                    );
                    // Check that the output proposal has also been finalized.
                    require(
                        _isFinalizationPeriodElapsed(proposal.timestamp),
                        "OptimismPortal: output proposal finalization period has not elapsed"
                    );
                    // Check that this withdrawal has not already been finalized, this is replay protection.
                    require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized");
                    // Mark the withdrawal as finalized so it can't be replayed.
                    finalizedWithdrawals[withdrawalHash] = true;
                    // Set the l2Sender so contracts know who triggered this withdrawal on L2.
                    l2Sender = _tx.sender;
                    // Trigger the call to the target contract. We use a custom low level method
                    // SafeCall.callWithMinGas to ensure two key properties
                    //   1. Target contracts cannot force this call to run out of gas by returning a very large
                    //      amount of data (and this is OK because we don't care about the returndata here).
                    //   2. The amount of gas provided to the execution context of the target is at least the
                    //      gas limit specified by the user. If there is not enough gas in the current context
                    //      to accomplish this, `callWithMinGas` will revert.
                    bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
                    // Reset the l2Sender back to the default value.
                    l2Sender = Constants.DEFAULT_L2_SENDER;
                    // All withdrawals are immediately finalized. Replayability can
                    // be achieved through contracts built on top of this contract
                    emit WithdrawalFinalized(withdrawalHash, success);
                    // Reverting here is useful for determining the exact gas cost to successfully execute the
                    // sub call to the target contract if the minimum gas limit specified by the user would not
                    // be sufficient to execute the sub call.
                    if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
                        revert("OptimismPortal: withdrawal failed");
                    }
                }
                /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
                ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
                ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
                ///         using the CrossDomainMessenger contracts for a simpler developer experience.
                /// @param _to         Target address on L2.
                /// @param _value      ETH value to send to the recipient.
                /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
                /// @param _isCreation Whether or not the transaction is a contract creation.
                /// @param _data       Data to trigger the recipient with.
                function depositTransaction(
                    address _to,
                    uint256 _value,
                    uint64 _gasLimit,
                    bool _isCreation,
                    bytes memory _data
                )
                    public
                    payable
                    metered(_gasLimit)
                {
                    // Just to be safe, make sure that people specify address(0) as the target when doing
                    // contract creations.
                    if (_isCreation) {
                        require(_to == address(0), "OptimismPortal: must send to address(0) when creating a contract");
                    }
                    // Prevent depositing transactions that have too small of a gas limit. Users should pay
                    // more for more resource usage.
                    require(_gasLimit >= minimumGasLimit(uint64(_data.length)), "OptimismPortal: gas limit too small");
                    // Prevent the creation of deposit transactions that have too much calldata. This gives an
                    // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
                    // that the transaction can fit into the p2p network policy of 128kb even though deposit
                    // transactions are not gossipped over the p2p network.
                    require(_data.length <= 120_000, "OptimismPortal: data too large");
                    // Transform the from-address to its alias if the caller is a contract.
                    address from = msg.sender;
                    if (msg.sender != tx.origin) {
                        from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
                    }
                    // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
                    // We use opaque data so that we can update the TransactionDeposited event in the future
                    // without breaking the current interface.
                    bytes memory opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
                    // Emit a TransactionDeposited event so that the rollup node can derive a deposit
                    // transaction for this deposit.
                    emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
                }
                /// @notice Determine if a given output is finalized.
                ///         Reverts if the call to l2Oracle.getL2Output reverts.
                ///         Returns a boolean otherwise.
                /// @param _l2OutputIndex Index of the L2 output to check.
                /// @return Whether or not the output is finalized.
                function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
                    return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp);
                }
                /// @notice Determines whether the finalization period has elapsed with respect to
                ///         the provided block timestamp.
                /// @param _timestamp Timestamp to check.
                /// @return Whether or not the finalization period has elapsed.
                function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
                    return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS();
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
            pragma solidity ^0.8.2;
            import "../../utils/Address.sol";
            /**
             * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
             * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
             * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
             * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
             *
             * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
             * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
             * case an upgrade adds a module that needs to be initialized.
             *
             * For example:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * contract MyToken is ERC20Upgradeable {
             *     function initialize() initializer public {
             *         __ERC20_init("MyToken", "MTK");
             *     }
             * }
             * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
             *     function initializeV2() reinitializer(2) public {
             *         __ERC20Permit_init("MyToken");
             *     }
             * }
             * ```
             *
             * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
             * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
             *
             * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
             * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
             *
             * [CAUTION]
             * ====
             * Avoid leaving a contract uninitialized.
             *
             * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
             * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
             * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * /// @custom:oz-upgrades-unsafe-allow constructor
             * constructor() {
             *     _disableInitializers();
             * }
             * ```
             * ====
             */
            abstract contract Initializable {
                /**
                 * @dev Indicates that the contract has been initialized.
                 * @custom:oz-retyped-from bool
                 */
                uint8 private _initialized;
                /**
                 * @dev Indicates that the contract is in the process of being initialized.
                 */
                bool private _initializing;
                /**
                 * @dev Triggered when the contract has been initialized or reinitialized.
                 */
                event Initialized(uint8 version);
                /**
                 * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                 * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                 */
                modifier initializer() {
                    bool isTopLevelCall = !_initializing;
                    require(
                        (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                        "Initializable: contract is already initialized"
                    );
                    _initialized = 1;
                    if (isTopLevelCall) {
                        _initializing = true;
                    }
                    _;
                    if (isTopLevelCall) {
                        _initializing = false;
                        emit Initialized(1);
                    }
                }
                /**
                 * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                 * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                 * used to initialize parent contracts.
                 *
                 * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                 * initialization step. This is essential to configure modules that are added through upgrades and that require
                 * initialization.
                 *
                 * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                 * a contract, executing them in the right order is up to the developer or operator.
                 */
                modifier reinitializer(uint8 version) {
                    require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                    _initialized = version;
                    _initializing = true;
                    _;
                    _initializing = false;
                    emit Initialized(version);
                }
                /**
                 * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                 * {initializer} and {reinitializer} modifiers, directly or indirectly.
                 */
                modifier onlyInitializing() {
                    require(_initializing, "Initializable: contract is not initializing");
                    _;
                }
                /**
                 * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                 * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                 * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                 * through proxies.
                 */
                function _disableInitializers() internal virtual {
                    require(!_initializing, "Initializable: contract is initializing");
                    if (_initialized < type(uint8).max) {
                        _initialized = type(uint8).max;
                        emit Initialized(type(uint8).max);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            /// @title SafeCall
            /// @notice Perform low level safe calls
            library SafeCall {
                /// @notice Performs a low level call without copying any returndata.
                /// @dev Passes no calldata to the call context.
                /// @param _target   Address to call
                /// @param _gas      Amount of gas to pass to the call
                /// @param _value    Amount of value to pass to the call
                function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
                    bool _success;
                    assembly {
                        _success :=
                            call(
                                _gas, // gas
                                _target, // recipient
                                _value, // ether value
                                0, // inloc
                                0, // inlen
                                0, // outloc
                                0 // outlen
                            )
                    }
                    return _success;
                }
                /// @notice Perform a low level call without copying any returndata
                /// @param _target   Address to call
                /// @param _gas      Amount of gas to pass to the call
                /// @param _value    Amount of value to pass to the call
                /// @param _calldata Calldata to pass to the call
                function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
                    bool _success;
                    assembly {
                        _success :=
                            call(
                                _gas, // gas
                                _target, // recipient
                                _value, // ether value
                                add(_calldata, 32), // inloc
                                mload(_calldata), // inlen
                                0, // outloc
                                0 // outlen
                            )
                    }
                    return _success;
                }
                /// @notice Helper function to determine if there is sufficient gas remaining within the context
                ///         to guarantee that the minimum gas requirement for a call will be met as well as
                ///         optionally reserving a specified amount of gas for after the call has concluded.
                /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                ///                     of the target context.
                /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                ///         context as well as reserve `_reservedGas` for the caller after the execution of
                ///         the target context.
                /// @dev !!!!! FOOTGUN ALERT !!!!!
                ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                ///          factors of the dynamic cost of the `CALL` opcode.
                ///      2.) This function should *directly* precede the external call if possible. There is an
                ///          added buffer to account for gas consumed between this check and the call, but it
                ///          is only 5,700 gas.
                ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                ///          truncated.
                ///      4.) Use wisely. This function is not a silver bullet.
                function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                    bool _hasMinGas;
                    assembly {
                        // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                        _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                    }
                    return _hasMinGas;
                }
                /// @notice Perform a low level call without copying any returndata. This function
                ///         will revert if the call cannot be performed with the specified minimum
                ///         gas.
                /// @param _target   Address to call
                /// @param _minGas   The minimum amount of gas that may be passed to the call
                /// @param _value    Amount of value to pass to the call
                /// @param _calldata Calldata to pass to the call
                function callWithMinGas(
                    address _target,
                    uint256 _minGas,
                    uint256 _value,
                    bytes memory _calldata
                )
                    internal
                    returns (bool)
                {
                    bool _success;
                    bool _hasMinGas = hasMinGas(_minGas, 0);
                    assembly {
                        // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                        if iszero(_hasMinGas) {
                            // Store the "Error(string)" selector in scratch space.
                            mstore(0, 0x08c379a0)
                            // Store the pointer to the string length in scratch space.
                            mstore(32, 32)
                            // Store the string.
                            //
                            // SAFETY:
                            // - We pad the beginning of the string with two zero bytes as well as the
                            // length (24) to ensure that we override the free memory pointer at offset
                            // 0x40. This is necessary because the free memory pointer is likely to
                            // be greater than 1 byte when this function is called, but it is incredibly
                            // unlikely that it will be greater than 3 bytes. As for the data within
                            // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                            // - It's fine to clobber the free memory pointer, we're reverting.
                            mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                            // Revert with 'Error("SafeCall: Not enough gas")'
                            revert(28, 100)
                        }
                        // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                        // above assertion. This ensures that, in all circumstances (except for when the
                        // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                        // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                        // the minimum amount of gas specified.
                        _success :=
                            call(
                                gas(), // gas
                                _target, // recipient
                                _value, // ether value
                                add(_calldata, 32), // inloc
                                mload(_calldata), // inlen
                                0x00, // outloc
                                0x00 // outlen
                            )
                    }
                    return _success;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { ISemver } from "src/universal/ISemver.sol";
            import { Types } from "src/libraries/Types.sol";
            import { Constants } from "src/libraries/Constants.sol";
            /// @custom:proxied
            /// @title L2OutputOracle
            /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
            ///         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
            ///         these outputs to verify information about the state of L2.
            contract L2OutputOracle is Initializable, ISemver {
                /// @notice The number of the first L2 block recorded in this contract.
                uint256 public startingBlockNumber;
                /// @notice The timestamp of the first L2 block recorded in this contract.
                uint256 public startingTimestamp;
                /// @notice An array of L2 output proposals.
                Types.OutputProposal[] internal l2Outputs;
                /// @notice The interval in L2 blocks at which checkpoints must be submitted.
                /// @custom:network-specific
                uint256 public submissionInterval;
                /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
                /// @custom:network-specific
                uint256 public l2BlockTime;
                /// @notice The address of the challenger. Can be updated via upgrade.
                /// @custom:network-specific
                address public challenger;
                /// @notice The address of the proposer. Can be updated via upgrade.
                /// @custom:network-specific
                address public proposer;
                /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
                /// @custom:network-specific
                uint256 public finalizationPeriodSeconds;
                /// @notice Emitted when an output is proposed.
                /// @param outputRoot    The output root.
                /// @param l2OutputIndex The index of the output in the l2Outputs array.
                /// @param l2BlockNumber The L2 block number of the output root.
                /// @param l1Timestamp   The L1 timestamp when proposed.
                event OutputProposed(
                    bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
                );
                /// @notice Emitted when outputs are deleted.
                /// @param prevNextOutputIndex Next L2 output index before the deletion.
                /// @param newNextOutputIndex  Next L2 output index after the deletion.
                event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
                /// @notice Semantic version.
                /// @custom:semver 1.8.0
                string public constant version = "1.8.0";
                /// @notice Constructs the L2OutputOracle contract. Initializes variables to the same values as
                ///         in the getting-started config.
                constructor() {
                    initialize({
                        _submissionInterval: 1,
                        _l2BlockTime: 1,
                        _startingBlockNumber: 0,
                        _startingTimestamp: 0,
                        _proposer: address(0),
                        _challenger: address(0),
                        _finalizationPeriodSeconds: 0
                    });
                }
                /// @notice Initializer.
                /// @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
                /// @param _l2BlockTime         The time per L2 block, in seconds.
                /// @param _startingBlockNumber The number of the first L2 block.
                /// @param _startingTimestamp   The timestamp of the first L2 block.
                /// @param _proposer            The address of the proposer.
                /// @param _challenger          The address of the challenger.
                /// @param _finalizationPeriodSeconds The minimum time (in seconds) that must elapse before a withdrawal
                ///                                   can be finalized.
                function initialize(
                    uint256 _submissionInterval,
                    uint256 _l2BlockTime,
                    uint256 _startingBlockNumber,
                    uint256 _startingTimestamp,
                    address _proposer,
                    address _challenger,
                    uint256 _finalizationPeriodSeconds
                )
                    public
                    initializer
                {
                    require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");
                    require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
                    require(
                        _startingTimestamp <= block.timestamp,
                        "L2OutputOracle: starting L2 timestamp must be less than current time"
                    );
                    submissionInterval = _submissionInterval;
                    l2BlockTime = _l2BlockTime;
                    startingBlockNumber = _startingBlockNumber;
                    startingTimestamp = _startingTimestamp;
                    proposer = _proposer;
                    challenger = _challenger;
                    finalizationPeriodSeconds = _finalizationPeriodSeconds;
                }
                /// @notice Getter for the submissionInterval.
                ///         Public getter is legacy and will be removed in the future. Use `submissionInterval` instead.
                /// @return Submission interval.
                /// @custom:legacy
                function SUBMISSION_INTERVAL() external view returns (uint256) {
                    return submissionInterval;
                }
                /// @notice Getter for the l2BlockTime.
                ///         Public getter is legacy and will be removed in the future. Use `l2BlockTime` instead.
                /// @return L2 block time.
                /// @custom:legacy
                function L2_BLOCK_TIME() external view returns (uint256) {
                    return l2BlockTime;
                }
                /// @notice Getter for the challenger address.
                ///         Public getter is legacy and will be removed in the future. Use `challenger` instead.
                /// @return Address of the challenger.
                /// @custom:legacy
                function CHALLENGER() external view returns (address) {
                    return challenger;
                }
                /// @notice Getter for the proposer address.
                ///         Public getter is legacy and will be removed in the future. Use `proposer` instead.
                /// @return Address of the proposer.
                /// @custom:legacy
                function PROPOSER() external view returns (address) {
                    return proposer;
                }
                /// @notice Getter for the finalizationPeriodSeconds.
                ///         Public getter is legacy and will be removed in the future. Use `finalizationPeriodSeconds` instead.
                /// @return Finalization period in seconds.
                /// @custom:legacy
                function FINALIZATION_PERIOD_SECONDS() external view returns (uint256) {
                    return finalizationPeriodSeconds;
                }
                /// @notice Deletes all output proposals after and including the proposal that corresponds to
                ///         the given output index. Only the challenger address can delete outputs.
                /// @param _l2OutputIndex Index of the first L2 output to be deleted.
                ///                       All outputs after this output will also be deleted.
                // solhint-disable-next-line ordering
                function deleteL2Outputs(uint256 _l2OutputIndex) external {
                    require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
                    // Make sure we're not *increasing* the length of the array.
                    require(
                        _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
                    );
                    // Do not allow deleting any outputs that have already been finalized.
                    require(
                        block.timestamp - l2Outputs[_l2OutputIndex].timestamp < finalizationPeriodSeconds,
                        "L2OutputOracle: cannot delete outputs that have already been finalized"
                    );
                    uint256 prevNextL2OutputIndex = nextOutputIndex();
                    // Use assembly to delete the array elements because Solidity doesn't allow it.
                    assembly {
                        sstore(l2Outputs.slot, _l2OutputIndex)
                    }
                    emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
                }
                /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
                ///         The timestamp must be equal to the current value returned by `nextTimestamp()` in
                ///         order to be accepted. This function may only be called by the Proposer.
                /// @param _outputRoot    The L2 output of the checkpoint block.
                /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
                /// @param _l1BlockHash   A block hash which must be included in the current chain.
                /// @param _l1BlockNumber The block number with the specified block hash.
                function proposeL2Output(
                    bytes32 _outputRoot,
                    uint256 _l2BlockNumber,
                    bytes32 _l1BlockHash,
                    uint256 _l1BlockNumber
                )
                    external
                    payable
                {
                    require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
                    require(
                        _l2BlockNumber == nextBlockNumber(),
                        "L2OutputOracle: block number must be equal to next expected block number"
                    );
                    require(
                        computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                        "L2OutputOracle: cannot propose L2 output in the future"
                    );
                    require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
                    if (_l1BlockHash != bytes32(0)) {
                        // This check allows the proposer to propose an output based on a given L1 block,
                        // without fear that it will be reorged out.
                        // It will also revert if the blockheight provided is more than 256 blocks behind the
                        // chain tip (as the hash will return as zero). This does open the door to a griefing
                        // attack in which the proposer's submission is censored until the block is no longer
                        // retrievable, if the proposer is experiencing this attack it can simply leave out the
                        // blockhash value, and delay submission until it is confident that the L1 block is
                        // finalized.
                        require(
                            blockhash(_l1BlockNumber) == _l1BlockHash,
                            "L2OutputOracle: block hash does not match the hash at the expected height"
                        );
                    }
                    emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
                    l2Outputs.push(
                        Types.OutputProposal({
                            outputRoot: _outputRoot,
                            timestamp: uint128(block.timestamp),
                            l2BlockNumber: uint128(_l2BlockNumber)
                        })
                    );
                }
                /// @notice Returns an output by index. Needed to return a struct instead of a tuple.
                /// @param _l2OutputIndex Index of the output to return.
                /// @return The output at the given index.
                function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
                    return l2Outputs[_l2OutputIndex];
                }
                /// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
                ///         Uses a binary search to find the first output greater than or equal to the given
                ///         block.
                /// @param _l2BlockNumber L2 block number to find a checkpoint for.
                /// @return Index of the first checkpoint that commits to the given L2 block number.
                function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
                    // Make sure an output for this block number has actually been proposed.
                    require(
                        _l2BlockNumber <= latestBlockNumber(),
                        "L2OutputOracle: cannot get output for a block that has not been proposed"
                    );
                    // Make sure there's at least one output proposed.
                    require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");
                    // Find the output via binary search, guaranteed to exist.
                    uint256 lo = 0;
                    uint256 hi = l2Outputs.length;
                    while (lo < hi) {
                        uint256 mid = (lo + hi) / 2;
                        if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                            lo = mid + 1;
                        } else {
                            hi = mid;
                        }
                    }
                    return lo;
                }
                /// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
                ///         Uses a binary search to find the first output greater than or equal to the given
                ///         block.
                /// @param _l2BlockNumber L2 block number to find a checkpoint for.
                /// @return First checkpoint that commits to the given L2 block number.
                function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
                    return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
                }
                /// @notice Returns the number of outputs that have been proposed.
                ///         Will revert if no outputs have been proposed yet.
                /// @return The number of outputs that have been proposed.
                function latestOutputIndex() external view returns (uint256) {
                    return l2Outputs.length - 1;
                }
                /// @notice Returns the index of the next output to be proposed.
                /// @return The index of the next output to be proposed.
                function nextOutputIndex() public view returns (uint256) {
                    return l2Outputs.length;
                }
                /// @notice Returns the block number of the latest submitted L2 output proposal.
                ///         If no proposals been submitted yet then this function will return the starting
                ///         block number.
                /// @return Latest submitted L2 block number.
                function latestBlockNumber() public view returns (uint256) {
                    return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
                }
                /// @notice Computes the block number of the next L2 block that needs to be checkpointed.
                /// @return Next L2 block number.
                function nextBlockNumber() public view returns (uint256) {
                    return latestBlockNumber() + submissionInterval;
                }
                /// @notice Returns the L2 timestamp corresponding to a given L2 block number.
                /// @param _l2BlockNumber The L2 block number of the target block.
                /// @return L2 timestamp of the given block.
                function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
                    return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * l2BlockTime);
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
            import { ISemver } from "src/universal/ISemver.sol";
            import { ResourceMetering } from "src/L1/ResourceMetering.sol";
            import { Storage } from "src/libraries/Storage.sol";
            import { Constants } from "src/libraries/Constants.sol";
            /// @title SystemConfig
            /// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
            ///         All configuration is stored on L1 and picked up by L2 as part of the derviation of
            ///         the L2 chain.
            contract SystemConfig is OwnableUpgradeable, ISemver {
                /// @notice Enum representing different types of updates.
                /// @custom:value BATCHER              Represents an update to the batcher hash.
                /// @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
                /// @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
                /// @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
                ///                                    block distrubution.
                enum UpdateType {
                    BATCHER,
                    GAS_CONFIG,
                    GAS_LIMIT,
                    UNSAFE_BLOCK_SIGNER
                }
                /// @notice Struct representing the addresses of L1 system contracts. These should be the
                ///         proxies and are network specific.
                struct Addresses {
                    address l1CrossDomainMessenger;
                    address l1ERC721Bridge;
                    address l1StandardBridge;
                    address l2OutputOracle;
                    address optimismPortal;
                    address optimismMintableERC20Factory;
                }
                /// @notice Version identifier, used for upgrades.
                uint256 public constant VERSION = 0;
                /// @notice Storage slot that the unsafe block signer is stored at.
                ///         Storing it at this deterministic storage slot allows for decoupling the storage
                ///         layout from the way that `solc` lays out storage. The `op-node` uses a storage
                ///         proof to fetch this value.
                /// @dev    NOTE: this value will be migrated to another storage slot in a future version.
                ///         User input should not be placed in storage in this contract until this migration
                ///         happens. It is unlikely that keccak second preimage resistance will be broken,
                ///         but it is better to be safe than sorry.
                bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
                /// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
                bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
                    bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
                /// @notice Storage slot that the L1ERC721Bridge address is stored at.
                bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
                /// @notice Storage slot that the L1StandardBridge address is stored at.
                bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
                /// @notice Storage slot that the L2OutputOracle address is stored at.
                bytes32 public constant L2_OUTPUT_ORACLE_SLOT = bytes32(uint256(keccak256("systemconfig.l2outputoracle")) - 1);
                /// @notice Storage slot that the OptimismPortal address is stored at.
                bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
                /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
                bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
                    bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
                /// @notice Storage slot that the batch inbox address is stored at.
                bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
                /// @notice Storage slot for block at which the op-node can start searching for logs from.
                bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1);
                /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
                uint256 public overhead;
                /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
                uint256 public scalar;
                /// @notice Identifier for the batcher.
                ///         For version 1 of this configuration, this is represented as an address left-padded
                ///         with zeros to 32 bytes.
                bytes32 public batcherHash;
                /// @notice L2 block gas limit.
                uint64 public gasLimit;
                /// @notice The configuration for the deposit fee market.
                ///         Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
                ///         Set as internal with a getter so that the struct is returned instead of a tuple.
                ResourceMetering.ResourceConfig internal _resourceConfig;
                /// @notice Emitted when configuration is updated.
                /// @param version    SystemConfig version.
                /// @param updateType Type of update.
                /// @param data       Encoded update data.
                event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                /// @notice Semantic version.
                /// @custom:semver 1.12.0
                string public constant version = "1.12.0";
                /// @notice Constructs the SystemConfig contract. Cannot set
                ///         the owner to `address(0)` due to the Ownable contract's
                ///         implementation, so set it to `address(0xdEaD)`
                /// @dev    START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value
                ///         in the singleton and is skipped by initialize when setting the start block.
                constructor() {
                    Storage.setUint(START_BLOCK_SLOT, type(uint256).max);
                    initialize({
                        _owner: address(0xdEaD),
                        _overhead: 0,
                        _scalar: 0,
                        _batcherHash: bytes32(0),
                        _gasLimit: 1,
                        _unsafeBlockSigner: address(0),
                        _config: ResourceMetering.ResourceConfig({
                            maxResourceLimit: 1,
                            elasticityMultiplier: 1,
                            baseFeeMaxChangeDenominator: 2,
                            minimumBaseFee: 0,
                            systemTxMaxGas: 0,
                            maximumBaseFee: 0
                        }),
                        _batchInbox: address(0),
                        _addresses: SystemConfig.Addresses({
                            l1CrossDomainMessenger: address(0),
                            l1ERC721Bridge: address(0),
                            l1StandardBridge: address(0),
                            l2OutputOracle: address(0),
                            optimismPortal: address(0),
                            optimismMintableERC20Factory: address(0)
                        })
                    });
                }
                /// @notice Initializer.
                ///         The resource config must be set before the require check.
                /// @param _owner             Initial owner of the contract.
                /// @param _overhead          Initial overhead value.
                /// @param _scalar            Initial scalar value.
                /// @param _batcherHash       Initial batcher hash.
                /// @param _gasLimit          Initial gas limit.
                /// @param _unsafeBlockSigner Initial unsafe block signer address.
                /// @param _config            Initial ResourceConfig.
                /// @param _batchInbox        Batch inbox address. An identifier for the op-node to find
                ///                           canonical data.
                /// @param _addresses         Set of L1 contract addresses. These should be the proxies.
                function initialize(
                    address _owner,
                    uint256 _overhead,
                    uint256 _scalar,
                    bytes32 _batcherHash,
                    uint64 _gasLimit,
                    address _unsafeBlockSigner,
                    ResourceMetering.ResourceConfig memory _config,
                    address _batchInbox,
                    SystemConfig.Addresses memory _addresses
                )
                    public
                    initializer
                {
                    __Ownable_init();
                    transferOwnership(_owner);
                    // These are set in ascending order of their UpdateTypes.
                    _setBatcherHash(_batcherHash);
                    _setGasConfig({ _overhead: _overhead, _scalar: _scalar });
                    _setGasLimit(_gasLimit);
                    Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                    Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
                    Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
                    Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
                    Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
                    Storage.setAddress(L2_OUTPUT_ORACLE_SLOT, _addresses.l2OutputOracle);
                    Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
                    Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
                    _setStartBlock();
                    _setResourceConfig(_config);
                    require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                }
                /// @notice Returns the minimum L2 gas limit that can be safely set for the system to
                ///         operate. The L2 gas limit must be larger than or equal to the amount of
                ///         gas that is allocated for deposits per block plus the amount of gas that
                ///         is allocated for the system transaction.
                ///         This function is used to determine if changes to parameters are safe.
                /// @return uint64 Minimum gas limit.
                function minimumGasLimit() public view returns (uint64) {
                    return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
                }
                /// @notice High level getter for the unsafe block signer address.
                ///         Unsafe blocks can be propagated across the p2p network if they are signed by the
                ///         key corresponding to this address.
                /// @return addr_ Address of the unsafe block signer.
                // solhint-disable-next-line ordering
                function unsafeBlockSigner() public view returns (address addr_) {
                    addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
                }
                /// @notice Getter for the L1CrossDomainMessenger address.
                function l1CrossDomainMessenger() external view returns (address addr_) {
                    addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
                }
                /// @notice Getter for the L1ERC721Bridge address.
                function l1ERC721Bridge() external view returns (address addr_) {
                    addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
                }
                /// @notice Getter for the L1StandardBridge address.
                function l1StandardBridge() external view returns (address addr_) {
                    addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
                }
                /// @notice Getter for the L2OutputOracle address.
                function l2OutputOracle() external view returns (address addr_) {
                    addr_ = Storage.getAddress(L2_OUTPUT_ORACLE_SLOT);
                }
                /// @notice Getter for the OptimismPortal address.
                function optimismPortal() external view returns (address addr_) {
                    addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
                }
                /// @notice Getter for the OptimismMintableERC20Factory address.
                function optimismMintableERC20Factory() external view returns (address addr_) {
                    addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
                }
                /// @notice Getter for the BatchInbox address.
                function batchInbox() external view returns (address addr_) {
                    addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
                }
                /// @notice Getter for the StartBlock number.
                function startBlock() external view returns (uint256 startBlock_) {
                    startBlock_ = Storage.getUint(START_BLOCK_SLOT);
                }
                /// @notice Updates the unsafe block signer address. Can only be called by the owner.
                /// @param _unsafeBlockSigner New unsafe block signer address.
                function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
                    _setUnsafeBlockSigner(_unsafeBlockSigner);
                }
                /// @notice Updates the unsafe block signer address.
                /// @param _unsafeBlockSigner New unsafe block signer address.
                function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
                    Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                    bytes memory data = abi.encode(_unsafeBlockSigner);
                    emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
                }
                /// @notice Updates the batcher hash. Can only be called by the owner.
                /// @param _batcherHash New batcher hash.
                function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
                    _setBatcherHash(_batcherHash);
                }
                /// @notice Internal function for updating the batcher hash.
                /// @param _batcherHash New batcher hash.
                function _setBatcherHash(bytes32 _batcherHash) internal {
                    batcherHash = _batcherHash;
                    bytes memory data = abi.encode(_batcherHash);
                    emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
                }
                /// @notice Updates gas config. Can only be called by the owner.
                /// @param _overhead New overhead value.
                /// @param _scalar   New scalar value.
                function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
                    _setGasConfig(_overhead, _scalar);
                }
                /// @notice Internal function for updating the gas config.
                /// @param _overhead New overhead value.
                /// @param _scalar   New scalar value.
                function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
                    overhead = _overhead;
                    scalar = _scalar;
                    bytes memory data = abi.encode(_overhead, _scalar);
                    emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
                }
                /// @notice Updates the L2 gas limit. Can only be called by the owner.
                /// @param _gasLimit New gas limit.
                function setGasLimit(uint64 _gasLimit) external onlyOwner {
                    _setGasLimit(_gasLimit);
                }
                /// @notice Internal function for updating the L2 gas limit.
                /// @param _gasLimit New gas limit.
                function _setGasLimit(uint64 _gasLimit) internal {
                    require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                    gasLimit = _gasLimit;
                    bytes memory data = abi.encode(_gasLimit);
                    emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
                }
                /// @notice Sets the start block in a backwards compatible way. Proxies
                ///         that were initialized before the startBlock existed in storage
                ///         can have their start block set by a user provided override.
                ///         A start block of 0 indicates that there is no override and the
                ///         start block will be set by `block.number`.
                /// @dev    This logic is used to patch legacy deployments with new storage values.
                ///         Use the override if it is provided as a non zero value and the value
                ///         has not already been set in storage. Use `block.number` if the value
                ///         has already been set in storage
                function _setStartBlock() internal {
                    if (Storage.getUint(START_BLOCK_SLOT) == 0) {
                        Storage.setUint(START_BLOCK_SLOT, block.number);
                    }
                }
                /// @notice A getter for the resource config.
                ///         Ensures that the struct is returned instead of a tuple.
                /// @return ResourceConfig
                function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
                    return _resourceConfig;
                }
                /// @notice An external setter for the resource config.
                ///         In the future, this method may emit an event that the `op-node` picks up
                ///         for when the resource config is changed.
                /// @param _config The new resource config values.
                function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
                    _setResourceConfig(_config);
                }
                /// @notice An internal setter for the resource config.
                ///         Ensures that the config is sane before storing it by checking for invariants.
                /// @param _config The new resource config.
                function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
                    // Min base fee must be less than or equal to max base fee.
                    require(
                        _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
                    );
                    // Base fee change denominator must be greater than 1.
                    require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
                    // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
                    // The gas limit must be increased before these values can be increased.
                    require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
                    // Elasticity multiplier must be greater than 0.
                    require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
                    // No precision loss when computing target resource limit.
                    require(
                        ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
                            == _config.maxResourceLimit,
                        "SystemConfig: precision loss with target resource limit"
                    );
                    _resourceConfig = _config;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { ISemver } from "src/universal/ISemver.sol";
            import { Storage } from "src/libraries/Storage.sol";
            /// @custom:audit none This contracts is not yet audited.
            /// @title SuperchainConfig
            /// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
            contract SuperchainConfig is Initializable, ISemver {
                /// @notice Enum representing different types of updates.
                /// @custom:value GUARDIAN            Represents an update to the guardian.
                enum UpdateType {
                    GUARDIAN
                }
                /// @notice Whether or not the Superchain is paused.
                bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1);
                /// @notice The address of the guardian, which can pause withdrawals from the System.
                ///         It can only be modified by an upgrade.
                bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1);
                /// @notice Emitted when the pause is triggered.
                /// @param identifier A string helping to identify provenance of the pause transaction.
                event Paused(string identifier);
                /// @notice Emitted when the pause is lifted.
                event Unpaused();
                /// @notice Emitted when configuration is updated.
                /// @param updateType Type of update.
                /// @param data       Encoded update data.
                event ConfigUpdate(UpdateType indexed updateType, bytes data);
                /// @notice Semantic version.
                /// @custom:semver 1.1.0
                string public constant version = "1.1.0";
                /// @notice Constructs the SuperchainConfig contract.
                constructor() {
                    initialize({ _guardian: address(0), _paused: false });
                }
                /// @notice Initializer.
                /// @param _guardian    Address of the guardian, can pause the OptimismPortal.
                /// @param _paused      Initial paused status.
                function initialize(address _guardian, bool _paused) public initializer {
                    _setGuardian(_guardian);
                    if (_paused) {
                        _pause("Initializer paused");
                    }
                }
                /// @notice Getter for the guardian address.
                function guardian() public view returns (address guardian_) {
                    guardian_ = Storage.getAddress(GUARDIAN_SLOT);
                }
                /// @notice Getter for the current paused status.
                function paused() public view returns (bool paused_) {
                    paused_ = Storage.getBool(PAUSED_SLOT);
                }
                /// @notice Pauses withdrawals.
                /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
                function pause(string memory _identifier) external {
                    require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause");
                    _pause(_identifier);
                }
                /// @notice Pauses withdrawals.
                /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
                function _pause(string memory _identifier) internal {
                    Storage.setBool(PAUSED_SLOT, true);
                    emit Paused(_identifier);
                }
                /// @notice Unpauses withdrawals.
                function unpause() external {
                    require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause");
                    Storage.setBool(PAUSED_SLOT, false);
                    emit Unpaused();
                }
                /// @notice Sets the guardian address. This is only callable during initialization, so an upgrade
                ///         will be required to change the guardian.
                /// @param _guardian The new guardian address.
                function _setGuardian(address _guardian) internal {
                    Storage.setAddress(GUARDIAN_SLOT, _guardian);
                    emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian));
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { ResourceMetering } from "src/L1/ResourceMetering.sol";
            /// @title Constants
            /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
            ///         the stuff used in multiple contracts. Constants that only apply to a single contract
            ///         should be defined in that contract instead.
            library Constants {
                /// @notice Special address to be used as the tx origin for gas estimation calls in the
                ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                ///         the minimum gas limit specified by the user is not actually enough to execute the
                ///         given message and you're attempting to estimate the actual necessary gas limit. We
                ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                ///         never have any code on any EVM chain.
                address internal constant ESTIMATION_ADDRESS = address(1);
                /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                ///         non-zero to reduce the gas cost of message passing transactions.
                address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                /// @notice The storage slot that holds the address of a proxy implementation.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                    0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                /// @notice The storage slot that holds the address of the owner.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                ///         for a production network.
                function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                    ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                        maxResourceLimit: 20_000_000,
                        elasticityMultiplier: 10,
                        baseFeeMaxChangeDenominator: 8,
                        minimumBaseFee: 1 gwei,
                        systemTxMaxGas: 1_000_000,
                        maximumBaseFee: type(uint128).max
                    });
                    return config;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title Types
            /// @notice Contains various types used throughout the Optimism contract system.
            library Types {
                /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                ///         timestamp that the output root is posted. This timestamp is used to verify that the
                ///         finalization period has passed since the output root was submitted.
                /// @custom:field outputRoot    Hash of the L2 output.
                /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                struct OutputProposal {
                    bytes32 outputRoot;
                    uint128 timestamp;
                    uint128 l2BlockNumber;
                }
                /// @notice Struct representing the elements that are hashed together to generate an output root
                ///         which itself represents a snapshot of the L2 state.
                /// @custom:field version                  Version of the output root.
                /// @custom:field stateRoot                Root of the state trie at the block of this output.
                /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                struct OutputRootProof {
                    bytes32 version;
                    bytes32 stateRoot;
                    bytes32 messagePasserStorageRoot;
                    bytes32 latestBlockhash;
                }
                /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                ///         user (as opposed to a system deposit transaction generated by the system).
                /// @custom:field from        Address of the sender of the transaction.
                /// @custom:field to          Address of the recipient of the transaction.
                /// @custom:field isCreation  True if the transaction is a contract creation.
                /// @custom:field value       Value to send to the recipient.
                /// @custom:field mint        Amount of ETH to mint.
                /// @custom:field gasLimit    Gas limit of the transaction.
                /// @custom:field data        Data of the transaction.
                /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                struct UserDepositTransaction {
                    address from;
                    address to;
                    bool isCreation;
                    uint256 value;
                    uint256 mint;
                    uint64 gasLimit;
                    bytes data;
                    bytes32 l1BlockHash;
                    uint256 logIndex;
                }
                /// @notice Struct representing a withdrawal transaction.
                /// @custom:field nonce    Nonce of the withdrawal transaction
                /// @custom:field sender   Address of the sender of the transaction.
                /// @custom:field target   Address of the recipient of the transaction.
                /// @custom:field value    Value to send to the recipient.
                /// @custom:field gasLimit Gas limit of the transaction.
                /// @custom:field data     Data of the transaction.
                struct WithdrawalTransaction {
                    uint256 nonce;
                    address sender;
                    address target;
                    uint256 value;
                    uint256 gasLimit;
                    bytes data;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { Types } from "src/libraries/Types.sol";
            import { Encoding } from "src/libraries/Encoding.sol";
            /// @title Hashing
            /// @notice Hashing handles Optimism's various different hashing schemes.
            library Hashing {
                /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                ///         system.
                /// @param _tx User deposit transaction to hash.
                /// @return Hash of the RLP encoded L2 deposit transaction.
                function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                    return keccak256(Encoding.encodeDepositTransaction(_tx));
                }
                /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                ///         of the L2 transaction that corresponds to a deposit is unique and is
                ///         deterministically generated from L1 transaction data.
                /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                /// @param _logIndex    The index of the log that created the deposit transaction.
                /// @return Hash of the deposit transaction's "source hash".
                function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                    bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                    return keccak256(abi.encode(bytes32(0), depositId));
                }
                /// @notice Hashes the cross domain message based on the version that is encoded into the
                ///         message nonce.
                /// @param _nonce    Message nonce with version encoded into the first two bytes.
                /// @param _sender   Address of the sender of the message.
                /// @param _target   Address of the target of the message.
                /// @param _value    ETH value to send to the target.
                /// @param _gasLimit Gas limit to use for the message.
                /// @param _data     Data to send with the message.
                /// @return Hashed cross domain message.
                function hashCrossDomainMessage(
                    uint256 _nonce,
                    address _sender,
                    address _target,
                    uint256 _value,
                    uint256 _gasLimit,
                    bytes memory _data
                )
                    internal
                    pure
                    returns (bytes32)
                {
                    (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                    if (version == 0) {
                        return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                    } else if (version == 1) {
                        return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                    } else {
                        revert("Hashing: unknown cross domain message version");
                    }
                }
                /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                /// @param _target Address of the target of the message.
                /// @param _sender Address of the sender of the message.
                /// @param _data   Data to send with the message.
                /// @param _nonce  Message nonce.
                /// @return Hashed cross domain message.
                function hashCrossDomainMessageV0(
                    address _target,
                    address _sender,
                    bytes memory _data,
                    uint256 _nonce
                )
                    internal
                    pure
                    returns (bytes32)
                {
                    return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                }
                /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                /// @param _nonce    Message nonce.
                /// @param _sender   Address of the sender of the message.
                /// @param _target   Address of the target of the message.
                /// @param _value    ETH value to send to the target.
                /// @param _gasLimit Gas limit to use for the message.
                /// @param _data     Data to send with the message.
                /// @return Hashed cross domain message.
                function hashCrossDomainMessageV1(
                    uint256 _nonce,
                    address _sender,
                    address _target,
                    uint256 _value,
                    uint256 _gasLimit,
                    bytes memory _data
                )
                    internal
                    pure
                    returns (bytes32)
                {
                    return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                }
                /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                /// @param _tx Withdrawal transaction to hash.
                /// @return Hashed withdrawal transaction.
                function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                    return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                }
                /// @notice Hashes the various elements of an output root proof into an output root hash which
                ///         can be used to check if the proof is valid.
                /// @param _outputRootProof Output root proof which should hash to an output root.
                /// @return Hashed output root proof.
                function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                    return keccak256(
                        abi.encode(
                            _outputRootProof.version,
                            _outputRootProof.stateRoot,
                            _outputRootProof.messagePasserStorageRoot,
                            _outputRootProof.latestBlockhash
                        )
                    );
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { MerkleTrie } from "./MerkleTrie.sol";
            /// @title SecureMerkleTrie
            /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
            ///         keys. Ethereum's state trie hashes input keys before storing them.
            library SecureMerkleTrie {
                /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
                /// @param _key   Key of the node to search for, as a hex string.
                /// @param _value Value of the node to search for, as a hex string.
                /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                ///               nodes that make a path down to the target node.
                /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                ///               correctly constructed.
                /// @return valid_ Whether or not the proof is valid.
                function verifyInclusionProof(
                    bytes memory _key,
                    bytes memory _value,
                    bytes[] memory _proof,
                    bytes32 _root
                )
                    internal
                    pure
                    returns (bool valid_)
                {
                    bytes memory key = _getSecureKey(_key);
                    valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
                }
                /// @notice Retrieves the value associated with a given key.
                /// @param _key   Key to search for, as hex bytes.
                /// @param _proof Merkle trie inclusion proof for the key.
                /// @param _root  Known root of the Merkle trie.
                /// @return value_ Value of the key if it exists.
                function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                    bytes memory key = _getSecureKey(_key);
                    value_ = MerkleTrie.get(key, _proof, _root);
                }
                /// @notice Computes the hashed version of the input key.
                /// @param _key Key to hash.
                /// @return hash_ Hashed version of the key.
                function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
                    hash_ = abi.encodePacked(keccak256(_key));
                }
            }
            // SPDX-License-Identifier: Apache-2.0
            /*
             * Copyright 2019-2021, Offchain Labs, Inc.
             *
             * Licensed under the Apache License, Version 2.0 (the "License");
             * you may not use this file except in compliance with the License.
             * You may obtain a copy of the License at
             *
             *    http://www.apache.org/licenses/LICENSE-2.0
             *
             * Unless required by applicable law or agreed to in writing, software
             * distributed under the License is distributed on an "AS IS" BASIS,
             * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
             * See the License for the specific language governing permissions and
             * limitations under the License.
             */
            pragma solidity ^0.8.0;
            library AddressAliasHelper {
                uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
                /// @notice Utility function that converts the address in the L1 that submitted a tx to
                /// the inbox to the msg.sender viewed in the L2
                /// @param l1Address the address in the L1 that triggered the tx to L2
                /// @return l2Address L2 address as viewed in msg.sender
                function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                    unchecked {
                        l2Address = address(uint160(l1Address) + offset);
                    }
                }
                /// @notice Utility function that converts the msg.sender viewed in the L2 to the
                /// address in the L1 that submitted a tx to the inbox
                /// @param l2Address L2 address as viewed in msg.sender
                /// @return l1Address the address in the L1 that triggered the tx to L2
                function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                    unchecked {
                        l1Address = address(uint160(l2Address) - offset);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
            import { Burn } from "src/libraries/Burn.sol";
            import { Arithmetic } from "src/libraries/Arithmetic.sol";
            /// @custom:upgradeable
            /// @title ResourceMetering
            /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
            ///         updates automatically based on current demand.
            abstract contract ResourceMetering is Initializable {
                /// @notice Represents the various parameters that control the way in which resources are
                ///         metered. Corresponds to the EIP-1559 resource metering system.
                /// @custom:field prevBaseFee   Base fee from the previous block(s).
                /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                struct ResourceParams {
                    uint128 prevBaseFee;
                    uint64 prevBoughtGas;
                    uint64 prevBlockNum;
                }
                /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                ///         market. These values should be set with care as it is possible to set them in
                ///         a way that breaks the deposit gas market. The target resource limit is defined as
                ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                ///         single word. There is additional space for additions in the future.
                /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                ///                                            can be purchased per block.
                /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                ///                                            the resource limit.
                /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                ///                                            value.
                /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                ///                                            transaction. This should be set to the same
                ///                                            number that the op-node sets as the gas limit
                ///                                            for the system transaction.
                /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                ///                                            value.
                struct ResourceConfig {
                    uint32 maxResourceLimit;
                    uint8 elasticityMultiplier;
                    uint8 baseFeeMaxChangeDenominator;
                    uint32 minimumBaseFee;
                    uint32 systemTxMaxGas;
                    uint128 maximumBaseFee;
                }
                /// @notice EIP-1559 style gas parameters.
                ResourceParams public params;
                /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                uint256[48] private __gap;
                /// @notice Meters access to a function based an amount of a requested resource.
                /// @param _amount Amount of the resource requested.
                modifier metered(uint64 _amount) {
                    // Record initial gas amount so we can refund for it later.
                    uint256 initialGas = gasleft();
                    // Run the underlying function.
                    _;
                    // Run the metering function.
                    _metered(_amount, initialGas);
                }
                /// @notice An internal function that holds all of the logic for metering a resource.
                /// @param _amount     Amount of the resource requested.
                /// @param _initialGas The amount of gas before any modifier execution.
                function _metered(uint64 _amount, uint256 _initialGas) internal {
                    // Update block number and base fee if necessary.
                    uint256 blockDiff = block.number - params.prevBlockNum;
                    ResourceConfig memory config = _resourceConfig();
                    int256 targetResourceLimit =
                        int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                    if (blockDiff > 0) {
                        // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                        // at which deposits can be created and therefore limit the potential for deposits to
                        // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                        int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                        int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                            / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                        // Update base fee by adding the base fee delta and clamp the resulting value between
                        // min and max.
                        int256 newBaseFee = Arithmetic.clamp({
                            _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                        // If we skipped more than one block, we also need to account for every empty block.
                        // Empty block means there was no demand for deposits in that block, so we should
                        // reflect this lack of demand in the fee.
                        if (blockDiff > 1) {
                            // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                            // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                            // between min and max.
                            newBaseFee = Arithmetic.clamp({
                                _value: Arithmetic.cdexp({
                                    _coefficient: newBaseFee,
                                    _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                    _exponent: int256(blockDiff - 1)
                                }),
                                _min: int256(uint256(config.minimumBaseFee)),
                                _max: int256(uint256(config.maximumBaseFee))
                            });
                        }
                        // Update new base fee, reset bought gas, and update block number.
                        params.prevBaseFee = uint128(uint256(newBaseFee));
                        params.prevBoughtGas = 0;
                        params.prevBlockNum = uint64(block.number);
                    }
                    // Make sure we can actually buy the resource amount requested by the user.
                    params.prevBoughtGas += _amount;
                    require(
                        int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                        "ResourceMetering: cannot buy more gas than available gas limit"
                    );
                    // Determine the amount of ETH to be paid.
                    uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                    // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                    // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                    // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                    // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                    // during any 1 day period in the last 5 years, so should be fine.
                    uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                    // Give the user a refund based on the amount of gas they used to do all of the work up to
                    // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                    // effectively like a dynamic stipend (with a minimum value).
                    uint256 usedGas = _initialGas - gasleft();
                    if (gasCost > usedGas) {
                        Burn.gas(gasCost - usedGas);
                    }
                }
                /// @notice Virtual function that returns the resource config.
                ///         Contracts that inherit this contract must implement this function.
                /// @return ResourceConfig
                function _resourceConfig() internal virtual returns (ResourceConfig memory);
                /// @notice Sets initial resource parameter values.
                ///         This function must either be called by the initializer function of an upgradeable
                ///         child contract.
                // solhint-disable-next-line func-name-mixedcase
                function __ResourceMetering_init() internal onlyInitializing {
                    if (params.prevBlockNum == 0) {
                        params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title ISemver
            /// @notice ISemver is a simple contract for ensuring that contracts are
            ///         versioned using semantic versioning.
            interface ISemver {
                /// @notice Getter for the semantic version of the contract. This is not
                ///         meant to be used onchain but instead meant to be used by offchain
                ///         tooling.
                /// @return Semver contract version as a string.
                function version() external view returns (string memory);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library Address {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(isContract(target), "Address: delegate call to non-contract");
                    (bool success, bytes memory returndata) = target.delegatecall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
            pragma solidity ^0.8.0;
            import "../utils/ContextUpgradeable.sol";
            import "../proxy/utils/Initializable.sol";
            /**
             * @dev Contract module which provides a basic access control mechanism, where
             * there is an account (an owner) that can be granted exclusive access to
             * specific functions.
             *
             * By default, the owner account will be the one that deploys the contract. This
             * can later be changed with {transferOwnership}.
             *
             * This module is used through inheritance. It will make available the modifier
             * `onlyOwner`, which can be applied to your functions to restrict their use to
             * the owner.
             */
            abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
                address private _owner;
                event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                /**
                 * @dev Initializes the contract setting the deployer as the initial owner.
                 */
                function __Ownable_init() internal onlyInitializing {
                    __Ownable_init_unchained();
                }
                function __Ownable_init_unchained() internal onlyInitializing {
                    _transferOwnership(_msgSender());
                }
                /**
                 * @dev Throws if called by any account other than the owner.
                 */
                modifier onlyOwner() {
                    _checkOwner();
                    _;
                }
                /**
                 * @dev Returns the address of the current owner.
                 */
                function owner() public view virtual returns (address) {
                    return _owner;
                }
                /**
                 * @dev Throws if the sender is not the owner.
                 */
                function _checkOwner() internal view virtual {
                    require(owner() == _msgSender(), "Ownable: caller is not the owner");
                }
                /**
                 * @dev Leaves the contract without owner. It will not be possible to call
                 * `onlyOwner` functions anymore. Can only be called by the current owner.
                 *
                 * NOTE: Renouncing ownership will leave the contract without an owner,
                 * thereby removing any functionality that is only available to the owner.
                 */
                function renounceOwnership() public virtual onlyOwner {
                    _transferOwnership(address(0));
                }
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`).
                 * Can only be called by the current owner.
                 */
                function transferOwnership(address newOwner) public virtual onlyOwner {
                    require(newOwner != address(0), "Ownable: new owner is the zero address");
                    _transferOwnership(newOwner);
                }
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`).
                 * Internal function without access restriction.
                 */
                function _transferOwnership(address newOwner) internal virtual {
                    address oldOwner = _owner;
                    _owner = newOwner;
                    emit OwnershipTransferred(oldOwner, newOwner);
                }
                /**
                 * @dev This empty reserved space is put in place to allow future versions to add new
                 * variables without shifting down storage in the inheritance chain.
                 * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                 */
                uint256[49] private __gap;
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title Storage
            /// @notice Storage handles reading and writing to arbitary storage locations
            library Storage {
                /// @notice Returns an address stored in an arbitrary storage slot.
                ///         These storage slots decouple the storage layout from
                ///         solc's automation.
                /// @param _slot The storage slot to retrieve the address from.
                function getAddress(bytes32 _slot) internal view returns (address addr_) {
                    assembly {
                        addr_ := sload(_slot)
                    }
                }
                /// @notice Stores an address in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the address in.
                /// @param _address The protocol version to store
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
                ///      in arbitrary storage slots.
                function setAddress(bytes32 _slot, address _address) internal {
                    assembly {
                        sstore(_slot, _address)
                    }
                }
                /// @notice Returns a uint256 stored in an arbitrary storage slot.
                ///         These storage slots decouple the storage layout from
                ///         solc's automation.
                /// @param _slot The storage slot to retrieve the address from.
                function getUint(bytes32 _slot) internal view returns (uint256 value_) {
                    assembly {
                        value_ := sload(_slot)
                    }
                }
                /// @notice Stores a value in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the address in.
                /// @param _value The protocol version to store
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                ///      in arbitrary storage slots.
                function setUint(bytes32 _slot, uint256 _value) internal {
                    assembly {
                        sstore(_slot, _value)
                    }
                }
                /// @notice Returns a bytes32 stored in an arbitrary storage slot.
                ///         These storage slots decouple the storage layout from
                ///         solc's automation.
                /// @param _slot The storage slot to retrieve the address from.
                function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
                    assembly {
                        value_ := sload(_slot)
                    }
                }
                /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the address in.
                /// @param _value The bytes32 value to store.
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                ///      in arbitrary storage slots.
                function setBytes32(bytes32 _slot, bytes32 _value) internal {
                    assembly {
                        sstore(_slot, _value)
                    }
                }
                /// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the bool in.
                /// @param _value The bool value to store
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                ///      in arbitrary storage slots.
                function setBool(bytes32 _slot, bool _value) internal {
                    assembly {
                        sstore(_slot, _value)
                    }
                }
                /// @notice Returns a bool stored in an arbitrary storage slot.
                /// @param _slot The storage slot to retrieve the bool from.
                function getBool(bytes32 _slot) internal view returns (bool value_) {
                    assembly {
                        value_ := sload(_slot)
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { Types } from "src/libraries/Types.sol";
            import { Hashing } from "src/libraries/Hashing.sol";
            import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
            /// @title Encoding
            /// @notice Encoding handles Optimism's various different encoding schemes.
            library Encoding {
                /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                /// @param _tx User deposit transaction to encode.
                /// @return RLP encoded L2 deposit transaction.
                function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                    bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                    bytes[] memory raw = new bytes[](8);
                    raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                    raw[1] = RLPWriter.writeAddress(_tx.from);
                    raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                    raw[3] = RLPWriter.writeUint(_tx.mint);
                    raw[4] = RLPWriter.writeUint(_tx.value);
                    raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                    raw[6] = RLPWriter.writeBool(false);
                    raw[7] = RLPWriter.writeBytes(_tx.data);
                    return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                }
                /// @notice Encodes the cross domain message based on the version that is encoded into the
                ///         message nonce.
                /// @param _nonce    Message nonce with version encoded into the first two bytes.
                /// @param _sender   Address of the sender of the message.
                /// @param _target   Address of the target of the message.
                /// @param _value    ETH value to send to the target.
                /// @param _gasLimit Gas limit to use for the message.
                /// @param _data     Data to send with the message.
                /// @return Encoded cross domain message.
                function encodeCrossDomainMessage(
                    uint256 _nonce,
                    address _sender,
                    address _target,
                    uint256 _value,
                    uint256 _gasLimit,
                    bytes memory _data
                )
                    internal
                    pure
                    returns (bytes memory)
                {
                    (, uint16 version) = decodeVersionedNonce(_nonce);
                    if (version == 0) {
                        return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                    } else if (version == 1) {
                        return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                    } else {
                        revert("Encoding: unknown cross domain message version");
                    }
                }
                /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                /// @param _target Address of the target of the message.
                /// @param _sender Address of the sender of the message.
                /// @param _data   Data to send with the message.
                /// @param _nonce  Message nonce.
                /// @return Encoded cross domain message.
                function encodeCrossDomainMessageV0(
                    address _target,
                    address _sender,
                    bytes memory _data,
                    uint256 _nonce
                )
                    internal
                    pure
                    returns (bytes memory)
                {
                    return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                }
                /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                /// @param _nonce    Message nonce.
                /// @param _sender   Address of the sender of the message.
                /// @param _target   Address of the target of the message.
                /// @param _value    ETH value to send to the target.
                /// @param _gasLimit Gas limit to use for the message.
                /// @param _data     Data to send with the message.
                /// @return Encoded cross domain message.
                function encodeCrossDomainMessageV1(
                    uint256 _nonce,
                    address _sender,
                    address _target,
                    uint256 _value,
                    uint256 _gasLimit,
                    bytes memory _data
                )
                    internal
                    pure
                    returns (bytes memory)
                {
                    return abi.encodeWithSignature(
                        "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                        _nonce,
                        _sender,
                        _target,
                        _value,
                        _gasLimit,
                        _data
                    );
                }
                /// @notice Adds a version number into the first two bytes of a message nonce.
                /// @param _nonce   Message nonce to encode into.
                /// @param _version Version number to encode into the message nonce.
                /// @return Message nonce with version encoded into the first two bytes.
                function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                    uint256 nonce;
                    assembly {
                        nonce := or(shl(240, _version), _nonce)
                    }
                    return nonce;
                }
                /// @notice Pulls the version out of a version-encoded nonce.
                /// @param _nonce Message nonce with version encoded into the first two bytes.
                /// @return Nonce without encoded version.
                /// @return Version of the message.
                function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                    uint240 nonce;
                    uint16 version;
                    assembly {
                        nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                        version := shr(240, _nonce)
                    }
                    return (nonce, version);
                }
                /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                /// @param baseFeeScalar       L1 base fee Scalar
                /// @param blobBaseFeeScalar   L1 blob base fee Scalar
                /// @param sequenceNumber      Number of L2 blocks since epoch start.
                /// @param timestamp           L1 timestamp.
                /// @param number              L1 blocknumber.
                /// @param baseFee             L1 base fee.
                /// @param blobBaseFee         L1 blob base fee.
                /// @param hash                L1 blockhash.
                /// @param batcherHash         Versioned hash to authenticate batcher by.
                function encodeSetL1BlockValuesEcotone(
                    uint32 baseFeeScalar,
                    uint32 blobBaseFeeScalar,
                    uint64 sequenceNumber,
                    uint64 timestamp,
                    uint64 number,
                    uint256 baseFee,
                    uint256 blobBaseFee,
                    bytes32 hash,
                    bytes32 batcherHash
                )
                    internal
                    pure
                    returns (bytes memory)
                {
                    bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                    return abi.encodePacked(
                        functionSignature,
                        baseFeeScalar,
                        blobBaseFeeScalar,
                        sequenceNumber,
                        timestamp,
                        number,
                        baseFee,
                        blobBaseFee,
                        hash,
                        batcherHash
                    );
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { Bytes } from "../Bytes.sol";
            import { RLPReader } from "../rlp/RLPReader.sol";
            /// @title MerkleTrie
            /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
            ///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
            ///         trie radix constant to support other trie radixes.
            library MerkleTrie {
                /// @notice Struct representing a node in the trie.
                /// @custom:field encoded The RLP-encoded node.
                /// @custom:field decoded The RLP-decoded node.
                struct TrieNode {
                    bytes encoded;
                    RLPReader.RLPItem[] decoded;
                }
                /// @notice Determines the number of elements per branch node.
                uint256 internal constant TREE_RADIX = 16;
                /// @notice Branch nodes have TREE_RADIX elements and one value element.
                uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
                /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
                uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
                /// @notice Prefix for even-nibbled extension node paths.
                uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
                /// @notice Prefix for odd-nibbled extension node paths.
                uint8 internal constant PREFIX_EXTENSION_ODD = 1;
                /// @notice Prefix for even-nibbled leaf node paths.
                uint8 internal constant PREFIX_LEAF_EVEN = 2;
                /// @notice Prefix for odd-nibbled leaf node paths.
                uint8 internal constant PREFIX_LEAF_ODD = 3;
                /// @notice Verifies a proof that a given key/value pair is present in the trie.
                /// @param _key   Key of the node to search for, as a hex string.
                /// @param _value Value of the node to search for, as a hex string.
                /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                ///               nodes that make a path down to the target node.
                /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                ///               correctly constructed.
                /// @return valid_ Whether or not the proof is valid.
                function verifyInclusionProof(
                    bytes memory _key,
                    bytes memory _value,
                    bytes[] memory _proof,
                    bytes32 _root
                )
                    internal
                    pure
                    returns (bool valid_)
                {
                    valid_ = Bytes.equal(_value, get(_key, _proof, _root));
                }
                /// @notice Retrieves the value associated with a given key.
                /// @param _key   Key to search for, as hex bytes.
                /// @param _proof Merkle trie inclusion proof for the key.
                /// @param _root  Known root of the Merkle trie.
                /// @return value_ Value of the key if it exists.
                function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                    require(_key.length > 0, "MerkleTrie: empty key");
                    TrieNode[] memory proof = _parseProof(_proof);
                    bytes memory key = Bytes.toNibbles(_key);
                    bytes memory currentNodeID = abi.encodePacked(_root);
                    uint256 currentKeyIndex = 0;
                    // Proof is top-down, so we start at the first element (root).
                    for (uint256 i = 0; i < proof.length; i++) {
                        TrieNode memory currentNode = proof[i];
                        // Key index should never exceed total key length or we'll be out of bounds.
                        require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
                        if (currentKeyIndex == 0) {
                            // First proof element is always the root node.
                            require(
                                Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                "MerkleTrie: invalid root hash"
                            );
                        } else if (currentNode.encoded.length >= 32) {
                            // Nodes 32 bytes or larger are hashed inside branch nodes.
                            require(
                                Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                "MerkleTrie: invalid large internal hash"
                            );
                        } else {
                            // Nodes smaller than 32 bytes aren't hashed.
                            require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
                        }
                        if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                            if (currentKeyIndex == key.length) {
                                // Value is the last element of the decoded list (for branch nodes). There's
                                // some ambiguity in the Merkle trie specification because bytes(0) is a
                                // valid value to place into the trie, but for branch nodes bytes(0) can exist
                                // even when the value wasn't explicitly placed there. Geth treats a value of
                                // bytes(0) as "key does not exist" and so we do the same.
                                value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                                require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
                                // Extra proof elements are not allowed.
                                require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
                                return value_;
                            } else {
                                // We're not at the end of the key yet.
                                // Figure out what the next node ID should be and continue.
                                uint8 branchKey = uint8(key[currentKeyIndex]);
                                RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                                currentNodeID = _getNodeID(nextNode);
                                currentKeyIndex += 1;
                            }
                        } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                            bytes memory path = _getNodePath(currentNode);
                            uint8 prefix = uint8(path[0]);
                            uint8 offset = 2 - (prefix % 2);
                            bytes memory pathRemainder = Bytes.slice(path, offset);
                            bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                            uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                            // Whether this is a leaf node or an extension node, the path remainder MUST be a
                            // prefix of the key remainder (or be equal to the key remainder) or the proof is
                            // considered invalid.
                            require(
                                pathRemainder.length == sharedNibbleLength,
                                "MerkleTrie: path remainder must share all nibbles with key"
                            );
                            if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                                // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                                // the key remainder must be exactly equal to the path remainder. We already
                                // did the necessary byte comparison, so it's more efficient here to check that
                                // the key remainder length equals the shared nibble length, which implies
                                // equality with the path remainder (since we already did the same check with
                                // the path remainder and the shared nibble length).
                                require(
                                    keyRemainder.length == sharedNibbleLength,
                                    "MerkleTrie: key remainder must be identical to path remainder"
                                );
                                // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                                // state trie. Empty values are not allowed in the state trie, so we can safely
                                // say that if the value is empty, the key should not exist and the proof is
                                // invalid.
                                value_ = RLPReader.readBytes(currentNode.decoded[1]);
                                require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
                                // Extra proof elements are not allowed.
                                require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
                                return value_;
                            } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                                // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                                // in the proof and increment the key index by the length of the path remainder
                                // which is equal to the shared nibble length.
                                currentNodeID = _getNodeID(currentNode.decoded[1]);
                                currentKeyIndex += sharedNibbleLength;
                            } else {
                                revert("MerkleTrie: received a node with an unknown prefix");
                            }
                        } else {
                            revert("MerkleTrie: received an unparseable node");
                        }
                    }
                    revert("MerkleTrie: ran out of proof elements");
                }
                /// @notice Parses an array of proof elements into a new array that contains both the original
                ///         encoded element and the RLP-decoded element.
                /// @param _proof Array of proof elements to parse.
                /// @return proof_ Proof parsed into easily accessible structs.
                function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
                    uint256 length = _proof.length;
                    proof_ = new TrieNode[](length);
                    for (uint256 i = 0; i < length;) {
                        proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                        unchecked {
                            ++i;
                        }
                    }
                }
                /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
                ///         specification, but nodes < 32 bytes are not actually hashed.
                /// @param _node Node to pull an ID for.
                /// @return id_ ID for the node, depending on the size of its contents.
                function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
                    id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
                }
                /// @notice Gets the path for a leaf or extension node.
                /// @param _node Node to get a path for.
                /// @return nibbles_ Node path, converted to an array of nibbles.
                function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
                    nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
                }
                /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
                /// @param _a First nibble array.
                /// @param _b Second nibble array.
                /// @return shared_ Number of shared nibbles.
                function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
                    uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
                    for (; shared_ < max && _a[shared_] == _b[shared_];) {
                        unchecked {
                            ++shared_;
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard math utilities missing in the Solidity language.
             */
            library Math {
                enum Rounding {
                    Down, // Toward negative infinity
                    Up, // Toward infinity
                    Zero // Toward zero
                }
                /**
                 * @dev Returns the largest of two numbers.
                 */
                function max(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two numbers.
                 */
                function min(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two numbers. The result is rounded towards
                 * zero.
                 */
                function average(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b) / 2 can overflow.
                    return (a & b) + (a ^ b) / 2;
                }
                /**
                 * @dev Returns the ceiling of the division of two numbers.
                 *
                 * This differs from standard division with `/` in that it rounds up instead
                 * of rounding down.
                 */
                function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b - 1) / b can overflow on addition, so we distribute.
                    return a == 0 ? 0 : (a - 1) / b + 1;
                }
                /**
                 * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                 * with further edits by Uniswap Labs also under MIT license.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 result) {
                    unchecked {
                        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                        // variables such that product = prod1 * 2^256 + prod0.
                        uint256 prod0; // Least significant 256 bits of the product
                        uint256 prod1; // Most significant 256 bits of the product
                        assembly {
                            let mm := mulmod(x, y, not(0))
                            prod0 := mul(x, y)
                            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                        }
                        // Handle non-overflow cases, 256 by 256 division.
                        if (prod1 == 0) {
                            return prod0 / denominator;
                        }
                        // Make sure the result is less than 2^256. Also prevents denominator == 0.
                        require(denominator > prod1);
                        ///////////////////////////////////////////////
                        // 512 by 256 division.
                        ///////////////////////////////////////////////
                        // Make division exact by subtracting the remainder from [prod1 prod0].
                        uint256 remainder;
                        assembly {
                            // Compute remainder using mulmod.
                            remainder := mulmod(x, y, denominator)
                            // Subtract 256 bit number from 512 bit number.
                            prod1 := sub(prod1, gt(remainder, prod0))
                            prod0 := sub(prod0, remainder)
                        }
                        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                        // See https://cs.stackexchange.com/q/138556/92363.
                        // Does not overflow because the denominator cannot be zero at this stage in the function.
                        uint256 twos = denominator & (~denominator + 1);
                        assembly {
                            // Divide denominator by twos.
                            denominator := div(denominator, twos)
                            // Divide [prod1 prod0] by twos.
                            prod0 := div(prod0, twos)
                            // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                            twos := add(div(sub(0, twos), twos), 1)
                        }
                        // Shift in bits from prod1 into prod0.
                        prod0 |= prod1 * twos;
                        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                        // four bits. That is, denominator * inv = 1 mod 2^4.
                        uint256 inverse = (3 * denominator) ^ 2;
                        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                        // in modular arithmetic, doubling the correct bits in each step.
                        inverse *= 2 - denominator * inverse; // inverse mod 2^8
                        inverse *= 2 - denominator * inverse; // inverse mod 2^16
                        inverse *= 2 - denominator * inverse; // inverse mod 2^32
                        inverse *= 2 - denominator * inverse; // inverse mod 2^64
                        inverse *= 2 - denominator * inverse; // inverse mod 2^128
                        inverse *= 2 - denominator * inverse; // inverse mod 2^256
                        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                        // is no longer required.
                        result = prod0 * inverse;
                        return result;
                    }
                }
                /**
                 * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator,
                    Rounding rounding
                ) internal pure returns (uint256) {
                    uint256 result = mulDiv(x, y, denominator);
                    if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                        result += 1;
                    }
                    return result;
                }
                /**
                 * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                 *
                 * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                 */
                function sqrt(uint256 a) internal pure returns (uint256) {
                    if (a == 0) {
                        return 0;
                    }
                    // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                    // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                    // `msb(a) <= a < 2*msb(a)`.
                    // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                    // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                    // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                    // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                    uint256 result = 1;
                    uint256 x = a;
                    if (x >> 128 > 0) {
                        x >>= 128;
                        result <<= 64;
                    }
                    if (x >> 64 > 0) {
                        x >>= 64;
                        result <<= 32;
                    }
                    if (x >> 32 > 0) {
                        x >>= 32;
                        result <<= 16;
                    }
                    if (x >> 16 > 0) {
                        x >>= 16;
                        result <<= 8;
                    }
                    if (x >> 8 > 0) {
                        x >>= 8;
                        result <<= 4;
                    }
                    if (x >> 4 > 0) {
                        x >>= 4;
                        result <<= 2;
                    }
                    if (x >> 2 > 0) {
                        result <<= 1;
                    }
                    // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                    // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                    // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                    // into the expected uint128 result.
                    unchecked {
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        return min(result, a / result);
                    }
                }
                /**
                 * @notice Calculates sqrt(a), following the selected rounding direction.
                 */
                function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                    uint256 result = sqrt(a);
                    if (rounding == Rounding.Up && result * result < a) {
                        result += 1;
                    }
                    return result;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            /// @title Burn
            /// @notice Utilities for burning stuff.
            library Burn {
                /// @notice Burns a given amount of ETH.
                /// @param _amount Amount of ETH to burn.
                function eth(uint256 _amount) internal {
                    new Burner{ value: _amount }();
                }
                /// @notice Burns a given amount of gas.
                /// @param _amount Amount of gas to burn.
                function gas(uint256 _amount) internal view {
                    uint256 i = 0;
                    uint256 initialGas = gasleft();
                    while (initialGas - gasleft() < _amount) {
                        ++i;
                    }
                }
            }
            /// @title Burner
            /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
            ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
            ///         from the circulating supply.
            contract Burner {
                constructor() payable {
                    selfdestruct(payable(address(this)));
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
            import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
            /// @title Arithmetic
            /// @notice Even more math than before.
            library Arithmetic {
                /// @notice Clamps a value between a minimum and maximum.
                /// @param _value The value to clamp.
                /// @param _min   The minimum value.
                /// @param _max   The maximum value.
                /// @return The clamped value.
                function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                    return SignedMath.min(SignedMath.max(_value, _min), _max);
                }
                /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                ///         Returns the result of: c * (1 - 1/d)^exp.
                /// @param _coefficient Coefficient of the function.
                /// @param _denominator Fractional denominator.
                /// @param _exponent    Power function exponent.
                /// @return Result of c * (1 - 1/d)^exp.
                function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                    return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
            pragma solidity ^0.8.0;
            import "../proxy/utils/Initializable.sol";
            /**
             * @dev Provides information about the current execution context, including the
             * sender of the transaction and its data. While these are generally available
             * via msg.sender and msg.data, they should not be accessed in such a direct
             * manner, since when dealing with meta-transactions the account sending and
             * paying for execution may not be the actual sender (as far as an application
             * is concerned).
             *
             * This contract is only required for intermediate, library-like contracts.
             */
            abstract contract ContextUpgradeable is Initializable {
                function __Context_init() internal onlyInitializing {
                }
                function __Context_init_unchained() internal onlyInitializing {
                }
                function _msgSender() internal view virtual returns (address) {
                    return msg.sender;
                }
                function _msgData() internal view virtual returns (bytes calldata) {
                    return msg.data;
                }
                /**
                 * @dev This empty reserved space is put in place to allow future versions to add new
                 * variables without shifting down storage in the inheritance chain.
                 * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                 */
                uint256[50] private __gap;
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
            pragma solidity ^0.8.2;
            import "../../utils/AddressUpgradeable.sol";
            /**
             * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
             * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
             * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
             * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
             *
             * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
             * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
             * case an upgrade adds a module that needs to be initialized.
             *
             * For example:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * contract MyToken is ERC20Upgradeable {
             *     function initialize() initializer public {
             *         __ERC20_init("MyToken", "MTK");
             *     }
             * }
             * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
             *     function initializeV2() reinitializer(2) public {
             *         __ERC20Permit_init("MyToken");
             *     }
             * }
             * ```
             *
             * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
             * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
             *
             * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
             * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
             *
             * [CAUTION]
             * ====
             * Avoid leaving a contract uninitialized.
             *
             * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
             * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
             * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * /// @custom:oz-upgrades-unsafe-allow constructor
             * constructor() {
             *     _disableInitializers();
             * }
             * ```
             * ====
             */
            abstract contract Initializable {
                /**
                 * @dev Indicates that the contract has been initialized.
                 * @custom:oz-retyped-from bool
                 */
                uint8 private _initialized;
                /**
                 * @dev Indicates that the contract is in the process of being initialized.
                 */
                bool private _initializing;
                /**
                 * @dev Triggered when the contract has been initialized or reinitialized.
                 */
                event Initialized(uint8 version);
                /**
                 * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                 * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                 */
                modifier initializer() {
                    bool isTopLevelCall = !_initializing;
                    require(
                        (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                        "Initializable: contract is already initialized"
                    );
                    _initialized = 1;
                    if (isTopLevelCall) {
                        _initializing = true;
                    }
                    _;
                    if (isTopLevelCall) {
                        _initializing = false;
                        emit Initialized(1);
                    }
                }
                /**
                 * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                 * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                 * used to initialize parent contracts.
                 *
                 * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                 * initialization step. This is essential to configure modules that are added through upgrades and that require
                 * initialization.
                 *
                 * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                 * a contract, executing them in the right order is up to the developer or operator.
                 */
                modifier reinitializer(uint8 version) {
                    require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                    _initialized = version;
                    _initializing = true;
                    _;
                    _initializing = false;
                    emit Initialized(version);
                }
                /**
                 * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                 * {initializer} and {reinitializer} modifiers, directly or indirectly.
                 */
                modifier onlyInitializing() {
                    require(_initializing, "Initializable: contract is not initializing");
                    _;
                }
                /**
                 * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                 * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                 * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                 * through proxies.
                 */
                function _disableInitializers() internal virtual {
                    require(!_initializing, "Initializable: contract is initializing");
                    if (_initialized < type(uint8).max) {
                        _initialized = type(uint8).max;
                        emit Initialized(type(uint8).max);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
            /// @title RLPWriter
            /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
            ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
            ///         modifications to improve legibility.
            library RLPWriter {
                /// @notice RLP encodes a byte string.
                /// @param _in The byte string to encode.
                /// @return out_ The RLP encoded string in bytes.
                function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                    if (_in.length == 1 && uint8(_in[0]) < 128) {
                        out_ = _in;
                    } else {
                        out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                    }
                }
                /// @notice RLP encodes a list of RLP encoded byte byte strings.
                /// @param _in The list of RLP encoded byte strings.
                /// @return list_ The RLP encoded list of items in bytes.
                function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                    list_ = _flatten(_in);
                    list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                }
                /// @notice RLP encodes a string.
                /// @param _in The string to encode.
                /// @return out_ The RLP encoded string in bytes.
                function writeString(string memory _in) internal pure returns (bytes memory out_) {
                    out_ = writeBytes(bytes(_in));
                }
                /// @notice RLP encodes an address.
                /// @param _in The address to encode.
                /// @return out_ The RLP encoded address in bytes.
                function writeAddress(address _in) internal pure returns (bytes memory out_) {
                    out_ = writeBytes(abi.encodePacked(_in));
                }
                /// @notice RLP encodes a uint.
                /// @param _in The uint256 to encode.
                /// @return out_ The RLP encoded uint256 in bytes.
                function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                    out_ = writeBytes(_toBinary(_in));
                }
                /// @notice RLP encodes a bool.
                /// @param _in The bool to encode.
                /// @return out_ The RLP encoded bool in bytes.
                function writeBool(bool _in) internal pure returns (bytes memory out_) {
                    out_ = new bytes(1);
                    out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                }
                /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                /// @param _len    The length of the string or the payload.
                /// @param _offset 128 if item is string, 192 if item is list.
                /// @return out_ RLP encoded bytes.
                function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                    if (_len < 56) {
                        out_ = new bytes(1);
                        out_[0] = bytes1(uint8(_len) + uint8(_offset));
                    } else {
                        uint256 lenLen;
                        uint256 i = 1;
                        while (_len / i != 0) {
                            lenLen++;
                            i *= 256;
                        }
                        out_ = new bytes(lenLen + 1);
                        out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                        for (i = 1; i <= lenLen; i++) {
                            out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                        }
                    }
                }
                /// @notice Encode integer in big endian binary form with no leading zeroes.
                /// @param _x The integer to encode.
                /// @return out_ RLP encoded bytes.
                function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                    bytes memory b = abi.encodePacked(_x);
                    uint256 i = 0;
                    for (; i < 32; i++) {
                        if (b[i] != 0) {
                            break;
                        }
                    }
                    out_ = new bytes(32 - i);
                    for (uint256 j = 0; j < out_.length; j++) {
                        out_[j] = b[i++];
                    }
                }
                /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                /// @notice Copies a piece of memory to another location.
                /// @param _dest Destination location.
                /// @param _src  Source location.
                /// @param _len  Length of memory to copy.
                function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                    uint256 dest = _dest;
                    uint256 src = _src;
                    uint256 len = _len;
                    for (; len >= 32; len -= 32) {
                        assembly {
                            mstore(dest, mload(src))
                        }
                        dest += 32;
                        src += 32;
                    }
                    uint256 mask;
                    unchecked {
                        mask = 256 ** (32 - len) - 1;
                    }
                    assembly {
                        let srcpart := and(mload(src), not(mask))
                        let destpart := and(mload(dest), mask)
                        mstore(dest, or(destpart, srcpart))
                    }
                }
                /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                /// @notice Flattens a list of byte strings into one byte string.
                /// @param _list List of byte strings to flatten.
                /// @return out_ The flattened byte string.
                function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                    if (_list.length == 0) {
                        return new bytes(0);
                    }
                    uint256 len;
                    uint256 i = 0;
                    for (; i < _list.length; i++) {
                        len += _list[i].length;
                    }
                    out_ = new bytes(len);
                    uint256 flattenedPtr;
                    assembly {
                        flattenedPtr := add(out_, 0x20)
                    }
                    for (i = 0; i < _list.length; i++) {
                        bytes memory item = _list[i];
                        uint256 listPtr;
                        assembly {
                            listPtr := add(item, 0x20)
                        }
                        _memcpy(flattenedPtr, listPtr, item.length);
                        flattenedPtr += _list[i].length;
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title Bytes
            /// @notice Bytes is a library for manipulating byte arrays.
            library Bytes {
                /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
                /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
                ///         as opposed to a pointer to the original array. Will throw if trying to slice more
                ///         bytes than exist in the array.
                /// @param _bytes Byte array to slice.
                /// @param _start Starting index of the slice.
                /// @param _length Length of the slice.
                /// @return Slice of the input byte array.
                function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
                    unchecked {
                        require(_length + 31 >= _length, "slice_overflow");
                        require(_start + _length >= _start, "slice_overflow");
                        require(_bytes.length >= _start + _length, "slice_outOfBounds");
                    }
                    bytes memory tempBytes;
                    assembly {
                        switch iszero(_length)
                        case 0 {
                            // Get a location of some free memory and store it in tempBytes as
                            // Solidity does for memory variables.
                            tempBytes := mload(0x40)
                            // The first word of the slice result is potentially a partial
                            // word read from the original array. To read it, we calculate
                            // the length of that partial word and start copying that many
                            // bytes into the array. The first word we copy will start with
                            // data we don't care about, but the last `lengthmod` bytes will
                            // land at the beginning of the contents of the new array. When
                            // we're done copying, we overwrite the full first word with
                            // the actual length of the slice.
                            let lengthmod := and(_length, 31)
                            // The multiplication in the next line is necessary
                            // because when slicing multiples of 32 bytes (lengthmod == 0)
                            // the following copy loop was copying the origin's length
                            // and then ending prematurely not copying everything it should.
                            let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                            let end := add(mc, _length)
                            for {
                                // The multiplication in the next line has the same exact purpose
                                // as the one above.
                                let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                            } lt(mc, end) {
                                mc := add(mc, 0x20)
                                cc := add(cc, 0x20)
                            } { mstore(mc, mload(cc)) }
                            mstore(tempBytes, _length)
                            //update free-memory pointer
                            //allocating the array padded to 32 bytes like the compiler does now
                            mstore(0x40, and(add(mc, 31), not(31)))
                        }
                        //if we want a zero-length slice let's just return a zero-length array
                        default {
                            tempBytes := mload(0x40)
                            //zero out the 32 bytes slice we are about to return
                            //we need to do it because Solidity does not garbage collect
                            mstore(tempBytes, 0)
                            mstore(0x40, add(tempBytes, 0x20))
                        }
                    }
                    return tempBytes;
                }
                /// @notice Slices a byte array with a given starting index up to the end of the original byte
                ///         array. Returns a new array rathern than a pointer to the original.
                /// @param _bytes Byte array to slice.
                /// @param _start Starting index of the slice.
                /// @return Slice of the input byte array.
                function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                    if (_start >= _bytes.length) {
                        return bytes("");
                    }
                    return slice(_bytes, _start, _bytes.length - _start);
                }
                /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
                ///         Resulting nibble array will be exactly twice as long as the input byte array.
                /// @param _bytes Input byte array to convert.
                /// @return Resulting nibble array.
                function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                    bytes memory _nibbles;
                    assembly {
                        // Grab a free memory offset for the new array
                        _nibbles := mload(0x40)
                        // Load the length of the passed bytes array from memory
                        let bytesLength := mload(_bytes)
                        // Calculate the length of the new nibble array
                        // This is the length of the input array times 2
                        let nibblesLength := shl(0x01, bytesLength)
                        // Update the free memory pointer to allocate memory for the new array.
                        // To do this, we add the length of the new array + 32 bytes for the array length
                        // rounded up to the nearest 32 byte boundary to the current free memory pointer.
                        mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
                        // Store the length of the new array in memory
                        mstore(_nibbles, nibblesLength)
                        // Store the memory offset of the _bytes array's contents on the stack
                        let bytesStart := add(_bytes, 0x20)
                        // Store the memory offset of the nibbles array's contents on the stack
                        let nibblesStart := add(_nibbles, 0x20)
                        // Loop through each byte in the input array
                        for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                            // Get the starting offset of the next 2 bytes in the nibbles array
                            let offset := add(nibblesStart, shl(0x01, i))
                            // Load the byte at the current index within the `_bytes` array
                            let b := byte(0x00, mload(add(bytesStart, i)))
                            // Pull out the first nibble and store it in the new array
                            mstore8(offset, shr(0x04, b))
                            // Pull out the second nibble and store it in the new array
                            mstore8(add(offset, 0x01), and(b, 0x0F))
                        }
                    }
                    return _nibbles;
                }
                /// @notice Compares two byte arrays by comparing their keccak256 hashes.
                /// @param _bytes First byte array to compare.
                /// @param _other Second byte array to compare.
                /// @return True if the two byte arrays are equal, false otherwise.
                function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                    return keccak256(_bytes) == keccak256(_other);
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.8;
            /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
            /// @title RLPReader
            /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
            ///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
            ///         various tweaks to improve readability.
            library RLPReader {
                /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
                type MemoryPointer is uint256;
                /// @notice RLP item types.
                /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
                /// @custom:value LIST_ITEM Represents an RLP list item.
                enum RLPItemType {
                    DATA_ITEM,
                    LIST_ITEM
                }
                /// @notice Struct representing an RLP item.
                /// @custom:field length Length of the RLP item.
                /// @custom:field ptr    Pointer to the RLP item in memory.
                struct RLPItem {
                    uint256 length;
                    MemoryPointer ptr;
                }
                /// @notice Max list length that this library will accept.
                uint256 internal constant MAX_LIST_LENGTH = 32;
                /// @notice Converts bytes to a reference to memory position and length.
                /// @param _in Input bytes to convert.
                /// @return out_ Output memory reference.
                function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
                    // Empty arrays are not RLP items.
                    require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
                    MemoryPointer ptr;
                    assembly {
                        ptr := add(_in, 32)
                    }
                    out_ = RLPItem({ length: _in.length, ptr: ptr });
                }
                /// @notice Reads an RLP list value into a list of RLP items.
                /// @param _in RLP list value.
                /// @return out_ Decoded RLP list items.
                function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
                    (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
                    require(itemType == RLPItemType.LIST_ITEM, "RLPReader: decoded item type for list is not a list item");
                    require(listOffset + listLength == _in.length, "RLPReader: list item has an invalid data remainder");
                    // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                    // writing to the length. Since we can't know the number of RLP items without looping over
                    // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                    // simply set a reasonable maximum list length and decrease the size before we finish.
                    out_ = new RLPItem[](MAX_LIST_LENGTH);
                    uint256 itemCount = 0;
                    uint256 offset = listOffset;
                    while (offset < _in.length) {
                        (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                            RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
                        );
                        // We don't need to check itemCount < out.length explicitly because Solidity already
                        // handles this check on our behalf, we'd just be wasting gas.
                        out_[itemCount] = RLPItem({
                            length: itemLength + itemOffset,
                            ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                        });
                        itemCount += 1;
                        offset += itemOffset + itemLength;
                    }
                    // Decrease the array size to match the actual item count.
                    assembly {
                        mstore(out_, itemCount)
                    }
                }
                /// @notice Reads an RLP list value into a list of RLP items.
                /// @param _in RLP list value.
                /// @return out_ Decoded RLP list items.
                function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
                    out_ = readList(toRLPItem(_in));
                }
                /// @notice Reads an RLP bytes value into bytes.
                /// @param _in RLP bytes value.
                /// @return out_ Decoded bytes.
                function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                    (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                    require(itemType == RLPItemType.DATA_ITEM, "RLPReader: decoded item type for bytes is not a data item");
                    require(_in.length == itemOffset + itemLength, "RLPReader: bytes value contains an invalid remainder");
                    out_ = _copy(_in.ptr, itemOffset, itemLength);
                }
                /// @notice Reads an RLP bytes value into bytes.
                /// @param _in RLP bytes value.
                /// @return out_ Decoded bytes.
                function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                    out_ = readBytes(toRLPItem(_in));
                }
                /// @notice Reads the raw bytes of an RLP item.
                /// @param _in RLP item to read.
                /// @return out_ Raw RLP bytes.
                function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                    out_ = _copy(_in.ptr, 0, _in.length);
                }
                /// @notice Decodes the length of an RLP item.
                /// @param _in RLP item to decode.
                /// @return offset_ Offset of the encoded data.
                /// @return length_ Length of the encoded data.
                /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
                function _decodeLength(RLPItem memory _in)
                    private
                    pure
                    returns (uint256 offset_, uint256 length_, RLPItemType type_)
                {
                    // Short-circuit if there's nothing to decode, note that we perform this check when
                    // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
                    // that function and create an RLP item directly. So we need to check this anyway.
                    require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
                    MemoryPointer ptr = _in.ptr;
                    uint256 prefix;
                    assembly {
                        prefix := byte(0, mload(ptr))
                    }
                    if (prefix <= 0x7f) {
                        // Single byte.
                        return (0, 1, RLPItemType.DATA_ITEM);
                    } else if (prefix <= 0xb7) {
                        // Short string.
                        // slither-disable-next-line variable-scope
                        uint256 strLen = prefix - 0x80;
                        require(
                            _in.length > strLen, "RLPReader: length of content must be greater than string length (short string)"
                        );
                        bytes1 firstByteOfContent;
                        assembly {
                            firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                        }
                        require(
                            strLen != 1 || firstByteOfContent >= 0x80,
                            "RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)"
                        );
                        return (1, strLen, RLPItemType.DATA_ITEM);
                    } else if (prefix <= 0xbf) {
                        // Long string.
                        uint256 lenOfStrLen = prefix - 0xb7;
                        require(
                            _in.length > lenOfStrLen,
                            "RLPReader: length of content must be > than length of string length (long string)"
                        );
                        bytes1 firstByteOfContent;
                        assembly {
                            firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                        }
                        require(
                            firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long string)"
                        );
                        uint256 strLen;
                        assembly {
                            strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                        }
                        require(strLen > 55, "RLPReader: length of content must be greater than 55 bytes (long string)");
                        require(
                            _in.length > lenOfStrLen + strLen,
                            "RLPReader: length of content must be greater than total length (long string)"
                        );
                        return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                    } else if (prefix <= 0xf7) {
                        // Short list.
                        // slither-disable-next-line variable-scope
                        uint256 listLen = prefix - 0xc0;
                        require(_in.length > listLen, "RLPReader: length of content must be greater than list length (short list)");
                        return (1, listLen, RLPItemType.LIST_ITEM);
                    } else {
                        // Long list.
                        uint256 lenOfListLen = prefix - 0xf7;
                        require(
                            _in.length > lenOfListLen,
                            "RLPReader: length of content must be > than length of list length (long list)"
                        );
                        bytes1 firstByteOfContent;
                        assembly {
                            firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                        }
                        require(
                            firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long list)"
                        );
                        uint256 listLen;
                        assembly {
                            listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                        }
                        require(listLen > 55, "RLPReader: length of content must be greater than 55 bytes (long list)");
                        require(
                            _in.length > lenOfListLen + listLen,
                            "RLPReader: length of content must be greater than total length (long list)"
                        );
                        return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                    }
                }
                /// @notice Copies the bytes from a memory location.
                /// @param _src    Pointer to the location to read from.
                /// @param _offset Offset to start reading from.
                /// @param _length Number of bytes to read.
                /// @return out_ Copied bytes.
                function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
                    out_ = new bytes(_length);
                    if (_length == 0) {
                        return out_;
                    }
                    // Mostly based on Solidity's copy_memory_to_memory:
                    // solhint-disable max-line-length
                    // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
                    uint256 src = MemoryPointer.unwrap(_src) + _offset;
                    assembly {
                        let dest := add(out_, 32)
                        let i := 0
                        for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
                        if gt(i, _length) { mstore(add(dest, _length), 0) }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard signed math utilities missing in the Solidity language.
             */
            library SignedMath {
                /**
                 * @dev Returns the largest of two signed numbers.
                 */
                function max(int256 a, int256 b) internal pure returns (int256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two signed numbers.
                 */
                function min(int256 a, int256 b) internal pure returns (int256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two signed numbers without overflow.
                 * The result is rounded towards zero.
                 */
                function average(int256 a, int256 b) internal pure returns (int256) {
                    // Formula from the book "Hacker's Delight"
                    int256 x = (a & b) + ((a ^ b) >> 1);
                    return x + (int256(uint256(x) >> 255) & (a ^ b));
                }
                /**
                 * @dev Returns the absolute unsigned value of a signed value.
                 */
                function abs(int256 n) internal pure returns (uint256) {
                    unchecked {
                        // must be unchecked in order to support `n = type(int256).min`
                        return uint256(n >= 0 ? n : -n);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.0;
            /// @notice Arithmetic library with operations for fixed-point numbers.
            /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
            library FixedPointMathLib {
                /*//////////////////////////////////////////////////////////////
                                SIMPLIFIED FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                }
                function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                }
                function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                }
                function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                }
                function powWad(int256 x, int256 y) internal pure returns (int256) {
                    // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                    return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                }
                function expWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        // When the result is < 0.5 we return zero. This happens when
                        // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                        if (x <= -42139678854452767551) return 0;
                        // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                        // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                        if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                        // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                        // for more intermediate precision and a binary basis. This base conversion
                        // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                        x = (x << 78) / 5**18;
                        // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                        // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                        // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                        int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                        x = x - k * 54916777467707473351141471128;
                        // k is in the range [-61, 195].
                        // Evaluate using a (6, 7)-term rational approximation.
                        // p is made monic, we'll multiply by a scale factor later.
                        int256 y = x + 1346386616545796478920950773328;
                        y = ((y * x) >> 96) + 57155421227552351082224309758442;
                        int256 p = y + x - 94201549194550492254356042504812;
                        p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                        p = p * x + (4385272521454847904659076985693276 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        int256 q = x - 2855989394907223263936484059900;
                        q = ((q * x) >> 96) + 50020603652535783019961831881945;
                        q = ((q * x) >> 96) - 533845033583426703283633433725380;
                        q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                        q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                        q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial won't have zeros in the domain as all its roots are complex.
                            // No scaling is necessary because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r should be in the range (0.09, 0.25) * 2**96.
                        // We now need to multiply r by:
                        // * the scale factor s = ~6.031367120.
                        // * the 2**k factor from the range reduction.
                        // * the 1e18 / 2**96 factor for base conversion.
                        // We do this all at once, with an intermediate result in 2**213
                        // basis, so the final right shift is always by a positive amount.
                        r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                    }
                }
                function lnWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        require(x > 0, "UNDEFINED");
                        // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                        // We do this by multiplying by 2**96 / 10**18. But since
                        // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                        // and add ln(2**96 / 10**18) at the end.
                        // Reduce range of x to (1, 2) * 2**96
                        // ln(2^k * x) = k * ln(2) + ln(x)
                        int256 k = int256(log2(uint256(x))) - 96;
                        x <<= uint256(159 - k);
                        x = int256(uint256(x) >> 159);
                        // Evaluate using a (8, 8)-term rational approximation.
                        // p is made monic, we will multiply by a scale factor later.
                        int256 p = x + 3273285459638523848632254066296;
                        p = ((p * x) >> 96) + 24828157081833163892658089445524;
                        p = ((p * x) >> 96) + 43456485725739037958740375743393;
                        p = ((p * x) >> 96) - 11111509109440967052023855526967;
                        p = ((p * x) >> 96) - 45023709667254063763336534515857;
                        p = ((p * x) >> 96) - 14706773417378608786704636184526;
                        p = p * x - (795164235651350426258249787498 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        // q is monic by convention.
                        int256 q = x + 5573035233440673466300451813936;
                        q = ((q * x) >> 96) + 71694874799317883764090561454958;
                        q = ((q * x) >> 96) + 283447036172924575727196451306956;
                        q = ((q * x) >> 96) + 401686690394027663651624208769553;
                        q = ((q * x) >> 96) + 204048457590392012362485061816622;
                        q = ((q * x) >> 96) + 31853899698501571402653359427138;
                        q = ((q * x) >> 96) + 909429971244387300277376558375;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial is known not to have zeros in the domain.
                            // No scaling required because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r is in the range (0, 0.125) * 2**96
                        // Finalization, we need to:
                        // * multiply by the scale factor s = 5.549…
                        // * add ln(2**96 / 10**18)
                        // * add k * ln(2)
                        // * multiply by 10**18 / 2**96 = 5**18 >> 78
                        // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                        r *= 1677202110996718588342820967067443963516166;
                        // add ln(2) * k * 5e18 * 2**192
                        r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                        // add ln(2**96 / 10**18) * 5e18 * 2**192
                        r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                        // base conversion: mul 2**18 / 2**192
                        r >>= 174;
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                LOW LEVEL FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                function mulDivDown(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // Divide z by the denominator.
                        z := div(z, denominator)
                    }
                }
                function mulDivUp(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // First, divide z - 1 by the denominator and add 1.
                        // We allow z - 1 to underflow if z is 0, because we multiply the
                        // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                        z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                    }
                }
                function rpow(
                    uint256 x,
                    uint256 n,
                    uint256 scalar
                ) internal pure returns (uint256 z) {
                    assembly {
                        switch x
                        case 0 {
                            switch n
                            case 0 {
                                // 0 ** 0 = 1
                                z := scalar
                            }
                            default {
                                // 0 ** n = 0
                                z := 0
                            }
                        }
                        default {
                            switch mod(n, 2)
                            case 0 {
                                // If n is even, store scalar in z for now.
                                z := scalar
                            }
                            default {
                                // If n is odd, store x in z for now.
                                z := x
                            }
                            // Shifting right by 1 is like dividing by 2.
                            let half := shr(1, scalar)
                            for {
                                // Shift n right by 1 before looping to halve it.
                                n := shr(1, n)
                            } n {
                                // Shift n right by 1 each iteration to halve it.
                                n := shr(1, n)
                            } {
                                // Revert immediately if x ** 2 would overflow.
                                // Equivalent to iszero(eq(div(xx, x), x)) here.
                                if shr(128, x) {
                                    revert(0, 0)
                                }
                                // Store x squared.
                                let xx := mul(x, x)
                                // Round to the nearest number.
                                let xxRound := add(xx, half)
                                // Revert if xx + half overflowed.
                                if lt(xxRound, xx) {
                                    revert(0, 0)
                                }
                                // Set x to scaled xxRound.
                                x := div(xxRound, scalar)
                                // If n is even:
                                if mod(n, 2) {
                                    // Compute z * x.
                                    let zx := mul(z, x)
                                    // If z * x overflowed:
                                    if iszero(eq(div(zx, x), z)) {
                                        // Revert if x is non-zero.
                                        if iszero(iszero(x)) {
                                            revert(0, 0)
                                        }
                                    }
                                    // Round to the nearest number.
                                    let zxRound := add(zx, half)
                                    // Revert if zx + half overflowed.
                                    if lt(zxRound, zx) {
                                        revert(0, 0)
                                    }
                                    // Return properly scaled zxRound.
                                    z := div(zxRound, scalar)
                                }
                            }
                        }
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                    GENERAL NUMBER UTILITIES
                //////////////////////////////////////////////////////////////*/
                function sqrt(uint256 x) internal pure returns (uint256 z) {
                    assembly {
                        let y := x // We start y at x, which will help us make our initial estimate.
                        z := 181 // The "correct" value is 1, but this saves a multiplication later.
                        // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                        // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                        // We check y >= 2^(k + 8) but shift right by k bits
                        // each branch to ensure that if x >= 256, then y >= 256.
                        if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                            y := shr(128, y)
                            z := shl(64, z)
                        }
                        if iszero(lt(y, 0x1000000000000000000)) {
                            y := shr(64, y)
                            z := shl(32, z)
                        }
                        if iszero(lt(y, 0x10000000000)) {
                            y := shr(32, y)
                            z := shl(16, z)
                        }
                        if iszero(lt(y, 0x1000000)) {
                            y := shr(16, y)
                            z := shl(8, z)
                        }
                        // Goal was to get z*z*y within a small factor of x. More iterations could
                        // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                        // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                        // That's not possible if x < 256 but we can just verify those cases exhaustively.
                        // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                        // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                        // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                        // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                        // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                        // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                        // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                        // There is no overflow risk here since y < 2^136 after the first branch above.
                        z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                        // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        // If x+1 is a perfect square, the Babylonian method cycles between
                        // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                        // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                        // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                        // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                        z := sub(z, lt(div(x, z), z))
                    }
                }
                function log2(uint256 x) internal pure returns (uint256 r) {
                    require(x > 0, "UNDEFINED");
                    assembly {
                        r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                        r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                        r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                        r := or(r, shl(4, lt(0xffff, shr(r, x))))
                        r := or(r, shl(3, lt(0xff, shr(r, x))))
                        r := or(r, shl(2, lt(0xf, shr(r, x))))
                        r := or(r, shl(1, lt(0x3, shr(r, x))))
                        r := or(r, lt(0x1, shr(r, x)))
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library AddressUpgradeable {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            

            File 4 of 5: Proxy
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            /**
             * @title Proxy
             * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
             *         if the caller is address(0), meaning that the call originated from an off-chain
             *         simulation.
             */
            contract Proxy {
                /**
                 * @notice The storage slot that holds the address of the implementation.
                 *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                 */
                bytes32 internal constant IMPLEMENTATION_KEY =
                    0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                /**
                 * @notice The storage slot that holds the address of the owner.
                 *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                 */
                bytes32 internal constant OWNER_KEY =
                    0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                /**
                 * @notice An event that is emitted each time the implementation is changed. This event is part
                 *         of the EIP-1967 specification.
                 *
                 * @param implementation The address of the implementation contract
                 */
                event Upgraded(address indexed implementation);
                /**
                 * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                 *         EIP-1967 specification.
                 *
                 * @param previousAdmin The previous owner of the contract
                 * @param newAdmin      The new owner of the contract
                 */
                event AdminChanged(address previousAdmin, address newAdmin);
                /**
                 * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                 *         eth_call to interact with this proxy without needing to use low-level storage
                 *         inspection. We assume that nobody is able to trigger calls from address(0) during
                 *         normal EVM execution.
                 */
                modifier proxyCallIfNotAdmin() {
                    if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                        _;
                    } else {
                        // This WILL halt the call frame on completion.
                        _doProxyCall();
                    }
                }
                /**
                 * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                 *         EIP-1967 admin storage slot so that accidental storage collision with the
                 *         implementation is not possible.
                 *
                 * @param _admin Address of the initial contract admin. Admin as the ability to access the
                 *               transparent proxy interface.
                 */
                constructor(address _admin) {
                    _changeAdmin(_admin);
                }
                // slither-disable-next-line locked-ether
                receive() external payable {
                    // Proxy call by default.
                    _doProxyCall();
                }
                // slither-disable-next-line locked-ether
                fallback() external payable {
                    // Proxy call by default.
                    _doProxyCall();
                }
                /**
                 * @notice Set the implementation contract address. The code at the given address will execute
                 *         when this contract is called.
                 *
                 * @param _implementation Address of the implementation contract.
                 */
                function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                    _setImplementation(_implementation);
                }
                /**
                 * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                 *         atomic execution of initialization-based upgrades.
                 *
                 * @param _implementation Address of the implementation contract.
                 * @param _data           Calldata to delegatecall the new implementation with.
                 */
                function upgradeToAndCall(address _implementation, bytes calldata _data)
                    public
                    payable
                    virtual
                    proxyCallIfNotAdmin
                    returns (bytes memory)
                {
                    _setImplementation(_implementation);
                    (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                    require(success, "Proxy: delegatecall to new implementation contract failed");
                    return returndata;
                }
                /**
                 * @notice Changes the owner of the proxy contract. Only callable by the owner.
                 *
                 * @param _admin New owner of the proxy contract.
                 */
                function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                    _changeAdmin(_admin);
                }
                /**
                 * @notice Gets the owner of the proxy contract.
                 *
                 * @return Owner address.
                 */
                function admin() public virtual proxyCallIfNotAdmin returns (address) {
                    return _getAdmin();
                }
                /**
                 * @notice Queries the implementation address.
                 *
                 * @return Implementation address.
                 */
                function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                    return _getImplementation();
                }
                /**
                 * @notice Sets the implementation address.
                 *
                 * @param _implementation New implementation address.
                 */
                function _setImplementation(address _implementation) internal {
                    assembly {
                        sstore(IMPLEMENTATION_KEY, _implementation)
                    }
                    emit Upgraded(_implementation);
                }
                /**
                 * @notice Changes the owner of the proxy contract.
                 *
                 * @param _admin New owner of the proxy contract.
                 */
                function _changeAdmin(address _admin) internal {
                    address previous = _getAdmin();
                    assembly {
                        sstore(OWNER_KEY, _admin)
                    }
                    emit AdminChanged(previous, _admin);
                }
                /**
                 * @notice Performs the proxy call via a delegatecall.
                 */
                function _doProxyCall() internal {
                    address impl = _getImplementation();
                    require(impl != address(0), "Proxy: implementation not initialized");
                    assembly {
                        // Copy calldata into memory at 0x0....calldatasize.
                        calldatacopy(0x0, 0x0, calldatasize())
                        // Perform the delegatecall, make sure to pass all available gas.
                        let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                        // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                        // overwrite the calldata that we just copied into memory but that doesn't really
                        // matter because we'll be returning in a second anyway.
                        returndatacopy(0x0, 0x0, returndatasize())
                        // Success == 0 means a revert. We'll revert too and pass the data up.
                        if iszero(success) {
                            revert(0x0, returndatasize())
                        }
                        // Otherwise we'll just return and pass the data up.
                        return(0x0, returndatasize())
                    }
                }
                /**
                 * @notice Queries the implementation address.
                 *
                 * @return Implementation address.
                 */
                function _getImplementation() internal view returns (address) {
                    address impl;
                    assembly {
                        impl := sload(IMPLEMENTATION_KEY)
                    }
                    return impl;
                }
                /**
                 * @notice Queries the owner of the proxy contract.
                 *
                 * @return Owner address.
                 */
                function _getAdmin() internal view returns (address) {
                    address owner;
                    assembly {
                        owner := sload(OWNER_KEY)
                    }
                    return owner;
                }
            }
            

            File 5 of 5: SystemConfig
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
            import { ISemver } from "src/universal/ISemver.sol";
            import { ResourceMetering } from "src/L1/ResourceMetering.sol";
            import { Storage } from "src/libraries/Storage.sol";
            import { Constants } from "src/libraries/Constants.sol";
            /// @title SystemConfig
            /// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
            ///         All configuration is stored on L1 and picked up by L2 as part of the derviation of
            ///         the L2 chain.
            contract SystemConfig is OwnableUpgradeable, ISemver {
                /// @notice Enum representing different types of updates.
                /// @custom:value BATCHER              Represents an update to the batcher hash.
                /// @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
                /// @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
                /// @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
                ///                                    block distrubution.
                enum UpdateType {
                    BATCHER,
                    GAS_CONFIG,
                    GAS_LIMIT,
                    UNSAFE_BLOCK_SIGNER
                }
                /// @notice Struct representing the addresses of L1 system contracts. These should be the
                ///         proxies and are network specific.
                struct Addresses {
                    address l1CrossDomainMessenger;
                    address l1ERC721Bridge;
                    address l1StandardBridge;
                    address l2OutputOracle;
                    address optimismPortal;
                    address optimismMintableERC20Factory;
                }
                /// @notice Version identifier, used for upgrades.
                uint256 public constant VERSION = 0;
                /// @notice Storage slot that the unsafe block signer is stored at.
                ///         Storing it at this deterministic storage slot allows for decoupling the storage
                ///         layout from the way that `solc` lays out storage. The `op-node` uses a storage
                ///         proof to fetch this value.
                /// @dev    NOTE: this value will be migrated to another storage slot in a future version.
                ///         User input should not be placed in storage in this contract until this migration
                ///         happens. It is unlikely that keccak second preimage resistance will be broken,
                ///         but it is better to be safe than sorry.
                bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
                /// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
                bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
                    bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
                /// @notice Storage slot that the L1ERC721Bridge address is stored at.
                bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
                /// @notice Storage slot that the L1StandardBridge address is stored at.
                bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
                /// @notice Storage slot that the L2OutputOracle address is stored at.
                bytes32 public constant L2_OUTPUT_ORACLE_SLOT = bytes32(uint256(keccak256("systemconfig.l2outputoracle")) - 1);
                /// @notice Storage slot that the OptimismPortal address is stored at.
                bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
                /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
                bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
                    bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
                /// @notice Storage slot that the batch inbox address is stored at.
                bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
                /// @notice Storage slot for block at which the op-node can start searching for logs from.
                bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1);
                /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
                uint256 public overhead;
                /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
                uint256 public scalar;
                /// @notice Identifier for the batcher.
                ///         For version 1 of this configuration, this is represented as an address left-padded
                ///         with zeros to 32 bytes.
                bytes32 public batcherHash;
                /// @notice L2 block gas limit.
                uint64 public gasLimit;
                /// @notice The configuration for the deposit fee market.
                ///         Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
                ///         Set as internal with a getter so that the struct is returned instead of a tuple.
                ResourceMetering.ResourceConfig internal _resourceConfig;
                /// @notice Emitted when configuration is updated.
                /// @param version    SystemConfig version.
                /// @param updateType Type of update.
                /// @param data       Encoded update data.
                event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                /// @notice Semantic version.
                /// @custom:semver 1.12.0
                string public constant version = "1.12.0";
                /// @notice Constructs the SystemConfig contract. Cannot set
                ///         the owner to `address(0)` due to the Ownable contract's
                ///         implementation, so set it to `address(0xdEaD)`
                /// @dev    START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value
                ///         in the singleton and is skipped by initialize when setting the start block.
                constructor() {
                    Storage.setUint(START_BLOCK_SLOT, type(uint256).max);
                    initialize({
                        _owner: address(0xdEaD),
                        _overhead: 0,
                        _scalar: 0,
                        _batcherHash: bytes32(0),
                        _gasLimit: 1,
                        _unsafeBlockSigner: address(0),
                        _config: ResourceMetering.ResourceConfig({
                            maxResourceLimit: 1,
                            elasticityMultiplier: 1,
                            baseFeeMaxChangeDenominator: 2,
                            minimumBaseFee: 0,
                            systemTxMaxGas: 0,
                            maximumBaseFee: 0
                        }),
                        _batchInbox: address(0),
                        _addresses: SystemConfig.Addresses({
                            l1CrossDomainMessenger: address(0),
                            l1ERC721Bridge: address(0),
                            l1StandardBridge: address(0),
                            l2OutputOracle: address(0),
                            optimismPortal: address(0),
                            optimismMintableERC20Factory: address(0)
                        })
                    });
                }
                /// @notice Initializer.
                ///         The resource config must be set before the require check.
                /// @param _owner             Initial owner of the contract.
                /// @param _overhead          Initial overhead value.
                /// @param _scalar            Initial scalar value.
                /// @param _batcherHash       Initial batcher hash.
                /// @param _gasLimit          Initial gas limit.
                /// @param _unsafeBlockSigner Initial unsafe block signer address.
                /// @param _config            Initial ResourceConfig.
                /// @param _batchInbox        Batch inbox address. An identifier for the op-node to find
                ///                           canonical data.
                /// @param _addresses         Set of L1 contract addresses. These should be the proxies.
                function initialize(
                    address _owner,
                    uint256 _overhead,
                    uint256 _scalar,
                    bytes32 _batcherHash,
                    uint64 _gasLimit,
                    address _unsafeBlockSigner,
                    ResourceMetering.ResourceConfig memory _config,
                    address _batchInbox,
                    SystemConfig.Addresses memory _addresses
                )
                    public
                    initializer
                {
                    __Ownable_init();
                    transferOwnership(_owner);
                    // These are set in ascending order of their UpdateTypes.
                    _setBatcherHash(_batcherHash);
                    _setGasConfig({ _overhead: _overhead, _scalar: _scalar });
                    _setGasLimit(_gasLimit);
                    Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                    Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
                    Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
                    Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
                    Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
                    Storage.setAddress(L2_OUTPUT_ORACLE_SLOT, _addresses.l2OutputOracle);
                    Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
                    Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
                    _setStartBlock();
                    _setResourceConfig(_config);
                    require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                }
                /// @notice Returns the minimum L2 gas limit that can be safely set for the system to
                ///         operate. The L2 gas limit must be larger than or equal to the amount of
                ///         gas that is allocated for deposits per block plus the amount of gas that
                ///         is allocated for the system transaction.
                ///         This function is used to determine if changes to parameters are safe.
                /// @return uint64 Minimum gas limit.
                function minimumGasLimit() public view returns (uint64) {
                    return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
                }
                /// @notice High level getter for the unsafe block signer address.
                ///         Unsafe blocks can be propagated across the p2p network if they are signed by the
                ///         key corresponding to this address.
                /// @return addr_ Address of the unsafe block signer.
                // solhint-disable-next-line ordering
                function unsafeBlockSigner() public view returns (address addr_) {
                    addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
                }
                /// @notice Getter for the L1CrossDomainMessenger address.
                function l1CrossDomainMessenger() external view returns (address addr_) {
                    addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
                }
                /// @notice Getter for the L1ERC721Bridge address.
                function l1ERC721Bridge() external view returns (address addr_) {
                    addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
                }
                /// @notice Getter for the L1StandardBridge address.
                function l1StandardBridge() external view returns (address addr_) {
                    addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
                }
                /// @notice Getter for the L2OutputOracle address.
                function l2OutputOracle() external view returns (address addr_) {
                    addr_ = Storage.getAddress(L2_OUTPUT_ORACLE_SLOT);
                }
                /// @notice Getter for the OptimismPortal address.
                function optimismPortal() external view returns (address addr_) {
                    addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
                }
                /// @notice Getter for the OptimismMintableERC20Factory address.
                function optimismMintableERC20Factory() external view returns (address addr_) {
                    addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
                }
                /// @notice Getter for the BatchInbox address.
                function batchInbox() external view returns (address addr_) {
                    addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
                }
                /// @notice Getter for the StartBlock number.
                function startBlock() external view returns (uint256 startBlock_) {
                    startBlock_ = Storage.getUint(START_BLOCK_SLOT);
                }
                /// @notice Updates the unsafe block signer address. Can only be called by the owner.
                /// @param _unsafeBlockSigner New unsafe block signer address.
                function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
                    _setUnsafeBlockSigner(_unsafeBlockSigner);
                }
                /// @notice Updates the unsafe block signer address.
                /// @param _unsafeBlockSigner New unsafe block signer address.
                function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
                    Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                    bytes memory data = abi.encode(_unsafeBlockSigner);
                    emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
                }
                /// @notice Updates the batcher hash. Can only be called by the owner.
                /// @param _batcherHash New batcher hash.
                function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
                    _setBatcherHash(_batcherHash);
                }
                /// @notice Internal function for updating the batcher hash.
                /// @param _batcherHash New batcher hash.
                function _setBatcherHash(bytes32 _batcherHash) internal {
                    batcherHash = _batcherHash;
                    bytes memory data = abi.encode(_batcherHash);
                    emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
                }
                /// @notice Updates gas config. Can only be called by the owner.
                /// @param _overhead New overhead value.
                /// @param _scalar   New scalar value.
                function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
                    _setGasConfig(_overhead, _scalar);
                }
                /// @notice Internal function for updating the gas config.
                /// @param _overhead New overhead value.
                /// @param _scalar   New scalar value.
                function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
                    overhead = _overhead;
                    scalar = _scalar;
                    bytes memory data = abi.encode(_overhead, _scalar);
                    emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
                }
                /// @notice Updates the L2 gas limit. Can only be called by the owner.
                /// @param _gasLimit New gas limit.
                function setGasLimit(uint64 _gasLimit) external onlyOwner {
                    _setGasLimit(_gasLimit);
                }
                /// @notice Internal function for updating the L2 gas limit.
                /// @param _gasLimit New gas limit.
                function _setGasLimit(uint64 _gasLimit) internal {
                    require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                    gasLimit = _gasLimit;
                    bytes memory data = abi.encode(_gasLimit);
                    emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
                }
                /// @notice Sets the start block in a backwards compatible way. Proxies
                ///         that were initialized before the startBlock existed in storage
                ///         can have their start block set by a user provided override.
                ///         A start block of 0 indicates that there is no override and the
                ///         start block will be set by `block.number`.
                /// @dev    This logic is used to patch legacy deployments with new storage values.
                ///         Use the override if it is provided as a non zero value and the value
                ///         has not already been set in storage. Use `block.number` if the value
                ///         has already been set in storage
                function _setStartBlock() internal {
                    if (Storage.getUint(START_BLOCK_SLOT) == 0) {
                        Storage.setUint(START_BLOCK_SLOT, block.number);
                    }
                }
                /// @notice A getter for the resource config.
                ///         Ensures that the struct is returned instead of a tuple.
                /// @return ResourceConfig
                function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
                    return _resourceConfig;
                }
                /// @notice An external setter for the resource config.
                ///         In the future, this method may emit an event that the `op-node` picks up
                ///         for when the resource config is changed.
                /// @param _config The new resource config values.
                function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
                    _setResourceConfig(_config);
                }
                /// @notice An internal setter for the resource config.
                ///         Ensures that the config is sane before storing it by checking for invariants.
                /// @param _config The new resource config.
                function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
                    // Min base fee must be less than or equal to max base fee.
                    require(
                        _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
                    );
                    // Base fee change denominator must be greater than 1.
                    require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
                    // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
                    // The gas limit must be increased before these values can be increased.
                    require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
                    // Elasticity multiplier must be greater than 0.
                    require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
                    // No precision loss when computing target resource limit.
                    require(
                        ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
                            == _config.maxResourceLimit,
                        "SystemConfig: precision loss with target resource limit"
                    );
                    _resourceConfig = _config;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
            pragma solidity ^0.8.0;
            import "../utils/ContextUpgradeable.sol";
            import "../proxy/utils/Initializable.sol";
            /**
             * @dev Contract module which provides a basic access control mechanism, where
             * there is an account (an owner) that can be granted exclusive access to
             * specific functions.
             *
             * By default, the owner account will be the one that deploys the contract. This
             * can later be changed with {transferOwnership}.
             *
             * This module is used through inheritance. It will make available the modifier
             * `onlyOwner`, which can be applied to your functions to restrict their use to
             * the owner.
             */
            abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
                address private _owner;
                event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                /**
                 * @dev Initializes the contract setting the deployer as the initial owner.
                 */
                function __Ownable_init() internal onlyInitializing {
                    __Ownable_init_unchained();
                }
                function __Ownable_init_unchained() internal onlyInitializing {
                    _transferOwnership(_msgSender());
                }
                /**
                 * @dev Throws if called by any account other than the owner.
                 */
                modifier onlyOwner() {
                    _checkOwner();
                    _;
                }
                /**
                 * @dev Returns the address of the current owner.
                 */
                function owner() public view virtual returns (address) {
                    return _owner;
                }
                /**
                 * @dev Throws if the sender is not the owner.
                 */
                function _checkOwner() internal view virtual {
                    require(owner() == _msgSender(), "Ownable: caller is not the owner");
                }
                /**
                 * @dev Leaves the contract without owner. It will not be possible to call
                 * `onlyOwner` functions anymore. Can only be called by the current owner.
                 *
                 * NOTE: Renouncing ownership will leave the contract without an owner,
                 * thereby removing any functionality that is only available to the owner.
                 */
                function renounceOwnership() public virtual onlyOwner {
                    _transferOwnership(address(0));
                }
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`).
                 * Can only be called by the current owner.
                 */
                function transferOwnership(address newOwner) public virtual onlyOwner {
                    require(newOwner != address(0), "Ownable: new owner is the zero address");
                    _transferOwnership(newOwner);
                }
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`).
                 * Internal function without access restriction.
                 */
                function _transferOwnership(address newOwner) internal virtual {
                    address oldOwner = _owner;
                    _owner = newOwner;
                    emit OwnershipTransferred(oldOwner, newOwner);
                }
                /**
                 * @dev This empty reserved space is put in place to allow future versions to add new
                 * variables without shifting down storage in the inheritance chain.
                 * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                 */
                uint256[49] private __gap;
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title ISemver
            /// @notice ISemver is a simple contract for ensuring that contracts are
            ///         versioned using semantic versioning.
            interface ISemver {
                /// @notice Getter for the semantic version of the contract. This is not
                ///         meant to be used onchain but instead meant to be used by offchain
                ///         tooling.
                /// @return Semver contract version as a string.
                function version() external view returns (string memory);
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
            import { Burn } from "src/libraries/Burn.sol";
            import { Arithmetic } from "src/libraries/Arithmetic.sol";
            /// @custom:upgradeable
            /// @title ResourceMetering
            /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
            ///         updates automatically based on current demand.
            abstract contract ResourceMetering is Initializable {
                /// @notice Represents the various parameters that control the way in which resources are
                ///         metered. Corresponds to the EIP-1559 resource metering system.
                /// @custom:field prevBaseFee   Base fee from the previous block(s).
                /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                struct ResourceParams {
                    uint128 prevBaseFee;
                    uint64 prevBoughtGas;
                    uint64 prevBlockNum;
                }
                /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                ///         market. These values should be set with care as it is possible to set them in
                ///         a way that breaks the deposit gas market. The target resource limit is defined as
                ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                ///         single word. There is additional space for additions in the future.
                /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                ///                                            can be purchased per block.
                /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                ///                                            the resource limit.
                /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                ///                                            value.
                /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                ///                                            transaction. This should be set to the same
                ///                                            number that the op-node sets as the gas limit
                ///                                            for the system transaction.
                /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                ///                                            value.
                struct ResourceConfig {
                    uint32 maxResourceLimit;
                    uint8 elasticityMultiplier;
                    uint8 baseFeeMaxChangeDenominator;
                    uint32 minimumBaseFee;
                    uint32 systemTxMaxGas;
                    uint128 maximumBaseFee;
                }
                /// @notice EIP-1559 style gas parameters.
                ResourceParams public params;
                /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                uint256[48] private __gap;
                /// @notice Meters access to a function based an amount of a requested resource.
                /// @param _amount Amount of the resource requested.
                modifier metered(uint64 _amount) {
                    // Record initial gas amount so we can refund for it later.
                    uint256 initialGas = gasleft();
                    // Run the underlying function.
                    _;
                    // Run the metering function.
                    _metered(_amount, initialGas);
                }
                /// @notice An internal function that holds all of the logic for metering a resource.
                /// @param _amount     Amount of the resource requested.
                /// @param _initialGas The amount of gas before any modifier execution.
                function _metered(uint64 _amount, uint256 _initialGas) internal {
                    // Update block number and base fee if necessary.
                    uint256 blockDiff = block.number - params.prevBlockNum;
                    ResourceConfig memory config = _resourceConfig();
                    int256 targetResourceLimit =
                        int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                    if (blockDiff > 0) {
                        // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                        // at which deposits can be created and therefore limit the potential for deposits to
                        // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                        int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                        int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                            / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                        // Update base fee by adding the base fee delta and clamp the resulting value between
                        // min and max.
                        int256 newBaseFee = Arithmetic.clamp({
                            _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                        // If we skipped more than one block, we also need to account for every empty block.
                        // Empty block means there was no demand for deposits in that block, so we should
                        // reflect this lack of demand in the fee.
                        if (blockDiff > 1) {
                            // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                            // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                            // between min and max.
                            newBaseFee = Arithmetic.clamp({
                                _value: Arithmetic.cdexp({
                                    _coefficient: newBaseFee,
                                    _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                    _exponent: int256(blockDiff - 1)
                                }),
                                _min: int256(uint256(config.minimumBaseFee)),
                                _max: int256(uint256(config.maximumBaseFee))
                            });
                        }
                        // Update new base fee, reset bought gas, and update block number.
                        params.prevBaseFee = uint128(uint256(newBaseFee));
                        params.prevBoughtGas = 0;
                        params.prevBlockNum = uint64(block.number);
                    }
                    // Make sure we can actually buy the resource amount requested by the user.
                    params.prevBoughtGas += _amount;
                    require(
                        int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                        "ResourceMetering: cannot buy more gas than available gas limit"
                    );
                    // Determine the amount of ETH to be paid.
                    uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                    // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                    // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                    // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                    // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                    // during any 1 day period in the last 5 years, so should be fine.
                    uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                    // Give the user a refund based on the amount of gas they used to do all of the work up to
                    // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                    // effectively like a dynamic stipend (with a minimum value).
                    uint256 usedGas = _initialGas - gasleft();
                    if (gasCost > usedGas) {
                        Burn.gas(gasCost - usedGas);
                    }
                }
                /// @notice Virtual function that returns the resource config.
                ///         Contracts that inherit this contract must implement this function.
                /// @return ResourceConfig
                function _resourceConfig() internal virtual returns (ResourceConfig memory);
                /// @notice Sets initial resource parameter values.
                ///         This function must either be called by the initializer function of an upgradeable
                ///         child contract.
                // solhint-disable-next-line func-name-mixedcase
                function __ResourceMetering_init() internal onlyInitializing {
                    if (params.prevBlockNum == 0) {
                        params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title Storage
            /// @notice Storage handles reading and writing to arbitary storage locations
            library Storage {
                /// @notice Returns an address stored in an arbitrary storage slot.
                ///         These storage slots decouple the storage layout from
                ///         solc's automation.
                /// @param _slot The storage slot to retrieve the address from.
                function getAddress(bytes32 _slot) internal view returns (address addr_) {
                    assembly {
                        addr_ := sload(_slot)
                    }
                }
                /// @notice Stores an address in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the address in.
                /// @param _address The protocol version to store
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
                ///      in arbitrary storage slots.
                function setAddress(bytes32 _slot, address _address) internal {
                    assembly {
                        sstore(_slot, _address)
                    }
                }
                /// @notice Returns a uint256 stored in an arbitrary storage slot.
                ///         These storage slots decouple the storage layout from
                ///         solc's automation.
                /// @param _slot The storage slot to retrieve the address from.
                function getUint(bytes32 _slot) internal view returns (uint256 value_) {
                    assembly {
                        value_ := sload(_slot)
                    }
                }
                /// @notice Stores a value in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the address in.
                /// @param _value The protocol version to store
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                ///      in arbitrary storage slots.
                function setUint(bytes32 _slot, uint256 _value) internal {
                    assembly {
                        sstore(_slot, _value)
                    }
                }
                /// @notice Returns a bytes32 stored in an arbitrary storage slot.
                ///         These storage slots decouple the storage layout from
                ///         solc's automation.
                /// @param _slot The storage slot to retrieve the address from.
                function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
                    assembly {
                        value_ := sload(_slot)
                    }
                }
                /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the address in.
                /// @param _value The bytes32 value to store.
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                ///      in arbitrary storage slots.
                function setBytes32(bytes32 _slot, bytes32 _value) internal {
                    assembly {
                        sstore(_slot, _value)
                    }
                }
                /// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the bool in.
                /// @param _value The bool value to store
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                ///      in arbitrary storage slots.
                function setBool(bytes32 _slot, bool _value) internal {
                    assembly {
                        sstore(_slot, _value)
                    }
                }
                /// @notice Returns a bool stored in an arbitrary storage slot.
                /// @param _slot The storage slot to retrieve the bool from.
                function getBool(bytes32 _slot) internal view returns (bool value_) {
                    assembly {
                        value_ := sload(_slot)
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { ResourceMetering } from "src/L1/ResourceMetering.sol";
            /// @title Constants
            /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
            ///         the stuff used in multiple contracts. Constants that only apply to a single contract
            ///         should be defined in that contract instead.
            library Constants {
                /// @notice Special address to be used as the tx origin for gas estimation calls in the
                ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                ///         the minimum gas limit specified by the user is not actually enough to execute the
                ///         given message and you're attempting to estimate the actual necessary gas limit. We
                ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                ///         never have any code on any EVM chain.
                address internal constant ESTIMATION_ADDRESS = address(1);
                /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                ///         non-zero to reduce the gas cost of message passing transactions.
                address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                /// @notice The storage slot that holds the address of a proxy implementation.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                    0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                /// @notice The storage slot that holds the address of the owner.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                ///         for a production network.
                function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                    ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                        maxResourceLimit: 20_000_000,
                        elasticityMultiplier: 10,
                        baseFeeMaxChangeDenominator: 8,
                        minimumBaseFee: 1 gwei,
                        systemTxMaxGas: 1_000_000,
                        maximumBaseFee: type(uint128).max
                    });
                    return config;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
            pragma solidity ^0.8.0;
            import "../proxy/utils/Initializable.sol";
            /**
             * @dev Provides information about the current execution context, including the
             * sender of the transaction and its data. While these are generally available
             * via msg.sender and msg.data, they should not be accessed in such a direct
             * manner, since when dealing with meta-transactions the account sending and
             * paying for execution may not be the actual sender (as far as an application
             * is concerned).
             *
             * This contract is only required for intermediate, library-like contracts.
             */
            abstract contract ContextUpgradeable is Initializable {
                function __Context_init() internal onlyInitializing {
                }
                function __Context_init_unchained() internal onlyInitializing {
                }
                function _msgSender() internal view virtual returns (address) {
                    return msg.sender;
                }
                function _msgData() internal view virtual returns (bytes calldata) {
                    return msg.data;
                }
                /**
                 * @dev This empty reserved space is put in place to allow future versions to add new
                 * variables without shifting down storage in the inheritance chain.
                 * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                 */
                uint256[50] private __gap;
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
            pragma solidity ^0.8.2;
            import "../../utils/AddressUpgradeable.sol";
            /**
             * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
             * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
             * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
             * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
             *
             * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
             * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
             * case an upgrade adds a module that needs to be initialized.
             *
             * For example:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * contract MyToken is ERC20Upgradeable {
             *     function initialize() initializer public {
             *         __ERC20_init("MyToken", "MTK");
             *     }
             * }
             * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
             *     function initializeV2() reinitializer(2) public {
             *         __ERC20Permit_init("MyToken");
             *     }
             * }
             * ```
             *
             * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
             * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
             *
             * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
             * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
             *
             * [CAUTION]
             * ====
             * Avoid leaving a contract uninitialized.
             *
             * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
             * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
             * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * /// @custom:oz-upgrades-unsafe-allow constructor
             * constructor() {
             *     _disableInitializers();
             * }
             * ```
             * ====
             */
            abstract contract Initializable {
                /**
                 * @dev Indicates that the contract has been initialized.
                 * @custom:oz-retyped-from bool
                 */
                uint8 private _initialized;
                /**
                 * @dev Indicates that the contract is in the process of being initialized.
                 */
                bool private _initializing;
                /**
                 * @dev Triggered when the contract has been initialized or reinitialized.
                 */
                event Initialized(uint8 version);
                /**
                 * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                 * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                 */
                modifier initializer() {
                    bool isTopLevelCall = !_initializing;
                    require(
                        (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                        "Initializable: contract is already initialized"
                    );
                    _initialized = 1;
                    if (isTopLevelCall) {
                        _initializing = true;
                    }
                    _;
                    if (isTopLevelCall) {
                        _initializing = false;
                        emit Initialized(1);
                    }
                }
                /**
                 * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                 * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                 * used to initialize parent contracts.
                 *
                 * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                 * initialization step. This is essential to configure modules that are added through upgrades and that require
                 * initialization.
                 *
                 * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                 * a contract, executing them in the right order is up to the developer or operator.
                 */
                modifier reinitializer(uint8 version) {
                    require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                    _initialized = version;
                    _initializing = true;
                    _;
                    _initializing = false;
                    emit Initialized(version);
                }
                /**
                 * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                 * {initializer} and {reinitializer} modifiers, directly or indirectly.
                 */
                modifier onlyInitializing() {
                    require(_initializing, "Initializable: contract is not initializing");
                    _;
                }
                /**
                 * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                 * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                 * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                 * through proxies.
                 */
                function _disableInitializers() internal virtual {
                    require(!_initializing, "Initializable: contract is initializing");
                    if (_initialized < type(uint8).max) {
                        _initialized = type(uint8).max;
                        emit Initialized(type(uint8).max);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
            pragma solidity ^0.8.2;
            import "../../utils/Address.sol";
            /**
             * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
             * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
             * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
             * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
             *
             * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
             * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
             * case an upgrade adds a module that needs to be initialized.
             *
             * For example:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * contract MyToken is ERC20Upgradeable {
             *     function initialize() initializer public {
             *         __ERC20_init("MyToken", "MTK");
             *     }
             * }
             * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
             *     function initializeV2() reinitializer(2) public {
             *         __ERC20Permit_init("MyToken");
             *     }
             * }
             * ```
             *
             * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
             * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
             *
             * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
             * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
             *
             * [CAUTION]
             * ====
             * Avoid leaving a contract uninitialized.
             *
             * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
             * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
             * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * /// @custom:oz-upgrades-unsafe-allow constructor
             * constructor() {
             *     _disableInitializers();
             * }
             * ```
             * ====
             */
            abstract contract Initializable {
                /**
                 * @dev Indicates that the contract has been initialized.
                 * @custom:oz-retyped-from bool
                 */
                uint8 private _initialized;
                /**
                 * @dev Indicates that the contract is in the process of being initialized.
                 */
                bool private _initializing;
                /**
                 * @dev Triggered when the contract has been initialized or reinitialized.
                 */
                event Initialized(uint8 version);
                /**
                 * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                 * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                 */
                modifier initializer() {
                    bool isTopLevelCall = !_initializing;
                    require(
                        (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                        "Initializable: contract is already initialized"
                    );
                    _initialized = 1;
                    if (isTopLevelCall) {
                        _initializing = true;
                    }
                    _;
                    if (isTopLevelCall) {
                        _initializing = false;
                        emit Initialized(1);
                    }
                }
                /**
                 * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                 * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                 * used to initialize parent contracts.
                 *
                 * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                 * initialization step. This is essential to configure modules that are added through upgrades and that require
                 * initialization.
                 *
                 * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                 * a contract, executing them in the right order is up to the developer or operator.
                 */
                modifier reinitializer(uint8 version) {
                    require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                    _initialized = version;
                    _initializing = true;
                    _;
                    _initializing = false;
                    emit Initialized(version);
                }
                /**
                 * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                 * {initializer} and {reinitializer} modifiers, directly or indirectly.
                 */
                modifier onlyInitializing() {
                    require(_initializing, "Initializable: contract is not initializing");
                    _;
                }
                /**
                 * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                 * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                 * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                 * through proxies.
                 */
                function _disableInitializers() internal virtual {
                    require(!_initializing, "Initializable: contract is initializing");
                    if (_initialized < type(uint8).max) {
                        _initialized = type(uint8).max;
                        emit Initialized(type(uint8).max);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard math utilities missing in the Solidity language.
             */
            library Math {
                enum Rounding {
                    Down, // Toward negative infinity
                    Up, // Toward infinity
                    Zero // Toward zero
                }
                /**
                 * @dev Returns the largest of two numbers.
                 */
                function max(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two numbers.
                 */
                function min(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two numbers. The result is rounded towards
                 * zero.
                 */
                function average(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b) / 2 can overflow.
                    return (a & b) + (a ^ b) / 2;
                }
                /**
                 * @dev Returns the ceiling of the division of two numbers.
                 *
                 * This differs from standard division with `/` in that it rounds up instead
                 * of rounding down.
                 */
                function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b - 1) / b can overflow on addition, so we distribute.
                    return a == 0 ? 0 : (a - 1) / b + 1;
                }
                /**
                 * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                 * with further edits by Uniswap Labs also under MIT license.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 result) {
                    unchecked {
                        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                        // variables such that product = prod1 * 2^256 + prod0.
                        uint256 prod0; // Least significant 256 bits of the product
                        uint256 prod1; // Most significant 256 bits of the product
                        assembly {
                            let mm := mulmod(x, y, not(0))
                            prod0 := mul(x, y)
                            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                        }
                        // Handle non-overflow cases, 256 by 256 division.
                        if (prod1 == 0) {
                            return prod0 / denominator;
                        }
                        // Make sure the result is less than 2^256. Also prevents denominator == 0.
                        require(denominator > prod1);
                        ///////////////////////////////////////////////
                        // 512 by 256 division.
                        ///////////////////////////////////////////////
                        // Make division exact by subtracting the remainder from [prod1 prod0].
                        uint256 remainder;
                        assembly {
                            // Compute remainder using mulmod.
                            remainder := mulmod(x, y, denominator)
                            // Subtract 256 bit number from 512 bit number.
                            prod1 := sub(prod1, gt(remainder, prod0))
                            prod0 := sub(prod0, remainder)
                        }
                        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                        // See https://cs.stackexchange.com/q/138556/92363.
                        // Does not overflow because the denominator cannot be zero at this stage in the function.
                        uint256 twos = denominator & (~denominator + 1);
                        assembly {
                            // Divide denominator by twos.
                            denominator := div(denominator, twos)
                            // Divide [prod1 prod0] by twos.
                            prod0 := div(prod0, twos)
                            // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                            twos := add(div(sub(0, twos), twos), 1)
                        }
                        // Shift in bits from prod1 into prod0.
                        prod0 |= prod1 * twos;
                        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                        // four bits. That is, denominator * inv = 1 mod 2^4.
                        uint256 inverse = (3 * denominator) ^ 2;
                        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                        // in modular arithmetic, doubling the correct bits in each step.
                        inverse *= 2 - denominator * inverse; // inverse mod 2^8
                        inverse *= 2 - denominator * inverse; // inverse mod 2^16
                        inverse *= 2 - denominator * inverse; // inverse mod 2^32
                        inverse *= 2 - denominator * inverse; // inverse mod 2^64
                        inverse *= 2 - denominator * inverse; // inverse mod 2^128
                        inverse *= 2 - denominator * inverse; // inverse mod 2^256
                        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                        // is no longer required.
                        result = prod0 * inverse;
                        return result;
                    }
                }
                /**
                 * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator,
                    Rounding rounding
                ) internal pure returns (uint256) {
                    uint256 result = mulDiv(x, y, denominator);
                    if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                        result += 1;
                    }
                    return result;
                }
                /**
                 * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                 *
                 * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                 */
                function sqrt(uint256 a) internal pure returns (uint256) {
                    if (a == 0) {
                        return 0;
                    }
                    // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                    // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                    // `msb(a) <= a < 2*msb(a)`.
                    // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                    // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                    // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                    // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                    uint256 result = 1;
                    uint256 x = a;
                    if (x >> 128 > 0) {
                        x >>= 128;
                        result <<= 64;
                    }
                    if (x >> 64 > 0) {
                        x >>= 64;
                        result <<= 32;
                    }
                    if (x >> 32 > 0) {
                        x >>= 32;
                        result <<= 16;
                    }
                    if (x >> 16 > 0) {
                        x >>= 16;
                        result <<= 8;
                    }
                    if (x >> 8 > 0) {
                        x >>= 8;
                        result <<= 4;
                    }
                    if (x >> 4 > 0) {
                        x >>= 4;
                        result <<= 2;
                    }
                    if (x >> 2 > 0) {
                        result <<= 1;
                    }
                    // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                    // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                    // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                    // into the expected uint128 result.
                    unchecked {
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        return min(result, a / result);
                    }
                }
                /**
                 * @notice Calculates sqrt(a), following the selected rounding direction.
                 */
                function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                    uint256 result = sqrt(a);
                    if (rounding == Rounding.Up && result * result < a) {
                        result += 1;
                    }
                    return result;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            /// @title Burn
            /// @notice Utilities for burning stuff.
            library Burn {
                /// @notice Burns a given amount of ETH.
                /// @param _amount Amount of ETH to burn.
                function eth(uint256 _amount) internal {
                    new Burner{ value: _amount }();
                }
                /// @notice Burns a given amount of gas.
                /// @param _amount Amount of gas to burn.
                function gas(uint256 _amount) internal view {
                    uint256 i = 0;
                    uint256 initialGas = gasleft();
                    while (initialGas - gasleft() < _amount) {
                        ++i;
                    }
                }
            }
            /// @title Burner
            /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
            ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
            ///         from the circulating supply.
            contract Burner {
                constructor() payable {
                    selfdestruct(payable(address(this)));
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
            import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
            /// @title Arithmetic
            /// @notice Even more math than before.
            library Arithmetic {
                /// @notice Clamps a value between a minimum and maximum.
                /// @param _value The value to clamp.
                /// @param _min   The minimum value.
                /// @param _max   The maximum value.
                /// @return The clamped value.
                function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                    return SignedMath.min(SignedMath.max(_value, _min), _max);
                }
                /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                ///         Returns the result of: c * (1 - 1/d)^exp.
                /// @param _coefficient Coefficient of the function.
                /// @param _denominator Fractional denominator.
                /// @param _exponent    Power function exponent.
                /// @return Result of c * (1 - 1/d)^exp.
                function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                    return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library AddressUpgradeable {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library Address {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(isContract(target), "Address: delegate call to non-contract");
                    (bool success, bytes memory returndata) = target.delegatecall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard signed math utilities missing in the Solidity language.
             */
            library SignedMath {
                /**
                 * @dev Returns the largest of two signed numbers.
                 */
                function max(int256 a, int256 b) internal pure returns (int256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two signed numbers.
                 */
                function min(int256 a, int256 b) internal pure returns (int256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two signed numbers without overflow.
                 * The result is rounded towards zero.
                 */
                function average(int256 a, int256 b) internal pure returns (int256) {
                    // Formula from the book "Hacker's Delight"
                    int256 x = (a & b) + ((a ^ b) >> 1);
                    return x + (int256(uint256(x) >> 255) & (a ^ b));
                }
                /**
                 * @dev Returns the absolute unsigned value of a signed value.
                 */
                function abs(int256 n) internal pure returns (uint256) {
                    unchecked {
                        // must be unchecked in order to support `n = type(int256).min`
                        return uint256(n >= 0 ? n : -n);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.0;
            /// @notice Arithmetic library with operations for fixed-point numbers.
            /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
            library FixedPointMathLib {
                /*//////////////////////////////////////////////////////////////
                                SIMPLIFIED FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                }
                function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                }
                function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                }
                function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                }
                function powWad(int256 x, int256 y) internal pure returns (int256) {
                    // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                    return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                }
                function expWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        // When the result is < 0.5 we return zero. This happens when
                        // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                        if (x <= -42139678854452767551) return 0;
                        // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                        // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                        if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                        // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                        // for more intermediate precision and a binary basis. This base conversion
                        // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                        x = (x << 78) / 5**18;
                        // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                        // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                        // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                        int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                        x = x - k * 54916777467707473351141471128;
                        // k is in the range [-61, 195].
                        // Evaluate using a (6, 7)-term rational approximation.
                        // p is made monic, we'll multiply by a scale factor later.
                        int256 y = x + 1346386616545796478920950773328;
                        y = ((y * x) >> 96) + 57155421227552351082224309758442;
                        int256 p = y + x - 94201549194550492254356042504812;
                        p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                        p = p * x + (4385272521454847904659076985693276 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        int256 q = x - 2855989394907223263936484059900;
                        q = ((q * x) >> 96) + 50020603652535783019961831881945;
                        q = ((q * x) >> 96) - 533845033583426703283633433725380;
                        q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                        q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                        q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial won't have zeros in the domain as all its roots are complex.
                            // No scaling is necessary because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r should be in the range (0.09, 0.25) * 2**96.
                        // We now need to multiply r by:
                        // * the scale factor s = ~6.031367120.
                        // * the 2**k factor from the range reduction.
                        // * the 1e18 / 2**96 factor for base conversion.
                        // We do this all at once, with an intermediate result in 2**213
                        // basis, so the final right shift is always by a positive amount.
                        r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                    }
                }
                function lnWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        require(x > 0, "UNDEFINED");
                        // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                        // We do this by multiplying by 2**96 / 10**18. But since
                        // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                        // and add ln(2**96 / 10**18) at the end.
                        // Reduce range of x to (1, 2) * 2**96
                        // ln(2^k * x) = k * ln(2) + ln(x)
                        int256 k = int256(log2(uint256(x))) - 96;
                        x <<= uint256(159 - k);
                        x = int256(uint256(x) >> 159);
                        // Evaluate using a (8, 8)-term rational approximation.
                        // p is made monic, we will multiply by a scale factor later.
                        int256 p = x + 3273285459638523848632254066296;
                        p = ((p * x) >> 96) + 24828157081833163892658089445524;
                        p = ((p * x) >> 96) + 43456485725739037958740375743393;
                        p = ((p * x) >> 96) - 11111509109440967052023855526967;
                        p = ((p * x) >> 96) - 45023709667254063763336534515857;
                        p = ((p * x) >> 96) - 14706773417378608786704636184526;
                        p = p * x - (795164235651350426258249787498 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        // q is monic by convention.
                        int256 q = x + 5573035233440673466300451813936;
                        q = ((q * x) >> 96) + 71694874799317883764090561454958;
                        q = ((q * x) >> 96) + 283447036172924575727196451306956;
                        q = ((q * x) >> 96) + 401686690394027663651624208769553;
                        q = ((q * x) >> 96) + 204048457590392012362485061816622;
                        q = ((q * x) >> 96) + 31853899698501571402653359427138;
                        q = ((q * x) >> 96) + 909429971244387300277376558375;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial is known not to have zeros in the domain.
                            // No scaling required because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r is in the range (0, 0.125) * 2**96
                        // Finalization, we need to:
                        // * multiply by the scale factor s = 5.549…
                        // * add ln(2**96 / 10**18)
                        // * add k * ln(2)
                        // * multiply by 10**18 / 2**96 = 5**18 >> 78
                        // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                        r *= 1677202110996718588342820967067443963516166;
                        // add ln(2) * k * 5e18 * 2**192
                        r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                        // add ln(2**96 / 10**18) * 5e18 * 2**192
                        r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                        // base conversion: mul 2**18 / 2**192
                        r >>= 174;
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                LOW LEVEL FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                function mulDivDown(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // Divide z by the denominator.
                        z := div(z, denominator)
                    }
                }
                function mulDivUp(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // First, divide z - 1 by the denominator and add 1.
                        // We allow z - 1 to underflow if z is 0, because we multiply the
                        // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                        z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                    }
                }
                function rpow(
                    uint256 x,
                    uint256 n,
                    uint256 scalar
                ) internal pure returns (uint256 z) {
                    assembly {
                        switch x
                        case 0 {
                            switch n
                            case 0 {
                                // 0 ** 0 = 1
                                z := scalar
                            }
                            default {
                                // 0 ** n = 0
                                z := 0
                            }
                        }
                        default {
                            switch mod(n, 2)
                            case 0 {
                                // If n is even, store scalar in z for now.
                                z := scalar
                            }
                            default {
                                // If n is odd, store x in z for now.
                                z := x
                            }
                            // Shifting right by 1 is like dividing by 2.
                            let half := shr(1, scalar)
                            for {
                                // Shift n right by 1 before looping to halve it.
                                n := shr(1, n)
                            } n {
                                // Shift n right by 1 each iteration to halve it.
                                n := shr(1, n)
                            } {
                                // Revert immediately if x ** 2 would overflow.
                                // Equivalent to iszero(eq(div(xx, x), x)) here.
                                if shr(128, x) {
                                    revert(0, 0)
                                }
                                // Store x squared.
                                let xx := mul(x, x)
                                // Round to the nearest number.
                                let xxRound := add(xx, half)
                                // Revert if xx + half overflowed.
                                if lt(xxRound, xx) {
                                    revert(0, 0)
                                }
                                // Set x to scaled xxRound.
                                x := div(xxRound, scalar)
                                // If n is even:
                                if mod(n, 2) {
                                    // Compute z * x.
                                    let zx := mul(z, x)
                                    // If z * x overflowed:
                                    if iszero(eq(div(zx, x), z)) {
                                        // Revert if x is non-zero.
                                        if iszero(iszero(x)) {
                                            revert(0, 0)
                                        }
                                    }
                                    // Round to the nearest number.
                                    let zxRound := add(zx, half)
                                    // Revert if zx + half overflowed.
                                    if lt(zxRound, zx) {
                                        revert(0, 0)
                                    }
                                    // Return properly scaled zxRound.
                                    z := div(zxRound, scalar)
                                }
                            }
                        }
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                    GENERAL NUMBER UTILITIES
                //////////////////////////////////////////////////////////////*/
                function sqrt(uint256 x) internal pure returns (uint256 z) {
                    assembly {
                        let y := x // We start y at x, which will help us make our initial estimate.
                        z := 181 // The "correct" value is 1, but this saves a multiplication later.
                        // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                        // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                        // We check y >= 2^(k + 8) but shift right by k bits
                        // each branch to ensure that if x >= 256, then y >= 256.
                        if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                            y := shr(128, y)
                            z := shl(64, z)
                        }
                        if iszero(lt(y, 0x1000000000000000000)) {
                            y := shr(64, y)
                            z := shl(32, z)
                        }
                        if iszero(lt(y, 0x10000000000)) {
                            y := shr(32, y)
                            z := shl(16, z)
                        }
                        if iszero(lt(y, 0x1000000)) {
                            y := shr(16, y)
                            z := shl(8, z)
                        }
                        // Goal was to get z*z*y within a small factor of x. More iterations could
                        // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                        // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                        // That's not possible if x < 256 but we can just verify those cases exhaustively.
                        // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                        // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                        // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                        // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                        // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                        // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                        // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                        // There is no overflow risk here since y < 2^136 after the first branch above.
                        z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                        // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        // If x+1 is a perfect square, the Babylonian method cycles between
                        // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                        // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                        // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                        // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                        z := sub(z, lt(div(x, z), z))
                    }
                }
                function log2(uint256 x) internal pure returns (uint256 r) {
                    require(x > 0, "UNDEFINED");
                    assembly {
                        r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                        r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                        r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                        r := or(r, shl(4, lt(0xffff, shr(r, x))))
                        r := or(r, shl(3, lt(0xff, shr(r, x))))
                        r := or(r, shl(2, lt(0xf, shr(r, x))))
                        r := or(r, shl(1, lt(0x3, shr(r, x))))
                        r := or(r, lt(0x1, shr(r, x)))
                    }
                }
            }