ETH Price: $2,529.75 (-1.84%)

Transaction Decoder

Block:
22861770 at Jul-06-2025 05:52:11 PM +UTC
Transaction Fee:
0.00005230013828496 ETH $0.13
Gas Used:
170,180 Gas / 0.307322472 Gwei

Emitted Events:

221 ProxyWrapper.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000dcaf84e17bb0609a19350178018b27851a5a2563, 0x0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000358b85 )
222 FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000000a313cd04a3887fbebade88ba01d582113887852, 0x000000000000000000000000dcaf84e17bb0609a19350178018b27851a5a2563, 0000000000000000000000000000000000000000000000000000000000358ffa )
223 ProxyWrapper.0xfbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db( 0xfbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db, 0x000000000000000000000000dcaf84e17bb0609a19350178018b27851a5a2563, 0x000000000000000000000000dcaf84e17bb0609a19350178018b27851a5a2563, 0x000000000000000000000000dcaf84e17bb0609a19350178018b27851a5a2563, 0000000000000000000000000000000000000000000000000000000000358ffa, 0000000000000000000000000000000000000000000000000000000000358b85 )
224 FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000dcaf84e17bb0609a19350178018b27851a5a2563, 0x000000000000000000000000575a45f4361e937551b05f5287e21069532b2f0e, 0000000000000000000000000000000000000000000000000000000000291f58 )
225 FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000dcaf84e17bb0609a19350178018b27851a5a2563, 0x000000000000000000000000cee6cf4ca95dd8880e31d974b56a1a5a0c787057, 00000000000000000000000000000000000000000000000000000000000bbfd0 )

Account State Difference:

  Address   Before After State Difference Code
0x0a313CD0...113887852
0x63556E77...0f4Ce89D5
(Fake_Phishing1200099)
0.001167260630576407 Eth
Nonce: 207
0.001114960492291447 Eth
Nonce: 208
0.00005230013828496
(MEV Builder: 0x6adb...200)
1.365277793815507125 Eth1.365287564422133005 Eth0.00000977060662588
0xA0b86991...E3606eB48
0xDcaf84e1...51A5A2563 From: 22892027069488871726777845421492261844457874613051320068 To: 22892027439715160471879579678024193261900852513025214993

Execution Trace

0xdcaf84e17bb0609a19350178018b27851a5a2563.252dba42( )
  • ProxyWrapper.ba087652( )
    • PortfolioDebtToken.redeem( shares=3509125, receiver=0xDcaf84e17BB0609A19350178018b27851A5A2563, owner=0xDcaf84e17BB0609A19350178018b27851A5A2563 ) => ( 3510266 )
      • FiatTokenProxy.70a08231( )
        • FiatTokenV2_2.balanceOf( account=0x0a313CD04A3887fbeBAdE88ba01d582113887852 ) => ( 80636898972 )
        • FiatTokenProxy.a9059cbb( )
          • FiatTokenV2_2.transfer( to=0xDcaf84e17BB0609A19350178018b27851A5A2563, value=3510266 ) => ( True )
          • FiatTokenProxy.a9059cbb( )
            • FiatTokenV2_2.transfer( to=0x575a45F4361e937551b05F5287E21069532B2f0E, value=2695000 ) => ( True )
            • FiatTokenProxy.a9059cbb( )
              • FiatTokenV2_2.transfer( to=0xCEe6CF4ca95dd8880e31D974B56a1a5a0c787057, value=770000 ) => ( True )
                File 1 of 4: ProxyWrapper
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
                 * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
                 * be specified by overriding the virtual {_implementation} function.
                 *
                 * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
                 * different contract through the {_delegate} function.
                 *
                 * The success and return data of the delegated call will be returned back to the caller of the proxy.
                 */
                abstract contract Proxy {
                    /**
                     * @dev Delegates the current call to `implementation`.
                     *
                     * This function does not return to its internal call site, it will return directly to the external caller.
                     */
                    function _delegate(address implementation) internal virtual {
                        assembly {
                            // Copy msg.data. We take full control of memory in this inline assembly
                            // block because it will not return to Solidity code. We overwrite the
                            // Solidity scratch pad at memory position 0.
                            calldatacopy(0, 0, calldatasize())
                            // Call the implementation.
                            // out and outsize are 0 because we don't know the size yet.
                            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                            // Copy the returned data.
                            returndatacopy(0, 0, returndatasize())
                            switch result
                            // delegatecall returns 0 on error.
                            case 0 {
                                revert(0, returndatasize())
                            }
                            default {
                                return(0, returndatasize())
                            }
                        }
                    }
                    /**
                     * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
                     * and {_fallback} should delegate.
                     */
                    function _implementation() internal view virtual returns (address);
                    /**
                     * @dev Delegates the current call to the address returned by `_implementation()`.
                     *
                     * This function does not return to its internal call site, it will return directly to the external caller.
                     */
                    function _fallback() internal virtual {
                        _beforeFallback();
                        _delegate(_implementation());
                    }
                    /**
                     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
                     * function in the contract matches the call data.
                     */
                    fallback() external payable virtual {
                        _fallback();
                    }
                    /**
                     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
                     * is empty.
                     */
                    receive() external payable virtual {
                        _fallback();
                    }
                    /**
                     * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
                     * call, or as part of the Solidity `fallback` or `receive` functions.
                     *
                     * If overridden should call `super._beforeFallback()`.
                     */
                    function _beforeFallback() internal virtual {}
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev This is the interface that {BeaconProxy} expects of its beacon.
                 */
                interface IBeacon {
                    /**
                     * @dev Must return an address that can be used as a delegate call target.
                     *
                     * {BeaconProxy} will check that this address is a contract.
                     */
                    function implementation() external view returns (address);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
                 * proxy whose upgrades are fully controlled by the current implementation.
                 */
                interface IERC1822Proxiable {
                    /**
                     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
                     * address.
                     *
                     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
                     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
                     * function revert if invoked through a proxy.
                     */
                    function proxiableUUID() external view returns (bytes32);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library Address {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        (bool success, bytes memory returndata) = target.delegatecall(data);
                        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                     *
                     * _Available since v4.8._
                     */
                    function verifyCallResultFromTarget(
                        address target,
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        if (success) {
                            if (returndata.length == 0) {
                                // only check isContract if the call was successful and the return data is empty
                                // otherwise we already know that it was a contract
                                require(isContract(target), "Address: call to non-contract");
                            }
                            return returndata;
                        } else {
                            _revert(returndata, errorMessage);
                        }
                    }
                    /**
                     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason or using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            _revert(returndata, errorMessage);
                        }
                    }
                    function _revert(bytes memory returndata, string memory errorMessage) private pure {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Library for reading and writing primitive types to specific storage slots.
                 *
                 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
                 * This library helps with reading and writing to such slots without the need for inline assembly.
                 *
                 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
                 *
                 * Example usage to set ERC1967 implementation slot:
                 * ```
                 * contract ERC1967 {
                 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                 *
                 *     function _getImplementation() internal view returns (address) {
                 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                 *     }
                 *
                 *     function _setImplementation(address newImplementation) internal {
                 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                 *     }
                 * }
                 * ```
                 *
                 * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
                 */
                library StorageSlot {
                    struct AddressSlot {
                        address value;
                    }
                    struct BooleanSlot {
                        bool value;
                    }
                    struct Bytes32Slot {
                        bytes32 value;
                    }
                    struct Uint256Slot {
                        uint256 value;
                    }
                    /**
                     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
                     */
                    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            r.slot := slot
                        }
                    }
                    /**
                     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
                     */
                    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            r.slot := slot
                        }
                    }
                    /**
                     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
                     */
                    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            r.slot := slot
                        }
                    }
                    /**
                     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
                     */
                    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            r.slot := slot
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol)
                pragma solidity ^0.8.2;
                import "IBeacon.sol";
                import "draft-IERC1822.sol";
                import "Address.sol";
                import "StorageSlot.sol";
                /**
                 * @dev This abstract contract provides getters and event emitting update functions for
                 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
                 *
                 * _Available since v4.1._
                 *
                 * @custom:oz-upgrades-unsafe-allow delegatecall
                 */
                abstract contract ERC1967Upgrade {
                    // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
                    bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
                    /**
                     * @dev Storage slot with the address of the current implementation.
                     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
                     * validated in the constructor.
                     */
                    bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /**
                     * @dev Emitted when the implementation is upgraded.
                     */
                    event Upgraded(address indexed implementation);
                    /**
                     * @dev Returns the current implementation address.
                     */
                    function _getImplementation() internal view returns (address) {
                        return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                    }
                    /**
                     * @dev Stores a new address in the EIP1967 implementation slot.
                     */
                    function _setImplementation(address newImplementation) private {
                        require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                        StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                    }
                    /**
                     * @dev Perform implementation upgrade
                     *
                     * Emits an {Upgraded} event.
                     */
                    function _upgradeTo(address newImplementation) internal {
                        _setImplementation(newImplementation);
                        emit Upgraded(newImplementation);
                    }
                    /**
                     * @dev Perform implementation upgrade with additional setup call.
                     *
                     * Emits an {Upgraded} event.
                     */
                    function _upgradeToAndCall(
                        address newImplementation,
                        bytes memory data,
                        bool forceCall
                    ) internal {
                        _upgradeTo(newImplementation);
                        if (data.length > 0 || forceCall) {
                            Address.functionDelegateCall(newImplementation, data);
                        }
                    }
                    /**
                     * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
                     *
                     * Emits an {Upgraded} event.
                     */
                    function _upgradeToAndCallUUPS(
                        address newImplementation,
                        bytes memory data,
                        bool forceCall
                    ) internal {
                        // Upgrades from old implementations will perform a rollback test. This test requires the new
                        // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                        // this special case will break upgrade paths from old UUPS implementation to new ones.
                        if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                            _setImplementation(newImplementation);
                        } else {
                            try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                                require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                            } catch {
                                revert("ERC1967Upgrade: new implementation is not UUPS");
                            }
                            _upgradeToAndCall(newImplementation, data, forceCall);
                        }
                    }
                    /**
                     * @dev Storage slot with the admin of the contract.
                     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
                     * validated in the constructor.
                     */
                    bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /**
                     * @dev Emitted when the admin account has changed.
                     */
                    event AdminChanged(address previousAdmin, address newAdmin);
                    /**
                     * @dev Returns the current admin.
                     */
                    function _getAdmin() internal view returns (address) {
                        return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
                    }
                    /**
                     * @dev Stores a new address in the EIP1967 admin slot.
                     */
                    function _setAdmin(address newAdmin) private {
                        require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                        StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
                    }
                    /**
                     * @dev Changes the admin of the proxy.
                     *
                     * Emits an {AdminChanged} event.
                     */
                    function _changeAdmin(address newAdmin) internal {
                        emit AdminChanged(_getAdmin(), newAdmin);
                        _setAdmin(newAdmin);
                    }
                    /**
                     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
                     * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
                     */
                    bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
                    /**
                     * @dev Emitted when the beacon is upgraded.
                     */
                    event BeaconUpgraded(address indexed beacon);
                    /**
                     * @dev Returns the current beacon.
                     */
                    function _getBeacon() internal view returns (address) {
                        return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
                    }
                    /**
                     * @dev Stores a new beacon in the EIP1967 beacon slot.
                     */
                    function _setBeacon(address newBeacon) private {
                        require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                        require(
                            Address.isContract(IBeacon(newBeacon).implementation()),
                            "ERC1967: beacon implementation is not a contract"
                        );
                        StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
                    }
                    /**
                     * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
                     * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
                     *
                     * Emits a {BeaconUpgraded} event.
                     */
                    function _upgradeBeaconToAndCall(
                        address newBeacon,
                        bytes memory data,
                        bool forceCall
                    ) internal {
                        _setBeacon(newBeacon);
                        emit BeaconUpgraded(newBeacon);
                        if (data.length > 0 || forceCall) {
                            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
                pragma solidity ^0.8.0;
                import "Proxy.sol";
                import "ERC1967Upgrade.sol";
                /**
                 * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
                 * implementation address that can be changed. This address is stored in storage in the location specified by
                 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
                 * implementation behind the proxy.
                 */
                contract ERC1967Proxy is Proxy, ERC1967Upgrade {
                    /**
                     * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
                     *
                     * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
                     * function call, and allows initializing the storage of the proxy like a Solidity constructor.
                     */
                    constructor(address _logic, bytes memory _data) payable {
                        _upgradeToAndCall(_logic, _data, false);
                    }
                    /**
                     * @dev Returns the current implementation address.
                     */
                    function _implementation() internal view virtual override returns (address impl) {
                        return ERC1967Upgrade._getImplementation();
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.17;
                import {ERC1967Proxy} from "ERC1967Proxy.sol";
                // Needed for Etherscan verification
                contract ProxyWrapper is ERC1967Proxy {
                    constructor(address _logic, bytes memory _data) payable ERC1967Proxy(_logic, _data) {}
                }
                

                File 2 of 4: FiatTokenProxy
                pragma solidity ^0.4.24;
                
                // File: zos-lib/contracts/upgradeability/Proxy.sol
                
                /**
                 * @title Proxy
                 * @dev Implements delegation of calls to other contracts, with proper
                 * forwarding of return values and bubbling of failures.
                 * It defines a fallback function that delegates all calls to the address
                 * returned by the abstract _implementation() internal function.
                 */
                contract Proxy {
                  /**
                   * @dev Fallback function.
                   * Implemented entirely in `_fallback`.
                   */
                  function () payable external {
                    _fallback();
                  }
                
                  /**
                   * @return The Address of the implementation.
                   */
                  function _implementation() internal view returns (address);
                
                  /**
                   * @dev Delegates execution to an implementation contract.
                   * This is a low level function that doesn't return to its internal call site.
                   * It will return to the external caller whatever the implementation returns.
                   * @param implementation Address to delegate.
                   */
                  function _delegate(address implementation) internal {
                    assembly {
                      // Copy msg.data. We take full control of memory in this inline assembly
                      // block because it will not return to Solidity code. We overwrite the
                      // Solidity scratch pad at memory position 0.
                      calldatacopy(0, 0, calldatasize)
                
                      // Call the implementation.
                      // out and outsize are 0 because we don't know the size yet.
                      let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0)
                
                      // Copy the returned data.
                      returndatacopy(0, 0, returndatasize)
                
                      switch result
                      // delegatecall returns 0 on error.
                      case 0 { revert(0, returndatasize) }
                      default { return(0, returndatasize) }
                    }
                  }
                
                  /**
                   * @dev Function that is run as the first thing in the fallback function.
                   * Can be redefined in derived contracts to add functionality.
                   * Redefinitions must call super._willFallback().
                   */
                  function _willFallback() internal {
                  }
                
                  /**
                   * @dev fallback implementation.
                   * Extracted to enable manual triggering.
                   */
                  function _fallback() internal {
                    _willFallback();
                    _delegate(_implementation());
                  }
                }
                
                // File: openzeppelin-solidity/contracts/AddressUtils.sol
                
                /**
                 * Utility library of inline functions on addresses
                 */
                library AddressUtils {
                
                  /**
                   * Returns whether the target address is a contract
                   * @dev This function will return false if invoked during the constructor of a contract,
                   * as the code is not actually created until after the constructor finishes.
                   * @param addr address to check
                   * @return whether the target address is a contract
                   */
                  function isContract(address addr) internal view returns (bool) {
                    uint256 size;
                    // XXX Currently there is no better way to check if there is a contract in an address
                    // than to check the size of the code at that address.
                    // See https://ethereum.stackexchange.com/a/14016/36603
                    // for more details about how this works.
                    // TODO Check this again before the Serenity release, because all addresses will be
                    // contracts then.
                    // solium-disable-next-line security/no-inline-assembly
                    assembly { size := extcodesize(addr) }
                    return size > 0;
                  }
                
                }
                
                // File: zos-lib/contracts/upgradeability/UpgradeabilityProxy.sol
                
                /**
                 * @title UpgradeabilityProxy
                 * @dev This contract implements a proxy that allows to change the
                 * implementation address to which it will delegate.
                 * Such a change is called an implementation upgrade.
                 */
                contract UpgradeabilityProxy is Proxy {
                  /**
                   * @dev Emitted when the implementation is upgraded.
                   * @param implementation Address of the new implementation.
                   */
                  event Upgraded(address implementation);
                
                  /**
                   * @dev Storage slot with the address of the current implementation.
                   * This is the keccak-256 hash of "org.zeppelinos.proxy.implementation", and is
                   * validated in the constructor.
                   */
                  bytes32 private constant IMPLEMENTATION_SLOT = 0x7050c9e0f4ca769c69bd3a8ef740bc37934f8e2c036e5a723fd8ee048ed3f8c3;
                
                  /**
                   * @dev Contract constructor.
                   * @param _implementation Address of the initial implementation.
                   */
                  constructor(address _implementation) public {
                    assert(IMPLEMENTATION_SLOT == keccak256("org.zeppelinos.proxy.implementation"));
                
                    _setImplementation(_implementation);
                  }
                
                  /**
                   * @dev Returns the current implementation.
                   * @return Address of the current implementation
                   */
                  function _implementation() internal view returns (address impl) {
                    bytes32 slot = IMPLEMENTATION_SLOT;
                    assembly {
                      impl := sload(slot)
                    }
                  }
                
                  /**
                   * @dev Upgrades the proxy to a new implementation.
                   * @param newImplementation Address of the new implementation.
                   */
                  function _upgradeTo(address newImplementation) internal {
                    _setImplementation(newImplementation);
                    emit Upgraded(newImplementation);
                  }
                
                  /**
                   * @dev Sets the implementation address of the proxy.
                   * @param newImplementation Address of the new implementation.
                   */
                  function _setImplementation(address newImplementation) private {
                    require(AddressUtils.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");
                
                    bytes32 slot = IMPLEMENTATION_SLOT;
                
                    assembly {
                      sstore(slot, newImplementation)
                    }
                  }
                }
                
                // File: zos-lib/contracts/upgradeability/AdminUpgradeabilityProxy.sol
                
                /**
                 * @title AdminUpgradeabilityProxy
                 * @dev This contract combines an upgradeability proxy with an authorization
                 * mechanism for administrative tasks.
                 * All external functions in this contract must be guarded by the
                 * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
                 * feature proposal that would enable this to be done automatically.
                 */
                contract AdminUpgradeabilityProxy is UpgradeabilityProxy {
                  /**
                   * @dev Emitted when the administration has been transferred.
                   * @param previousAdmin Address of the previous admin.
                   * @param newAdmin Address of the new admin.
                   */
                  event AdminChanged(address previousAdmin, address newAdmin);
                
                  /**
                   * @dev Storage slot with the admin of the contract.
                   * This is the keccak-256 hash of "org.zeppelinos.proxy.admin", and is
                   * validated in the constructor.
                   */
                  bytes32 private constant ADMIN_SLOT = 0x10d6a54a4754c8869d6886b5f5d7fbfa5b4522237ea5c60d11bc4e7a1ff9390b;
                
                  /**
                   * @dev Modifier to check whether the `msg.sender` is the admin.
                   * If it is, it will run the function. Otherwise, it will delegate the call
                   * to the implementation.
                   */
                  modifier ifAdmin() {
                    if (msg.sender == _admin()) {
                      _;
                    } else {
                      _fallback();
                    }
                  }
                
                  /**
                   * Contract constructor.
                   * It sets the `msg.sender` as the proxy administrator.
                   * @param _implementation address of the initial implementation.
                   */
                  constructor(address _implementation) UpgradeabilityProxy(_implementation) public {
                    assert(ADMIN_SLOT == keccak256("org.zeppelinos.proxy.admin"));
                
                    _setAdmin(msg.sender);
                  }
                
                  /**
                   * @return The address of the proxy admin.
                   */
                  function admin() external view ifAdmin returns (address) {
                    return _admin();
                  }
                
                  /**
                   * @return The address of the implementation.
                   */
                  function implementation() external view ifAdmin returns (address) {
                    return _implementation();
                  }
                
                  /**
                   * @dev Changes the admin of the proxy.
                   * Only the current admin can call this function.
                   * @param newAdmin Address to transfer proxy administration to.
                   */
                  function changeAdmin(address newAdmin) external ifAdmin {
                    require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
                    emit AdminChanged(_admin(), newAdmin);
                    _setAdmin(newAdmin);
                  }
                
                  /**
                   * @dev Upgrade the backing implementation of the proxy.
                   * Only the admin can call this function.
                   * @param newImplementation Address of the new implementation.
                   */
                  function upgradeTo(address newImplementation) external ifAdmin {
                    _upgradeTo(newImplementation);
                  }
                
                  /**
                   * @dev Upgrade the backing implementation of the proxy and call a function
                   * on the new implementation.
                   * This is useful to initialize the proxied contract.
                   * @param newImplementation Address of the new implementation.
                   * @param data Data to send as msg.data in the low level call.
                   * It should include the signature and the parameters of the function to be
                   * called, as described in
                   * https://solidity.readthedocs.io/en/develop/abi-spec.html#function-selector-and-argument-encoding.
                   */
                  function upgradeToAndCall(address newImplementation, bytes data) payable external ifAdmin {
                    _upgradeTo(newImplementation);
                    require(address(this).call.value(msg.value)(data));
                  }
                
                  /**
                   * @return The admin slot.
                   */
                  function _admin() internal view returns (address adm) {
                    bytes32 slot = ADMIN_SLOT;
                    assembly {
                      adm := sload(slot)
                    }
                  }
                
                  /**
                   * @dev Sets the address of the proxy admin.
                   * @param newAdmin Address of the new proxy admin.
                   */
                  function _setAdmin(address newAdmin) internal {
                    bytes32 slot = ADMIN_SLOT;
                
                    assembly {
                      sstore(slot, newAdmin)
                    }
                  }
                
                  /**
                   * @dev Only fall back when the sender is not the admin.
                   */
                  function _willFallback() internal {
                    require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
                    super._willFallback();
                  }
                }
                
                // File: contracts/FiatTokenProxy.sol
                
                /**
                * Copyright CENTRE SECZ 2018
                *
                * Permission is hereby granted, free of charge, to any person obtaining a copy 
                * of this software and associated documentation files (the "Software"), to deal 
                * in the Software without restriction, including without limitation the rights 
                * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 
                * copies of the Software, and to permit persons to whom the Software is furnished to 
                * do so, subject to the following conditions:
                *
                * The above copyright notice and this permission notice shall be included in all 
                * copies or substantial portions of the Software.
                *
                * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
                * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
                * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
                * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
                * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 
                * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
                */
                
                pragma solidity ^0.4.24;
                
                
                /**
                 * @title FiatTokenProxy
                 * @dev This contract proxies FiatToken calls and enables FiatToken upgrades
                */ 
                contract FiatTokenProxy is AdminUpgradeabilityProxy {
                    constructor(address _implementation) public AdminUpgradeabilityProxy(_implementation) {
                    }
                }

                File 3 of 4: PortfolioDebtToken
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 standard as defined in the EIP.
                 */
                interface IERC20 {
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `to`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address to, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `from` to `to` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 amount
                    ) external returns (bool);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                 *
                 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                 * need to send a transaction, and thus is not required to hold Ether at all.
                 */
                interface IERC20Permit {
                    /**
                     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                     * given ``owner``'s signed approval.
                     *
                     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                     * ordering also apply here.
                     *
                     * Emits an {Approval} event.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     * - `deadline` must be a timestamp in the future.
                     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                     * over the EIP712-formatted function arguments.
                     * - the signature must use ``owner``'s current nonce (see {nonces}).
                     *
                     * For more information on the signature format, see the
                     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                     * section].
                     */
                    function permit(
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) external;
                    /**
                     * @dev Returns the current nonce for `owner`. This value must be
                     * included whenever a signature is generated for {permit}.
                     *
                     * Every successful call to {permit} increases ``owner``'s nonce by one. This
                     * prevents a signature from being used multiple times.
                     */
                    function nonces(address owner) external view returns (uint256);
                    /**
                     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                     */
                    // solhint-disable-next-line func-name-mixedcase
                    function DOMAIN_SEPARATOR() external view returns (bytes32);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library Address {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        (bool success, bytes memory returndata) = target.delegatecall(data);
                        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                     *
                     * _Available since v4.8._
                     */
                    function verifyCallResultFromTarget(
                        address target,
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        if (success) {
                            if (returndata.length == 0) {
                                // only check isContract if the call was successful and the return data is empty
                                // otherwise we already know that it was a contract
                                require(isContract(target), "Address: call to non-contract");
                            }
                            return returndata;
                        } else {
                            _revert(returndata, errorMessage);
                        }
                    }
                    /**
                     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason or using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            _revert(returndata, errorMessage);
                        }
                    }
                    function _revert(bytes memory returndata, string memory errorMessage) private pure {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
                pragma solidity ^0.8.0;
                import "IERC20.sol";
                import "draft-IERC20Permit.sol";
                import "Address.sol";
                /**
                 * @title SafeERC20
                 * @dev Wrappers around ERC20 operations that throw on failure (when the token
                 * contract returns false). Tokens that return no value (and instead revert or
                 * throw on failure) are also supported, non-reverting calls are assumed to be
                 * successful.
                 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                 */
                library SafeERC20 {
                    using Address for address;
                    function safeTransfer(
                        IERC20 token,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                    }
                    function safeTransferFrom(
                        IERC20 token,
                        address from,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                    }
                    /**
                     * @dev Deprecated. This function has issues similar to the ones found in
                     * {IERC20-approve}, and its usage is discouraged.
                     *
                     * Whenever possible, use {safeIncreaseAllowance} and
                     * {safeDecreaseAllowance} instead.
                     */
                    function safeApprove(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        // safeApprove should only be called when setting an initial allowance,
                        // or when resetting it to zero. To increase and decrease it, use
                        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                        require(
                            (value == 0) || (token.allowance(address(this), spender) == 0),
                            "SafeERC20: approve from non-zero to non-zero allowance"
                        );
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                    }
                    function safeIncreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        uint256 newAllowance = token.allowance(address(this), spender) + value;
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                    function safeDecreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        unchecked {
                            uint256 oldAllowance = token.allowance(address(this), spender);
                            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                            uint256 newAllowance = oldAllowance - value;
                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                        }
                    }
                    function safePermit(
                        IERC20Permit token,
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal {
                        uint256 nonceBefore = token.nonces(owner);
                        token.permit(owner, spender, value, deadline, v, r, s);
                        uint256 nonceAfter = token.nonces(owner);
                        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                    }
                    /**
                     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                     * on the return value: the return value is optional (but if data is returned, it must not be false).
                     * @param token The token targeted by the call.
                     * @param data The call data (encoded using abi.encode or one of its variants).
                     */
                    function _callOptionalReturn(IERC20 token, bytes memory data) private {
                        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                        // the target address contains contract code and also asserts for success in the low-level call.
                        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                        if (returndata.length > 0) {
                            // Return data is optional
                            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 standard as defined in the EIP.
                 */
                interface IERC20Upgradeable {
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `to`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address to, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `from` to `to` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 amount
                    ) external returns (bool);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
                pragma solidity ^0.8.0;
                import "IERC20Upgradeable.sol";
                /**
                 * @dev Interface for the optional metadata functions from the ERC20 standard.
                 *
                 * _Available since v4.1._
                 */
                interface IERC20MetadataUpgradeable is IERC20Upgradeable {
                    /**
                     * @dev Returns the name of the token.
                     */
                    function name() external view returns (string memory);
                    /**
                     * @dev Returns the symbol of the token.
                     */
                    function symbol() external view returns (string memory);
                    /**
                     * @dev Returns the decimals places of the token.
                     */
                    function decimals() external view returns (uint8);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library AddressUpgradeable {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                     *
                     * _Available since v4.8._
                     */
                    function verifyCallResultFromTarget(
                        address target,
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        if (success) {
                            if (returndata.length == 0) {
                                // only check isContract if the call was successful and the return data is empty
                                // otherwise we already know that it was a contract
                                require(isContract(target), "Address: call to non-contract");
                            }
                            return returndata;
                        } else {
                            _revert(returndata, errorMessage);
                        }
                    }
                    /**
                     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason or using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            _revert(returndata, errorMessage);
                        }
                    }
                    function _revert(bytes memory returndata, string memory errorMessage) private pure {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/Initializable.sol)
                pragma solidity ^0.8.2;
                import "AddressUpgradeable.sol";
                /**
                 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                 *
                 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                 * case an upgrade adds a module that needs to be initialized.
                 *
                 * For example:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * contract MyToken is ERC20Upgradeable {
                 *     function initialize() initializer public {
                 *         __ERC20_init("MyToken", "MTK");
                 *     }
                 * }
                 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                 *     function initializeV2() reinitializer(2) public {
                 *         __ERC20Permit_init("MyToken");
                 *     }
                 * }
                 * ```
                 *
                 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                 *
                 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                 *
                 * [CAUTION]
                 * ====
                 * Avoid leaving a contract uninitialized.
                 *
                 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * /// @custom:oz-upgrades-unsafe-allow constructor
                 * constructor() {
                 *     _disableInitializers();
                 * }
                 * ```
                 * ====
                 */
                abstract contract Initializable {
                    /**
                     * @dev Indicates that the contract has been initialized.
                     * @custom:oz-retyped-from bool
                     */
                    uint8 private _initialized;
                    /**
                     * @dev Indicates that the contract is in the process of being initialized.
                     */
                    bool private _initializing;
                    /**
                     * @dev Triggered when the contract has been initialized or reinitialized.
                     */
                    event Initialized(uint8 version);
                    /**
                     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                     * `onlyInitializing` functions can be used to initialize parent contracts.
                     *
                     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
                     * constructor.
                     *
                     * Emits an {Initialized} event.
                     */
                    modifier initializer() {
                        bool isTopLevelCall = !_initializing;
                        require(
                            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                            "Initializable: contract is already initialized"
                        );
                        _initialized = 1;
                        if (isTopLevelCall) {
                            _initializing = true;
                        }
                        _;
                        if (isTopLevelCall) {
                            _initializing = false;
                            emit Initialized(1);
                        }
                    }
                    /**
                     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                     * used to initialize parent contracts.
                     *
                     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
                     * are added through upgrades and that require initialization.
                     *
                     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
                     * cannot be nested. If one is invoked in the context of another, execution will revert.
                     *
                     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                     * a contract, executing them in the right order is up to the developer or operator.
                     *
                     * WARNING: setting the version to 255 will prevent any future reinitialization.
                     *
                     * Emits an {Initialized} event.
                     */
                    modifier reinitializer(uint8 version) {
                        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                        _initialized = version;
                        _initializing = true;
                        _;
                        _initializing = false;
                        emit Initialized(version);
                    }
                    /**
                     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                     * {initializer} and {reinitializer} modifiers, directly or indirectly.
                     */
                    modifier onlyInitializing() {
                        require(_initializing, "Initializable: contract is not initializing");
                        _;
                    }
                    /**
                     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                     * through proxies.
                     *
                     * Emits an {Initialized} event the first time it is successfully executed.
                     */
                    function _disableInitializers() internal virtual {
                        require(!_initializing, "Initializable: contract is initializing");
                        if (_initialized < type(uint8).max) {
                            _initialized = type(uint8).max;
                            emit Initialized(type(uint8).max);
                        }
                    }
                    /**
                     * @dev Internal function that returns the initialized version. Returns `_initialized`
                     */
                    function _getInitializedVersion() internal view returns (uint8) {
                        return _initialized;
                    }
                    /**
                     * @dev Internal function that returns the initialized version. Returns `_initializing`
                     */
                    function _isInitializing() internal view returns (bool) {
                        return _initializing;
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                pragma solidity ^0.8.0;
                import "Initializable.sol";
                /**
                 * @dev Provides information about the current execution context, including the
                 * sender of the transaction and its data. While these are generally available
                 * via msg.sender and msg.data, they should not be accessed in such a direct
                 * manner, since when dealing with meta-transactions the account sending and
                 * paying for execution may not be the actual sender (as far as an application
                 * is concerned).
                 *
                 * This contract is only required for intermediate, library-like contracts.
                 */
                abstract contract ContextUpgradeable is Initializable {
                    function __Context_init() internal onlyInitializing {
                    }
                    function __Context_init_unchained() internal onlyInitializing {
                    }
                    function _msgSender() internal view virtual returns (address) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes calldata) {
                        return msg.data;
                    }
                    /**
                     * @dev This empty reserved space is put in place to allow future versions to add new
                     * variables without shifting down storage in the inheritance chain.
                     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                     */
                    uint256[50] private __gap;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
                pragma solidity ^0.8.0;
                import "IERC20Upgradeable.sol";
                import "IERC20MetadataUpgradeable.sol";
                import "ContextUpgradeable.sol";
                import "Initializable.sol";
                /**
                 * @dev Implementation of the {IERC20} interface.
                 *
                 * This implementation is agnostic to the way tokens are created. This means
                 * that a supply mechanism has to be added in a derived contract using {_mint}.
                 * For a generic mechanism see {ERC20PresetMinterPauser}.
                 *
                 * TIP: For a detailed writeup see our guide
                 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
                 * to implement supply mechanisms].
                 *
                 * We have followed general OpenZeppelin Contracts guidelines: functions revert
                 * instead returning `false` on failure. This behavior is nonetheless
                 * conventional and does not conflict with the expectations of ERC20
                 * applications.
                 *
                 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
                 * This allows applications to reconstruct the allowance for all accounts just
                 * by listening to said events. Other implementations of the EIP may not emit
                 * these events, as it isn't required by the specification.
                 *
                 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
                 * functions have been added to mitigate the well-known issues around setting
                 * allowances. See {IERC20-approve}.
                 */
                contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
                    mapping(address => uint256) private _balances;
                    mapping(address => mapping(address => uint256)) private _allowances;
                    uint256 private _totalSupply;
                    string private _name;
                    string private _symbol;
                    /**
                     * @dev Sets the values for {name} and {symbol}.
                     *
                     * The default value of {decimals} is 18. To select a different value for
                     * {decimals} you should overload it.
                     *
                     * All two of these values are immutable: they can only be set once during
                     * construction.
                     */
                    function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
                        __ERC20_init_unchained(name_, symbol_);
                    }
                    function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
                        _name = name_;
                        _symbol = symbol_;
                    }
                    /**
                     * @dev Returns the name of the token.
                     */
                    function name() public view virtual override returns (string memory) {
                        return _name;
                    }
                    /**
                     * @dev Returns the symbol of the token, usually a shorter version of the
                     * name.
                     */
                    function symbol() public view virtual override returns (string memory) {
                        return _symbol;
                    }
                    /**
                     * @dev Returns the number of decimals used to get its user representation.
                     * For example, if `decimals` equals `2`, a balance of `505` tokens should
                     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
                     *
                     * Tokens usually opt for a value of 18, imitating the relationship between
                     * Ether and Wei. This is the value {ERC20} uses, unless this function is
                     * overridden;
                     *
                     * NOTE: This information is only used for _display_ purposes: it in
                     * no way affects any of the arithmetic of the contract, including
                     * {IERC20-balanceOf} and {IERC20-transfer}.
                     */
                    function decimals() public view virtual override returns (uint8) {
                        return 18;
                    }
                    /**
                     * @dev See {IERC20-totalSupply}.
                     */
                    function totalSupply() public view virtual override returns (uint256) {
                        return _totalSupply;
                    }
                    /**
                     * @dev See {IERC20-balanceOf}.
                     */
                    function balanceOf(address account) public view virtual override returns (uint256) {
                        return _balances[account];
                    }
                    /**
                     * @dev See {IERC20-transfer}.
                     *
                     * Requirements:
                     *
                     * - `to` cannot be the zero address.
                     * - the caller must have a balance of at least `amount`.
                     */
                    function transfer(address to, uint256 amount) public virtual override returns (bool) {
                        address owner = _msgSender();
                        _transfer(owner, to, amount);
                        return true;
                    }
                    /**
                     * @dev See {IERC20-allowance}.
                     */
                    function allowance(address owner, address spender) public view virtual override returns (uint256) {
                        return _allowances[owner][spender];
                    }
                    /**
                     * @dev See {IERC20-approve}.
                     *
                     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
                     * `transferFrom`. This is semantically equivalent to an infinite approval.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     */
                    function approve(address spender, uint256 amount) public virtual override returns (bool) {
                        address owner = _msgSender();
                        _approve(owner, spender, amount);
                        return true;
                    }
                    /**
                     * @dev See {IERC20-transferFrom}.
                     *
                     * Emits an {Approval} event indicating the updated allowance. This is not
                     * required by the EIP. See the note at the beginning of {ERC20}.
                     *
                     * NOTE: Does not update the allowance if the current allowance
                     * is the maximum `uint256`.
                     *
                     * Requirements:
                     *
                     * - `from` and `to` cannot be the zero address.
                     * - `from` must have a balance of at least `amount`.
                     * - the caller must have allowance for ``from``'s tokens of at least
                     * `amount`.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 amount
                    ) public virtual override returns (bool) {
                        address spender = _msgSender();
                        _spendAllowance(from, spender, amount);
                        _transfer(from, to, amount);
                        return true;
                    }
                    /**
                     * @dev Atomically increases the allowance granted to `spender` by the caller.
                     *
                     * This is an alternative to {approve} that can be used as a mitigation for
                     * problems described in {IERC20-approve}.
                     *
                     * Emits an {Approval} event indicating the updated allowance.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     */
                    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                        address owner = _msgSender();
                        _approve(owner, spender, allowance(owner, spender) + addedValue);
                        return true;
                    }
                    /**
                     * @dev Atomically decreases the allowance granted to `spender` by the caller.
                     *
                     * This is an alternative to {approve} that can be used as a mitigation for
                     * problems described in {IERC20-approve}.
                     *
                     * Emits an {Approval} event indicating the updated allowance.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     * - `spender` must have allowance for the caller of at least
                     * `subtractedValue`.
                     */
                    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                        address owner = _msgSender();
                        uint256 currentAllowance = allowance(owner, spender);
                        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                        unchecked {
                            _approve(owner, spender, currentAllowance - subtractedValue);
                        }
                        return true;
                    }
                    /**
                     * @dev Moves `amount` of tokens from `from` to `to`.
                     *
                     * This internal function is equivalent to {transfer}, and can be used to
                     * e.g. implement automatic token fees, slashing mechanisms, etc.
                     *
                     * Emits a {Transfer} event.
                     *
                     * Requirements:
                     *
                     * - `from` cannot be the zero address.
                     * - `to` cannot be the zero address.
                     * - `from` must have a balance of at least `amount`.
                     */
                    function _transfer(
                        address from,
                        address to,
                        uint256 amount
                    ) internal virtual {
                        require(from != address(0), "ERC20: transfer from the zero address");
                        require(to != address(0), "ERC20: transfer to the zero address");
                        _beforeTokenTransfer(from, to, amount);
                        uint256 fromBalance = _balances[from];
                        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
                        unchecked {
                            _balances[from] = fromBalance - amount;
                            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                            // decrementing then incrementing.
                            _balances[to] += amount;
                        }
                        emit Transfer(from, to, amount);
                        _afterTokenTransfer(from, to, amount);
                    }
                    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
                     * the total supply.
                     *
                     * Emits a {Transfer} event with `from` set to the zero address.
                     *
                     * Requirements:
                     *
                     * - `account` cannot be the zero address.
                     */
                    function _mint(address account, uint256 amount) internal virtual {
                        require(account != address(0), "ERC20: mint to the zero address");
                        _beforeTokenTransfer(address(0), account, amount);
                        _totalSupply += amount;
                        unchecked {
                            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                            _balances[account] += amount;
                        }
                        emit Transfer(address(0), account, amount);
                        _afterTokenTransfer(address(0), account, amount);
                    }
                    /**
                     * @dev Destroys `amount` tokens from `account`, reducing the
                     * total supply.
                     *
                     * Emits a {Transfer} event with `to` set to the zero address.
                     *
                     * Requirements:
                     *
                     * - `account` cannot be the zero address.
                     * - `account` must have at least `amount` tokens.
                     */
                    function _burn(address account, uint256 amount) internal virtual {
                        require(account != address(0), "ERC20: burn from the zero address");
                        _beforeTokenTransfer(account, address(0), amount);
                        uint256 accountBalance = _balances[account];
                        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                        unchecked {
                            _balances[account] = accountBalance - amount;
                            // Overflow not possible: amount <= accountBalance <= totalSupply.
                            _totalSupply -= amount;
                        }
                        emit Transfer(account, address(0), amount);
                        _afterTokenTransfer(account, address(0), amount);
                    }
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
                     *
                     * This internal function is equivalent to `approve`, and can be used to
                     * e.g. set automatic allowances for certain subsystems, etc.
                     *
                     * Emits an {Approval} event.
                     *
                     * Requirements:
                     *
                     * - `owner` cannot be the zero address.
                     * - `spender` cannot be the zero address.
                     */
                    function _approve(
                        address owner,
                        address spender,
                        uint256 amount
                    ) internal virtual {
                        require(owner != address(0), "ERC20: approve from the zero address");
                        require(spender != address(0), "ERC20: approve to the zero address");
                        _allowances[owner][spender] = amount;
                        emit Approval(owner, spender, amount);
                    }
                    /**
                     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
                     *
                     * Does not update the allowance amount in case of infinite allowance.
                     * Revert if not enough allowance is available.
                     *
                     * Might emit an {Approval} event.
                     */
                    function _spendAllowance(
                        address owner,
                        address spender,
                        uint256 amount
                    ) internal virtual {
                        uint256 currentAllowance = allowance(owner, spender);
                        if (currentAllowance != type(uint256).max) {
                            require(currentAllowance >= amount, "ERC20: insufficient allowance");
                            unchecked {
                                _approve(owner, spender, currentAllowance - amount);
                            }
                        }
                    }
                    /**
                     * @dev Hook that is called before any transfer of tokens. This includes
                     * minting and burning.
                     *
                     * Calling conditions:
                     *
                     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                     * will be transferred to `to`.
                     * - when `from` is zero, `amount` tokens will be minted for `to`.
                     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
                     * - `from` and `to` are never both zero.
                     *
                     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                     */
                    function _beforeTokenTransfer(
                        address from,
                        address to,
                        uint256 amount
                    ) internal virtual {}
                    /**
                     * @dev Hook that is called after any transfer of tokens. This includes
                     * minting and burning.
                     *
                     * Calling conditions:
                     *
                     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                     * has been transferred to `to`.
                     * - when `from` is zero, `amount` tokens have been minted for `to`.
                     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
                     * - `from` and `to` are never both zero.
                     *
                     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                     */
                    function _afterTokenTransfer(
                        address from,
                        address to,
                        uint256 amount
                    ) internal virtual {}
                    /**
                     * @dev This empty reserved space is put in place to allow future versions to add new
                     * variables without shifting down storage in the inheritance chain.
                     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                     */
                    uint256[45] private __gap;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                 *
                 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                 * need to send a transaction, and thus is not required to hold Ether at all.
                 */
                interface IERC20PermitUpgradeable {
                    /**
                     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                     * given ``owner``'s signed approval.
                     *
                     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                     * ordering also apply here.
                     *
                     * Emits an {Approval} event.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     * - `deadline` must be a timestamp in the future.
                     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                     * over the EIP712-formatted function arguments.
                     * - the signature must use ``owner``'s current nonce (see {nonces}).
                     *
                     * For more information on the signature format, see the
                     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                     * section].
                     */
                    function permit(
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) external;
                    /**
                     * @dev Returns the current nonce for `owner`. This value must be
                     * included whenever a signature is generated for {permit}.
                     *
                     * Every successful call to {permit} increases ``owner``'s nonce by one. This
                     * prevents a signature from being used multiple times.
                     */
                    function nonces(address owner) external view returns (uint256);
                    /**
                     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                     */
                    // solhint-disable-next-line func-name-mixedcase
                    function DOMAIN_SEPARATOR() external view returns (bytes32);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
                pragma solidity ^0.8.0;
                import "IERC20Upgradeable.sol";
                import "draft-IERC20PermitUpgradeable.sol";
                import "AddressUpgradeable.sol";
                /**
                 * @title SafeERC20
                 * @dev Wrappers around ERC20 operations that throw on failure (when the token
                 * contract returns false). Tokens that return no value (and instead revert or
                 * throw on failure) are also supported, non-reverting calls are assumed to be
                 * successful.
                 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                 */
                library SafeERC20Upgradeable {
                    using AddressUpgradeable for address;
                    function safeTransfer(
                        IERC20Upgradeable token,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                    }
                    function safeTransferFrom(
                        IERC20Upgradeable token,
                        address from,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                    }
                    /**
                     * @dev Deprecated. This function has issues similar to the ones found in
                     * {IERC20-approve}, and its usage is discouraged.
                     *
                     * Whenever possible, use {safeIncreaseAllowance} and
                     * {safeDecreaseAllowance} instead.
                     */
                    function safeApprove(
                        IERC20Upgradeable token,
                        address spender,
                        uint256 value
                    ) internal {
                        // safeApprove should only be called when setting an initial allowance,
                        // or when resetting it to zero. To increase and decrease it, use
                        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                        require(
                            (value == 0) || (token.allowance(address(this), spender) == 0),
                            "SafeERC20: approve from non-zero to non-zero allowance"
                        );
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                    }
                    function safeIncreaseAllowance(
                        IERC20Upgradeable token,
                        address spender,
                        uint256 value
                    ) internal {
                        uint256 newAllowance = token.allowance(address(this), spender) + value;
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                    function safeDecreaseAllowance(
                        IERC20Upgradeable token,
                        address spender,
                        uint256 value
                    ) internal {
                        unchecked {
                            uint256 oldAllowance = token.allowance(address(this), spender);
                            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                            uint256 newAllowance = oldAllowance - value;
                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                        }
                    }
                    function safePermit(
                        IERC20PermitUpgradeable token,
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal {
                        uint256 nonceBefore = token.nonces(owner);
                        token.permit(owner, spender, value, deadline, v, r, s);
                        uint256 nonceAfter = token.nonces(owner);
                        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                    }
                    /**
                     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                     * on the return value: the return value is optional (but if data is returned, it must not be false).
                     * @param token The token targeted by the call.
                     * @param data The call data (encoded using abi.encode or one of its variants).
                     */
                    function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
                        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                        // the target address contains contract code and also asserts for success in the low-level call.
                        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                        if (returndata.length > 0) {
                            // Return data is optional
                            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.8.0) (interfaces/IERC4626.sol)
                pragma solidity ^0.8.0;
                import "IERC20Upgradeable.sol";
                import "IERC20MetadataUpgradeable.sol";
                /**
                 * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
                 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
                 *
                 * _Available since v4.7._
                 */
                interface IERC4626Upgradeable is IERC20Upgradeable, IERC20MetadataUpgradeable {
                    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
                    event Withdraw(
                        address indexed sender,
                        address indexed receiver,
                        address indexed owner,
                        uint256 assets,
                        uint256 shares
                    );
                    /**
                     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
                     *
                     * - MUST be an ERC-20 token contract.
                     * - MUST NOT revert.
                     */
                    function asset() external view returns (address assetTokenAddress);
                    /**
                     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
                     *
                     * - SHOULD include any compounding that occurs from yield.
                     * - MUST be inclusive of any fees that are charged against assets in the Vault.
                     * - MUST NOT revert.
                     */
                    function totalAssets() external view returns (uint256 totalManagedAssets);
                    /**
                     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
                     * scenario where all the conditions are met.
                     *
                     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
                     * - MUST NOT show any variations depending on the caller.
                     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
                     * - MUST NOT revert.
                     *
                     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
                     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
                     * from.
                     */
                    function convertToShares(uint256 assets) external view returns (uint256 shares);
                    /**
                     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
                     * scenario where all the conditions are met.
                     *
                     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
                     * - MUST NOT show any variations depending on the caller.
                     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
                     * - MUST NOT revert.
                     *
                     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
                     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
                     * from.
                     */
                    function convertToAssets(uint256 shares) external view returns (uint256 assets);
                    /**
                     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
                     * through a deposit call.
                     *
                     * - MUST return a limited value if receiver is subject to some deposit limit.
                     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
                     * - MUST NOT revert.
                     */
                    function maxDeposit(address receiver) external view returns (uint256 maxAssets);
                    /**
                     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
                     * current on-chain conditions.
                     *
                     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
                     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
                     *   in the same transaction.
                     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
                     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
                     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
                     * - MUST NOT revert.
                     *
                     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
                     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
                     */
                    function previewDeposit(uint256 assets) external view returns (uint256 shares);
                    /**
                     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
                     *
                     * - MUST emit the Deposit event.
                     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
                     *   deposit execution, and are accounted for during deposit.
                     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
                     *   approving enough underlying tokens to the Vault contract, etc).
                     *
                     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
                     */
                    function deposit(uint256 assets, address receiver) external returns (uint256 shares);
                    /**
                     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
                     * - MUST return a limited value if receiver is subject to some mint limit.
                     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
                     * - MUST NOT revert.
                     */
                    function maxMint(address receiver) external view returns (uint256 maxShares);
                    /**
                     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
                     * current on-chain conditions.
                     *
                     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
                     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
                     *   same transaction.
                     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
                     *   would be accepted, regardless if the user has enough tokens approved, etc.
                     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
                     * - MUST NOT revert.
                     *
                     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
                     * share price or some other type of condition, meaning the depositor will lose assets by minting.
                     */
                    function previewMint(uint256 shares) external view returns (uint256 assets);
                    /**
                     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
                     *
                     * - MUST emit the Deposit event.
                     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
                     *   execution, and are accounted for during mint.
                     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
                     *   approving enough underlying tokens to the Vault contract, etc).
                     *
                     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
                     */
                    function mint(uint256 shares, address receiver) external returns (uint256 assets);
                    /**
                     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
                     * Vault, through a withdraw call.
                     *
                     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
                     * - MUST NOT revert.
                     */
                    function maxWithdraw(address owner) external view returns (uint256 maxAssets);
                    /**
                     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
                     * given current on-chain conditions.
                     *
                     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
                     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
                     *   called
                     *   in the same transaction.
                     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
                     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
                     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
                     * - MUST NOT revert.
                     *
                     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
                     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
                     */
                    function previewWithdraw(uint256 assets) external view returns (uint256 shares);
                    /**
                     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
                     *
                     * - MUST emit the Withdraw event.
                     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
                     *   withdraw execution, and are accounted for during withdraw.
                     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
                     *   not having enough shares, etc).
                     *
                     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
                     * Those methods should be performed separately.
                     */
                    function withdraw(
                        uint256 assets,
                        address receiver,
                        address owner
                    ) external returns (uint256 shares);
                    /**
                     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
                     * through a redeem call.
                     *
                     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
                     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
                     * - MUST NOT revert.
                     */
                    function maxRedeem(address owner) external view returns (uint256 maxShares);
                    /**
                     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
                     * given current on-chain conditions.
                     *
                     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
                     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
                     *   same transaction.
                     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
                     *   redemption would be accepted, regardless if the user has enough shares, etc.
                     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
                     * - MUST NOT revert.
                     *
                     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
                     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
                     */
                    function previewRedeem(uint256 shares) external view returns (uint256 assets);
                    /**
                     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
                     *
                     * - MUST emit the Withdraw event.
                     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
                     *   redeem execution, and are accounted for during redeem.
                     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
                     *   not having enough shares, etc).
                     *
                     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
                     * Those methods should be performed separately.
                     */
                    function redeem(
                        uint256 shares,
                        address receiver,
                        address owner
                    ) external returns (uint256 assets);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Standard math utilities missing in the Solidity language.
                 */
                library MathUpgradeable {
                    enum Rounding {
                        Down, // Toward negative infinity
                        Up, // Toward infinity
                        Zero // Toward zero
                    }
                    /**
                     * @dev Returns the largest of two numbers.
                     */
                    function max(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a > b ? a : b;
                    }
                    /**
                     * @dev Returns the smallest of two numbers.
                     */
                    function min(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a < b ? a : b;
                    }
                    /**
                     * @dev Returns the average of two numbers. The result is rounded towards
                     * zero.
                     */
                    function average(uint256 a, uint256 b) internal pure returns (uint256) {
                        // (a + b) / 2 can overflow.
                        return (a & b) + (a ^ b) / 2;
                    }
                    /**
                     * @dev Returns the ceiling of the division of two numbers.
                     *
                     * This differs from standard division with `/` in that it rounds up instead
                     * of rounding down.
                     */
                    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                        // (a + b - 1) / b can overflow on addition, so we distribute.
                        return a == 0 ? 0 : (a - 1) / b + 1;
                    }
                    /**
                     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                     * with further edits by Uniswap Labs also under MIT license.
                     */
                    function mulDiv(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 result) {
                        unchecked {
                            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                            // variables such that product = prod1 * 2^256 + prod0.
                            uint256 prod0; // Least significant 256 bits of the product
                            uint256 prod1; // Most significant 256 bits of the product
                            assembly {
                                let mm := mulmod(x, y, not(0))
                                prod0 := mul(x, y)
                                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                            }
                            // Handle non-overflow cases, 256 by 256 division.
                            if (prod1 == 0) {
                                return prod0 / denominator;
                            }
                            // Make sure the result is less than 2^256. Also prevents denominator == 0.
                            require(denominator > prod1);
                            ///////////////////////////////////////////////
                            // 512 by 256 division.
                            ///////////////////////////////////////////////
                            // Make division exact by subtracting the remainder from [prod1 prod0].
                            uint256 remainder;
                            assembly {
                                // Compute remainder using mulmod.
                                remainder := mulmod(x, y, denominator)
                                // Subtract 256 bit number from 512 bit number.
                                prod1 := sub(prod1, gt(remainder, prod0))
                                prod0 := sub(prod0, remainder)
                            }
                            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                            // See https://cs.stackexchange.com/q/138556/92363.
                            // Does not overflow because the denominator cannot be zero at this stage in the function.
                            uint256 twos = denominator & (~denominator + 1);
                            assembly {
                                // Divide denominator by twos.
                                denominator := div(denominator, twos)
                                // Divide [prod1 prod0] by twos.
                                prod0 := div(prod0, twos)
                                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                                twos := add(div(sub(0, twos), twos), 1)
                            }
                            // Shift in bits from prod1 into prod0.
                            prod0 |= prod1 * twos;
                            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                            // four bits. That is, denominator * inv = 1 mod 2^4.
                            uint256 inverse = (3 * denominator) ^ 2;
                            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                            // in modular arithmetic, doubling the correct bits in each step.
                            inverse *= 2 - denominator * inverse; // inverse mod 2^8
                            inverse *= 2 - denominator * inverse; // inverse mod 2^16
                            inverse *= 2 - denominator * inverse; // inverse mod 2^32
                            inverse *= 2 - denominator * inverse; // inverse mod 2^64
                            inverse *= 2 - denominator * inverse; // inverse mod 2^128
                            inverse *= 2 - denominator * inverse; // inverse mod 2^256
                            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                            // is no longer required.
                            result = prod0 * inverse;
                            return result;
                        }
                    }
                    /**
                     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                     */
                    function mulDiv(
                        uint256 x,
                        uint256 y,
                        uint256 denominator,
                        Rounding rounding
                    ) internal pure returns (uint256) {
                        uint256 result = mulDiv(x, y, denominator);
                        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                            result += 1;
                        }
                        return result;
                    }
                    /**
                     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
                     *
                     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                     */
                    function sqrt(uint256 a) internal pure returns (uint256) {
                        if (a == 0) {
                            return 0;
                        }
                        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                        //
                        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                        //
                        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                        //
                        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                        uint256 result = 1 << (log2(a) >> 1);
                        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                        // into the expected uint128 result.
                        unchecked {
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            return min(result, a / result);
                        }
                    }
                    /**
                     * @notice Calculates sqrt(a), following the selected rounding direction.
                     */
                    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                        unchecked {
                            uint256 result = sqrt(a);
                            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                        }
                    }
                    /**
                     * @dev Return the log in base 2, rounded down, of a positive value.
                     * Returns 0 if given 0.
                     */
                    function log2(uint256 value) internal pure returns (uint256) {
                        uint256 result = 0;
                        unchecked {
                            if (value >> 128 > 0) {
                                value >>= 128;
                                result += 128;
                            }
                            if (value >> 64 > 0) {
                                value >>= 64;
                                result += 64;
                            }
                            if (value >> 32 > 0) {
                                value >>= 32;
                                result += 32;
                            }
                            if (value >> 16 > 0) {
                                value >>= 16;
                                result += 16;
                            }
                            if (value >> 8 > 0) {
                                value >>= 8;
                                result += 8;
                            }
                            if (value >> 4 > 0) {
                                value >>= 4;
                                result += 4;
                            }
                            if (value >> 2 > 0) {
                                value >>= 2;
                                result += 2;
                            }
                            if (value >> 1 > 0) {
                                result += 1;
                            }
                        }
                        return result;
                    }
                    /**
                     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
                     * Returns 0 if given 0.
                     */
                    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                        unchecked {
                            uint256 result = log2(value);
                            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                        }
                    }
                    /**
                     * @dev Return the log in base 10, rounded down, of a positive value.
                     * Returns 0 if given 0.
                     */
                    function log10(uint256 value) internal pure returns (uint256) {
                        uint256 result = 0;
                        unchecked {
                            if (value >= 10**64) {
                                value /= 10**64;
                                result += 64;
                            }
                            if (value >= 10**32) {
                                value /= 10**32;
                                result += 32;
                            }
                            if (value >= 10**16) {
                                value /= 10**16;
                                result += 16;
                            }
                            if (value >= 10**8) {
                                value /= 10**8;
                                result += 8;
                            }
                            if (value >= 10**4) {
                                value /= 10**4;
                                result += 4;
                            }
                            if (value >= 10**2) {
                                value /= 10**2;
                                result += 2;
                            }
                            if (value >= 10**1) {
                                result += 1;
                            }
                        }
                        return result;
                    }
                    /**
                     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
                     * Returns 0 if given 0.
                     */
                    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                        unchecked {
                            uint256 result = log10(value);
                            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
                        }
                    }
                    /**
                     * @dev Return the log in base 256, rounded down, of a positive value.
                     * Returns 0 if given 0.
                     *
                     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
                     */
                    function log256(uint256 value) internal pure returns (uint256) {
                        uint256 result = 0;
                        unchecked {
                            if (value >> 128 > 0) {
                                value >>= 128;
                                result += 16;
                            }
                            if (value >> 64 > 0) {
                                value >>= 64;
                                result += 8;
                            }
                            if (value >> 32 > 0) {
                                value >>= 32;
                                result += 4;
                            }
                            if (value >> 16 > 0) {
                                value >>= 16;
                                result += 2;
                            }
                            if (value >> 8 > 0) {
                                result += 1;
                            }
                        }
                        return result;
                    }
                    /**
                     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
                     * Returns 0 if given 0.
                     */
                    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                        unchecked {
                            uint256 result = log256(value);
                            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/extensions/ERC4626.sol)
                pragma solidity ^0.8.0;
                import "ERC20Upgradeable.sol";
                import "SafeERC20Upgradeable.sol";
                import "IERC4626Upgradeable.sol";
                import "MathUpgradeable.sol";
                import "Initializable.sol";
                /**
                 * @dev Implementation of the ERC4626 "Tokenized Vault Standard" as defined in
                 * https://eips.ethereum.org/EIPS/eip-4626[EIP-4626].
                 *
                 * This extension allows the minting and burning of "shares" (represented using the ERC20 inheritance) in exchange for
                 * underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
                 * the ERC20 standard. Any additional extensions included along it would affect the "shares" token represented by this
                 * contract and not the "assets" token which is an independent contract.
                 *
                 * CAUTION: Deposits and withdrawals may incur unexpected slippage. Users should verify that the amount received of
                 * shares or assets is as expected. EOAs should operate through a wrapper that performs these checks such as
                 * https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
                 *
                 * _Available since v4.7._
                 */
                abstract contract ERC4626Upgradeable is Initializable, ERC20Upgradeable, IERC4626Upgradeable {
                    using MathUpgradeable for uint256;
                    IERC20Upgradeable private _asset;
                    uint8 private _decimals;
                    /**
                     * @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC20 or ERC777).
                     */
                    function __ERC4626_init(IERC20Upgradeable asset_) internal onlyInitializing {
                        __ERC4626_init_unchained(asset_);
                    }
                    function __ERC4626_init_unchained(IERC20Upgradeable asset_) internal onlyInitializing {
                        (bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
                        _decimals = success ? assetDecimals : super.decimals();
                        _asset = asset_;
                    }
                    /**
                     * @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
                     */
                    function _tryGetAssetDecimals(IERC20Upgradeable asset_) private returns (bool, uint8) {
                        (bool success, bytes memory encodedDecimals) = address(asset_).call(
                            abi.encodeWithSelector(IERC20MetadataUpgradeable.decimals.selector)
                        );
                        if (success && encodedDecimals.length >= 32) {
                            uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
                            if (returnedDecimals <= type(uint8).max) {
                                return (true, uint8(returnedDecimals));
                            }
                        }
                        return (false, 0);
                    }
                    /**
                     * @dev Decimals are read from the underlying asset in the constructor and cached. If this fails (e.g., the asset
                     * has not been created yet), the cached value is set to a default obtained by `super.decimals()` (which depends on
                     * inheritance but is most likely 18). Override this function in order to set a guaranteed hardcoded value.
                     * See {IERC20Metadata-decimals}.
                     */
                    function decimals() public view virtual override(IERC20MetadataUpgradeable, ERC20Upgradeable) returns (uint8) {
                        return _decimals;
                    }
                    /** @dev See {IERC4626-asset}. */
                    function asset() public view virtual override returns (address) {
                        return address(_asset);
                    }
                    /** @dev See {IERC4626-totalAssets}. */
                    function totalAssets() public view virtual override returns (uint256) {
                        return _asset.balanceOf(address(this));
                    }
                    /** @dev See {IERC4626-convertToShares}. */
                    function convertToShares(uint256 assets) public view virtual override returns (uint256 shares) {
                        return _convertToShares(assets, MathUpgradeable.Rounding.Down);
                    }
                    /** @dev See {IERC4626-convertToAssets}. */
                    function convertToAssets(uint256 shares) public view virtual override returns (uint256 assets) {
                        return _convertToAssets(shares, MathUpgradeable.Rounding.Down);
                    }
                    /** @dev See {IERC4626-maxDeposit}. */
                    function maxDeposit(address) public view virtual override returns (uint256) {
                        return _isVaultCollateralized() ? type(uint256).max : 0;
                    }
                    /** @dev See {IERC4626-maxMint}. */
                    function maxMint(address) public view virtual override returns (uint256) {
                        return type(uint256).max;
                    }
                    /** @dev See {IERC4626-maxWithdraw}. */
                    function maxWithdraw(address owner) public view virtual override returns (uint256) {
                        return _convertToAssets(balanceOf(owner), MathUpgradeable.Rounding.Down);
                    }
                    /** @dev See {IERC4626-maxRedeem}. */
                    function maxRedeem(address owner) public view virtual override returns (uint256) {
                        return balanceOf(owner);
                    }
                    /** @dev See {IERC4626-previewDeposit}. */
                    function previewDeposit(uint256 assets) public view virtual override returns (uint256) {
                        return _convertToShares(assets, MathUpgradeable.Rounding.Down);
                    }
                    /** @dev See {IERC4626-previewMint}. */
                    function previewMint(uint256 shares) public view virtual override returns (uint256) {
                        return _convertToAssets(shares, MathUpgradeable.Rounding.Up);
                    }
                    /** @dev See {IERC4626-previewWithdraw}. */
                    function previewWithdraw(uint256 assets) public view virtual override returns (uint256) {
                        return _convertToShares(assets, MathUpgradeable.Rounding.Up);
                    }
                    /** @dev See {IERC4626-previewRedeem}. */
                    function previewRedeem(uint256 shares) public view virtual override returns (uint256) {
                        return _convertToAssets(shares, MathUpgradeable.Rounding.Down);
                    }
                    /** @dev See {IERC4626-deposit}. */
                    function deposit(uint256 assets, address receiver) public virtual override returns (uint256) {
                        require(assets <= maxDeposit(receiver), "ERC4626: deposit more than max");
                        uint256 shares = previewDeposit(assets);
                        _deposit(_msgSender(), receiver, assets, shares);
                        return shares;
                    }
                    /** @dev See {IERC4626-mint}. */
                    function mint(uint256 shares, address receiver) public virtual override returns (uint256) {
                        require(shares <= maxMint(receiver), "ERC4626: mint more than max");
                        uint256 assets = previewMint(shares);
                        _deposit(_msgSender(), receiver, assets, shares);
                        return assets;
                    }
                    /** @dev See {IERC4626-withdraw}. */
                    function withdraw(
                        uint256 assets,
                        address receiver,
                        address owner
                    ) public virtual override returns (uint256) {
                        require(assets <= maxWithdraw(owner), "ERC4626: withdraw more than max");
                        uint256 shares = previewWithdraw(assets);
                        _withdraw(_msgSender(), receiver, owner, assets, shares);
                        return shares;
                    }
                    /** @dev See {IERC4626-redeem}. */
                    function redeem(
                        uint256 shares,
                        address receiver,
                        address owner
                    ) public virtual override returns (uint256) {
                        require(shares <= maxRedeem(owner), "ERC4626: redeem more than max");
                        uint256 assets = previewRedeem(shares);
                        _withdraw(_msgSender(), receiver, owner, assets, shares);
                        return assets;
                    }
                    /**
                     * @dev Internal conversion function (from assets to shares) with support for rounding direction.
                     *
                     * Will revert if assets > 0, totalSupply > 0 and totalAssets = 0. That corresponds to a case where any asset
                     * would represent an infinite amount of shares.
                     */
                    function _convertToShares(uint256 assets, MathUpgradeable.Rounding rounding) internal view virtual returns (uint256 shares) {
                        uint256 supply = totalSupply();
                        return
                            (assets == 0 || supply == 0)
                                ? _initialConvertToShares(assets, rounding)
                                : assets.mulDiv(supply, totalAssets(), rounding);
                    }
                    /**
                     * @dev Internal conversion function (from assets to shares) to apply when the vault is empty.
                     *
                     * NOTE: Make sure to keep this function consistent with {_initialConvertToAssets} when overriding it.
                     */
                    function _initialConvertToShares(
                        uint256 assets,
                        MathUpgradeable.Rounding /*rounding*/
                    ) internal view virtual returns (uint256 shares) {
                        return assets;
                    }
                    /**
                     * @dev Internal conversion function (from shares to assets) with support for rounding direction.
                     */
                    function _convertToAssets(uint256 shares, MathUpgradeable.Rounding rounding) internal view virtual returns (uint256 assets) {
                        uint256 supply = totalSupply();
                        return
                            (supply == 0) ? _initialConvertToAssets(shares, rounding) : shares.mulDiv(totalAssets(), supply, rounding);
                    }
                    /**
                     * @dev Internal conversion function (from shares to assets) to apply when the vault is empty.
                     *
                     * NOTE: Make sure to keep this function consistent with {_initialConvertToShares} when overriding it.
                     */
                    function _initialConvertToAssets(
                        uint256 shares,
                        MathUpgradeable.Rounding /*rounding*/
                    ) internal view virtual returns (uint256 assets) {
                        return shares;
                    }
                    /**
                     * @dev Deposit/mint common workflow.
                     */
                    function _deposit(
                        address caller,
                        address receiver,
                        uint256 assets,
                        uint256 shares
                    ) internal virtual {
                        // If _asset is ERC777, `transferFrom` can trigger a reenterancy BEFORE the transfer happens through the
                        // `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
                        // calls the vault, which is assumed not malicious.
                        //
                        // Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
                        // assets are transferred and before the shares are minted, which is a valid state.
                        // slither-disable-next-line reentrancy-no-eth
                        SafeERC20Upgradeable.safeTransferFrom(_asset, caller, address(this), assets);
                        _mint(receiver, shares);
                        emit Deposit(caller, receiver, assets, shares);
                    }
                    /**
                     * @dev Withdraw/redeem common workflow.
                     */
                    function _withdraw(
                        address caller,
                        address receiver,
                        address owner,
                        uint256 assets,
                        uint256 shares
                    ) internal virtual {
                        if (caller != owner) {
                            _spendAllowance(owner, caller, shares);
                        }
                        // If _asset is ERC777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
                        // `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
                        // calls the vault, which is assumed not malicious.
                        //
                        // Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
                        // shares are burned and after the assets are transferred, which is a valid state.
                        _burn(owner, shares);
                        SafeERC20Upgradeable.safeTransfer(_asset, receiver, assets);
                        emit Withdraw(caller, receiver, owner, assets, shares);
                    }
                    function _isVaultCollateralized() private view returns (bool) {
                        return totalAssets() > 0 || totalSupply() == 0;
                    }
                    /**
                     * @dev This empty reserved space is put in place to allow future versions to add new
                     * variables without shifting down storage in the inheritance chain.
                     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                     */
                    uint256[49] private __gap;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
                pragma solidity ^0.8.0;
                import "ContextUpgradeable.sol";
                import "Initializable.sol";
                /**
                 * @dev Contract module which provides a basic access control mechanism, where
                 * there is an account (an owner) that can be granted exclusive access to
                 * specific functions.
                 *
                 * By default, the owner account will be the one that deploys the contract. This
                 * can later be changed with {transferOwnership}.
                 *
                 * This module is used through inheritance. It will make available the modifier
                 * `onlyOwner`, which can be applied to your functions to restrict their use to
                 * the owner.
                 */
                abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
                    address private _owner;
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    /**
                     * @dev Initializes the contract setting the deployer as the initial owner.
                     */
                    function __Ownable_init() internal onlyInitializing {
                        __Ownable_init_unchained();
                    }
                    function __Ownable_init_unchained() internal onlyInitializing {
                        _transferOwnership(_msgSender());
                    }
                    /**
                     * @dev Throws if called by any account other than the owner.
                     */
                    modifier onlyOwner() {
                        _checkOwner();
                        _;
                    }
                    /**
                     * @dev Returns the address of the current owner.
                     */
                    function owner() public view virtual returns (address) {
                        return _owner;
                    }
                    /**
                     * @dev Throws if the sender is not the owner.
                     */
                    function _checkOwner() internal view virtual {
                        require(owner() == _msgSender(), "Ownable: caller is not the owner");
                    }
                    /**
                     * @dev Leaves the contract without owner. It will not be possible to call
                     * `onlyOwner` functions anymore. Can only be called by the current owner.
                     *
                     * NOTE: Renouncing ownership will leave the contract without an owner,
                     * thereby removing any functionality that is only available to the owner.
                     */
                    function renounceOwnership() public virtual onlyOwner {
                        _transferOwnership(address(0));
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Can only be called by the current owner.
                     */
                    function transferOwnership(address newOwner) public virtual onlyOwner {
                        require(newOwner != address(0), "Ownable: new owner is the zero address");
                        _transferOwnership(newOwner);
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Internal function without access restriction.
                     */
                    function _transferOwnership(address newOwner) internal virtual {
                        address oldOwner = _owner;
                        _owner = newOwner;
                        emit OwnershipTransferred(oldOwner, newOwner);
                    }
                    /**
                     * @dev This empty reserved space is put in place to allow future versions to add new
                     * variables without shifting down storage in the inheritance chain.
                     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                     */
                    uint256[49] private __gap;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
                 * proxy whose upgrades are fully controlled by the current implementation.
                 */
                interface IERC1822Proxiable {
                    /**
                     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
                     * address.
                     *
                     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
                     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
                     * function revert if invoked through a proxy.
                     */
                    function proxiableUUID() external view returns (bytes32);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev This is the interface that {BeaconProxy} expects of its beacon.
                 */
                interface IBeacon {
                    /**
                     * @dev Must return an address that can be used as a delegate call target.
                     *
                     * {BeaconProxy} will check that this address is a contract.
                     */
                    function implementation() external view returns (address);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Library for reading and writing primitive types to specific storage slots.
                 *
                 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
                 * This library helps with reading and writing to such slots without the need for inline assembly.
                 *
                 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
                 *
                 * Example usage to set ERC1967 implementation slot:
                 * ```
                 * contract ERC1967 {
                 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                 *
                 *     function _getImplementation() internal view returns (address) {
                 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                 *     }
                 *
                 *     function _setImplementation(address newImplementation) internal {
                 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                 *     }
                 * }
                 * ```
                 *
                 * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
                 */
                library StorageSlot {
                    struct AddressSlot {
                        address value;
                    }
                    struct BooleanSlot {
                        bool value;
                    }
                    struct Bytes32Slot {
                        bytes32 value;
                    }
                    struct Uint256Slot {
                        uint256 value;
                    }
                    /**
                     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
                     */
                    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            r.slot := slot
                        }
                    }
                    /**
                     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
                     */
                    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            r.slot := slot
                        }
                    }
                    /**
                     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
                     */
                    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            r.slot := slot
                        }
                    }
                    /**
                     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
                     */
                    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                        /// @solidity memory-safe-assembly
                        assembly {
                            r.slot := slot
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol)
                pragma solidity ^0.8.2;
                import "IBeacon.sol";
                import "draft-IERC1822.sol";
                import "Address.sol";
                import "StorageSlot.sol";
                /**
                 * @dev This abstract contract provides getters and event emitting update functions for
                 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
                 *
                 * _Available since v4.1._
                 *
                 * @custom:oz-upgrades-unsafe-allow delegatecall
                 */
                abstract contract ERC1967Upgrade {
                    // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
                    bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
                    /**
                     * @dev Storage slot with the address of the current implementation.
                     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
                     * validated in the constructor.
                     */
                    bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /**
                     * @dev Emitted when the implementation is upgraded.
                     */
                    event Upgraded(address indexed implementation);
                    /**
                     * @dev Returns the current implementation address.
                     */
                    function _getImplementation() internal view returns (address) {
                        return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                    }
                    /**
                     * @dev Stores a new address in the EIP1967 implementation slot.
                     */
                    function _setImplementation(address newImplementation) private {
                        require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                        StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                    }
                    /**
                     * @dev Perform implementation upgrade
                     *
                     * Emits an {Upgraded} event.
                     */
                    function _upgradeTo(address newImplementation) internal {
                        _setImplementation(newImplementation);
                        emit Upgraded(newImplementation);
                    }
                    /**
                     * @dev Perform implementation upgrade with additional setup call.
                     *
                     * Emits an {Upgraded} event.
                     */
                    function _upgradeToAndCall(
                        address newImplementation,
                        bytes memory data,
                        bool forceCall
                    ) internal {
                        _upgradeTo(newImplementation);
                        if (data.length > 0 || forceCall) {
                            Address.functionDelegateCall(newImplementation, data);
                        }
                    }
                    /**
                     * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
                     *
                     * Emits an {Upgraded} event.
                     */
                    function _upgradeToAndCallUUPS(
                        address newImplementation,
                        bytes memory data,
                        bool forceCall
                    ) internal {
                        // Upgrades from old implementations will perform a rollback test. This test requires the new
                        // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                        // this special case will break upgrade paths from old UUPS implementation to new ones.
                        if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                            _setImplementation(newImplementation);
                        } else {
                            try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                                require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                            } catch {
                                revert("ERC1967Upgrade: new implementation is not UUPS");
                            }
                            _upgradeToAndCall(newImplementation, data, forceCall);
                        }
                    }
                    /**
                     * @dev Storage slot with the admin of the contract.
                     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
                     * validated in the constructor.
                     */
                    bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /**
                     * @dev Emitted when the admin account has changed.
                     */
                    event AdminChanged(address previousAdmin, address newAdmin);
                    /**
                     * @dev Returns the current admin.
                     */
                    function _getAdmin() internal view returns (address) {
                        return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
                    }
                    /**
                     * @dev Stores a new address in the EIP1967 admin slot.
                     */
                    function _setAdmin(address newAdmin) private {
                        require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                        StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
                    }
                    /**
                     * @dev Changes the admin of the proxy.
                     *
                     * Emits an {AdminChanged} event.
                     */
                    function _changeAdmin(address newAdmin) internal {
                        emit AdminChanged(_getAdmin(), newAdmin);
                        _setAdmin(newAdmin);
                    }
                    /**
                     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
                     * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
                     */
                    bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
                    /**
                     * @dev Emitted when the beacon is upgraded.
                     */
                    event BeaconUpgraded(address indexed beacon);
                    /**
                     * @dev Returns the current beacon.
                     */
                    function _getBeacon() internal view returns (address) {
                        return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
                    }
                    /**
                     * @dev Stores a new beacon in the EIP1967 beacon slot.
                     */
                    function _setBeacon(address newBeacon) private {
                        require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                        require(
                            Address.isContract(IBeacon(newBeacon).implementation()),
                            "ERC1967: beacon implementation is not a contract"
                        );
                        StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
                    }
                    /**
                     * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
                     * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
                     *
                     * Emits a {BeaconUpgraded} event.
                     */
                    function _upgradeBeaconToAndCall(
                        address newBeacon,
                        bytes memory data,
                        bool forceCall
                    ) internal {
                        _setBeacon(newBeacon);
                        emit BeaconUpgraded(newBeacon);
                        if (data.length > 0 || forceCall) {
                            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/UUPSUpgradeable.sol)
                pragma solidity ^0.8.0;
                import "draft-IERC1822.sol";
                import "ERC1967Upgrade.sol";
                /**
                 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
                 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
                 *
                 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
                 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
                 * `UUPSUpgradeable` with a custom implementation of upgrades.
                 *
                 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
                 *
                 * _Available since v4.1._
                 */
                abstract contract UUPSUpgradeable is IERC1822Proxiable, ERC1967Upgrade {
                    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
                    address private immutable __self = address(this);
                    /**
                     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
                     * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
                     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
                     * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
                     * fail.
                     */
                    modifier onlyProxy() {
                        require(address(this) != __self, "Function must be called through delegatecall");
                        require(_getImplementation() == __self, "Function must be called through active proxy");
                        _;
                    }
                    /**
                     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
                     * callable on the implementing contract but not through proxies.
                     */
                    modifier notDelegated() {
                        require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
                        _;
                    }
                    /**
                     * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
                     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
                     *
                     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
                     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
                     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
                     */
                    function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
                        return _IMPLEMENTATION_SLOT;
                    }
                    /**
                     * @dev Upgrade the implementation of the proxy to `newImplementation`.
                     *
                     * Calls {_authorizeUpgrade}.
                     *
                     * Emits an {Upgraded} event.
                     */
                    function upgradeTo(address newImplementation) external virtual onlyProxy {
                        _authorizeUpgrade(newImplementation);
                        _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
                    }
                    /**
                     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
                     * encoded in `data`.
                     *
                     * Calls {_authorizeUpgrade}.
                     *
                     * Emits an {Upgraded} event.
                     */
                    function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy {
                        _authorizeUpgrade(newImplementation);
                        _upgradeToAndCallUUPS(newImplementation, data, true);
                    }
                    /**
                     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
                     * {upgradeTo} and {upgradeToAndCall}.
                     *
                     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
                     *
                     * ```solidity
                     * function _authorizeUpgrade(address) internal override onlyOwner {}
                     * ```
                     */
                    function _authorizeUpgrade(address newImplementation) internal virtual;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.17;
                import {SafeERC20} from "SafeERC20.sol";
                import {ERC4626Upgradeable} from "ERC4626Upgradeable.sol";
                import {IERC20} from "IERC20.sol";
                import {IERC20MetadataUpgradeable} from "IERC20MetadataUpgradeable.sol";
                import {OwnableUpgradeable} from "OwnableUpgradeable.sol";
                import {Initializable} from "Initializable.sol";
                import {UUPSUpgradeable} from "UUPSUpgradeable.sol";
                enum Status {
                    Mint,
                    Redeem,
                    Recover
                }
                contract PortfolioDebtToken is Initializable, ERC4626Upgradeable, OwnableUpgradeable, UUPSUpgradeable {
                    using SafeERC20 for IERC20;
                    event Recovered(IERC20 token, uint256 balance);
                    uint256 public mintDeadline;
                    uint256 public redeemDeadline;
                    function initialize(
                        IERC20MetadataUpgradeable _asset,
                        string memory _name,
                        string memory _symbol,
                        uint256 _mintDeadline,
                        uint256 _redeemDeadline
                    ) external initializer {
                        __ERC4626_init_unchained(_asset);
                        __ERC20_init_unchained(_name, _symbol);
                        __Ownable_init_unchained();
                        require(block.timestamp < _mintDeadline, "PDT: current time must be before mint deadline");
                        require(_mintDeadline < _redeemDeadline, "PDT: mint deadline must be before redeem deadline");
                        mintDeadline = _mintDeadline;
                        redeemDeadline = _redeemDeadline;
                    }
                    function status() public view returns (Status) {
                        assert(mintDeadline < redeemDeadline);
                        if (block.timestamp < mintDeadline) {
                            return Status.Mint;
                        } else if (block.timestamp < redeemDeadline) {
                            return Status.Redeem;
                        } else {
                            return Status.Recover;
                        }
                    }
                    function mintShares(address[] memory addresses, uint256[] memory amounts) public onlyOwner {
                        require(status() == Status.Mint, "PDT: share minting only allowed during Status.Mint");
                        require(addresses.length == amounts.length, "PDT: addresses and amounts lengths differ");
                        for (uint256 i = 0; i < addresses.length; i++) {
                            _mint(addresses[i], amounts[i]);
                        }
                    }
                    function maxDeposit(address) public pure virtual override returns (uint256) {
                        return 0;
                    }
                    function maxMint(address) public pure virtual override returns (uint256) {
                        return 0;
                    }
                    function maxWithdraw(address owner) public view virtual override returns (uint256) {
                        if (status() != Status.Redeem) {
                            return 0;
                        }
                        return super.maxWithdraw(owner);
                    }
                    function maxRedeem(address owner) public view virtual override returns (uint256) {
                        if (status() != Status.Redeem) {
                            return 0;
                        }
                        return super.maxRedeem(owner);
                    }
                    function recover(IERC20 token, address receiver) external onlyOwner {
                        require(status() == Status.Recover, "PDT: token recovery only allowed during Status.Recover");
                        uint256 totalAssetsBefore = totalAssets();
                        uint256 balance = token.balanceOf(address(this));
                        emit Recovered(token, balance);
                        token.safeTransfer(receiver, balance);
                        if (address(token) != asset()) {
                            // A PDT refactor may make it possible to change `asset`'s ERC20
                            // allowance, which could let a reentrant non-asset `token` transfer `asset`s
                            // *from* PDT.
                            //
                            // For simplicity, we also disallow reentrant `asset` transfers *to* PDT.
                            assert(totalAssets() == totalAssetsBefore);
                        }
                    }
                    function _authorizeUpgrade(address) internal override onlyOwner {}
                    receive() external payable {
                        revert("PDT: Ether transfers disallowed");
                    }
                    fallback() external payable {
                        revert("PDT: Calling fallback method disallowed");
                    }
                    function _transfer(address, address, uint256) internal virtual override {
                        revert("PDT: Transfers disallowed");
                    }
                }
                

                File 4 of 4: FiatTokenV2_2
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                import { EIP712Domain } from "./EIP712Domain.sol"; // solhint-disable-line no-unused-import
                import { Blacklistable } from "../v1/Blacklistable.sol"; // solhint-disable-line no-unused-import
                import { FiatTokenV1 } from "../v1/FiatTokenV1.sol"; // solhint-disable-line no-unused-import
                import { FiatTokenV2 } from "./FiatTokenV2.sol"; // solhint-disable-line no-unused-import
                import { FiatTokenV2_1 } from "./FiatTokenV2_1.sol";
                import { EIP712 } from "../util/EIP712.sol";
                // solhint-disable func-name-mixedcase
                /**
                 * @title FiatToken V2.2
                 * @notice ERC20 Token backed by fiat reserves, version 2.2
                 */
                contract FiatTokenV2_2 is FiatTokenV2_1 {
                    /**
                     * @notice Initialize v2.2
                     * @param accountsToBlacklist   A list of accounts to migrate from the old blacklist
                     * @param newSymbol             New token symbol
                     * data structure to the new blacklist data structure.
                     */
                    function initializeV2_2(
                        address[] calldata accountsToBlacklist,
                        string calldata newSymbol
                    ) external {
                        // solhint-disable-next-line reason-string
                        require(_initializedVersion == 2);
                        // Update fiat token symbol
                        symbol = newSymbol;
                        // Add previously blacklisted accounts to the new blacklist data structure
                        // and remove them from the old blacklist data structure.
                        for (uint256 i = 0; i < accountsToBlacklist.length; i++) {
                            require(
                                _deprecatedBlacklisted[accountsToBlacklist[i]],
                                "FiatTokenV2_2: Blacklisting previously unblacklisted account!"
                            );
                            _blacklist(accountsToBlacklist[i]);
                            delete _deprecatedBlacklisted[accountsToBlacklist[i]];
                        }
                        _blacklist(address(this));
                        delete _deprecatedBlacklisted[address(this)];
                        _initializedVersion = 3;
                    }
                    /**
                     * @dev Internal function to get the current chain id.
                     * @return The current chain id.
                     */
                    function _chainId() internal virtual view returns (uint256) {
                        uint256 chainId;
                        assembly {
                            chainId := chainid()
                        }
                        return chainId;
                    }
                    /**
                     * @inheritdoc EIP712Domain
                     */
                    function _domainSeparator() internal override view returns (bytes32) {
                        return EIP712.makeDomainSeparator(name, "2", _chainId());
                    }
                    /**
                     * @notice Update allowance with a signed permit
                     * @dev EOA wallet signatures should be packed in the order of r, s, v.
                     * @param owner       Token owner's address (Authorizer)
                     * @param spender     Spender's address
                     * @param value       Amount of allowance
                     * @param deadline    The time at which the signature expires (unix time), or max uint256 value to signal no expiration
                     * @param signature   Signature bytes signed by an EOA wallet or a contract wallet
                     */
                    function permit(
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        bytes memory signature
                    ) external whenNotPaused {
                        _permit(owner, spender, value, deadline, signature);
                    }
                    /**
                     * @notice Execute a transfer with a signed authorization
                     * @dev EOA wallet signatures should be packed in the order of r, s, v.
                     * @param from          Payer's address (Authorizer)
                     * @param to            Payee's address
                     * @param value         Amount to be transferred
                     * @param validAfter    The time after which this is valid (unix time)
                     * @param validBefore   The time before which this is valid (unix time)
                     * @param nonce         Unique nonce
                     * @param signature     Signature bytes signed by an EOA wallet or a contract wallet
                     */
                    function transferWithAuthorization(
                        address from,
                        address to,
                        uint256 value,
                        uint256 validAfter,
                        uint256 validBefore,
                        bytes32 nonce,
                        bytes memory signature
                    ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
                        _transferWithAuthorization(
                            from,
                            to,
                            value,
                            validAfter,
                            validBefore,
                            nonce,
                            signature
                        );
                    }
                    /**
                     * @notice Receive a transfer with a signed authorization from the payer
                     * @dev This has an additional check to ensure that the payee's address
                     * matches the caller of this function to prevent front-running attacks.
                     * EOA wallet signatures should be packed in the order of r, s, v.
                     * @param from          Payer's address (Authorizer)
                     * @param to            Payee's address
                     * @param value         Amount to be transferred
                     * @param validAfter    The time after which this is valid (unix time)
                     * @param validBefore   The time before which this is valid (unix time)
                     * @param nonce         Unique nonce
                     * @param signature     Signature bytes signed by an EOA wallet or a contract wallet
                     */
                    function receiveWithAuthorization(
                        address from,
                        address to,
                        uint256 value,
                        uint256 validAfter,
                        uint256 validBefore,
                        bytes32 nonce,
                        bytes memory signature
                    ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
                        _receiveWithAuthorization(
                            from,
                            to,
                            value,
                            validAfter,
                            validBefore,
                            nonce,
                            signature
                        );
                    }
                    /**
                     * @notice Attempt to cancel an authorization
                     * @dev Works only if the authorization is not yet used.
                     * EOA wallet signatures should be packed in the order of r, s, v.
                     * @param authorizer    Authorizer's address
                     * @param nonce         Nonce of the authorization
                     * @param signature     Signature bytes signed by an EOA wallet or a contract wallet
                     */
                    function cancelAuthorization(
                        address authorizer,
                        bytes32 nonce,
                        bytes memory signature
                    ) external whenNotPaused {
                        _cancelAuthorization(authorizer, nonce, signature);
                    }
                    /**
                     * @dev Helper method that sets the blacklist state of an account on balanceAndBlacklistStates.
                     * If _shouldBlacklist is true, we apply a (1 << 255) bitmask with an OR operation on the
                     * account's balanceAndBlacklistState. This flips the high bit for the account to 1,
                     * indicating that the account is blacklisted.
                     *
                     * If _shouldBlacklist if false, we reset the account's balanceAndBlacklistStates to their
                     * balances. This clears the high bit for the account, indicating that the account is unblacklisted.
                     * @param _account         The address of the account.
                     * @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted.
                     */
                    function _setBlacklistState(address _account, bool _shouldBlacklist)
                        internal
                        override
                    {
                        balanceAndBlacklistStates[_account] = _shouldBlacklist
                            ? balanceAndBlacklistStates[_account] | (1 << 255)
                            : _balanceOf(_account);
                    }
                    /**
                     * @dev Helper method that sets the balance of an account on balanceAndBlacklistStates.
                     * Since balances are stored in the last 255 bits of the balanceAndBlacklistStates value,
                     * we need to ensure that the updated balance does not exceed (2^255 - 1).
                     * Since blacklisted accounts' balances cannot be updated, the method will also
                     * revert if the account is blacklisted
                     * @param _account The address of the account.
                     * @param _balance The new fiat token balance of the account (max: (2^255 - 1)).
                     */
                    function _setBalance(address _account, uint256 _balance) internal override {
                        require(
                            _balance <= ((1 << 255) - 1),
                            "FiatTokenV2_2: Balance exceeds (2^255 - 1)"
                        );
                        require(
                            !_isBlacklisted(_account),
                            "FiatTokenV2_2: Account is blacklisted"
                        );
                        balanceAndBlacklistStates[_account] = _balance;
                    }
                    /**
                     * @inheritdoc Blacklistable
                     */
                    function _isBlacklisted(address _account)
                        internal
                        override
                        view
                        returns (bool)
                    {
                        return balanceAndBlacklistStates[_account] >> 255 == 1;
                    }
                    /**
                     * @dev Helper method to obtain the balance of an account. Since balances
                     * are stored in the last 255 bits of the balanceAndBlacklistStates value,
                     * we apply a ((1 << 255) - 1) bit bitmask with an AND operation on the
                     * balanceAndBlacklistState to obtain the balance.
                     * @param _account  The address of the account.
                     * @return          The fiat token balance of the account.
                     */
                    function _balanceOf(address _account)
                        internal
                        override
                        view
                        returns (uint256)
                    {
                        return balanceAndBlacklistStates[_account] & ((1 << 255) - 1);
                    }
                    /**
                     * @inheritdoc FiatTokenV1
                     */
                    function approve(address spender, uint256 value)
                        external
                        override
                        whenNotPaused
                        returns (bool)
                    {
                        _approve(msg.sender, spender, value);
                        return true;
                    }
                    /**
                     * @inheritdoc FiatTokenV2
                     */
                    function permit(
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) external override whenNotPaused {
                        _permit(owner, spender, value, deadline, v, r, s);
                    }
                    /**
                     * @inheritdoc FiatTokenV2
                     */
                    function increaseAllowance(address spender, uint256 increment)
                        external
                        override
                        whenNotPaused
                        returns (bool)
                    {
                        _increaseAllowance(msg.sender, spender, increment);
                        return true;
                    }
                    /**
                     * @inheritdoc FiatTokenV2
                     */
                    function decreaseAllowance(address spender, uint256 decrement)
                        external
                        override
                        whenNotPaused
                        returns (bool)
                    {
                        _decreaseAllowance(msg.sender, spender, decrement);
                        return true;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.2 <0.8.0;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library Address {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize, which returns 0 for contracts in
                        // construction, since the code is only stored at the end of the
                        // constructor execution.
                        uint256 size;
                        // solhint-disable-next-line no-inline-assembly
                        assembly { size := extcodesize(account) }
                        return size > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                        (bool success, ) = recipient.call{ value: amount }("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain`call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        // solhint-disable-next-line avoid-low-level-calls
                        (bool success, bytes memory returndata) = target.call{ value: value }(data);
                        return _verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        // solhint-disable-next-line avoid-low-level-calls
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return _verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                        require(isContract(target), "Address: delegate call to non-contract");
                        // solhint-disable-next-line avoid-low-level-calls
                        (bool success, bytes memory returndata) = target.delegatecall(data);
                        return _verifyCallResult(success, returndata, errorMessage);
                    }
                    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                // solhint-disable-next-line no-inline-assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.0 <0.8.0;
                import "./IERC20.sol";
                import "../../math/SafeMath.sol";
                import "../../utils/Address.sol";
                /**
                 * @title SafeERC20
                 * @dev Wrappers around ERC20 operations that throw on failure (when the token
                 * contract returns false). Tokens that return no value (and instead revert or
                 * throw on failure) are also supported, non-reverting calls are assumed to be
                 * successful.
                 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                 */
                library SafeERC20 {
                    using SafeMath for uint256;
                    using Address for address;
                    function safeTransfer(IERC20 token, address to, uint256 value) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                    }
                    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                    }
                    /**
                     * @dev Deprecated. This function has issues similar to the ones found in
                     * {IERC20-approve}, and its usage is discouraged.
                     *
                     * Whenever possible, use {safeIncreaseAllowance} and
                     * {safeDecreaseAllowance} instead.
                     */
                    function safeApprove(IERC20 token, address spender, uint256 value) internal {
                        // safeApprove should only be called when setting an initial allowance,
                        // or when resetting it to zero. To increase and decrease it, use
                        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                        // solhint-disable-next-line max-line-length
                        require((value == 0) || (token.allowance(address(this), spender) == 0),
                            "SafeERC20: approve from non-zero to non-zero allowance"
                        );
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                    }
                    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                        uint256 newAllowance = token.allowance(address(this), spender).add(value);
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                        uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                    /**
                     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                     * on the return value: the return value is optional (but if data is returned, it must not be false).
                     * @param token The token targeted by the call.
                     * @param data The call data (encoded using abi.encode or one of its variants).
                     */
                    function _callOptionalReturn(IERC20 token, bytes memory data) private {
                        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                        // the target address contains contract code and also asserts for success in the low-level call.
                        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                        if (returndata.length > 0) { // Return data is optional
                            // solhint-disable-next-line max-line-length
                            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.0 <0.8.0;
                /**
                 * @dev Interface of the ERC20 standard as defined in the EIP.
                 */
                interface IERC20 {
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `recipient`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address recipient, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `sender` to `recipient` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.0 <0.8.0;
                /**
                 * @dev Wrappers over Solidity's arithmetic operations with added overflow
                 * checks.
                 *
                 * Arithmetic operations in Solidity wrap on overflow. This can easily result
                 * in bugs, because programmers usually assume that an overflow raises an
                 * error, which is the standard behavior in high level programming languages.
                 * `SafeMath` restores this intuition by reverting the transaction when an
                 * operation overflows.
                 *
                 * Using this library instead of the unchecked operations eliminates an entire
                 * class of bugs, so it's recommended to use it always.
                 */
                library SafeMath {
                    /**
                     * @dev Returns the addition of two unsigned integers, with an overflow flag.
                     *
                     * _Available since v3.4._
                     */
                    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        uint256 c = a + b;
                        if (c < a) return (false, 0);
                        return (true, c);
                    }
                    /**
                     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
                     *
                     * _Available since v3.4._
                     */
                    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        if (b > a) return (false, 0);
                        return (true, a - b);
                    }
                    /**
                     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
                     *
                     * _Available since v3.4._
                     */
                    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                        // benefit is lost if 'b' is also tested.
                        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                        if (a == 0) return (true, 0);
                        uint256 c = a * b;
                        if (c / a != b) return (false, 0);
                        return (true, c);
                    }
                    /**
                     * @dev Returns the division of two unsigned integers, with a division by zero flag.
                     *
                     * _Available since v3.4._
                     */
                    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        if (b == 0) return (false, 0);
                        return (true, a / b);
                    }
                    /**
                     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
                     *
                     * _Available since v3.4._
                     */
                    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        if (b == 0) return (false, 0);
                        return (true, a % b);
                    }
                    /**
                     * @dev Returns the addition of two unsigned integers, reverting on
                     * overflow.
                     *
                     * Counterpart to Solidity's `+` operator.
                     *
                     * Requirements:
                     *
                     * - Addition cannot overflow.
                     */
                    function add(uint256 a, uint256 b) internal pure returns (uint256) {
                        uint256 c = a + b;
                        require(c >= a, "SafeMath: addition overflow");
                        return c;
                    }
                    /**
                     * @dev Returns the subtraction of two unsigned integers, reverting on
                     * overflow (when the result is negative).
                     *
                     * Counterpart to Solidity's `-` operator.
                     *
                     * Requirements:
                     *
                     * - Subtraction cannot overflow.
                     */
                    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                        require(b <= a, "SafeMath: subtraction overflow");
                        return a - b;
                    }
                    /**
                     * @dev Returns the multiplication of two unsigned integers, reverting on
                     * overflow.
                     *
                     * Counterpart to Solidity's `*` operator.
                     *
                     * Requirements:
                     *
                     * - Multiplication cannot overflow.
                     */
                    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                        if (a == 0) return 0;
                        uint256 c = a * b;
                        require(c / a == b, "SafeMath: multiplication overflow");
                        return c;
                    }
                    /**
                     * @dev Returns the integer division of two unsigned integers, reverting on
                     * division by zero. The result is rounded towards zero.
                     *
                     * Counterpart to Solidity's `/` operator. Note: this function uses a
                     * `revert` opcode (which leaves remaining gas untouched) while Solidity
                     * uses an invalid opcode to revert (consuming all remaining gas).
                     *
                     * Requirements:
                     *
                     * - The divisor cannot be zero.
                     */
                    function div(uint256 a, uint256 b) internal pure returns (uint256) {
                        require(b > 0, "SafeMath: division by zero");
                        return a / b;
                    }
                    /**
                     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                     * reverting when dividing by zero.
                     *
                     * Counterpart to Solidity's `%` operator. This function uses a `revert`
                     * opcode (which leaves remaining gas untouched) while Solidity uses an
                     * invalid opcode to revert (consuming all remaining gas).
                     *
                     * Requirements:
                     *
                     * - The divisor cannot be zero.
                     */
                    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                        require(b > 0, "SafeMath: modulo by zero");
                        return a % b;
                    }
                    /**
                     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
                     * overflow (when the result is negative).
                     *
                     * CAUTION: This function is deprecated because it requires allocating memory for the error
                     * message unnecessarily. For custom revert reasons use {trySub}.
                     *
                     * Counterpart to Solidity's `-` operator.
                     *
                     * Requirements:
                     *
                     * - Subtraction cannot overflow.
                     */
                    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                        require(b <= a, errorMessage);
                        return a - b;
                    }
                    /**
                     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
                     * division by zero. The result is rounded towards zero.
                     *
                     * CAUTION: This function is deprecated because it requires allocating memory for the error
                     * message unnecessarily. For custom revert reasons use {tryDiv}.
                     *
                     * Counterpart to Solidity's `/` operator. Note: this function uses a
                     * `revert` opcode (which leaves remaining gas untouched) while Solidity
                     * uses an invalid opcode to revert (consuming all remaining gas).
                     *
                     * Requirements:
                     *
                     * - The divisor cannot be zero.
                     */
                    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                        require(b > 0, errorMessage);
                        return a / b;
                    }
                    /**
                     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                     * reverting with custom message when dividing by zero.
                     *
                     * CAUTION: This function is deprecated because it requires allocating memory for the error
                     * message unnecessarily. For custom revert reasons use {tryMod}.
                     *
                     * Counterpart to Solidity's `%` operator. This function uses a `revert`
                     * opcode (which leaves remaining gas untouched) while Solidity uses an
                     * invalid opcode to revert (consuming all remaining gas).
                     *
                     * Requirements:
                     *
                     * - The divisor cannot be zero.
                     */
                    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                        require(b > 0, errorMessage);
                        return a % b;
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                import { FiatTokenV2 } from "./FiatTokenV2.sol";
                // solhint-disable func-name-mixedcase
                /**
                 * @title FiatToken V2.1
                 * @notice ERC20 Token backed by fiat reserves, version 2.1
                 */
                contract FiatTokenV2_1 is FiatTokenV2 {
                    /**
                     * @notice Initialize v2.1
                     * @param lostAndFound  The address to which the locked funds are sent
                     */
                    function initializeV2_1(address lostAndFound) external {
                        // solhint-disable-next-line reason-string
                        require(_initializedVersion == 1);
                        uint256 lockedAmount = _balanceOf(address(this));
                        if (lockedAmount > 0) {
                            _transfer(address(this), lostAndFound, lockedAmount);
                        }
                        _blacklist(address(this));
                        _initializedVersion = 2;
                    }
                    /**
                     * @notice Version string for the EIP712 domain separator
                     * @return Version string
                     */
                    function version() external pure returns (string memory) {
                        return "2";
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                import { FiatTokenV1_1 } from "../v1.1/FiatTokenV1_1.sol";
                import { EIP712 } from "../util/EIP712.sol";
                import { EIP3009 } from "./EIP3009.sol";
                import { EIP2612 } from "./EIP2612.sol";
                /**
                 * @title FiatToken V2
                 * @notice ERC20 Token backed by fiat reserves, version 2
                 */
                contract FiatTokenV2 is FiatTokenV1_1, EIP3009, EIP2612 {
                    uint8 internal _initializedVersion;
                    /**
                     * @notice Initialize v2
                     * @param newName   New token name
                     */
                    function initializeV2(string calldata newName) external {
                        // solhint-disable-next-line reason-string
                        require(initialized && _initializedVersion == 0);
                        name = newName;
                        _DEPRECATED_CACHED_DOMAIN_SEPARATOR = EIP712.makeDomainSeparator(
                            newName,
                            "2"
                        );
                        _initializedVersion = 1;
                    }
                    /**
                     * @notice Increase the allowance by a given increment
                     * @param spender   Spender's address
                     * @param increment Amount of increase in allowance
                     * @return True if successful
                     */
                    function increaseAllowance(address spender, uint256 increment)
                        external
                        virtual
                        whenNotPaused
                        notBlacklisted(msg.sender)
                        notBlacklisted(spender)
                        returns (bool)
                    {
                        _increaseAllowance(msg.sender, spender, increment);
                        return true;
                    }
                    /**
                     * @notice Decrease the allowance by a given decrement
                     * @param spender   Spender's address
                     * @param decrement Amount of decrease in allowance
                     * @return True if successful
                     */
                    function decreaseAllowance(address spender, uint256 decrement)
                        external
                        virtual
                        whenNotPaused
                        notBlacklisted(msg.sender)
                        notBlacklisted(spender)
                        returns (bool)
                    {
                        _decreaseAllowance(msg.sender, spender, decrement);
                        return true;
                    }
                    /**
                     * @notice Execute a transfer with a signed authorization
                     * @param from          Payer's address (Authorizer)
                     * @param to            Payee's address
                     * @param value         Amount to be transferred
                     * @param validAfter    The time after which this is valid (unix time)
                     * @param validBefore   The time before which this is valid (unix time)
                     * @param nonce         Unique nonce
                     * @param v             v of the signature
                     * @param r             r of the signature
                     * @param s             s of the signature
                     */
                    function transferWithAuthorization(
                        address from,
                        address to,
                        uint256 value,
                        uint256 validAfter,
                        uint256 validBefore,
                        bytes32 nonce,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
                        _transferWithAuthorization(
                            from,
                            to,
                            value,
                            validAfter,
                            validBefore,
                            nonce,
                            v,
                            r,
                            s
                        );
                    }
                    /**
                     * @notice Receive a transfer with a signed authorization from the payer
                     * @dev This has an additional check to ensure that the payee's address
                     * matches the caller of this function to prevent front-running attacks.
                     * @param from          Payer's address (Authorizer)
                     * @param to            Payee's address
                     * @param value         Amount to be transferred
                     * @param validAfter    The time after which this is valid (unix time)
                     * @param validBefore   The time before which this is valid (unix time)
                     * @param nonce         Unique nonce
                     * @param v             v of the signature
                     * @param r             r of the signature
                     * @param s             s of the signature
                     */
                    function receiveWithAuthorization(
                        address from,
                        address to,
                        uint256 value,
                        uint256 validAfter,
                        uint256 validBefore,
                        bytes32 nonce,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
                        _receiveWithAuthorization(
                            from,
                            to,
                            value,
                            validAfter,
                            validBefore,
                            nonce,
                            v,
                            r,
                            s
                        );
                    }
                    /**
                     * @notice Attempt to cancel an authorization
                     * @dev Works only if the authorization is not yet used.
                     * @param authorizer    Authorizer's address
                     * @param nonce         Nonce of the authorization
                     * @param v             v of the signature
                     * @param r             r of the signature
                     * @param s             s of the signature
                     */
                    function cancelAuthorization(
                        address authorizer,
                        bytes32 nonce,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) external whenNotPaused {
                        _cancelAuthorization(authorizer, nonce, v, r, s);
                    }
                    /**
                     * @notice Update allowance with a signed permit
                     * @param owner       Token owner's address (Authorizer)
                     * @param spender     Spender's address
                     * @param value       Amount of allowance
                     * @param deadline    The time at which the signature expires (unix time), or max uint256 value to signal no expiration
                     * @param v           v of the signature
                     * @param r           r of the signature
                     * @param s           s of the signature
                     */
                    function permit(
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    )
                        external
                        virtual
                        whenNotPaused
                        notBlacklisted(owner)
                        notBlacklisted(spender)
                    {
                        _permit(owner, spender, value, deadline, v, r, s);
                    }
                    /**
                     * @dev Internal function to increase the allowance by a given increment
                     * @param owner     Token owner's address
                     * @param spender   Spender's address
                     * @param increment Amount of increase
                     */
                    function _increaseAllowance(
                        address owner,
                        address spender,
                        uint256 increment
                    ) internal override {
                        _approve(owner, spender, allowed[owner][spender].add(increment));
                    }
                    /**
                     * @dev Internal function to decrease the allowance by a given decrement
                     * @param owner     Token owner's address
                     * @param spender   Spender's address
                     * @param decrement Amount of decrease
                     */
                    function _decreaseAllowance(
                        address owner,
                        address spender,
                        uint256 decrement
                    ) internal override {
                        _approve(
                            owner,
                            spender,
                            allowed[owner][spender].sub(
                                decrement,
                                "ERC20: decreased allowance below zero"
                            )
                        );
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                // solhint-disable func-name-mixedcase
                /**
                 * @title EIP712 Domain
                 */
                contract EIP712Domain {
                    // was originally DOMAIN_SEPARATOR
                    // but that has been moved to a method so we can override it in V2_2+
                    bytes32 internal _DEPRECATED_CACHED_DOMAIN_SEPARATOR;
                    /**
                     * @notice Get the EIP712 Domain Separator.
                     * @return The bytes32 EIP712 domain separator.
                     */
                    function DOMAIN_SEPARATOR() external view returns (bytes32) {
                        return _domainSeparator();
                    }
                    /**
                     * @dev Internal method to get the EIP712 Domain Separator.
                     * @return The bytes32 EIP712 domain separator.
                     */
                    function _domainSeparator() internal virtual view returns (bytes32) {
                        return _DEPRECATED_CACHED_DOMAIN_SEPARATOR;
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol";
                import { EIP712Domain } from "./EIP712Domain.sol";
                import { SignatureChecker } from "../util/SignatureChecker.sol";
                import { MessageHashUtils } from "../util/MessageHashUtils.sol";
                /**
                 * @title EIP-3009
                 * @notice Provide internal implementation for gas-abstracted transfers
                 * @dev Contracts that inherit from this must wrap these with publicly
                 * accessible functions, optionally adding modifiers where necessary
                 */
                abstract contract EIP3009 is AbstractFiatTokenV2, EIP712Domain {
                    // keccak256("TransferWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)")
                    bytes32
                        public constant TRANSFER_WITH_AUTHORIZATION_TYPEHASH = 0x7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a2267;
                    // keccak256("ReceiveWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)")
                    bytes32
                        public constant RECEIVE_WITH_AUTHORIZATION_TYPEHASH = 0xd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de8;
                    // keccak256("CancelAuthorization(address authorizer,bytes32 nonce)")
                    bytes32
                        public constant CANCEL_AUTHORIZATION_TYPEHASH = 0x158b0a9edf7a828aad02f63cd515c68ef2f50ba807396f6d12842833a1597429;
                    /**
                     * @dev authorizer address => nonce => bool (true if nonce is used)
                     */
                    mapping(address => mapping(bytes32 => bool)) private _authorizationStates;
                    event AuthorizationUsed(address indexed authorizer, bytes32 indexed nonce);
                    event AuthorizationCanceled(
                        address indexed authorizer,
                        bytes32 indexed nonce
                    );
                    /**
                     * @notice Returns the state of an authorization
                     * @dev Nonces are randomly generated 32-byte data unique to the
                     * authorizer's address
                     * @param authorizer    Authorizer's address
                     * @param nonce         Nonce of the authorization
                     * @return True if the nonce is used
                     */
                    function authorizationState(address authorizer, bytes32 nonce)
                        external
                        view
                        returns (bool)
                    {
                        return _authorizationStates[authorizer][nonce];
                    }
                    /**
                     * @notice Execute a transfer with a signed authorization
                     * @param from          Payer's address (Authorizer)
                     * @param to            Payee's address
                     * @param value         Amount to be transferred
                     * @param validAfter    The time after which this is valid (unix time)
                     * @param validBefore   The time before which this is valid (unix time)
                     * @param nonce         Unique nonce
                     * @param v             v of the signature
                     * @param r             r of the signature
                     * @param s             s of the signature
                     */
                    function _transferWithAuthorization(
                        address from,
                        address to,
                        uint256 value,
                        uint256 validAfter,
                        uint256 validBefore,
                        bytes32 nonce,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal {
                        _transferWithAuthorization(
                            from,
                            to,
                            value,
                            validAfter,
                            validBefore,
                            nonce,
                            abi.encodePacked(r, s, v)
                        );
                    }
                    /**
                     * @notice Execute a transfer with a signed authorization
                     * @dev EOA wallet signatures should be packed in the order of r, s, v.
                     * @param from          Payer's address (Authorizer)
                     * @param to            Payee's address
                     * @param value         Amount to be transferred
                     * @param validAfter    The time after which this is valid (unix time)
                     * @param validBefore   The time before which this is valid (unix time)
                     * @param nonce         Unique nonce
                     * @param signature     Signature byte array produced by an EOA wallet or a contract wallet
                     */
                    function _transferWithAuthorization(
                        address from,
                        address to,
                        uint256 value,
                        uint256 validAfter,
                        uint256 validBefore,
                        bytes32 nonce,
                        bytes memory signature
                    ) internal {
                        _requireValidAuthorization(from, nonce, validAfter, validBefore);
                        _requireValidSignature(
                            from,
                            keccak256(
                                abi.encode(
                                    TRANSFER_WITH_AUTHORIZATION_TYPEHASH,
                                    from,
                                    to,
                                    value,
                                    validAfter,
                                    validBefore,
                                    nonce
                                )
                            ),
                            signature
                        );
                        _markAuthorizationAsUsed(from, nonce);
                        _transfer(from, to, value);
                    }
                    /**
                     * @notice Receive a transfer with a signed authorization from the payer
                     * @dev This has an additional check to ensure that the payee's address
                     * matches the caller of this function to prevent front-running attacks.
                     * @param from          Payer's address (Authorizer)
                     * @param to            Payee's address
                     * @param value         Amount to be transferred
                     * @param validAfter    The time after which this is valid (unix time)
                     * @param validBefore   The time before which this is valid (unix time)
                     * @param nonce         Unique nonce
                     * @param v             v of the signature
                     * @param r             r of the signature
                     * @param s             s of the signature
                     */
                    function _receiveWithAuthorization(
                        address from,
                        address to,
                        uint256 value,
                        uint256 validAfter,
                        uint256 validBefore,
                        bytes32 nonce,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal {
                        _receiveWithAuthorization(
                            from,
                            to,
                            value,
                            validAfter,
                            validBefore,
                            nonce,
                            abi.encodePacked(r, s, v)
                        );
                    }
                    /**
                     * @notice Receive a transfer with a signed authorization from the payer
                     * @dev This has an additional check to ensure that the payee's address
                     * matches the caller of this function to prevent front-running attacks.
                     * EOA wallet signatures should be packed in the order of r, s, v.
                     * @param from          Payer's address (Authorizer)
                     * @param to            Payee's address
                     * @param value         Amount to be transferred
                     * @param validAfter    The time after which this is valid (unix time)
                     * @param validBefore   The time before which this is valid (unix time)
                     * @param nonce         Unique nonce
                     * @param signature     Signature byte array produced by an EOA wallet or a contract wallet
                     */
                    function _receiveWithAuthorization(
                        address from,
                        address to,
                        uint256 value,
                        uint256 validAfter,
                        uint256 validBefore,
                        bytes32 nonce,
                        bytes memory signature
                    ) internal {
                        require(to == msg.sender, "FiatTokenV2: caller must be the payee");
                        _requireValidAuthorization(from, nonce, validAfter, validBefore);
                        _requireValidSignature(
                            from,
                            keccak256(
                                abi.encode(
                                    RECEIVE_WITH_AUTHORIZATION_TYPEHASH,
                                    from,
                                    to,
                                    value,
                                    validAfter,
                                    validBefore,
                                    nonce
                                )
                            ),
                            signature
                        );
                        _markAuthorizationAsUsed(from, nonce);
                        _transfer(from, to, value);
                    }
                    /**
                     * @notice Attempt to cancel an authorization
                     * @param authorizer    Authorizer's address
                     * @param nonce         Nonce of the authorization
                     * @param v             v of the signature
                     * @param r             r of the signature
                     * @param s             s of the signature
                     */
                    function _cancelAuthorization(
                        address authorizer,
                        bytes32 nonce,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal {
                        _cancelAuthorization(authorizer, nonce, abi.encodePacked(r, s, v));
                    }
                    /**
                     * @notice Attempt to cancel an authorization
                     * @dev EOA wallet signatures should be packed in the order of r, s, v.
                     * @param authorizer    Authorizer's address
                     * @param nonce         Nonce of the authorization
                     * @param signature     Signature byte array produced by an EOA wallet or a contract wallet
                     */
                    function _cancelAuthorization(
                        address authorizer,
                        bytes32 nonce,
                        bytes memory signature
                    ) internal {
                        _requireUnusedAuthorization(authorizer, nonce);
                        _requireValidSignature(
                            authorizer,
                            keccak256(
                                abi.encode(CANCEL_AUTHORIZATION_TYPEHASH, authorizer, nonce)
                            ),
                            signature
                        );
                        _authorizationStates[authorizer][nonce] = true;
                        emit AuthorizationCanceled(authorizer, nonce);
                    }
                    /**
                     * @notice Validates that signature against input data struct
                     * @param signer        Signer's address
                     * @param dataHash      Hash of encoded data struct
                     * @param signature     Signature byte array produced by an EOA wallet or a contract wallet
                     */
                    function _requireValidSignature(
                        address signer,
                        bytes32 dataHash,
                        bytes memory signature
                    ) private view {
                        require(
                            SignatureChecker.isValidSignatureNow(
                                signer,
                                MessageHashUtils.toTypedDataHash(_domainSeparator(), dataHash),
                                signature
                            ),
                            "FiatTokenV2: invalid signature"
                        );
                    }
                    /**
                     * @notice Check that an authorization is unused
                     * @param authorizer    Authorizer's address
                     * @param nonce         Nonce of the authorization
                     */
                    function _requireUnusedAuthorization(address authorizer, bytes32 nonce)
                        private
                        view
                    {
                        require(
                            !_authorizationStates[authorizer][nonce],
                            "FiatTokenV2: authorization is used or canceled"
                        );
                    }
                    /**
                     * @notice Check that authorization is valid
                     * @param authorizer    Authorizer's address
                     * @param nonce         Nonce of the authorization
                     * @param validAfter    The time after which this is valid (unix time)
                     * @param validBefore   The time before which this is valid (unix time)
                     */
                    function _requireValidAuthorization(
                        address authorizer,
                        bytes32 nonce,
                        uint256 validAfter,
                        uint256 validBefore
                    ) private view {
                        require(
                            now > validAfter,
                            "FiatTokenV2: authorization is not yet valid"
                        );
                        require(now < validBefore, "FiatTokenV2: authorization is expired");
                        _requireUnusedAuthorization(authorizer, nonce);
                    }
                    /**
                     * @notice Mark an authorization as used
                     * @param authorizer    Authorizer's address
                     * @param nonce         Nonce of the authorization
                     */
                    function _markAuthorizationAsUsed(address authorizer, bytes32 nonce)
                        private
                    {
                        _authorizationStates[authorizer][nonce] = true;
                        emit AuthorizationUsed(authorizer, nonce);
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol";
                import { EIP712Domain } from "./EIP712Domain.sol";
                import { MessageHashUtils } from "../util/MessageHashUtils.sol";
                import { SignatureChecker } from "../util/SignatureChecker.sol";
                /**
                 * @title EIP-2612
                 * @notice Provide internal implementation for gas-abstracted approvals
                 */
                abstract contract EIP2612 is AbstractFiatTokenV2, EIP712Domain {
                    // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")
                    bytes32
                        public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
                    mapping(address => uint256) private _permitNonces;
                    /**
                     * @notice Nonces for permit
                     * @param owner Token owner's address (Authorizer)
                     * @return Next nonce
                     */
                    function nonces(address owner) external view returns (uint256) {
                        return _permitNonces[owner];
                    }
                    /**
                     * @notice Verify a signed approval permit and execute if valid
                     * @param owner     Token owner's address (Authorizer)
                     * @param spender   Spender's address
                     * @param value     Amount of allowance
                     * @param deadline  The time at which the signature expires (unix time), or max uint256 value to signal no expiration
                     * @param v         v of the signature
                     * @param r         r of the signature
                     * @param s         s of the signature
                     */
                    function _permit(
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal {
                        _permit(owner, spender, value, deadline, abi.encodePacked(r, s, v));
                    }
                    /**
                     * @notice Verify a signed approval permit and execute if valid
                     * @dev EOA wallet signatures should be packed in the order of r, s, v.
                     * @param owner      Token owner's address (Authorizer)
                     * @param spender    Spender's address
                     * @param value      Amount of allowance
                     * @param deadline   The time at which the signature expires (unix time), or max uint256 value to signal no expiration
                     * @param signature  Signature byte array signed by an EOA wallet or a contract wallet
                     */
                    function _permit(
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        bytes memory signature
                    ) internal {
                        require(
                            deadline == type(uint256).max || deadline >= now,
                            "FiatTokenV2: permit is expired"
                        );
                        bytes32 typedDataHash = MessageHashUtils.toTypedDataHash(
                            _domainSeparator(),
                            keccak256(
                                abi.encode(
                                    PERMIT_TYPEHASH,
                                    owner,
                                    spender,
                                    value,
                                    _permitNonces[owner]++,
                                    deadline
                                )
                            )
                        );
                        require(
                            SignatureChecker.isValidSignatureNow(
                                owner,
                                typedDataHash,
                                signature
                            ),
                            "EIP2612: invalid signature"
                        );
                        _approve(owner, spender, value);
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                import { AbstractFiatTokenV1 } from "../v1/AbstractFiatTokenV1.sol";
                abstract contract AbstractFiatTokenV2 is AbstractFiatTokenV1 {
                    function _increaseAllowance(
                        address owner,
                        address spender,
                        uint256 increment
                    ) internal virtual;
                    function _decreaseAllowance(
                        address owner,
                        address spender,
                        uint256 decrement
                    ) internal virtual;
                }
                /**
                 * SPDX-License-Identifier: MIT
                 *
                 * Copyright (c) 2016 Smart Contract Solutions, Inc.
                 * Copyright (c) 2018-2020 CENTRE SECZ
                 *
                 * Permission is hereby granted, free of charge, to any person obtaining a copy
                 * of this software and associated documentation files (the "Software"), to deal
                 * in the Software without restriction, including without limitation the rights
                 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
                 * copies of the Software, and to permit persons to whom the Software is
                 * furnished to do so, subject to the following conditions:
                 *
                 * The above copyright notice and this permission notice shall be included in
                 * copies or substantial portions of the Software.
                 *
                 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
                 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
                 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
                 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
                 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
                 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
                 * SOFTWARE.
                 */
                pragma solidity 0.6.12;
                import { Ownable } from "./Ownable.sol";
                /**
                 * @notice Base contract which allows children to implement an emergency stop
                 * mechanism
                 * @dev Forked from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/feb665136c0dae9912e08397c1a21c4af3651ef3/contracts/lifecycle/Pausable.sol
                 * Modifications:
                 * 1. Added pauser role, switched pause/unpause to be onlyPauser (6/14/2018)
                 * 2. Removed whenNotPause/whenPaused from pause/unpause (6/14/2018)
                 * 3. Removed whenPaused (6/14/2018)
                 * 4. Switches ownable library to use ZeppelinOS (7/12/18)
                 * 5. Remove constructor (7/13/18)
                 * 6. Reformat, conform to Solidity 0.6 syntax and add error messages (5/13/20)
                 * 7. Make public functions external (5/27/20)
                 */
                contract Pausable is Ownable {
                    event Pause();
                    event Unpause();
                    event PauserChanged(address indexed newAddress);
                    address public pauser;
                    bool public paused = false;
                    /**
                     * @dev Modifier to make a function callable only when the contract is not paused.
                     */
                    modifier whenNotPaused() {
                        require(!paused, "Pausable: paused");
                        _;
                    }
                    /**
                     * @dev throws if called by any account other than the pauser
                     */
                    modifier onlyPauser() {
                        require(msg.sender == pauser, "Pausable: caller is not the pauser");
                        _;
                    }
                    /**
                     * @dev called by the owner to pause, triggers stopped state
                     */
                    function pause() external onlyPauser {
                        paused = true;
                        emit Pause();
                    }
                    /**
                     * @dev called by the owner to unpause, returns to normal state
                     */
                    function unpause() external onlyPauser {
                        paused = false;
                        emit Unpause();
                    }
                    /**
                     * @notice Updates the pauser address.
                     * @param _newPauser The address of the new pauser.
                     */
                    function updatePauser(address _newPauser) external onlyOwner {
                        require(
                            _newPauser != address(0),
                            "Pausable: new pauser is the zero address"
                        );
                        pauser = _newPauser;
                        emit PauserChanged(pauser);
                    }
                }
                /**
                 * SPDX-License-Identifier: MIT
                 *
                 * Copyright (c) 2018 zOS Global Limited.
                 * Copyright (c) 2018-2020 CENTRE SECZ
                 *
                 * Permission is hereby granted, free of charge, to any person obtaining a copy
                 * of this software and associated documentation files (the "Software"), to deal
                 * in the Software without restriction, including without limitation the rights
                 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
                 * copies of the Software, and to permit persons to whom the Software is
                 * furnished to do so, subject to the following conditions:
                 *
                 * The above copyright notice and this permission notice shall be included in
                 * copies or substantial portions of the Software.
                 *
                 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
                 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
                 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
                 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
                 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
                 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
                 * SOFTWARE.
                 */
                pragma solidity 0.6.12;
                /**
                 * @notice The Ownable contract has an owner address, and provides basic
                 * authorization control functions
                 * @dev Forked from https://github.com/OpenZeppelin/openzeppelin-labs/blob/3887ab77b8adafba4a26ace002f3a684c1a3388b/upgradeability_ownership/contracts/ownership/Ownable.sol
                 * Modifications:
                 * 1. Consolidate OwnableStorage into this contract (7/13/18)
                 * 2. Reformat, conform to Solidity 0.6 syntax, and add error messages (5/13/20)
                 * 3. Make public functions external (5/27/20)
                 */
                contract Ownable {
                    // Owner of the contract
                    address private _owner;
                    /**
                     * @dev Event to show ownership has been transferred
                     * @param previousOwner representing the address of the previous owner
                     * @param newOwner representing the address of the new owner
                     */
                    event OwnershipTransferred(address previousOwner, address newOwner);
                    /**
                     * @dev The constructor sets the original owner of the contract to the sender account.
                     */
                    constructor() public {
                        setOwner(msg.sender);
                    }
                    /**
                     * @dev Tells the address of the owner
                     * @return the address of the owner
                     */
                    function owner() external view returns (address) {
                        return _owner;
                    }
                    /**
                     * @dev Sets a new owner address
                     */
                    function setOwner(address newOwner) internal {
                        _owner = newOwner;
                    }
                    /**
                     * @dev Throws if called by any account other than the owner.
                     */
                    modifier onlyOwner() {
                        require(msg.sender == _owner, "Ownable: caller is not the owner");
                        _;
                    }
                    /**
                     * @dev Allows the current owner to transfer control of the contract to a newOwner.
                     * @param newOwner The address to transfer ownership to.
                     */
                    function transferOwnership(address newOwner) external onlyOwner {
                        require(
                            newOwner != address(0),
                            "Ownable: new owner is the zero address"
                        );
                        emit OwnershipTransferred(_owner, newOwner);
                        setOwner(newOwner);
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol";
                import { AbstractFiatTokenV1 } from "./AbstractFiatTokenV1.sol";
                import { Ownable } from "./Ownable.sol";
                import { Pausable } from "./Pausable.sol";
                import { Blacklistable } from "./Blacklistable.sol";
                /**
                 * @title FiatToken
                 * @dev ERC20 Token backed by fiat reserves
                 */
                contract FiatTokenV1 is AbstractFiatTokenV1, Ownable, Pausable, Blacklistable {
                    using SafeMath for uint256;
                    string public name;
                    string public symbol;
                    uint8 public decimals;
                    string public currency;
                    address public masterMinter;
                    bool internal initialized;
                    /// @dev A mapping that stores the balance and blacklist states for a given address.
                    /// The first bit defines whether the address is blacklisted (1 if blacklisted, 0 otherwise).
                    /// The last 255 bits define the balance for the address.
                    mapping(address => uint256) internal balanceAndBlacklistStates;
                    mapping(address => mapping(address => uint256)) internal allowed;
                    uint256 internal totalSupply_ = 0;
                    mapping(address => bool) internal minters;
                    mapping(address => uint256) internal minterAllowed;
                    event Mint(address indexed minter, address indexed to, uint256 amount);
                    event Burn(address indexed burner, uint256 amount);
                    event MinterConfigured(address indexed minter, uint256 minterAllowedAmount);
                    event MinterRemoved(address indexed oldMinter);
                    event MasterMinterChanged(address indexed newMasterMinter);
                    /**
                     * @notice Initializes the fiat token contract.
                     * @param tokenName       The name of the fiat token.
                     * @param tokenSymbol     The symbol of the fiat token.
                     * @param tokenCurrency   The fiat currency that the token represents.
                     * @param tokenDecimals   The number of decimals that the token uses.
                     * @param newMasterMinter The masterMinter address for the fiat token.
                     * @param newPauser       The pauser address for the fiat token.
                     * @param newBlacklister  The blacklister address for the fiat token.
                     * @param newOwner        The owner of the fiat token.
                     */
                    function initialize(
                        string memory tokenName,
                        string memory tokenSymbol,
                        string memory tokenCurrency,
                        uint8 tokenDecimals,
                        address newMasterMinter,
                        address newPauser,
                        address newBlacklister,
                        address newOwner
                    ) public {
                        require(!initialized, "FiatToken: contract is already initialized");
                        require(
                            newMasterMinter != address(0),
                            "FiatToken: new masterMinter is the zero address"
                        );
                        require(
                            newPauser != address(0),
                            "FiatToken: new pauser is the zero address"
                        );
                        require(
                            newBlacklister != address(0),
                            "FiatToken: new blacklister is the zero address"
                        );
                        require(
                            newOwner != address(0),
                            "FiatToken: new owner is the zero address"
                        );
                        name = tokenName;
                        symbol = tokenSymbol;
                        currency = tokenCurrency;
                        decimals = tokenDecimals;
                        masterMinter = newMasterMinter;
                        pauser = newPauser;
                        blacklister = newBlacklister;
                        setOwner(newOwner);
                        initialized = true;
                    }
                    /**
                     * @dev Throws if called by any account other than a minter.
                     */
                    modifier onlyMinters() {
                        require(minters[msg.sender], "FiatToken: caller is not a minter");
                        _;
                    }
                    /**
                     * @notice Mints fiat tokens to an address.
                     * @param _to The address that will receive the minted tokens.
                     * @param _amount The amount of tokens to mint. Must be less than or equal
                     * to the minterAllowance of the caller.
                     * @return True if the operation was successful.
                     */
                    function mint(address _to, uint256 _amount)
                        external
                        whenNotPaused
                        onlyMinters
                        notBlacklisted(msg.sender)
                        notBlacklisted(_to)
                        returns (bool)
                    {
                        require(_to != address(0), "FiatToken: mint to the zero address");
                        require(_amount > 0, "FiatToken: mint amount not greater than 0");
                        uint256 mintingAllowedAmount = minterAllowed[msg.sender];
                        require(
                            _amount <= mintingAllowedAmount,
                            "FiatToken: mint amount exceeds minterAllowance"
                        );
                        totalSupply_ = totalSupply_.add(_amount);
                        _setBalance(_to, _balanceOf(_to).add(_amount));
                        minterAllowed[msg.sender] = mintingAllowedAmount.sub(_amount);
                        emit Mint(msg.sender, _to, _amount);
                        emit Transfer(address(0), _to, _amount);
                        return true;
                    }
                    /**
                     * @dev Throws if called by any account other than the masterMinter
                     */
                    modifier onlyMasterMinter() {
                        require(
                            msg.sender == masterMinter,
                            "FiatToken: caller is not the masterMinter"
                        );
                        _;
                    }
                    /**
                     * @notice Gets the minter allowance for an account.
                     * @param minter The address to check.
                     * @return The remaining minter allowance for the account.
                     */
                    function minterAllowance(address minter) external view returns (uint256) {
                        return minterAllowed[minter];
                    }
                    /**
                     * @notice Checks if an account is a minter.
                     * @param account The address to check.
                     * @return True if the account is a minter, false if the account is not a minter.
                     */
                    function isMinter(address account) external view returns (bool) {
                        return minters[account];
                    }
                    /**
                     * @notice Gets the remaining amount of fiat tokens a spender is allowed to transfer on
                     * behalf of the token owner.
                     * @param owner   The token owner's address.
                     * @param spender The spender's address.
                     * @return The remaining allowance.
                     */
                    function allowance(address owner, address spender)
                        external
                        override
                        view
                        returns (uint256)
                    {
                        return allowed[owner][spender];
                    }
                    /**
                     * @notice Gets the totalSupply of the fiat token.
                     * @return The totalSupply of the fiat token.
                     */
                    function totalSupply() external override view returns (uint256) {
                        return totalSupply_;
                    }
                    /**
                     * @notice Gets the fiat token balance of an account.
                     * @param account  The address to check.
                     * @return balance The fiat token balance of the account.
                     */
                    function balanceOf(address account)
                        external
                        override
                        view
                        returns (uint256)
                    {
                        return _balanceOf(account);
                    }
                    /**
                     * @notice Sets a fiat token allowance for a spender to spend on behalf of the caller.
                     * @param spender The spender's address.
                     * @param value   The allowance amount.
                     * @return True if the operation was successful.
                     */
                    function approve(address spender, uint256 value)
                        external
                        virtual
                        override
                        whenNotPaused
                        notBlacklisted(msg.sender)
                        notBlacklisted(spender)
                        returns (bool)
                    {
                        _approve(msg.sender, spender, value);
                        return true;
                    }
                    /**
                     * @dev Internal function to set allowance.
                     * @param owner     Token owner's address.
                     * @param spender   Spender's address.
                     * @param value     Allowance amount.
                     */
                    function _approve(
                        address owner,
                        address spender,
                        uint256 value
                    ) internal override {
                        require(owner != address(0), "ERC20: approve from the zero address");
                        require(spender != address(0), "ERC20: approve to the zero address");
                        allowed[owner][spender] = value;
                        emit Approval(owner, spender, value);
                    }
                    /**
                     * @notice Transfers tokens from an address to another by spending the caller's allowance.
                     * @dev The caller must have some fiat token allowance on the payer's tokens.
                     * @param from  Payer's address.
                     * @param to    Payee's address.
                     * @param value Transfer amount.
                     * @return True if the operation was successful.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 value
                    )
                        external
                        override
                        whenNotPaused
                        notBlacklisted(msg.sender)
                        notBlacklisted(from)
                        notBlacklisted(to)
                        returns (bool)
                    {
                        require(
                            value <= allowed[from][msg.sender],
                            "ERC20: transfer amount exceeds allowance"
                        );
                        _transfer(from, to, value);
                        allowed[from][msg.sender] = allowed[from][msg.sender].sub(value);
                        return true;
                    }
                    /**
                     * @notice Transfers tokens from the caller.
                     * @param to    Payee's address.
                     * @param value Transfer amount.
                     * @return True if the operation was successful.
                     */
                    function transfer(address to, uint256 value)
                        external
                        override
                        whenNotPaused
                        notBlacklisted(msg.sender)
                        notBlacklisted(to)
                        returns (bool)
                    {
                        _transfer(msg.sender, to, value);
                        return true;
                    }
                    /**
                     * @dev Internal function to process transfers.
                     * @param from  Payer's address.
                     * @param to    Payee's address.
                     * @param value Transfer amount.
                     */
                    function _transfer(
                        address from,
                        address to,
                        uint256 value
                    ) internal override {
                        require(from != address(0), "ERC20: transfer from the zero address");
                        require(to != address(0), "ERC20: transfer to the zero address");
                        require(
                            value <= _balanceOf(from),
                            "ERC20: transfer amount exceeds balance"
                        );
                        _setBalance(from, _balanceOf(from).sub(value));
                        _setBalance(to, _balanceOf(to).add(value));
                        emit Transfer(from, to, value);
                    }
                    /**
                     * @notice Adds or updates a new minter with a mint allowance.
                     * @param minter The address of the minter.
                     * @param minterAllowedAmount The minting amount allowed for the minter.
                     * @return True if the operation was successful.
                     */
                    function configureMinter(address minter, uint256 minterAllowedAmount)
                        external
                        whenNotPaused
                        onlyMasterMinter
                        returns (bool)
                    {
                        minters[minter] = true;
                        minterAllowed[minter] = minterAllowedAmount;
                        emit MinterConfigured(minter, minterAllowedAmount);
                        return true;
                    }
                    /**
                     * @notice Removes a minter.
                     * @param minter The address of the minter to remove.
                     * @return True if the operation was successful.
                     */
                    function removeMinter(address minter)
                        external
                        onlyMasterMinter
                        returns (bool)
                    {
                        minters[minter] = false;
                        minterAllowed[minter] = 0;
                        emit MinterRemoved(minter);
                        return true;
                    }
                    /**
                     * @notice Allows a minter to burn some of its own tokens.
                     * @dev The caller must be a minter, must not be blacklisted, and the amount to burn
                     * should be less than or equal to the account's balance.
                     * @param _amount the amount of tokens to be burned.
                     */
                    function burn(uint256 _amount)
                        external
                        whenNotPaused
                        onlyMinters
                        notBlacklisted(msg.sender)
                    {
                        uint256 balance = _balanceOf(msg.sender);
                        require(_amount > 0, "FiatToken: burn amount not greater than 0");
                        require(balance >= _amount, "FiatToken: burn amount exceeds balance");
                        totalSupply_ = totalSupply_.sub(_amount);
                        _setBalance(msg.sender, balance.sub(_amount));
                        emit Burn(msg.sender, _amount);
                        emit Transfer(msg.sender, address(0), _amount);
                    }
                    /**
                     * @notice Updates the master minter address.
                     * @param _newMasterMinter The address of the new master minter.
                     */
                    function updateMasterMinter(address _newMasterMinter) external onlyOwner {
                        require(
                            _newMasterMinter != address(0),
                            "FiatToken: new masterMinter is the zero address"
                        );
                        masterMinter = _newMasterMinter;
                        emit MasterMinterChanged(masterMinter);
                    }
                    /**
                     * @inheritdoc Blacklistable
                     */
                    function _blacklist(address _account) internal override {
                        _setBlacklistState(_account, true);
                    }
                    /**
                     * @inheritdoc Blacklistable
                     */
                    function _unBlacklist(address _account) internal override {
                        _setBlacklistState(_account, false);
                    }
                    /**
                     * @dev Helper method that sets the blacklist state of an account.
                     * @param _account         The address of the account.
                     * @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted.
                     */
                    function _setBlacklistState(address _account, bool _shouldBlacklist)
                        internal
                        virtual
                    {
                        _deprecatedBlacklisted[_account] = _shouldBlacklist;
                    }
                    /**
                     * @dev Helper method that sets the balance of an account.
                     * @param _account The address of the account.
                     * @param _balance The new fiat token balance of the account.
                     */
                    function _setBalance(address _account, uint256 _balance) internal virtual {
                        balanceAndBlacklistStates[_account] = _balance;
                    }
                    /**
                     * @inheritdoc Blacklistable
                     */
                    function _isBlacklisted(address _account)
                        internal
                        virtual
                        override
                        view
                        returns (bool)
                    {
                        return _deprecatedBlacklisted[_account];
                    }
                    /**
                     * @dev Helper method to obtain the balance of an account.
                     * @param _account  The address of the account.
                     * @return          The fiat token balance of the account.
                     */
                    function _balanceOf(address _account)
                        internal
                        virtual
                        view
                        returns (uint256)
                    {
                        return balanceAndBlacklistStates[_account];
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                import { Ownable } from "./Ownable.sol";
                /**
                 * @title Blacklistable Token
                 * @dev Allows accounts to be blacklisted by a "blacklister" role
                 */
                abstract contract Blacklistable is Ownable {
                    address public blacklister;
                    mapping(address => bool) internal _deprecatedBlacklisted;
                    event Blacklisted(address indexed _account);
                    event UnBlacklisted(address indexed _account);
                    event BlacklisterChanged(address indexed newBlacklister);
                    /**
                     * @dev Throws if called by any account other than the blacklister.
                     */
                    modifier onlyBlacklister() {
                        require(
                            msg.sender == blacklister,
                            "Blacklistable: caller is not the blacklister"
                        );
                        _;
                    }
                    /**
                     * @dev Throws if argument account is blacklisted.
                     * @param _account The address to check.
                     */
                    modifier notBlacklisted(address _account) {
                        require(
                            !_isBlacklisted(_account),
                            "Blacklistable: account is blacklisted"
                        );
                        _;
                    }
                    /**
                     * @notice Checks if account is blacklisted.
                     * @param _account The address to check.
                     * @return True if the account is blacklisted, false if the account is not blacklisted.
                     */
                    function isBlacklisted(address _account) external view returns (bool) {
                        return _isBlacklisted(_account);
                    }
                    /**
                     * @notice Adds account to blacklist.
                     * @param _account The address to blacklist.
                     */
                    function blacklist(address _account) external onlyBlacklister {
                        _blacklist(_account);
                        emit Blacklisted(_account);
                    }
                    /**
                     * @notice Removes account from blacklist.
                     * @param _account The address to remove from the blacklist.
                     */
                    function unBlacklist(address _account) external onlyBlacklister {
                        _unBlacklist(_account);
                        emit UnBlacklisted(_account);
                    }
                    /**
                     * @notice Updates the blacklister address.
                     * @param _newBlacklister The address of the new blacklister.
                     */
                    function updateBlacklister(address _newBlacklister) external onlyOwner {
                        require(
                            _newBlacklister != address(0),
                            "Blacklistable: new blacklister is the zero address"
                        );
                        blacklister = _newBlacklister;
                        emit BlacklisterChanged(blacklister);
                    }
                    /**
                     * @dev Checks if account is blacklisted.
                     * @param _account The address to check.
                     * @return true if the account is blacklisted, false otherwise.
                     */
                    function _isBlacklisted(address _account)
                        internal
                        virtual
                        view
                        returns (bool);
                    /**
                     * @dev Helper method that blacklists an account.
                     * @param _account The address to blacklist.
                     */
                    function _blacklist(address _account) internal virtual;
                    /**
                     * @dev Helper method that unblacklists an account.
                     * @param _account The address to unblacklist.
                     */
                    function _unBlacklist(address _account) internal virtual;
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                abstract contract AbstractFiatTokenV1 is IERC20 {
                    function _approve(
                        address owner,
                        address spender,
                        uint256 value
                    ) internal virtual;
                    function _transfer(
                        address from,
                        address to,
                        uint256 value
                    ) internal virtual;
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                import { Ownable } from "../v1/Ownable.sol";
                import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
                contract Rescuable is Ownable {
                    using SafeERC20 for IERC20;
                    address private _rescuer;
                    event RescuerChanged(address indexed newRescuer);
                    /**
                     * @notice Returns current rescuer
                     * @return Rescuer's address
                     */
                    function rescuer() external view returns (address) {
                        return _rescuer;
                    }
                    /**
                     * @notice Revert if called by any account other than the rescuer.
                     */
                    modifier onlyRescuer() {
                        require(msg.sender == _rescuer, "Rescuable: caller is not the rescuer");
                        _;
                    }
                    /**
                     * @notice Rescue ERC20 tokens locked up in this contract.
                     * @param tokenContract ERC20 token contract address
                     * @param to        Recipient address
                     * @param amount    Amount to withdraw
                     */
                    function rescueERC20(
                        IERC20 tokenContract,
                        address to,
                        uint256 amount
                    ) external onlyRescuer {
                        tokenContract.safeTransfer(to, amount);
                    }
                    /**
                     * @notice Updates the rescuer address.
                     * @param newRescuer The address of the new rescuer.
                     */
                    function updateRescuer(address newRescuer) external onlyOwner {
                        require(
                            newRescuer != address(0),
                            "Rescuable: new rescuer is the zero address"
                        );
                        _rescuer = newRescuer;
                        emit RescuerChanged(newRescuer);
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                import { FiatTokenV1 } from "../v1/FiatTokenV1.sol";
                import { Rescuable } from "./Rescuable.sol";
                /**
                 * @title FiatTokenV1_1
                 * @dev ERC20 Token backed by fiat reserves
                 */
                contract FiatTokenV1_1 is FiatTokenV1, Rescuable {
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                import { ECRecover } from "./ECRecover.sol";
                import { IERC1271 } from "../interface/IERC1271.sol";
                /**
                 * @dev Signature verification helper that can be used instead of `ECRecover.recover` to seamlessly support both ECDSA
                 * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets.
                 *
                 * Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/SignatureChecker.sol
                 */
                library SignatureChecker {
                    /**
                     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
                     * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECRecover.recover`.
                     * @param signer        Address of the claimed signer
                     * @param digest        Keccak-256 hash digest of the signed message
                     * @param signature     Signature byte array associated with hash
                     */
                    function isValidSignatureNow(
                        address signer,
                        bytes32 digest,
                        bytes memory signature
                    ) external view returns (bool) {
                        if (!isContract(signer)) {
                            return ECRecover.recover(digest, signature) == signer;
                        }
                        return isValidERC1271SignatureNow(signer, digest, signature);
                    }
                    /**
                     * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
                     * against the signer smart contract using ERC1271.
                     * @param signer        Address of the claimed signer
                     * @param digest        Keccak-256 hash digest of the signed message
                     * @param signature     Signature byte array associated with hash
                     *
                     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
                     * change through time. It could return true at block N and false at block N+1 (or the opposite).
                     */
                    function isValidERC1271SignatureNow(
                        address signer,
                        bytes32 digest,
                        bytes memory signature
                    ) internal view returns (bool) {
                        (bool success, bytes memory result) = signer.staticcall(
                            abi.encodeWithSelector(
                                IERC1271.isValidSignature.selector,
                                digest,
                                signature
                            )
                        );
                        return (success &&
                            result.length >= 32 &&
                            abi.decode(result, (bytes32)) ==
                            bytes32(IERC1271.isValidSignature.selector));
                    }
                    /**
                     * @dev Checks if the input address is a smart contract.
                     */
                    function isContract(address addr) internal view returns (bool) {
                        uint256 size;
                        assembly {
                            size := extcodesize(addr)
                        }
                        return size > 0;
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                /**
                 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
                 *
                 * The library provides methods for generating a hash of a message that conforms to the
                 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
                 * specifications.
                 */
                library MessageHashUtils {
                    /**
                     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
                     * Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/MessageHashUtils.sol
                     *
                     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
                     * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
                     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
                     *
                     * @param domainSeparator    Domain separator
                     * @param structHash         Hashed EIP-712 data struct
                     * @return digest            The keccak256 digest of an EIP-712 typed data
                     */
                    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash)
                        internal
                        pure
                        returns (bytes32 digest)
                    {
                        assembly {
                            let ptr := mload(0x40)
                            mstore(ptr, "\\x19\\x01")
                            mstore(add(ptr, 0x02), domainSeparator)
                            mstore(add(ptr, 0x22), structHash)
                            digest := keccak256(ptr, 0x42)
                        }
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                /**
                 * @title EIP712
                 * @notice A library that provides EIP712 helper functions
                 */
                library EIP712 {
                    /**
                     * @notice Make EIP712 domain separator
                     * @param name      Contract name
                     * @param version   Contract version
                     * @param chainId   Blockchain ID
                     * @return Domain separator
                     */
                    function makeDomainSeparator(
                        string memory name,
                        string memory version,
                        uint256 chainId
                    ) internal view returns (bytes32) {
                        return
                            keccak256(
                                abi.encode(
                                    // keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
                                    0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f,
                                    keccak256(bytes(name)),
                                    keccak256(bytes(version)),
                                    chainId,
                                    address(this)
                                )
                            );
                    }
                    /**
                     * @notice Make EIP712 domain separator
                     * @param name      Contract name
                     * @param version   Contract version
                     * @return Domain separator
                     */
                    function makeDomainSeparator(string memory name, string memory version)
                        internal
                        view
                        returns (bytes32)
                    {
                        uint256 chainId;
                        assembly {
                            chainId := chainid()
                        }
                        return makeDomainSeparator(name, version, chainId);
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                /**
                 * @title ECRecover
                 * @notice A library that provides a safe ECDSA recovery function
                 */
                library ECRecover {
                    /**
                     * @notice Recover signer's address from a signed message
                     * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/65e4ffde586ec89af3b7e9140bdc9235d1254853/contracts/cryptography/ECDSA.sol
                     * Modifications: Accept v, r, and s as separate arguments
                     * @param digest    Keccak-256 hash digest of the signed message
                     * @param v         v of the signature
                     * @param r         r of the signature
                     * @param s         s of the signature
                     * @return Signer address
                     */
                    function recover(
                        bytes32 digest,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal pure returns (address) {
                        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
                        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
                        // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
                        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
                        //
                        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
                        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
                        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
                        // these malleable signatures as well.
                        if (
                            uint256(s) >
                            0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0
                        ) {
                            revert("ECRecover: invalid signature 's' value");
                        }
                        if (v != 27 && v != 28) {
                            revert("ECRecover: invalid signature 'v' value");
                        }
                        // If the signature is valid (and not malleable), return the signer address
                        address signer = ecrecover(digest, v, r, s);
                        require(signer != address(0), "ECRecover: invalid signature");
                        return signer;
                    }
                    /**
                     * @notice Recover signer's address from a signed message
                     * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/0053ee040a7ff1dbc39691c9e67a69f564930a88/contracts/utils/cryptography/ECDSA.sol
                     * @param digest    Keccak-256 hash digest of the signed message
                     * @param signature Signature byte array associated with hash
                     * @return Signer address
                     */
                    function recover(bytes32 digest, bytes memory signature)
                        internal
                        pure
                        returns (address)
                    {
                        require(signature.length == 65, "ECRecover: invalid signature length");
                        bytes32 r;
                        bytes32 s;
                        uint8 v;
                        // ecrecover takes the signature parameters, and the only way to get them
                        // currently is to use assembly.
                        /// @solidity memory-safe-assembly
                        assembly {
                            r := mload(add(signature, 0x20))
                            s := mload(add(signature, 0x40))
                            v := byte(0, mload(add(signature, 0x60)))
                        }
                        return recover(digest, v, r, s);
                    }
                }
                /**
                 * SPDX-License-Identifier: Apache-2.0
                 *
                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 * http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity 0.6.12;
                /**
                 * @dev Interface of the ERC1271 standard signature validation method for
                 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
                 */
                interface IERC1271 {
                    /**
                     * @dev Should return whether the signature provided is valid for the provided data
                     * @param hash          Hash of the data to be signed
                     * @param signature     Signature byte array associated with the provided data hash
                     * @return magicValue   bytes4 magic value 0x1626ba7e when function passes
                     */
                    function isValidSignature(bytes32 hash, bytes memory signature)
                        external
                        view
                        returns (bytes4 magicValue);
                }