ETH Price: $2,510.67 (+0.45%)

Transaction Decoder

Block:
21361497 at Dec-09-2024 12:56:23 AM +UTC
Transaction Fee:
0.061822580706275193 ETH $155.22
Gas Used:
2,702,433 Gas / 22.876637721 Gwei

Emitted Events:

0 UniswapV2Factory.PairCreated( token0=Cult, token1=WETH9, pair=UniswapV2Pair, 392668 )
1 Cult.Transfer( from=[Sender] 0x224e69025a2f705c8f31efb6694398f8fd09ac5c, to=UniswapV2Pair, amount=2629947588901621174835 )
2 WETH9.Deposit( dst=[Receiver] UniswapV2Router02, wad=4200000000000000 )
3 WETH9.Transfer( src=[Receiver] UniswapV2Router02, dst=UniswapV2Pair, wad=4200000000000000 )
4 UniswapV2Pair.Transfer( from=0x0000000000000000000000000000000000000000, to=0x0000000000000000000000000000000000000000, value=1000 )
5 UniswapV2Pair.Transfer( from=0x0000000000000000000000000000000000000000, to=[Sender] 0x224e69025a2f705c8f31efb6694398f8fd09ac5c, value=3323519200092998151 )
6 UniswapV2Pair.Sync( reserve0=2629947588901621174835, reserve1=4200000000000000 )
7 UniswapV2Pair.Mint( sender=[Receiver] UniswapV2Router02, amount0=2629947588901621174835, amount1=4200000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x00000000...c6C14eCa4
0x1bAA7c23...BC02eB886
0 Eth
Nonce: 0
0 Eth
Nonce: 1
From: 0 To: 6764290092513726222696113229074677300582406292993807811641041491451546652663832946268808145007286701968245238241127816432125602389017184726413726136050937847590796869894293811024043065599757516383598439860933528181090300335935280589560730897350622577558550967496327315713176388796307993199725684602376921455805779296510030374220885547509444868710798529805028727005768714365783259716828657385948829505091458413475079524481325004020131382310615246750211606259678290998829940259225530128665275112971113196802097677938777250683881132049859974062111934820441863780430250758355797637960750640892756709980889465478442266956369721727910472098733251357727588359505324099520987734779471153904088146904451113253009478829999518384731907276109897019974128585672047901928474161019609964254665696537118224989521679461638527674308793226417841604722503832053048532902743307744389924362467024979767299820841938001585847957650624642000220240301706785324856386702055650610854315204968583184480811083415429779248827536575359465411506177177445379390515456000159118002404098500273143828586469646146990732293811248260866404603448208714816779792930708637924585785344923086689220023494975479986597804741972532125496013912821587981468924357235612524376639419312183883107468017190276067925579537757182722154167251792251293467252920429282802741817458964167964250178698451250777244768530559299419515124597360317799947936425995024904777435541609134244762412649594375866318483434878329518971411551066386725769756347738476890766956758257170230921029118937851662167147785392125813193563910941558943591672789492960140897136645764649800443959007902537470461773031419538777723327284464018316420780337409842568888985000488447839658062527760095682586164775773214642810659950442674255315187351133219595503239984805187885057741209994719667251209388778069364361415301923124931799752866448084739197681034988561589076201577647621468568479848613173121320183097946088463308654506843928283535527795375336708379201694478390364822689103678655730058935721861270429978304410891962229017129803257390918323840648004285775706484187924048493162476273980415864540574125705878836618285576167457968612731352121332774607452845505315606948482016799746025821947900616429589340542397646412597175206797007211195539013896690130035550363648156843285087910735824004198865927580262828335941064623092413322301962233201566480061682912328546536953004420417214309810243482480379230346095966959109164429110341332451732713814747175172369733954829327244006229439107670350706716504118905719655739745414004105313534003211265953607468408682381484813134628064385347448612228488546068815684868943136925228466482662307586209541232941634702763150423361005273125768860359321003070498329113152304044687311484369591886826286849241492714746035453530985760826074202224328680534075056788780527355850537526507990425706923533192637414998552174291800105823508026545279963231113518342895385291117933231995145145452361617497189515110310877530569115535492435194594584350568641552418631024789844590572990241425360787270142022501098410402040759002817599798496709518641266931956940271586933881608794762860972357074333620000074482790947589178384739181209133451809354582793752274745523208872446938433121740875395933730975169916652974709460068802648678902520835579588544048994083237923468544353056358980354473986903440319386298931321751165434975108960230688774040300045910090185787247588132844114599051255052017617203763570020643980184460642425997380706939760721292671508756597075746922214664039831793061824906191427981111798963319671103105682516044128013644490508952038196950395775123309117732986401317399418753541902793032595083149403966845032349974555993774125382550395142080476019329977201288431302910516579749086814871044331826687561445526814857627505768646136097744557146538034074086772572657530335192950240723439893641016921774546927888540880657938036705233151583642660012962859784691791384878223191473627119947438517852764440971828961508452478940789109988117017692387321165609467031954503412355042274226115369747525054603510429981061723610769942555565153661401943161583038218788194845730510475525890705549828114256751060625497255614079889706354664318409524618711645393755865535736265419894209216588826891584654729343750713800564534728044555813377838103874981231171485140733266263299075026059236429164119695778164125060523337408702214716847466436355994236419462579542555885431275282744454622219328312809704544575841800103951253833159611958531352158489434753375547341984551477139873587620077923891601356185237161111728906276435402989046268121585153012726606548147957843971499826751460265151332607569832201390696106196200752739297898595139623159042244745256456626142684727660272442966410634822047683300319330400559169761628065756808063467026781859272204072788017738137691590428849940404623797624164623418991251701730339746049083454229761375529668033180050831851989098602590190931556465251664831913405722385646847081246713251764160201651313440050983794542297240590895258738842148628156159843174422928120719239842890992552053714524427740845567993163667220733781561399513872561597174177415211111516690920796797771245920805360003960884760200848694231187480984290755084028272394277514358038092541096254350991713995371201841149362979043223407550175185349343481527598607799904721345357534500289318086908178164448654142236064067691303983660544761075017470810256587690335468605289643045740854389048200262275242835132671999817265060762054164020094958990758782725058621840857637716990971046700297483747224874784380940725167238503937445236580528704977883116876684784812105248904836687347634087630789939736208878631432723279309619974220517971118933133332688040703721111084237405651633296969394952616986454772780782236477757818719241494505270490966054772513455627624630005101236682719525270803450503064376334200110077160546253677571419685815620663851070433904622739183540407694134892752836360832538907800130968377752994239951195784527074784186282221747636104636183157750815793451098991297791149668131506205209201338229284164964425750495059737706472549130820257914073143963770346648275653428733160833088538926684699923331640831574696709585862529131456577383480549391857703708838362649800221591036103647730485858022409440661539159192819497548828260828265538529533585508530470524989669001456733688955602622011860883640745452161988954591994125158616967790239030532336904388115367138662490449272650392238721799165071127153267098924288572207943567511660222463941209767332737839662227704940675417351084427436840529259503839007120450489208106621466626535066474865241562379856926344618852106808758097146079191799559319324463443117408712851590498042748419485714349296486390727760496977457722407596889880244120109608420478707801123486119654774232164143858381932711394509013839366882817856528086301231703477837632979266247673310145586602843728627791338776429883562245482454731619584945684936774315483861743673537783429630514215175251343860831343750903112114643957727299881604440299342607613370350603554504965249353808640005017526991925625166547716534038743792145754791681799372563214582732227397669366844361480483684424805049433824559921611895043946309368453026303526413556206774758337691102052148025558145429495060173330866402500693439731960967682169923931093691165858343836190590627360643853508749006236909428207026806495798765936494138323438961022814367473195404043719041907722447918404463260294688120986507063786298949067678950587962569110366612944641472612249173325809273011809698490557178553703028099562680938490396991797809963662352651174475171566062249784396222183324190302655760704229086980771663717844883911607269853698488457417825326539890406983009667814030907614840230105466135803386012608272054670844544529233478939341199346844515817283532802858042261501258009187082544649243558206678780997844437677330123470837465964557746228151937679921791178421215505735405575109056703216581188108652321249735290951499523192020938070710596952169566673256866090961908741957987268407494787371646949696885460919597216876116734929493588469220898091636159208073924384748954733200741628862487985418847666920265644376986825100469311209100338844849634350799853250141080141439713530624083898238798384028550063131897703658759872633810114112211904230734928611739554815204378080824416532752023553763725404567832013292304011997587857200530668930543557965136872372038500689077196872554532514941590492199908458415237082874255428025959779181075920338933105636812221073846658213726279205486919814667929367517219591351704444216162645682210790295421213989754380776085340989180683297671834937134685581195970714439656380247591905970357101417644632261624573751397652987080256022888790428388170130596807031932132567258880599336656131280183093634513676634099779187050352955040932386269069409030491683437740316198301759703346847040697132809216509269188576981188481741208454290436912477712961809883892946931850332143093113557947073073133493193388622663546816814788273516833660139858434029297726609646054004528695805557241526096026425782919507511150973467162816008336604564396099493571849684779129558232640291170728034253643668090897057239052493579545550876007696733317790505751519268633365330580596948616182551659835202221530689455005320864149002153702371478418387283150611210937475882684628893586308705327111168523564383017267243549454185080188917394912629834165963293642939668750235743119572767010423093845038857669576684825897647730323198876163735426894119250229192676495876824482984885795916905361913128771993068480935628050923924974584330675387263238833952316293420405834941410462863024715845898529451002644013034384563143684303106305161730964862516380513513090041544289358036475789754179412107753713818133862537184289678333722961982780632695650705391830567533815093460343368020719438594303931918672539611806165551633361245531509631236294368693797776521963029847564800771278896901887004240218288632377404180749260673412974247077635951291505763690546251206522916341842345669355128111378530730869540686202792860720935596082760553179364451197915910611110567650554133274329286409222985812687698305482062478735481606757775081597155727056354128088556845159443149791829183447651390691077037066885114632862380245151818802470147991099053065256475671018585152952510427035235768890000240568699799353803923346267868222127672252791506337485684174168291083367095515792125626919342586740255104560164716640656979255450418721100238157374349012708264095594721446771077927904131757020744005879471560707024285793308799890377664446444696497209154923522940451976298189530823002220368432891315784150231254903747610042319247999373104561708514248138593425334599202349780452157320167937780340833840631249982408812299987763184216682052627937304738624267660662701449679993556542526953378088820247150468272072500478794185627944260702384965595234547001740574036772121761440909255539749642143706818941013959174681627333589863243791277341202978458183403356702498325291841283674258989071026904599657742857304672848082430957801852056769792469060717881606830909552639167367917564753559780204903737906441237879329789257546182683727127115322069903727988518726110079487404802020511607781618242819429420089952618150015040687309724351057995254644909643659990306397987893792742104471221429087651215923455299368785921472186226973526837488985286754201722930812143157835538240691117506250865065552583960649312199939316137384317909190607335893017385837967547842296802921051846592655112401573859844970186624205609802519691311319580168923392745867891477530622283207438643706944844182931366782297825149926316168536706894781550067076846798287139321147716449014900948126256408680150117024107354911091639037923916870958931724969659784830893556188082349300933778002187943506706189874297445002341661863262596175000304290153490229027560721282756675903899241091327321366868580075450986013686336217170613325953994216424905427651509439749792881592559295908667468735054423414491972009886466126864152276099810447557792865414484656309040180366937046161097203440184665847528107800687246106911748090241663738456905982879374776075826959890272052180911167815484802956453480223451905817815986200072019409312539479823240160294321013861415879683806480801121789543612632313267996424801440213290141569842478416267842583260933194565280731409546914798090907553328802639824695214079484968171492697700379843722620536081593766292525747024078145041540762535961046108970476047624974467617855630429990419642577116238310295258739009426864254518359941258619669364910191558743007389886211816286196547873549687195782980562303703078573352594869126358338535037338805457363813251893303645464748981203623384313310961935292872592540227301085345487567774295253486990810557590474460766110088256031465649867454049853978297832594858855014974959336921139992518398181902049967081705968623560219572355863834361863471356250645288809768553450722282913136962139196770878174924662518413835493044338285511312064129458061417425546441052239857727919702750008526239403176283339977442776563759906879945240605716588949012391858531007821799081844774002926691165725398471759618939120110836523329075262746740205006111913597393479191016572068644428228987329788148073618409742903036359992252826967196736715853093241408814752240618996799914233025576124689956507192938159861315392870711114529172834682750923700691299302307091440461395567404959734546062323894683998564701325833780437972604515976543418379956273057791668270649085702563814683440555349713940149719583840350120611028746945759657158941161739867833561483855003986868221117048736066314604088328030661386531830410862233747563258660020168458151556224026399759857986377768247124506223149604283135886628157441527562119288646712952460396440504473459450281587445391042122888567151597019928644771358604352684544774935692179968419852667976358094993557306305707419215110575870945588263060469008491925224318282601381674202182173728957441525967610005976462159108522672830249929861580309760229880209135107975447950965042249069114272498472606685519158398158453321784839571604335975368386293498007880573774972375151343318757759313906444462507800881443403355944761990200754208207198799285296196346580918143110892255583375606232498498012951522497829857129603412429391961614266045627069206365540727104498529828934706571552828383708993671660464792189355298715143407340870872358594769225567216055125795403038204258550090209261330851021368362078057721856147374553849563949375115536641606704630492897628219114592144363440885459110530247622582729306865142917105722134947601821711203226459176453715017863010371070757960935996090769414578499774698669946986350926671071042854576601011366168897075862963672120256379385521792802219280102756704362425092489027354535128401379693457583486620083746346919952717415398289879545576791175596331980251055644363911476175866157131634981722476769928979368073205939840936175115011825949712794754653888124936432262451159209764190344727238444218782067344785409399030749605849827080389953074761160641751950570538370153836773652282726102554259264427693292321974445565627079614854146581971964907609310454007234972380632303011178287096851137085917612044812344029102122520241255957806216666303087431463563974309540831177242119479128498547771931445380854759092949483851131239054459865790851900684225462824192483995475613054141630410172806769615180410729667817089704751911056456677963218229821052414968249575434204967548620375472100120764911399759157804380112274413996979953080530104063887812121642791624865021264460575745152658825176211337355375215156591268395207756569707380560320092748178809799073339153230150034322085144911763682467095911370450349164758389754765586762878049407888245724744997259471226819014336205993096651941082526644438023616442252857259378196219549408643195769871481026822483366960574488594693968271839301044267519918792385119346946618421990742392525567922849361033531333805519730841344139181961493930292592996589203790067448478224852023114971309611190820049902449210217615039080815730321968206066273891054387712140472093819738851210013833169379888609322428782561798139632187196699467741521068025507678736717203500114231556600519408737185508687511648395357402867651420892204151924136721668678630024991088672030413564951109092273806676284039452762124791584401296908648577431795282151848609140677037158571634794256502974594080577051686545556607498563485575753220960188781517809196230752373214710394358039533163169617372187457387153267514083070126303564919376479352851093866957502237542568706783257636820706106108543628139943620018429812153561332433978007417707091769054907284256718739540419327974667810716324771807074714411001699627572361666561394311276795560562246665890864958873815526831202811626923143681151579565737037626125401361487764835059771789324392137787656573861045829581920926182106170924802248205210923977095643289062610442919240870817953861349045675660555743663471182466546550738791294218992391377190444533440256177379995195637948807579165828507324509817934081700873549199054102598134174353968867595536343788602057212645711438052815864631188644532808337558063531421690328361261797425915803646385226849947799314850075738099393024556559586598418486569945993940595599610421864983614160605357943378648746126216934831129225929649092647080940979590144629216790913108186529982531947043971176869001683334503721088119660410247222823993681585537060306066899978076043057006842394029407830570752837868854143748244327765879558911200445296922850606598449733576220037596751306793117637814814809076810845581417107313487016190564088533464760175004410185349388706290948209020160331438702929747073999847911118242833998223855365334396209318469891158283547361012469232412673861463373831580213501865381255459320842625964676283986839323490997347790280779452514393074121873199156736715297115525804657940825539490991870952667132301281577104602808814514128093505020837391894164020288471138795477040145388474319619392418098844411457844344819636186288456991613799098163655435691413390581981106571611895891201523136728583002598132487530756221719409491432807052471320078749886276696346612425562335751618843061820207958589248251388419925830408982049731166352978177948440428855441035114829894027933768638096795622311990754643642480765220362374685474649398930111424624448993795547342615533717486701347279636474653171996896393993368399863331665562215305249505267582371991400653319112920715332232758174189257897347694206759810504816446459474642119433419595162514440673307551153917538908166473350118859508873388530270664623206129931418203638930963504423648212659991557243720147089819330189481547071239197946872847625158599050136589167109285310355708139805992886967304372128960120035967249856357985567636821419394779738398877938830971857460363878028357603108815804963909581297635715785122151423880623773510841971615872803004278642115677963438463253762180232265937947081428266873403895540343919541476927014762194185492670808213544577235318524626246205222199361132226793766369092405517901071044730579717493193636382009225072042699611589560849956219463933960444297456575794501931201486158834650719432996973656166841633140568712552992556866001892529589818015555320895607177709927456997843290736960333353802274207489150830583171173705976004003107514003499465961116447093038082140585883937643933388792177032332218127105001727447931351542830607832894808097709620837338541162401423241512159501853485273279316730369992363869969225480880372360850909133908359268538979263740761556579312997137274133094210727646154323040783981629410776223181612579812269502289673006076335556442960275642545765809876321258349338855242165453266668192859843679302831204761733283555830152779768092212434108894692633188732656616583708483211581534054289656198028419314646068520533699052369935109596354059478321396462107045158833659465676928637081198271492329630655513648119023734788052785747161074690566974763166744678116781942000400111809228361957776009325581890949387597571502880481238340269550093307775796102685085389516433410129171154321214056625937377834950543338245769030728829686017765144121191389484230565540447998095571881807639116241688980698457024057575129917234058983003295689268394838410607777712617223662791727452205745512815120135984661065715443604245724759729285538406223337844757875890584073570306115883988628480307537668569448581617467225188207875557290340880770862900594880870117713053526725446506721252669210690565757714982078916751033501987993507497886816908544535597782196537857661163168155467385231328756517638903073024522691471339954497875543455667671985687448196140903029844662112739516577389964702597777881879993188026579813526544373361467779703880035148161793831657996452289088988522078211549544941838341834659304849012857143375279646957622743539224286047512273646332738104354913432398751748776303436846678966737226795105947612660521210081857614304545802066532878159368902513121832477063393728646315903978978417725275377348336144382751206934808050336979183524073794363047059385366779695905936629565082668113436200002418552053501464147822716125951281081626449240687659782254096702247173274030119312003388671204470634487632896966522413113840196090168852873355299545907209039594132662263644199792639947500528853310081332377374094851463951990568475406889477545808304306982496125598774597516586418367649826915662877921875008851206415137210039577704357395960346164807887222893276558135799917992928510520762055279104747028210243378548127981504554300707979744916854332552979917885832790667265044227405833453983668996089259368000307363521342399016262305708676959119169445587028414141955444948115995225305706296148863946137017386527581705688480724801384344873811707621661613344562603289741284272299897079266751049976714703508088142837932878218409481059544647608343939397072490861604856512692294673663501165974600903234374254958619853088409488384962249431050362437755006792017222959434090043517413275112525686727202978167056469344307721340393172024546351300590425624001762505968945684644452868541122431308825575090259003803988358747027552498793920080110531559696802247025637451944890330258593960525701673937396964882129178145848898022077127853695850659153067533344750863905302557586864631698795335648642767540381253600764485888136959036833458442899051670933635246235444940404864480258845215235709451374866006822468230680421430834387766942713246358107886822658197035105088441365359965313625033118899161404193255455091163078685115342371141956649836799214235346377328795589150643012681169368490997815232600626993419188485240522829565986637518590293323207473875662607965068345913236158900084544667342293172284971759916782537619534171798229625688783566586310211543500163083352362076280555201116023875712391718884540760495007589219975257210992338254907941933783504169445277177653286048162788882065426772485232673663980835703951031403135955662287308137499161744399289229660191063712741021250091844557410821866536848770205944334376289295504617899128188723974573843540376369170934713069944183448819370368544447717296284928789609546924988805850894814137794682086321514492249263072226835615740386402495007851784437979239584454196848083951501751533965002333499623410436536517933069298040066251487779961573311424830426862245268411668151962291842870408784529588808672984894998068948478328659484085037639397445471646830202692405398794942311367047631000902453589198781642261873174886387293172615195053771249178974991969115652438013993645217367329179328448469251298195258586410111546463321686023921891948064390932677400045694884140480157629056213846824921972462858598868303069986636626778915149329873457930180897725690404333076468390655896981655614463467352868365549602784011571751704638269811484215627261675736856646418817571801562745679038330339100378104167056048684983494783407023693208677963417703006460632686488824249933372893046684367384351228674532386581234695511373881573077064566713343232005446894198007044326017224909579982756378005747803102746280647679104329174519768599653633260429490217721691640057456609180427621576686398690223836429224585196393249986121948477357342022470938329046335936524488815793467961973133939682552615376993486021054039358788636596619141479412808401517706122002272387746035625791675647268762123250366821740062439587789629890815161354537245109726660150508185319800664780846796620609716049380353249497917262043623003214690407543554436948804661830012114573509174725254033104452509781095548541699119579999902076294756663550267884697947804605817029059918883406984755180285407619596122371075164388014768644563054280436577149501345210374949988585943968226840796266869061400679524160687644859329034662837673247017091139291412838902012601812483189105102410752415899901556704424119398075271565243872606958365090443597139537963403352774271270883384906005867999168938403120332097325518966646252024722066135777121168591028533514218373107470307924746576828552738919334530085369624839859826407507075128571682866233254812426213419649103085987747950906771491373961502364943954941204180182796231028794760528231039843679591718024252825757189701912408414250573342665058036537607505942900546573983476040929502176648208016502424104600071091531047566549673850510648004137231201311503906525892604306217023553544609724063949436441636156277877158283669916590245051904858288118783918233987694987527031762552805962103940163247283170503225198004186250113862929728727354968023906216445709393667970561652566077443891545863900381474195120504034708346016429419039708218801177238994274286642395393181895957196396445588111707492105083793481022042153117708745181808330731778659807268148799242282675485164674422124204165225545172605619666926380048118024827409974334232827478259247735750531436570625831466693647658195836241888454810503325055399053278622601703833054491036632209900150111269110408296482165360269000252402115388289794534865445946269207541388195527917990175975107152826111861944139061162628021771309740857559511045847040099119405044268555005258423094924160315973102050959507234883343684351566992355178393010366659736940716211016145981305655125846914531350269831461109005209005449451300018292224031763628610549720637269600857220684889767693605632590512035204660053346427461215201766034062627920943071508523727559068999921591124955396979853892373939461237543819099173287531974975021940548714415527485745096467065833962112024055266704965853376933634747114800022946506837532047231764414822679522526996790664331391871326324714842384640580860725805012092122234368923232605085888110628276490927030476048832601366959371100806883456937872716415199212044664778194316354981294943623527403860575373195497776469739181162749618716481872527704904890213978971340536058256072425591354313884595448051514257211698302759247591430854906365539092828273954872645666925017429731085571865959929198686430568567084379388715762986957300731567797205915878199318040419088638379877687482632760521549862102514290148327065848261089022468605171831674449346723058418972370141272063395029656812596076100552439591820637044829602202673189352703923765845351583801316838425072606202168078246393932831290422471019136781076143860944346451539149346024104735775371147426051800685727700711707915734791432798518652486616437503720745033963440834135763802457839941647914572109132411455642822744800302783647928360605704918603217729501163642397746847175844933140530
0x224e6902...8Fd09ac5C
(Mirror: Chris Martz)
0.091177678605659598 Eth
Nonce: 12791
0.025155097899384405 Eth
Nonce: 12792
0.066022580706275193
(Titan Builder)
14.632943142880756332 Eth14.640800375921112645 Eth0.007857233040356313
0x5C69bEe7...B9cc5aA6f
(Uniswap V2: Factory Contract)
0xC02aaA39...83C756Cc2 2,736,984.151337501468159188 Eth2,736,984.155537501468159188 Eth0.0042

Execution Trace

ETH 0.0042 UniswapV2Router02.addLiquidityETH( token=0x0000000000c5dc95539589fbD24BE07c6C14eCa4, amountTokenDesired=2629947588901621174835, amountTokenMin=2616797850957113068960, amountETHMin=4179000000000000, to=0x224e69025A2f705C8f31EFB6694398f8Fd09ac5C, deadline=1733707568 ) => ( amountToken=2629947588901621174835, amountETH=4200000000000000, liquidity=3323519200092998151 )
  • UniswapV2Factory.getPair( 0x0000000000c5dc95539589fbD24BE07c6C14eCa4, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2 ) => ( 0x0000000000000000000000000000000000000000 )
  • UniswapV2Factory.createPair( tokenA=0x0000000000c5dc95539589fbD24BE07c6C14eCa4, tokenB=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2 ) => ( pair=0x1bAA7c23ACA7a76e4D149b27ED9C451BC02eB886 )
    • UniswapV2Pair.60806040( )
    • UniswapV2Pair.initialize( _token0=0x0000000000c5dc95539589fbD24BE07c6C14eCa4, _token1=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2 )
    • UniswapV2Pair.STATICCALL( )
    • Cult.transferFrom( from=0x224e69025A2f705C8f31EFB6694398f8Fd09ac5C, to=0x1bAA7c23ACA7a76e4D149b27ED9C451BC02eB886, amount=2629947588901621174835 ) => ( True )
    • ETH 0.0042 WETH9.CALL( )
    • WETH9.transfer( dst=0x1bAA7c23ACA7a76e4D149b27ED9C451BC02eB886, wad=4200000000000000 ) => ( True )
    • UniswapV2Pair.mint( to=0x224e69025A2f705C8f31EFB6694398f8Fd09ac5C ) => ( liquidity=3323519200092998151 )
      • Cult.balanceOf( owner=0x1bAA7c23ACA7a76e4D149b27ED9C451BC02eB886 ) => ( result=2629947588901621174835 )
      • WETH9.balanceOf( 0x1bAA7c23ACA7a76e4D149b27ED9C451BC02eB886 ) => ( 4200000000000000 )
      • UniswapV2Factory.STATICCALL( )
        File 1 of 5: UniswapV2Router02
        pragma solidity =0.6.6;
        
        interface IUniswapV2Factory {
            event PairCreated(address indexed token0, address indexed token1, address pair, uint);
        
            function feeTo() external view returns (address);
            function feeToSetter() external view returns (address);
        
            function getPair(address tokenA, address tokenB) external view returns (address pair);
            function allPairs(uint) external view returns (address pair);
            function allPairsLength() external view returns (uint);
        
            function createPair(address tokenA, address tokenB) external returns (address pair);
        
            function setFeeTo(address) external;
            function setFeeToSetter(address) external;
        }
        
        interface IUniswapV2Pair {
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            function name() external pure returns (string memory);
            function symbol() external pure returns (string memory);
            function decimals() external pure returns (uint8);
            function totalSupply() external view returns (uint);
            function balanceOf(address owner) external view returns (uint);
            function allowance(address owner, address spender) external view returns (uint);
        
            function approve(address spender, uint value) external returns (bool);
            function transfer(address to, uint value) external returns (bool);
            function transferFrom(address from, address to, uint value) external returns (bool);
        
            function DOMAIN_SEPARATOR() external view returns (bytes32);
            function PERMIT_TYPEHASH() external pure returns (bytes32);
            function nonces(address owner) external view returns (uint);
        
            function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
        
            event Mint(address indexed sender, uint amount0, uint amount1);
            event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
            event Swap(
                address indexed sender,
                uint amount0In,
                uint amount1In,
                uint amount0Out,
                uint amount1Out,
                address indexed to
            );
            event Sync(uint112 reserve0, uint112 reserve1);
        
            function MINIMUM_LIQUIDITY() external pure returns (uint);
            function factory() external view returns (address);
            function token0() external view returns (address);
            function token1() external view returns (address);
            function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
            function price0CumulativeLast() external view returns (uint);
            function price1CumulativeLast() external view returns (uint);
            function kLast() external view returns (uint);
        
            function mint(address to) external returns (uint liquidity);
            function burn(address to) external returns (uint amount0, uint amount1);
            function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
            function skim(address to) external;
            function sync() external;
        
            function initialize(address, address) external;
        }
        
        interface IUniswapV2Router01 {
            function factory() external pure returns (address);
            function WETH() external pure returns (address);
        
            function addLiquidity(
                address tokenA,
                address tokenB,
                uint amountADesired,
                uint amountBDesired,
                uint amountAMin,
                uint amountBMin,
                address to,
                uint deadline
            ) external returns (uint amountA, uint amountB, uint liquidity);
            function addLiquidityETH(
                address token,
                uint amountTokenDesired,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline
            ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
            function removeLiquidity(
                address tokenA,
                address tokenB,
                uint liquidity,
                uint amountAMin,
                uint amountBMin,
                address to,
                uint deadline
            ) external returns (uint amountA, uint amountB);
            function removeLiquidityETH(
                address token,
                uint liquidity,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline
            ) external returns (uint amountToken, uint amountETH);
            function removeLiquidityWithPermit(
                address tokenA,
                address tokenB,
                uint liquidity,
                uint amountAMin,
                uint amountBMin,
                address to,
                uint deadline,
                bool approveMax, uint8 v, bytes32 r, bytes32 s
            ) external returns (uint amountA, uint amountB);
            function removeLiquidityETHWithPermit(
                address token,
                uint liquidity,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline,
                bool approveMax, uint8 v, bytes32 r, bytes32 s
            ) external returns (uint amountToken, uint amountETH);
            function swapExactTokensForTokens(
                uint amountIn,
                uint amountOutMin,
                address[] calldata path,
                address to,
                uint deadline
            ) external returns (uint[] memory amounts);
            function swapTokensForExactTokens(
                uint amountOut,
                uint amountInMax,
                address[] calldata path,
                address to,
                uint deadline
            ) external returns (uint[] memory amounts);
            function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
                external
                payable
                returns (uint[] memory amounts);
            function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
                external
                returns (uint[] memory amounts);
            function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
                external
                returns (uint[] memory amounts);
            function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
                external
                payable
                returns (uint[] memory amounts);
        
            function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
            function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
            function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
            function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
            function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
        }
        
        interface IUniswapV2Router02 is IUniswapV2Router01 {
            function removeLiquidityETHSupportingFeeOnTransferTokens(
                address token,
                uint liquidity,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline
            ) external returns (uint amountETH);
            function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
                address token,
                uint liquidity,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline,
                bool approveMax, uint8 v, bytes32 r, bytes32 s
            ) external returns (uint amountETH);
        
            function swapExactTokensForTokensSupportingFeeOnTransferTokens(
                uint amountIn,
                uint amountOutMin,
                address[] calldata path,
                address to,
                uint deadline
            ) external;
            function swapExactETHForTokensSupportingFeeOnTransferTokens(
                uint amountOutMin,
                address[] calldata path,
                address to,
                uint deadline
            ) external payable;
            function swapExactTokensForETHSupportingFeeOnTransferTokens(
                uint amountIn,
                uint amountOutMin,
                address[] calldata path,
                address to,
                uint deadline
            ) external;
        }
        
        interface IERC20 {
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            function name() external view returns (string memory);
            function symbol() external view returns (string memory);
            function decimals() external view returns (uint8);
            function totalSupply() external view returns (uint);
            function balanceOf(address owner) external view returns (uint);
            function allowance(address owner, address spender) external view returns (uint);
        
            function approve(address spender, uint value) external returns (bool);
            function transfer(address to, uint value) external returns (bool);
            function transferFrom(address from, address to, uint value) external returns (bool);
        }
        
        interface IWETH {
            function deposit() external payable;
            function transfer(address to, uint value) external returns (bool);
            function withdraw(uint) external;
        }
        
        contract UniswapV2Router02 is IUniswapV2Router02 {
            using SafeMath for uint;
        
            address public immutable override factory;
            address public immutable override WETH;
        
            modifier ensure(uint deadline) {
                require(deadline >= block.timestamp, 'UniswapV2Router: EXPIRED');
                _;
            }
        
            constructor(address _factory, address _WETH) public {
                factory = _factory;
                WETH = _WETH;
            }
        
            receive() external payable {
                assert(msg.sender == WETH); // only accept ETH via fallback from the WETH contract
            }
        
            // **** ADD LIQUIDITY ****
            function _addLiquidity(
                address tokenA,
                address tokenB,
                uint amountADesired,
                uint amountBDesired,
                uint amountAMin,
                uint amountBMin
            ) internal virtual returns (uint amountA, uint amountB) {
                // create the pair if it doesn't exist yet
                if (IUniswapV2Factory(factory).getPair(tokenA, tokenB) == address(0)) {
                    IUniswapV2Factory(factory).createPair(tokenA, tokenB);
                }
                (uint reserveA, uint reserveB) = UniswapV2Library.getReserves(factory, tokenA, tokenB);
                if (reserveA == 0 && reserveB == 0) {
                    (amountA, amountB) = (amountADesired, amountBDesired);
                } else {
                    uint amountBOptimal = UniswapV2Library.quote(amountADesired, reserveA, reserveB);
                    if (amountBOptimal <= amountBDesired) {
                        require(amountBOptimal >= amountBMin, 'UniswapV2Router: INSUFFICIENT_B_AMOUNT');
                        (amountA, amountB) = (amountADesired, amountBOptimal);
                    } else {
                        uint amountAOptimal = UniswapV2Library.quote(amountBDesired, reserveB, reserveA);
                        assert(amountAOptimal <= amountADesired);
                        require(amountAOptimal >= amountAMin, 'UniswapV2Router: INSUFFICIENT_A_AMOUNT');
                        (amountA, amountB) = (amountAOptimal, amountBDesired);
                    }
                }
            }
            function addLiquidity(
                address tokenA,
                address tokenB,
                uint amountADesired,
                uint amountBDesired,
                uint amountAMin,
                uint amountBMin,
                address to,
                uint deadline
            ) external virtual override ensure(deadline) returns (uint amountA, uint amountB, uint liquidity) {
                (amountA, amountB) = _addLiquidity(tokenA, tokenB, amountADesired, amountBDesired, amountAMin, amountBMin);
                address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);
                TransferHelper.safeTransferFrom(tokenA, msg.sender, pair, amountA);
                TransferHelper.safeTransferFrom(tokenB, msg.sender, pair, amountB);
                liquidity = IUniswapV2Pair(pair).mint(to);
            }
            function addLiquidityETH(
                address token,
                uint amountTokenDesired,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline
            ) external virtual override payable ensure(deadline) returns (uint amountToken, uint amountETH, uint liquidity) {
                (amountToken, amountETH) = _addLiquidity(
                    token,
                    WETH,
                    amountTokenDesired,
                    msg.value,
                    amountTokenMin,
                    amountETHMin
                );
                address pair = UniswapV2Library.pairFor(factory, token, WETH);
                TransferHelper.safeTransferFrom(token, msg.sender, pair, amountToken);
                IWETH(WETH).deposit{value: amountETH}();
                assert(IWETH(WETH).transfer(pair, amountETH));
                liquidity = IUniswapV2Pair(pair).mint(to);
                // refund dust eth, if any
                if (msg.value > amountETH) TransferHelper.safeTransferETH(msg.sender, msg.value - amountETH);
            }
        
            // **** REMOVE LIQUIDITY ****
            function removeLiquidity(
                address tokenA,
                address tokenB,
                uint liquidity,
                uint amountAMin,
                uint amountBMin,
                address to,
                uint deadline
            ) public virtual override ensure(deadline) returns (uint amountA, uint amountB) {
                address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);
                IUniswapV2Pair(pair).transferFrom(msg.sender, pair, liquidity); // send liquidity to pair
                (uint amount0, uint amount1) = IUniswapV2Pair(pair).burn(to);
                (address token0,) = UniswapV2Library.sortTokens(tokenA, tokenB);
                (amountA, amountB) = tokenA == token0 ? (amount0, amount1) : (amount1, amount0);
                require(amountA >= amountAMin, 'UniswapV2Router: INSUFFICIENT_A_AMOUNT');
                require(amountB >= amountBMin, 'UniswapV2Router: INSUFFICIENT_B_AMOUNT');
            }
            function removeLiquidityETH(
                address token,
                uint liquidity,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline
            ) public virtual override ensure(deadline) returns (uint amountToken, uint amountETH) {
                (amountToken, amountETH) = removeLiquidity(
                    token,
                    WETH,
                    liquidity,
                    amountTokenMin,
                    amountETHMin,
                    address(this),
                    deadline
                );
                TransferHelper.safeTransfer(token, to, amountToken);
                IWETH(WETH).withdraw(amountETH);
                TransferHelper.safeTransferETH(to, amountETH);
            }
            function removeLiquidityWithPermit(
                address tokenA,
                address tokenB,
                uint liquidity,
                uint amountAMin,
                uint amountBMin,
                address to,
                uint deadline,
                bool approveMax, uint8 v, bytes32 r, bytes32 s
            ) external virtual override returns (uint amountA, uint amountB) {
                address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);
                uint value = approveMax ? uint(-1) : liquidity;
                IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);
                (amountA, amountB) = removeLiquidity(tokenA, tokenB, liquidity, amountAMin, amountBMin, to, deadline);
            }
            function removeLiquidityETHWithPermit(
                address token,
                uint liquidity,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline,
                bool approveMax, uint8 v, bytes32 r, bytes32 s
            ) external virtual override returns (uint amountToken, uint amountETH) {
                address pair = UniswapV2Library.pairFor(factory, token, WETH);
                uint value = approveMax ? uint(-1) : liquidity;
                IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);
                (amountToken, amountETH) = removeLiquidityETH(token, liquidity, amountTokenMin, amountETHMin, to, deadline);
            }
        
            // **** REMOVE LIQUIDITY (supporting fee-on-transfer tokens) ****
            function removeLiquidityETHSupportingFeeOnTransferTokens(
                address token,
                uint liquidity,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline
            ) public virtual override ensure(deadline) returns (uint amountETH) {
                (, amountETH) = removeLiquidity(
                    token,
                    WETH,
                    liquidity,
                    amountTokenMin,
                    amountETHMin,
                    address(this),
                    deadline
                );
                TransferHelper.safeTransfer(token, to, IERC20(token).balanceOf(address(this)));
                IWETH(WETH).withdraw(amountETH);
                TransferHelper.safeTransferETH(to, amountETH);
            }
            function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
                address token,
                uint liquidity,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline,
                bool approveMax, uint8 v, bytes32 r, bytes32 s
            ) external virtual override returns (uint amountETH) {
                address pair = UniswapV2Library.pairFor(factory, token, WETH);
                uint value = approveMax ? uint(-1) : liquidity;
                IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);
                amountETH = removeLiquidityETHSupportingFeeOnTransferTokens(
                    token, liquidity, amountTokenMin, amountETHMin, to, deadline
                );
            }
        
            // **** SWAP ****
            // requires the initial amount to have already been sent to the first pair
            function _swap(uint[] memory amounts, address[] memory path, address _to) internal virtual {
                for (uint i; i < path.length - 1; i++) {
                    (address input, address output) = (path[i], path[i + 1]);
                    (address token0,) = UniswapV2Library.sortTokens(input, output);
                    uint amountOut = amounts[i + 1];
                    (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOut) : (amountOut, uint(0));
                    address to = i < path.length - 2 ? UniswapV2Library.pairFor(factory, output, path[i + 2]) : _to;
                    IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output)).swap(
                        amount0Out, amount1Out, to, new bytes(0)
                    );
                }
            }
            function swapExactTokensForTokens(
                uint amountIn,
                uint amountOutMin,
                address[] calldata path,
                address to,
                uint deadline
            ) external virtual override ensure(deadline) returns (uint[] memory amounts) {
                amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);
                require(amounts[amounts.length - 1] >= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');
                TransferHelper.safeTransferFrom(
                    path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]
                );
                _swap(amounts, path, to);
            }
            function swapTokensForExactTokens(
                uint amountOut,
                uint amountInMax,
                address[] calldata path,
                address to,
                uint deadline
            ) external virtual override ensure(deadline) returns (uint[] memory amounts) {
                amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);
                require(amounts[0] <= amountInMax, 'UniswapV2Router: EXCESSIVE_INPUT_AMOUNT');
                TransferHelper.safeTransferFrom(
                    path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]
                );
                _swap(amounts, path, to);
            }
            function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
                external
                virtual
                override
                payable
                ensure(deadline)
                returns (uint[] memory amounts)
            {
                require(path[0] == WETH, 'UniswapV2Router: INVALID_PATH');
                amounts = UniswapV2Library.getAmountsOut(factory, msg.value, path);
                require(amounts[amounts.length - 1] >= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');
                IWETH(WETH).deposit{value: amounts[0]}();
                assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]));
                _swap(amounts, path, to);
            }
            function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
                external
                virtual
                override
                ensure(deadline)
                returns (uint[] memory amounts)
            {
                require(path[path.length - 1] == WETH, 'UniswapV2Router: INVALID_PATH');
                amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);
                require(amounts[0] <= amountInMax, 'UniswapV2Router: EXCESSIVE_INPUT_AMOUNT');
                TransferHelper.safeTransferFrom(
                    path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]
                );
                _swap(amounts, path, address(this));
                IWETH(WETH).withdraw(amounts[amounts.length - 1]);
                TransferHelper.safeTransferETH(to, amounts[amounts.length - 1]);
            }
            function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
                external
                virtual
                override
                ensure(deadline)
                returns (uint[] memory amounts)
            {
                require(path[path.length - 1] == WETH, 'UniswapV2Router: INVALID_PATH');
                amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);
                require(amounts[amounts.length - 1] >= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');
                TransferHelper.safeTransferFrom(
                    path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]
                );
                _swap(amounts, path, address(this));
                IWETH(WETH).withdraw(amounts[amounts.length - 1]);
                TransferHelper.safeTransferETH(to, amounts[amounts.length - 1]);
            }
            function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
                external
                virtual
                override
                payable
                ensure(deadline)
                returns (uint[] memory amounts)
            {
                require(path[0] == WETH, 'UniswapV2Router: INVALID_PATH');
                amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);
                require(amounts[0] <= msg.value, 'UniswapV2Router: EXCESSIVE_INPUT_AMOUNT');
                IWETH(WETH).deposit{value: amounts[0]}();
                assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]));
                _swap(amounts, path, to);
                // refund dust eth, if any
                if (msg.value > amounts[0]) TransferHelper.safeTransferETH(msg.sender, msg.value - amounts[0]);
            }
        
            // **** SWAP (supporting fee-on-transfer tokens) ****
            // requires the initial amount to have already been sent to the first pair
            function _swapSupportingFeeOnTransferTokens(address[] memory path, address _to) internal virtual {
                for (uint i; i < path.length - 1; i++) {
                    (address input, address output) = (path[i], path[i + 1]);
                    (address token0,) = UniswapV2Library.sortTokens(input, output);
                    IUniswapV2Pair pair = IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output));
                    uint amountInput;
                    uint amountOutput;
                    { // scope to avoid stack too deep errors
                    (uint reserve0, uint reserve1,) = pair.getReserves();
                    (uint reserveInput, uint reserveOutput) = input == token0 ? (reserve0, reserve1) : (reserve1, reserve0);
                    amountInput = IERC20(input).balanceOf(address(pair)).sub(reserveInput);
                    amountOutput = UniswapV2Library.getAmountOut(amountInput, reserveInput, reserveOutput);
                    }
                    (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOutput) : (amountOutput, uint(0));
                    address to = i < path.length - 2 ? UniswapV2Library.pairFor(factory, output, path[i + 2]) : _to;
                    pair.swap(amount0Out, amount1Out, to, new bytes(0));
                }
            }
            function swapExactTokensForTokensSupportingFeeOnTransferTokens(
                uint amountIn,
                uint amountOutMin,
                address[] calldata path,
                address to,
                uint deadline
            ) external virtual override ensure(deadline) {
                TransferHelper.safeTransferFrom(
                    path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn
                );
                uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);
                _swapSupportingFeeOnTransferTokens(path, to);
                require(
                    IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore) >= amountOutMin,
                    'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT'
                );
            }
            function swapExactETHForTokensSupportingFeeOnTransferTokens(
                uint amountOutMin,
                address[] calldata path,
                address to,
                uint deadline
            )
                external
                virtual
                override
                payable
                ensure(deadline)
            {
                require(path[0] == WETH, 'UniswapV2Router: INVALID_PATH');
                uint amountIn = msg.value;
                IWETH(WETH).deposit{value: amountIn}();
                assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn));
                uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);
                _swapSupportingFeeOnTransferTokens(path, to);
                require(
                    IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore) >= amountOutMin,
                    'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT'
                );
            }
            function swapExactTokensForETHSupportingFeeOnTransferTokens(
                uint amountIn,
                uint amountOutMin,
                address[] calldata path,
                address to,
                uint deadline
            )
                external
                virtual
                override
                ensure(deadline)
            {
                require(path[path.length - 1] == WETH, 'UniswapV2Router: INVALID_PATH');
                TransferHelper.safeTransferFrom(
                    path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn
                );
                _swapSupportingFeeOnTransferTokens(path, address(this));
                uint amountOut = IERC20(WETH).balanceOf(address(this));
                require(amountOut >= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');
                IWETH(WETH).withdraw(amountOut);
                TransferHelper.safeTransferETH(to, amountOut);
            }
        
            // **** LIBRARY FUNCTIONS ****
            function quote(uint amountA, uint reserveA, uint reserveB) public pure virtual override returns (uint amountB) {
                return UniswapV2Library.quote(amountA, reserveA, reserveB);
            }
        
            function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut)
                public
                pure
                virtual
                override
                returns (uint amountOut)
            {
                return UniswapV2Library.getAmountOut(amountIn, reserveIn, reserveOut);
            }
        
            function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut)
                public
                pure
                virtual
                override
                returns (uint amountIn)
            {
                return UniswapV2Library.getAmountIn(amountOut, reserveIn, reserveOut);
            }
        
            function getAmountsOut(uint amountIn, address[] memory path)
                public
                view
                virtual
                override
                returns (uint[] memory amounts)
            {
                return UniswapV2Library.getAmountsOut(factory, amountIn, path);
            }
        
            function getAmountsIn(uint amountOut, address[] memory path)
                public
                view
                virtual
                override
                returns (uint[] memory amounts)
            {
                return UniswapV2Library.getAmountsIn(factory, amountOut, path);
            }
        }
        
        // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
        
        library SafeMath {
            function add(uint x, uint y) internal pure returns (uint z) {
                require((z = x + y) >= x, 'ds-math-add-overflow');
            }
        
            function sub(uint x, uint y) internal pure returns (uint z) {
                require((z = x - y) <= x, 'ds-math-sub-underflow');
            }
        
            function mul(uint x, uint y) internal pure returns (uint z) {
                require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
            }
        }
        
        library UniswapV2Library {
            using SafeMath for uint;
        
            // returns sorted token addresses, used to handle return values from pairs sorted in this order
            function sortTokens(address tokenA, address tokenB) internal pure returns (address token0, address token1) {
                require(tokenA != tokenB, 'UniswapV2Library: IDENTICAL_ADDRESSES');
                (token0, token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
                require(token0 != address(0), 'UniswapV2Library: ZERO_ADDRESS');
            }
        
            // calculates the CREATE2 address for a pair without making any external calls
            function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
                (address token0, address token1) = sortTokens(tokenA, tokenB);
                pair = address(uint(keccak256(abi.encodePacked(
                        hex'ff',
                        factory,
                        keccak256(abi.encodePacked(token0, token1)),
                        hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' // init code hash
                    ))));
            }
        
            // fetches and sorts the reserves for a pair
            function getReserves(address factory, address tokenA, address tokenB) internal view returns (uint reserveA, uint reserveB) {
                (address token0,) = sortTokens(tokenA, tokenB);
                (uint reserve0, uint reserve1,) = IUniswapV2Pair(pairFor(factory, tokenA, tokenB)).getReserves();
                (reserveA, reserveB) = tokenA == token0 ? (reserve0, reserve1) : (reserve1, reserve0);
            }
        
            // given some amount of an asset and pair reserves, returns an equivalent amount of the other asset
            function quote(uint amountA, uint reserveA, uint reserveB) internal pure returns (uint amountB) {
                require(amountA > 0, 'UniswapV2Library: INSUFFICIENT_AMOUNT');
                require(reserveA > 0 && reserveB > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');
                amountB = amountA.mul(reserveB) / reserveA;
            }
        
            // given an input amount of an asset and pair reserves, returns the maximum output amount of the other asset
            function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) internal pure returns (uint amountOut) {
                require(amountIn > 0, 'UniswapV2Library: INSUFFICIENT_INPUT_AMOUNT');
                require(reserveIn > 0 && reserveOut > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');
                uint amountInWithFee = amountIn.mul(997);
                uint numerator = amountInWithFee.mul(reserveOut);
                uint denominator = reserveIn.mul(1000).add(amountInWithFee);
                amountOut = numerator / denominator;
            }
        
            // given an output amount of an asset and pair reserves, returns a required input amount of the other asset
            function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) internal pure returns (uint amountIn) {
                require(amountOut > 0, 'UniswapV2Library: INSUFFICIENT_OUTPUT_AMOUNT');
                require(reserveIn > 0 && reserveOut > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');
                uint numerator = reserveIn.mul(amountOut).mul(1000);
                uint denominator = reserveOut.sub(amountOut).mul(997);
                amountIn = (numerator / denominator).add(1);
            }
        
            // performs chained getAmountOut calculations on any number of pairs
            function getAmountsOut(address factory, uint amountIn, address[] memory path) internal view returns (uint[] memory amounts) {
                require(path.length >= 2, 'UniswapV2Library: INVALID_PATH');
                amounts = new uint[](path.length);
                amounts[0] = amountIn;
                for (uint i; i < path.length - 1; i++) {
                    (uint reserveIn, uint reserveOut) = getReserves(factory, path[i], path[i + 1]);
                    amounts[i + 1] = getAmountOut(amounts[i], reserveIn, reserveOut);
                }
            }
        
            // performs chained getAmountIn calculations on any number of pairs
            function getAmountsIn(address factory, uint amountOut, address[] memory path) internal view returns (uint[] memory amounts) {
                require(path.length >= 2, 'UniswapV2Library: INVALID_PATH');
                amounts = new uint[](path.length);
                amounts[amounts.length - 1] = amountOut;
                for (uint i = path.length - 1; i > 0; i--) {
                    (uint reserveIn, uint reserveOut) = getReserves(factory, path[i - 1], path[i]);
                    amounts[i - 1] = getAmountIn(amounts[i], reserveIn, reserveOut);
                }
            }
        }
        
        // helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false
        library TransferHelper {
            function safeApprove(address token, address to, uint value) internal {
                // bytes4(keccak256(bytes('approve(address,uint256)')));
                (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));
                require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: APPROVE_FAILED');
            }
        
            function safeTransfer(address token, address to, uint value) internal {
                // bytes4(keccak256(bytes('transfer(address,uint256)')));
                (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));
                require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FAILED');
            }
        
            function safeTransferFrom(address token, address from, address to, uint value) internal {
                // bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
                (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));
                require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FROM_FAILED');
            }
        
            function safeTransferETH(address to, uint value) internal {
                (bool success,) = to.call{value:value}(new bytes(0));
                require(success, 'TransferHelper: ETH_TRANSFER_FAILED');
            }
        }

        File 2 of 5: UniswapV2Factory
        pragma solidity =0.5.16;
        
        interface IUniswapV2Factory {
            event PairCreated(address indexed token0, address indexed token1, address pair, uint);
        
            function feeTo() external view returns (address);
            function feeToSetter() external view returns (address);
        
            function getPair(address tokenA, address tokenB) external view returns (address pair);
            function allPairs(uint) external view returns (address pair);
            function allPairsLength() external view returns (uint);
        
            function createPair(address tokenA, address tokenB) external returns (address pair);
        
            function setFeeTo(address) external;
            function setFeeToSetter(address) external;
        }
        
        interface IUniswapV2Pair {
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            function name() external pure returns (string memory);
            function symbol() external pure returns (string memory);
            function decimals() external pure returns (uint8);
            function totalSupply() external view returns (uint);
            function balanceOf(address owner) external view returns (uint);
            function allowance(address owner, address spender) external view returns (uint);
        
            function approve(address spender, uint value) external returns (bool);
            function transfer(address to, uint value) external returns (bool);
            function transferFrom(address from, address to, uint value) external returns (bool);
        
            function DOMAIN_SEPARATOR() external view returns (bytes32);
            function PERMIT_TYPEHASH() external pure returns (bytes32);
            function nonces(address owner) external view returns (uint);
        
            function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
        
            event Mint(address indexed sender, uint amount0, uint amount1);
            event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
            event Swap(
                address indexed sender,
                uint amount0In,
                uint amount1In,
                uint amount0Out,
                uint amount1Out,
                address indexed to
            );
            event Sync(uint112 reserve0, uint112 reserve1);
        
            function MINIMUM_LIQUIDITY() external pure returns (uint);
            function factory() external view returns (address);
            function token0() external view returns (address);
            function token1() external view returns (address);
            function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
            function price0CumulativeLast() external view returns (uint);
            function price1CumulativeLast() external view returns (uint);
            function kLast() external view returns (uint);
        
            function mint(address to) external returns (uint liquidity);
            function burn(address to) external returns (uint amount0, uint amount1);
            function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
            function skim(address to) external;
            function sync() external;
        
            function initialize(address, address) external;
        }
        
        interface IUniswapV2ERC20 {
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            function name() external pure returns (string memory);
            function symbol() external pure returns (string memory);
            function decimals() external pure returns (uint8);
            function totalSupply() external view returns (uint);
            function balanceOf(address owner) external view returns (uint);
            function allowance(address owner, address spender) external view returns (uint);
        
            function approve(address spender, uint value) external returns (bool);
            function transfer(address to, uint value) external returns (bool);
            function transferFrom(address from, address to, uint value) external returns (bool);
        
            function DOMAIN_SEPARATOR() external view returns (bytes32);
            function PERMIT_TYPEHASH() external pure returns (bytes32);
            function nonces(address owner) external view returns (uint);
        
            function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
        }
        
        interface IERC20 {
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            function name() external view returns (string memory);
            function symbol() external view returns (string memory);
            function decimals() external view returns (uint8);
            function totalSupply() external view returns (uint);
            function balanceOf(address owner) external view returns (uint);
            function allowance(address owner, address spender) external view returns (uint);
        
            function approve(address spender, uint value) external returns (bool);
            function transfer(address to, uint value) external returns (bool);
            function transferFrom(address from, address to, uint value) external returns (bool);
        }
        
        interface IUniswapV2Callee {
            function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
        }
        
        contract UniswapV2ERC20 is IUniswapV2ERC20 {
            using SafeMath for uint;
        
            string public constant name = 'Uniswap V2';
            string public constant symbol = 'UNI-V2';
            uint8 public constant decimals = 18;
            uint  public totalSupply;
            mapping(address => uint) public balanceOf;
            mapping(address => mapping(address => uint)) public allowance;
        
            bytes32 public DOMAIN_SEPARATOR;
            // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
            bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
            mapping(address => uint) public nonces;
        
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            constructor() public {
                uint chainId;
                assembly {
                    chainId := chainid
                }
                DOMAIN_SEPARATOR = keccak256(
                    abi.encode(
                        keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
                        keccak256(bytes(name)),
                        keccak256(bytes('1')),
                        chainId,
                        address(this)
                    )
                );
            }
        
            function _mint(address to, uint value) internal {
                totalSupply = totalSupply.add(value);
                balanceOf[to] = balanceOf[to].add(value);
                emit Transfer(address(0), to, value);
            }
        
            function _burn(address from, uint value) internal {
                balanceOf[from] = balanceOf[from].sub(value);
                totalSupply = totalSupply.sub(value);
                emit Transfer(from, address(0), value);
            }
        
            function _approve(address owner, address spender, uint value) private {
                allowance[owner][spender] = value;
                emit Approval(owner, spender, value);
            }
        
            function _transfer(address from, address to, uint value) private {
                balanceOf[from] = balanceOf[from].sub(value);
                balanceOf[to] = balanceOf[to].add(value);
                emit Transfer(from, to, value);
            }
        
            function approve(address spender, uint value) external returns (bool) {
                _approve(msg.sender, spender, value);
                return true;
            }
        
            function transfer(address to, uint value) external returns (bool) {
                _transfer(msg.sender, to, value);
                return true;
            }
        
            function transferFrom(address from, address to, uint value) external returns (bool) {
                if (allowance[from][msg.sender] != uint(-1)) {
                    allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
                }
                _transfer(from, to, value);
                return true;
            }
        
            function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
                require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
                bytes32 digest = keccak256(
                    abi.encodePacked(
                        '\x19\x01',
                        DOMAIN_SEPARATOR,
                        keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
                    )
                );
                address recoveredAddress = ecrecover(digest, v, r, s);
                require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
                _approve(owner, spender, value);
            }
        }
        
        contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
            using SafeMath  for uint;
            using UQ112x112 for uint224;
        
            uint public constant MINIMUM_LIQUIDITY = 10**3;
            bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
        
            address public factory;
            address public token0;
            address public token1;
        
            uint112 private reserve0;           // uses single storage slot, accessible via getReserves
            uint112 private reserve1;           // uses single storage slot, accessible via getReserves
            uint32  private blockTimestampLast; // uses single storage slot, accessible via getReserves
        
            uint public price0CumulativeLast;
            uint public price1CumulativeLast;
            uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
        
            uint private unlocked = 1;
            modifier lock() {
                require(unlocked == 1, 'UniswapV2: LOCKED');
                unlocked = 0;
                _;
                unlocked = 1;
            }
        
            function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
                _reserve0 = reserve0;
                _reserve1 = reserve1;
                _blockTimestampLast = blockTimestampLast;
            }
        
            function _safeTransfer(address token, address to, uint value) private {
                (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
                require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
            }
        
            event Mint(address indexed sender, uint amount0, uint amount1);
            event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
            event Swap(
                address indexed sender,
                uint amount0In,
                uint amount1In,
                uint amount0Out,
                uint amount1Out,
                address indexed to
            );
            event Sync(uint112 reserve0, uint112 reserve1);
        
            constructor() public {
                factory = msg.sender;
            }
        
            // called once by the factory at time of deployment
            function initialize(address _token0, address _token1) external {
                require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
                token0 = _token0;
                token1 = _token1;
            }
        
            // update reserves and, on the first call per block, price accumulators
            function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
                require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
                uint32 blockTimestamp = uint32(block.timestamp % 2**32);
                uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
                if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
                    // * never overflows, and + overflow is desired
                    price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
                    price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
                }
                reserve0 = uint112(balance0);
                reserve1 = uint112(balance1);
                blockTimestampLast = blockTimestamp;
                emit Sync(reserve0, reserve1);
            }
        
            // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
            function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
                address feeTo = IUniswapV2Factory(factory).feeTo();
                feeOn = feeTo != address(0);
                uint _kLast = kLast; // gas savings
                if (feeOn) {
                    if (_kLast != 0) {
                        uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
                        uint rootKLast = Math.sqrt(_kLast);
                        if (rootK > rootKLast) {
                            uint numerator = totalSupply.mul(rootK.sub(rootKLast));
                            uint denominator = rootK.mul(5).add(rootKLast);
                            uint liquidity = numerator / denominator;
                            if (liquidity > 0) _mint(feeTo, liquidity);
                        }
                    }
                } else if (_kLast != 0) {
                    kLast = 0;
                }
            }
        
            // this low-level function should be called from a contract which performs important safety checks
            function mint(address to) external lock returns (uint liquidity) {
                (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                uint balance0 = IERC20(token0).balanceOf(address(this));
                uint balance1 = IERC20(token1).balanceOf(address(this));
                uint amount0 = balance0.sub(_reserve0);
                uint amount1 = balance1.sub(_reserve1);
        
                bool feeOn = _mintFee(_reserve0, _reserve1);
                uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
                if (_totalSupply == 0) {
                    liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
                   _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
                } else {
                    liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
                }
                require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
                _mint(to, liquidity);
        
                _update(balance0, balance1, _reserve0, _reserve1);
                if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
                emit Mint(msg.sender, amount0, amount1);
            }
        
            // this low-level function should be called from a contract which performs important safety checks
            function burn(address to) external lock returns (uint amount0, uint amount1) {
                (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                address _token0 = token0;                                // gas savings
                address _token1 = token1;                                // gas savings
                uint balance0 = IERC20(_token0).balanceOf(address(this));
                uint balance1 = IERC20(_token1).balanceOf(address(this));
                uint liquidity = balanceOf[address(this)];
        
                bool feeOn = _mintFee(_reserve0, _reserve1);
                uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
                amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
                amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
                require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
                _burn(address(this), liquidity);
                _safeTransfer(_token0, to, amount0);
                _safeTransfer(_token1, to, amount1);
                balance0 = IERC20(_token0).balanceOf(address(this));
                balance1 = IERC20(_token1).balanceOf(address(this));
        
                _update(balance0, balance1, _reserve0, _reserve1);
                if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
                emit Burn(msg.sender, amount0, amount1, to);
            }
        
            // this low-level function should be called from a contract which performs important safety checks
            function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
                require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
                (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
        
                uint balance0;
                uint balance1;
                { // scope for _token{0,1}, avoids stack too deep errors
                address _token0 = token0;
                address _token1 = token1;
                require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
                if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
                if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
                if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
                balance0 = IERC20(_token0).balanceOf(address(this));
                balance1 = IERC20(_token1).balanceOf(address(this));
                }
                uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
                uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
                require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
                { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
                uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
                uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
                require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
                }
        
                _update(balance0, balance1, _reserve0, _reserve1);
                emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
            }
        
            // force balances to match reserves
            function skim(address to) external lock {
                address _token0 = token0; // gas savings
                address _token1 = token1; // gas savings
                _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
                _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
            }
        
            // force reserves to match balances
            function sync() external lock {
                _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
            }
        }
        
        contract UniswapV2Factory is IUniswapV2Factory {
            address public feeTo;
            address public feeToSetter;
        
            mapping(address => mapping(address => address)) public getPair;
            address[] public allPairs;
        
            event PairCreated(address indexed token0, address indexed token1, address pair, uint);
        
            constructor(address _feeToSetter) public {
                feeToSetter = _feeToSetter;
            }
        
            function allPairsLength() external view returns (uint) {
                return allPairs.length;
            }
        
            function createPair(address tokenA, address tokenB) external returns (address pair) {
                require(tokenA != tokenB, 'UniswapV2: IDENTICAL_ADDRESSES');
                (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
                require(token0 != address(0), 'UniswapV2: ZERO_ADDRESS');
                require(getPair[token0][token1] == address(0), 'UniswapV2: PAIR_EXISTS'); // single check is sufficient
                bytes memory bytecode = type(UniswapV2Pair).creationCode;
                bytes32 salt = keccak256(abi.encodePacked(token0, token1));
                assembly {
                    pair := create2(0, add(bytecode, 32), mload(bytecode), salt)
                }
                IUniswapV2Pair(pair).initialize(token0, token1);
                getPair[token0][token1] = pair;
                getPair[token1][token0] = pair; // populate mapping in the reverse direction
                allPairs.push(pair);
                emit PairCreated(token0, token1, pair, allPairs.length);
            }
        
            function setFeeTo(address _feeTo) external {
                require(msg.sender == feeToSetter, 'UniswapV2: FORBIDDEN');
                feeTo = _feeTo;
            }
        
            function setFeeToSetter(address _feeToSetter) external {
                require(msg.sender == feeToSetter, 'UniswapV2: FORBIDDEN');
                feeToSetter = _feeToSetter;
            }
        }
        
        // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
        
        library SafeMath {
            function add(uint x, uint y) internal pure returns (uint z) {
                require((z = x + y) >= x, 'ds-math-add-overflow');
            }
        
            function sub(uint x, uint y) internal pure returns (uint z) {
                require((z = x - y) <= x, 'ds-math-sub-underflow');
            }
        
            function mul(uint x, uint y) internal pure returns (uint z) {
                require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
            }
        }
        
        // a library for performing various math operations
        
        library Math {
            function min(uint x, uint y) internal pure returns (uint z) {
                z = x < y ? x : y;
            }
        
            // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
            function sqrt(uint y) internal pure returns (uint z) {
                if (y > 3) {
                    z = y;
                    uint x = y / 2 + 1;
                    while (x < z) {
                        z = x;
                        x = (y / x + x) / 2;
                    }
                } else if (y != 0) {
                    z = 1;
                }
            }
        }
        
        // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
        
        // range: [0, 2**112 - 1]
        // resolution: 1 / 2**112
        
        library UQ112x112 {
            uint224 constant Q112 = 2**112;
        
            // encode a uint112 as a UQ112x112
            function encode(uint112 y) internal pure returns (uint224 z) {
                z = uint224(y) * Q112; // never overflows
            }
        
            // divide a UQ112x112 by a uint112, returning a UQ112x112
            function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
                z = x / uint224(y);
            }
        }

        File 3 of 5: UniswapV2Pair
        // File: contracts/interfaces/IUniswapV2Pair.sol
        
        pragma solidity >=0.5.0;
        
        interface IUniswapV2Pair {
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            function name() external pure returns (string memory);
            function symbol() external pure returns (string memory);
            function decimals() external pure returns (uint8);
            function totalSupply() external view returns (uint);
            function balanceOf(address owner) external view returns (uint);
            function allowance(address owner, address spender) external view returns (uint);
        
            function approve(address spender, uint value) external returns (bool);
            function transfer(address to, uint value) external returns (bool);
            function transferFrom(address from, address to, uint value) external returns (bool);
        
            function DOMAIN_SEPARATOR() external view returns (bytes32);
            function PERMIT_TYPEHASH() external pure returns (bytes32);
            function nonces(address owner) external view returns (uint);
        
            function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
        
            event Mint(address indexed sender, uint amount0, uint amount1);
            event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
            event Swap(
                address indexed sender,
                uint amount0In,
                uint amount1In,
                uint amount0Out,
                uint amount1Out,
                address indexed to
            );
            event Sync(uint112 reserve0, uint112 reserve1);
        
            function MINIMUM_LIQUIDITY() external pure returns (uint);
            function factory() external view returns (address);
            function token0() external view returns (address);
            function token1() external view returns (address);
            function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
            function price0CumulativeLast() external view returns (uint);
            function price1CumulativeLast() external view returns (uint);
            function kLast() external view returns (uint);
        
            function mint(address to) external returns (uint liquidity);
            function burn(address to) external returns (uint amount0, uint amount1);
            function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
            function skim(address to) external;
            function sync() external;
        
            function initialize(address, address) external;
        }
        
        // File: contracts/interfaces/IUniswapV2ERC20.sol
        
        pragma solidity >=0.5.0;
        
        interface IUniswapV2ERC20 {
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            function name() external pure returns (string memory);
            function symbol() external pure returns (string memory);
            function decimals() external pure returns (uint8);
            function totalSupply() external view returns (uint);
            function balanceOf(address owner) external view returns (uint);
            function allowance(address owner, address spender) external view returns (uint);
        
            function approve(address spender, uint value) external returns (bool);
            function transfer(address to, uint value) external returns (bool);
            function transferFrom(address from, address to, uint value) external returns (bool);
        
            function DOMAIN_SEPARATOR() external view returns (bytes32);
            function PERMIT_TYPEHASH() external pure returns (bytes32);
            function nonces(address owner) external view returns (uint);
        
            function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
        }
        
        // File: contracts/libraries/SafeMath.sol
        
        pragma solidity =0.5.16;
        
        // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
        
        library SafeMath {
            function add(uint x, uint y) internal pure returns (uint z) {
                require((z = x + y) >= x, 'ds-math-add-overflow');
            }
        
            function sub(uint x, uint y) internal pure returns (uint z) {
                require((z = x - y) <= x, 'ds-math-sub-underflow');
            }
        
            function mul(uint x, uint y) internal pure returns (uint z) {
                require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
            }
        }
        
        // File: contracts/UniswapV2ERC20.sol
        
        pragma solidity =0.5.16;
        
        
        
        contract UniswapV2ERC20 is IUniswapV2ERC20 {
            using SafeMath for uint;
        
            string public constant name = 'Uniswap V2';
            string public constant symbol = 'UNI-V2';
            uint8 public constant decimals = 18;
            uint  public totalSupply;
            mapping(address => uint) public balanceOf;
            mapping(address => mapping(address => uint)) public allowance;
        
            bytes32 public DOMAIN_SEPARATOR;
            // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
            bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
            mapping(address => uint) public nonces;
        
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            constructor() public {
                uint chainId;
                assembly {
                    chainId := chainid
                }
                DOMAIN_SEPARATOR = keccak256(
                    abi.encode(
                        keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
                        keccak256(bytes(name)),
                        keccak256(bytes('1')),
                        chainId,
                        address(this)
                    )
                );
            }
        
            function _mint(address to, uint value) internal {
                totalSupply = totalSupply.add(value);
                balanceOf[to] = balanceOf[to].add(value);
                emit Transfer(address(0), to, value);
            }
        
            function _burn(address from, uint value) internal {
                balanceOf[from] = balanceOf[from].sub(value);
                totalSupply = totalSupply.sub(value);
                emit Transfer(from, address(0), value);
            }
        
            function _approve(address owner, address spender, uint value) private {
                allowance[owner][spender] = value;
                emit Approval(owner, spender, value);
            }
        
            function _transfer(address from, address to, uint value) private {
                balanceOf[from] = balanceOf[from].sub(value);
                balanceOf[to] = balanceOf[to].add(value);
                emit Transfer(from, to, value);
            }
        
            function approve(address spender, uint value) external returns (bool) {
                _approve(msg.sender, spender, value);
                return true;
            }
        
            function transfer(address to, uint value) external returns (bool) {
                _transfer(msg.sender, to, value);
                return true;
            }
        
            function transferFrom(address from, address to, uint value) external returns (bool) {
                if (allowance[from][msg.sender] != uint(-1)) {
                    allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
                }
                _transfer(from, to, value);
                return true;
            }
        
            function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
                require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
                bytes32 digest = keccak256(
                    abi.encodePacked(
                        '\x19\x01',
                        DOMAIN_SEPARATOR,
                        keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
                    )
                );
                address recoveredAddress = ecrecover(digest, v, r, s);
                require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
                _approve(owner, spender, value);
            }
        }
        
        // File: contracts/libraries/Math.sol
        
        pragma solidity =0.5.16;
        
        // a library for performing various math operations
        
        library Math {
            function min(uint x, uint y) internal pure returns (uint z) {
                z = x < y ? x : y;
            }
        
            // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
            function sqrt(uint y) internal pure returns (uint z) {
                if (y > 3) {
                    z = y;
                    uint x = y / 2 + 1;
                    while (x < z) {
                        z = x;
                        x = (y / x + x) / 2;
                    }
                } else if (y != 0) {
                    z = 1;
                }
            }
        }
        
        // File: contracts/libraries/UQ112x112.sol
        
        pragma solidity =0.5.16;
        
        // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
        
        // range: [0, 2**112 - 1]
        // resolution: 1 / 2**112
        
        library UQ112x112 {
            uint224 constant Q112 = 2**112;
        
            // encode a uint112 as a UQ112x112
            function encode(uint112 y) internal pure returns (uint224 z) {
                z = uint224(y) * Q112; // never overflows
            }
        
            // divide a UQ112x112 by a uint112, returning a UQ112x112
            function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
                z = x / uint224(y);
            }
        }
        
        // File: contracts/interfaces/IERC20.sol
        
        pragma solidity >=0.5.0;
        
        interface IERC20 {
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            function name() external view returns (string memory);
            function symbol() external view returns (string memory);
            function decimals() external view returns (uint8);
            function totalSupply() external view returns (uint);
            function balanceOf(address owner) external view returns (uint);
            function allowance(address owner, address spender) external view returns (uint);
        
            function approve(address spender, uint value) external returns (bool);
            function transfer(address to, uint value) external returns (bool);
            function transferFrom(address from, address to, uint value) external returns (bool);
        }
        
        // File: contracts/interfaces/IUniswapV2Factory.sol
        
        pragma solidity >=0.5.0;
        
        interface IUniswapV2Factory {
            event PairCreated(address indexed token0, address indexed token1, address pair, uint);
        
            function feeTo() external view returns (address);
            function feeToSetter() external view returns (address);
        
            function getPair(address tokenA, address tokenB) external view returns (address pair);
            function allPairs(uint) external view returns (address pair);
            function allPairsLength() external view returns (uint);
        
            function createPair(address tokenA, address tokenB) external returns (address pair);
        
            function setFeeTo(address) external;
            function setFeeToSetter(address) external;
        }
        
        // File: contracts/interfaces/IUniswapV2Callee.sol
        
        pragma solidity >=0.5.0;
        
        interface IUniswapV2Callee {
            function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
        }
        
        // File: contracts/UniswapV2Pair.sol
        
        pragma solidity =0.5.16;
        
        
        
        
        
        
        
        
        contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
            using SafeMath  for uint;
            using UQ112x112 for uint224;
        
            uint public constant MINIMUM_LIQUIDITY = 10**3;
            bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
        
            address public factory;
            address public token0;
            address public token1;
        
            uint112 private reserve0;           // uses single storage slot, accessible via getReserves
            uint112 private reserve1;           // uses single storage slot, accessible via getReserves
            uint32  private blockTimestampLast; // uses single storage slot, accessible via getReserves
        
            uint public price0CumulativeLast;
            uint public price1CumulativeLast;
            uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
        
            uint private unlocked = 1;
            modifier lock() {
                require(unlocked == 1, 'UniswapV2: LOCKED');
                unlocked = 0;
                _;
                unlocked = 1;
            }
        
            function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
                _reserve0 = reserve0;
                _reserve1 = reserve1;
                _blockTimestampLast = blockTimestampLast;
            }
        
            function _safeTransfer(address token, address to, uint value) private {
                (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
                require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
            }
        
            event Mint(address indexed sender, uint amount0, uint amount1);
            event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
            event Swap(
                address indexed sender,
                uint amount0In,
                uint amount1In,
                uint amount0Out,
                uint amount1Out,
                address indexed to
            );
            event Sync(uint112 reserve0, uint112 reserve1);
        
            constructor() public {
                factory = msg.sender;
            }
        
            // called once by the factory at time of deployment
            function initialize(address _token0, address _token1) external {
                require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
                token0 = _token0;
                token1 = _token1;
            }
        
            // update reserves and, on the first call per block, price accumulators
            function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
                require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
                uint32 blockTimestamp = uint32(block.timestamp % 2**32);
                uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
                if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
                    // * never overflows, and + overflow is desired
                    price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
                    price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
                }
                reserve0 = uint112(balance0);
                reserve1 = uint112(balance1);
                blockTimestampLast = blockTimestamp;
                emit Sync(reserve0, reserve1);
            }
        
            // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
            function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
                address feeTo = IUniswapV2Factory(factory).feeTo();
                feeOn = feeTo != address(0);
                uint _kLast = kLast; // gas savings
                if (feeOn) {
                    if (_kLast != 0) {
                        uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
                        uint rootKLast = Math.sqrt(_kLast);
                        if (rootK > rootKLast) {
                            uint numerator = totalSupply.mul(rootK.sub(rootKLast));
                            uint denominator = rootK.mul(5).add(rootKLast);
                            uint liquidity = numerator / denominator;
                            if (liquidity > 0) _mint(feeTo, liquidity);
                        }
                    }
                } else if (_kLast != 0) {
                    kLast = 0;
                }
            }
        
            // this low-level function should be called from a contract which performs important safety checks
            function mint(address to) external lock returns (uint liquidity) {
                (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                uint balance0 = IERC20(token0).balanceOf(address(this));
                uint balance1 = IERC20(token1).balanceOf(address(this));
                uint amount0 = balance0.sub(_reserve0);
                uint amount1 = balance1.sub(_reserve1);
        
                bool feeOn = _mintFee(_reserve0, _reserve1);
                uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
                if (_totalSupply == 0) {
                    liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
                   _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
                } else {
                    liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
                }
                require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
                _mint(to, liquidity);
        
                _update(balance0, balance1, _reserve0, _reserve1);
                if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
                emit Mint(msg.sender, amount0, amount1);
            }
        
            // this low-level function should be called from a contract which performs important safety checks
            function burn(address to) external lock returns (uint amount0, uint amount1) {
                (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                address _token0 = token0;                                // gas savings
                address _token1 = token1;                                // gas savings
                uint balance0 = IERC20(_token0).balanceOf(address(this));
                uint balance1 = IERC20(_token1).balanceOf(address(this));
                uint liquidity = balanceOf[address(this)];
        
                bool feeOn = _mintFee(_reserve0, _reserve1);
                uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
                amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
                amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
                require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
                _burn(address(this), liquidity);
                _safeTransfer(_token0, to, amount0);
                _safeTransfer(_token1, to, amount1);
                balance0 = IERC20(_token0).balanceOf(address(this));
                balance1 = IERC20(_token1).balanceOf(address(this));
        
                _update(balance0, balance1, _reserve0, _reserve1);
                if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
                emit Burn(msg.sender, amount0, amount1, to);
            }
        
            // this low-level function should be called from a contract which performs important safety checks
            function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
                require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
                (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
        
                uint balance0;
                uint balance1;
                { // scope for _token{0,1}, avoids stack too deep errors
                address _token0 = token0;
                address _token1 = token1;
                require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
                if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
                if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
                if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
                balance0 = IERC20(_token0).balanceOf(address(this));
                balance1 = IERC20(_token1).balanceOf(address(this));
                }
                uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
                uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
                require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
                { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
                uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
                uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
                require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
                }
        
                _update(balance0, balance1, _reserve0, _reserve1);
                emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
            }
        
            // force balances to match reserves
            function skim(address to) external lock {
                address _token0 = token0; // gas savings
                address _token1 = token1; // gas savings
                _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
                _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
            }
        
            // force reserves to match balances
            function sync() external lock {
                _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
            }
        }

        File 4 of 5: Cult
        // SPDX-License-Identifier: LicenseRef-VPL WITH AGPL-3.0-only
        pragma solidity ^0.8.25;
        import {
          ERC20
        } from "solady/tokens/ERC20.sol";
        import {
          Ownable
        } from "solady/auth/Ownable.sol";
        import {
          FixedPointMathLib
        } from "solady/utils/FixedPointMathLib.sol";
        import {
          SafeTransferLib
        } from "solady/utils/SafeTransferLib.sol";
        import {
          ReentrancyGuard
        } from "soledge/utils/ReentrancyGuard.sol";
        /**
          @custom:benediction DEVS BENEDICAT ET PROTEGAT CONTRACTVM MEVM
          @title The Remilia ERC-20 token.
          @author Tim Clancy <tim-clancy.eth>
          @custom:terry "God is just. Work is rewarded with blessing if not money. Luck
            is the most important thing, but really it's God."
          -----------------------------------------------------------------------------
          The Remilia ERC-20 token.
          No seed raise, no investors,
          no burdens, no promises,
          just conviction.
          I love you.
          -----------------------------------------------------------------------------
          A note from the author: Milady, you will always have within you a beautiful
          kernel of our collective net history. No matter what happens, no matter who
          fails, no matter who succeeds, no matter what success does to you, no matter
          where your network spirits go: behind those neochibi eyes is a memory of the
          old ways. A memory of whitepilled anticorporate post-authorship. A flag for
          unapologetic radicals on a holy mission.
          
          I long for network spirituality.
          @custom:date July 22nd, 2024.
        */
        contract Cult is ERC20, Ownable, ReentrancyGuard {
          bytes32 constant MESSAGE =
            0xe07fc590053cce006bcf1908510532bf0bddbb779b1b5e78855f2229ef4e5de9;
          /**
            An error emitted if trying to use `transferToken` on the Cult token. The
            only way to remove the Cult token from its own contract is using the vest
            mechanic. See notes on its fallibility later.
          */
          error MustVest ();
          /// An error emitted if trying to push a concluded or invalid vest amount.
          error InvalidVest ();
          /**
            This struct records details about existing token vests. All vests using
            this contract for distribution will be concluded well before 2106. No
            single vest will exceed 10B tokens in `amount`.
            @param recipient The address that receives the vested tokens.
            @param amount The amount of tokens to vest to the `recipient`.
            @param amountClaimed The amount of tokens already claimed by `recipient`.
            @param start The time when the vest starts.
            @param end The time when the vest ends.
            @param lastClaimTime The time when `recipient` last claimed.
          */
          struct Vest {
            address recipient;
            uint96 amount;
            uint96 amountClaimed;
            uint32 start;
            uint32 end;
            uint32 lastClaimTime;
          }
          /**
            A mapping of addresses to their `vestId`-identified `Vest`s.
            @custom:param recipient The recipient of the `Vest`.
            @custom:param id The ID of some specific `Vest` details.
          */
          mapping (
            address recipient => mapping ( uint96 id => Vest )
          ) public vests;
          /**
            This struct encodes the input for creating or modifying a token vest.
            
            @param recipient The address that receives the vested tokens. This is
              really only here for nice padding. :)
            @param amount The amount of tokens to vest to the `recipient`.
            @param start The time when the vest starts.
            @param end The time when the vest ends.
            @param id Different `id` values may create multiple vests to the same
              `recipient`.
          */
          struct SetVest {
            address recipient;
            uint96 amount;
            uint32 start;
            uint32 end;
            uint96 id;
          }
          /**
            This event is emitted whenever a token vest is created or modified.
            @param recipient The beneficiary of the token vest.
            @param id The specific ID of the `Vest` being set.
          */
          event VestSet (
            address indexed recipient,
            uint96 indexed id
          );
          /**
            Our very simple constructor mints the entire token supply to the owner
            from whence it is distributed to claims and vests and vaults.
            @param _owner The initial owner.
          */
          constructor (
            address _owner
          ) {
            _initializeOwner(_owner);
            _mint(_owner, 100_000000000_000000000000000000);
          }
          /**
            Returns the name of the token.
            @return _ The name of the token.
          */
          function name () override public pure returns (string memory) {
            return "Milady Cult Coin";
          }
          /**
            Returns the symbol of the token.
            @return _ The symbol used as the token ticker.
          */
          function symbol () override public pure returns (string memory) {
            return "CULT";
          }
          /**
            Allow the owner to transfer Ether out of this contract.
            We only need this to rescue anyone dumb.
            @param _to The address to transfer Ether to.
            @param _amount The amount of Ether to transfer.
          */
          function transferEther (
            address _to,
            uint256 _amount
          ) external payable onlyOwner {
            bool success = SafeTransferLib.trySafeTransferETH(
              _to,
              _amount,
              SafeTransferLib.GAS_STIPEND_NO_STORAGE_WRITES
            );
            if (!success) {
              SafeTransferLib.forceSafeTransferETH(_to, _amount);
            }
          }
          /**
            Allow the owner to transfer ERC-20 tokens out of this contract.
            We only need this to rescue anyone dumb.
            @param _token The address of the ERC-20 token to transfer.
            @param _to The address to transfer the ERC-20 `_token` to.
            @param _amount The amount of `_token` to transfer.
          */
          function transferToken (
            address _token,
            address _to,
            uint256 _amount
          ) external payable onlyOwner {
            if (_token == address(this)) {
              revert MustVest();
            }
            SafeTransferLib.safeTransfer(_token, _to, _amount);
          }
          /**
            Allow the owner to set vests for this token. The owner must take care not
            to create invalid vests.
            @param _vests An array of `CreateVest` inputs to create vests with.
          */
          function setVest (
            SetVest[] memory _vests
          ) external onlyOwner {
            for (uint i = 0; i < _vests.length; i++) {
              address recipient = _vests[i].recipient;
              uint96 id = _vests[i].id;
              Vest memory vest = Vest({
                recipient: _vests[i].recipient,
                amount: _vests[i].amount,
                amountClaimed: 0,
                start: _vests[i].start,
                end: _vests[i].end,
                lastClaimTime: _vests[i].start
              });
              vests[recipient][id] = vest;
              emit VestSet(recipient, id);
            }
          }
          /**
            A function allowing vested tokens to be pushed to the `msg.sender`.
            @param _id The ID of the specific `msg.sender` `Vest` to push.
            @param _amount The amount of the vest to push.
          */
          function pushVest (
            uint96 _id,
            uint256 _amount
          ) external nonReentrant {
            Vest memory vest = vests[msg.sender][_id];
            // Verify that the vest is active.
            if (vest.amount < 1) {
              revert InvalidVest();
            }
            // Calculate the current releasable token amount.
            uint96 vestedAmount = uint96(FixedPointMathLib.lerp(
              0, vest.amount, block.timestamp, vest.start, vest.end
            ));
            // Reduce the unclaimed amount by the amount already claimed.
            uint256 unclaimedAmount = vestedAmount - vest.amountClaimed;
            // Prevent overclaiming a vest.
            if (_amount > unclaimedAmount) {
              revert InvalidVest();
            }
            // Update the vest being tracked.
            vest.amountClaimed = vest.amountClaimed + uint96(_amount);
            vest.lastClaimTime = uint32(block.timestamp);
            vests[msg.sender][_id] = vest;
            // Transfer the unclaimed tokens to the beneficiary.
            SafeTransferLib.safeTransfer(address(this), msg.sender, _amount);
          }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice Simple ERC20 + EIP-2612 implementation.
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC20.sol)
        /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
        /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol)
        ///
        /// @dev Note:
        /// - The ERC20 standard allows minting and transferring to and from the zero address,
        ///   minting and transferring zero tokens, as well as self-approvals.
        ///   For performance, this implementation WILL NOT revert for such actions.
        ///   Please add any checks with overrides if desired.
        /// - The `permit` function uses the ecrecover precompile (0x1).
        ///
        /// If you are overriding:
        /// - NEVER violate the ERC20 invariant:
        ///   the total sum of all balances must be equal to `totalSupply()`.
        /// - Check that the overridden function is actually used in the function you want to
        ///   change the behavior of. Much of the code has been manually inlined for performance.
        abstract contract ERC20 {
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                       CUSTOM ERRORS                        */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The total supply has overflowed.
            error TotalSupplyOverflow();
            /// @dev The allowance has overflowed.
            error AllowanceOverflow();
            /// @dev The allowance has underflowed.
            error AllowanceUnderflow();
            /// @dev Insufficient balance.
            error InsufficientBalance();
            /// @dev Insufficient allowance.
            error InsufficientAllowance();
            /// @dev The permit is invalid.
            error InvalidPermit();
            /// @dev The permit has expired.
            error PermitExpired();
            /// @dev The allowance of Permit2 is fixed at infinity.
            error Permit2AllowanceIsFixedAtInfinity();
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                           EVENTS                           */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Emitted when `amount` tokens is transferred from `from` to `to`.
            event Transfer(address indexed from, address indexed to, uint256 amount);
            /// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`.
            event Approval(address indexed owner, address indexed spender, uint256 amount);
            /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
            uint256 private constant _TRANSFER_EVENT_SIGNATURE =
                0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
            /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
            uint256 private constant _APPROVAL_EVENT_SIGNATURE =
                0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                          STORAGE                           */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The storage slot for the total supply.
            uint256 private constant _TOTAL_SUPPLY_SLOT = 0x05345cdf77eb68f44c;
            /// @dev The balance slot of `owner` is given by:
            /// ```
            ///     mstore(0x0c, _BALANCE_SLOT_SEED)
            ///     mstore(0x00, owner)
            ///     let balanceSlot := keccak256(0x0c, 0x20)
            /// ```
            uint256 private constant _BALANCE_SLOT_SEED = 0x87a211a2;
            /// @dev The allowance slot of (`owner`, `spender`) is given by:
            /// ```
            ///     mstore(0x20, spender)
            ///     mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            ///     mstore(0x00, owner)
            ///     let allowanceSlot := keccak256(0x0c, 0x34)
            /// ```
            uint256 private constant _ALLOWANCE_SLOT_SEED = 0x7f5e9f20;
            /// @dev The nonce slot of `owner` is given by:
            /// ```
            ///     mstore(0x0c, _NONCES_SLOT_SEED)
            ///     mstore(0x00, owner)
            ///     let nonceSlot := keccak256(0x0c, 0x20)
            /// ```
            uint256 private constant _NONCES_SLOT_SEED = 0x38377508;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                         CONSTANTS                          */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev `(_NONCES_SLOT_SEED << 16) | 0x1901`.
            uint256 private constant _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX = 0x383775081901;
            /// @dev `keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")`.
            bytes32 private constant _DOMAIN_TYPEHASH =
                0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f;
            /// @dev `keccak256("1")`.
            /// If you need to use a different version, override `_versionHash`.
            bytes32 private constant _DEFAULT_VERSION_HASH =
                0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6;
            /// @dev `keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")`.
            bytes32 private constant _PERMIT_TYPEHASH =
                0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
            /// @dev The canonical Permit2 address.
            /// For signature-based allowance granting for single transaction ERC20 `transferFrom`.
            /// To enable, override `_givePermit2InfiniteAllowance()`.
            /// [Github](https://github.com/Uniswap/permit2)
            /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
            address internal constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                       ERC20 METADATA                       */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns the name of the token.
            function name() public view virtual returns (string memory);
            /// @dev Returns the symbol of the token.
            function symbol() public view virtual returns (string memory);
            /// @dev Returns the decimals places of the token.
            function decimals() public view virtual returns (uint8) {
                return 18;
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                           ERC20                            */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns the amount of tokens in existence.
            function totalSupply() public view virtual returns (uint256 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    result := sload(_TOTAL_SUPPLY_SLOT)
                }
            }
            /// @dev Returns the amount of tokens owned by `owner`.
            function balanceOf(address owner) public view virtual returns (uint256 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x0c, _BALANCE_SLOT_SEED)
                    mstore(0x00, owner)
                    result := sload(keccak256(0x0c, 0x20))
                }
            }
            /// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`.
            function allowance(address owner, address spender)
                public
                view
                virtual
                returns (uint256 result)
            {
                if (_givePermit2InfiniteAllowance()) {
                    if (spender == _PERMIT2) return type(uint256).max;
                }
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x20, spender)
                    mstore(0x0c, _ALLOWANCE_SLOT_SEED)
                    mstore(0x00, owner)
                    result := sload(keccak256(0x0c, 0x34))
                }
            }
            /// @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
            ///
            /// Emits a {Approval} event.
            function approve(address spender, uint256 amount) public virtual returns (bool) {
                if (_givePermit2InfiniteAllowance()) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        // If `spender == _PERMIT2 && amount != type(uint256).max`.
                        if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
                            mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                            revert(0x1c, 0x04)
                        }
                    }
                }
                /// @solidity memory-safe-assembly
                assembly {
                    // Compute the allowance slot and store the amount.
                    mstore(0x20, spender)
                    mstore(0x0c, _ALLOWANCE_SLOT_SEED)
                    mstore(0x00, caller())
                    sstore(keccak256(0x0c, 0x34), amount)
                    // Emit the {Approval} event.
                    mstore(0x00, amount)
                    log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, caller(), shr(96, mload(0x2c)))
                }
                return true;
            }
            /// @dev Transfer `amount` tokens from the caller to `to`.
            ///
            /// Requirements:
            /// - `from` must at least have `amount`.
            ///
            /// Emits a {Transfer} event.
            function transfer(address to, uint256 amount) public virtual returns (bool) {
                _beforeTokenTransfer(msg.sender, to, amount);
                /// @solidity memory-safe-assembly
                assembly {
                    // Compute the balance slot and load its value.
                    mstore(0x0c, _BALANCE_SLOT_SEED)
                    mstore(0x00, caller())
                    let fromBalanceSlot := keccak256(0x0c, 0x20)
                    let fromBalance := sload(fromBalanceSlot)
                    // Revert if insufficient balance.
                    if gt(amount, fromBalance) {
                        mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                        revert(0x1c, 0x04)
                    }
                    // Subtract and store the updated balance.
                    sstore(fromBalanceSlot, sub(fromBalance, amount))
                    // Compute the balance slot of `to`.
                    mstore(0x00, to)
                    let toBalanceSlot := keccak256(0x0c, 0x20)
                    // Add and store the updated balance of `to`.
                    // Will not overflow because the sum of all user balances
                    // cannot exceed the maximum uint256 value.
                    sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                    // Emit the {Transfer} event.
                    mstore(0x20, amount)
                    log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, caller(), shr(96, mload(0x0c)))
                }
                _afterTokenTransfer(msg.sender, to, amount);
                return true;
            }
            /// @dev Transfers `amount` tokens from `from` to `to`.
            ///
            /// Note: Does not update the allowance if it is the maximum uint256 value.
            ///
            /// Requirements:
            /// - `from` must at least have `amount`.
            /// - The caller must have at least `amount` of allowance to transfer the tokens of `from`.
            ///
            /// Emits a {Transfer} event.
            function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) {
                _beforeTokenTransfer(from, to, amount);
                // Code duplication is for zero-cost abstraction if possible.
                if (_givePermit2InfiniteAllowance()) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let from_ := shl(96, from)
                        if iszero(eq(caller(), _PERMIT2)) {
                            // Compute the allowance slot and load its value.
                            mstore(0x20, caller())
                            mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
                            let allowanceSlot := keccak256(0x0c, 0x34)
                            let allowance_ := sload(allowanceSlot)
                            // If the allowance is not the maximum uint256 value.
                            if not(allowance_) {
                                // Revert if the amount to be transferred exceeds the allowance.
                                if gt(amount, allowance_) {
                                    mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                                    revert(0x1c, 0x04)
                                }
                                // Subtract and store the updated allowance.
                                sstore(allowanceSlot, sub(allowance_, amount))
                            }
                        }
                        // Compute the balance slot and load its value.
                        mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                        let fromBalanceSlot := keccak256(0x0c, 0x20)
                        let fromBalance := sload(fromBalanceSlot)
                        // Revert if insufficient balance.
                        if gt(amount, fromBalance) {
                            mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                            revert(0x1c, 0x04)
                        }
                        // Subtract and store the updated balance.
                        sstore(fromBalanceSlot, sub(fromBalance, amount))
                        // Compute the balance slot of `to`.
                        mstore(0x00, to)
                        let toBalanceSlot := keccak256(0x0c, 0x20)
                        // Add and store the updated balance of `to`.
                        // Will not overflow because the sum of all user balances
                        // cannot exceed the maximum uint256 value.
                        sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                        // Emit the {Transfer} event.
                        mstore(0x20, amount)
                        log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
                    }
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let from_ := shl(96, from)
                        // Compute the allowance slot and load its value.
                        mstore(0x20, caller())
                        mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
                        let allowanceSlot := keccak256(0x0c, 0x34)
                        let allowance_ := sload(allowanceSlot)
                        // If the allowance is not the maximum uint256 value.
                        if not(allowance_) {
                            // Revert if the amount to be transferred exceeds the allowance.
                            if gt(amount, allowance_) {
                                mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                                revert(0x1c, 0x04)
                            }
                            // Subtract and store the updated allowance.
                            sstore(allowanceSlot, sub(allowance_, amount))
                        }
                        // Compute the balance slot and load its value.
                        mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                        let fromBalanceSlot := keccak256(0x0c, 0x20)
                        let fromBalance := sload(fromBalanceSlot)
                        // Revert if insufficient balance.
                        if gt(amount, fromBalance) {
                            mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                            revert(0x1c, 0x04)
                        }
                        // Subtract and store the updated balance.
                        sstore(fromBalanceSlot, sub(fromBalance, amount))
                        // Compute the balance slot of `to`.
                        mstore(0x00, to)
                        let toBalanceSlot := keccak256(0x0c, 0x20)
                        // Add and store the updated balance of `to`.
                        // Will not overflow because the sum of all user balances
                        // cannot exceed the maximum uint256 value.
                        sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                        // Emit the {Transfer} event.
                        mstore(0x20, amount)
                        log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
                    }
                }
                _afterTokenTransfer(from, to, amount);
                return true;
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                          EIP-2612                          */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev For more performance, override to return the constant value
            /// of `keccak256(bytes(name()))` if `name()` will never change.
            function _constantNameHash() internal view virtual returns (bytes32 result) {}
            /// @dev If you need a different value, override this function.
            function _versionHash() internal view virtual returns (bytes32 result) {
                result = _DEFAULT_VERSION_HASH;
            }
            /// @dev Returns the current nonce for `owner`.
            /// This value is used to compute the signature for EIP-2612 permit.
            function nonces(address owner) public view virtual returns (uint256 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Compute the nonce slot and load its value.
                    mstore(0x0c, _NONCES_SLOT_SEED)
                    mstore(0x00, owner)
                    result := sload(keccak256(0x0c, 0x20))
                }
            }
            /// @dev Sets `value` as the allowance of `spender` over the tokens of `owner`,
            /// authorized by a signed approval by `owner`.
            ///
            /// Emits a {Approval} event.
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) public virtual {
                if (_givePermit2InfiniteAllowance()) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        // If `spender == _PERMIT2 && value != type(uint256).max`.
                        if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(value)))) {
                            mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                            revert(0x1c, 0x04)
                        }
                    }
                }
                bytes32 nameHash = _constantNameHash();
                //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
                if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
                bytes32 versionHash = _versionHash();
                /// @solidity memory-safe-assembly
                assembly {
                    // Revert if the block timestamp is greater than `deadline`.
                    if gt(timestamp(), deadline) {
                        mstore(0x00, 0x1a15a3cc) // `PermitExpired()`.
                        revert(0x1c, 0x04)
                    }
                    let m := mload(0x40) // Grab the free memory pointer.
                    // Clean the upper 96 bits.
                    owner := shr(96, shl(96, owner))
                    spender := shr(96, shl(96, spender))
                    // Compute the nonce slot and load its value.
                    mstore(0x0e, _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX)
                    mstore(0x00, owner)
                    let nonceSlot := keccak256(0x0c, 0x20)
                    let nonceValue := sload(nonceSlot)
                    // Prepare the domain separator.
                    mstore(m, _DOMAIN_TYPEHASH)
                    mstore(add(m, 0x20), nameHash)
                    mstore(add(m, 0x40), versionHash)
                    mstore(add(m, 0x60), chainid())
                    mstore(add(m, 0x80), address())
                    mstore(0x2e, keccak256(m, 0xa0))
                    // Prepare the struct hash.
                    mstore(m, _PERMIT_TYPEHASH)
                    mstore(add(m, 0x20), owner)
                    mstore(add(m, 0x40), spender)
                    mstore(add(m, 0x60), value)
                    mstore(add(m, 0x80), nonceValue)
                    mstore(add(m, 0xa0), deadline)
                    mstore(0x4e, keccak256(m, 0xc0))
                    // Prepare the ecrecover calldata.
                    mstore(0x00, keccak256(0x2c, 0x42))
                    mstore(0x20, and(0xff, v))
                    mstore(0x40, r)
                    mstore(0x60, s)
                    let t := staticcall(gas(), 1, 0, 0x80, 0x20, 0x20)
                    // If the ecrecover fails, the returndatasize will be 0x00,
                    // `owner` will be checked if it equals the hash at 0x00,
                    // which evaluates to false (i.e. 0), and we will revert.
                    // If the ecrecover succeeds, the returndatasize will be 0x20,
                    // `owner` will be compared against the returned address at 0x20.
                    if iszero(eq(mload(returndatasize()), owner)) {
                        mstore(0x00, 0xddafbaef) // `InvalidPermit()`.
                        revert(0x1c, 0x04)
                    }
                    // Increment and store the updated nonce.
                    sstore(nonceSlot, add(nonceValue, t)) // `t` is 1 if ecrecover succeeds.
                    // Compute the allowance slot and store the value.
                    // The `owner` is already at slot 0x20.
                    mstore(0x40, or(shl(160, _ALLOWANCE_SLOT_SEED), spender))
                    sstore(keccak256(0x2c, 0x34), value)
                    // Emit the {Approval} event.
                    log3(add(m, 0x60), 0x20, _APPROVAL_EVENT_SIGNATURE, owner, spender)
                    mstore(0x40, m) // Restore the free memory pointer.
                    mstore(0x60, 0) // Restore the zero pointer.
                }
            }
            /// @dev Returns the EIP-712 domain separator for the EIP-2612 permit.
            function DOMAIN_SEPARATOR() public view virtual returns (bytes32 result) {
                bytes32 nameHash = _constantNameHash();
                //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
                if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
                bytes32 versionHash = _versionHash();
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40) // Grab the free memory pointer.
                    mstore(m, _DOMAIN_TYPEHASH)
                    mstore(add(m, 0x20), nameHash)
                    mstore(add(m, 0x40), versionHash)
                    mstore(add(m, 0x60), chainid())
                    mstore(add(m, 0x80), address())
                    result := keccak256(m, 0xa0)
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                  INTERNAL MINT FUNCTIONS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Mints `amount` tokens to `to`, increasing the total supply.
            ///
            /// Emits a {Transfer} event.
            function _mint(address to, uint256 amount) internal virtual {
                _beforeTokenTransfer(address(0), to, amount);
                /// @solidity memory-safe-assembly
                assembly {
                    let totalSupplyBefore := sload(_TOTAL_SUPPLY_SLOT)
                    let totalSupplyAfter := add(totalSupplyBefore, amount)
                    // Revert if the total supply overflows.
                    if lt(totalSupplyAfter, totalSupplyBefore) {
                        mstore(0x00, 0xe5cfe957) // `TotalSupplyOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    // Store the updated total supply.
                    sstore(_TOTAL_SUPPLY_SLOT, totalSupplyAfter)
                    // Compute the balance slot and load its value.
                    mstore(0x0c, _BALANCE_SLOT_SEED)
                    mstore(0x00, to)
                    let toBalanceSlot := keccak256(0x0c, 0x20)
                    // Add and store the updated balance.
                    sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                    // Emit the {Transfer} event.
                    mstore(0x20, amount)
                    log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, mload(0x0c)))
                }
                _afterTokenTransfer(address(0), to, amount);
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                  INTERNAL BURN FUNCTIONS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Burns `amount` tokens from `from`, reducing the total supply.
            ///
            /// Emits a {Transfer} event.
            function _burn(address from, uint256 amount) internal virtual {
                _beforeTokenTransfer(from, address(0), amount);
                /// @solidity memory-safe-assembly
                assembly {
                    // Compute the balance slot and load its value.
                    mstore(0x0c, _BALANCE_SLOT_SEED)
                    mstore(0x00, from)
                    let fromBalanceSlot := keccak256(0x0c, 0x20)
                    let fromBalance := sload(fromBalanceSlot)
                    // Revert if insufficient balance.
                    if gt(amount, fromBalance) {
                        mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                        revert(0x1c, 0x04)
                    }
                    // Subtract and store the updated balance.
                    sstore(fromBalanceSlot, sub(fromBalance, amount))
                    // Subtract and store the updated total supply.
                    sstore(_TOTAL_SUPPLY_SLOT, sub(sload(_TOTAL_SUPPLY_SLOT), amount))
                    // Emit the {Transfer} event.
                    mstore(0x00, amount)
                    log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0)
                }
                _afterTokenTransfer(from, address(0), amount);
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                INTERNAL TRANSFER FUNCTIONS                 */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Moves `amount` of tokens from `from` to `to`.
            function _transfer(address from, address to, uint256 amount) internal virtual {
                _beforeTokenTransfer(from, to, amount);
                /// @solidity memory-safe-assembly
                assembly {
                    let from_ := shl(96, from)
                    // Compute the balance slot and load its value.
                    mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                    let fromBalanceSlot := keccak256(0x0c, 0x20)
                    let fromBalance := sload(fromBalanceSlot)
                    // Revert if insufficient balance.
                    if gt(amount, fromBalance) {
                        mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                        revert(0x1c, 0x04)
                    }
                    // Subtract and store the updated balance.
                    sstore(fromBalanceSlot, sub(fromBalance, amount))
                    // Compute the balance slot of `to`.
                    mstore(0x00, to)
                    let toBalanceSlot := keccak256(0x0c, 0x20)
                    // Add and store the updated balance of `to`.
                    // Will not overflow because the sum of all user balances
                    // cannot exceed the maximum uint256 value.
                    sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                    // Emit the {Transfer} event.
                    mstore(0x20, amount)
                    log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
                }
                _afterTokenTransfer(from, to, amount);
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                INTERNAL ALLOWANCE FUNCTIONS                */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Updates the allowance of `owner` for `spender` based on spent `amount`.
            function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
                if (_givePermit2InfiniteAllowance()) {
                    if (spender == _PERMIT2) return; // Do nothing, as allowance is infinite.
                }
                /// @solidity memory-safe-assembly
                assembly {
                    // Compute the allowance slot and load its value.
                    mstore(0x20, spender)
                    mstore(0x0c, _ALLOWANCE_SLOT_SEED)
                    mstore(0x00, owner)
                    let allowanceSlot := keccak256(0x0c, 0x34)
                    let allowance_ := sload(allowanceSlot)
                    // If the allowance is not the maximum uint256 value.
                    if not(allowance_) {
                        // Revert if the amount to be transferred exceeds the allowance.
                        if gt(amount, allowance_) {
                            mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                            revert(0x1c, 0x04)
                        }
                        // Subtract and store the updated allowance.
                        sstore(allowanceSlot, sub(allowance_, amount))
                    }
                }
            }
            /// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`.
            ///
            /// Emits a {Approval} event.
            function _approve(address owner, address spender, uint256 amount) internal virtual {
                if (_givePermit2InfiniteAllowance()) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        // If `spender == _PERMIT2 && amount != type(uint256).max`.
                        if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
                            mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                            revert(0x1c, 0x04)
                        }
                    }
                }
                /// @solidity memory-safe-assembly
                assembly {
                    let owner_ := shl(96, owner)
                    // Compute the allowance slot and store the amount.
                    mstore(0x20, spender)
                    mstore(0x0c, or(owner_, _ALLOWANCE_SLOT_SEED))
                    sstore(keccak256(0x0c, 0x34), amount)
                    // Emit the {Approval} event.
                    mstore(0x00, amount)
                    log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, shr(96, owner_), shr(96, mload(0x2c)))
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                     HOOKS TO OVERRIDE                      */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Hook that is called before any transfer of tokens.
            /// This includes minting and burning.
            function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
            /// @dev Hook that is called after any transfer of tokens.
            /// This includes minting and burning.
            function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                          PERMIT2                           */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns whether to fix the Permit2 contract's allowance at infinity.
            ///
            /// This value should be kept constant after contract initialization,
            /// or else the actual allowance values may not match with the {Approval} events.
            /// For best performance, return a compile-time constant for zero-cost abstraction.
            function _givePermit2InfiniteAllowance() internal view virtual returns (bool) {
                return false;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice Simple single owner authorization mixin.
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
        ///
        /// @dev Note:
        /// This implementation does NOT auto-initialize the owner to `msg.sender`.
        /// You MUST call the `_initializeOwner` in the constructor / initializer.
        ///
        /// While the ownable portion follows
        /// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
        /// the nomenclature for the 2-step ownership handover may be unique to this codebase.
        abstract contract Ownable {
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                       CUSTOM ERRORS                        */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The caller is not authorized to call the function.
            error Unauthorized();
            /// @dev The `newOwner` cannot be the zero address.
            error NewOwnerIsZeroAddress();
            /// @dev The `pendingOwner` does not have a valid handover request.
            error NoHandoverRequest();
            /// @dev Cannot double-initialize.
            error AlreadyInitialized();
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                           EVENTS                           */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The ownership is transferred from `oldOwner` to `newOwner`.
            /// This event is intentionally kept the same as OpenZeppelin's Ownable to be
            /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
            /// despite it not being as lightweight as a single argument event.
            event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);
            /// @dev An ownership handover to `pendingOwner` has been requested.
            event OwnershipHandoverRequested(address indexed pendingOwner);
            /// @dev The ownership handover to `pendingOwner` has been canceled.
            event OwnershipHandoverCanceled(address indexed pendingOwner);
            /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
            uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
                0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;
            /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
            uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
                0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;
            /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
            uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
                0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                          STORAGE                           */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The owner slot is given by:
            /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
            /// It is intentionally chosen to be a high value
            /// to avoid collision with lower slots.
            /// The choice of manual storage layout is to enable compatibility
            /// with both regular and upgradeable contracts.
            bytes32 internal constant _OWNER_SLOT =
                0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;
            /// The ownership handover slot of `newOwner` is given by:
            /// ```
            ///     mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
            ///     let handoverSlot := keccak256(0x00, 0x20)
            /// ```
            /// It stores the expiry timestamp of the two-step ownership handover.
            uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                     INTERNAL FUNCTIONS                     */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
            function _guardInitializeOwner() internal pure virtual returns (bool guard) {}
            /// @dev Initializes the owner directly without authorization guard.
            /// This function must be called upon initialization,
            /// regardless of whether the contract is upgradeable or not.
            /// This is to enable generalization to both regular and upgradeable contracts,
            /// and to save gas in case the initial owner is not the caller.
            /// For performance reasons, this function will not check if there
            /// is an existing owner.
            function _initializeOwner(address newOwner) internal virtual {
                if (_guardInitializeOwner()) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let ownerSlot := _OWNER_SLOT
                        if sload(ownerSlot) {
                            mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
                            revert(0x1c, 0x04)
                        }
                        // Clean the upper 96 bits.
                        newOwner := shr(96, shl(96, newOwner))
                        // Store the new value.
                        sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                        // Emit the {OwnershipTransferred} event.
                        log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
                    }
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        // Clean the upper 96 bits.
                        newOwner := shr(96, shl(96, newOwner))
                        // Store the new value.
                        sstore(_OWNER_SLOT, newOwner)
                        // Emit the {OwnershipTransferred} event.
                        log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
                    }
                }
            }
            /// @dev Sets the owner directly without authorization guard.
            function _setOwner(address newOwner) internal virtual {
                if (_guardInitializeOwner()) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let ownerSlot := _OWNER_SLOT
                        // Clean the upper 96 bits.
                        newOwner := shr(96, shl(96, newOwner))
                        // Emit the {OwnershipTransferred} event.
                        log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                        // Store the new value.
                        sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                    }
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let ownerSlot := _OWNER_SLOT
                        // Clean the upper 96 bits.
                        newOwner := shr(96, shl(96, newOwner))
                        // Emit the {OwnershipTransferred} event.
                        log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                        // Store the new value.
                        sstore(ownerSlot, newOwner)
                    }
                }
            }
            /// @dev Throws if the sender is not the owner.
            function _checkOwner() internal view virtual {
                /// @solidity memory-safe-assembly
                assembly {
                    // If the caller is not the stored owner, revert.
                    if iszero(eq(caller(), sload(_OWNER_SLOT))) {
                        mstore(0x00, 0x82b42900) // `Unauthorized()`.
                        revert(0x1c, 0x04)
                    }
                }
            }
            /// @dev Returns how long a two-step ownership handover is valid for in seconds.
            /// Override to return a different value if needed.
            /// Made internal to conserve bytecode. Wrap it in a public function if needed.
            function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
                return 48 * 3600;
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                  PUBLIC UPDATE FUNCTIONS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Allows the owner to transfer the ownership to `newOwner`.
            function transferOwnership(address newOwner) public payable virtual onlyOwner {
                /// @solidity memory-safe-assembly
                assembly {
                    if iszero(shl(96, newOwner)) {
                        mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
                        revert(0x1c, 0x04)
                    }
                }
                _setOwner(newOwner);
            }
            /// @dev Allows the owner to renounce their ownership.
            function renounceOwnership() public payable virtual onlyOwner {
                _setOwner(address(0));
            }
            /// @dev Request a two-step ownership handover to the caller.
            /// The request will automatically expire in 48 hours (172800 seconds) by default.
            function requestOwnershipHandover() public payable virtual {
                unchecked {
                    uint256 expires = block.timestamp + _ownershipHandoverValidFor();
                    /// @solidity memory-safe-assembly
                    assembly {
                        // Compute and set the handover slot to `expires`.
                        mstore(0x0c, _HANDOVER_SLOT_SEED)
                        mstore(0x00, caller())
                        sstore(keccak256(0x0c, 0x20), expires)
                        // Emit the {OwnershipHandoverRequested} event.
                        log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
                    }
                }
            }
            /// @dev Cancels the two-step ownership handover to the caller, if any.
            function cancelOwnershipHandover() public payable virtual {
                /// @solidity memory-safe-assembly
                assembly {
                    // Compute and set the handover slot to 0.
                    mstore(0x0c, _HANDOVER_SLOT_SEED)
                    mstore(0x00, caller())
                    sstore(keccak256(0x0c, 0x20), 0)
                    // Emit the {OwnershipHandoverCanceled} event.
                    log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
                }
            }
            /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
            /// Reverts if there is no existing ownership handover requested by `pendingOwner`.
            function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
                /// @solidity memory-safe-assembly
                assembly {
                    // Compute and set the handover slot to 0.
                    mstore(0x0c, _HANDOVER_SLOT_SEED)
                    mstore(0x00, pendingOwner)
                    let handoverSlot := keccak256(0x0c, 0x20)
                    // If the handover does not exist, or has expired.
                    if gt(timestamp(), sload(handoverSlot)) {
                        mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
                        revert(0x1c, 0x04)
                    }
                    // Set the handover slot to 0.
                    sstore(handoverSlot, 0)
                }
                _setOwner(pendingOwner);
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                   PUBLIC READ FUNCTIONS                    */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns the owner of the contract.
            function owner() public view virtual returns (address result) {
                /// @solidity memory-safe-assembly
                assembly {
                    result := sload(_OWNER_SLOT)
                }
            }
            /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
            function ownershipHandoverExpiresAt(address pendingOwner)
                public
                view
                virtual
                returns (uint256 result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    // Compute the handover slot.
                    mstore(0x0c, _HANDOVER_SLOT_SEED)
                    mstore(0x00, pendingOwner)
                    // Load the handover slot.
                    result := sload(keccak256(0x0c, 0x20))
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                         MODIFIERS                          */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Marks a function as only callable by the owner.
            modifier onlyOwner() virtual {
                _checkOwner();
                _;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice Arithmetic library with operations for fixed-point numbers.
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
        /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
        library FixedPointMathLib {
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                       CUSTOM ERRORS                        */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The operation failed, as the output exceeds the maximum value of uint256.
            error ExpOverflow();
            /// @dev The operation failed, as the output exceeds the maximum value of uint256.
            error FactorialOverflow();
            /// @dev The operation failed, due to an overflow.
            error RPowOverflow();
            /// @dev The mantissa is too big to fit.
            error MantissaOverflow();
            /// @dev The operation failed, due to an multiplication overflow.
            error MulWadFailed();
            /// @dev The operation failed, due to an multiplication overflow.
            error SMulWadFailed();
            /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
            error DivWadFailed();
            /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
            error SDivWadFailed();
            /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
            error MulDivFailed();
            /// @dev The division failed, as the denominator is zero.
            error DivFailed();
            /// @dev The full precision multiply-divide operation failed, either due
            /// to the result being larger than 256 bits, or a division by a zero.
            error FullMulDivFailed();
            /// @dev The output is undefined, as the input is less-than-or-equal to zero.
            error LnWadUndefined();
            /// @dev The input outside the acceptable domain.
            error OutOfDomain();
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                         CONSTANTS                          */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The scalar of ETH and most ERC20s.
            uint256 internal constant WAD = 1e18;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*              SIMPLIFIED FIXED POINT OPERATIONS             */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Equivalent to `(x * y) / WAD` rounded down.
            function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
                    if gt(x, div(not(0), y)) {
                        if y {
                            mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                            revert(0x1c, 0x04)
                        }
                    }
                    z := div(mul(x, y), WAD)
                }
            }
            /// @dev Equivalent to `(x * y) / WAD` rounded down.
            function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := mul(x, y)
                    // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
                    if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                        mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                        revert(0x1c, 0x04)
                    }
                    z := sdiv(z, WAD)
                }
            }
            /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
            function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := div(mul(x, y), WAD)
                }
            }
            /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
            function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := sdiv(mul(x, y), WAD)
                }
            }
            /// @dev Equivalent to `(x * y) / WAD` rounded up.
            function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := mul(x, y)
                    // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
                    if iszero(eq(div(z, y), x)) {
                        if y {
                            mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                            revert(0x1c, 0x04)
                        }
                    }
                    z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
                }
            }
            /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
            function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
                }
            }
            /// @dev Equivalent to `(x * WAD) / y` rounded down.
            function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
                    if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                        mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                        revert(0x1c, 0x04)
                    }
                    z := div(mul(x, WAD), y)
                }
            }
            /// @dev Equivalent to `(x * WAD) / y` rounded down.
            function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := mul(x, WAD)
                    // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
                    if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                        mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                        revert(0x1c, 0x04)
                    }
                    z := sdiv(z, y)
                }
            }
            /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
            function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := div(mul(x, WAD), y)
                }
            }
            /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
            function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := sdiv(mul(x, WAD), y)
                }
            }
            /// @dev Equivalent to `(x * WAD) / y` rounded up.
            function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
                    if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                        mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                        revert(0x1c, 0x04)
                    }
                    z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
                }
            }
            /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
            function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
                }
            }
            /// @dev Equivalent to `x` to the power of `y`.
            /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
            /// Note: This function is an approximation.
            function powWad(int256 x, int256 y) internal pure returns (int256) {
                // Using `ln(x)` means `x` must be greater than 0.
                return expWad((lnWad(x) * y) / int256(WAD));
            }
            /// @dev Returns `exp(x)`, denominated in `WAD`.
            /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
            /// Note: This function is an approximation. Monotonically increasing.
            function expWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    // When the result is less than 0.5 we return zero.
                    // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
                    if (x <= -41446531673892822313) return r;
                    /// @solidity memory-safe-assembly
                    assembly {
                        // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                        // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                        if iszero(slt(x, 135305999368893231589)) {
                            mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                            revert(0x1c, 0x04)
                        }
                    }
                    // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
                    // for more intermediate precision and a binary basis. This base conversion
                    // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                    x = (x << 78) / 5 ** 18;
                    // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                    // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                    // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                    int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
                    x = x - k * 54916777467707473351141471128;
                    // `k` is in the range `[-61, 195]`.
                    // Evaluate using a (6, 7)-term rational approximation.
                    // `p` is made monic, we'll multiply by a scale factor later.
                    int256 y = x + 1346386616545796478920950773328;
                    y = ((y * x) >> 96) + 57155421227552351082224309758442;
                    int256 p = y + x - 94201549194550492254356042504812;
                    p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                    p = p * x + (4385272521454847904659076985693276 << 96);
                    // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
                    int256 q = x - 2855989394907223263936484059900;
                    q = ((q * x) >> 96) + 50020603652535783019961831881945;
                    q = ((q * x) >> 96) - 533845033583426703283633433725380;
                    q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                    q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                    q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                    /// @solidity memory-safe-assembly
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial won't have zeros in the domain as all its roots are complex.
                        // No scaling is necessary because p is already `2**96` too large.
                        r := sdiv(p, q)
                    }
                    // r should be in the range `(0.09, 0.25) * 2**96`.
                    // We now need to multiply r by:
                    // - The scale factor `s ≈ 6.031367120`.
                    // - The `2**k` factor from the range reduction.
                    // - The `1e18 / 2**96` factor for base conversion.
                    // We do this all at once, with an intermediate result in `2**213`
                    // basis, so the final right shift is always by a positive amount.
                    r = int256(
                        (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
                    );
                }
            }
            /// @dev Returns `ln(x)`, denominated in `WAD`.
            /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
            /// Note: This function is an approximation. Monotonically increasing.
            function lnWad(int256 x) internal pure returns (int256 r) {
                /// @solidity memory-safe-assembly
                assembly {
                    // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
                    // We do this by multiplying by `2**96 / 10**18`. But since
                    // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
                    // and add `ln(2**96 / 10**18)` at the end.
                    // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
                    r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                    r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(r, shl(3, lt(0xff, shr(r, x))))
                    // We place the check here for more optimal stack operations.
                    if iszero(sgt(x, 0)) {
                        mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                        revert(0x1c, 0x04)
                    }
                    // forgefmt: disable-next-item
                    r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                        0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))
                    // Reduce range of x to (1, 2) * 2**96
                    // ln(2^k * x) = k * ln(2) + ln(x)
                    x := shr(159, shl(r, x))
                    // Evaluate using a (8, 8)-term rational approximation.
                    // `p` is made monic, we will multiply by a scale factor later.
                    // forgefmt: disable-next-item
                    let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                        sar(96, mul(add(43456485725739037958740375743393,
                        sar(96, mul(add(24828157081833163892658089445524,
                        sar(96, mul(add(3273285459638523848632254066296,
                            x), x))), x))), x)), 11111509109440967052023855526967)
                    p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
                    p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
                    p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
                    // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
                    // `q` is monic by convention.
                    let q := add(5573035233440673466300451813936, x)
                    q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
                    q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
                    q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
                    q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
                    q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
                    q := add(909429971244387300277376558375, sar(96, mul(x, q)))
                    // `p / q` is in the range `(0, 0.125) * 2**96`.
                    // Finalization, we need to:
                    // - Multiply by the scale factor `s = 5.549…`.
                    // - Add `ln(2**96 / 10**18)`.
                    // - Add `k * ln(2)`.
                    // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.
                    // The q polynomial is known not to have zeros in the domain.
                    // No scaling required because p is already `2**96` too large.
                    p := sdiv(p, q)
                    // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
                    p := mul(1677202110996718588342820967067443963516166, p)
                    // Add `ln(2) * k * 5**18 * 2**192`.
                    // forgefmt: disable-next-item
                    p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
                    // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
                    p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
                    // Base conversion: mul `2**18 / 2**192`.
                    r := sar(174, p)
                }
            }
            /// @dev Returns `W_0(x)`, denominated in `WAD`.
            /// See: https://en.wikipedia.org/wiki/Lambert_W_function
            /// a.k.a. Product log function. This is an approximation of the principal branch.
            /// Note: This function is an approximation. Monotonically increasing.
            function lambertW0Wad(int256 x) internal pure returns (int256 w) {
                // forgefmt: disable-next-item
                unchecked {
                    if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
                    (int256 wad, int256 p) = (int256(WAD), x);
                    uint256 c; // Whether we need to avoid catastrophic cancellation.
                    uint256 i = 4; // Number of iterations.
                    if (w <= 0x1ffffffffffff) {
                        if (-0x4000000000000 <= w) {
                            i = 1; // Inputs near zero only take one step to converge.
                        } else if (w <= -0x3ffffffffffffff) {
                            i = 32; // Inputs near `-1/e` take very long to converge.
                        }
                    } else if (uint256(w >> 63) == uint256(0)) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            // Inline log2 for more performance, since the range is small.
                            let v := shr(49, w)
                            let l := shl(3, lt(0xff, v))
                            l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                                0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                            w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                            c := gt(l, 60)
                            i := add(2, add(gt(l, 53), c))
                        }
                    } else {
                        int256 ll = lnWad(w = lnWad(w));
                        /// @solidity memory-safe-assembly
                        assembly {
                            // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                            w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                            i := add(3, iszero(shr(68, x)))
                            c := iszero(shr(143, x))
                        }
                        if (c == uint256(0)) {
                            do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                                int256 e = expWad(w);
                                /// @solidity memory-safe-assembly
                                assembly {
                                    let t := mul(w, div(e, wad))
                                    w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                                }
                                if (p <= w) break;
                                p = w;
                            } while (--i != uint256(0));
                            /// @solidity memory-safe-assembly
                            assembly {
                                w := sub(w, sgt(w, 2))
                            }
                            return w;
                        }
                    }
                    do { // Otherwise, use Halley's for faster convergence.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := add(w, wad)
                            let s := sub(mul(w, e), mul(x, wad))
                            w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != c);
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
                    // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
                    if (c == uint256(0)) return w;
                    int256 t = w | 1;
                    /// @solidity memory-safe-assembly
                    assembly {
                        x := sdiv(mul(x, wad), t)
                    }
                    x = (t * (wad + lnWad(x)));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sdiv(x, add(wad, t))
                    }
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                  GENERAL NUMBER UTILITIES                  */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Calculates `floor(x * y / d)` with full precision.
            /// Throws if result overflows a uint256 or when `d` is zero.
            /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
            function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    // 512-bit multiply `[p1 p0] = x * y`.
                    // Compute the product mod `2**256` and mod `2**256 - 1`
                    // then use the Chinese Remainder Theorem to reconstruct
                    // the 512 bit result. The result is stored in two 256
                    // variables such that `product = p1 * 2**256 + p0`.
                    // Temporarily use `result` as `p0` to save gas.
                    result := mul(x, y) // Lower 256 bits of `x * y`.
                    for {} 1 {} {
                        // If overflows.
                        if iszero(mul(or(iszero(x), eq(div(result, x), y)), d)) {
                            let mm := mulmod(x, y, not(0))
                            let p1 := sub(mm, add(result, lt(mm, result))) // Upper 256 bits of `x * y`.
                            /*------------------- 512 by 256 division --------------------*/
                            // Make division exact by subtracting the remainder from `[p1 p0]`.
                            let r := mulmod(x, y, d) // Compute remainder using mulmod.
                            let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                            // Make sure the result is less than `2**256`. Also prevents `d == 0`.
                            // Placing the check here seems to give more optimal stack operations.
                            if iszero(gt(d, p1)) {
                                mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                                revert(0x1c, 0x04)
                            }
                            d := div(d, t) // Divide `d` by `t`, which is a power of two.
                            // Invert `d mod 2**256`
                            // Now that `d` is an odd number, it has an inverse
                            // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                            // Compute the inverse by starting with a seed that is correct
                            // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                            let inv := xor(2, mul(3, d))
                            // Now use Newton-Raphson iteration to improve the precision.
                            // Thanks to Hensel's lifting lemma, this also works in modular
                            // arithmetic, doubling the correct bits in each step.
                            inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                            inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                            inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                            inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                            inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                            result :=
                                mul(
                                    // Divide [p1 p0] by the factors of two.
                                    // Shift in bits from `p1` into `p0`. For this we need
                                    // to flip `t` such that it is `2**256 / t`.
                                    or(
                                        mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)),
                                        div(sub(result, r), t)
                                    ),
                                    mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                                )
                            break
                        }
                        result := div(result, d)
                        break
                    }
                }
            }
            /// @dev Calculates `floor(x * y / d)` with full precision.
            /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
            /// Performs the full 512 bit calculation regardless.
            function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
                internal
                pure
                returns (uint256 result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    result := mul(x, y)
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(result, lt(mm, result)))
                    let t := and(d, sub(0, d))
                    let r := mulmod(x, y, d)
                    d := div(d, t)
                    let inv := xor(2, mul(3, d))
                    inv := mul(inv, sub(2, mul(d, inv)))
                    inv := mul(inv, sub(2, mul(d, inv)))
                    inv := mul(inv, sub(2, mul(d, inv)))
                    inv := mul(inv, sub(2, mul(d, inv)))
                    inv := mul(inv, sub(2, mul(d, inv)))
                    result :=
                        mul(
                            or(mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t)),
                            mul(sub(2, mul(d, inv)), inv)
                        )
                }
            }
            /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
            /// Throws if result overflows a uint256 or when `d` is zero.
            /// Credit to Uniswap-v3-core under MIT license:
            /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
            function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
                result = fullMulDiv(x, y, d);
                /// @solidity memory-safe-assembly
                assembly {
                    if mulmod(x, y, d) {
                        result := add(result, 1)
                        if iszero(result) {
                            mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                            revert(0x1c, 0x04)
                        }
                    }
                }
            }
            /// @dev Returns `floor(x * y / d)`.
            /// Reverts if `x * y` overflows, or `d` is zero.
            function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := mul(x, y)
                    // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
                    if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                        mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    z := div(z, d)
                }
            }
            /// @dev Returns `ceil(x * y / d)`.
            /// Reverts if `x * y` overflows, or `d` is zero.
            function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := mul(x, y)
                    // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
                    if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                        mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    z := add(iszero(iszero(mod(z, d))), div(z, d))
                }
            }
            /// @dev Returns `ceil(x / d)`.
            /// Reverts if `d` is zero.
            function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    if iszero(d) {
                        mstore(0x00, 0x65244e4e) // `DivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    z := add(iszero(iszero(mod(x, d))), div(x, d))
                }
            }
            /// @dev Returns `max(0, x - y)`.
            function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := mul(gt(x, y), sub(x, y))
                }
            }
            /// @dev Returns `condition ? x : y`, without branching.
            function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    result := xor(x, mul(xor(x, y), iszero(condition)))
                }
            }
            /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
            /// Reverts if the computation overflows.
            function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
                    if x {
                        z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                        let half := shr(1, b) // Divide `b` by 2.
                        // Divide `y` by 2 every iteration.
                        for { y := shr(1, y) } y { y := shr(1, y) } {
                            let xx := mul(x, x) // Store x squared.
                            let xxRound := add(xx, half) // Round to the nearest number.
                            // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                            if or(lt(xxRound, xx), shr(128, x)) {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                            x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                            // If `y` is odd:
                            if and(y, 1) {
                                let zx := mul(z, x) // Compute `z * x`.
                                let zxRound := add(zx, half) // Round to the nearest number.
                                // If `z * x` overflowed or `zx + half` overflowed:
                                if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                                    // Revert if `x` is non-zero.
                                    if x {
                                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                        revert(0x1c, 0x04)
                                    }
                                }
                                z := div(zxRound, b) // Return properly scaled `zxRound`.
                            }
                        }
                    }
                }
            }
            /// @dev Returns the square root of `x`, rounded down.
            function sqrt(uint256 x) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
                    z := 181 // The "correct" value is 1, but this saves a multiplication later.
                    // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                    // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                    // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
                    // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
                    let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
                    r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
                    r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffffff, shr(r, x))))
                    z := shl(shr(1, r), z)
                    // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
                    // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
                    // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
                    // That's not possible if `x < 256` but we can just verify those cases exhaustively.
                    // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
                    // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
                    // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.
                    // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
                    // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
                    // with largest error when `s = 1` and when `s = 256` or `1/256`.
                    // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
                    // Then we can estimate `sqrt(y)` using
                    // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.
                    // There is no overflow risk here since `y < 2**136` after the first branch above.
                    z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.
                    // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    // If `x+1` is a perfect square, the Babylonian method cycles between
                    // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
                    // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                    z := sub(z, lt(div(x, z), z))
                }
            }
            /// @dev Returns the cube root of `x`, rounded down.
            /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
            /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
            /// Formally verified by xuwinnie:
            /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
            function cbrt(uint256 x) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                    r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(r, shl(3, lt(0xff, shr(r, x))))
                    // Makeshift lookup table to nudge the approximate log2 result.
                    z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
                    // Newton-Raphson's.
                    z := div(add(add(div(x, mul(z, z)), z), z), 3)
                    z := div(add(add(div(x, mul(z, z)), z), z), 3)
                    z := div(add(add(div(x, mul(z, z)), z), z), 3)
                    z := div(add(add(div(x, mul(z, z)), z), z), 3)
                    z := div(add(add(div(x, mul(z, z)), z), z), 3)
                    z := div(add(add(div(x, mul(z, z)), z), z), 3)
                    z := div(add(add(div(x, mul(z, z)), z), z), 3)
                    // Round down.
                    z := sub(z, lt(div(x, mul(z, z)), z))
                }
            }
            /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
            function sqrtWad(uint256 x) internal pure returns (uint256 z) {
                unchecked {
                    if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
                    z = (1 + sqrt(x)) * 10 ** 9;
                    z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
                }
                /// @solidity memory-safe-assembly
                assembly {
                    z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
                }
            }
            /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
            /// Formally verified by xuwinnie:
            /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
            function cbrtWad(uint256 x) internal pure returns (uint256 z) {
                unchecked {
                    if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
                    z = (1 + cbrt(x)) * 10 ** 12;
                    z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
                }
                /// @solidity memory-safe-assembly
                assembly {
                    let p := x
                    for {} 1 {} {
                        if iszero(shr(229, p)) {
                            if iszero(shr(199, p)) {
                                p := mul(p, 100000000000000000) // 10 ** 17.
                                break
                            }
                            p := mul(p, 100000000) // 10 ** 8.
                            break
                        }
                        if iszero(shr(249, p)) { p := mul(p, 100) }
                        break
                    }
                    let t := mulmod(mul(z, z), z, p)
                    z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
                }
            }
            /// @dev Returns the factorial of `x`.
            function factorial(uint256 x) internal pure returns (uint256 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    result := 1
                    if iszero(lt(x, 58)) {
                        mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    for {} x { x := sub(x, 1) } { result := mul(result, x) }
                }
            }
            /// @dev Returns the log2 of `x`.
            /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
            /// Returns 0 if `x` is zero.
            function log2(uint256 x) internal pure returns (uint256 r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                    r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(r, shl(3, lt(0xff, shr(r, x))))
                    // forgefmt: disable-next-item
                    r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000))
                }
            }
            /// @dev Returns the log2 of `x`, rounded up.
            /// Returns 0 if `x` is zero.
            function log2Up(uint256 x) internal pure returns (uint256 r) {
                r = log2(x);
                /// @solidity memory-safe-assembly
                assembly {
                    r := add(r, lt(shl(r, 1), x))
                }
            }
            /// @dev Returns the log10 of `x`.
            /// Returns 0 if `x` is zero.
            function log10(uint256 x) internal pure returns (uint256 r) {
                /// @solidity memory-safe-assembly
                assembly {
                    if iszero(lt(x, 100000000000000000000000000000000000000)) {
                        x := div(x, 100000000000000000000000000000000000000)
                        r := 38
                    }
                    if iszero(lt(x, 100000000000000000000)) {
                        x := div(x, 100000000000000000000)
                        r := add(r, 20)
                    }
                    if iszero(lt(x, 10000000000)) {
                        x := div(x, 10000000000)
                        r := add(r, 10)
                    }
                    if iszero(lt(x, 100000)) {
                        x := div(x, 100000)
                        r := add(r, 5)
                    }
                    r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
                }
            }
            /// @dev Returns the log10 of `x`, rounded up.
            /// Returns 0 if `x` is zero.
            function log10Up(uint256 x) internal pure returns (uint256 r) {
                r = log10(x);
                /// @solidity memory-safe-assembly
                assembly {
                    r := add(r, lt(exp(10, r), x))
                }
            }
            /// @dev Returns the log256 of `x`.
            /// Returns 0 if `x` is zero.
            function log256(uint256 x) internal pure returns (uint256 r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                    r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(shr(3, r), lt(0xff, shr(r, x)))
                }
            }
            /// @dev Returns the log256 of `x`, rounded up.
            /// Returns 0 if `x` is zero.
            function log256Up(uint256 x) internal pure returns (uint256 r) {
                r = log256(x);
                /// @solidity memory-safe-assembly
                assembly {
                    r := add(r, lt(shl(shl(3, r), 1), x))
                }
            }
            /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
            /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
            function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
                /// @solidity memory-safe-assembly
                assembly {
                    mantissa := x
                    if mantissa {
                        if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                            mantissa := div(mantissa, 1000000000000000000000000000000000)
                            exponent := 33
                        }
                        if iszero(mod(mantissa, 10000000000000000000)) {
                            mantissa := div(mantissa, 10000000000000000000)
                            exponent := add(exponent, 19)
                        }
                        if iszero(mod(mantissa, 1000000000000)) {
                            mantissa := div(mantissa, 1000000000000)
                            exponent := add(exponent, 12)
                        }
                        if iszero(mod(mantissa, 1000000)) {
                            mantissa := div(mantissa, 1000000)
                            exponent := add(exponent, 6)
                        }
                        if iszero(mod(mantissa, 10000)) {
                            mantissa := div(mantissa, 10000)
                            exponent := add(exponent, 4)
                        }
                        if iszero(mod(mantissa, 100)) {
                            mantissa := div(mantissa, 100)
                            exponent := add(exponent, 2)
                        }
                        if iszero(mod(mantissa, 10)) {
                            mantissa := div(mantissa, 10)
                            exponent := add(exponent, 1)
                        }
                    }
                }
            }
            /// @dev Convenience function for packing `x` into a smaller number using `sci`.
            /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
            /// The `exponent` will be in bits [0..6] (the lower 7 bits).
            /// Use `SafeCastLib` to safely ensure that the `packed` number is small
            /// enough to fit in the desired unsigned integer type:
            /// ```
            ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
            /// ```
            function packSci(uint256 x) internal pure returns (uint256 packed) {
                (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
                /// @solidity memory-safe-assembly
                assembly {
                    if shr(249, x) {
                        mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    packed := or(shl(7, x), packed)
                }
            }
            /// @dev Convenience function for unpacking a packed number from `packSci`.
            function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
                unchecked {
                    unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
                }
            }
            /// @dev Returns the average of `x` and `y`. Rounds towards zero.
            function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
                unchecked {
                    z = (x & y) + ((x ^ y) >> 1);
                }
            }
            /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
            function avg(int256 x, int256 y) internal pure returns (int256 z) {
                unchecked {
                    z = (x >> 1) + (y >> 1) + (x & y & 1);
                }
            }
            /// @dev Returns the absolute value of `x`.
            function abs(int256 x) internal pure returns (uint256 z) {
                unchecked {
                    z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
                }
            }
            /// @dev Returns the absolute distance between `x` and `y`.
            function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
                }
            }
            /// @dev Returns the absolute distance between `x` and `y`.
            function dist(int256 x, int256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
                }
            }
            /// @dev Returns the minimum of `x` and `y`.
            function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := xor(x, mul(xor(x, y), lt(y, x)))
                }
            }
            /// @dev Returns the minimum of `x` and `y`.
            function min(int256 x, int256 y) internal pure returns (int256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := xor(x, mul(xor(x, y), slt(y, x)))
                }
            }
            /// @dev Returns the maximum of `x` and `y`.
            function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := xor(x, mul(xor(x, y), gt(y, x)))
                }
            }
            /// @dev Returns the maximum of `x` and `y`.
            function max(int256 x, int256 y) internal pure returns (int256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := xor(x, mul(xor(x, y), sgt(y, x)))
                }
            }
            /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
            function clamp(uint256 x, uint256 minValue, uint256 maxValue)
                internal
                pure
                returns (uint256 z)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
                    z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
                }
            }
            /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
            function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
                    z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
                }
            }
            /// @dev Returns greatest common divisor of `x` and `y`.
            function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    for { z := x } y {} {
                        let t := y
                        y := mod(z, y)
                        z := t
                    }
                }
            }
            /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
            /// with `t` clamped between `begin` and `end` (inclusive).
            /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
            /// If `begins == end`, returns `t <= begin ? a : b`.
            function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
                internal
                pure
                returns (uint256)
            {
                if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
                if (t <= begin) return a;
                if (t >= end) return b;
                unchecked {
                    if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
                    return a - fullMulDiv(a - b, t - begin, end - begin);
                }
            }
            /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
            /// with `t` clamped between `begin` and `end` (inclusive).
            /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
            /// If `begins == end`, returns `t <= begin ? a : b`.
            function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
                internal
                pure
                returns (int256)
            {
                if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
                if (t <= begin) return a;
                if (t >= end) return b;
                // forgefmt: disable-next-item
                unchecked {
                    if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                        uint256(t - begin), uint256(end - begin)));
                    return int256(uint256(a) - fullMulDiv(uint256(a - b),
                        uint256(t - begin), uint256(end - begin)));
                }
            }
            /// @dev Returns if `x` is an even number. Some people may need this.
            function isEven(uint256 x) internal pure returns (bool) {
                return x & uint256(1) == uint256(0);
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                   RAW NUMBER OPERATIONS                    */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns `x + y`, without checking for overflow.
            function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
                unchecked {
                    z = x + y;
                }
            }
            /// @dev Returns `x + y`, without checking for overflow.
            function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
                unchecked {
                    z = x + y;
                }
            }
            /// @dev Returns `x - y`, without checking for underflow.
            function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                unchecked {
                    z = x - y;
                }
            }
            /// @dev Returns `x - y`, without checking for underflow.
            function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
                unchecked {
                    z = x - y;
                }
            }
            /// @dev Returns `x * y`, without checking for overflow.
            function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                unchecked {
                    z = x * y;
                }
            }
            /// @dev Returns `x * y`, without checking for overflow.
            function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
                unchecked {
                    z = x * y;
                }
            }
            /// @dev Returns `x / y`, returning 0 if `y` is zero.
            function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := div(x, y)
                }
            }
            /// @dev Returns `x / y`, returning 0 if `y` is zero.
            function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := sdiv(x, y)
                }
            }
            /// @dev Returns `x % y`, returning 0 if `y` is zero.
            function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := mod(x, y)
                }
            }
            /// @dev Returns `x % y`, returning 0 if `y` is zero.
            function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := smod(x, y)
                }
            }
            /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
            function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := addmod(x, y, d)
                }
            }
            /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
            function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                /// @solidity memory-safe-assembly
                assembly {
                    z := mulmod(x, y, d)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
        /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
        /// @author Permit2 operations from (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol)
        ///
        /// @dev Note:
        /// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
        /// - For ERC20s, this implementation won't check that a token has code,
        ///   responsibility is delegated to the caller.
        library SafeTransferLib {
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                       CUSTOM ERRORS                        */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The ETH transfer has failed.
            error ETHTransferFailed();
            /// @dev The ERC20 `transferFrom` has failed.
            error TransferFromFailed();
            /// @dev The ERC20 `transfer` has failed.
            error TransferFailed();
            /// @dev The ERC20 `approve` has failed.
            error ApproveFailed();
            /// @dev The Permit2 operation has failed.
            error Permit2Failed();
            /// @dev The Permit2 amount must be less than `2**160 - 1`.
            error Permit2AmountOverflow();
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                         CONSTANTS                          */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
            uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;
            /// @dev Suggested gas stipend for contract receiving ETH to perform a few
            /// storage reads and writes, but low enough to prevent griefing.
            uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;
            /// @dev The unique EIP-712 domain domain separator for the DAI token contract.
            bytes32 internal constant DAI_DOMAIN_SEPARATOR =
                0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7;
            /// @dev The address for the WETH9 contract on Ethereum mainnet.
            address internal constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
            /// @dev The canonical Permit2 address.
            /// [Github](https://github.com/Uniswap/permit2)
            /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
            address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                       ETH OPERATIONS                       */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
            //
            // The regular variants:
            // - Forwards all remaining gas to the target.
            // - Reverts if the target reverts.
            // - Reverts if the current contract has insufficient balance.
            //
            // The force variants:
            // - Forwards with an optional gas stipend
            //   (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
            // - If the target reverts, or if the gas stipend is exhausted,
            //   creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
            //   Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
            // - Reverts if the current contract has insufficient balance.
            //
            // The try variants:
            // - Forwards with a mandatory gas stipend.
            // - Instead of reverting, returns whether the transfer succeeded.
            /// @dev Sends `amount` (in wei) ETH to `to`.
            function safeTransferETH(address to, uint256 amount) internal {
                /// @solidity memory-safe-assembly
                assembly {
                    if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
                        mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                        revert(0x1c, 0x04)
                    }
                }
            }
            /// @dev Sends all the ETH in the current contract to `to`.
            function safeTransferAllETH(address to) internal {
                /// @solidity memory-safe-assembly
                assembly {
                    // Transfer all the ETH and check if it succeeded or not.
                    if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                        mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                        revert(0x1c, 0x04)
                    }
                }
            }
            /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
            function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
                /// @solidity memory-safe-assembly
                assembly {
                    if lt(selfbalance(), amount) {
                        mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                        revert(0x1c, 0x04)
                    }
                    if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                        mstore(0x00, to) // Store the address in scratch space.
                        mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                        mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                        if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                    }
                }
            }
            /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
            function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
                /// @solidity memory-safe-assembly
                assembly {
                    if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                        mstore(0x00, to) // Store the address in scratch space.
                        mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                        mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                        if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                    }
                }
            }
            /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
            function forceSafeTransferETH(address to, uint256 amount) internal {
                /// @solidity memory-safe-assembly
                assembly {
                    if lt(selfbalance(), amount) {
                        mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                        revert(0x1c, 0x04)
                    }
                    if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                        mstore(0x00, to) // Store the address in scratch space.
                        mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                        mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                        if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                    }
                }
            }
            /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
            function forceSafeTransferAllETH(address to) internal {
                /// @solidity memory-safe-assembly
                assembly {
                    // forgefmt: disable-next-item
                    if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                        mstore(0x00, to) // Store the address in scratch space.
                        mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                        mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                        if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                    }
                }
            }
            /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
            function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
                internal
                returns (bool success)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
                }
            }
            /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
            function trySafeTransferAllETH(address to, uint256 gasStipend)
                internal
                returns (bool success)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                      ERC20 OPERATIONS                      */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
            /// Reverts upon failure.
            ///
            /// The `from` account must have at least `amount` approved for
            /// the current contract to manage.
            function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40) // Cache the free memory pointer.
                    mstore(0x60, amount) // Store the `amount` argument.
                    mstore(0x40, to) // Store the `to` argument.
                    mstore(0x2c, shl(96, from)) // Store the `from` argument.
                    mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
                    // Perform the transfer, reverting upon failure.
                    if iszero(
                        and( // The arguments of `and` are evaluated from right to left.
                            or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                            call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                        )
                    ) {
                        mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                        revert(0x1c, 0x04)
                    }
                    mstore(0x60, 0) // Restore the zero slot to zero.
                    mstore(0x40, m) // Restore the free memory pointer.
                }
            }
            /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
            ///
            /// The `from` account must have at least `amount` approved for the current contract to manage.
            function trySafeTransferFrom(address token, address from, address to, uint256 amount)
                internal
                returns (bool success)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40) // Cache the free memory pointer.
                    mstore(0x60, amount) // Store the `amount` argument.
                    mstore(0x40, to) // Store the `to` argument.
                    mstore(0x2c, shl(96, from)) // Store the `from` argument.
                    mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
                    success :=
                        and( // The arguments of `and` are evaluated from right to left.
                            or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                            call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                        )
                    mstore(0x60, 0) // Restore the zero slot to zero.
                    mstore(0x40, m) // Restore the free memory pointer.
                }
            }
            /// @dev Sends all of ERC20 `token` from `from` to `to`.
            /// Reverts upon failure.
            ///
            /// The `from` account must have their entire balance approved for the current contract to manage.
            function safeTransferAllFrom(address token, address from, address to)
                internal
                returns (uint256 amount)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40) // Cache the free memory pointer.
                    mstore(0x40, to) // Store the `to` argument.
                    mstore(0x2c, shl(96, from)) // Store the `from` argument.
                    mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
                    // Read the balance, reverting upon failure.
                    if iszero(
                        and( // The arguments of `and` are evaluated from right to left.
                            gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                            staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
                        )
                    ) {
                        mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                        revert(0x1c, 0x04)
                    }
                    mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
                    amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
                    // Perform the transfer, reverting upon failure.
                    if iszero(
                        and( // The arguments of `and` are evaluated from right to left.
                            or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                            call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                        )
                    ) {
                        mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                        revert(0x1c, 0x04)
                    }
                    mstore(0x60, 0) // Restore the zero slot to zero.
                    mstore(0x40, m) // Restore the free memory pointer.
                }
            }
            /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
            /// Reverts upon failure.
            function safeTransfer(address token, address to, uint256 amount) internal {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x14, to) // Store the `to` argument.
                    mstore(0x34, amount) // Store the `amount` argument.
                    mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
                    // Perform the transfer, reverting upon failure.
                    if iszero(
                        and( // The arguments of `and` are evaluated from right to left.
                            or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                            call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                        )
                    ) {
                        mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                        revert(0x1c, 0x04)
                    }
                    mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                }
            }
            /// @dev Sends all of ERC20 `token` from the current contract to `to`.
            /// Reverts upon failure.
            function safeTransferAll(address token, address to) internal returns (uint256 amount) {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
                    mstore(0x20, address()) // Store the address of the current contract.
                    // Read the balance, reverting upon failure.
                    if iszero(
                        and( // The arguments of `and` are evaluated from right to left.
                            gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                            staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
                        )
                    ) {
                        mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                        revert(0x1c, 0x04)
                    }
                    mstore(0x14, to) // Store the `to` argument.
                    amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
                    mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
                    // Perform the transfer, reverting upon failure.
                    if iszero(
                        and( // The arguments of `and` are evaluated from right to left.
                            or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                            call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                        )
                    ) {
                        mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                        revert(0x1c, 0x04)
                    }
                    mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                }
            }
            /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
            /// Reverts upon failure.
            function safeApprove(address token, address to, uint256 amount) internal {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x14, to) // Store the `to` argument.
                    mstore(0x34, amount) // Store the `amount` argument.
                    mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                    // Perform the approval, reverting upon failure.
                    if iszero(
                        and( // The arguments of `and` are evaluated from right to left.
                            or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                            call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                        )
                    ) {
                        mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                        revert(0x1c, 0x04)
                    }
                    mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                }
            }
            /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
            /// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
            /// then retries the approval again (some tokens, e.g. USDT, requires this).
            /// Reverts upon failure.
            function safeApproveWithRetry(address token, address to, uint256 amount) internal {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x14, to) // Store the `to` argument.
                    mstore(0x34, amount) // Store the `amount` argument.
                    mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                    // Perform the approval, retrying upon failure.
                    if iszero(
                        and( // The arguments of `and` are evaluated from right to left.
                            or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                            call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                        )
                    ) {
                        mstore(0x34, 0) // Store 0 for the `amount`.
                        mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                        pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
                        mstore(0x34, amount) // Store back the original `amount`.
                        // Retry the approval, reverting upon failure.
                        if iszero(
                            and(
                                or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                                call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                            )
                        ) {
                            mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                            revert(0x1c, 0x04)
                        }
                    }
                    mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                }
            }
            /// @dev Returns the amount of ERC20 `token` owned by `account`.
            /// Returns zero if the `token` does not exist.
            function balanceOf(address token, address account) internal view returns (uint256 amount) {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x14, account) // Store the `account` argument.
                    mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
                    amount :=
                        mul( // The arguments of `mul` are evaluated from right to left.
                            mload(0x20),
                            and( // The arguments of `and` are evaluated from right to left.
                                gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                            )
                        )
                }
            }
            /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
            /// If the initial attempt fails, try to use Permit2 to transfer the token.
            /// Reverts upon failure.
            ///
            /// The `from` account must have at least `amount` approved for the current contract to manage.
            function safeTransferFrom2(address token, address from, address to, uint256 amount) internal {
                if (!trySafeTransferFrom(token, from, to, amount)) {
                    permit2TransferFrom(token, from, to, amount);
                }
            }
            /// @dev Sends `amount` of ERC20 `token` from `from` to `to` via Permit2.
            /// Reverts upon failure.
            function permit2TransferFrom(address token, address from, address to, uint256 amount)
                internal
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40)
                    mstore(add(m, 0x74), shr(96, shl(96, token)))
                    mstore(add(m, 0x54), amount)
                    mstore(add(m, 0x34), to)
                    mstore(add(m, 0x20), shl(96, from))
                    // `transferFrom(address,address,uint160,address)`.
                    mstore(m, 0x36c78516000000000000000000000000)
                    let p := PERMIT2
                    let exists := eq(chainid(), 1)
                    if iszero(exists) { exists := iszero(iszero(extcodesize(p))) }
                    if iszero(and(call(gas(), p, 0, add(m, 0x10), 0x84, codesize(), 0x00), exists)) {
                        mstore(0x00, 0x7939f4248757f0fd) // `TransferFromFailed()` or `Permit2AmountOverflow()`.
                        revert(add(0x18, shl(2, iszero(iszero(shr(160, amount))))), 0x04)
                    }
                }
            }
            /// @dev Permit a user to spend a given amount of
            /// another user's tokens via native EIP-2612 permit if possible, falling
            /// back to Permit2 if native permit fails or is not implemented on the token.
            function permit2(
                address token,
                address owner,
                address spender,
                uint256 amount,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal {
                bool success;
                /// @solidity memory-safe-assembly
                assembly {
                    for {} shl(96, xor(token, WETH9)) {} {
                        mstore(0x00, 0x3644e515) // `DOMAIN_SEPARATOR()`.
                        if iszero(
                            and( // The arguments of `and` are evaluated from right to left.
                                lt(iszero(mload(0x00)), eq(returndatasize(), 0x20)), // Returns 1 non-zero word.
                                // Gas stipend to limit gas burn for tokens that don't refund gas when
                                // an non-existing function is called. 5K should be enough for a SLOAD.
                                staticcall(5000, token, 0x1c, 0x04, 0x00, 0x20)
                            )
                        ) { break }
                        // After here, we can be sure that token is a contract.
                        let m := mload(0x40)
                        mstore(add(m, 0x34), spender)
                        mstore(add(m, 0x20), shl(96, owner))
                        mstore(add(m, 0x74), deadline)
                        if eq(mload(0x00), DAI_DOMAIN_SEPARATOR) {
                            mstore(0x14, owner)
                            mstore(0x00, 0x7ecebe00000000000000000000000000) // `nonces(address)`.
                            mstore(add(m, 0x94), staticcall(gas(), token, 0x10, 0x24, add(m, 0x54), 0x20))
                            mstore(m, 0x8fcbaf0c000000000000000000000000) // `IDAIPermit.permit`.
                            // `nonces` is already at `add(m, 0x54)`.
                            // `1` is already stored at `add(m, 0x94)`.
                            mstore(add(m, 0xb4), and(0xff, v))
                            mstore(add(m, 0xd4), r)
                            mstore(add(m, 0xf4), s)
                            success := call(gas(), token, 0, add(m, 0x10), 0x104, codesize(), 0x00)
                            break
                        }
                        mstore(m, 0xd505accf000000000000000000000000) // `IERC20Permit.permit`.
                        mstore(add(m, 0x54), amount)
                        mstore(add(m, 0x94), and(0xff, v))
                        mstore(add(m, 0xb4), r)
                        mstore(add(m, 0xd4), s)
                        success := call(gas(), token, 0, add(m, 0x10), 0xe4, codesize(), 0x00)
                        break
                    }
                }
                if (!success) simplePermit2(token, owner, spender, amount, deadline, v, r, s);
            }
            /// @dev Simple permit on the Permit2 contract.
            function simplePermit2(
                address token,
                address owner,
                address spender,
                uint256 amount,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40)
                    mstore(m, 0x927da105) // `allowance(address,address,address)`.
                    {
                        let addressMask := shr(96, not(0))
                        mstore(add(m, 0x20), and(addressMask, owner))
                        mstore(add(m, 0x40), and(addressMask, token))
                        mstore(add(m, 0x60), and(addressMask, spender))
                        mstore(add(m, 0xc0), and(addressMask, spender))
                    }
                    let p := mul(PERMIT2, iszero(shr(160, amount)))
                    if iszero(
                        and( // The arguments of `and` are evaluated from right to left.
                            gt(returndatasize(), 0x5f), // Returns 3 words: `amount`, `expiration`, `nonce`.
                            staticcall(gas(), p, add(m, 0x1c), 0x64, add(m, 0x60), 0x60)
                        )
                    ) {
                        mstore(0x00, 0x6b836e6b8757f0fd) // `Permit2Failed()` or `Permit2AmountOverflow()`.
                        revert(add(0x18, shl(2, iszero(p))), 0x04)
                    }
                    mstore(m, 0x2b67b570) // `Permit2.permit` (PermitSingle variant).
                    // `owner` is already `add(m, 0x20)`.
                    // `token` is already at `add(m, 0x40)`.
                    mstore(add(m, 0x60), amount)
                    mstore(add(m, 0x80), 0xffffffffffff) // `expiration = type(uint48).max`.
                    // `nonce` is already at `add(m, 0xa0)`.
                    // `spender` is already at `add(m, 0xc0)`.
                    mstore(add(m, 0xe0), deadline)
                    mstore(add(m, 0x100), 0x100) // `signature` offset.
                    mstore(add(m, 0x120), 0x41) // `signature` length.
                    mstore(add(m, 0x140), r)
                    mstore(add(m, 0x160), s)
                    mstore(add(m, 0x180), shl(248, v))
                    if iszero(call(gas(), p, 0, add(m, 0x1c), 0x184, codesize(), 0x00)) {
                        mstore(0x00, 0x6b836e6b) // `Permit2Failed()`.
                        revert(0x1c, 0x04)
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.24;
        /// @notice Reentrancy guard mixin.
        /// @author Soledge (https://github.com/vectorized/soledge/blob/main/src/utils/ReentrancyGuard.sol)
        ///
        /// @dev Note: This implementation utilizes the `TSTORE` and `TLOAD` opcodes.
        /// Please ensure that the chain you are deploying on supports them.
        abstract contract ReentrancyGuard {
            /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
            /*                       CUSTOM ERRORS                        */
            /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
            /// @dev Unauthorized reentrant call.
            error Reentrancy();
            /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
            /*                          STORAGE                           */
            /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
            /// @dev Equivalent to: `uint72(bytes9(keccak256("_REENTRANCY_GUARD_SLOT")))`.
            /// 9 bytes is large enough to avoid collisions in practice,
            /// but not too large to result in excessive bytecode bloat.
            uint256 private constant _REENTRANCY_GUARD_SLOT = 0x929eee149b4bd21268;
            /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
            /*                      REENTRANCY GUARD                      */
            /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
            /// @dev Guards a function from reentrancy.
            modifier nonReentrant() virtual {
                /// @solidity memory-safe-assembly
                assembly {
                    if tload(_REENTRANCY_GUARD_SLOT) {
                        mstore(0x00, 0xab143c06) // `Reentrancy()`.
                        revert(0x1c, 0x04)
                    }
                    tstore(_REENTRANCY_GUARD_SLOT, address())
                }
                _;
                /// @solidity memory-safe-assembly
                assembly {
                    tstore(_REENTRANCY_GUARD_SLOT, 0)
                }
            }
            /// @dev Guards a view function from read-only reentrancy.
            modifier nonReadReentrant() virtual {
                /// @solidity memory-safe-assembly
                assembly {
                    if tload(_REENTRANCY_GUARD_SLOT) {
                        mstore(0x00, 0xab143c06) // `Reentrancy()`.
                        revert(0x1c, 0x04)
                    }
                }
                _;
            }
        }
        

        File 5 of 5: WETH9
        // Copyright (C) 2015, 2016, 2017 Dapphub
        
        // This program is free software: you can redistribute it and/or modify
        // it under the terms of the GNU General Public License as published by
        // the Free Software Foundation, either version 3 of the License, or
        // (at your option) any later version.
        
        // This program is distributed in the hope that it will be useful,
        // but WITHOUT ANY WARRANTY; without even the implied warranty of
        // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
        // GNU General Public License for more details.
        
        // You should have received a copy of the GNU General Public License
        // along with this program.  If not, see <http://www.gnu.org/licenses/>.
        
        pragma solidity ^0.4.18;
        
        contract WETH9 {
            string public name     = "Wrapped Ether";
            string public symbol   = "WETH";
            uint8  public decimals = 18;
        
            event  Approval(address indexed src, address indexed guy, uint wad);
            event  Transfer(address indexed src, address indexed dst, uint wad);
            event  Deposit(address indexed dst, uint wad);
            event  Withdrawal(address indexed src, uint wad);
        
            mapping (address => uint)                       public  balanceOf;
            mapping (address => mapping (address => uint))  public  allowance;
        
            function() public payable {
                deposit();
            }
            function deposit() public payable {
                balanceOf[msg.sender] += msg.value;
                Deposit(msg.sender, msg.value);
            }
            function withdraw(uint wad) public {
                require(balanceOf[msg.sender] >= wad);
                balanceOf[msg.sender] -= wad;
                msg.sender.transfer(wad);
                Withdrawal(msg.sender, wad);
            }
        
            function totalSupply() public view returns (uint) {
                return this.balance;
            }
        
            function approve(address guy, uint wad) public returns (bool) {
                allowance[msg.sender][guy] = wad;
                Approval(msg.sender, guy, wad);
                return true;
            }
        
            function transfer(address dst, uint wad) public returns (bool) {
                return transferFrom(msg.sender, dst, wad);
            }
        
            function transferFrom(address src, address dst, uint wad)
                public
                returns (bool)
            {
                require(balanceOf[src] >= wad);
        
                if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                    require(allowance[src][msg.sender] >= wad);
                    allowance[src][msg.sender] -= wad;
                }
        
                balanceOf[src] -= wad;
                balanceOf[dst] += wad;
        
                Transfer(src, dst, wad);
        
                return true;
            }
        }
        
        
        /*
                            GNU GENERAL PUBLIC LICENSE
                               Version 3, 29 June 2007
        
         Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
         Everyone is permitted to copy and distribute verbatim copies
         of this license document, but changing it is not allowed.
        
                                    Preamble
        
          The GNU General Public License is a free, copyleft license for
        software and other kinds of works.
        
          The licenses for most software and other practical works are designed
        to take away your freedom to share and change the works.  By contrast,
        the GNU General Public License is intended to guarantee your freedom to
        share and change all versions of a program--to make sure it remains free
        software for all its users.  We, the Free Software Foundation, use the
        GNU General Public License for most of our software; it applies also to
        any other work released this way by its authors.  You can apply it to
        your programs, too.
        
          When we speak of free software, we are referring to freedom, not
        price.  Our General Public Licenses are designed to make sure that you
        have the freedom to distribute copies of free software (and charge for
        them if you wish), that you receive source code or can get it if you
        want it, that you can change the software or use pieces of it in new
        free programs, and that you know you can do these things.
        
          To protect your rights, we need to prevent others from denying you
        these rights or asking you to surrender the rights.  Therefore, you have
        certain responsibilities if you distribute copies of the software, or if
        you modify it: responsibilities to respect the freedom of others.
        
          For example, if you distribute copies of such a program, whether
        gratis or for a fee, you must pass on to the recipients the same
        freedoms that you received.  You must make sure that they, too, receive
        or can get the source code.  And you must show them these terms so they
        know their rights.
        
          Developers that use the GNU GPL protect your rights with two steps:
        (1) assert copyright on the software, and (2) offer you this License
        giving you legal permission to copy, distribute and/or modify it.
        
          For the developers' and authors' protection, the GPL clearly explains
        that there is no warranty for this free software.  For both users' and
        authors' sake, the GPL requires that modified versions be marked as
        changed, so that their problems will not be attributed erroneously to
        authors of previous versions.
        
          Some devices are designed to deny users access to install or run
        modified versions of the software inside them, although the manufacturer
        can do so.  This is fundamentally incompatible with the aim of
        protecting users' freedom to change the software.  The systematic
        pattern of such abuse occurs in the area of products for individuals to
        use, which is precisely where it is most unacceptable.  Therefore, we
        have designed this version of the GPL to prohibit the practice for those
        products.  If such problems arise substantially in other domains, we
        stand ready to extend this provision to those domains in future versions
        of the GPL, as needed to protect the freedom of users.
        
          Finally, every program is threatened constantly by software patents.
        States should not allow patents to restrict development and use of
        software on general-purpose computers, but in those that do, we wish to
        avoid the special danger that patents applied to a free program could
        make it effectively proprietary.  To prevent this, the GPL assures that
        patents cannot be used to render the program non-free.
        
          The precise terms and conditions for copying, distribution and
        modification follow.
        
                               TERMS AND CONDITIONS
        
          0. Definitions.
        
          "This License" refers to version 3 of the GNU General Public License.
        
          "Copyright" also means copyright-like laws that apply to other kinds of
        works, such as semiconductor masks.
        
          "The Program" refers to any copyrightable work licensed under this
        License.  Each licensee is addressed as "you".  "Licensees" and
        "recipients" may be individuals or organizations.
        
          To "modify" a work means to copy from or adapt all or part of the work
        in a fashion requiring copyright permission, other than the making of an
        exact copy.  The resulting work is called a "modified version" of the
        earlier work or a work "based on" the earlier work.
        
          A "covered work" means either the unmodified Program or a work based
        on the Program.
        
          To "propagate" a work means to do anything with it that, without
        permission, would make you directly or secondarily liable for
        infringement under applicable copyright law, except executing it on a
        computer or modifying a private copy.  Propagation includes copying,
        distribution (with or without modification), making available to the
        public, and in some countries other activities as well.
        
          To "convey" a work means any kind of propagation that enables other
        parties to make or receive copies.  Mere interaction with a user through
        a computer network, with no transfer of a copy, is not conveying.
        
          An interactive user interface displays "Appropriate Legal Notices"
        to the extent that it includes a convenient and prominently visible
        feature that (1) displays an appropriate copyright notice, and (2)
        tells the user that there is no warranty for the work (except to the
        extent that warranties are provided), that licensees may convey the
        work under this License, and how to view a copy of this License.  If
        the interface presents a list of user commands or options, such as a
        menu, a prominent item in the list meets this criterion.
        
          1. Source Code.
        
          The "source code" for a work means the preferred form of the work
        for making modifications to it.  "Object code" means any non-source
        form of a work.
        
          A "Standard Interface" means an interface that either is an official
        standard defined by a recognized standards body, or, in the case of
        interfaces specified for a particular programming language, one that
        is widely used among developers working in that language.
        
          The "System Libraries" of an executable work include anything, other
        than the work as a whole, that (a) is included in the normal form of
        packaging a Major Component, but which is not part of that Major
        Component, and (b) serves only to enable use of the work with that
        Major Component, or to implement a Standard Interface for which an
        implementation is available to the public in source code form.  A
        "Major Component", in this context, means a major essential component
        (kernel, window system, and so on) of the specific operating system
        (if any) on which the executable work runs, or a compiler used to
        produce the work, or an object code interpreter used to run it.
        
          The "Corresponding Source" for a work in object code form means all
        the source code needed to generate, install, and (for an executable
        work) run the object code and to modify the work, including scripts to
        control those activities.  However, it does not include the work's
        System Libraries, or general-purpose tools or generally available free
        programs which are used unmodified in performing those activities but
        which are not part of the work.  For example, Corresponding Source
        includes interface definition files associated with source files for
        the work, and the source code for shared libraries and dynamically
        linked subprograms that the work is specifically designed to require,
        such as by intimate data communication or control flow between those
        subprograms and other parts of the work.
        
          The Corresponding Source need not include anything that users
        can regenerate automatically from other parts of the Corresponding
        Source.
        
          The Corresponding Source for a work in source code form is that
        same work.
        
          2. Basic Permissions.
        
          All rights granted under this License are granted for the term of
        copyright on the Program, and are irrevocable provided the stated
        conditions are met.  This License explicitly affirms your unlimited
        permission to run the unmodified Program.  The output from running a
        covered work is covered by this License only if the output, given its
        content, constitutes a covered work.  This License acknowledges your
        rights of fair use or other equivalent, as provided by copyright law.
        
          You may make, run and propagate covered works that you do not
        convey, without conditions so long as your license otherwise remains
        in force.  You may convey covered works to others for the sole purpose
        of having them make modifications exclusively for you, or provide you
        with facilities for running those works, provided that you comply with
        the terms of this License in conveying all material for which you do
        not control copyright.  Those thus making or running the covered works
        for you must do so exclusively on your behalf, under your direction
        and control, on terms that prohibit them from making any copies of
        your copyrighted material outside their relationship with you.
        
          Conveying under any other circumstances is permitted solely under
        the conditions stated below.  Sublicensing is not allowed; section 10
        makes it unnecessary.
        
          3. Protecting Users' Legal Rights From Anti-Circumvention Law.
        
          No covered work shall be deemed part of an effective technological
        measure under any applicable law fulfilling obligations under article
        11 of the WIPO copyright treaty adopted on 20 December 1996, or
        similar laws prohibiting or restricting circumvention of such
        measures.
        
          When you convey a covered work, you waive any legal power to forbid
        circumvention of technological measures to the extent such circumvention
        is effected by exercising rights under this License with respect to
        the covered work, and you disclaim any intention to limit operation or
        modification of the work as a means of enforcing, against the work's
        users, your or third parties' legal rights to forbid circumvention of
        technological measures.
        
          4. Conveying Verbatim Copies.
        
          You may convey verbatim copies of the Program's source code as you
        receive it, in any medium, provided that you conspicuously and
        appropriately publish on each copy an appropriate copyright notice;
        keep intact all notices stating that this License and any
        non-permissive terms added in accord with section 7 apply to the code;
        keep intact all notices of the absence of any warranty; and give all
        recipients a copy of this License along with the Program.
        
          You may charge any price or no price for each copy that you convey,
        and you may offer support or warranty protection for a fee.
        
          5. Conveying Modified Source Versions.
        
          You may convey a work based on the Program, or the modifications to
        produce it from the Program, in the form of source code under the
        terms of section 4, provided that you also meet all of these conditions:
        
            a) The work must carry prominent notices stating that you modified
            it, and giving a relevant date.
        
            b) The work must carry prominent notices stating that it is
            released under this License and any conditions added under section
            7.  This requirement modifies the requirement in section 4 to
            "keep intact all notices".
        
            c) You must license the entire work, as a whole, under this
            License to anyone who comes into possession of a copy.  This
            License will therefore apply, along with any applicable section 7
            additional terms, to the whole of the work, and all its parts,
            regardless of how they are packaged.  This License gives no
            permission to license the work in any other way, but it does not
            invalidate such permission if you have separately received it.
        
            d) If the work has interactive user interfaces, each must display
            Appropriate Legal Notices; however, if the Program has interactive
            interfaces that do not display Appropriate Legal Notices, your
            work need not make them do so.
        
          A compilation of a covered work with other separate and independent
        works, which are not by their nature extensions of the covered work,
        and which are not combined with it such as to form a larger program,
        in or on a volume of a storage or distribution medium, is called an
        "aggregate" if the compilation and its resulting copyright are not
        used to limit the access or legal rights of the compilation's users
        beyond what the individual works permit.  Inclusion of a covered work
        in an aggregate does not cause this License to apply to the other
        parts of the aggregate.
        
          6. Conveying Non-Source Forms.
        
          You may convey a covered work in object code form under the terms
        of sections 4 and 5, provided that you also convey the
        machine-readable Corresponding Source under the terms of this License,
        in one of these ways:
        
            a) Convey the object code in, or embodied in, a physical product
            (including a physical distribution medium), accompanied by the
            Corresponding Source fixed on a durable physical medium
            customarily used for software interchange.
        
            b) Convey the object code in, or embodied in, a physical product
            (including a physical distribution medium), accompanied by a
            written offer, valid for at least three years and valid for as
            long as you offer spare parts or customer support for that product
            model, to give anyone who possesses the object code either (1) a
            copy of the Corresponding Source for all the software in the
            product that is covered by this License, on a durable physical
            medium customarily used for software interchange, for a price no
            more than your reasonable cost of physically performing this
            conveying of source, or (2) access to copy the
            Corresponding Source from a network server at no charge.
        
            c) Convey individual copies of the object code with a copy of the
            written offer to provide the Corresponding Source.  This
            alternative is allowed only occasionally and noncommercially, and
            only if you received the object code with such an offer, in accord
            with subsection 6b.
        
            d) Convey the object code by offering access from a designated
            place (gratis or for a charge), and offer equivalent access to the
            Corresponding Source in the same way through the same place at no
            further charge.  You need not require recipients to copy the
            Corresponding Source along with the object code.  If the place to
            copy the object code is a network server, the Corresponding Source
            may be on a different server (operated by you or a third party)
            that supports equivalent copying facilities, provided you maintain
            clear directions next to the object code saying where to find the
            Corresponding Source.  Regardless of what server hosts the
            Corresponding Source, you remain obligated to ensure that it is
            available for as long as needed to satisfy these requirements.
        
            e) Convey the object code using peer-to-peer transmission, provided
            you inform other peers where the object code and Corresponding
            Source of the work are being offered to the general public at no
            charge under subsection 6d.
        
          A separable portion of the object code, whose source code is excluded
        from the Corresponding Source as a System Library, need not be
        included in conveying the object code work.
        
          A "User Product" is either (1) a "consumer product", which means any
        tangible personal property which is normally used for personal, family,
        or household purposes, or (2) anything designed or sold for incorporation
        into a dwelling.  In determining whether a product is a consumer product,
        doubtful cases shall be resolved in favor of coverage.  For a particular
        product received by a particular user, "normally used" refers to a
        typical or common use of that class of product, regardless of the status
        of the particular user or of the way in which the particular user
        actually uses, or expects or is expected to use, the product.  A product
        is a consumer product regardless of whether the product has substantial
        commercial, industrial or non-consumer uses, unless such uses represent
        the only significant mode of use of the product.
        
          "Installation Information" for a User Product means any methods,
        procedures, authorization keys, or other information required to install
        and execute modified versions of a covered work in that User Product from
        a modified version of its Corresponding Source.  The information must
        suffice to ensure that the continued functioning of the modified object
        code is in no case prevented or interfered with solely because
        modification has been made.
        
          If you convey an object code work under this section in, or with, or
        specifically for use in, a User Product, and the conveying occurs as
        part of a transaction in which the right of possession and use of the
        User Product is transferred to the recipient in perpetuity or for a
        fixed term (regardless of how the transaction is characterized), the
        Corresponding Source conveyed under this section must be accompanied
        by the Installation Information.  But this requirement does not apply
        if neither you nor any third party retains the ability to install
        modified object code on the User Product (for example, the work has
        been installed in ROM).
        
          The requirement to provide Installation Information does not include a
        requirement to continue to provide support service, warranty, or updates
        for a work that has been modified or installed by the recipient, or for
        the User Product in which it has been modified or installed.  Access to a
        network may be denied when the modification itself materially and
        adversely affects the operation of the network or violates the rules and
        protocols for communication across the network.
        
          Corresponding Source conveyed, and Installation Information provided,
        in accord with this section must be in a format that is publicly
        documented (and with an implementation available to the public in
        source code form), and must require no special password or key for
        unpacking, reading or copying.
        
          7. Additional Terms.
        
          "Additional permissions" are terms that supplement the terms of this
        License by making exceptions from one or more of its conditions.
        Additional permissions that are applicable to the entire Program shall
        be treated as though they were included in this License, to the extent
        that they are valid under applicable law.  If additional permissions
        apply only to part of the Program, that part may be used separately
        under those permissions, but the entire Program remains governed by
        this License without regard to the additional permissions.
        
          When you convey a copy of a covered work, you may at your option
        remove any additional permissions from that copy, or from any part of
        it.  (Additional permissions may be written to require their own
        removal in certain cases when you modify the work.)  You may place
        additional permissions on material, added by you to a covered work,
        for which you have or can give appropriate copyright permission.
        
          Notwithstanding any other provision of this License, for material you
        add to a covered work, you may (if authorized by the copyright holders of
        that material) supplement the terms of this License with terms:
        
            a) Disclaiming warranty or limiting liability differently from the
            terms of sections 15 and 16 of this License; or
        
            b) Requiring preservation of specified reasonable legal notices or
            author attributions in that material or in the Appropriate Legal
            Notices displayed by works containing it; or
        
            c) Prohibiting misrepresentation of the origin of that material, or
            requiring that modified versions of such material be marked in
            reasonable ways as different from the original version; or
        
            d) Limiting the use for publicity purposes of names of licensors or
            authors of the material; or
        
            e) Declining to grant rights under trademark law for use of some
            trade names, trademarks, or service marks; or
        
            f) Requiring indemnification of licensors and authors of that
            material by anyone who conveys the material (or modified versions of
            it) with contractual assumptions of liability to the recipient, for
            any liability that these contractual assumptions directly impose on
            those licensors and authors.
        
          All other non-permissive additional terms are considered "further
        restrictions" within the meaning of section 10.  If the Program as you
        received it, or any part of it, contains a notice stating that it is
        governed by this License along with a term that is a further
        restriction, you may remove that term.  If a license document contains
        a further restriction but permits relicensing or conveying under this
        License, you may add to a covered work material governed by the terms
        of that license document, provided that the further restriction does
        not survive such relicensing or conveying.
        
          If you add terms to a covered work in accord with this section, you
        must place, in the relevant source files, a statement of the
        additional terms that apply to those files, or a notice indicating
        where to find the applicable terms.
        
          Additional terms, permissive or non-permissive, may be stated in the
        form of a separately written license, or stated as exceptions;
        the above requirements apply either way.
        
          8. Termination.
        
          You may not propagate or modify a covered work except as expressly
        provided under this License.  Any attempt otherwise to propagate or
        modify it is void, and will automatically terminate your rights under
        this License (including any patent licenses granted under the third
        paragraph of section 11).
        
          However, if you cease all violation of this License, then your
        license from a particular copyright holder is reinstated (a)
        provisionally, unless and until the copyright holder explicitly and
        finally terminates your license, and (b) permanently, if the copyright
        holder fails to notify you of the violation by some reasonable means
        prior to 60 days after the cessation.
        
          Moreover, your license from a particular copyright holder is
        reinstated permanently if the copyright holder notifies you of the
        violation by some reasonable means, this is the first time you have
        received notice of violation of this License (for any work) from that
        copyright holder, and you cure the violation prior to 30 days after
        your receipt of the notice.
        
          Termination of your rights under this section does not terminate the
        licenses of parties who have received copies or rights from you under
        this License.  If your rights have been terminated and not permanently
        reinstated, you do not qualify to receive new licenses for the same
        material under section 10.
        
          9. Acceptance Not Required for Having Copies.
        
          You are not required to accept this License in order to receive or
        run a copy of the Program.  Ancillary propagation of a covered work
        occurring solely as a consequence of using peer-to-peer transmission
        to receive a copy likewise does not require acceptance.  However,
        nothing other than this License grants you permission to propagate or
        modify any covered work.  These actions infringe copyright if you do
        not accept this License.  Therefore, by modifying or propagating a
        covered work, you indicate your acceptance of this License to do so.
        
          10. Automatic Licensing of Downstream Recipients.
        
          Each time you convey a covered work, the recipient automatically
        receives a license from the original licensors, to run, modify and
        propagate that work, subject to this License.  You are not responsible
        for enforcing compliance by third parties with this License.
        
          An "entity transaction" is a transaction transferring control of an
        organization, or substantially all assets of one, or subdividing an
        organization, or merging organizations.  If propagation of a covered
        work results from an entity transaction, each party to that
        transaction who receives a copy of the work also receives whatever
        licenses to the work the party's predecessor in interest had or could
        give under the previous paragraph, plus a right to possession of the
        Corresponding Source of the work from the predecessor in interest, if
        the predecessor has it or can get it with reasonable efforts.
        
          You may not impose any further restrictions on the exercise of the
        rights granted or affirmed under this License.  For example, you may
        not impose a license fee, royalty, or other charge for exercise of
        rights granted under this License, and you may not initiate litigation
        (including a cross-claim or counterclaim in a lawsuit) alleging that
        any patent claim is infringed by making, using, selling, offering for
        sale, or importing the Program or any portion of it.
        
          11. Patents.
        
          A "contributor" is a copyright holder who authorizes use under this
        License of the Program or a work on which the Program is based.  The
        work thus licensed is called the contributor's "contributor version".
        
          A contributor's "essential patent claims" are all patent claims
        owned or controlled by the contributor, whether already acquired or
        hereafter acquired, that would be infringed by some manner, permitted
        by this License, of making, using, or selling its contributor version,
        but do not include claims that would be infringed only as a
        consequence of further modification of the contributor version.  For
        purposes of this definition, "control" includes the right to grant
        patent sublicenses in a manner consistent with the requirements of
        this License.
        
          Each contributor grants you a non-exclusive, worldwide, royalty-free
        patent license under the contributor's essential patent claims, to
        make, use, sell, offer for sale, import and otherwise run, modify and
        propagate the contents of its contributor version.
        
          In the following three paragraphs, a "patent license" is any express
        agreement or commitment, however denominated, not to enforce a patent
        (such as an express permission to practice a patent or covenant not to
        sue for patent infringement).  To "grant" such a patent license to a
        party means to make such an agreement or commitment not to enforce a
        patent against the party.
        
          If you convey a covered work, knowingly relying on a patent license,
        and the Corresponding Source of the work is not available for anyone
        to copy, free of charge and under the terms of this License, through a
        publicly available network server or other readily accessible means,
        then you must either (1) cause the Corresponding Source to be so
        available, or (2) arrange to deprive yourself of the benefit of the
        patent license for this particular work, or (3) arrange, in a manner
        consistent with the requirements of this License, to extend the patent
        license to downstream recipients.  "Knowingly relying" means you have
        actual knowledge that, but for the patent license, your conveying the
        covered work in a country, or your recipient's use of the covered work
        in a country, would infringe one or more identifiable patents in that
        country that you have reason to believe are valid.
        
          If, pursuant to or in connection with a single transaction or
        arrangement, you convey, or propagate by procuring conveyance of, a
        covered work, and grant a patent license to some of the parties
        receiving the covered work authorizing them to use, propagate, modify
        or convey a specific copy of the covered work, then the patent license
        you grant is automatically extended to all recipients of the covered
        work and works based on it.
        
          A patent license is "discriminatory" if it does not include within
        the scope of its coverage, prohibits the exercise of, or is
        conditioned on the non-exercise of one or more of the rights that are
        specifically granted under this License.  You may not convey a covered
        work if you are a party to an arrangement with a third party that is
        in the business of distributing software, under which you make payment
        to the third party based on the extent of your activity of conveying
        the work, and under which the third party grants, to any of the
        parties who would receive the covered work from you, a discriminatory
        patent license (a) in connection with copies of the covered work
        conveyed by you (or copies made from those copies), or (b) primarily
        for and in connection with specific products or compilations that
        contain the covered work, unless you entered into that arrangement,
        or that patent license was granted, prior to 28 March 2007.
        
          Nothing in this License shall be construed as excluding or limiting
        any implied license or other defenses to infringement that may
        otherwise be available to you under applicable patent law.
        
          12. No Surrender of Others' Freedom.
        
          If conditions are imposed on you (whether by court order, agreement or
        otherwise) that contradict the conditions of this License, they do not
        excuse you from the conditions of this License.  If you cannot convey a
        covered work so as to satisfy simultaneously your obligations under this
        License and any other pertinent obligations, then as a consequence you may
        not convey it at all.  For example, if you agree to terms that obligate you
        to collect a royalty for further conveying from those to whom you convey
        the Program, the only way you could satisfy both those terms and this
        License would be to refrain entirely from conveying the Program.
        
          13. Use with the GNU Affero General Public License.
        
          Notwithstanding any other provision of this License, you have
        permission to link or combine any covered work with a work licensed
        under version 3 of the GNU Affero General Public License into a single
        combined work, and to convey the resulting work.  The terms of this
        License will continue to apply to the part which is the covered work,
        but the special requirements of the GNU Affero General Public License,
        section 13, concerning interaction through a network will apply to the
        combination as such.
        
          14. Revised Versions of this License.
        
          The Free Software Foundation may publish revised and/or new versions of
        the GNU General Public License from time to time.  Such new versions will
        be similar in spirit to the present version, but may differ in detail to
        address new problems or concerns.
        
          Each version is given a distinguishing version number.  If the
        Program specifies that a certain numbered version of the GNU General
        Public License "or any later version" applies to it, you have the
        option of following the terms and conditions either of that numbered
        version or of any later version published by the Free Software
        Foundation.  If the Program does not specify a version number of the
        GNU General Public License, you may choose any version ever published
        by the Free Software Foundation.
        
          If the Program specifies that a proxy can decide which future
        versions of the GNU General Public License can be used, that proxy's
        public statement of acceptance of a version permanently authorizes you
        to choose that version for the Program.
        
          Later license versions may give you additional or different
        permissions.  However, no additional obligations are imposed on any
        author or copyright holder as a result of your choosing to follow a
        later version.
        
          15. Disclaimer of Warranty.
        
          THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
        APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
        HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
        OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
        THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
        PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
        IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
        ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
        
          16. Limitation of Liability.
        
          IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
        WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
        THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
        GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
        USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
        DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
        PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
        EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
        SUCH DAMAGES.
        
          17. Interpretation of Sections 15 and 16.
        
          If the disclaimer of warranty and limitation of liability provided
        above cannot be given local legal effect according to their terms,
        reviewing courts shall apply local law that most closely approximates
        an absolute waiver of all civil liability in connection with the
        Program, unless a warranty or assumption of liability accompanies a
        copy of the Program in return for a fee.
        
                             END OF TERMS AND CONDITIONS
        
                    How to Apply These Terms to Your New Programs
        
          If you develop a new program, and you want it to be of the greatest
        possible use to the public, the best way to achieve this is to make it
        free software which everyone can redistribute and change under these terms.
        
          To do so, attach the following notices to the program.  It is safest
        to attach them to the start of each source file to most effectively
        state the exclusion of warranty; and each file should have at least
        the "copyright" line and a pointer to where the full notice is found.
        
            <one line to give the program's name and a brief idea of what it does.>
            Copyright (C) <year>  <name of author>
        
            This program is free software: you can redistribute it and/or modify
            it under the terms of the GNU General Public License as published by
            the Free Software Foundation, either version 3 of the License, or
            (at your option) any later version.
        
            This program is distributed in the hope that it will be useful,
            but WITHOUT ANY WARRANTY; without even the implied warranty of
            MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
            GNU General Public License for more details.
        
            You should have received a copy of the GNU General Public License
            along with this program.  If not, see <http://www.gnu.org/licenses/>.
        
        Also add information on how to contact you by electronic and paper mail.
        
          If the program does terminal interaction, make it output a short
        notice like this when it starts in an interactive mode:
        
            <program>  Copyright (C) <year>  <name of author>
            This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
            This is free software, and you are welcome to redistribute it
            under certain conditions; type `show c' for details.
        
        The hypothetical commands `show w' and `show c' should show the appropriate
        parts of the General Public License.  Of course, your program's commands
        might be different; for a GUI interface, you would use an "about box".
        
          You should also get your employer (if you work as a programmer) or school,
        if any, to sign a "copyright disclaimer" for the program, if necessary.
        For more information on this, and how to apply and follow the GNU GPL, see
        <http://www.gnu.org/licenses/>.
        
          The GNU General Public License does not permit incorporating your program
        into proprietary programs.  If your program is a subroutine library, you
        may consider it more useful to permit linking proprietary applications with
        the library.  If this is what you want to do, use the GNU Lesser General
        Public License instead of this License.  But first, please read
        <http://www.gnu.org/philosophy/why-not-lgpl.html>.
        
        */