Transaction Hash:
Block:
22536257 at May-22-2025 05:14:11 AM +UTC
Transaction Fee:
0.000130750361313416 ETH
$0.33
Gas Used:
126,451 Gas / 1.034000216 Gwei
Emitted Events:
999 |
Proxy.0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32( 0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32, 0x0000000000000000000000002b4e5cd3b3831d8a804f96cebc9d213057fbe688, 0x0000000000000000000000002b4e5cd3b3831d8a804f96cebc9d213057fbe688, 0x0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000020, 0000000000000000000000000000000000000000000000000000000000000049, 00000000000000000000000000000000000000000000000000006d23ad5f8000, 00000000000000000000000000000000000000000000000000006d23ad5f8000, 00000000000186a0000000000000000000000000000000000000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x2B4e5cd3...057FbE688 |
0.347617959109099745 Eth
Nonce: 4
|
0.347367208747786329 Eth
Nonce: 5
| 0.000250750361313416 | ||
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 5.848683146338476726 Eth | 5.848695791438476726 Eth | 0.0000126451 | |
0x49048044...fAF74E97e | (Base: Base Portal) | 1,827,411.173076230707776853 Eth | 1,827,411.173196230707776853 Eth | 0.00012 |
Execution Trace
ETH 0.00012
Proxy.CALL( )
ETH 0.00012
OptimismPortal2.DELEGATECALL( )
Proxy.STATICCALL( )
-
SystemConfig.DELEGATECALL( )
-
File 1 of 4: Proxy
File 2 of 4: OptimismPortal2
File 3 of 4: Proxy
File 4 of 4: SystemConfig
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title Proxy * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or * if the caller is address(0), meaning that the call originated from an off-chain * simulation. */ contract Proxy { /** * @notice The storage slot that holds the address of the implementation. * bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) */ bytes32 internal constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice The storage slot that holds the address of the owner. * bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) */ bytes32 internal constant OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @notice An event that is emitted each time the implementation is changed. This event is part * of the EIP-1967 specification. * * @param implementation The address of the implementation contract */ event Upgraded(address indexed implementation); /** * @notice An event that is emitted each time the owner is upgraded. This event is part of the * EIP-1967 specification. * * @param previousAdmin The previous owner of the contract * @param newAdmin The new owner of the contract */ event AdminChanged(address previousAdmin, address newAdmin); /** * @notice A modifier that reverts if not called by the owner or by address(0) to allow * eth_call to interact with this proxy without needing to use low-level storage * inspection. We assume that nobody is able to trigger calls from address(0) during * normal EVM execution. */ modifier proxyCallIfNotAdmin() { if (msg.sender == _getAdmin() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /** * @notice Sets the initial admin during contract deployment. Admin address is stored at the * EIP-1967 admin storage slot so that accidental storage collision with the * implementation is not possible. * * @param _admin Address of the initial contract admin. Admin as the ability to access the * transparent proxy interface. */ constructor(address _admin) { _changeAdmin(_admin); } // slither-disable-next-line locked-ether receive() external payable { // Proxy call by default. _doProxyCall(); } // slither-disable-next-line locked-ether fallback() external payable { // Proxy call by default. _doProxyCall(); } /** * @notice Set the implementation contract address. The code at the given address will execute * when this contract is called. * * @param _implementation Address of the implementation contract. */ function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin { _setImplementation(_implementation); } /** * @notice Set the implementation and call a function in a single transaction. Useful to ensure * atomic execution of initialization-based upgrades. * * @param _implementation Address of the implementation contract. * @param _data Calldata to delegatecall the new implementation with. */ function upgradeToAndCall(address _implementation, bytes calldata _data) public payable virtual proxyCallIfNotAdmin returns (bytes memory) { _setImplementation(_implementation); (bool success, bytes memory returndata) = _implementation.delegatecall(_data); require(success, "Proxy: delegatecall to new implementation contract failed"); return returndata; } /** * @notice Changes the owner of the proxy contract. Only callable by the owner. * * @param _admin New owner of the proxy contract. */ function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin { _changeAdmin(_admin); } /** * @notice Gets the owner of the proxy contract. * * @return Owner address. */ function admin() public virtual proxyCallIfNotAdmin returns (address) { return _getAdmin(); } /** * @notice Queries the implementation address. * * @return Implementation address. */ function implementation() public virtual proxyCallIfNotAdmin returns (address) { return _getImplementation(); } /** * @notice Sets the implementation address. * * @param _implementation New implementation address. */ function _setImplementation(address _implementation) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } emit Upgraded(_implementation); } /** * @notice Changes the owner of the proxy contract. * * @param _admin New owner of the proxy contract. */ function _changeAdmin(address _admin) internal { address previous = _getAdmin(); assembly { sstore(OWNER_KEY, _admin) } emit AdminChanged(previous, _admin); } /** * @notice Performs the proxy call via a delegatecall. */ function _doProxyCall() internal { address impl = _getImplementation(); require(impl != address(0), "Proxy: implementation not initialized"); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } /** * @notice Queries the implementation address. * * @return Implementation address. */ function _getImplementation() internal view returns (address) { address impl; assembly { impl := sload(IMPLEMENTATION_KEY) } return impl; } /** * @notice Queries the owner of the proxy contract. * * @return Owner address. */ function _getAdmin() internal view returns (address) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } }
File 2 of 4: OptimismPortal2
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; // Contracts import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { ResourceMetering } from "src/L1/ResourceMetering.sol"; // Libraries import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { EOA } from "src/libraries/EOA.sol"; import { SafeCall } from "src/libraries/SafeCall.sol"; import { Constants } from "src/libraries/Constants.sol"; import { Types } from "src/libraries/Types.sol"; import { Hashing } from "src/libraries/Hashing.sol"; import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol"; import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol"; import { BadTarget, LargeCalldata, SmallGasLimit, Unauthorized, CallPaused, GasEstimation, NonReentrant, InvalidProof, InvalidGameType, InvalidDisputeGame, InvalidMerkleProof, Blacklisted, Unproven, ProposalNotValidated, AlreadyFinalized, LegacyGame } from "src/libraries/PortalErrors.sol"; import { GameStatus, GameType, Claim, Timestamp } from "src/dispute/lib/Types.sol"; // Interfaces import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { ISemver } from "interfaces/universal/ISemver.sol"; import { ISystemConfig } from "interfaces/L1/ISystemConfig.sol"; import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol"; import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol"; import { IDisputeGameFactory } from "interfaces/dispute/IDisputeGameFactory.sol"; import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol"; /// @custom:proxied true /// @title OptimismPortal2 /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1 /// and L2. Messages sent directly to the OptimismPortal have no form of replayability. /// Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface. contract OptimismPortal2 is Initializable, ResourceMetering, ISemver { /// @notice Allows for interactions with non standard ERC20 tokens. using SafeERC20 for IERC20; /// @notice Represents a proven withdrawal. /// @custom:field disputeGameProxy The address of the dispute game proxy that the withdrawal was proven against. /// @custom:field timestamp Timestamp at which the withdrawal was proven. struct ProvenWithdrawal { IDisputeGame disputeGameProxy; uint64 timestamp; } /// @notice The delay between when a withdrawal transaction is proven and when it may be finalized. uint256 internal immutable PROOF_MATURITY_DELAY_SECONDS; /// @notice The delay between when a dispute game is resolved and when a withdrawal proven against it may be /// finalized. uint256 internal immutable DISPUTE_GAME_FINALITY_DELAY_SECONDS; /// @notice Version of the deposit event. uint256 internal constant DEPOSIT_VERSION = 0; /// @notice The L2 gas limit set when eth is deposited using the receive() function. uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000; /// @notice The L2 gas limit for system deposit transactions that are initiated from L1. uint32 internal constant SYSTEM_DEPOSIT_GAS_LIMIT = 200_000; /// @notice Address of the L2 account which initiated a withdrawal in this transaction. /// If the of this variable is the default L2 sender address, then we are NOT inside of /// a call to finalizeWithdrawalTransaction. address public l2Sender; /// @notice A list of withdrawal hashes which have been successfully finalized. mapping(bytes32 => bool) public finalizedWithdrawals; /// @custom:legacy /// @custom:spacer provenWithdrawals /// @notice Spacer taking up the legacy `provenWithdrawals` mapping slot. bytes32 private spacer_52_0_32; /// @custom:legacy /// @custom:spacer paused /// @notice Spacer for backwards compatibility. bool private spacer_53_0_1; /// @notice Contract of the Superchain Config. ISuperchainConfig public superchainConfig; /// @custom:legacy /// @custom:spacer l2Oracle /// @notice Spacer taking up the legacy `l2Oracle` address slot. address private spacer_54_0_20; /// @notice Contract of the SystemConfig. /// @custom:network-specific ISystemConfig public systemConfig; /// @notice Address of the DisputeGameFactory. /// @custom:network-specific IDisputeGameFactory public disputeGameFactory; /// @notice A mapping of withdrawal hashes to proof submitters to `ProvenWithdrawal` data. mapping(bytes32 => mapping(address => ProvenWithdrawal)) public provenWithdrawals; /// @notice A mapping of dispute game addresses to whether or not they are blacklisted. mapping(IDisputeGame => bool) public disputeGameBlacklist; /// @notice The game type that the OptimismPortal consults for output proposals. GameType public respectedGameType; /// @notice The timestamp at which the respected game type was last updated. uint64 public respectedGameTypeUpdatedAt; /// @notice Mapping of withdrawal hashes to addresses that have submitted a proof for the /// withdrawal. Original OptimismPortal contract only allowed one proof to be submitted /// for any given withdrawal hash. Fault Proofs version of this contract must allow /// multiple proofs for the same withdrawal hash to prevent a malicious user from /// blocking other withdrawals by proving them against invalid proposals. Submitters /// are tracked in an array to simplify the off-chain process of determining which /// proof submission should be used when finalizing a withdrawal. mapping(bytes32 => address[]) public proofSubmitters; /// @custom:legacy /// @custom:spacer _balance /// @notice Spacer taking up the legacy `_balance` slot. uint256 private spacer_61_0_32; /// @notice Emitted when a transaction is deposited from L1 to L2. /// The parameters of this event are read by the rollup node and used to derive deposit /// transactions on L2. /// @param from Address that triggered the deposit transaction. /// @param to Address that the deposit transaction is directed to. /// @param version Version of this deposit transaction event. /// @param opaqueData ABI encoded deposit data to be parsed off-chain. event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData); /// @notice Emitted when a withdrawal transaction is proven. /// @param withdrawalHash Hash of the withdrawal transaction. /// @param from Address that triggered the withdrawal transaction. /// @param to Address that the withdrawal transaction is directed to. event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to); /// @notice Emitted when a withdrawal transaction is proven. Exists as a separate event to allow for backwards /// compatibility for tooling that observes the `WithdrawalProven` event. /// @param withdrawalHash Hash of the withdrawal transaction. /// @param proofSubmitter Address of the proof submitter. event WithdrawalProvenExtension1(bytes32 indexed withdrawalHash, address indexed proofSubmitter); /// @notice Emitted when a withdrawal transaction is finalized. /// @param withdrawalHash Hash of the withdrawal transaction. /// @param success Whether the withdrawal transaction was successful. event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success); /// @notice Emitted when a dispute game is blacklisted by the Guardian. /// @param disputeGame Address of the dispute game that was blacklisted. event DisputeGameBlacklisted(IDisputeGame indexed disputeGame); /// @notice Emitted when the Guardian changes the respected game type in the portal. /// @param newGameType The new respected game type. /// @param updatedAt The timestamp at which the respected game type was updated. event RespectedGameTypeSet(GameType indexed newGameType, Timestamp indexed updatedAt); /// @notice Reverts when paused. modifier whenNotPaused() { if (paused()) revert CallPaused(); _; } /// @notice Semantic version. /// @custom:semver 3.14.0 function version() public pure virtual returns (string memory) { return "3.14.0"; } /// @notice Constructs the OptimismPortal contract. constructor(uint256 _proofMaturityDelaySeconds, uint256 _disputeGameFinalityDelaySeconds) { PROOF_MATURITY_DELAY_SECONDS = _proofMaturityDelaySeconds; DISPUTE_GAME_FINALITY_DELAY_SECONDS = _disputeGameFinalityDelaySeconds; _disableInitializers(); } /// @notice Initializer. /// @param _disputeGameFactory Contract of the DisputeGameFactory. /// @param _systemConfig Contract of the SystemConfig. /// @param _superchainConfig Contract of the SuperchainConfig. function initialize( IDisputeGameFactory _disputeGameFactory, ISystemConfig _systemConfig, ISuperchainConfig _superchainConfig, GameType _initialRespectedGameType ) external initializer { disputeGameFactory = _disputeGameFactory; systemConfig = _systemConfig; superchainConfig = _superchainConfig; // Set the `l2Sender` slot, only if it is currently empty. This signals the first initialization of the // contract. if (l2Sender == address(0)) { l2Sender = Constants.DEFAULT_L2_SENDER; // Set the `respectedGameTypeUpdatedAt` timestamp, to ignore all games of the respected type prior // to this operation. respectedGameTypeUpdatedAt = uint64(block.timestamp); // Set the initial respected game type respectedGameType = _initialRespectedGameType; } __ResourceMetering_init(); } /// @notice Getter function for the address of the guardian. /// Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead. /// @return Address of the guardian. /// @custom:legacy function guardian() public view returns (address) { return superchainConfig.guardian(); } /// @notice Getter for the current paused status. function paused() public view returns (bool) { return superchainConfig.paused(); } /// @notice Getter for the proof maturity delay. function proofMaturityDelaySeconds() public view returns (uint256) { return PROOF_MATURITY_DELAY_SECONDS; } /// @notice Getter for the dispute game finality delay. function disputeGameFinalityDelaySeconds() public view returns (uint256) { return DISPUTE_GAME_FINALITY_DELAY_SECONDS; } /// @notice Computes the minimum gas limit for a deposit. /// The minimum gas limit linearly increases based on the size of the calldata. /// This is to prevent users from creating L2 resource usage without paying for it. /// This function can be used when interacting with the portal to ensure forwards /// compatibility. /// @param _byteCount Number of bytes in the calldata. /// @return The minimum gas limit for a deposit. function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) { return _byteCount * 40 + 21000; } /// @notice Accepts value so that users can send ETH directly to this contract and have the /// funds be deposited to their address on L2. This is intended as a convenience /// function for EOAs. Contracts should call the depositTransaction() function directly /// otherwise any deposited funds will be lost due to address aliasing. receive() external payable { depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes("")); } /// @notice Accepts ETH value without triggering a deposit to L2. /// This function mainly exists for the sake of the migration between the legacy /// Optimism system and Bedrock. function donateETH() external payable { // Intentionally empty. } /// @notice Getter for the resource config. /// Used internally by the ResourceMetering contract. /// The SystemConfig is the source of truth for the resource config. /// @return config_ ResourceMetering ResourceConfig function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory config_) { IResourceMetering.ResourceConfig memory config = systemConfig.resourceConfig(); assembly ("memory-safe") { config_ := config } } /// @notice Proves a withdrawal transaction. /// @param _tx Withdrawal transaction to finalize. /// @param _disputeGameIndex Index of the dispute game to prove the withdrawal against. /// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root. /// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract. function proveWithdrawalTransaction( Types.WithdrawalTransaction memory _tx, uint256 _disputeGameIndex, Types.OutputRootProof calldata _outputRootProof, bytes[] calldata _withdrawalProof ) external whenNotPaused { // Prevent users from creating a deposit transaction where this address is the message // sender on L2. Because this is checked here, we do not need to check again in // `finalizeWithdrawalTransaction`. if (_tx.target == address(this)) revert BadTarget(); // Fetch the dispute game proxy from the `DisputeGameFactory` contract. (GameType gameType,, IDisputeGame gameProxy) = disputeGameFactory.gameAtIndex(_disputeGameIndex); Claim outputRoot = gameProxy.rootClaim(); // The game type of the dispute game must be the respected game type. if (gameType.raw() != respectedGameType.raw()) revert InvalidGameType(); // The game type of the DisputeGame must have been the respected game type at creation. // eip150-safe try gameProxy.wasRespectedGameTypeWhenCreated() returns (bool wasRespected_) { if (!wasRespected_) revert InvalidGameType(); } catch { revert LegacyGame(); } // Game must have been created after the respected game type was updated. This check is a // strict inequality because we want to prevent users from being able to prove or finalize // withdrawals against games that were created in the same block that the retirement // timestamp was set. If the retirement timestamp and game type are changed in the same // block, such games could still be considered valid even if they used the old game type // that we intended to invalidate. require( gameProxy.createdAt().raw() > respectedGameTypeUpdatedAt, "OptimismPortal: dispute game created before respected game type was updated" ); // Verify that the output root can be generated with the elements in the proof. if (outputRoot.raw() != Hashing.hashOutputRootProof(_outputRootProof)) revert InvalidProof(); // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); // We do not allow for proving withdrawals against dispute games that have resolved against the favor // of the root claim. if (gameProxy.status() == GameStatus.CHALLENGER_WINS) revert InvalidDisputeGame(); // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract. // Refer to the Solidity documentation for more information on how storage layouts are // computed for mappings. bytes32 storageKey = keccak256( abi.encode( withdrawalHash, uint256(0) // The withdrawals mapping is at the first slot in the layout. ) ); // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore // be relayed on L1. if ( SecureMerkleTrie.verifyInclusionProof({ _key: abi.encode(storageKey), _value: hex"01", _proof: _withdrawalProof, _root: _outputRootProof.messagePasserStorageRoot }) == false ) revert InvalidMerkleProof(); // Designate the withdrawalHash as proven by storing the `disputeGameProxy` & `timestamp` in the // `provenWithdrawals` mapping. A `withdrawalHash` can only be proven once unless the dispute game it proved // against resolves against the favor of the root claim. provenWithdrawals[withdrawalHash][msg.sender] = ProvenWithdrawal({ disputeGameProxy: gameProxy, timestamp: uint64(block.timestamp) }); // Emit a `WithdrawalProven` event. emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target); // Emit a `WithdrawalProvenExtension1` event. emit WithdrawalProvenExtension1(withdrawalHash, msg.sender); // Add the proof submitter to the list of proof submitters for this withdrawal hash. proofSubmitters[withdrawalHash].push(msg.sender); } /// @notice Finalizes a withdrawal transaction. /// @param _tx Withdrawal transaction to finalize. function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused { finalizeWithdrawalTransactionExternalProof(_tx, msg.sender); } /// @notice Finalizes a withdrawal transaction, using an external proof submitter. /// @param _tx Withdrawal transaction to finalize. /// @param _proofSubmitter Address of the proof submitter. function finalizeWithdrawalTransactionExternalProof( Types.WithdrawalTransaction memory _tx, address _proofSubmitter ) public whenNotPaused { // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other // than the default value when a withdrawal transaction is being finalized. This check is // a defacto reentrancy guard. if (l2Sender != Constants.DEFAULT_L2_SENDER) revert NonReentrant(); // Compute the withdrawal hash. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); // Check that the withdrawal can be finalized. checkWithdrawal(withdrawalHash, _proofSubmitter); // Mark the withdrawal as finalized so it can't be replayed. finalizedWithdrawals[withdrawalHash] = true; // Set the l2Sender so contracts know who triggered this withdrawal on L2. l2Sender = _tx.sender; // Trigger the call to the target contract. We use a custom low level method // SafeCall.callWithMinGas to ensure two key properties // 1. Target contracts cannot force this call to run out of gas by returning a very large // amount of data (and this is OK because we don't care about the returndata here). // 2. The amount of gas provided to the execution context of the target is at least the // gas limit specified by the user. If there is not enough gas in the current context // to accomplish this, `callWithMinGas` will revert. bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data); // Reset the l2Sender back to the default value. l2Sender = Constants.DEFAULT_L2_SENDER; // All withdrawals are immediately finalized. Replayability can // be achieved through contracts built on top of this contract emit WithdrawalFinalized(withdrawalHash, success); // Reverting here is useful for determining the exact gas cost to successfully execute the // sub call to the target contract if the minimum gas limit specified by the user would not // be sufficient to execute the sub call. if (!success && tx.origin == Constants.ESTIMATION_ADDRESS) { revert GasEstimation(); } } /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in /// deriving deposit transactions. Note that if a deposit is made by a contract, its /// address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider /// using the CrossDomainMessenger contracts for a simpler developer experience. /// @param _to Target address on L2. /// @param _value ETH value to send to the recipient. /// @param _gasLimit Amount of L2 gas to purchase by burning gas on L1. /// @param _isCreation Whether or not the transaction is a contract creation. /// @param _data Data to trigger the recipient with. function depositTransaction( address _to, uint256 _value, uint64 _gasLimit, bool _isCreation, bytes memory _data ) public payable metered(_gasLimit) { // Just to be safe, make sure that people specify address(0) as the target when doing // contract creations. if (_isCreation && _to != address(0)) revert BadTarget(); // Prevent depositing transactions that have too small of a gas limit. Users should pay // more for more resource usage. if (_gasLimit < minimumGasLimit(uint64(_data.length))) revert SmallGasLimit(); // Prevent the creation of deposit transactions that have too much calldata. This gives an // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure // that the transaction can fit into the p2p network policy of 128kb even though deposit // transactions are not gossipped over the p2p network. if (_data.length > 120_000) revert LargeCalldata(); // Transform the from-address to its alias if the caller is a contract. address from = msg.sender; if (!EOA.isSenderEOA()) { from = AddressAliasHelper.applyL1ToL2Alias(msg.sender); } // Compute the opaque data that will be emitted as part of the TransactionDeposited event. // We use opaque data so that we can update the TransactionDeposited event in the future // without breaking the current interface. bytes memory opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data); // Emit a TransactionDeposited event so that the rollup node can derive a deposit // transaction for this deposit. emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData); } /// @notice Blacklists a dispute game. Should only be used in the event that a dispute game resolves incorrectly. /// @param _disputeGame Dispute game to blacklist. function blacklistDisputeGame(IDisputeGame _disputeGame) external { if (msg.sender != guardian()) revert Unauthorized(); disputeGameBlacklist[_disputeGame] = true; emit DisputeGameBlacklisted(_disputeGame); } /// @notice Sets the respected game type. Changing this value can alter the security properties of the system, /// depending on the new game's behavior. /// @param _gameType The game type to consult for output proposals. function setRespectedGameType(GameType _gameType) external { if (msg.sender != guardian()) revert Unauthorized(); // respectedGameTypeUpdatedAt is now no longer set by default. We want to avoid modifying // this function's signature as that would result in changes to the DeputyGuardianModule. // We use type(uint32).max as a temporary solution to allow us to update the // respectedGameTypeUpdatedAt timestamp without modifying this function's signature. if (_gameType.raw() == type(uint32).max) { respectedGameTypeUpdatedAt = uint64(block.timestamp); } else { respectedGameType = _gameType; } emit RespectedGameTypeSet(respectedGameType, Timestamp.wrap(respectedGameTypeUpdatedAt)); } /// @notice Checks if a withdrawal can be finalized. This function will revert if the withdrawal cannot be /// finalized, and otherwise has no side-effects. /// @param _withdrawalHash Hash of the withdrawal to check. /// @param _proofSubmitter The submitter of the proof for the withdrawal hash function checkWithdrawal(bytes32 _withdrawalHash, address _proofSubmitter) public view { ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[_withdrawalHash][_proofSubmitter]; IDisputeGame disputeGameProxy = provenWithdrawal.disputeGameProxy; // The dispute game must not be blacklisted. if (disputeGameBlacklist[disputeGameProxy]) revert Blacklisted(); // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have // a timestamp of zero. if (provenWithdrawal.timestamp == 0) revert Unproven(); // Grab the createdAt timestamp once. uint64 createdAt = disputeGameProxy.createdAt().raw(); // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than // starting timestamp inside the Dispute Game. Not strictly necessary but extra layer of // safety against weird bugs in the proving step. require( provenWithdrawal.timestamp > createdAt, "OptimismPortal: withdrawal timestamp less than dispute game creation timestamp" ); // A proven withdrawal must wait at least `PROOF_MATURITY_DELAY_SECONDS` before finalizing. require( block.timestamp - provenWithdrawal.timestamp > PROOF_MATURITY_DELAY_SECONDS, "OptimismPortal: proven withdrawal has not matured yet" ); // A proven withdrawal must wait until the dispute game it was proven against has been // resolved in favor of the root claim (the output proposal). This is to prevent users // from finalizing withdrawals proven against non-finalized output roots. if (disputeGameProxy.status() != GameStatus.DEFENDER_WINS) revert ProposalNotValidated(); // The game type of the dispute game must have been the respected game type at creation // time. We check that the game type is the respected game type at proving time, but it's // possible that the respected game type has since changed. Users can still use this game // to finalize a withdrawal as long as it has not been otherwise invalidated. // The game type of the DisputeGame must have been the respected game type at creation. // eip150-safe try disputeGameProxy.wasRespectedGameTypeWhenCreated() returns (bool wasRespected_) { if (!wasRespected_) revert InvalidGameType(); } catch { revert LegacyGame(); } // Game must have been created after the respected game type was updated. This check is a // strict inequality because we want to prevent users from being able to prove or finalize // withdrawals against games that were created in the same block that the retirement // timestamp was set. If the retirement timestamp and game type are changed in the same // block, such games could still be considered valid even if they used the old game type // that we intended to invalidate. require( createdAt > respectedGameTypeUpdatedAt, "OptimismPortal: dispute game created before respected game type was updated" ); // Before a withdrawal can be finalized, the dispute game it was proven against must have been // resolved for at least `DISPUTE_GAME_FINALITY_DELAY_SECONDS`. This is to allow for manual // intervention in the event that a dispute game is resolved incorrectly. require( block.timestamp - disputeGameProxy.resolvedAt().raw() > DISPUTE_GAME_FINALITY_DELAY_SECONDS, "OptimismPortal: output proposal in air-gap" ); // Check that this withdrawal has not already been finalized, this is replay protection. if (finalizedWithdrawals[_withdrawalHash]) revert AlreadyFinalized(); } /// @notice External getter for the number of proof submitters for a withdrawal hash. /// @param _withdrawalHash Hash of the withdrawal. /// @return The number of proof submitters for the withdrawal hash. function numProofSubmitters(bytes32 _withdrawalHash) external view returns (uint256) { return proofSubmitters[_withdrawalHash].length; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; // Contracts import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; // Libraries import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Burn } from "src/libraries/Burn.sol"; import { Arithmetic } from "src/libraries/Arithmetic.sol"; /// @custom:upgradeable /// @title ResourceMetering /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing /// updates automatically based on current demand. abstract contract ResourceMetering is Initializable { /// @notice Error returned when too much gas resource is consumed. error OutOfGas(); /// @notice Represents the various parameters that control the way in which resources are /// metered. Corresponds to the EIP-1559 resource metering system. /// @custom:field prevBaseFee Base fee from the previous block(s). /// @custom:field prevBoughtGas Amount of gas bought so far in the current block. /// @custom:field prevBlockNum Last block number that the base fee was updated. struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas /// market. These values should be set with care as it is possible to set them in /// a way that breaks the deposit gas market. The target resource limit is defined as /// maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a /// single word. There is additional space for additions in the future. /// @custom:field maxResourceLimit Represents the maximum amount of deposit gas that /// can be purchased per block. /// @custom:field elasticityMultiplier Determines the target resource limit along with /// the resource limit. /// @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. /// @custom:field minimumBaseFee The min deposit base fee, it is clamped to this /// value. /// @custom:field systemTxMaxGas The amount of gas supplied to the system /// transaction. This should be set to the same /// number that the op-node sets as the gas limit /// for the system transaction. /// @custom:field maximumBaseFee The max deposit base fee, it is clamped to this /// value. struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /// @notice EIP-1559 style gas parameters. ResourceParams public params; /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. uint256[48] private __gap; /// @notice Meters access to a function based an amount of a requested resource. /// @param _amount Amount of the resource requested. modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /// @notice An internal function that holds all of the logic for metering a resource. /// @param _amount Amount of the resource requested. /// @param _initialGas The amount of gas before any modifier execution. function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) { revert OutOfGas(); } // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /// @notice Adds an amount of L2 gas consumed to the prev bought gas params. This is meant to be used /// when L2 system transactions are generated from L1. /// @param _amount Amount of the L2 gas resource requested. function useGas(uint32 _amount) internal { params.prevBoughtGas += uint64(_amount); } /// @notice Virtual function that returns the resource config. /// Contracts that inherit this contract must implement this function. /// @return ResourceConfig function _resourceConfig() internal virtual returns (ResourceConfig memory); /// @notice Sets initial resource parameter values. /// This function must either be called by the initializer function of an upgradeable /// child contract. function __ResourceMetering_init() internal onlyInitializing { if (params.prevBlockNum == 0) { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title EOA /// @notice A library for detecting if an address is an EOA. library EOA { /// @notice Returns true if sender address is an EOA. /// @return isEOA_ True if the sender address is an EOA. function isSenderEOA() internal view returns (bool isEOA_) { if (msg.sender == tx.origin) { isEOA_ = true; } else if (address(msg.sender).code.length == 23) { // If the sender is not the origin, check for 7702 delegated EOAs. assembly { let ptr := mload(0x40) mstore(0x40, add(ptr, 0x20)) extcodecopy(caller(), ptr, 0, 0x20) isEOA_ := eq(shr(232, mload(ptr)), 0xEF0100) } } else { // If more or less than 23 bytes of code, not a 7702 delegated EOA. isEOA_ = false; } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title SafeCall /// @notice Perform low level safe calls library SafeCall { /// @notice Performs a low level call without copying any returndata. /// @dev Passes no calldata to the call context. /// @param _target Address to call /// @param _gas Amount of gas to pass to the call /// @param _value Amount of value to pass to the call function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) { assembly { success_ := call( _gas, // gas _target, // recipient _value, // ether value 0, // inloc 0, // inlen 0, // outloc 0 // outlen ) } } /// @notice Perform a low level call with all gas without copying any returndata /// @param _target Address to call /// @param _value Amount of value to pass to the call function send(address _target, uint256 _value) internal returns (bool success_) { success_ = send(_target, gasleft(), _value); } /// @notice Perform a low level call without copying any returndata /// @param _target Address to call /// @param _gas Amount of gas to pass to the call /// @param _value Amount of value to pass to the call /// @param _calldata Calldata to pass to the call function call( address _target, uint256 _gas, uint256 _value, bytes memory _calldata ) internal returns (bool success_) { assembly { success_ := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) } } /// @notice Perform a low level call without copying any returndata /// @param _target Address to call /// @param _value Amount of value to pass to the call /// @param _calldata Calldata to pass to the call function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) { success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata }); } /// @notice Perform a low level call without copying any returndata /// @param _target Address to call /// @param _calldata Calldata to pass to the call function call(address _target, bytes memory _calldata) internal returns (bool success_) { success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata }); } /// @notice Helper function to determine if there is sufficient gas remaining within the context /// to guarantee that the minimum gas requirement for a call will be met as well as /// optionally reserving a specified amount of gas for after the call has concluded. /// @param _minGas The minimum amount of gas that may be passed to the target context. /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution /// of the target context. /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target /// context as well as reserve `_reservedGas` for the caller after the execution of /// the target context. /// @dev !!!!! FOOTGUN ALERT !!!!! /// 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the /// `CALL` opcode's `address_access_cost`, `positive_value_cost`, and /// `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is /// still possible to self-rekt by initiating a withdrawal with a minimum gas limit /// that does not account for the `memory_expansion_cost` & `code_execution_cost` /// factors of the dynamic cost of the `CALL` opcode. /// 2.) This function should *directly* precede the external call if possible. There is an /// added buffer to account for gas consumed between this check and the call, but it /// is only 5,700 gas. /// 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call /// frame may be passed to a subcontext, we need to ensure that the gas will not be /// truncated. /// 4.) Use wisely. This function is not a silver bullet. function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) { bool _hasMinGas; assembly { // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas) _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63)))) } return _hasMinGas; } /// @notice Perform a low level call without copying any returndata. This function /// will revert if the call cannot be performed with the specified minimum /// gas. /// @param _target Address to call /// @param _minGas The minimum amount of gas that may be passed to the call /// @param _value Amount of value to pass to the call /// @param _calldata Calldata to pass to the call function callWithMinGas( address _target, uint256 _minGas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; bool _hasMinGas = hasMinGas(_minGas, 0); assembly { // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000 if iszero(_hasMinGas) { // Store the "Error(string)" selector in scratch space. mstore(0, 0x08c379a0) // Store the pointer to the string length in scratch space. mstore(32, 32) // Store the string. // // SAFETY: // - We pad the beginning of the string with two zero bytes as well as the // length (24) to ensure that we override the free memory pointer at offset // 0x40. This is necessary because the free memory pointer is likely to // be greater than 1 byte when this function is called, but it is incredibly // unlikely that it will be greater than 3 bytes. As for the data within // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset. // - It's fine to clobber the free memory pointer, we're reverting. mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173) // Revert with 'Error("SafeCall: Not enough gas")' revert(28, 100) } // The call will be supplied at least ((_minGas * 64) / 63) gas due to the // above assertion. This ensures that, in all circumstances (except for when the // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost` // factors of the dynamic cost of the `CALL` opcode), the call will receive at least // the minimum amount of gas specified. _success := call( gas(), // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0x00, // outloc 0x00 // outlen ) } return _success; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; // Interfaces import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol"; /// @title Constants /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just /// the stuff used in multiple contracts. Constants that only apply to a single contract /// should be defined in that contract instead. library Constants { /// @notice Special address to be used as the tx origin for gas estimation calls in the /// OptimismPortal and CrossDomainMessenger calls. You only need to use this address if /// the minimum gas limit specified by the user is not actually enough to execute the /// given message and you're attempting to estimate the actual necessary gas limit. We /// use address(1) because it's the ecrecover precompile and therefore guaranteed to /// never have any code on any EVM chain. address internal constant ESTIMATION_ADDRESS = address(1); /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the /// CrossDomainMessenger contracts before an actual sender is set. This value is /// non-zero to reduce the gas cost of message passing transactions. address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /// @notice The storage slot that holds the address of a proxy implementation. /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)` bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /// @notice The storage slot that holds the address of the owner. /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)` bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /// @notice The address that represents ether when dealing with ERC20 token addresses. address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; /// @notice The address that represents the system caller responsible for L1 attributes /// transactions. address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001; /// @notice Returns the default values for the ResourceConfig. These are the recommended values /// for a production network. function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) { IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Types /// @notice Contains various types used throughout the Optimism contract system. library Types { /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1 /// timestamp that the output root is posted. This timestamp is used to verify that the /// finalization period has passed since the output root was submitted. /// @custom:field outputRoot Hash of the L2 output. /// @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. /// @custom:field l2BlockNumber L2 block number that the output corresponds to. struct OutputProposal { bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /// @notice Struct representing the elements that are hashed together to generate an output root /// which itself represents a snapshot of the L2 state. /// @custom:field version Version of the output root. /// @custom:field stateRoot Root of the state trie at the block of this output. /// @custom:field messagePasserStorageRoot Root of the message passer storage trie. /// @custom:field latestBlockhash Hash of the block this output was generated from. struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 latestBlockhash; } /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end /// user (as opposed to a system deposit transaction generated by the system). /// @custom:field from Address of the sender of the transaction. /// @custom:field to Address of the recipient of the transaction. /// @custom:field isCreation True if the transaction is a contract creation. /// @custom:field value Value to send to the recipient. /// @custom:field mint Amount of ETH to mint. /// @custom:field gasLimit Gas limit of the transaction. /// @custom:field data Data of the transaction. /// @custom:field l1BlockHash Hash of the block the transaction was submitted in. /// @custom:field logIndex Index of the log in the block the transaction was submitted in. struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint256 logIndex; } /// @notice Struct representing a withdrawal transaction. /// @custom:field nonce Nonce of the withdrawal transaction /// @custom:field sender Address of the sender of the transaction. /// @custom:field target Address of the recipient of the transaction. /// @custom:field value Value to send to the recipient. /// @custom:field gasLimit Gas limit of the transaction. /// @custom:field data Data of the transaction. struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } /// @notice Enum representing where the FeeVault withdraws funds to. /// @custom:value L1 FeeVault withdraws funds to L1. /// @custom:value L2 FeeVault withdraws funds to L2. enum WithdrawalNetwork { L1, L2 } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; // Libraries import { Types } from "src/libraries/Types.sol"; import { Encoding } from "src/libraries/Encoding.sol"; /// @title Hashing /// @notice Hashing handles Optimism's various different hashing schemes. library Hashing { /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a /// given deposit is sent to the L2 system. Useful for searching for a deposit in the L2 /// system. /// @param _tx User deposit transaction to hash. /// @return Hash of the RLP encoded L2 deposit transaction. function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) { return keccak256(Encoding.encodeDepositTransaction(_tx)); } /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash /// of the L2 transaction that corresponds to a deposit is unique and is /// deterministically generated from L1 transaction data. /// @param _l1BlockHash Hash of the L1 block where the deposit was included. /// @param _logIndex The index of the log that created the deposit transaction. /// @return Hash of the deposit transaction's "source hash". function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) { bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex)); return keccak256(abi.encode(bytes32(0), depositId)); } /// @notice Hashes the cross domain message based on the version that is encoded into the /// message nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Hashed cross domain message. function hashCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); if (version == 0) { return hashCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Hashing: unknown cross domain message version"); } } /// @notice Hashes a cross domain message based on the V0 (legacy) encoding. /// @param _target Address of the target of the message. /// @param _sender Address of the sender of the message. /// @param _data Data to send with the message. /// @param _nonce Message nonce. /// @return Hashed cross domain message. function hashCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce)); } /// @notice Hashes a cross domain message based on the V1 (current) encoding. /// @param _nonce Message nonce. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Hashed cross domain message. function hashCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data)); } /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract /// @param _tx Withdrawal transaction to hash. /// @return Hashed withdrawal transaction. function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) { return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data)); } /// @notice Hashes the various elements of an output root proof into an output root hash which /// can be used to check if the proof is valid. /// @param _outputRootProof Output root proof which should hash to an output root. /// @return Hashed output root proof. function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { return keccak256( abi.encode( _outputRootProof.version, _outputRootProof.stateRoot, _outputRootProof.messagePasserStorageRoot, _outputRootProof.latestBlockhash ) ); } /// @notice Generates a unique hash for cross l2 messages. This hash is used to identify /// the message and ensure it is not relayed more than once. /// @param _destination Chain ID of the destination chain. /// @param _source Chain ID of the source chain. /// @param _nonce Unique nonce associated with the message to prevent replay attacks. /// @param _sender Address of the user who originally sent the message. /// @param _target Address of the contract or wallet that the message is targeting on the destination chain. /// @param _message The message payload to be relayed to the target on the destination chain. /// @return Hash of the encoded message parameters, used to uniquely identify the message. function hashL2toL2CrossDomainMessage( uint256 _destination, uint256 _source, uint256 _nonce, address _sender, address _target, bytes memory _message ) internal pure returns (bytes32) { return keccak256(abi.encode(_destination, _source, _nonce, _sender, _target, _message)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; // Libraries import { MerkleTrie } from "src/libraries/trie/MerkleTrie.sol"; /// @title SecureMerkleTrie /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input /// keys. Ethereum's state trie hashes input keys before storing them. library SecureMerkleTrie { /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie. /// @param _key Key of the node to search for, as a hex string. /// @param _value Value of the node to search for, as a hex string. /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle /// trees, this proof is executed top-down and consists of a list of RLP-encoded /// nodes that make a path down to the target node. /// @param _root Known root of the Merkle trie. Used to verify that the included proof is /// correctly constructed. /// @return valid_ Whether or not the proof is valid. function verifyInclusionProof( bytes memory _key, bytes memory _value, bytes[] memory _proof, bytes32 _root ) internal pure returns (bool valid_) { bytes memory key = _getSecureKey(_key); valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root); } /// @notice Retrieves the value associated with a given key. /// @param _key Key to search for, as hex bytes. /// @param _proof Merkle trie inclusion proof for the key. /// @param _root Known root of the Merkle trie. /// @return value_ Value of the key if it exists. function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) { bytes memory key = _getSecureKey(_key); value_ = MerkleTrie.get(key, _proof, _root); } /// @notice Computes the hashed version of the input key. /// @param _key Key to hash. /// @return hash_ Hashed version of the key. function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) { hash_ = abi.encodePacked(keccak256(_key)); } } // SPDX-License-Identifier: Apache-2.0 /* * Copyright 2019-2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity ^0.8.0; library AddressAliasHelper { uint160 constant offset = uint160(0x1111000000000000000000000000000000001111); /// @notice Utility function that converts the address in the L1 that submitted a tx to /// the inbox to the msg.sender viewed in the L2 /// @param l1Address the address in the L1 that triggered the tx to L2 /// @return l2Address L2 address as viewed in msg.sender function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) { unchecked { l2Address = address(uint160(l1Address) + offset); } } /// @notice Utility function that converts the msg.sender viewed in the L2 to the /// address in the L1 that submitted a tx to the inbox /// @param l2Address L2 address as viewed in msg.sender /// @return l1Address the address in the L1 that triggered the tx to L2 function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) { unchecked { l1Address = address(uint160(l2Address) - offset); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice Error for when a deposit or withdrawal is to a bad target. error BadTarget(); /// @notice Error for when a deposit has too much calldata. error LargeCalldata(); /// @notice Error for when a deposit has too small of a gas limit. error SmallGasLimit(); /// @notice Error for when a withdrawal transfer fails. error TransferFailed(); /// @notice Error for when a method cannot be called with non zero CALLVALUE. error NoValue(); /// @notice Error for an unauthorized CALLER. error Unauthorized(); /// @notice Error for when a method cannot be called when paused. This could be renamed /// to `Paused` in the future, but it collides with the `Paused` event. error CallPaused(); /// @notice Error for special gas estimation. error GasEstimation(); /// @notice Error for when a method is being reentered. error NonReentrant(); /// @notice Error for invalid proof. error InvalidProof(); /// @notice Error for invalid game type. error InvalidGameType(); /// @notice Error for an invalid dispute game. error InvalidDisputeGame(); /// @notice Error for an invalid merkle proof. error InvalidMerkleProof(); /// @notice Error for when a dispute game has been blacklisted. error Blacklisted(); /// @notice Error for when trying to withdrawal without first proven. error Unproven(); /// @notice Error for when a proposal is not validated. error ProposalNotValidated(); /// @notice Error for when a withdrawal has already been finalized. error AlreadyFinalized(); /// @notice Error for when a game is a legacy game. error LegacyGame(); // SPDX-License-Identifier: MIT pragma solidity ^0.8.15; // Libraries import { Position, Hash, GameType, VMStatus, Timestamp, Duration, Clock, GameId, Claim, LibGameId, LibClock } from "src/dispute/lib/LibUDT.sol"; /// @notice The current status of the dispute game. enum GameStatus { // The game is currently in progress, and has not been resolved. IN_PROGRESS, // The game has concluded, and the `rootClaim` was challenged successfully. CHALLENGER_WINS, // The game has concluded, and the `rootClaim` could not be contested. DEFENDER_WINS } /// @notice The game's bond distribution type. Games are expected to start in the `UNDECIDED` /// state, and then choose either `NORMAL` or `REFUND`. enum BondDistributionMode { // Bond distribution strategy has not been chosen. UNDECIDED, // Bonds should be distributed as normal. NORMAL, // Bonds should be refunded to claimants. REFUND } /// @notice Represents an L2 output root and the L2 block number at which it was generated. /// @custom:field root The output root. /// @custom:field l2BlockNumber The L2 block number at which the output root was generated. struct OutputRoot { Hash root; uint256 l2BlockNumber; } /// @title GameTypes /// @notice A library that defines the IDs of games that can be played. library GameTypes { /// @dev A dispute game type the uses the cannon vm. GameType internal constant CANNON = GameType.wrap(0); /// @dev A permissioned dispute game type that uses the cannon vm. GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1); /// @notice A dispute game type that uses the asterisc vm. GameType internal constant ASTERISC = GameType.wrap(2); /// @notice A dispute game type that uses the asterisc vm with Kona. GameType internal constant ASTERISC_KONA = GameType.wrap(3); /// @notice A dispute game type that uses OP Succinct GameType internal constant OP_SUCCINCT = GameType.wrap(6); /// @notice A dispute game type with short game duration for testing withdrawals. /// Not intended for production use. GameType internal constant FAST = GameType.wrap(254); /// @notice A dispute game type that uses an alphabet vm. /// Not intended for production use. GameType internal constant ALPHABET = GameType.wrap(255); /// @notice A dispute game type that uses RISC Zero's Kailua GameType internal constant KAILUA = GameType.wrap(1337); } /// @title VMStatuses /// @notice Named type aliases for the various valid VM status bytes. library VMStatuses { /// @notice The VM has executed successfully and the outcome is valid. VMStatus internal constant VALID = VMStatus.wrap(0); /// @notice The VM has executed successfully and the outcome is invalid. VMStatus internal constant INVALID = VMStatus.wrap(1); /// @notice The VM has paniced. VMStatus internal constant PANIC = VMStatus.wrap(2); /// @notice The VM execution is still in progress. VMStatus internal constant UNFINISHED = VMStatus.wrap(3); } /// @title LocalPreimageKey /// @notice Named type aliases for local `PreimageOracle` key identifiers. library LocalPreimageKey { /// @notice The identifier for the L1 head hash. uint256 internal constant L1_HEAD_HASH = 0x01; /// @notice The identifier for the starting output root. uint256 internal constant STARTING_OUTPUT_ROOT = 0x02; /// @notice The identifier for the disputed output root. uint256 internal constant DISPUTED_OUTPUT_ROOT = 0x03; /// @notice The identifier for the disputed L2 block number. uint256 internal constant DISPUTED_L2_BLOCK_NUMBER = 0x04; /// @notice The identifier for the chain ID. uint256 internal constant CHAIN_ID = 0x05; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title ISemver /// @notice ISemver is a simple contract for ensuring that contracts are /// versioned using semantic versioning. interface ISemver { /// @notice Getter for the semantic version of the contract. This is not /// meant to be used onchain but instead meant to be used by offchain /// tooling. /// @return Semver contract version as a string. function version() external view returns (string memory); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol"; interface ISystemConfig { enum UpdateType { BATCHER, FEE_SCALARS, GAS_LIMIT, UNSAFE_BLOCK_SIGNER, EIP_1559_PARAMS, OPERATOR_FEE_PARAMS } struct Addresses { address l1CrossDomainMessenger; address l1ERC721Bridge; address l1StandardBridge; address disputeGameFactory; address optimismPortal; address optimismMintableERC20Factory; } event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data); event Initialized(uint8 version); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function BATCH_INBOX_SLOT() external view returns (bytes32); function DISPUTE_GAME_FACTORY_SLOT() external view returns (bytes32); function L1_CROSS_DOMAIN_MESSENGER_SLOT() external view returns (bytes32); function L1_ERC_721_BRIDGE_SLOT() external view returns (bytes32); function L1_STANDARD_BRIDGE_SLOT() external view returns (bytes32); function OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT() external view returns (bytes32); function OPTIMISM_PORTAL_SLOT() external view returns (bytes32); function START_BLOCK_SLOT() external view returns (bytes32); function UNSAFE_BLOCK_SIGNER_SLOT() external view returns (bytes32); function VERSION() external view returns (uint256); function basefeeScalar() external view returns (uint32); function batchInbox() external view returns (address addr_); function batcherHash() external view returns (bytes32); function blobbasefeeScalar() external view returns (uint32); function disputeGameFactory() external view returns (address addr_); function gasLimit() external view returns (uint64); function eip1559Denominator() external view returns (uint32); function eip1559Elasticity() external view returns (uint32); function getAddresses() external view returns (Addresses memory); function initialize( address _owner, uint32 _basefeeScalar, uint32 _blobbasefeeScalar, bytes32 _batcherHash, uint64 _gasLimit, address _unsafeBlockSigner, IResourceMetering.ResourceConfig memory _config, address _batchInbox, Addresses memory _addresses ) external; function l1CrossDomainMessenger() external view returns (address addr_); function l1ERC721Bridge() external view returns (address addr_); function l1StandardBridge() external view returns (address addr_); function maximumGasLimit() external pure returns (uint64); function minimumGasLimit() external view returns (uint64); function operatorFeeConstant() external view returns (uint64); function operatorFeeScalar() external view returns (uint32); function optimismMintableERC20Factory() external view returns (address addr_); function optimismPortal() external view returns (address addr_); function overhead() external view returns (uint256); function owner() external view returns (address); function renounceOwnership() external; function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory); function scalar() external view returns (uint256); function setBatcherHash(bytes32 _batcherHash) external; function setGasConfig(uint256 _overhead, uint256 _scalar) external; function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external; function setGasLimit(uint64 _gasLimit) external; function setOperatorFeeScalars(uint32 _operatorFeeScalar, uint64 _operatorFeeConstant) external; function setUnsafeBlockSigner(address _unsafeBlockSigner) external; function setEIP1559Params(uint32 _denominator, uint32 _elasticity) external; function startBlock() external view returns (uint256 startBlock_); function transferOwnership(address newOwner) external; // nosemgrep function unsafeBlockSigner() external view returns (address addr_); function version() external pure returns (string memory); function __constructor__() external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IResourceMetering { struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } error OutOfGas(); event Initialized(uint8 version); function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep function __constructor__() external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface ISuperchainConfig { enum UpdateType { GUARDIAN } event ConfigUpdate(UpdateType indexed updateType, bytes data); event Initialized(uint8 version); event Paused(string identifier); event Unpaused(); function GUARDIAN_SLOT() external view returns (bytes32); function PAUSED_SLOT() external view returns (bytes32); function guardian() external view returns (address guardian_); function initialize(address _guardian, bool _paused) external; function pause(string memory _identifier) external; function paused() external view returns (bool paused_); function unpause() external; function version() external view returns (string memory); function __constructor__() external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol"; import { GameId, Timestamp, Claim, Hash, GameType } from "src/dispute/lib/Types.sol"; interface IDisputeGameFactory { struct GameSearchResult { uint256 index; GameId metadata; Timestamp timestamp; Claim rootClaim; bytes extraData; } error GameAlreadyExists(Hash uuid); error IncorrectBondAmount(); error NoImplementation(GameType gameType); event DisputeGameCreated(address indexed disputeProxy, GameType indexed gameType, Claim indexed rootClaim); event ImplementationSet(address indexed impl, GameType indexed gameType); event InitBondUpdated(GameType indexed gameType, uint256 indexed newBond); event Initialized(uint8 version); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function create( GameType _gameType, Claim _rootClaim, bytes memory _extraData ) external payable returns (IDisputeGame proxy_); function findLatestGames( GameType _gameType, uint256 _start, uint256 _n ) external view returns (GameSearchResult[] memory games_); function gameAtIndex(uint256 _index) external view returns (GameType gameType_, Timestamp timestamp_, IDisputeGame proxy_); function gameCount() external view returns (uint256 gameCount_); function gameImpls(GameType) external view returns (IDisputeGame); function games( GameType _gameType, Claim _rootClaim, bytes memory _extraData ) external view returns (IDisputeGame proxy_, Timestamp timestamp_); function getGameUUID( GameType _gameType, Claim _rootClaim, bytes memory _extraData ) external pure returns (Hash uuid_); function initBonds(GameType) external view returns (uint256); function initialize(address _owner) external; function owner() external view returns (address); function renounceOwnership() external; function setImplementation(GameType _gameType, IDisputeGame _impl) external; function setInitBond(GameType _gameType, uint256 _initBond) external; function transferOwnership(address newOwner) external; // nosemgrep function version() external view returns (string memory); function __constructor__() external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IInitializable } from "interfaces/dispute/IInitializable.sol"; import { Timestamp, GameStatus, GameType, Claim, Hash } from "src/dispute/lib/Types.sol"; interface IDisputeGame is IInitializable { event Resolved(GameStatus indexed status); function createdAt() external view returns (Timestamp); function resolvedAt() external view returns (Timestamp); function status() external view returns (GameStatus); function gameType() external view returns (GameType gameType_); function gameCreator() external pure returns (address creator_); function rootClaim() external pure returns (Claim rootClaim_); function l1Head() external pure returns (Hash l1Head_); function l2BlockNumber() external pure returns (uint256 l2BlockNumber_); function extraData() external pure returns (bytes memory extraData_); function resolve() external returns (GameStatus status_); function gameData() external view returns (GameType gameType_, Claim rootClaim_, bytes memory extraData_); function wasRespectedGameTypeWhenCreated() external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /// @title Burn /// @notice Utilities for burning stuff. library Burn { /// @notice Burns a given amount of ETH. /// @param _amount Amount of ETH to burn. function eth(uint256 _amount) internal { new Burner{ value: _amount }(); } /// @notice Burns a given amount of gas. /// @param _amount Amount of gas to burn. function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } } /// @title Burner /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to /// the contract from the circulating supply. Self-destructing is the only way to remove ETH /// from the circulating supply. contract Burner { constructor() payable { selfdestruct(payable(address(this))); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; // Libraries import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /// @title Arithmetic /// @notice Even more math than before. library Arithmetic { /// @notice Clamps a value between a minimum and maximum. /// @param _value The value to clamp. /// @param _min The minimum value. /// @param _max The maximum value. /// @return The clamped value. function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /// @notice (c)oefficient (d)enominator (exp)onentiation function. /// Returns the result of: c * (1 - 1/d)^exp. /// @param _coefficient Coefficient of the function. /// @param _denominator Fractional denominator. /// @param _exponent Power function exponent. /// @return Result of c * (1 - 1/d)^exp. function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } /// @notice Saturating addition. /// @param _x The first value. /// @param _y The second value. /// @return z_ The sum of the two values, or the maximum value if the sum overflows. /// @dev Returns `min(2 ** 256 - 1, x + y)`. /// @dev Taken from Solady /// https://github.com/Vectorized/solady/blob/63416d60c78aba70a12ca1b3c11125d1061caa12/src/utils/FixedPointMathLib.sol#L673 function saturatingAdd(uint256 _x, uint256 _y) internal pure returns (uint256 z_) { assembly ("memory-safe") { z_ := or(sub(0, lt(add(_x, _y), _x)), add(_x, _y)) } } /// @notice Saturating multiplication. /// @param _x The first value. /// @param _y The second value. /// @return z_ The product of the two values, or the maximum value if the product overflows. /// @dev Returns `min(2 ** 256 - 1, x * y). /// @dev Taken from Solady /// https://github.com/Vectorized/solady/blob/63416d60c78aba70a12ca1b3c11125d1061caa12/src/utils/FixedPointMathLib.sol#L681 function saturatingMul(uint256 _x, uint256 _y) internal pure returns (uint256 z_) { assembly ("memory-safe") { z_ := or(sub(or(iszero(_x), eq(div(mul(_x, _y), _x), _y)), 1), mul(_x, _y)) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; // Libraries import { Types } from "src/libraries/Types.sol"; import { Hashing } from "src/libraries/Hashing.sol"; import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol"; /// @title Encoding /// @notice Encoding handles Optimism's various different encoding schemes. library Encoding { /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent /// to the L2 system. Useful for searching for a deposit in the L2 system. The /// transaction is prefixed with 0x7e to identify its EIP-2718 type. /// @param _tx User deposit transaction to encode. /// @return RLP encoded L2 deposit transaction. function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) { bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex); bytes[] memory raw = new bytes[](8); raw[0] = RLPWriter.writeBytes(abi.encodePacked(source)); raw[1] = RLPWriter.writeAddress(_tx.from); raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to); raw[3] = RLPWriter.writeUint(_tx.mint); raw[4] = RLPWriter.writeUint(_tx.value); raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit)); raw[6] = RLPWriter.writeBool(false); raw[7] = RLPWriter.writeBytes(_tx.data); return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw)); } /// @notice Encodes the cross domain message based on the version that is encoded into the /// message nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Encoded cross domain message. function encodeCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { (, uint16 version) = decodeVersionedNonce(_nonce); if (version == 0) { return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Encoding: unknown cross domain message version"); } } /// @notice Encodes a cross domain message based on the V0 (legacy) encoding. /// @param _target Address of the target of the message. /// @param _sender Address of the sender of the message. /// @param _data Data to send with the message. /// @param _nonce Message nonce. /// @return Encoded cross domain message. function encodeCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes memory) { // nosemgrep: sol-style-use-abi-encodecall return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce); } /// @notice Encodes a cross domain message based on the V1 (current) encoding. /// @param _nonce Message nonce. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Encoded cross domain message. function encodeCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { // nosemgrep: sol-style-use-abi-encodecall return abi.encodeWithSignature( "relayMessage(uint256,address,address,uint256,uint256,bytes)", _nonce, _sender, _target, _value, _gasLimit, _data ); } /// @notice Adds a version number into the first two bytes of a message nonce. /// @param _nonce Message nonce to encode into. /// @param _version Version number to encode into the message nonce. /// @return Message nonce with version encoded into the first two bytes. function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) { uint256 nonce; assembly { nonce := or(shl(240, _version), _nonce) } return nonce; } /// @notice Pulls the version out of a version-encoded nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @return Nonce without encoded version. /// @return Version of the message. function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) { uint240 nonce; uint16 version; assembly { nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) version := shr(240, _nonce) } return (nonce, version); } /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone /// @param _baseFeeScalar L1 base fee Scalar /// @param _blobBaseFeeScalar L1 blob base fee Scalar /// @param _sequenceNumber Number of L2 blocks since epoch start. /// @param _timestamp L1 timestamp. /// @param _number L1 blocknumber. /// @param _baseFee L1 base fee. /// @param _blobBaseFee L1 blob base fee. /// @param _hash L1 blockhash. /// @param _batcherHash Versioned hash to authenticate batcher by. function encodeSetL1BlockValuesEcotone( uint32 _baseFeeScalar, uint32 _blobBaseFeeScalar, uint64 _sequenceNumber, uint64 _timestamp, uint64 _number, uint256 _baseFee, uint256 _blobBaseFee, bytes32 _hash, bytes32 _batcherHash ) internal pure returns (bytes memory) { bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()")); return abi.encodePacked( functionSignature, _baseFeeScalar, _blobBaseFeeScalar, _sequenceNumber, _timestamp, _number, _baseFee, _blobBaseFee, _hash, _batcherHash ); } /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesIsthmus /// @param _baseFeeScalar L1 base fee Scalar /// @param _blobBaseFeeScalar L1 blob base fee Scalar /// @param _sequenceNumber Number of L2 blocks since epoch start. /// @param _timestamp L1 timestamp. /// @param _number L1 blocknumber. /// @param _baseFee L1 base fee. /// @param _blobBaseFee L1 blob base fee. /// @param _hash L1 blockhash. /// @param _batcherHash Versioned hash to authenticate batcher by. /// @param _operatorFeeScalar Operator fee scalar. /// @param _operatorFeeConstant Operator fee constant. function encodeSetL1BlockValuesIsthmus( uint32 _baseFeeScalar, uint32 _blobBaseFeeScalar, uint64 _sequenceNumber, uint64 _timestamp, uint64 _number, uint256 _baseFee, uint256 _blobBaseFee, bytes32 _hash, bytes32 _batcherHash, uint32 _operatorFeeScalar, uint64 _operatorFeeConstant ) internal pure returns (bytes memory) { bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesIsthmus()")); return abi.encodePacked( functionSignature, _baseFeeScalar, _blobBaseFeeScalar, _sequenceNumber, _timestamp, _number, _baseFee, _blobBaseFee, _hash, _batcherHash, _operatorFeeScalar, _operatorFeeConstant ); } /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop /// @param _baseFeeScalar L1 base fee Scalar /// @param _blobBaseFeeScalar L1 blob base fee Scalar /// @param _sequenceNumber Number of L2 blocks since epoch start. /// @param _timestamp L1 timestamp. /// @param _number L1 blocknumber. /// @param _baseFee L1 base fee. /// @param _blobBaseFee L1 blob base fee. /// @param _hash L1 blockhash. /// @param _batcherHash Versioned hash to authenticate batcher by. function encodeSetL1BlockValuesInterop( uint32 _baseFeeScalar, uint32 _blobBaseFeeScalar, uint64 _sequenceNumber, uint64 _timestamp, uint64 _number, uint256 _baseFee, uint256 _blobBaseFee, bytes32 _hash, bytes32 _batcherHash ) internal pure returns (bytes memory) { bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()")); return abi.encodePacked( functionSignature, _baseFeeScalar, _blobBaseFeeScalar, _sequenceNumber, _timestamp, _number, _baseFee, _blobBaseFee, _hash, _batcherHash ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; // Libraries import { Bytes } from "src/libraries/Bytes.sol"; import { RLPReader } from "src/libraries/rlp/RLPReader.sol"; /// @title MerkleTrie /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie /// inclusion proofs. By default, this library assumes a hexary trie. One can change the /// trie radix constant to support other trie radixes. library MerkleTrie { /// @notice Struct representing a node in the trie. /// @custom:field encoded The RLP-encoded node. /// @custom:field decoded The RLP-decoded node. struct TrieNode { bytes encoded; RLPReader.RLPItem[] decoded; } /// @notice Determines the number of elements per branch node. uint256 internal constant TREE_RADIX = 16; /// @notice Branch nodes have TREE_RADIX elements and one value element. uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1; /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`. uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2; /// @notice Prefix for even-nibbled extension node paths. uint8 internal constant PREFIX_EXTENSION_EVEN = 0; /// @notice Prefix for odd-nibbled extension node paths. uint8 internal constant PREFIX_EXTENSION_ODD = 1; /// @notice Prefix for even-nibbled leaf node paths. uint8 internal constant PREFIX_LEAF_EVEN = 2; /// @notice Prefix for odd-nibbled leaf node paths. uint8 internal constant PREFIX_LEAF_ODD = 3; /// @notice Verifies a proof that a given key/value pair is present in the trie. /// @param _key Key of the node to search for, as a hex string. /// @param _value Value of the node to search for, as a hex string. /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle /// trees, this proof is executed top-down and consists of a list of RLP-encoded /// nodes that make a path down to the target node. /// @param _root Known root of the Merkle trie. Used to verify that the included proof is /// correctly constructed. /// @return valid_ Whether or not the proof is valid. function verifyInclusionProof( bytes memory _key, bytes memory _value, bytes[] memory _proof, bytes32 _root ) internal pure returns (bool valid_) { valid_ = Bytes.equal(_value, get(_key, _proof, _root)); } /// @notice Retrieves the value associated with a given key. /// @param _key Key to search for, as hex bytes. /// @param _proof Merkle trie inclusion proof for the key. /// @param _root Known root of the Merkle trie. /// @return value_ Value of the key if it exists. function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) { require(_key.length > 0, "MerkleTrie: empty key"); TrieNode[] memory proof = _parseProof(_proof); bytes memory key = Bytes.toNibbles(_key); bytes memory currentNodeID = abi.encodePacked(_root); uint256 currentKeyIndex = 0; // Proof is top-down, so we start at the first element (root). for (uint256 i = 0; i < proof.length; i++) { TrieNode memory currentNode = proof[i]; // Key index should never exceed total key length or we'll be out of bounds. require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length"); if (currentKeyIndex == 0) { // First proof element is always the root node. require( Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID), "MerkleTrie: invalid root hash" ); } else if (currentNode.encoded.length >= 32) { // Nodes 32 bytes or larger are hashed inside branch nodes. require( Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID), "MerkleTrie: invalid large internal hash" ); } else { // Nodes smaller than 32 bytes aren't hashed. require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash"); } if (currentNode.decoded.length == BRANCH_NODE_LENGTH) { if (currentKeyIndex == key.length) { // Value is the last element of the decoded list (for branch nodes). There's // some ambiguity in the Merkle trie specification because bytes(0) is a // valid value to place into the trie, but for branch nodes bytes(0) can exist // even when the value wasn't explicitly placed there. Geth treats a value of // bytes(0) as "key does not exist" and so we do the same. value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]); require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)"); // Extra proof elements are not allowed. require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)"); return value_; } else { // We're not at the end of the key yet. // Figure out what the next node ID should be and continue. uint8 branchKey = uint8(key[currentKeyIndex]); RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey]; currentNodeID = _getNodeID(nextNode); currentKeyIndex += 1; } } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) { bytes memory path = _getNodePath(currentNode); uint8 prefix = uint8(path[0]); uint8 offset = 2 - (prefix % 2); bytes memory pathRemainder = Bytes.slice(path, offset); bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex); uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder); // Whether this is a leaf node or an extension node, the path remainder MUST be a // prefix of the key remainder (or be equal to the key remainder) or the proof is // considered invalid. require( pathRemainder.length == sharedNibbleLength, "MerkleTrie: path remainder must share all nibbles with key" ); if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) { // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid, // the key remainder must be exactly equal to the path remainder. We already // did the necessary byte comparison, so it's more efficient here to check that // the key remainder length equals the shared nibble length, which implies // equality with the path remainder (since we already did the same check with // the path remainder and the shared nibble length). require( keyRemainder.length == sharedNibbleLength, "MerkleTrie: key remainder must be identical to path remainder" ); // Our Merkle Trie is designed specifically for the purposes of the Ethereum // state trie. Empty values are not allowed in the state trie, so we can safely // say that if the value is empty, the key should not exist and the proof is // invalid. value_ = RLPReader.readBytes(currentNode.decoded[1]); require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)"); // Extra proof elements are not allowed. require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)"); return value_; } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) { // Prefix of 0 or 1 means this is an extension node. We move onto the next node // in the proof and increment the key index by the length of the path remainder // which is equal to the shared nibble length. currentNodeID = _getNodeID(currentNode.decoded[1]); currentKeyIndex += sharedNibbleLength; } else { revert("MerkleTrie: received a node with an unknown prefix"); } } else { revert("MerkleTrie: received an unparseable node"); } } revert("MerkleTrie: ran out of proof elements"); } /// @notice Parses an array of proof elements into a new array that contains both the original /// encoded element and the RLP-decoded element. /// @param _proof Array of proof elements to parse. /// @return proof_ Proof parsed into easily accessible structs. function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) { uint256 length = _proof.length; proof_ = new TrieNode[](length); for (uint256 i = 0; i < length;) { proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) }); unchecked { ++i; } } } /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the /// specification, but nodes < 32 bytes are not actually hashed. /// @param _node Node to pull an ID for. /// @return id_ ID for the node, depending on the size of its contents. function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) { id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node); } /// @notice Gets the path for a leaf or extension node. /// @param _node Node to get a path for. /// @return nibbles_ Node path, converted to an array of nibbles. function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) { nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0])); } /// @notice Utility; determines the number of nibbles shared between two nibble arrays. /// @param _a First nibble array. /// @param _b Second nibble array. /// @return shared_ Number of shared nibbles. function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) { uint256 max = (_a.length < _b.length) ? _a.length : _b.length; for (; shared_ < max && _a[shared_] == _b[shared_];) { unchecked { ++shared_; } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.15; // Libraries import { Position } from "src/dispute/lib/LibPosition.sol"; using LibClaim for Claim global; using LibHash for Hash global; using LibDuration for Duration global; using LibClock for Clock global; using LibGameId for GameId global; using LibTimestamp for Timestamp global; using LibVMStatus for VMStatus global; using LibGameType for GameType global; /// @notice A `Clock` represents a packed `Duration` and `Timestamp` /// @dev The packed layout of this type is as follows: /// ┌────────────┬────────────────┐ /// │ Bits │ Value │ /// ├────────────┼────────────────┤ /// │ [0, 64) │ Duration │ /// │ [64, 128) │ Timestamp │ /// └────────────┴────────────────┘ type Clock is uint128; /// @title LibClock /// @notice This library contains helper functions for working with the `Clock` type. library LibClock { /// @notice Packs a `Duration` and `Timestamp` into a `Clock` type. /// @param _duration The `Duration` to pack into the `Clock` type. /// @param _timestamp The `Timestamp` to pack into the `Clock` type. /// @return clock_ The `Clock` containing the `_duration` and `_timestamp`. function wrap(Duration _duration, Timestamp _timestamp) internal pure returns (Clock clock_) { assembly { clock_ := or(shl(0x40, _duration), _timestamp) } } /// @notice Pull the `Duration` out of a `Clock` type. /// @param _clock The `Clock` type to pull the `Duration` out of. /// @return duration_ The `Duration` pulled out of `_clock`. function duration(Clock _clock) internal pure returns (Duration duration_) { // Shift the high-order 64 bits into the low-order 64 bits, leaving only the `duration`. assembly { duration_ := shr(0x40, _clock) } } /// @notice Pull the `Timestamp` out of a `Clock` type. /// @param _clock The `Clock` type to pull the `Timestamp` out of. /// @return timestamp_ The `Timestamp` pulled out of `_clock`. function timestamp(Clock _clock) internal pure returns (Timestamp timestamp_) { // Clean the high-order 192 bits by shifting the clock left and then right again, leaving // only the `timestamp`. assembly { timestamp_ := shr(0xC0, shl(0xC0, _clock)) } } /// @notice Get the value of a `Clock` type in the form of the underlying uint128. /// @param _clock The `Clock` type to get the value of. /// @return clock_ The value of the `Clock` type as a uint128 type. function raw(Clock _clock) internal pure returns (uint128 clock_) { assembly { clock_ := _clock } } } /// @notice A `GameId` represents a packed 4 byte game ID, a 8 byte timestamp, and a 20 byte address. /// @dev The packed layout of this type is as follows: /// ┌───────────┬───────────┐ /// │ Bits │ Value │ /// ├───────────┼───────────┤ /// │ [0, 32) │ Game Type │ /// │ [32, 96) │ Timestamp │ /// │ [96, 256) │ Address │ /// └───────────┴───────────┘ type GameId is bytes32; /// @title LibGameId /// @notice Utility functions for packing and unpacking GameIds. library LibGameId { /// @notice Packs values into a 32 byte GameId type. /// @param _gameType The game type. /// @param _timestamp The timestamp of the game's creation. /// @param _gameProxy The game proxy address. /// @return gameId_ The packed GameId. function pack( GameType _gameType, Timestamp _timestamp, address _gameProxy ) internal pure returns (GameId gameId_) { assembly { gameId_ := or(or(shl(224, _gameType), shl(160, _timestamp)), _gameProxy) } } /// @notice Unpacks values from a 32 byte GameId type. /// @param _gameId The packed GameId. /// @return gameType_ The game type. /// @return timestamp_ The timestamp of the game's creation. /// @return gameProxy_ The game proxy address. function unpack(GameId _gameId) internal pure returns (GameType gameType_, Timestamp timestamp_, address gameProxy_) { assembly { gameType_ := shr(224, _gameId) timestamp_ := and(shr(160, _gameId), 0xFFFFFFFFFFFFFFFF) gameProxy_ := and(_gameId, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) } } } /// @notice A claim represents an MPT root representing the state of the fault proof program. type Claim is bytes32; /// @title LibClaim /// @notice This library contains helper functions for working with the `Claim` type. library LibClaim { /// @notice Get the value of a `Claim` type in the form of the underlying bytes32. /// @param _claim The `Claim` type to get the value of. /// @return claim_ The value of the `Claim` type as a bytes32 type. function raw(Claim _claim) internal pure returns (bytes32 claim_) { assembly { claim_ := _claim } } /// @notice Hashes a claim and a position together. /// @param _claim A Claim type. /// @param _position The position of `claim`. /// @param _challengeIndex The index of the claim being moved against. /// @return claimHash_ A hash of abi.encodePacked(claim, position|challengeIndex); function hashClaimPos( Claim _claim, Position _position, uint256 _challengeIndex ) internal pure returns (Hash claimHash_) { assembly { mstore(0x00, _claim) mstore(0x20, or(shl(128, _position), and(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, _challengeIndex))) claimHash_ := keccak256(0x00, 0x40) } } } /// @notice A dedicated duration type. /// @dev Unit: seconds type Duration is uint64; /// @title LibDuration /// @notice This library contains helper functions for working with the `Duration` type. library LibDuration { /// @notice Get the value of a `Duration` type in the form of the underlying uint64. /// @param _duration The `Duration` type to get the value of. /// @return duration_ The value of the `Duration` type as a uint64 type. function raw(Duration _duration) internal pure returns (uint64 duration_) { assembly { duration_ := _duration } } } /// @notice A custom type for a generic hash. type Hash is bytes32; /// @title LibHash /// @notice This library contains helper functions for working with the `Hash` type. library LibHash { /// @notice Get the value of a `Hash` type in the form of the underlying bytes32. /// @param _hash The `Hash` type to get the value of. /// @return hash_ The value of the `Hash` type as a bytes32 type. function raw(Hash _hash) internal pure returns (bytes32 hash_) { assembly { hash_ := _hash } } } /// @notice A dedicated timestamp type. type Timestamp is uint64; /// @title LibTimestamp /// @notice This library contains helper functions for working with the `Timestamp` type. library LibTimestamp { /// @notice Get the value of a `Timestamp` type in the form of the underlying uint64. /// @param _timestamp The `Timestamp` type to get the value of. /// @return timestamp_ The value of the `Timestamp` type as a uint64 type. function raw(Timestamp _timestamp) internal pure returns (uint64 timestamp_) { assembly { timestamp_ := _timestamp } } } /// @notice A `VMStatus` represents the status of a VM execution. type VMStatus is uint8; /// @title LibVMStatus /// @notice This library contains helper functions for working with the `VMStatus` type. library LibVMStatus { /// @notice Get the value of a `VMStatus` type in the form of the underlying uint8. /// @param _vmstatus The `VMStatus` type to get the value of. /// @return vmstatus_ The value of the `VMStatus` type as a uint8 type. function raw(VMStatus _vmstatus) internal pure returns (uint8 vmstatus_) { assembly { vmstatus_ := _vmstatus } } } /// @notice A `GameType` represents the type of game being played. type GameType is uint32; /// @title LibGameType /// @notice This library contains helper functions for working with the `GameType` type. library LibGameType { /// @notice Get the value of a `GameType` type in the form of the underlying uint32. /// @param _gametype The `GameType` type to get the value of. /// @return gametype_ The value of the `GameType` type as a uint32 type. function raw(GameType _gametype) internal pure returns (uint32 gametype_) { assembly { gametype_ := _gametype } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IInitializable { function initialize() external payable; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode /// @title RLPWriter /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's /// RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor /// modifications to improve legibility. library RLPWriter { /// @notice RLP encodes a byte string. /// @param _in The byte string to encode. /// @return out_ The RLP encoded string in bytes. function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) { if (_in.length == 1 && uint8(_in[0]) < 128) { out_ = _in; } else { out_ = abi.encodePacked(_writeLength(_in.length, 128), _in); } } /// @notice RLP encodes a list of RLP encoded byte byte strings. /// @param _in The list of RLP encoded byte strings. /// @return list_ The RLP encoded list of items in bytes. function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) { list_ = _flatten(_in); list_ = abi.encodePacked(_writeLength(list_.length, 192), list_); } /// @notice RLP encodes a string. /// @param _in The string to encode. /// @return out_ The RLP encoded string in bytes. function writeString(string memory _in) internal pure returns (bytes memory out_) { out_ = writeBytes(bytes(_in)); } /// @notice RLP encodes an address. /// @param _in The address to encode. /// @return out_ The RLP encoded address in bytes. function writeAddress(address _in) internal pure returns (bytes memory out_) { out_ = writeBytes(abi.encodePacked(_in)); } /// @notice RLP encodes a uint. /// @param _in The uint256 to encode. /// @return out_ The RLP encoded uint256 in bytes. function writeUint(uint256 _in) internal pure returns (bytes memory out_) { out_ = writeBytes(_toBinary(_in)); } /// @notice RLP encodes a bool. /// @param _in The bool to encode. /// @return out_ The RLP encoded bool in bytes. function writeBool(bool _in) internal pure returns (bytes memory out_) { out_ = new bytes(1); out_[0] = (_in ? bytes1(0x01) : bytes1(0x80)); } /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55. /// @param _len The length of the string or the payload. /// @param _offset 128 if item is string, 192 if item is list. /// @return out_ RLP encoded bytes. function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) { if (_len < 56) { out_ = new bytes(1); out_[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } out_ = new bytes(lenLen + 1); out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256)); } } } /// @notice Encode integer in big endian binary form with no leading zeroes. /// @param _x The integer to encode. /// @return out_ RLP encoded bytes. function _toBinary(uint256 _x) private pure returns (bytes memory out_) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } out_ = new bytes(32 - i); for (uint256 j = 0; j < out_.length; j++) { out_[j] = b[i++]; } } /// @custom:attribution https://github.com/Arachnid/solidity-stringutils /// @notice Copies a piece of memory to another location. /// @param _dest Destination location. /// @param _src Source location. /// @param _len Length of memory to copy. function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256 ** (32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder /// @notice Flattens a list of byte strings into one byte string. /// @param _list List of byte strings to flatten. /// @return out_ The flattened byte string. function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } out_ = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(out_, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Bytes /// @notice Bytes is a library for manipulating byte arrays. library Bytes { /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils /// @notice Slices a byte array with a given starting index and length. Returns a new byte array /// as opposed to a pointer to the original array. Will throw if trying to slice more /// bytes than exist in the array. /// @param _bytes Byte array to slice. /// @param _start Starting index of the slice. /// @param _length Length of the slice. /// @return Slice of the input byte array. function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) { unchecked { require(_length + 31 >= _length, "slice_overflow"); require(_start + _length >= _start, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); } bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } /// @notice Slices a byte array with a given starting index up to the end of the original byte /// array. Returns a new array rathern than a pointer to the original. /// @param _bytes Byte array to slice. /// @param _start Starting index of the slice. /// @return Slice of the input byte array. function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) { if (_start >= _bytes.length) { return bytes(""); } return slice(_bytes, _start, _bytes.length - _start); } /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles. /// Resulting nibble array will be exactly twice as long as the input byte array. /// @param _bytes Input byte array to convert. /// @return Resulting nibble array. function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) { bytes memory _nibbles; assembly { // Grab a free memory offset for the new array _nibbles := mload(0x40) // Load the length of the passed bytes array from memory let bytesLength := mload(_bytes) // Calculate the length of the new nibble array // This is the length of the input array times 2 let nibblesLength := shl(0x01, bytesLength) // Update the free memory pointer to allocate memory for the new array. // To do this, we add the length of the new array + 32 bytes for the array length // rounded up to the nearest 32 byte boundary to the current free memory pointer. mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F)))) // Store the length of the new array in memory mstore(_nibbles, nibblesLength) // Store the memory offset of the _bytes array's contents on the stack let bytesStart := add(_bytes, 0x20) // Store the memory offset of the nibbles array's contents on the stack let nibblesStart := add(_nibbles, 0x20) // Loop through each byte in the input array for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } { // Get the starting offset of the next 2 bytes in the nibbles array let offset := add(nibblesStart, shl(0x01, i)) // Load the byte at the current index within the `_bytes` array let b := byte(0x00, mload(add(bytesStart, i))) // Pull out the first nibble and store it in the new array mstore8(offset, shr(0x04, b)) // Pull out the second nibble and store it in the new array mstore8(add(offset, 0x01), and(b, 0x0F)) } } return _nibbles; } /// @notice Compares two byte arrays by comparing their keccak256 hashes. /// @param _bytes First byte array to compare. /// @param _other Second byte array to compare. /// @return True if the two byte arrays are equal, false otherwise. function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) { return keccak256(_bytes) == keccak256(_other); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.8; // Libraries import { EmptyItem, UnexpectedString, InvalidDataRemainder, ContentLengthMismatch, InvalidHeader, UnexpectedList } from "src/libraries/rlp/RLPErrors.sol"; /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP /// @title RLPReader /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted /// from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with /// various tweaks to improve readability. library RLPReader { /// @notice Custom pointer type to avoid confusion between pointers and uint256s. type MemoryPointer is uint256; /// @notice RLP item types. /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list). /// @custom:value LIST_ITEM Represents an RLP list item. enum RLPItemType { DATA_ITEM, LIST_ITEM } /// @notice Struct representing an RLP item. /// @custom:field length Length of the RLP item. /// @custom:field ptr Pointer to the RLP item in memory. struct RLPItem { uint256 length; MemoryPointer ptr; } /// @notice Max list length that this library will accept. uint256 internal constant MAX_LIST_LENGTH = 32; /// @notice Converts bytes to a reference to memory position and length. /// @param _in Input bytes to convert. /// @return out_ Output memory reference. function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) { // Empty arrays are not RLP items. if (_in.length == 0) revert EmptyItem(); MemoryPointer ptr; assembly { ptr := add(_in, 32) } out_ = RLPItem({ length: _in.length, ptr: ptr }); } /// @notice Reads an RLP list value into a list of RLP items. /// @param _in RLP list value. /// @return out_ Decoded RLP list items. function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) { (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in); if (itemType != RLPItemType.LIST_ITEM) revert UnexpectedString(); if (listOffset + listLength != _in.length) revert InvalidDataRemainder(); // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by // writing to the length. Since we can't know the number of RLP items without looping over // the entire input, we'd have to loop twice to accurately size this array. It's easier to // simply set a reasonable maximum list length and decrease the size before we finish. out_ = new RLPItem[](MAX_LIST_LENGTH); uint256 itemCount = 0; uint256 offset = listOffset; while (offset < _in.length) { (uint256 itemOffset, uint256 itemLength,) = _decodeLength( RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) }) ); // We don't need to check itemCount < out.length explicitly because Solidity already // handles this check on our behalf, we'd just be wasting gas. out_[itemCount] = RLPItem({ length: itemLength + itemOffset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) }); itemCount += 1; offset += itemOffset + itemLength; } // Decrease the array size to match the actual item count. assembly { mstore(out_, itemCount) } } /// @notice Reads an RLP list value into a list of RLP items. /// @param _in RLP list value. /// @return out_ Decoded RLP list items. function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) { out_ = readList(toRLPItem(_in)); } /// @notice Reads an RLP bytes value into bytes. /// @param _in RLP bytes value. /// @return out_ Decoded bytes. function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) { (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in); if (itemType != RLPItemType.DATA_ITEM) revert UnexpectedList(); if (_in.length != itemOffset + itemLength) revert InvalidDataRemainder(); out_ = _copy(_in.ptr, itemOffset, itemLength); } /// @notice Reads an RLP bytes value into bytes. /// @param _in RLP bytes value. /// @return out_ Decoded bytes. function readBytes(bytes memory _in) internal pure returns (bytes memory out_) { out_ = readBytes(toRLPItem(_in)); } /// @notice Reads the raw bytes of an RLP item. /// @param _in RLP item to read. /// @return out_ Raw RLP bytes. function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) { out_ = _copy(_in.ptr, 0, _in.length); } /// @notice Decodes the length of an RLP item. /// @param _in RLP item to decode. /// @return offset_ Offset of the encoded data. /// @return length_ Length of the encoded data. /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM). function _decodeLength(RLPItem memory _in) private pure returns (uint256 offset_, uint256 length_, RLPItemType type_) { // Short-circuit if there's nothing to decode, note that we perform this check when // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass // that function and create an RLP item directly. So we need to check this anyway. if (_in.length == 0) revert EmptyItem(); MemoryPointer ptr = _in.ptr; uint256 prefix; assembly { prefix := byte(0, mload(ptr)) } if (prefix <= 0x7f) { // Single byte. return (0, 1, RLPItemType.DATA_ITEM); } else if (prefix <= 0xb7) { // Short string. // slither-disable-next-line variable-scope uint256 strLen = prefix - 0x80; if (_in.length <= strLen) revert ContentLengthMismatch(); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } if (strLen == 1 && firstByteOfContent < 0x80) revert InvalidHeader(); return (1, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xbf) { // Long string. uint256 lenOfStrLen = prefix - 0xb7; if (_in.length <= lenOfStrLen) revert ContentLengthMismatch(); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } if (firstByteOfContent == 0x00) revert InvalidHeader(); uint256 strLen; assembly { strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1))) } if (strLen <= 55) revert InvalidHeader(); if (_in.length <= lenOfStrLen + strLen) revert ContentLengthMismatch(); return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xf7) { // Short list. // slither-disable-next-line variable-scope uint256 listLen = prefix - 0xc0; if (_in.length <= listLen) revert ContentLengthMismatch(); return (1, listLen, RLPItemType.LIST_ITEM); } else { // Long list. uint256 lenOfListLen = prefix - 0xf7; if (_in.length <= lenOfListLen) revert ContentLengthMismatch(); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } if (firstByteOfContent == 0x00) revert InvalidHeader(); uint256 listLen; assembly { listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1))) } if (listLen <= 55) revert InvalidHeader(); if (_in.length <= lenOfListLen + listLen) revert ContentLengthMismatch(); return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM); } } /// @notice Copies the bytes from a memory location. /// @param _src Pointer to the location to read from. /// @param _offset Offset to start reading from. /// @param _length Number of bytes to read. /// @return out_ Copied bytes. function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) { out_ = new bytes(_length); if (_length == 0) { return out_; } // Mostly based on Solidity's copy_memory_to_memory: // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114 uint256 src = MemoryPointer.unwrap(_src) + _offset; assembly { let dest := add(out_, 32) let i := 0 for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) } if gt(i, _length) { mstore(add(dest, _length), 0) } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.15; using LibPosition for Position global; /// @notice A `Position` represents a position of a claim within the game tree. /// @dev This is represented as a "generalized index" where the high-order bit /// is the level in the tree and the remaining bits is a unique bit pattern, allowing /// a unique identifier for each node in the tree. Mathematically, it is calculated /// as 2^{depth} + indexAtDepth. type Position is uint128; /// @title LibPosition /// @notice This library contains helper functions for working with the `Position` type. library LibPosition { /// @notice the `MAX_POSITION_BITLEN` is the number of bits that the `Position` type, and the implementation of /// its behavior within this library, can safely support. uint8 internal constant MAX_POSITION_BITLEN = 126; /// @notice Computes a generalized index (2^{depth} + indexAtDepth). /// @param _depth The depth of the position. /// @param _indexAtDepth The index at the depth of the position. /// @return position_ The computed generalized index. function wrap(uint8 _depth, uint128 _indexAtDepth) internal pure returns (Position position_) { assembly { // gindex = 2^{_depth} + _indexAtDepth position_ := add(shl(_depth, 1), _indexAtDepth) } } /// @notice Pulls the `depth` out of a `Position` type. /// @param _position The generalized index to get the `depth` of. /// @return depth_ The `depth` of the `position` gindex. /// @custom:attribution Solady <https://github.com/Vectorized/Solady> function depth(Position _position) internal pure returns (uint8 depth_) { // Return the most significant bit offset, which signifies the depth of the gindex. assembly { depth_ := or(depth_, shl(6, lt(0xffffffffffffffff, shr(depth_, _position)))) depth_ := or(depth_, shl(5, lt(0xffffffff, shr(depth_, _position)))) // For the remaining 32 bits, use a De Bruijn lookup. _position := shr(depth_, _position) _position := or(_position, shr(1, _position)) _position := or(_position, shr(2, _position)) _position := or(_position, shr(4, _position)) _position := or(_position, shr(8, _position)) _position := or(_position, shr(16, _position)) depth_ := or( depth_, byte( shr(251, mul(_position, shl(224, 0x07c4acdd))), 0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f ) ) } } /// @notice Pulls the `indexAtDepth` out of a `Position` type. /// The `indexAtDepth` is the left/right index of a position at a specific depth within /// the binary tree, starting from index 0. For example, at gindex 2, the `depth` = 1 /// and the `indexAtDepth` = 0. /// @param _position The generalized index to get the `indexAtDepth` of. /// @return indexAtDepth_ The `indexAtDepth` of the `position` gindex. function indexAtDepth(Position _position) internal pure returns (uint128 indexAtDepth_) { // Return bits p_{msb-1}...p_{0}. This effectively pulls the 2^{depth} out of the gindex, // leaving only the `indexAtDepth`. uint256 msb = depth(_position); assembly { indexAtDepth_ := sub(_position, shl(msb, 1)) } } /// @notice Get the left child of `_position`. /// @param _position The position to get the left position of. /// @return left_ The position to the left of `position`. function left(Position _position) internal pure returns (Position left_) { assembly { left_ := shl(1, _position) } } /// @notice Get the right child of `_position` /// @param _position The position to get the right position of. /// @return right_ The position to the right of `position`. function right(Position _position) internal pure returns (Position right_) { assembly { right_ := or(1, shl(1, _position)) } } /// @notice Get the parent position of `_position`. /// @param _position The position to get the parent position of. /// @return parent_ The parent position of `position`. function parent(Position _position) internal pure returns (Position parent_) { assembly { parent_ := shr(1, _position) } } /// @notice Get the deepest, right most gindex relative to the `position`. This is equivalent to /// calling `right` on a position until the maximum depth is reached. /// @param _position The position to get the relative deepest, right most gindex of. /// @param _maxDepth The maximum depth of the game. /// @return rightIndex_ The deepest, right most gindex relative to the `position`. function rightIndex(Position _position, uint256 _maxDepth) internal pure returns (Position rightIndex_) { uint256 msb = depth(_position); assembly { let remaining := sub(_maxDepth, msb) rightIndex_ := or(shl(remaining, _position), sub(shl(remaining, 1), 1)) } } /// @notice Get the deepest, right most trace index relative to the `position`. This is /// equivalent to calling `right` on a position until the maximum depth is reached and /// then finding its index at depth. /// @param _position The position to get the relative trace index of. /// @param _maxDepth The maximum depth of the game. /// @return traceIndex_ The trace index relative to the `position`. function traceIndex(Position _position, uint256 _maxDepth) internal pure returns (uint256 traceIndex_) { uint256 msb = depth(_position); assembly { let remaining := sub(_maxDepth, msb) traceIndex_ := sub(or(shl(remaining, _position), sub(shl(remaining, 1), 1)), shl(_maxDepth, 1)) } } /// @notice Gets the position of the highest ancestor of `_position` that commits to the same /// trace index. /// @param _position The position to get the highest ancestor of. /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index. function traceAncestor(Position _position) internal pure returns (Position ancestor_) { // Create a field with only the lowest unset bit of `_position` set. Position lsb; assembly { lsb := and(not(_position), add(_position, 1)) } // Find the index of the lowest unset bit within the field. uint256 msb = depth(lsb); // The highest ancestor that commits to the same trace index is the original position // shifted right by the index of the lowest unset bit. assembly { let a := shr(msb, _position) // Bound the ancestor to the minimum gindex, 1. ancestor_ := or(a, iszero(a)) } } /// @notice Gets the position of the highest ancestor of `_position` that commits to the same /// trace index, while still being below `_upperBoundExclusive`. /// @param _position The position to get the highest ancestor of. /// @param _upperBoundExclusive The exclusive upper depth bound, used to inform where to stop in order /// to not escape a sub-tree. /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index. function traceAncestorBounded( Position _position, uint256 _upperBoundExclusive ) internal pure returns (Position ancestor_) { // This function only works for positions that are below the upper bound. if (_position.depth() <= _upperBoundExclusive) { assembly { // Revert with `ClaimAboveSplit()` mstore(0x00, 0xb34b5c22) revert(0x1C, 0x04) } } // Grab the global trace ancestor. ancestor_ = traceAncestor(_position); // If the ancestor is above or at the upper bound, shift it to be below the upper bound. // This should be a special case that only covers positions that commit to the final leaf // in a sub-tree. if (ancestor_.depth() <= _upperBoundExclusive) { ancestor_ = ancestor_.rightIndex(_upperBoundExclusive + 1); } } /// @notice Get the move position of `_position`, which is the left child of: /// 1. `_position` if `_isAttack` is true. /// 2. `_position | 1` if `_isAttack` is false. /// @param _position The position to get the relative attack/defense position of. /// @param _isAttack Whether or not the move is an attack move. /// @return move_ The move position relative to `position`. function move(Position _position, bool _isAttack) internal pure returns (Position move_) { assembly { move_ := shl(1, or(iszero(_isAttack), _position)) } } /// @notice Get the value of a `Position` type in the form of the underlying uint128. /// @param _position The position to get the value of. /// @return raw_ The value of the `position` as a uint128 type. function raw(Position _position) internal pure returns (uint128 raw_) { assembly { raw_ := _position } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice The length of an RLP item must be greater than zero to be decodable error EmptyItem(); /// @notice The decoded item type for list is not a list item error UnexpectedString(); /// @notice The RLP item has an invalid data remainder error InvalidDataRemainder(); /// @notice Decoded item type for bytes is not a string item error UnexpectedList(); /// @notice The length of the content must be greater than the RLP item length error ContentLengthMismatch(); /// @notice Invalid RLP header for RLP item error InvalidHeader();
File 3 of 4: Proxy
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title Proxy * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or * if the caller is address(0), meaning that the call originated from an off-chain * simulation. */ contract Proxy { /** * @notice The storage slot that holds the address of the implementation. * bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) */ bytes32 internal constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice The storage slot that holds the address of the owner. * bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) */ bytes32 internal constant OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @notice An event that is emitted each time the implementation is changed. This event is part * of the EIP-1967 specification. * * @param implementation The address of the implementation contract */ event Upgraded(address indexed implementation); /** * @notice An event that is emitted each time the owner is upgraded. This event is part of the * EIP-1967 specification. * * @param previousAdmin The previous owner of the contract * @param newAdmin The new owner of the contract */ event AdminChanged(address previousAdmin, address newAdmin); /** * @notice A modifier that reverts if not called by the owner or by address(0) to allow * eth_call to interact with this proxy without needing to use low-level storage * inspection. We assume that nobody is able to trigger calls from address(0) during * normal EVM execution. */ modifier proxyCallIfNotAdmin() { if (msg.sender == _getAdmin() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /** * @notice Sets the initial admin during contract deployment. Admin address is stored at the * EIP-1967 admin storage slot so that accidental storage collision with the * implementation is not possible. * * @param _admin Address of the initial contract admin. Admin as the ability to access the * transparent proxy interface. */ constructor(address _admin) { _changeAdmin(_admin); } // slither-disable-next-line locked-ether receive() external payable { // Proxy call by default. _doProxyCall(); } // slither-disable-next-line locked-ether fallback() external payable { // Proxy call by default. _doProxyCall(); } /** * @notice Set the implementation contract address. The code at the given address will execute * when this contract is called. * * @param _implementation Address of the implementation contract. */ function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin { _setImplementation(_implementation); } /** * @notice Set the implementation and call a function in a single transaction. Useful to ensure * atomic execution of initialization-based upgrades. * * @param _implementation Address of the implementation contract. * @param _data Calldata to delegatecall the new implementation with. */ function upgradeToAndCall(address _implementation, bytes calldata _data) public payable virtual proxyCallIfNotAdmin returns (bytes memory) { _setImplementation(_implementation); (bool success, bytes memory returndata) = _implementation.delegatecall(_data); require(success, "Proxy: delegatecall to new implementation contract failed"); return returndata; } /** * @notice Changes the owner of the proxy contract. Only callable by the owner. * * @param _admin New owner of the proxy contract. */ function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin { _changeAdmin(_admin); } /** * @notice Gets the owner of the proxy contract. * * @return Owner address. */ function admin() public virtual proxyCallIfNotAdmin returns (address) { return _getAdmin(); } /** * @notice Queries the implementation address. * * @return Implementation address. */ function implementation() public virtual proxyCallIfNotAdmin returns (address) { return _getImplementation(); } /** * @notice Sets the implementation address. * * @param _implementation New implementation address. */ function _setImplementation(address _implementation) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } emit Upgraded(_implementation); } /** * @notice Changes the owner of the proxy contract. * * @param _admin New owner of the proxy contract. */ function _changeAdmin(address _admin) internal { address previous = _getAdmin(); assembly { sstore(OWNER_KEY, _admin) } emit AdminChanged(previous, _admin); } /** * @notice Performs the proxy call via a delegatecall. */ function _doProxyCall() internal { address impl = _getImplementation(); require(impl != address(0), "Proxy: implementation not initialized"); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } /** * @notice Queries the implementation address. * * @return Implementation address. */ function _getImplementation() internal view returns (address) { address impl; assembly { impl := sload(IMPLEMENTATION_KEY) } return impl; } /** * @notice Queries the owner of the proxy contract. * * @return Owner address. */ function _getAdmin() internal view returns (address) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } }
File 4 of 4: SystemConfig
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; // Contracts import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; // Libraries import { Storage } from "src/libraries/Storage.sol"; // Interfaces import { ISemver } from "interfaces/universal/ISemver.sol"; import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol"; /// @custom:proxied true /// @title SystemConfig /// @notice The SystemConfig contract is used to manage configuration of an Optimism network. /// All configuration is stored on L1 and picked up by L2 as part of the derviation of /// the L2 chain. contract SystemConfig is OwnableUpgradeable, ISemver { /// @notice Enum representing different types of updates. /// @custom:value BATCHER Represents an update to the batcher hash. /// @custom:value FEE_SCALARS Represents an update to l1 data fee scalars. /// @custom:value GAS_LIMIT Represents an update to gas limit on L2. /// @custom:value UNSAFE_BLOCK_SIGNER Represents an update to the signer key for unsafe /// block distrubution. enum UpdateType { BATCHER, FEE_SCALARS, GAS_LIMIT, UNSAFE_BLOCK_SIGNER, EIP_1559_PARAMS, OPERATOR_FEE_PARAMS } /// @notice Struct representing the addresses of L1 system contracts. These should be the /// contracts that users interact with (not implementations for proxied contracts) /// and are network specific. struct Addresses { address l1CrossDomainMessenger; address l1ERC721Bridge; address l1StandardBridge; address disputeGameFactory; address optimismPortal; address optimismMintableERC20Factory; } /// @notice Version identifier, used for upgrades. uint256 public constant VERSION = 0; /// @notice Storage slot that the unsafe block signer is stored at. /// Storing it at this deterministic storage slot allows for decoupling the storage /// layout from the way that `solc` lays out storage. The `op-node` uses a storage /// proof to fetch this value. /// @dev NOTE: this value will be migrated to another storage slot in a future version. /// User input should not be placed in storage in this contract until this migration /// happens. It is unlikely that keccak second preimage resistance will be broken, /// but it is better to be safe than sorry. bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner"); /// @notice Storage slot that the L1CrossDomainMessenger address is stored at. bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT = bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1); /// @notice Storage slot that the L1ERC721Bridge address is stored at. bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1); /// @notice Storage slot that the L1StandardBridge address is stored at. bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1); /// @notice Storage slot that the OptimismPortal address is stored at. bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1); /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at. bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT = bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1); /// @notice Storage slot that the batch inbox address is stored at. bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1); /// @notice Storage slot for block at which the op-node can start searching for logs from. bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1); /// @notice Storage slot for the DisputeGameFactory address. bytes32 public constant DISPUTE_GAME_FACTORY_SLOT = bytes32(uint256(keccak256("systemconfig.disputegamefactory")) - 1); /// @notice The maximum gas limit that can be set for L2 blocks. This limit is used to enforce that the blocks /// on L2 are not too large to process and prove. Over time, this value can be increased as various /// optimizations and improvements are made to the system at large. uint64 internal constant MAX_GAS_LIMIT = 200_000_000; /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation. /// Deprecated since the Ecotone network upgrade uint256 public overhead; /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation. /// The most significant byte is used to determine the version since the /// Ecotone network upgrade. uint256 public scalar; /// @notice Identifier for the batcher. /// For version 1 of this configuration, this is represented as an address left-padded /// with zeros to 32 bytes. bytes32 public batcherHash; /// @notice L2 block gas limit. uint64 public gasLimit; /// @notice Basefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade. uint32 public basefeeScalar; /// @notice Blobbasefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade. uint32 public blobbasefeeScalar; /// @notice The configuration for the deposit fee market. /// Used by the OptimismPortal to meter the cost of buying L2 gas on L1. /// Set as internal with a getter so that the struct is returned instead of a tuple. IResourceMetering.ResourceConfig internal _resourceConfig; /// @notice The EIP-1559 base fee max change denominator. uint32 public eip1559Denominator; /// @notice The EIP-1559 elasticity multiplier. uint32 public eip1559Elasticity; /// @notice The operator fee scalar. uint32 public operatorFeeScalar; /// @notice The operator fee constant. uint64 public operatorFeeConstant; /// @notice Emitted when configuration is updated. /// @param version SystemConfig version. /// @param updateType Type of update. /// @param data Encoded update data. event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data); /// @notice Semantic version. /// @custom:semver 2.5.0 function version() public pure virtual returns (string memory) { return "2.5.0"; } /// @notice Constructs the SystemConfig contract. /// @dev START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value /// in the singleton. constructor() { Storage.setUint(START_BLOCK_SLOT, type(uint256).max); _disableInitializers(); } /// @notice Initializer. /// The resource config must be set before the require check. /// @param _owner Initial owner of the contract. /// @param _basefeeScalar Initial basefee scalar value. /// @param _blobbasefeeScalar Initial blobbasefee scalar value. /// @param _batcherHash Initial batcher hash. /// @param _gasLimit Initial gas limit. /// @param _unsafeBlockSigner Initial unsafe block signer address. /// @param _config Initial ResourceConfig. /// @param _batchInbox Batch inbox address. An identifier for the op-node to find /// canonical data. /// @param _addresses Set of L1 contract addresses. These should be the proxies. function initialize( address _owner, uint32 _basefeeScalar, uint32 _blobbasefeeScalar, bytes32 _batcherHash, uint64 _gasLimit, address _unsafeBlockSigner, IResourceMetering.ResourceConfig memory _config, address _batchInbox, SystemConfig.Addresses memory _addresses ) public initializer { __Ownable_init(); transferOwnership(_owner); // These are set in ascending order of their UpdateTypes. _setBatcherHash(_batcherHash); _setGasConfigEcotone({ _basefeeScalar: _basefeeScalar, _blobbasefeeScalar: _blobbasefeeScalar }); _setGasLimit(_gasLimit); Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner); Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox); Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger); Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge); Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge); Storage.setAddress(DISPUTE_GAME_FACTORY_SLOT, _addresses.disputeGameFactory); Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal); Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory); _setStartBlock(); _setResourceConfig(_config); } /// @notice Returns the minimum L2 gas limit that can be safely set for the system to /// operate. The L2 gas limit must be larger than or equal to the amount of /// gas that is allocated for deposits per block plus the amount of gas that /// is allocated for the system transaction. /// This function is used to determine if changes to parameters are safe. /// @return uint64 Minimum gas limit. function minimumGasLimit() public view returns (uint64) { return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas); } /// @notice Returns the maximum L2 gas limit that can be safely set for the system to /// operate. This bound is used to prevent the gas limit from being set too high /// and causing the system to be unable to process and/or prove L2 blocks. /// @return uint64 Maximum gas limit. function maximumGasLimit() public pure returns (uint64) { return MAX_GAS_LIMIT; } /// @notice High level getter for the unsafe block signer address. /// Unsafe blocks can be propagated across the p2p network if they are signed by the /// key corresponding to this address. /// @return addr_ Address of the unsafe block signer. function unsafeBlockSigner() public view returns (address addr_) { addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT); } /// @notice Getter for the L1CrossDomainMessenger address. function l1CrossDomainMessenger() public view returns (address addr_) { addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT); } /// @notice Getter for the L1ERC721Bridge address. function l1ERC721Bridge() public view returns (address addr_) { addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT); } /// @notice Getter for the L1StandardBridge address. function l1StandardBridge() public view returns (address addr_) { addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT); } /// @notice Getter for the DisputeGameFactory address. function disputeGameFactory() public view returns (address addr_) { addr_ = Storage.getAddress(DISPUTE_GAME_FACTORY_SLOT); } /// @notice Getter for the OptimismPortal address. function optimismPortal() public view returns (address addr_) { addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT); } /// @notice Getter for the OptimismMintableERC20Factory address. function optimismMintableERC20Factory() public view returns (address addr_) { addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT); } /// @notice Consolidated getter for the Addresses struct. function getAddresses() external view returns (Addresses memory) { return Addresses({ l1CrossDomainMessenger: l1CrossDomainMessenger(), l1ERC721Bridge: l1ERC721Bridge(), l1StandardBridge: l1StandardBridge(), disputeGameFactory: disputeGameFactory(), optimismPortal: optimismPortal(), optimismMintableERC20Factory: optimismMintableERC20Factory() }); } /// @notice Getter for the BatchInbox address. function batchInbox() external view returns (address addr_) { addr_ = Storage.getAddress(BATCH_INBOX_SLOT); } /// @notice Getter for the StartBlock number. function startBlock() external view returns (uint256 startBlock_) { startBlock_ = Storage.getUint(START_BLOCK_SLOT); } /// @notice Updates the unsafe block signer address. Can only be called by the owner. /// @param _unsafeBlockSigner New unsafe block signer address. function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner { _setUnsafeBlockSigner(_unsafeBlockSigner); } /// @notice Updates the unsafe block signer address. /// @param _unsafeBlockSigner New unsafe block signer address. function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal { Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner); bytes memory data = abi.encode(_unsafeBlockSigner); emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data); } /// @notice Updates the batcher hash. Can only be called by the owner. /// @param _batcherHash New batcher hash. function setBatcherHash(bytes32 _batcherHash) external onlyOwner { _setBatcherHash(_batcherHash); } /// @notice Internal function for updating the batcher hash. /// @param _batcherHash New batcher hash. function _setBatcherHash(bytes32 _batcherHash) internal { batcherHash = _batcherHash; bytes memory data = abi.encode(_batcherHash); emit ConfigUpdate(VERSION, UpdateType.BATCHER, data); } /// @notice Updates gas config. Can only be called by the owner. /// Deprecated in favor of setGasConfigEcotone since the Ecotone upgrade. /// @param _overhead New overhead value. /// @param _scalar New scalar value. function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner { _setGasConfig(_overhead, _scalar); } /// @notice Internal function for updating the gas config. /// @param _overhead New overhead value. /// @param _scalar New scalar value. function _setGasConfig(uint256 _overhead, uint256 _scalar) internal { require((uint256(0xff) << 248) & _scalar == 0, "SystemConfig: scalar exceeds max."); overhead = _overhead; scalar = _scalar; bytes memory data = abi.encode(_overhead, _scalar); emit ConfigUpdate(VERSION, UpdateType.FEE_SCALARS, data); } /// @notice Updates gas config as of the Ecotone upgrade. Can only be called by the owner. /// @param _basefeeScalar New basefeeScalar value. /// @param _blobbasefeeScalar New blobbasefeeScalar value. function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external onlyOwner { _setGasConfigEcotone(_basefeeScalar, _blobbasefeeScalar); } /// @notice Internal function for updating the fee scalars as of the Ecotone upgrade. /// @param _basefeeScalar New basefeeScalar value. /// @param _blobbasefeeScalar New blobbasefeeScalar value. function _setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) internal { basefeeScalar = _basefeeScalar; blobbasefeeScalar = _blobbasefeeScalar; scalar = (uint256(0x01) << 248) | (uint256(_blobbasefeeScalar) << 32) | _basefeeScalar; bytes memory data = abi.encode(overhead, scalar); emit ConfigUpdate(VERSION, UpdateType.FEE_SCALARS, data); } /// @notice Updates the L2 gas limit. Can only be called by the owner. /// @param _gasLimit New gas limit. function setGasLimit(uint64 _gasLimit) external onlyOwner { _setGasLimit(_gasLimit); } /// @notice Internal function for updating the L2 gas limit. /// @param _gasLimit New gas limit. function _setGasLimit(uint64 _gasLimit) internal { require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); require(_gasLimit <= maximumGasLimit(), "SystemConfig: gas limit too high"); gasLimit = _gasLimit; bytes memory data = abi.encode(_gasLimit); emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data); } /// @notice Updates the EIP-1559 parameters of the chain. Can only be called by the owner. /// @param _denominator EIP-1559 base fee max change denominator. /// @param _elasticity EIP-1559 elasticity multiplier. function setEIP1559Params(uint32 _denominator, uint32 _elasticity) external onlyOwner { _setEIP1559Params(_denominator, _elasticity); } /// @notice Internal function for updating the EIP-1559 parameters. function _setEIP1559Params(uint32 _denominator, uint32 _elasticity) internal { // require the parameters have sane values: require(_denominator >= 1, "SystemConfig: denominator must be >= 1"); require(_elasticity >= 1, "SystemConfig: elasticity must be >= 1"); eip1559Denominator = _denominator; eip1559Elasticity = _elasticity; bytes memory data = abi.encode(uint256(_denominator) << 32 | uint64(_elasticity)); emit ConfigUpdate(VERSION, UpdateType.EIP_1559_PARAMS, data); } /// @notice Updates the operator fee parameters. Can only be called by the owner. /// @param _operatorFeeScalar operator fee scalar. /// @param _operatorFeeConstant operator fee constant. function setOperatorFeeScalars(uint32 _operatorFeeScalar, uint64 _operatorFeeConstant) external onlyOwner { _setOperatorFeeScalars(_operatorFeeScalar, _operatorFeeConstant); } /// @notice Internal function for updating the operator fee parameters. function _setOperatorFeeScalars(uint32 _operatorFeeScalar, uint64 _operatorFeeConstant) internal { operatorFeeScalar = _operatorFeeScalar; operatorFeeConstant = _operatorFeeConstant; bytes memory data = abi.encode(uint256(_operatorFeeScalar) << 64 | _operatorFeeConstant); emit ConfigUpdate(VERSION, UpdateType.OPERATOR_FEE_PARAMS, data); } /// @notice Sets the start block in a backwards compatible way. Proxies /// that were initialized before the startBlock existed in storage /// can have their start block set by a user provided override. /// A start block of 0 indicates that there is no override and the /// start block will be set by `block.number`. /// @dev This logic is used to patch legacy deployments with new storage values. /// Use the override if it is provided as a non zero value and the value /// has not already been set in storage. Use `block.number` if the value /// has already been set in storage function _setStartBlock() internal { if (Storage.getUint(START_BLOCK_SLOT) == 0) { Storage.setUint(START_BLOCK_SLOT, block.number); } } /// @notice A getter for the resource config. /// Ensures that the struct is returned instead of a tuple. /// @return ResourceConfig function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory) { return _resourceConfig; } /// @notice An internal setter for the resource config. /// Ensures that the config is sane before storing it by checking for invariants. /// In the future, this method may emit an event that the `op-node` picks up /// for when the resource config is changed. /// @param _config The new resource config. function _setResourceConfig(IResourceMetering.ResourceConfig memory _config) internal { // Min base fee must be less than or equal to max base fee. require( _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base" ); // Base fee change denominator must be greater than 1. require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1"); // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit. // The gas limit must be increased before these values can be increased. require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low"); // Elasticity multiplier must be greater than 0. require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0"); // No precision loss when computing target resource limit. require( ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier) == _config.maxResourceLimit, "SystemConfig: precision loss with target resource limit" ); _resourceConfig = _config; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Storage /// @notice Storage handles reading and writing to arbitary storage locations library Storage { /// @notice Returns an address stored in an arbitrary storage slot. /// These storage slots decouple the storage layout from /// solc's automation. /// @param _slot The storage slot to retrieve the address from. function getAddress(bytes32 _slot) internal view returns (address addr_) { assembly { addr_ := sload(_slot) } } /// @notice Stores an address in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the address in. /// @param _address The protocol version to store /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses /// in arbitrary storage slots. function setAddress(bytes32 _slot, address _address) internal { assembly { sstore(_slot, _address) } } /// @notice Returns a uint256 stored in an arbitrary storage slot. /// These storage slots decouple the storage layout from /// solc's automation. /// @param _slot The storage slot to retrieve the address from. function getUint(bytes32 _slot) internal view returns (uint256 value_) { assembly { value_ := sload(_slot) } } /// @notice Stores a value in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the address in. /// @param _value The protocol version to store /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values /// in arbitrary storage slots. function setUint(bytes32 _slot, uint256 _value) internal { assembly { sstore(_slot, _value) } } /// @notice Returns a bytes32 stored in an arbitrary storage slot. /// These storage slots decouple the storage layout from /// solc's automation. /// @param _slot The storage slot to retrieve the address from. function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) { assembly { value_ := sload(_slot) } } /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the address in. /// @param _value The bytes32 value to store. /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values /// in arbitrary storage slots. function setBytes32(bytes32 _slot, bytes32 _value) internal { assembly { sstore(_slot, _value) } } /// @notice Stores a bool value in an arbitrary storage slot, `_slot`. /// @param _slot The storage slot to store the bool in. /// @param _value The bool value to store /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values /// in arbitrary storage slots. function setBool(bytes32 _slot, bool _value) internal { assembly { sstore(_slot, _value) } } /// @notice Returns a bool stored in an arbitrary storage slot. /// @param _slot The storage slot to retrieve the bool from. function getBool(bytes32 _slot) internal view returns (bool value_) { assembly { value_ := sload(_slot) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title ISemver /// @notice ISemver is a simple contract for ensuring that contracts are /// versioned using semantic versioning. interface ISemver { /// @notice Getter for the semantic version of the contract. This is not /// meant to be used onchain but instead meant to be used by offchain /// tooling. /// @return Semver contract version as a string. function version() external view returns (string memory); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IResourceMetering { struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } error OutOfGas(); event Initialized(uint8 version); function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep function __constructor__() external; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }