Transaction Hash:
Block:
22398014 at May-02-2025 06:50:23 PM +UTC
Transaction Fee:
0.00011752136736912 ETH
$0.22
Gas Used:
48,471 Gas / 2.42457072 Gwei
Emitted Events:
11 |
IlluviumERC20.Approved( _owner=[Sender] 0x9c4c7d37674266862951dc47ce54e0a627aa0d91, _spender=0x1231DEB6...7486F4EaE, _oldValue=0, _value=3696998236083675415 )
|
12 |
IlluviumERC20.Approval( _owner=[Sender] 0x9c4c7d37674266862951dc47ce54e0a627aa0d91, _spender=0x1231DEB6...7486F4EaE, _value=3696998236083675415 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x767FE9ED...959D7ca0E | |||||
0x9c4C7d37...627AA0D91 |
0.029970783822596923 Eth
Nonce: 65
|
0.029853262455227803 Eth
Nonce: 66
| 0.00011752136736912 | ||
0xd861F721...dE354f2d2
Miner
| (Fee Recipient: 0xd861...2d2) | 77.266671056552538413 Eth | 77.266767998552538413 Eth | 0.000096942 |
Execution Trace
IlluviumERC20.approve( _spender=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, _value=3696998236083675415 ) => ( success=True )
approve[IlluviumERC20 (ln:626)]
Approved[IlluviumERC20 (ln:636)]
Approval[IlluviumERC20 (ln:638)]
// SPDX-License-Identifier: MIT pragma solidity 0.8.1; /** * @title ERC20 token receiver interface * * @dev Interface for any contract that wants to support safe transfers * from ERC20 token smart contracts. * @dev Inspired by ERC721 and ERC223 token standards * * @dev See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md * @dev See https://github.com/ethereum/EIPs/issues/223 * * @author Basil Gorin */ interface ERC20Receiver { /** * @notice Handle the receipt of a ERC20 token(s) * @dev The ERC20 smart contract calls this function on the recipient * after a successful transfer (`safeTransferFrom`). * This function MAY throw to revert and reject the transfer. * Return of other than the magic value MUST result in the transaction being reverted. * @notice The contract address is always the message sender. * A wallet/broker/auction application MUST implement the wallet interface * if it will accept safe transfers. * @param _operator The address which called `safeTransferFrom` function * @param _from The address which previously owned the token * @param _value amount of tokens which is being transferred * @param _data additional data with no specified format * @return `bytes4(keccak256("onERC20Received(address,address,uint256,bytes)"))` unless throwing */ function onERC20Received(address _operator, address _from, uint256 _value, bytes calldata _data) external returns(bytes4); } // SPDX-License-Identifier: MIT pragma solidity 0.8.1; import "../utils/AddressUtils.sol"; import "../utils/AccessControl.sol"; import "./ERC20Receiver.sol"; /** * @title Illuvium (ILV) ERC20 token * * @notice Illuvium is a core ERC20 token powering the game. * It serves as an in-game currency, is tradable on exchanges, * it powers up the governance protocol (Illuvium DAO) and participates in Yield Farming. * * @dev Token Summary: * - Symbol: ILV * - Name: Illuvium * - Decimals: 18 * - Initial token supply: 7,000,000 ILV * - Maximum final token supply: 10,000,000 ILV * - Up to 3,000,000 ILV may get minted in 3 years period via yield farming * - Mintable: total supply may increase * - Burnable: total supply may decrease * * @dev Token balances and total supply are effectively 192 bits long, meaning that maximum * possible total supply smart contract is able to track is 2^192 (close to 10^40 tokens) * * @dev Smart contract doesn't use safe math. All arithmetic operations are overflow/underflow safe. * Additionally, Solidity 0.8.1 enforces overflow/underflow safety. * * @dev ERC20: reviewed according to https://eips.ethereum.org/EIPS/eip-20 * * @dev ERC20: contract has passed OpenZeppelin ERC20 tests, * see https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/test/token/ERC20/ERC20.behavior.js * see https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/test/token/ERC20/ERC20.test.js * see adopted copies of these tests in the `test` folder * * @dev ERC223/ERC777: not supported; * send tokens via `safeTransferFrom` and implement `ERC20Receiver.onERC20Received` on the receiver instead * * @dev Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) - resolved * Related events and functions are marked with "ISBN:978-1-7281-3027-9" tag: * - event Transferred(address indexed _by, address indexed _from, address indexed _to, uint256 _value) * - event Approved(address indexed _owner, address indexed _spender, uint256 _oldValue, uint256 _value) * - function increaseAllowance(address _spender, uint256 _value) public returns (bool) * - function decreaseAllowance(address _spender, uint256 _value) public returns (bool) * See: https://ieeexplore.ieee.org/document/8802438 * See: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * @author Basil Gorin */ contract IlluviumERC20 is AccessControl { /** * @dev Smart contract unique identifier, a random number * @dev Should be regenerated each time smart contact source code is changed * and changes smart contract itself is to be redeployed * @dev Generated using https://www.random.org/bytes/ */ uint256 public constant TOKEN_UID = 0x83ecb176af7c4f35a45ff0018282e3a05a1018065da866182df12285866f5a2c; /** * @notice Name of the token: Illuvium * * @notice ERC20 name of the token (long name) * * @dev ERC20 `function name() public view returns (string)` * * @dev Field is declared public: getter name() is created when compiled, * it returns the name of the token. */ string public constant name = "Illuvium"; /** * @notice Symbol of the token: ILV * * @notice ERC20 symbol of that token (short name) * * @dev ERC20 `function symbol() public view returns (string)` * * @dev Field is declared public: getter symbol() is created when compiled, * it returns the symbol of the token */ string public constant symbol = "ILV"; /** * @notice Decimals of the token: 18 * * @dev ERC20 `function decimals() public view returns (uint8)` * * @dev Field is declared public: getter decimals() is created when compiled, * it returns the number of decimals used to get its user representation. * For example, if `decimals` equals `6`, a balance of `1,500,000` tokens should * be displayed to a user as `1,5` (`1,500,000 / 10 ** 6`). * * @dev NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including balanceOf() and transfer(). */ uint8 public constant decimals = 18; /** * @notice Total supply of the token: initially 7,000,000, * with the potential to grow up to 10,000,000 during yield farming period (3 years) * * @dev ERC20 `function totalSupply() public view returns (uint256)` * * @dev Field is declared public: getter totalSupply() is created when compiled, * it returns the amount of tokens in existence. */ uint256 public totalSupply; // is set to 7 million * 10^18 in the constructor /** * @dev A record of all the token balances * @dev This mapping keeps record of all token owners: * owner => balance */ mapping(address => uint256) public tokenBalances; /** * @notice A record of each account's voting delegate * * @dev Auxiliary data structure used to sum up an account's voting power * * @dev This mapping keeps record of all voting power delegations: * voting delegator (token owner) => voting delegate */ mapping(address => address) public votingDelegates; /** * @notice A voting power record binds voting power of a delegate to a particular * block when the voting power delegation change happened */ struct VotingPowerRecord { /* * @dev block.number when delegation has changed; starting from * that block voting power value is in effect */ uint64 blockNumber; /* * @dev cumulative voting power a delegate has obtained starting * from the block stored in blockNumber */ uint192 votingPower; } /** * @notice A record of each account's voting power * * @dev Primarily data structure to store voting power for each account. * Voting power sums up from the account's token balance and delegated * balances. * * @dev Stores current value and entire history of its changes. * The changes are stored as an array of checkpoints. * Checkpoint is an auxiliary data structure containing voting * power (number of votes) and block number when the checkpoint is saved * * @dev Maps voting delegate => voting power record */ mapping(address => VotingPowerRecord[]) public votingPowerHistory; /** * @dev A record of nonces for signing/validating signatures in `delegateWithSig` * for every delegate, increases after successful validation * * @dev Maps delegate address => delegate nonce */ mapping(address => uint256) public nonces; /** * @notice A record of all the allowances to spend tokens on behalf * @dev Maps token owner address to an address approved to spend * some tokens on behalf, maps approved address to that amount * @dev owner => spender => value */ mapping(address => mapping(address => uint256)) public transferAllowances; /** * @notice Enables ERC20 transfers of the tokens * (transfer by the token owner himself) * @dev Feature FEATURE_TRANSFERS must be enabled in order for * `transfer()` function to succeed */ uint32 public constant FEATURE_TRANSFERS = 0x0000_0001; /** * @notice Enables ERC20 transfers on behalf * (transfer by someone else on behalf of token owner) * @dev Feature FEATURE_TRANSFERS_ON_BEHALF must be enabled in order for * `transferFrom()` function to succeed * @dev Token owner must call `approve()` first to authorize * the transfer on behalf */ uint32 public constant FEATURE_TRANSFERS_ON_BEHALF = 0x0000_0002; /** * @dev Defines if the default behavior of `transfer` and `transferFrom` * checks if the receiver smart contract supports ERC20 tokens * @dev When feature FEATURE_UNSAFE_TRANSFERS is enabled the transfers do not * check if the receiver smart contract supports ERC20 tokens, * i.e. `transfer` and `transferFrom` behave like `unsafeTransferFrom` * @dev When feature FEATURE_UNSAFE_TRANSFERS is disabled (default) the transfers * check if the receiver smart contract supports ERC20 tokens, * i.e. `transfer` and `transferFrom` behave like `safeTransferFrom` */ uint32 public constant FEATURE_UNSAFE_TRANSFERS = 0x0000_0004; /** * @notice Enables token owners to burn their own tokens, * including locked tokens which are burnt first * @dev Feature FEATURE_OWN_BURNS must be enabled in order for * `burn()` function to succeed when called by token owner */ uint32 public constant FEATURE_OWN_BURNS = 0x0000_0008; /** * @notice Enables approved operators to burn tokens on behalf of their owners, * including locked tokens which are burnt first * @dev Feature FEATURE_OWN_BURNS must be enabled in order for * `burn()` function to succeed when called by approved operator */ uint32 public constant FEATURE_BURNS_ON_BEHALF = 0x0000_0010; /** * @notice Enables delegators to elect delegates * @dev Feature FEATURE_DELEGATIONS must be enabled in order for * `delegate()` function to succeed */ uint32 public constant FEATURE_DELEGATIONS = 0x0000_0020; /** * @notice Enables delegators to elect delegates on behalf * (via an EIP712 signature) * @dev Feature FEATURE_DELEGATIONS must be enabled in order for * `delegateWithSig()` function to succeed */ uint32 public constant FEATURE_DELEGATIONS_ON_BEHALF = 0x0000_0040; /** * @notice Token creator is responsible for creating (minting) * tokens to an arbitrary address * @dev Role ROLE_TOKEN_CREATOR allows minting tokens * (calling `mint` function) */ uint32 public constant ROLE_TOKEN_CREATOR = 0x0001_0000; /** * @notice Token destroyer is responsible for destroying (burning) * tokens owned by an arbitrary address * @dev Role ROLE_TOKEN_DESTROYER allows burning tokens * (calling `burn` function) */ uint32 public constant ROLE_TOKEN_DESTROYER = 0x0002_0000; /** * @notice ERC20 receivers are allowed to receive tokens without ERC20 safety checks, * which may be useful to simplify tokens transfers into "legacy" smart contracts * @dev When `FEATURE_UNSAFE_TRANSFERS` is not enabled addresses having * `ROLE_ERC20_RECEIVER` permission are allowed to receive tokens * via `transfer` and `transferFrom` functions in the same way they * would via `unsafeTransferFrom` function * @dev When `FEATURE_UNSAFE_TRANSFERS` is enabled `ROLE_ERC20_RECEIVER` permission * doesn't affect the transfer behaviour since * `transfer` and `transferFrom` behave like `unsafeTransferFrom` for any receiver * @dev ROLE_ERC20_RECEIVER is a shortening for ROLE_UNSAFE_ERC20_RECEIVER */ uint32 public constant ROLE_ERC20_RECEIVER = 0x0004_0000; /** * @notice ERC20 senders are allowed to send tokens without ERC20 safety checks, * which may be useful to simplify tokens transfers into "legacy" smart contracts * @dev When `FEATURE_UNSAFE_TRANSFERS` is not enabled senders having * `ROLE_ERC20_SENDER` permission are allowed to send tokens * via `transfer` and `transferFrom` functions in the same way they * would via `unsafeTransferFrom` function * @dev When `FEATURE_UNSAFE_TRANSFERS` is enabled `ROLE_ERC20_SENDER` permission * doesn't affect the transfer behaviour since * `transfer` and `transferFrom` behave like `unsafeTransferFrom` for any receiver * @dev ROLE_ERC20_SENDER is a shortening for ROLE_UNSAFE_ERC20_SENDER */ uint32 public constant ROLE_ERC20_SENDER = 0x0008_0000; /** * @dev Magic value to be returned by ERC20Receiver upon successful reception of token(s) * @dev Equal to `bytes4(keccak256("onERC20Received(address,address,uint256,bytes)"))`, * which can be also obtained as `ERC20Receiver(address(0)).onERC20Received.selector` */ bytes4 private constant ERC20_RECEIVED = 0x4fc35859; /** * @notice EIP-712 contract's domain typeHash, see https://eips.ethereum.org/EIPS/eip-712#rationale-for-typehash */ bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)"); /** * @notice EIP-712 delegation struct typeHash, see https://eips.ethereum.org/EIPS/eip-712#rationale-for-typehash */ bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegate,uint256 nonce,uint256 expiry)"); /** * @dev Fired in transfer(), transferFrom() and some other (non-ERC20) functions * * @dev ERC20 `event Transfer(address indexed _from, address indexed _to, uint256 _value)` * * @param _from an address tokens were consumed from * @param _to an address tokens were sent to * @param _value number of tokens transferred */ event Transfer(address indexed _from, address indexed _to, uint256 _value); /** * @dev Fired in approve() and approveAtomic() functions * * @dev ERC20 `event Approval(address indexed _owner, address indexed _spender, uint256 _value)` * * @param _owner an address which granted a permission to transfer * tokens on its behalf * @param _spender an address which received a permission to transfer * tokens on behalf of the owner `_owner` * @param _value amount of tokens granted to transfer on behalf */ event Approval(address indexed _owner, address indexed _spender, uint256 _value); /** * @dev Fired in mint() function * * @param _by an address which minted some tokens (transaction sender) * @param _to an address the tokens were minted to * @param _value an amount of tokens minted */ event Minted(address indexed _by, address indexed _to, uint256 _value); /** * @dev Fired in burn() function * * @param _by an address which burned some tokens (transaction sender) * @param _from an address the tokens were burnt from * @param _value an amount of tokens burnt */ event Burnt(address indexed _by, address indexed _from, uint256 _value); /** * @dev Resolution for the Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) * * @dev Similar to ERC20 Transfer event, but also logs an address which executed transfer * * @dev Fired in transfer(), transferFrom() and some other (non-ERC20) functions * * @param _by an address which performed the transfer * @param _from an address tokens were consumed from * @param _to an address tokens were sent to * @param _value number of tokens transferred */ event Transferred(address indexed _by, address indexed _from, address indexed _to, uint256 _value); /** * @dev Resolution for the Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) * * @dev Similar to ERC20 Approve event, but also logs old approval value * * @dev Fired in approve() and approveAtomic() functions * * @param _owner an address which granted a permission to transfer * tokens on its behalf * @param _spender an address which received a permission to transfer * tokens on behalf of the owner `_owner` * @param _oldValue previously granted amount of tokens to transfer on behalf * @param _value new granted amount of tokens to transfer on behalf */ event Approved(address indexed _owner, address indexed _spender, uint256 _oldValue, uint256 _value); /** * @dev Notifies that a key-value pair in `votingDelegates` mapping has changed, * i.e. a delegator address has changed its delegate address * * @param _of delegator address, a token owner * @param _from old delegate, an address which delegate right is revoked * @param _to new delegate, an address which received the voting power */ event DelegateChanged(address indexed _of, address indexed _from, address indexed _to); /** * @dev Notifies that a key-value pair in `votingPowerHistory` mapping has changed, * i.e. a delegate's voting power has changed. * * @param _of delegate whose voting power has changed * @param _fromVal previous number of votes delegate had * @param _toVal new number of votes delegate has */ event VotingPowerChanged(address indexed _of, uint256 _fromVal, uint256 _toVal); /** * @dev Deploys the token smart contract, * assigns initial token supply to the address specified * * @param _initialHolder owner of the initial token supply */ constructor(address _initialHolder) { // verify initial holder address non-zero (is set) require(_initialHolder != address(0), "_initialHolder not set (zero address)"); // mint initial supply mint(_initialHolder, 7_000_000e18); } // ===== Start: ERC20/ERC223/ERC777 functions ===== /** * @notice Gets the balance of a particular address * * @dev ERC20 `function balanceOf(address _owner) public view returns (uint256 balance)` * * @param _owner the address to query the the balance for * @return balance an amount of tokens owned by the address specified */ function balanceOf(address _owner) public view returns (uint256 balance) { // read the balance and return return tokenBalances[_owner]; } /** * @notice Transfers some tokens to an external address or a smart contract * * @dev ERC20 `function transfer(address _to, uint256 _value) public returns (bool success)` * * @dev Called by token owner (an address which has a * positive token balance tracked by this smart contract) * @dev Throws on any error like * * insufficient token balance or * * incorrect `_to` address: * * zero address or * * self address or * * smart contract which doesn't support ERC20 * * @param _to an address to transfer tokens to, * must be either an external address or a smart contract, * compliant with the ERC20 standard * @param _value amount of tokens to be transferred, must * be greater than zero * @return success true on success, throws otherwise */ function transfer(address _to, uint256 _value) public returns (bool success) { // just delegate call to `transferFrom`, // `FEATURE_TRANSFERS` is verified inside it return transferFrom(msg.sender, _to, _value); } /** * @notice Transfers some tokens on behalf of address `_from' (token owner) * to some other address `_to` * * @dev ERC20 `function transferFrom(address _from, address _to, uint256 _value) public returns (bool success)` * * @dev Called by token owner on his own or approved address, * an address approved earlier by token owner to * transfer some amount of tokens on its behalf * @dev Throws on any error like * * insufficient token balance or * * incorrect `_to` address: * * zero address or * * same as `_from` address (self transfer) * * smart contract which doesn't support ERC20 * * @param _from token owner which approved caller (transaction sender) * to transfer `_value` of tokens on its behalf * @param _to an address to transfer tokens to, * must be either an external address or a smart contract, * compliant with the ERC20 standard * @param _value amount of tokens to be transferred, must * be greater than zero * @return success true on success, throws otherwise */ function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { // depending on `FEATURE_UNSAFE_TRANSFERS` we execute either safe (default) // or unsafe transfer // if `FEATURE_UNSAFE_TRANSFERS` is enabled // or receiver has `ROLE_ERC20_RECEIVER` permission // or sender has `ROLE_ERC20_SENDER` permission if(isFeatureEnabled(FEATURE_UNSAFE_TRANSFERS) || isOperatorInRole(_to, ROLE_ERC20_RECEIVER) || isSenderInRole(ROLE_ERC20_SENDER)) { // we execute unsafe transfer - delegate call to `unsafeTransferFrom`, // `FEATURE_TRANSFERS` is verified inside it unsafeTransferFrom(_from, _to, _value); } // otherwise - if `FEATURE_UNSAFE_TRANSFERS` is disabled // and receiver doesn't have `ROLE_ERC20_RECEIVER` permission else { // we execute safe transfer - delegate call to `safeTransferFrom`, passing empty `_data`, // `FEATURE_TRANSFERS` is verified inside it safeTransferFrom(_from, _to, _value, ""); } // both `unsafeTransferFrom` and `safeTransferFrom` throw on any error, so // if we're here - it means operation successful, // just return true return true; } /** * @notice Transfers some tokens on behalf of address `_from' (token owner) * to some other address `_to` * * @dev Inspired by ERC721 safeTransferFrom, this function allows to * send arbitrary data to the receiver on successful token transfer * @dev Called by token owner on his own or approved address, * an address approved earlier by token owner to * transfer some amount of tokens on its behalf * @dev Throws on any error like * * insufficient token balance or * * incorrect `_to` address: * * zero address or * * same as `_from` address (self transfer) * * smart contract which doesn't support ERC20Receiver interface * @dev Returns silently on success, throws otherwise * * @param _from token owner which approved caller (transaction sender) * to transfer `_value` of tokens on its behalf * @param _to an address to transfer tokens to, * must be either an external address or a smart contract, * compliant with the ERC20 standard * @param _value amount of tokens to be transferred, must * be greater than zero * @param _data [optional] additional data with no specified format, * sent in onERC20Received call to `_to` in case if its a smart contract */ function safeTransferFrom(address _from, address _to, uint256 _value, bytes memory _data) public { // first delegate call to `unsafeTransferFrom` // to perform the unsafe token(s) transfer unsafeTransferFrom(_from, _to, _value); // after the successful transfer - check if receiver supports // ERC20Receiver and execute a callback handler `onERC20Received`, // reverting whole transaction on any error: // check if receiver `_to` supports ERC20Receiver interface if(AddressUtils.isContract(_to)) { // if `_to` is a contract - execute onERC20Received bytes4 response = ERC20Receiver(_to).onERC20Received(msg.sender, _from, _value, _data); // expected response is ERC20_RECEIVED require(response == ERC20_RECEIVED, "invalid onERC20Received response"); } } /** * @notice Transfers some tokens on behalf of address `_from' (token owner) * to some other address `_to` * * @dev In contrast to `safeTransferFrom` doesn't check recipient * smart contract to support ERC20 tokens (ERC20Receiver) * @dev Designed to be used by developers when the receiver is known * to support ERC20 tokens but doesn't implement ERC20Receiver interface * @dev Called by token owner on his own or approved address, * an address approved earlier by token owner to * transfer some amount of tokens on its behalf * @dev Throws on any error like * * insufficient token balance or * * incorrect `_to` address: * * zero address or * * same as `_from` address (self transfer) * @dev Returns silently on success, throws otherwise * * @param _from token owner which approved caller (transaction sender) * to transfer `_value` of tokens on its behalf * @param _to an address to transfer tokens to, * must be either an external address or a smart contract, * compliant with the ERC20 standard * @param _value amount of tokens to be transferred, must * be greater than zero */ function unsafeTransferFrom(address _from, address _to, uint256 _value) public { // if `_from` is equal to sender, require transfers feature to be enabled // otherwise require transfers on behalf feature to be enabled require(_from == msg.sender && isFeatureEnabled(FEATURE_TRANSFERS) || _from != msg.sender && isFeatureEnabled(FEATURE_TRANSFERS_ON_BEHALF), _from == msg.sender? "transfers are disabled": "transfers on behalf are disabled"); // non-zero source address check - Zeppelin // obviously, zero source address is a client mistake // it's not part of ERC20 standard but it's reasonable to fail fast // since for zero value transfer transaction succeeds otherwise require(_from != address(0), "ERC20: transfer from the zero address"); // Zeppelin msg // non-zero recipient address check require(_to != address(0), "ERC20: transfer to the zero address"); // Zeppelin msg // sender and recipient cannot be the same require(_from != _to, "sender and recipient are the same (_from = _to)"); // sending tokens to the token smart contract itself is a client mistake require(_to != address(this), "invalid recipient (transfer to the token smart contract itself)"); // according to ERC-20 Token Standard, https://eips.ethereum.org/EIPS/eip-20 // "Transfers of 0 values MUST be treated as normal transfers and fire the Transfer event." if(_value == 0) { // emit an ERC20 transfer event emit Transfer(_from, _to, _value); // don't forget to return - we're done return; } // no need to make arithmetic overflow check on the _value - by design of mint() // in case of transfer on behalf if(_from != msg.sender) { // read allowance value - the amount of tokens allowed to transfer - into the stack uint256 _allowance = transferAllowances[_from][msg.sender]; // verify sender has an allowance to transfer amount of tokens requested require(_allowance >= _value, "ERC20: transfer amount exceeds allowance"); // Zeppelin msg // update allowance value on the stack _allowance -= _value; // update the allowance value in storage transferAllowances[_from][msg.sender] = _allowance; // emit an improved atomic approve event emit Approved(_from, msg.sender, _allowance + _value, _allowance); // emit an ERC20 approval event to reflect the decrease emit Approval(_from, msg.sender, _allowance); } // verify sender has enough tokens to transfer on behalf require(tokenBalances[_from] >= _value, "ERC20: transfer amount exceeds balance"); // Zeppelin msg // perform the transfer: // decrease token owner (sender) balance tokenBalances[_from] -= _value; // increase `_to` address (receiver) balance tokenBalances[_to] += _value; // move voting power associated with the tokens transferred __moveVotingPower(votingDelegates[_from], votingDelegates[_to], _value); // emit an improved transfer event emit Transferred(msg.sender, _from, _to, _value); // emit an ERC20 transfer event emit Transfer(_from, _to, _value); } /** * @notice Approves address called `_spender` to transfer some amount * of tokens on behalf of the owner * * @dev ERC20 `function approve(address _spender, uint256 _value) public returns (bool success)` * * @dev Caller must not necessarily own any tokens to grant the permission * * @param _spender an address approved by the caller (token owner) * to spend some tokens on its behalf * @param _value an amount of tokens spender `_spender` is allowed to * transfer on behalf of the token owner * @return success true on success, throws otherwise */ function approve(address _spender, uint256 _value) public returns (bool success) { // non-zero spender address check - Zeppelin // obviously, zero spender address is a client mistake // it's not part of ERC20 standard but it's reasonable to fail fast require(_spender != address(0), "ERC20: approve to the zero address"); // Zeppelin msg // read old approval value to emmit an improved event (ISBN:978-1-7281-3027-9) uint256 _oldValue = transferAllowances[msg.sender][_spender]; // perform an operation: write value requested into the storage transferAllowances[msg.sender][_spender] = _value; // emit an improved atomic approve event (ISBN:978-1-7281-3027-9) emit Approved(msg.sender, _spender, _oldValue, _value); // emit an ERC20 approval event emit Approval(msg.sender, _spender, _value); // operation successful, return true return true; } /** * @notice Returns the amount which _spender is still allowed to withdraw from _owner. * * @dev ERC20 `function allowance(address _owner, address _spender) public view returns (uint256 remaining)` * * @dev A function to check an amount of tokens owner approved * to transfer on its behalf by some other address called "spender" * * @param _owner an address which approves transferring some tokens on its behalf * @param _spender an address approved to transfer some tokens on behalf * @return remaining an amount of tokens approved address `_spender` can transfer on behalf * of token owner `_owner` */ function allowance(address _owner, address _spender) public view returns (uint256 remaining) { // read the value from storage and return return transferAllowances[_owner][_spender]; } // ===== End: ERC20/ERC223/ERC777 functions ===== // ===== Start: Resolution for the Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) ===== /** * @notice Increases the allowance granted to `spender` by the transaction sender * * @dev Resolution for the Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) * * @dev Throws if value to increase by is zero or too big and causes arithmetic overflow * * @param _spender an address approved by the caller (token owner) * to spend some tokens on its behalf * @param _value an amount of tokens to increase by * @return success true on success, throws otherwise */ function increaseAllowance(address _spender, uint256 _value) public virtual returns (bool) { // read current allowance value uint256 currentVal = transferAllowances[msg.sender][_spender]; // non-zero _value and arithmetic overflow check on the allowance require(currentVal + _value > currentVal, "zero value approval increase or arithmetic overflow"); // delegate call to `approve` with the new value return approve(_spender, currentVal + _value); } /** * @notice Decreases the allowance granted to `spender` by the caller. * * @dev Resolution for the Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) * * @dev Throws if value to decrease by is zero or is bigger than currently allowed value * * @param _spender an address approved by the caller (token owner) * to spend some tokens on its behalf * @param _value an amount of tokens to decrease by * @return success true on success, throws otherwise */ function decreaseAllowance(address _spender, uint256 _value) public virtual returns (bool) { // read current allowance value uint256 currentVal = transferAllowances[msg.sender][_spender]; // non-zero _value check on the allowance require(_value > 0, "zero value approval decrease"); // verify allowance decrease doesn't underflow require(currentVal >= _value, "ERC20: decreased allowance below zero"); // delegate call to `approve` with the new value return approve(_spender, currentVal - _value); } // ===== End: Resolution for the Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) ===== // ===== Start: Minting/burning extension ===== /** * @dev Mints (creates) some tokens to address specified * @dev The value specified is treated as is without taking * into account what `decimals` value is * @dev Behaves effectively as `mintTo` function, allowing * to specify an address to mint tokens to * @dev Requires sender to have `ROLE_TOKEN_CREATOR` permission * * @dev Throws on overflow, if totalSupply + _value doesn't fit into uint256 * * @param _to an address to mint tokens to * @param _value an amount of tokens to mint (create) */ function mint(address _to, uint256 _value) public { // check if caller has sufficient permissions to mint tokens require(isSenderInRole(ROLE_TOKEN_CREATOR), "insufficient privileges (ROLE_TOKEN_CREATOR required)"); // non-zero recipient address check require(_to != address(0), "ERC20: mint to the zero address"); // Zeppelin msg // non-zero _value and arithmetic overflow check on the total supply // this check automatically secures arithmetic overflow on the individual balance require(totalSupply + _value > totalSupply, "zero value mint or arithmetic overflow"); // uint192 overflow check (required by voting delegation) require(totalSupply + _value <= type(uint192).max, "total supply overflow (uint192)"); // perform mint: // increase total amount of tokens value totalSupply += _value; // increase `_to` address balance tokenBalances[_to] += _value; // create voting power associated with the tokens minted __moveVotingPower(address(0), votingDelegates[_to], _value); // fire a minted event emit Minted(msg.sender, _to, _value); // emit an improved transfer event emit Transferred(msg.sender, address(0), _to, _value); // fire ERC20 compliant transfer event emit Transfer(address(0), _to, _value); } /** * @dev Burns (destroys) some tokens from the address specified * @dev The value specified is treated as is without taking * into account what `decimals` value is * @dev Behaves effectively as `burnFrom` function, allowing * to specify an address to burn tokens from * @dev Requires sender to have `ROLE_TOKEN_DESTROYER` permission * * @param _from an address to burn some tokens from * @param _value an amount of tokens to burn (destroy) */ function burn(address _from, uint256 _value) public { // check if caller has sufficient permissions to burn tokens // and if not - check for possibility to burn own tokens or to burn on behalf if(!isSenderInRole(ROLE_TOKEN_DESTROYER)) { // if `_from` is equal to sender, require own burns feature to be enabled // otherwise require burns on behalf feature to be enabled require(_from == msg.sender && isFeatureEnabled(FEATURE_OWN_BURNS) || _from != msg.sender && isFeatureEnabled(FEATURE_BURNS_ON_BEHALF), _from == msg.sender? "burns are disabled": "burns on behalf are disabled"); // in case of burn on behalf if(_from != msg.sender) { // read allowance value - the amount of tokens allowed to be burnt - into the stack uint256 _allowance = transferAllowances[_from][msg.sender]; // verify sender has an allowance to burn amount of tokens requested require(_allowance >= _value, "ERC20: burn amount exceeds allowance"); // Zeppelin msg // update allowance value on the stack _allowance -= _value; // update the allowance value in storage transferAllowances[_from][msg.sender] = _allowance; // emit an improved atomic approve event emit Approved(msg.sender, _from, _allowance + _value, _allowance); // emit an ERC20 approval event to reflect the decrease emit Approval(_from, msg.sender, _allowance); } } // at this point we know that either sender is ROLE_TOKEN_DESTROYER or // we burn own tokens or on behalf (in latest case we already checked and updated allowances) // we have left to execute balance checks and burning logic itself // non-zero burn value check require(_value != 0, "zero value burn"); // non-zero source address check - Zeppelin require(_from != address(0), "ERC20: burn from the zero address"); // Zeppelin msg // verify `_from` address has enough tokens to destroy // (basically this is a arithmetic overflow check) require(tokenBalances[_from] >= _value, "ERC20: burn amount exceeds balance"); // Zeppelin msg // perform burn: // decrease `_from` address balance tokenBalances[_from] -= _value; // decrease total amount of tokens value totalSupply -= _value; // destroy voting power associated with the tokens burnt __moveVotingPower(votingDelegates[_from], address(0), _value); // fire a burnt event emit Burnt(msg.sender, _from, _value); // emit an improved transfer event emit Transferred(msg.sender, _from, address(0), _value); // fire ERC20 compliant transfer event emit Transfer(_from, address(0), _value); } // ===== End: Minting/burning extension ===== // ===== Start: DAO Support (Compound-like voting delegation) ===== /** * @notice Gets current voting power of the account `_of` * @param _of the address of account to get voting power of * @return current cumulative voting power of the account, * sum of token balances of all its voting delegators */ function getVotingPower(address _of) public view returns (uint256) { // get a link to an array of voting power history records for an address specified VotingPowerRecord[] storage history = votingPowerHistory[_of]; // lookup the history and return latest element return history.length == 0? 0: history[history.length - 1].votingPower; } /** * @notice Gets past voting power of the account `_of` at some block `_blockNum` * @dev Throws if `_blockNum` is not in the past (not the finalized block) * @param _of the address of account to get voting power of * @param _blockNum block number to get the voting power at * @return past cumulative voting power of the account, * sum of token balances of all its voting delegators at block number `_blockNum` */ function getVotingPowerAt(address _of, uint256 _blockNum) public view returns (uint256) { // make sure block number is not in the past (not the finalized block) require(_blockNum < block.number, "not yet determined"); // Compound msg // get a link to an array of voting power history records for an address specified VotingPowerRecord[] storage history = votingPowerHistory[_of]; // if voting power history for the account provided is empty if(history.length == 0) { // than voting power is zero - return the result return 0; } // check latest voting power history record block number: // if history was not updated after the block of interest if(history[history.length - 1].blockNumber <= _blockNum) { // we're done - return last voting power record return getVotingPower(_of); } // check first voting power history record block number: // if history was never updated before the block of interest if(history[0].blockNumber > _blockNum) { // we're done - voting power at the block num of interest was zero return 0; } // `votingPowerHistory[_of]` is an array ordered by `blockNumber`, ascending; // apply binary search on `votingPowerHistory[_of]` to find such an entry number `i`, that // `votingPowerHistory[_of][i].blockNumber <= _blockNum`, but in the same time // `votingPowerHistory[_of][i + 1].blockNumber > _blockNum` // return the result - voting power found at index `i` return history[__binaryLookup(_of, _blockNum)].votingPower; } /** * @dev Reads an entire voting power history array for the delegate specified * * @param _of delegate to query voting power history for * @return voting power history array for the delegate of interest */ function getVotingPowerHistory(address _of) public view returns(VotingPowerRecord[] memory) { // return an entire array as memory return votingPowerHistory[_of]; } /** * @dev Returns length of the voting power history array for the delegate specified; * useful since reading an entire array just to get its length is expensive (gas cost) * * @param _of delegate to query voting power history length for * @return voting power history array length for the delegate of interest */ function getVotingPowerHistoryLength(address _of) public view returns(uint256) { // read array length and return return votingPowerHistory[_of].length; } /** * @notice Delegates voting power of the delegator `msg.sender` to the delegate `_to` * * @dev Accepts zero value address to delegate voting power to, effectively * removing the delegate in that case * * @param _to address to delegate voting power to */ function delegate(address _to) public { // verify delegations are enabled require(isFeatureEnabled(FEATURE_DELEGATIONS), "delegations are disabled"); // delegate call to `__delegate` __delegate(msg.sender, _to); } /** * @notice Delegates voting power of the delegator (represented by its signature) to the delegate `_to` * * @dev Accepts zero value address to delegate voting power to, effectively * removing the delegate in that case * * @dev Compliant with EIP-712: Ethereum typed structured data hashing and signing, * see https://eips.ethereum.org/EIPS/eip-712 * * @param _to address to delegate voting power to * @param _nonce nonce used to construct the signature, and used to validate it; * nonce is increased by one after successful signature validation and vote delegation * @param _exp signature expiration time * @param v the recovery byte of the signature * @param r half of the ECDSA signature pair * @param s half of the ECDSA signature pair */ function delegateWithSig(address _to, uint256 _nonce, uint256 _exp, uint8 v, bytes32 r, bytes32 s) public { // verify delegations on behalf are enabled require(isFeatureEnabled(FEATURE_DELEGATIONS_ON_BEHALF), "delegations on behalf are disabled"); // build the EIP-712 contract domain separator bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), block.chainid, address(this))); // build the EIP-712 hashStruct of the delegation message bytes32 hashStruct = keccak256(abi.encode(DELEGATION_TYPEHASH, _to, _nonce, _exp)); // calculate the EIP-712 digest "\\x19\\x01" ‖ domainSeparator ‖ hashStruct(message) bytes32 digest = keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, hashStruct)); // recover the address who signed the message with v, r, s address signer = ecrecover(digest, v, r, s); // perform message integrity and security validations require(signer != address(0), "invalid signature"); // Compound msg require(_nonce == nonces[signer], "invalid nonce"); // Compound msg require(block.timestamp < _exp, "signature expired"); // Compound msg // update the nonce for that particular signer to avoid replay attack nonces[signer]++; // delegate call to `__delegate` - execute the logic required __delegate(signer, _to); } /** * @dev Auxiliary function to delegate delegator's `_from` voting power to the delegate `_to` * @dev Writes to `votingDelegates` and `votingPowerHistory` mappings * * @param _from delegator who delegates his voting power * @param _to delegate who receives the voting power */ function __delegate(address _from, address _to) private { // read current delegate to be replaced by a new one address _fromDelegate = votingDelegates[_from]; // read current voting power (it is equal to token balance) uint256 _value = tokenBalances[_from]; // reassign voting delegate to `_to` votingDelegates[_from] = _to; // update voting power for `_fromDelegate` and `_to` __moveVotingPower(_fromDelegate, _to, _value); // emit an event emit DelegateChanged(_from, _fromDelegate, _to); } /** * @dev Auxiliary function to move voting power `_value` * from delegate `_from` to the delegate `_to` * * @dev Doesn't have any effect if `_from == _to`, or if `_value == 0` * * @param _from delegate to move voting power from * @param _to delegate to move voting power to * @param _value voting power to move from `_from` to `_to` */ function __moveVotingPower(address _from, address _to, uint256 _value) private { // if there is no move (`_from == _to`) or there is nothing to move (`_value == 0`) if(_from == _to || _value == 0) { // return silently with no action return; } // if source address is not zero - decrease its voting power if(_from != address(0)) { // read current source address voting power uint256 _fromVal = getVotingPower(_from); // calculate decreased voting power // underflow is not possible by design: // voting power is limited by token balance which is checked by the callee uint256 _toVal = _fromVal - _value; // update source voting power from `_fromVal` to `_toVal` __updateVotingPower(_from, _fromVal, _toVal); } // if destination address is not zero - increase its voting power if(_to != address(0)) { // read current destination address voting power uint256 _fromVal = getVotingPower(_to); // calculate increased voting power // overflow is not possible by design: // max token supply limits the cumulative voting power uint256 _toVal = _fromVal + _value; // update destination voting power from `_fromVal` to `_toVal` __updateVotingPower(_to, _fromVal, _toVal); } } /** * @dev Auxiliary function to update voting power of the delegate `_of` * from value `_fromVal` to value `_toVal` * * @param _of delegate to update its voting power * @param _fromVal old voting power of the delegate * @param _toVal new voting power of the delegate */ function __updateVotingPower(address _of, uint256 _fromVal, uint256 _toVal) private { // get a link to an array of voting power history records for an address specified VotingPowerRecord[] storage history = votingPowerHistory[_of]; // if there is an existing voting power value stored for current block if(history.length != 0 && history[history.length - 1].blockNumber == block.number) { // update voting power which is already stored in the current block history[history.length - 1].votingPower = uint192(_toVal); } // otherwise - if there is no value stored for current block else { // add new element into array representing the value for current block history.push(VotingPowerRecord(uint64(block.number), uint192(_toVal))); } // emit an event emit VotingPowerChanged(_of, _fromVal, _toVal); } /** * @dev Auxiliary function to lookup an element in a sorted (asc) array of elements * * @dev This function finds the closest element in an array to the value * of interest (not exceeding that value) and returns its index within an array * * @dev An array to search in is `votingPowerHistory[_to][i].blockNumber`, * it is sorted in ascending order (blockNumber increases) * * @param _to an address of the delegate to get an array for * @param n value of interest to look for * @return an index of the closest element in an array to the value * of interest (not exceeding that value) */ function __binaryLookup(address _to, uint256 n) private view returns(uint256) { // get a link to an array of voting power history records for an address specified VotingPowerRecord[] storage history = votingPowerHistory[_to]; // left bound of the search interval, originally start of the array uint256 i = 0; // right bound of the search interval, originally end of the array uint256 j = history.length - 1; // the iteration process narrows down the bounds by // splitting the interval in a half oce per each iteration while(j > i) { // get an index in the middle of the interval [i, j] uint256 k = j - (j - i) / 2; // read an element to compare it with the value of interest VotingPowerRecord memory cp = history[k]; // if we've got a strict equal - we're lucky and done if(cp.blockNumber == n) { // just return the result - index `k` return k; } // if the value of interest is bigger - move left bound to the middle else if (cp.blockNumber < n) { // move left bound `i` to the middle position `k` i = k; } // otherwise, when the value of interest is smaller - move right bound to the middle else { // move right bound `j` to the middle position `k - 1`: // element at position `k` is bigger and cannot be the result j = k - 1; } } // reaching that point means no exact match found // since we're interested in the element which is not bigger than the // element of interest, we return the lower bound `i` return i; } } // ===== End: DAO Support (Compound-like voting delegation) ===== // SPDX-License-Identifier: MIT pragma solidity 0.8.1; /** * @title Access Control List * * @notice Access control smart contract provides an API to check * if specific operation is permitted globally and/or * if particular user has a permission to execute it. * * @notice It deals with two main entities: features and roles. * * @notice Features are designed to be used to enable/disable specific * functions (public functions) of the smart contract for everyone. * @notice User roles are designed to restrict access to specific * functions (restricted functions) of the smart contract to some users. * * @notice Terms "role", "permissions" and "set of permissions" have equal meaning * in the documentation text and may be used interchangeably. * @notice Terms "permission", "single permission" implies only one permission bit set. * * @dev This smart contract is designed to be inherited by other * smart contracts which require access control management capabilities. * * @author Basil Gorin */ contract AccessControl { /** * @notice Access manager is responsible for assigning the roles to users, * enabling/disabling global features of the smart contract * @notice Access manager can add, remove and update user roles, * remove and update global features * * @dev Role ROLE_ACCESS_MANAGER allows modifying user roles and global features * @dev Role ROLE_ACCESS_MANAGER has single bit at position 255 enabled */ uint256 public constant ROLE_ACCESS_MANAGER = 0x8000000000000000000000000000000000000000000000000000000000000000; /** * @dev Bitmask representing all the possible permissions (super admin role) * @dev Has all the bits are enabled (2^256 - 1 value) */ uint256 private constant FULL_PRIVILEGES_MASK = type(uint256).max; // before 0.8.0: uint256(-1) overflows to 0xFFFF... /** * @notice Privileged addresses with defined roles/permissions * @notice In the context of ERC20/ERC721 tokens these can be permissions to * allow minting or burning tokens, transferring on behalf and so on * * @dev Maps user address to the permissions bitmask (role), where each bit * represents a permission * @dev Bitmask 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF * represents all possible permissions * @dev Zero address mapping represents global features of the smart contract */ mapping(address => uint256) public userRoles; /** * @dev Fired in updateRole() and updateFeatures() * * @param _by operator which called the function * @param _to address which was granted/revoked permissions * @param _requested permissions requested * @param _actual permissions effectively set */ event RoleUpdated(address indexed _by, address indexed _to, uint256 _requested, uint256 _actual); /** * @notice Creates an access control instance, * setting contract creator to have full privileges */ constructor() { // contract creator has full privileges userRoles[msg.sender] = FULL_PRIVILEGES_MASK; } /** * @notice Retrieves globally set of features enabled * * @dev Auxiliary getter function to maintain compatibility with previous * versions of the Access Control List smart contract, where * features was a separate uint256 public field * * @return 256-bit bitmask of the features enabled */ function features() public view returns(uint256) { // according to new design features are stored in zero address // mapping of `userRoles` structure return userRoles[address(0)]; } /** * @notice Updates set of the globally enabled features (`features`), * taking into account sender's permissions * * @dev Requires transaction sender to have `ROLE_ACCESS_MANAGER` permission * @dev Function is left for backward compatibility with older versions * * @param _mask bitmask representing a set of features to enable/disable */ function updateFeatures(uint256 _mask) public { // delegate call to `updateRole` updateRole(address(0), _mask); } /** * @notice Updates set of permissions (role) for a given user, * taking into account sender's permissions. * * @dev Setting role to zero is equivalent to removing an all permissions * @dev Setting role to `FULL_PRIVILEGES_MASK` is equivalent to * copying senders' permissions (role) to the user * @dev Requires transaction sender to have `ROLE_ACCESS_MANAGER` permission * * @param operator address of a user to alter permissions for or zero * to alter global features of the smart contract * @param role bitmask representing a set of permissions to * enable/disable for a user specified */ function updateRole(address operator, uint256 role) public { // caller must have a permission to update user roles require(isSenderInRole(ROLE_ACCESS_MANAGER), "insufficient privileges (ROLE_ACCESS_MANAGER required)"); // evaluate the role and reassign it userRoles[operator] = evaluateBy(msg.sender, userRoles[operator], role); // fire an event emit RoleUpdated(msg.sender, operator, role, userRoles[operator]); } /** * @notice Determines the permission bitmask an operator can set on the * target permission set * @notice Used to calculate the permission bitmask to be set when requested * in `updateRole` and `updateFeatures` functions * * @dev Calculated based on: * 1) operator's own permission set read from userRoles[operator] * 2) target permission set - what is already set on the target * 3) desired permission set - what do we want set target to * * @dev Corner cases: * 1) Operator is super admin and its permission set is `FULL_PRIVILEGES_MASK`: * `desired` bitset is returned regardless of the `target` permission set value * (what operator sets is what they get) * 2) Operator with no permissions (zero bitset): * `target` bitset is returned regardless of the `desired` value * (operator has no authority and cannot modify anything) * * @dev Example: * Consider an operator with the permissions bitmask 00001111 * is about to modify the target permission set 01010101 * Operator wants to set that permission set to 00110011 * Based on their role, an operator has the permissions * to update only lowest 4 bits on the target, meaning that * high 4 bits of the target set in this example is left * unchanged and low 4 bits get changed as desired: 01010011 * * @param operator address of the contract operator which is about to set the permissions * @param target input set of permissions to operator is going to modify * @param desired desired set of permissions operator would like to set * @return resulting set of permissions given operator will set */ function evaluateBy(address operator, uint256 target, uint256 desired) public view returns(uint256) { // read operator's permissions uint256 p = userRoles[operator]; // taking into account operator's permissions, // 1) enable the permissions desired on the `target` target |= p & desired; // 2) disable the permissions desired on the `target` target &= FULL_PRIVILEGES_MASK ^ (p & (FULL_PRIVILEGES_MASK ^ desired)); // return calculated result return target; } /** * @notice Checks if requested set of features is enabled globally on the contract * * @param required set of features to check against * @return true if all the features requested are enabled, false otherwise */ function isFeatureEnabled(uint256 required) public view returns(bool) { // delegate call to `__hasRole`, passing `features` property return __hasRole(features(), required); } /** * @notice Checks if transaction sender `msg.sender` has all the permissions required * * @param required set of permissions (role) to check against * @return true if all the permissions requested are enabled, false otherwise */ function isSenderInRole(uint256 required) public view returns(bool) { // delegate call to `isOperatorInRole`, passing transaction sender return isOperatorInRole(msg.sender, required); } /** * @notice Checks if operator has all the permissions (role) required * * @param operator address of the user to check role for * @param required set of permissions (role) to check * @return true if all the permissions requested are enabled, false otherwise */ function isOperatorInRole(address operator, uint256 required) public view returns(bool) { // delegate call to `__hasRole`, passing operator's permissions (role) return __hasRole(userRoles[operator], required); } /** * @dev Checks if role `actual` contains all the permissions required `required` * * @param actual existent role * @param required required role * @return true if actual has required role (all permissions), false otherwise */ function __hasRole(uint256 actual, uint256 required) internal pure returns(bool) { // check the bitmask for the role required and return the result return actual & required == required; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.1; /** * @title Address Utils * * @dev Utility library of inline functions on addresses * * @author Basil Gorin */ library AddressUtils { /** * @notice Checks if the target address is a contract * @dev This function will return false if invoked during the constructor of a contract, * as the code is not actually created until after the constructor finishes. * @param addr address to check * @return whether the target address is a contract */ function isContract(address addr) internal view returns (bool) { // a variable to load `extcodesize` to uint256 size = 0; // XXX Currently there is no better way to check if there is a contract in an address // than to check the size of the code at that address. // See https://ethereum.stackexchange.com/a/14016/36603 for more details about how this works. // TODO: Check this again before the Serenity release, because all addresses will be contracts. // solium-disable-next-line security/no-inline-assembly assembly { // retrieve the size of the code at address `addr` size := extcodesize(addr) } // positive size indicates a smart contract address return size > 0; } }