Transaction Hash:
Block:
19240568 at Feb-16-2024 12:49:35 PM +UTC
Transaction Fee:
0.001405857957621972 ETH
$3.55
Gas Used:
59,042 Gas / 23.811150666 Gwei
Emitted Events:
295 |
MollyGenesis.ERC20Transfer( from=[Sender] 0xd01777f28cbbb8b8bad19a99bb133b1af356490f, to=0xb25b847e...C6E5E968b, amount=90000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x9d4C3166...903a1d6Fc
Miner
| (Stader Labs: Permissioned Socializing Pool) | 45.572077872241622814 Eth | 45.572078038780860836 Eth | 0.000000166539238022 | |
0xd01777F2...Af356490f |
0.17549015038902726 Eth
Nonce: 250
|
0.174084292431405288 Eth
Nonce: 251
| 0.001405857957621972 | ||
0xe7468080...BDA69E436 |
Execution Trace
MollyGenesis.transfer( to=0xb25b847e2454063E9325b12CE174c74C6E5E968b, amount=90000000000000000 ) => ( True )
transfer[ERC404 (ln:321)]
_transfer[ERC404 (ln:325)]
_getUnit[ERC404 (ln:364)]
_burn[ERC404 (ln:376)]
InvalidSender[ERC404 (ln:412)]
pop[ERC404 (ln:415)]
Transfer[ERC404 (ln:419)]
_mint[ERC404 (ln:384)]
InvalidRecipient[ERC404 (ln:396)]
AlreadyExists[ERC404 (ln:403)]
push[ERC404 (ln:406)]
Transfer[ERC404 (ln:408)]
ERC20Transfer[ERC404 (ln:387)]
//SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.0; import "./ERC404.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; contract MollyGenesis is ERC404 { string public baseTokenURI = "https://app.mollygateway.com/api/metadata/"; constructor( address _owner ) ERC404("MollyGenesisOG", "YUMYUM", 18, 2100, _owner) { balanceOf[_owner] = 2100 * 10 ** 18; } function setTokenURI(string memory _tokenURI) public onlyOwner { baseTokenURI = _tokenURI; } function setNameSymbol( string memory _name, string memory _symbol ) public onlyOwner { _setNameSymbol(_name, _symbol); } function tokenURI(uint256 id) public view override returns (string memory) { return string.concat(baseTokenURI, Strings.toString(id)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } } //SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.0; abstract contract Ownable { event OwnershipTransferred(address indexed user, address indexed newOwner); error Unauthorized(); error InvalidOwner(); address public owner; modifier onlyOwner() virtual { if (msg.sender != owner) revert Unauthorized(); _; } constructor(address _owner) { if (_owner == address(0)) revert InvalidOwner(); owner = _owner; emit OwnershipTransferred(address(0), _owner); } function transferOwnership(address _owner) public virtual onlyOwner { if (_owner == address(0)) revert InvalidOwner(); owner = _owner; emit OwnershipTransferred(msg.sender, _owner); } function revokeOwnership() public virtual onlyOwner { owner = address(0); emit OwnershipTransferred(msg.sender, address(0)); } } abstract contract ERC721Receiver { function onERC721Received( address, address, uint256, bytes calldata ) external virtual returns (bytes4) { return ERC721Receiver.onERC721Received.selector; } } /// @notice ERC404 /// A gas-efficient, mixed ERC20 / ERC721 implementation /// with native liquidity and fractionalization. /// /// This is an experimental standard designed to integrate /// with pre-existing ERC20 / ERC721 support as smoothly as /// possible. /// /// @dev In order to support full functionality of ERC20 and ERC721 /// supply assumptions are made that slightly constraint usage. /// Ensure decimals are sufficiently large (standard 18 recommended) /// as ids are effectively encoded in the lowest range of amounts. /// /// NFTs are spent on ERC20 functions in a FILO queue, this is by /// design. /// abstract contract ERC404 is Ownable { // Events event ERC20Transfer( address indexed from, address indexed to, uint256 amount ); event Approval( address indexed owner, address indexed spender, uint256 amount ); event Transfer( address indexed from, address indexed to, uint256 indexed id ); event ERC721Approval( address indexed owner, address indexed spender, uint256 indexed id ); event ApprovalForAll( address indexed owner, address indexed operator, bool approved ); // Errors error NotFound(); error AlreadyExists(); error InvalidRecipient(); error InvalidSender(); error UnsafeRecipient(); // Metadata /// @dev Token name string public name; /// @dev Token symbol string public symbol; /// @dev Decimals for fractional representation uint8 public immutable decimals; /// @dev Total supply in fractionalized representation uint256 public immutable totalSupply; /// @dev Current mint counter, monotonically increasing to ensure accurate ownership uint256 public minted; // Mappings /// @dev Balance of user in fractional representation mapping(address => uint256) public balanceOf; /// @dev Allowance of user in fractional representation mapping(address => mapping(address => uint256)) public allowance; /// @dev Approval in native representaion mapping(uint256 => address) public getApproved; /// @dev Approval for all in native representation mapping(address => mapping(address => bool)) public isApprovedForAll; /// @dev Owner of id in native representation mapping(uint256 => address) internal _ownerOf; /// @dev Array of owned ids in native representation mapping(address => uint256[]) internal _owned; /// @dev Tracks indices for the _owned mapping mapping(uint256 => uint256) internal _ownedIndex; /// @dev Addresses whitelisted from minting / burning for gas savings (pairs, routers, etc) mapping(address => bool) public whitelist; // Constructor constructor( string memory _name, string memory _symbol, uint8 _decimals, uint256 _totalNativeSupply, address _owner ) Ownable(_owner) { name = _name; symbol = _symbol; decimals = _decimals; totalSupply = _totalNativeSupply * (10 ** decimals); } /// @notice Initialization function to set pairs / etc /// saving gas by avoiding mint / burn on unnecessary targets function setWhitelist(address target, bool state) public onlyOwner { whitelist[target] = state; } /// @notice Function to find owner of a given native token function ownerOf(uint256 id) public view virtual returns (address owner) { owner = _ownerOf[id]; if (owner == address(0)) { revert NotFound(); } } /// @notice tokenURI must be implemented by child contract function tokenURI(uint256 id) public view virtual returns (string memory); /// @notice Function for token approvals /// @dev This function assumes id / native if amount less than or equal to current max id function approve( address spender, uint256 amountOrId ) public virtual returns (bool) { if (amountOrId <= minted && amountOrId > 0) { address owner = _ownerOf[amountOrId]; if (msg.sender != owner && !isApprovedForAll[owner][msg.sender]) { revert Unauthorized(); } getApproved[amountOrId] = spender; emit Approval(owner, spender, amountOrId); } else { allowance[msg.sender][spender] = amountOrId; emit Approval(msg.sender, spender, amountOrId); } return true; } /// @notice Function native approvals function setApprovalForAll(address operator, bool approved) public virtual { isApprovedForAll[msg.sender][operator] = approved; emit ApprovalForAll(msg.sender, operator, approved); } /// @notice Function for mixed transfers /// @dev This function assumes id / native if amount less than or equal to current max id function transferFrom( address from, address to, uint256 amountOrId ) public virtual { if (amountOrId <= minted) { if (from != _ownerOf[amountOrId]) { revert InvalidSender(); } if (to == address(0)) { revert InvalidRecipient(); } if ( msg.sender != from && !isApprovedForAll[from][msg.sender] && msg.sender != getApproved[amountOrId] ) { revert Unauthorized(); } balanceOf[from] -= _getUnit(); unchecked { balanceOf[to] += _getUnit(); } _ownerOf[amountOrId] = to; delete getApproved[amountOrId]; // update _owned for sender uint256 updatedId = _owned[from][_owned[from].length - 1]; _owned[from][_ownedIndex[amountOrId]] = updatedId; // pop _owned[from].pop(); // update index for the moved id _ownedIndex[updatedId] = _ownedIndex[amountOrId]; // push token to to owned _owned[to].push(amountOrId); // update index for to owned _ownedIndex[amountOrId] = _owned[to].length - 1; emit Transfer(from, to, amountOrId); emit ERC20Transfer(from, to, _getUnit()); } else { uint256 allowed = allowance[from][msg.sender]; if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amountOrId; _transfer(from, to, amountOrId); } } /// @notice Function for fractional transfers function transfer( address to, uint256 amount ) public virtual returns (bool) { return _transfer(msg.sender, to, amount); } /// @notice Function for native transfers with contract support function safeTransferFrom( address from, address to, uint256 id ) public virtual { transferFrom(from, to, id); if ( to.code.length != 0 && ERC721Receiver(to).onERC721Received(msg.sender, from, id, "") != ERC721Receiver.onERC721Received.selector ) { revert UnsafeRecipient(); } } /// @notice Function for native transfers with contract support and callback data function safeTransferFrom( address from, address to, uint256 id, bytes calldata data ) public virtual { transferFrom(from, to, id); if ( to.code.length != 0 && ERC721Receiver(to).onERC721Received(msg.sender, from, id, data) != ERC721Receiver.onERC721Received.selector ) { revert UnsafeRecipient(); } } /// @notice Internal function for fractional transfers function _transfer( address from, address to, uint256 amount ) internal returns (bool) { uint256 unit = _getUnit(); uint256 balanceBeforeSender = balanceOf[from]; uint256 balanceBeforeReceiver = balanceOf[to]; balanceOf[from] -= amount; unchecked { balanceOf[to] += amount; } // Skip burn for certain addresses to save gas if (!whitelist[from]) { uint256 tokens_to_burn = (balanceBeforeSender / unit) - (balanceOf[from] / unit); for (uint256 i = 0; i < tokens_to_burn; i++) { _burn(from); } } // Skip minting for certain addresses to save gas if (!whitelist[to]) { uint256 tokens_to_mint = (balanceOf[to] / unit) - (balanceBeforeReceiver / unit); for (uint256 i = 0; i < tokens_to_mint; i++) { _mint(to); } } emit ERC20Transfer(from, to, amount); return true; } // Internal utility logic function _getUnit() internal view returns (uint256) { return 10 ** decimals; } function _mint(address to) internal virtual { if (to == address(0)) { revert InvalidRecipient(); } unchecked { minted++; } uint256 id = minted; if (_ownerOf[id] != address(0)) { revert AlreadyExists(); } _ownerOf[id] = to; _owned[to].push(id); _ownedIndex[id] = _owned[to].length - 1; emit Transfer(address(0), to, id); } function _burn(address from) internal virtual { if (from == address(0)) { revert InvalidSender(); } uint256 id = _owned[from][_owned[from].length - 1]; _owned[from].pop(); delete _ownedIndex[id]; delete _ownerOf[id]; delete getApproved[id]; emit Transfer(from, address(0), id); } function _setNameSymbol( string memory _name, string memory _symbol ) internal { name = _name; symbol = _symbol; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }