ETH Price: $2,654.12 (-0.37%)

Transaction Decoder

Block:
22540814 at May-22-2025 08:30:47 PM +UTC
Transaction Fee:
0.00120298782756108 ETH $3.19
Gas Used:
285,720 Gas / 4.210373189 Gwei

Emitted Events:

933 RocketTokenRETH.Transfer( from=[Sender] 0x5ebe7111b4855881da56c1091c17319ab4965919, to=[Receiver] L1ChugSplashProxy, value=14562952208055575529 )
934 RocketTokenRETH.Approval( owner=[Sender] 0x5ebe7111b4855881da56c1091c17319ab4965919, spender=[Receiver] L1ChugSplashProxy, value=0 )
935 L1ChugSplashProxy.0x718594027abd4eaed59f95162563e0cc6d0e8d5b86b1c7be8b1b0ac3343d0396( 0x718594027abd4eaed59f95162563e0cc6d0e8d5b86b1c7be8b1b0ac3343d0396, 0x000000000000000000000000ae78736cd615f374d3085123a210448e74fc6393, 0x0000000000000000000000009bcef72be871e61ed4fbbc7630889bee758eb81d, 0x0000000000000000000000005ebe7111b4855881da56c1091c17319ab4965919, 0000000000000000000000005ebe7111b4855881da56c1091c17319ab4965919, 000000000000000000000000000000000000000000000000ca19ffe01a24a3e9, 0000000000000000000000000000000000000000000000000000000000000060, 000000000000000000000000000000000000000000000000000000000000000b, 7375706572627269646765000000000000000000000000000000000000000000 )
936 L1ChugSplashProxy.0x7ff126db8024424bbfd9826e8ab82ff59136289ea440b04b39a0df1b03b9cabf( 0x7ff126db8024424bbfd9826e8ab82ff59136289ea440b04b39a0df1b03b9cabf, 0x000000000000000000000000ae78736cd615f374d3085123a210448e74fc6393, 0x0000000000000000000000009bcef72be871e61ed4fbbc7630889bee758eb81d, 0x0000000000000000000000005ebe7111b4855881da56c1091c17319ab4965919, 0000000000000000000000005ebe7111b4855881da56c1091c17319ab4965919, 000000000000000000000000000000000000000000000000ca19ffe01a24a3e9, 0000000000000000000000000000000000000000000000000000000000000060, 000000000000000000000000000000000000000000000000000000000000000b, 7375706572627269646765000000000000000000000000000000000000000000 )
937 Proxy.0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32( 0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32, 0x00000000000000000000000036bde71c97b33cc4729cf772ae268934f7ab70b2, 0x0000000000000000000000004200000000000000000000000000000000000007, 0x0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000020, 000000000000000000000000000000000000000000000000000000000000024d, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 000000000007e57600d764ad0b00010000000000000000000000000000000000, 0000000000000000000002adfa00000000000000000000000099c9fc46f92e8a, 1c0dec1b1747d010903e884be100000000000000000000000042000000000000, 0000000000000000000000001000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 00000000000000000000030d4000000000000000000000000000000000000000, 000000000000000000000000c000000000000000000000000000000000000000, 000000000000000000000001040166a07a0000000000000000000000009bcef7, 2be871e61ed4fbbc7630889bee758eb81d000000000000000000000000ae7873, 6cd615f374d3085123a210448e74fc63930000000000000000000000005ebe71, 11b4855881da56c1091c17319ab49659190000000000000000000000005ebe71, 11b4855881da56c1091c17319ab4965919000000000000000000000000000000, 000000000000000000ca19ffe01a24a3e9000000000000000000000000000000, 00000000000000000000000000000000c0000000000000000000000000000000, 000000000000000000000000000000000b737570657262726964676500000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
938 Lib_ResolvedDelegateProxy.0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a( 0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a, 0x0000000000000000000000004200000000000000000000000000000000000010, 00000000000000000000000099c9fc46f92e8a1c0dec1b1747d010903e884be1, 0000000000000000000000000000000000000000000000000000000000000080, 000100000000000000000000000000000000000000000000000000000002adfa, 0000000000000000000000000000000000000000000000000000000000030d40, 0000000000000000000000000000000000000000000000000000000000000104, 0166a07a0000000000000000000000009bcef72be871e61ed4fbbc7630889bee, 758eb81d000000000000000000000000ae78736cd615f374d3085123a210448e, 74fc63930000000000000000000000005ebe7111b4855881da56c1091c17319a, b49659190000000000000000000000005ebe7111b4855881da56c1091c17319a, b4965919000000000000000000000000000000000000000000000000ca19ffe0, 1a24a3e900000000000000000000000000000000000000000000000000000000, 000000c000000000000000000000000000000000000000000000000000000000, 0000000b73757065726272696467650000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
939 Lib_ResolvedDelegateProxy.0x8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d546( 0x8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d546, 0x00000000000000000000000099c9fc46f92e8a1c0dec1b1747d010903e884be1, 0000000000000000000000000000000000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x25ace71c...4F7ab5fA1
(Optimism: Proxy OVM L1 Cross Domain Messenger)
0x5Ebe7111...ab4965919
15.008200314544152059 Eth
Nonce: 1535
15.006997326716590979 Eth
Nonce: 1536
0.00120298782756108
(beaverbuild)
17.333002632097155046 Eth17.333279780497155046 Eth0.0002771484
0x99C9fc46...03E884bE1
(Optimism: Gateway)
0xae78736C...E74Fc6393
0xbEb5Fc57...e41f106Ed
(Optimism: Portal)

Execution Trace

L1ChugSplashProxy.838b2520( )
  • ProxyAdmin.STATICCALL( )
  • L1StandardBridge.depositERC20To( _l1Token=0xae78736Cd615f374D3085123A210448E74Fc6393, _l2Token=0x9Bcef72be871e61ED4fBbc7630889beE758eb81D, _to=0x5Ebe7111B4855881DA56C1091c17319ab4965919, _amount=14562952208055575529, _minGasLimit=200000, _extraData=0x7375706572627269646765 )
    • RocketTokenRETH.01ffc9a7( )
    • RocketTokenRETH.01ffc9a7( )
    • RocketTokenRETH.transferFrom( sender=0x5Ebe7111B4855881DA56C1091c17319ab4965919, recipient=0x99C9fc46f92E8a1c0deC1b1747d010903E884bE1, amount=14562952208055575529 ) => ( True )
      • RocketStorage.getUint( _key=608113C958ACF75908F0797A44E1B7F13F250640FCF363BE1994E34E9172D8ED ) => ( r=0 )
      • Lib_ResolvedDelegateProxy.3dbb202b( )
        • Lib_AddressManager.getAddress( _name=OVM_L1CrossDomainMessenger ) => ( 0x5D5a095665886119693F0B41d8DFeE78da033e8B )
        • L1CrossDomainMessenger.sendMessage( _target=0x4200000000000000000000000000000000000010, _message=0x0166A07A0000000000000000000000009BCEF72BE871E61ED4FBBC7630889BEE758EB81D000000000000000000000000AE78736CD615F374D3085123A210448E74FC63930000000000000000000000005EBE7111B4855881DA56C1091C17319AB49659190000000000000000000000005EBE7111B4855881DA56C1091C17319AB4965919000000000000000000000000000000000000000000000000CA19FFE01A24A3E900000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000B7375706572627269646765000000000000000000000000000000000000000000, _minGasLimit=200000 )
          • Proxy.e9e05c42( )
            • OptimismPortal2.depositTransaction( _to=0x4200000000000000000000000000000000000007, _value=0, _gasLimit=517494, _isCreation=False, _data=0xD764AD0B000100000000000000000000000000000000000000000000000000000002ADFA00000000000000000000000099C9FC46F92E8A1C0DEC1B1747D010903E884BE1000000000000000000000000420000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000030D4000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000001040166A07A0000000000000000000000009BCEF72BE871E61ED4FBBC7630889BEE758EB81D000000000000000000000000AE78736CD615F374D3085123A210448E74FC63930000000000000000000000005EBE7111B4855881DA56C1091C17319AB49659190000000000000000000000005EBE7111B4855881DA56C1091C17319AB4965919000000000000000000000000000000000000000000000000CA19FFE01A24A3E900000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000B737570657262726964676500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
              • Proxy.STATICCALL( )
                File 1 of 11: L1ChugSplashProxy
                // SPDX-License-Identifier: MIT
                pragma solidity >0.5.0 <0.8.0;
                import { iL1ChugSplashDeployer } from "./interfaces/iL1ChugSplashDeployer.sol";
                /**
                 * @title L1ChugSplashProxy
                 * @dev Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
                 * functions `setCode` and `setStorage` for changing the code or storage of the contract. Nifty!
                 *
                 * Note for future developers: do NOT make anything in this contract 'public' unless you know what
                 * you're doing. Anything public can potentially have a function signature that conflicts with a
                 * signature attached to the implementation contract. Public functions SHOULD always have the
                 * 'proxyCallIfNotOwner' modifier unless there's some *really* good reason not to have that
                 * modifier. And there almost certainly is not a good reason to not have that modifier. Beware!
                 */
                contract L1ChugSplashProxy {
                    /*************
                     * Constants *
                     *************/
                    // "Magic" prefix. When prepended to some arbitrary bytecode and used to create a contract, the
                    // appended bytecode will be deployed as given.
                    bytes13 constant internal DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
                    // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                    bytes32 constant internal IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    // bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                    bytes32 constant internal OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /***************
                     * Constructor *
                     ***************/
                    
                    /**
                     * @param _owner Address of the initial contract owner.
                     */
                    constructor(
                        address _owner
                    ) {
                        _setOwner(_owner);
                    }
                    /**********************
                     * Function Modifiers *
                     **********************/
                    /**
                     * Blocks a function from being called when the parent signals that the system should be paused
                     * via an isUpgrading function.
                     */
                    modifier onlyWhenNotPaused() {
                        address owner = _getOwner();
                        // We do a low-level call because there's no guarantee that the owner actually *is* an
                        // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
                        // it turns out that it isn't the right type of contract.
                        (bool success, bytes memory returndata) = owner.staticcall(
                            abi.encodeWithSelector(
                                iL1ChugSplashDeployer.isUpgrading.selector
                            )
                        );
                        // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
                        // can just continue as normal. We also expect that the return value is exactly 32 bytes
                        // long. If this isn't the case then we can safely ignore the result.
                        if (success && returndata.length == 32) {
                            // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                            // case that the isUpgrading function returned something other than 0 or 1. But we only
                            // really care about the case where this value is 0 (= false).
                            uint256 ret = abi.decode(returndata, (uint256));
                            require(
                                ret == 0,
                                "L1ChugSplashProxy: system is currently being upgraded"
                            );
                        }
                        _;
                    }
                    /**
                     * Makes a proxy call instead of triggering the given function when the caller is either the
                     * owner or the zero address. Caller can only ever be the zero address if this function is
                     * being called off-chain via eth_call, which is totally fine and can be convenient for
                     * client-side tooling. Avoids situations where the proxy and implementation share a sighash
                     * and the proxy function ends up being called instead of the implementation one.
                     *
                     * Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If there's a
                     * way for someone to send a transaction with msg.sender == address(0) in any real context then
                     * we have much bigger problems. Primary reason to include this additional allowed sender is
                     * because the owner address can be changed dynamically and we do not want clients to have to
                     * keep track of the current owner in order to make an eth_call that doesn't trigger the
                     * proxied contract.
                     */
                    modifier proxyCallIfNotOwner() {
                        if (msg.sender == _getOwner() || msg.sender == address(0)) {
                            _;
                        } else {
                            // This WILL halt the call frame on completion.
                            _doProxyCall();
                        }
                    }
                    /*********************
                     * Fallback Function *
                     *********************/
                    fallback()
                        external
                        payable
                    {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    /********************
                     * Public Functions *
                     ********************/
                    /**
                     * Sets the code that should be running behind this proxy. Note that this scheme is a bit
                     * different from the standard proxy scheme where one would typically deploy the code
                     * separately and then set the implementation address. We're doing it this way because it gives
                     * us a lot more freedom on the client side. Can only be triggered by the contract owner.
                     * @param _code New contract code to run inside this contract.
                     */
                    function setCode(
                        bytes memory _code
                    )
                        proxyCallIfNotOwner
                        public
                    {
                        // Get the code hash of the current implementation.
                        address implementation = _getImplementation();
                        // If the code hash matches the new implementation then we return early.
                        if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                            return;
                        }
                        // Create the deploycode by appending the magic prefix.
                        bytes memory deploycode = abi.encodePacked(
                            DEPLOY_CODE_PREFIX,
                            _code
                        );
                        // Deploy the code and set the new implementation address.
                        address newImplementation;
                        assembly {
                            newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
                        }
                        // Check that the code was actually deployed correctly. I'm not sure if you can ever
                        // actually fail this check. Should only happen if the contract creation from above runs
                        // out of gas but this parent execution thread does NOT run out of gas. Seems like we
                        // should be doing this check anyway though.
                        require(
                            _getAccountCodeHash(newImplementation) == keccak256(_code),
                            "L1ChugSplashProxy: code was not correctly deployed."
                        );
                        _setImplementation(newImplementation);
                    }
                    /**
                     * Modifies some storage slot within the proxy contract. Gives us a lot of power to perform
                     * upgrades in a more transparent way. Only callable by the owner.
                     * @param _key Storage key to modify.
                     * @param _value New value for the storage key.
                     */
                    function setStorage(
                        bytes32 _key,
                        bytes32 _value
                    )
                        proxyCallIfNotOwner
                        public
                    {
                        assembly {
                            sstore(_key, _value)
                        }
                    }
                    /**
                     * Changes the owner of the proxy contract. Only callable by the owner.
                     * @param _owner New owner of the proxy contract.
                     */
                    function setOwner(
                        address _owner
                    )
                        proxyCallIfNotOwner
                        public
                    {
                        _setOwner(_owner);
                    }
                    /**
                     * Queries the owner of the proxy contract. Can only be called by the owner OR by making an
                     * eth_call and setting the "from" address to address(0).
                     * @return Owner address.
                     */
                    function getOwner()
                        proxyCallIfNotOwner
                        public
                        returns (
                            address
                        )
                    {
                        return _getOwner();
                    }
                    /**
                     * Queries the implementation address. Can only be called by the owner OR by making an
                     * eth_call and setting the "from" address to address(0).
                     * @return Implementation address.
                     */
                    function getImplementation()
                        proxyCallIfNotOwner
                        public
                        returns (
                            address
                        )
                    {
                        return _getImplementation();
                    }
                    /**********************
                     * Internal Functions *
                     **********************/
                    /**
                     * Sets the implementation address.
                     * @param _implementation New implementation address.
                     */
                    function _setImplementation(
                        address _implementation
                    )
                        internal
                    {
                        assembly {
                            sstore(IMPLEMENTATION_KEY, _implementation)
                        }
                    }
                    /**
                     * Queries the implementation address.
                     * @return Implementation address.
                     */
                    function _getImplementation()
                        internal
                        view
                        returns (
                            address
                        )
                    {
                        address implementation;
                        assembly {
                            implementation := sload(IMPLEMENTATION_KEY)
                        }
                        return implementation;
                    }
                    /**
                     * Changes the owner of the proxy contract.
                     * @param _owner New owner of the proxy contract.
                     */
                    function _setOwner(
                        address _owner
                    )
                        internal
                    {
                        assembly {
                            sstore(OWNER_KEY, _owner)
                        }
                    }
                    /**
                     * Queries the owner of the proxy contract.
                     * @return Owner address.
                     */
                    function _getOwner()
                        internal
                        view 
                        returns (
                            address
                        )
                    {
                        address owner;
                        assembly {
                            owner := sload(OWNER_KEY)
                        }
                        return owner;
                    }
                    /**
                     * Gets the code hash for a given account.
                     * @param _account Address of the account to get a code hash for.
                     * @return Code hash for the account.
                     */
                    function _getAccountCodeHash(
                        address _account
                    )
                        internal
                        view
                        returns (
                            bytes32
                        )
                    {
                        bytes32 codeHash;
                        assembly {
                            codeHash := extcodehash(_account)
                        }
                        return codeHash;
                    }
                    /**
                     * Performs the proxy call via a delegatecall.
                     */
                    function _doProxyCall()
                        onlyWhenNotPaused
                        internal
                    {
                        address implementation = _getImplementation();
                        require(
                            implementation != address(0),
                            "L1ChugSplashProxy: implementation is not set yet"
                        );
                        assembly {
                            // Copy calldata into memory at 0x0....calldatasize.
                            calldatacopy(0x0, 0x0, calldatasize())
                            // Perform the delegatecall, make sure to pass all available gas.
                            let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                            // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                            // overwrite the calldata that we just copied into memory but that doesn't really
                            // matter because we'll be returning in a second anyway.
                            returndatacopy(0x0, 0x0, returndatasize())
                            
                            // Success == 0 means a revert. We'll revert too and pass the data up.
                            if iszero(success) {
                                revert(0x0, returndatasize())
                            }
                            // Otherwise we'll just return and pass the data up.
                            return(0x0, returndatasize())
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >0.5.0 <0.8.0;
                /**
                 * @title iL1ChugSplashDeployer
                 */
                interface iL1ChugSplashDeployer {
                    function isUpgrading()
                        external
                        view
                        returns (
                            bool
                        );
                }
                

                File 2 of 11: RocketTokenRETH
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.0 <0.8.0;
                /**
                 * @dev Wrappers over Solidity's arithmetic operations with added overflow
                 * checks.
                 *
                 * Arithmetic operations in Solidity wrap on overflow. This can easily result
                 * in bugs, because programmers usually assume that an overflow raises an
                 * error, which is the standard behavior in high level programming languages.
                 * `SafeMath` restores this intuition by reverting the transaction when an
                 * operation overflows.
                 *
                 * Using this library instead of the unchecked operations eliminates an entire
                 * class of bugs, so it's recommended to use it always.
                 */
                library SafeMath {
                    /**
                     * @dev Returns the addition of two unsigned integers, with an overflow flag.
                     *
                     * _Available since v3.4._
                     */
                    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        uint256 c = a + b;
                        if (c < a) return (false, 0);
                        return (true, c);
                    }
                    /**
                     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
                     *
                     * _Available since v3.4._
                     */
                    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        if (b > a) return (false, 0);
                        return (true, a - b);
                    }
                    /**
                     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
                     *
                     * _Available since v3.4._
                     */
                    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                        // benefit is lost if 'b' is also tested.
                        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                        if (a == 0) return (true, 0);
                        uint256 c = a * b;
                        if (c / a != b) return (false, 0);
                        return (true, c);
                    }
                    /**
                     * @dev Returns the division of two unsigned integers, with a division by zero flag.
                     *
                     * _Available since v3.4._
                     */
                    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        if (b == 0) return (false, 0);
                        return (true, a / b);
                    }
                    /**
                     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
                     *
                     * _Available since v3.4._
                     */
                    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        if (b == 0) return (false, 0);
                        return (true, a % b);
                    }
                    /**
                     * @dev Returns the addition of two unsigned integers, reverting on
                     * overflow.
                     *
                     * Counterpart to Solidity's `+` operator.
                     *
                     * Requirements:
                     *
                     * - Addition cannot overflow.
                     */
                    function add(uint256 a, uint256 b) internal pure returns (uint256) {
                        uint256 c = a + b;
                        require(c >= a, "SafeMath: addition overflow");
                        return c;
                    }
                    /**
                     * @dev Returns the subtraction of two unsigned integers, reverting on
                     * overflow (when the result is negative).
                     *
                     * Counterpart to Solidity's `-` operator.
                     *
                     * Requirements:
                     *
                     * - Subtraction cannot overflow.
                     */
                    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                        require(b <= a, "SafeMath: subtraction overflow");
                        return a - b;
                    }
                    /**
                     * @dev Returns the multiplication of two unsigned integers, reverting on
                     * overflow.
                     *
                     * Counterpart to Solidity's `*` operator.
                     *
                     * Requirements:
                     *
                     * - Multiplication cannot overflow.
                     */
                    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                        if (a == 0) return 0;
                        uint256 c = a * b;
                        require(c / a == b, "SafeMath: multiplication overflow");
                        return c;
                    }
                    /**
                     * @dev Returns the integer division of two unsigned integers, reverting on
                     * division by zero. The result is rounded towards zero.
                     *
                     * Counterpart to Solidity's `/` operator. Note: this function uses a
                     * `revert` opcode (which leaves remaining gas untouched) while Solidity
                     * uses an invalid opcode to revert (consuming all remaining gas).
                     *
                     * Requirements:
                     *
                     * - The divisor cannot be zero.
                     */
                    function div(uint256 a, uint256 b) internal pure returns (uint256) {
                        require(b > 0, "SafeMath: division by zero");
                        return a / b;
                    }
                    /**
                     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                     * reverting when dividing by zero.
                     *
                     * Counterpart to Solidity's `%` operator. This function uses a `revert`
                     * opcode (which leaves remaining gas untouched) while Solidity uses an
                     * invalid opcode to revert (consuming all remaining gas).
                     *
                     * Requirements:
                     *
                     * - The divisor cannot be zero.
                     */
                    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                        require(b > 0, "SafeMath: modulo by zero");
                        return a % b;
                    }
                    /**
                     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
                     * overflow (when the result is negative).
                     *
                     * CAUTION: This function is deprecated because it requires allocating memory for the error
                     * message unnecessarily. For custom revert reasons use {trySub}.
                     *
                     * Counterpart to Solidity's `-` operator.
                     *
                     * Requirements:
                     *
                     * - Subtraction cannot overflow.
                     */
                    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                        require(b <= a, errorMessage);
                        return a - b;
                    }
                    /**
                     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
                     * division by zero. The result is rounded towards zero.
                     *
                     * CAUTION: This function is deprecated because it requires allocating memory for the error
                     * message unnecessarily. For custom revert reasons use {tryDiv}.
                     *
                     * Counterpart to Solidity's `/` operator. Note: this function uses a
                     * `revert` opcode (which leaves remaining gas untouched) while Solidity
                     * uses an invalid opcode to revert (consuming all remaining gas).
                     *
                     * Requirements:
                     *
                     * - The divisor cannot be zero.
                     */
                    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                        require(b > 0, errorMessage);
                        return a / b;
                    }
                    /**
                     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                     * reverting with custom message when dividing by zero.
                     *
                     * CAUTION: This function is deprecated because it requires allocating memory for the error
                     * message unnecessarily. For custom revert reasons use {tryMod}.
                     *
                     * Counterpart to Solidity's `%` operator. This function uses a `revert`
                     * opcode (which leaves remaining gas untouched) while Solidity uses an
                     * invalid opcode to revert (consuming all remaining gas).
                     *
                     * Requirements:
                     *
                     * - The divisor cannot be zero.
                     */
                    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                        require(b > 0, errorMessage);
                        return a % b;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.0 <0.8.0;
                import "../../utils/Context.sol";
                import "./IERC20.sol";
                import "../../math/SafeMath.sol";
                /**
                 * @dev Implementation of the {IERC20} interface.
                 *
                 * This implementation is agnostic to the way tokens are created. This means
                 * that a supply mechanism has to be added in a derived contract using {_mint}.
                 * For a generic mechanism see {ERC20PresetMinterPauser}.
                 *
                 * TIP: For a detailed writeup see our guide
                 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
                 * to implement supply mechanisms].
                 *
                 * We have followed general OpenZeppelin guidelines: functions revert instead
                 * of returning `false` on failure. This behavior is nonetheless conventional
                 * and does not conflict with the expectations of ERC20 applications.
                 *
                 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
                 * This allows applications to reconstruct the allowance for all accounts just
                 * by listening to said events. Other implementations of the EIP may not emit
                 * these events, as it isn't required by the specification.
                 *
                 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
                 * functions have been added to mitigate the well-known issues around setting
                 * allowances. See {IERC20-approve}.
                 */
                contract ERC20 is Context, IERC20 {
                    using SafeMath for uint256;
                    mapping (address => uint256) private _balances;
                    mapping (address => mapping (address => uint256)) private _allowances;
                    uint256 private _totalSupply;
                    string private _name;
                    string private _symbol;
                    uint8 private _decimals;
                    /**
                     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
                     * a default value of 18.
                     *
                     * To select a different value for {decimals}, use {_setupDecimals}.
                     *
                     * All three of these values are immutable: they can only be set once during
                     * construction.
                     */
                    constructor (string memory name_, string memory symbol_) public {
                        _name = name_;
                        _symbol = symbol_;
                        _decimals = 18;
                    }
                    /**
                     * @dev Returns the name of the token.
                     */
                    function name() public view virtual returns (string memory) {
                        return _name;
                    }
                    /**
                     * @dev Returns the symbol of the token, usually a shorter version of the
                     * name.
                     */
                    function symbol() public view virtual returns (string memory) {
                        return _symbol;
                    }
                    /**
                     * @dev Returns the number of decimals used to get its user representation.
                     * For example, if `decimals` equals `2`, a balance of `505` tokens should
                     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
                     *
                     * Tokens usually opt for a value of 18, imitating the relationship between
                     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
                     * called.
                     *
                     * NOTE: This information is only used for _display_ purposes: it in
                     * no way affects any of the arithmetic of the contract, including
                     * {IERC20-balanceOf} and {IERC20-transfer}.
                     */
                    function decimals() public view virtual returns (uint8) {
                        return _decimals;
                    }
                    /**
                     * @dev See {IERC20-totalSupply}.
                     */
                    function totalSupply() public view virtual override returns (uint256) {
                        return _totalSupply;
                    }
                    /**
                     * @dev See {IERC20-balanceOf}.
                     */
                    function balanceOf(address account) public view virtual override returns (uint256) {
                        return _balances[account];
                    }
                    /**
                     * @dev See {IERC20-transfer}.
                     *
                     * Requirements:
                     *
                     * - `recipient` cannot be the zero address.
                     * - the caller must have a balance of at least `amount`.
                     */
                    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
                        _transfer(_msgSender(), recipient, amount);
                        return true;
                    }
                    /**
                     * @dev See {IERC20-allowance}.
                     */
                    function allowance(address owner, address spender) public view virtual override returns (uint256) {
                        return _allowances[owner][spender];
                    }
                    /**
                     * @dev See {IERC20-approve}.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     */
                    function approve(address spender, uint256 amount) public virtual override returns (bool) {
                        _approve(_msgSender(), spender, amount);
                        return true;
                    }
                    /**
                     * @dev See {IERC20-transferFrom}.
                     *
                     * Emits an {Approval} event indicating the updated allowance. This is not
                     * required by the EIP. See the note at the beginning of {ERC20}.
                     *
                     * Requirements:
                     *
                     * - `sender` and `recipient` cannot be the zero address.
                     * - `sender` must have a balance of at least `amount`.
                     * - the caller must have allowance for ``sender``'s tokens of at least
                     * `amount`.
                     */
                    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
                        _transfer(sender, recipient, amount);
                        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
                        return true;
                    }
                    /**
                     * @dev Atomically increases the allowance granted to `spender` by the caller.
                     *
                     * This is an alternative to {approve} that can be used as a mitigation for
                     * problems described in {IERC20-approve}.
                     *
                     * Emits an {Approval} event indicating the updated allowance.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     */
                    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
                        return true;
                    }
                    /**
                     * @dev Atomically decreases the allowance granted to `spender` by the caller.
                     *
                     * This is an alternative to {approve} that can be used as a mitigation for
                     * problems described in {IERC20-approve}.
                     *
                     * Emits an {Approval} event indicating the updated allowance.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     * - `spender` must have allowance for the caller of at least
                     * `subtractedValue`.
                     */
                    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
                        return true;
                    }
                    /**
                     * @dev Moves tokens `amount` from `sender` to `recipient`.
                     *
                     * This is internal function is equivalent to {transfer}, and can be used to
                     * e.g. implement automatic token fees, slashing mechanisms, etc.
                     *
                     * Emits a {Transfer} event.
                     *
                     * Requirements:
                     *
                     * - `sender` cannot be the zero address.
                     * - `recipient` cannot be the zero address.
                     * - `sender` must have a balance of at least `amount`.
                     */
                    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
                        require(sender != address(0), "ERC20: transfer from the zero address");
                        require(recipient != address(0), "ERC20: transfer to the zero address");
                        _beforeTokenTransfer(sender, recipient, amount);
                        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
                        _balances[recipient] = _balances[recipient].add(amount);
                        emit Transfer(sender, recipient, amount);
                    }
                    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
                     * the total supply.
                     *
                     * Emits a {Transfer} event with `from` set to the zero address.
                     *
                     * Requirements:
                     *
                     * - `to` cannot be the zero address.
                     */
                    function _mint(address account, uint256 amount) internal virtual {
                        require(account != address(0), "ERC20: mint to the zero address");
                        _beforeTokenTransfer(address(0), account, amount);
                        _totalSupply = _totalSupply.add(amount);
                        _balances[account] = _balances[account].add(amount);
                        emit Transfer(address(0), account, amount);
                    }
                    /**
                     * @dev Destroys `amount` tokens from `account`, reducing the
                     * total supply.
                     *
                     * Emits a {Transfer} event with `to` set to the zero address.
                     *
                     * Requirements:
                     *
                     * - `account` cannot be the zero address.
                     * - `account` must have at least `amount` tokens.
                     */
                    function _burn(address account, uint256 amount) internal virtual {
                        require(account != address(0), "ERC20: burn from the zero address");
                        _beforeTokenTransfer(account, address(0), amount);
                        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
                        _totalSupply = _totalSupply.sub(amount);
                        emit Transfer(account, address(0), amount);
                    }
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
                     *
                     * This internal function is equivalent to `approve`, and can be used to
                     * e.g. set automatic allowances for certain subsystems, etc.
                     *
                     * Emits an {Approval} event.
                     *
                     * Requirements:
                     *
                     * - `owner` cannot be the zero address.
                     * - `spender` cannot be the zero address.
                     */
                    function _approve(address owner, address spender, uint256 amount) internal virtual {
                        require(owner != address(0), "ERC20: approve from the zero address");
                        require(spender != address(0), "ERC20: approve to the zero address");
                        _allowances[owner][spender] = amount;
                        emit Approval(owner, spender, amount);
                    }
                    /**
                     * @dev Sets {decimals} to a value other than the default one of 18.
                     *
                     * WARNING: This function should only be called from the constructor. Most
                     * applications that interact with token contracts will not expect
                     * {decimals} to ever change, and may work incorrectly if it does.
                     */
                    function _setupDecimals(uint8 decimals_) internal virtual {
                        _decimals = decimals_;
                    }
                    /**
                     * @dev Hook that is called before any transfer of tokens. This includes
                     * minting and burning.
                     *
                     * Calling conditions:
                     *
                     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                     * will be to transferred to `to`.
                     * - when `from` is zero, `amount` tokens will be minted for `to`.
                     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
                     * - `from` and `to` are never both zero.
                     *
                     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                     */
                    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.0 <0.8.0;
                /**
                 * @dev Interface of the ERC20 standard as defined in the EIP.
                 */
                interface IERC20 {
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `recipient`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address recipient, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `sender` to `recipient` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.0 <0.8.0;
                /*
                 * @dev Provides information about the current execution context, including the
                 * sender of the transaction and its data. While these are generally available
                 * via msg.sender and msg.data, they should not be accessed in such a direct
                 * manner, since when dealing with GSN meta-transactions the account sending and
                 * paying for execution may not be the actual sender (as far as an application
                 * is concerned).
                 *
                 * This contract is only required for intermediate, library-like contracts.
                 */
                abstract contract Context {
                    function _msgSender() internal view virtual returns (address payable) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes memory) {
                        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                        return msg.data;
                    }
                }
                /**
                  *       .
                  *      / \\
                  *     |.'.|
                  *     |'.'|
                  *   ,'|   |`.
                  *  |,-'-|-'-.|
                  *   __|_| |         _        _      _____           _
                  *  | ___ \\|        | |      | |    | ___ \\         | |
                  *  | |_/ /|__   ___| | _____| |_   | |_/ /__   ___ | |
                  *  |    // _ \\ / __| |/ / _ \\ __|  |  __/ _ \\ / _ \\| |
                  *  | |\\ \\ (_) | (__|   <  __/ |_   | | | (_) | (_) | |
                  *  \\_| \\_\\___/ \\___|_|\\_\\___|\\__|  \\_|  \\___/ \\___/|_|
                  * +---------------------------------------------------+
                  * |    DECENTRALISED STAKING PROTOCOL FOR ETHEREUM    |
                  * +---------------------------------------------------+
                  *
                  *  Rocket Pool is a first-of-its-kind Ethereum staking pool protocol, designed to
                  *  be community-owned, decentralised, and trustless.
                  *
                  *  For more information about Rocket Pool, visit https://rocketpool.net
                  *
                  *  Authors: David Rugendyke, Jake Pospischil, Kane Wallmann, Darren Langley, Joe Clapis, Nick Doherty
                  *
                  */
                pragma solidity 0.7.6;
                // SPDX-License-Identifier: GPL-3.0-only
                import "../interface/RocketStorageInterface.sol";
                /// @title Base settings / modifiers for each contract in Rocket Pool
                /// @author David Rugendyke
                abstract contract RocketBase {
                    // Calculate using this as the base
                    uint256 constant calcBase = 1 ether;
                    // Version of the contract
                    uint8 public version;
                    // The main storage contract where primary persistant storage is maintained
                    RocketStorageInterface rocketStorage = RocketStorageInterface(0);
                    /*** Modifiers **********************************************************/
                    /**
                    * @dev Throws if called by any sender that doesn't match a Rocket Pool network contract
                    */
                    modifier onlyLatestNetworkContract() {
                        require(getBool(keccak256(abi.encodePacked("contract.exists", msg.sender))), "Invalid or outdated network contract");
                        _;
                    }
                    /**
                    * @dev Throws if called by any sender that doesn't match one of the supplied contract or is the latest version of that contract
                    */
                    modifier onlyLatestContract(string memory _contractName, address _contractAddress) {
                        require(_contractAddress == getAddress(keccak256(abi.encodePacked("contract.address", _contractName))), "Invalid or outdated contract");
                        _;
                    }
                    /**
                    * @dev Throws if called by any sender that isn't a registered node
                    */
                    modifier onlyRegisteredNode(address _nodeAddress) {
                        require(getBool(keccak256(abi.encodePacked("node.exists", _nodeAddress))), "Invalid node");
                        _;
                    }
                    /**
                    * @dev Throws if called by any sender that isn't a trusted node DAO member
                    */
                    modifier onlyTrustedNode(address _nodeAddress) {
                        require(getBool(keccak256(abi.encodePacked("dao.trustednodes.", "member", _nodeAddress))), "Invalid trusted node");
                        _;
                    }
                    /**
                    * @dev Throws if called by any sender that isn't a registered minipool
                    */
                    modifier onlyRegisteredMinipool(address _minipoolAddress) {
                        require(getBool(keccak256(abi.encodePacked("minipool.exists", _minipoolAddress))), "Invalid minipool");
                        _;
                    }
                    
                    /**
                    * @dev Throws if called by any account other than a guardian account (temporary account allowed access to settings before DAO is fully enabled)
                    */
                    modifier onlyGuardian() {
                        require(msg.sender == rocketStorage.getGuardian(), "Account is not a temporary guardian");
                        _;
                    }
                    /*** Methods **********************************************************/
                    /// @dev Set the main Rocket Storage address
                    constructor(RocketStorageInterface _rocketStorageAddress) {
                        // Update the contract address
                        rocketStorage = RocketStorageInterface(_rocketStorageAddress);
                    }
                    /// @dev Get the address of a network contract by name
                    function getContractAddress(string memory _contractName) internal view returns (address) {
                        // Get the current contract address
                        address contractAddress = getAddress(keccak256(abi.encodePacked("contract.address", _contractName)));
                        // Check it
                        require(contractAddress != address(0x0), "Contract not found");
                        // Return
                        return contractAddress;
                    }
                    /// @dev Get the address of a network contract by name (returns address(0x0) instead of reverting if contract does not exist)
                    function getContractAddressUnsafe(string memory _contractName) internal view returns (address) {
                        // Get the current contract address
                        address contractAddress = getAddress(keccak256(abi.encodePacked("contract.address", _contractName)));
                        // Return
                        return contractAddress;
                    }
                    /// @dev Get the name of a network contract by address
                    function getContractName(address _contractAddress) internal view returns (string memory) {
                        // Get the contract name
                        string memory contractName = getString(keccak256(abi.encodePacked("contract.name", _contractAddress)));
                        // Check it
                        require(bytes(contractName).length > 0, "Contract not found");
                        // Return
                        return contractName;
                    }
                    /// @dev Get revert error message from a .call method
                    function getRevertMsg(bytes memory _returnData) internal pure returns (string memory) {
                        // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                        if (_returnData.length < 68) return "Transaction reverted silently";
                        assembly {
                            // Slice the sighash.
                            _returnData := add(_returnData, 0x04)
                        }
                        return abi.decode(_returnData, (string)); // All that remains is the revert string
                    }
                    /*** Rocket Storage Methods ****************************************/
                    // Note: Unused helpers have been removed to keep contract sizes down
                    /// @dev Storage get methods
                    function getAddress(bytes32 _key) internal view returns (address) { return rocketStorage.getAddress(_key); }
                    function getUint(bytes32 _key) internal view returns (uint) { return rocketStorage.getUint(_key); }
                    function getString(bytes32 _key) internal view returns (string memory) { return rocketStorage.getString(_key); }
                    function getBytes(bytes32 _key) internal view returns (bytes memory) { return rocketStorage.getBytes(_key); }
                    function getBool(bytes32 _key) internal view returns (bool) { return rocketStorage.getBool(_key); }
                    function getInt(bytes32 _key) internal view returns (int) { return rocketStorage.getInt(_key); }
                    function getBytes32(bytes32 _key) internal view returns (bytes32) { return rocketStorage.getBytes32(_key); }
                    /// @dev Storage set methods
                    function setAddress(bytes32 _key, address _value) internal { rocketStorage.setAddress(_key, _value); }
                    function setUint(bytes32 _key, uint _value) internal { rocketStorage.setUint(_key, _value); }
                    function setString(bytes32 _key, string memory _value) internal { rocketStorage.setString(_key, _value); }
                    function setBytes(bytes32 _key, bytes memory _value) internal { rocketStorage.setBytes(_key, _value); }
                    function setBool(bytes32 _key, bool _value) internal { rocketStorage.setBool(_key, _value); }
                    function setInt(bytes32 _key, int _value) internal { rocketStorage.setInt(_key, _value); }
                    function setBytes32(bytes32 _key, bytes32 _value) internal { rocketStorage.setBytes32(_key, _value); }
                    /// @dev Storage delete methods
                    function deleteAddress(bytes32 _key) internal { rocketStorage.deleteAddress(_key); }
                    function deleteUint(bytes32 _key) internal { rocketStorage.deleteUint(_key); }
                    function deleteString(bytes32 _key) internal { rocketStorage.deleteString(_key); }
                    function deleteBytes(bytes32 _key) internal { rocketStorage.deleteBytes(_key); }
                    function deleteBool(bytes32 _key) internal { rocketStorage.deleteBool(_key); }
                    function deleteInt(bytes32 _key) internal { rocketStorage.deleteInt(_key); }
                    function deleteBytes32(bytes32 _key) internal { rocketStorage.deleteBytes32(_key); }
                    /// @dev Storage arithmetic methods
                    function addUint(bytes32 _key, uint256 _amount) internal { rocketStorage.addUint(_key, _amount); }
                    function subUint(bytes32 _key, uint256 _amount) internal { rocketStorage.subUint(_key, _amount); }
                }
                /**
                  *       .
                  *      / \\
                  *     |.'.|
                  *     |'.'|
                  *   ,'|   |`.
                  *  |,-'-|-'-.|
                  *   __|_| |         _        _      _____           _
                  *  | ___ \\|        | |      | |    | ___ \\         | |
                  *  | |_/ /|__   ___| | _____| |_   | |_/ /__   ___ | |
                  *  |    // _ \\ / __| |/ / _ \\ __|  |  __/ _ \\ / _ \\| |
                  *  | |\\ \\ (_) | (__|   <  __/ |_   | | | (_) | (_) | |
                  *  \\_| \\_\\___/ \\___|_|\\_\\___|\\__|  \\_|  \\___/ \\___/|_|
                  * +---------------------------------------------------+
                  * |    DECENTRALISED STAKING PROTOCOL FOR ETHEREUM    |
                  * +---------------------------------------------------+
                  *
                  *  Rocket Pool is a first-of-its-kind Ethereum staking pool protocol, designed to
                  *  be community-owned, decentralised, and trustless.
                  *
                  *  For more information about Rocket Pool, visit https://rocketpool.net
                  *
                  *  Authors: David Rugendyke, Jake Pospischil, Kane Wallmann, Darren Langley, Joe Clapis, Nick Doherty
                  *
                  */
                pragma solidity 0.7.6;
                // SPDX-License-Identifier: GPL-3.0-only
                import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
                import "../RocketBase.sol";
                import "../../interface/deposit/RocketDepositPoolInterface.sol";
                import "../../interface/network/RocketNetworkBalancesInterface.sol";
                import "../../interface/token/RocketTokenRETHInterface.sol";
                import "../../interface/dao/protocol/settings/RocketDAOProtocolSettingsNetworkInterface.sol";
                // rETH is a tokenised stake in the Rocket Pool network
                // rETH is backed by ETH (subject to liquidity) at a variable exchange rate
                contract RocketTokenRETH is RocketBase, ERC20, RocketTokenRETHInterface {
                    // Libs
                    using SafeMath for uint;
                    // Events
                    event EtherDeposited(address indexed from, uint256 amount, uint256 time);
                    event TokensMinted(address indexed to, uint256 amount, uint256 ethAmount, uint256 time);
                    event TokensBurned(address indexed from, uint256 amount, uint256 ethAmount, uint256 time);
                    // Construct with our token details
                    constructor(RocketStorageInterface _rocketStorageAddress) RocketBase(_rocketStorageAddress) ERC20("Rocket Pool ETH", "rETH") {
                        // Version
                        version = 1;
                    }
                    // Receive an ETH deposit from a minipool or generous individual
                    receive() external payable {
                        // Emit ether deposited event
                        emit EtherDeposited(msg.sender, msg.value, block.timestamp);
                    }
                    // Calculate the amount of ETH backing an amount of rETH
                    function getEthValue(uint256 _rethAmount) override public view returns (uint256) {
                        // Get network balances
                        RocketNetworkBalancesInterface rocketNetworkBalances = RocketNetworkBalancesInterface(getContractAddress("rocketNetworkBalances"));
                        uint256 totalEthBalance = rocketNetworkBalances.getTotalETHBalance();
                        uint256 rethSupply = rocketNetworkBalances.getTotalRETHSupply();
                        // Use 1:1 ratio if no rETH is minted
                        if (rethSupply == 0) { return _rethAmount; }
                        // Calculate and return
                        return _rethAmount.mul(totalEthBalance).div(rethSupply);
                    }
                    // Calculate the amount of rETH backed by an amount of ETH
                    function getRethValue(uint256 _ethAmount) override public view returns (uint256) {
                        // Get network balances
                        RocketNetworkBalancesInterface rocketNetworkBalances = RocketNetworkBalancesInterface(getContractAddress("rocketNetworkBalances"));
                        uint256 totalEthBalance = rocketNetworkBalances.getTotalETHBalance();
                        uint256 rethSupply = rocketNetworkBalances.getTotalRETHSupply();
                        // Use 1:1 ratio if no rETH is minted
                        if (rethSupply == 0) { return _ethAmount; }
                        // Check network ETH balance
                        require(totalEthBalance > 0, "Cannot calculate rETH token amount while total network balance is zero");
                        // Calculate and return
                        return _ethAmount.mul(rethSupply).div(totalEthBalance);
                    }
                    // Get the current ETH : rETH exchange rate
                    // Returns the amount of ETH backing 1 rETH
                    function getExchangeRate() override external view returns (uint256) {
                        return getEthValue(1 ether);
                    }
                    // Get the total amount of collateral available
                    // Includes rETH contract balance & excess deposit pool balance
                    function getTotalCollateral() override public view returns (uint256) {
                        RocketDepositPoolInterface rocketDepositPool = RocketDepositPoolInterface(getContractAddress("rocketDepositPool"));
                        return rocketDepositPool.getExcessBalance().add(address(this).balance);
                    }
                    // Get the current ETH collateral rate
                    // Returns the portion of rETH backed by ETH in the contract as a fraction of 1 ether
                    function getCollateralRate() override public view returns (uint256) {
                        uint256 totalEthValue = getEthValue(totalSupply());
                        if (totalEthValue == 0) { return calcBase; }
                        return calcBase.mul(address(this).balance).div(totalEthValue);
                    }
                    // Deposit excess ETH from deposit pool
                    // Only accepts calls from the RocketDepositPool contract
                    function depositExcess() override external payable onlyLatestContract("rocketDepositPool", msg.sender) {
                        // Emit ether deposited event
                        emit EtherDeposited(msg.sender, msg.value, block.timestamp);
                    }
                    // Mint rETH
                    // Only accepts calls from the RocketDepositPool contract
                    function mint(uint256 _ethAmount, address _to) override external onlyLatestContract("rocketDepositPool", msg.sender) {
                        // Get rETH amount
                        uint256 rethAmount = getRethValue(_ethAmount);
                        // Check rETH amount
                        require(rethAmount > 0, "Invalid token mint amount");
                        // Update balance & supply
                        _mint(_to, rethAmount);
                        // Emit tokens minted event
                        emit TokensMinted(_to, rethAmount, _ethAmount, block.timestamp);
                    }
                    // Burn rETH for ETH
                    function burn(uint256 _rethAmount) override external {
                        // Check rETH amount
                        require(_rethAmount > 0, "Invalid token burn amount");
                        require(balanceOf(msg.sender) >= _rethAmount, "Insufficient rETH balance");
                        // Get ETH amount
                        uint256 ethAmount = getEthValue(_rethAmount);
                        // Get & check ETH balance
                        uint256 ethBalance = getTotalCollateral();
                        require(ethBalance >= ethAmount, "Insufficient ETH balance for exchange");
                        // Update balance & supply
                        _burn(msg.sender, _rethAmount);
                        // Withdraw ETH from deposit pool if required
                        withdrawDepositCollateral(ethAmount);
                        // Transfer ETH to sender
                        msg.sender.transfer(ethAmount);
                        // Emit tokens burned event
                        emit TokensBurned(msg.sender, _rethAmount, ethAmount, block.timestamp);
                    }
                    // Withdraw ETH from the deposit pool for collateral if required
                    function withdrawDepositCollateral(uint256 _ethRequired) private {
                        // Check rETH contract balance
                        uint256 ethBalance = address(this).balance;
                        if (ethBalance >= _ethRequired) { return; }
                        // Withdraw
                        RocketDepositPoolInterface rocketDepositPool = RocketDepositPoolInterface(getContractAddress("rocketDepositPool"));
                        rocketDepositPool.withdrawExcessBalance(_ethRequired.sub(ethBalance));
                    }
                    // Sends any excess ETH from this contract to the deposit pool (as determined by target collateral rate)
                    function depositExcessCollateral() external override {
                        // Load contracts
                        RocketDAOProtocolSettingsNetworkInterface rocketDAOProtocolSettingsNetwork = RocketDAOProtocolSettingsNetworkInterface(getContractAddress("rocketDAOProtocolSettingsNetwork"));
                        RocketDepositPoolInterface rocketDepositPool = RocketDepositPoolInterface(getContractAddress("rocketDepositPool"));
                        // Get collateral and target collateral rate
                        uint256 collateralRate = getCollateralRate();
                        uint256 targetCollateralRate = rocketDAOProtocolSettingsNetwork.getTargetRethCollateralRate();
                        // Check if we are in excess
                        if (collateralRate > targetCollateralRate) {
                            // Calculate our target collateral in ETH
                            uint256 targetCollateral = address(this).balance.mul(targetCollateralRate).div(collateralRate);
                            // If we have excess
                            if (address(this).balance > targetCollateral) {
                                // Send that excess to deposit pool
                                uint256 excessCollateral = address(this).balance.sub(targetCollateral);
                                rocketDepositPool.recycleExcessCollateral{value: excessCollateral}();
                            }
                        }
                    }
                    // This is called by the base ERC20 contract before all transfer, mint, and burns
                    function _beforeTokenTransfer(address from, address, uint256) internal override {
                        // Don't run check if this is a mint transaction
                        if (from != address(0)) {
                            // Check which block the user's last deposit was
                            bytes32 key = keccak256(abi.encodePacked("user.deposit.block", from));
                            uint256 lastDepositBlock = getUint(key);
                            if (lastDepositBlock > 0) {
                                // Ensure enough blocks have passed
                                uint256 depositDelay = getUint(keccak256(abi.encodePacked(keccak256("dao.protocol.setting.network"), "network.reth.deposit.delay")));
                                uint256 blocksPassed = block.number.sub(lastDepositBlock);
                                require(blocksPassed > depositDelay, "Not enough time has passed since deposit");
                                // Clear the state as it's no longer necessary to check this until another deposit is made
                                deleteUint(key);
                            }
                        }
                    }
                }
                /**
                  *       .
                  *      / \\
                  *     |.'.|
                  *     |'.'|
                  *   ,'|   |`.
                  *  |,-'-|-'-.|
                  *   __|_| |         _        _      _____           _
                  *  | ___ \\|        | |      | |    | ___ \\         | |
                  *  | |_/ /|__   ___| | _____| |_   | |_/ /__   ___ | |
                  *  |    // _ \\ / __| |/ / _ \\ __|  |  __/ _ \\ / _ \\| |
                  *  | |\\ \\ (_) | (__|   <  __/ |_   | | | (_) | (_) | |
                  *  \\_| \\_\\___/ \\___|_|\\_\\___|\\__|  \\_|  \\___/ \\___/|_|
                  * +---------------------------------------------------+
                  * |    DECENTRALISED STAKING PROTOCOL FOR ETHEREUM    |
                  * +---------------------------------------------------+
                  *
                  *  Rocket Pool is a first-of-its-kind Ethereum staking pool protocol, designed to
                  *  be community-owned, decentralised, and trustless.
                  *
                  *  For more information about Rocket Pool, visit https://rocketpool.net
                  *
                  *  Authors: David Rugendyke, Jake Pospischil, Kane Wallmann, Darren Langley, Joe Clapis, Nick Doherty
                  *
                  */
                pragma solidity 0.7.6;
                // SPDX-License-Identifier: GPL-3.0-only
                interface RocketStorageInterface {
                    // Deploy status
                    function getDeployedStatus() external view returns (bool);
                    // Guardian
                    function getGuardian() external view returns(address);
                    function setGuardian(address _newAddress) external;
                    function confirmGuardian() external;
                    // Getters
                    function getAddress(bytes32 _key) external view returns (address);
                    function getUint(bytes32 _key) external view returns (uint);
                    function getString(bytes32 _key) external view returns (string memory);
                    function getBytes(bytes32 _key) external view returns (bytes memory);
                    function getBool(bytes32 _key) external view returns (bool);
                    function getInt(bytes32 _key) external view returns (int);
                    function getBytes32(bytes32 _key) external view returns (bytes32);
                    // Setters
                    function setAddress(bytes32 _key, address _value) external;
                    function setUint(bytes32 _key, uint _value) external;
                    function setString(bytes32 _key, string calldata _value) external;
                    function setBytes(bytes32 _key, bytes calldata _value) external;
                    function setBool(bytes32 _key, bool _value) external;
                    function setInt(bytes32 _key, int _value) external;
                    function setBytes32(bytes32 _key, bytes32 _value) external;
                    // Deleters
                    function deleteAddress(bytes32 _key) external;
                    function deleteUint(bytes32 _key) external;
                    function deleteString(bytes32 _key) external;
                    function deleteBytes(bytes32 _key) external;
                    function deleteBool(bytes32 _key) external;
                    function deleteInt(bytes32 _key) external;
                    function deleteBytes32(bytes32 _key) external;
                    // Arithmetic
                    function addUint(bytes32 _key, uint256 _amount) external;
                    function subUint(bytes32 _key, uint256 _amount) external;
                    // Protected storage
                    function getNodeWithdrawalAddress(address _nodeAddress) external view returns (address);
                    function getNodePendingWithdrawalAddress(address _nodeAddress) external view returns (address);
                    function setWithdrawalAddress(address _nodeAddress, address _newWithdrawalAddress, bool _confirm) external;
                    function confirmWithdrawalAddress(address _nodeAddress) external;
                }
                /**
                  *       .
                  *      / \\
                  *     |.'.|
                  *     |'.'|
                  *   ,'|   |`.
                  *  |,-'-|-'-.|
                  *   __|_| |         _        _      _____           _
                  *  | ___ \\|        | |      | |    | ___ \\         | |
                  *  | |_/ /|__   ___| | _____| |_   | |_/ /__   ___ | |
                  *  |    // _ \\ / __| |/ / _ \\ __|  |  __/ _ \\ / _ \\| |
                  *  | |\\ \\ (_) | (__|   <  __/ |_   | | | (_) | (_) | |
                  *  \\_| \\_\\___/ \\___|_|\\_\\___|\\__|  \\_|  \\___/ \\___/|_|
                  * +---------------------------------------------------+
                  * |    DECENTRALISED STAKING PROTOCOL FOR ETHEREUM    |
                  * +---------------------------------------------------+
                  *
                  *  Rocket Pool is a first-of-its-kind Ethereum staking pool protocol, designed to
                  *  be community-owned, decentralised, and trustless.
                  *
                  *  For more information about Rocket Pool, visit https://rocketpool.net
                  *
                  *  Authors: David Rugendyke, Jake Pospischil, Kane Wallmann, Darren Langley, Joe Clapis, Nick Doherty
                  *
                  */
                pragma solidity 0.7.6;
                // SPDX-License-Identifier: GPL-3.0-only
                interface RocketDAOProtocolSettingsNetworkInterface {
                    function getNodeConsensusThreshold() external view returns (uint256);
                    function getSubmitBalancesEnabled() external view returns (bool);
                    function getSubmitBalancesFrequency() external view returns (uint256);
                    function getSubmitPricesEnabled() external view returns (bool);
                    function getSubmitPricesFrequency() external view returns (uint256);
                    function getMinimumNodeFee() external view returns (uint256);
                    function getTargetNodeFee() external view returns (uint256);
                    function getMaximumNodeFee() external view returns (uint256);
                    function getNodeFeeDemandRange() external view returns (uint256);
                    function getTargetRethCollateralRate() external view returns (uint256);
                    function getRethDepositDelay() external view returns (uint256);
                }
                /**
                  *       .
                  *      / \\
                  *     |.'.|
                  *     |'.'|
                  *   ,'|   |`.
                  *  |,-'-|-'-.|
                  *   __|_| |         _        _      _____           _
                  *  | ___ \\|        | |      | |    | ___ \\         | |
                  *  | |_/ /|__   ___| | _____| |_   | |_/ /__   ___ | |
                  *  |    // _ \\ / __| |/ / _ \\ __|  |  __/ _ \\ / _ \\| |
                  *  | |\\ \\ (_) | (__|   <  __/ |_   | | | (_) | (_) | |
                  *  \\_| \\_\\___/ \\___|_|\\_\\___|\\__|  \\_|  \\___/ \\___/|_|
                  * +---------------------------------------------------+
                  * |    DECENTRALISED STAKING PROTOCOL FOR ETHEREUM    |
                  * +---------------------------------------------------+
                  *
                  *  Rocket Pool is a first-of-its-kind Ethereum staking pool protocol, designed to
                  *  be community-owned, decentralised, and trustless.
                  *
                  *  For more information about Rocket Pool, visit https://rocketpool.net
                  *
                  *  Authors: David Rugendyke, Jake Pospischil, Kane Wallmann, Darren Langley, Joe Clapis, Nick Doherty
                  *
                  */
                pragma solidity 0.7.6;
                // SPDX-License-Identifier: GPL-3.0-only
                interface RocketDepositPoolInterface {
                    function getBalance() external view returns (uint256);
                    function getExcessBalance() external view returns (uint256);
                    function deposit() external payable;
                    function recycleDissolvedDeposit() external payable;
                    function recycleExcessCollateral() external payable;
                    function recycleLiquidatedStake() external payable;
                    function assignDeposits() external;
                    function withdrawExcessBalance(uint256 _amount) external;
                    function getUserLastDepositBlock(address _address) external view returns (uint256);
                }
                /**
                  *       .
                  *      / \\
                  *     |.'.|
                  *     |'.'|
                  *   ,'|   |`.
                  *  |,-'-|-'-.|
                  *   __|_| |         _        _      _____           _
                  *  | ___ \\|        | |      | |    | ___ \\         | |
                  *  | |_/ /|__   ___| | _____| |_   | |_/ /__   ___ | |
                  *  |    // _ \\ / __| |/ / _ \\ __|  |  __/ _ \\ / _ \\| |
                  *  | |\\ \\ (_) | (__|   <  __/ |_   | | | (_) | (_) | |
                  *  \\_| \\_\\___/ \\___|_|\\_\\___|\\__|  \\_|  \\___/ \\___/|_|
                  * +---------------------------------------------------+
                  * |    DECENTRALISED STAKING PROTOCOL FOR ETHEREUM    |
                  * +---------------------------------------------------+
                  *
                  *  Rocket Pool is a first-of-its-kind Ethereum staking pool protocol, designed to
                  *  be community-owned, decentralised, and trustless.
                  *
                  *  For more information about Rocket Pool, visit https://rocketpool.net
                  *
                  *  Authors: David Rugendyke, Jake Pospischil, Kane Wallmann, Darren Langley, Joe Clapis, Nick Doherty
                  *
                  */
                pragma solidity 0.7.6;
                // SPDX-License-Identifier: GPL-3.0-only
                interface RocketNetworkBalancesInterface {
                    function getBalancesBlock() external view returns (uint256);
                    function getLatestReportableBlock() external view returns (uint256);
                    function getTotalETHBalance() external view returns (uint256);
                    function getStakingETHBalance() external view returns (uint256);
                    function getTotalRETHSupply() external view returns (uint256);
                    function getETHUtilizationRate() external view returns (uint256);
                    function submitBalances(uint256 _block, uint256 _total, uint256 _staking, uint256 _rethSupply) external;
                    function executeUpdateBalances(uint256 _block, uint256 _totalEth, uint256 _stakingEth, uint256 _rethSupply) external;
                }
                /**
                  *       .
                  *      / \\
                  *     |.'.|
                  *     |'.'|
                  *   ,'|   |`.
                  *  |,-'-|-'-.|
                  *   __|_| |         _        _      _____           _
                  *  | ___ \\|        | |      | |    | ___ \\         | |
                  *  | |_/ /|__   ___| | _____| |_   | |_/ /__   ___ | |
                  *  |    // _ \\ / __| |/ / _ \\ __|  |  __/ _ \\ / _ \\| |
                  *  | |\\ \\ (_) | (__|   <  __/ |_   | | | (_) | (_) | |
                  *  \\_| \\_\\___/ \\___|_|\\_\\___|\\__|  \\_|  \\___/ \\___/|_|
                  * +---------------------------------------------------+
                  * |    DECENTRALISED STAKING PROTOCOL FOR ETHEREUM    |
                  * +---------------------------------------------------+
                  *
                  *  Rocket Pool is a first-of-its-kind Ethereum staking pool protocol, designed to
                  *  be community-owned, decentralised, and trustless.
                  *
                  *  For more information about Rocket Pool, visit https://rocketpool.net
                  *
                  *  Authors: David Rugendyke, Jake Pospischil, Kane Wallmann, Darren Langley, Joe Clapis, Nick Doherty
                  *
                  */
                pragma solidity 0.7.6;
                // SPDX-License-Identifier: GPL-3.0-only
                import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                interface RocketTokenRETHInterface is IERC20 {
                    function getEthValue(uint256 _rethAmount) external view returns (uint256);
                    function getRethValue(uint256 _ethAmount) external view returns (uint256);
                    function getExchangeRate() external view returns (uint256);
                    function getTotalCollateral() external view returns (uint256);
                    function getCollateralRate() external view returns (uint256);
                    function depositExcess() external payable;
                    function depositExcessCollateral() external;
                    function mint(uint256 _ethAmount, address _to) external;
                    function burn(uint256 _rethAmount) external;
                }
                

                File 3 of 11: Proxy
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                /**
                 * @title Proxy
                 * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
                 *         if the caller is address(0), meaning that the call originated from an off-chain
                 *         simulation.
                 */
                contract Proxy {
                    /**
                     * @notice The storage slot that holds the address of the implementation.
                     *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                     */
                    bytes32 internal constant IMPLEMENTATION_KEY =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /**
                     * @notice The storage slot that holds the address of the owner.
                     *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                     */
                    bytes32 internal constant OWNER_KEY =
                        0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /**
                     * @notice An event that is emitted each time the implementation is changed. This event is part
                     *         of the EIP-1967 specification.
                     *
                     * @param implementation The address of the implementation contract
                     */
                    event Upgraded(address indexed implementation);
                    /**
                     * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                     *         EIP-1967 specification.
                     *
                     * @param previousAdmin The previous owner of the contract
                     * @param newAdmin      The new owner of the contract
                     */
                    event AdminChanged(address previousAdmin, address newAdmin);
                    /**
                     * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                     *         eth_call to interact with this proxy without needing to use low-level storage
                     *         inspection. We assume that nobody is able to trigger calls from address(0) during
                     *         normal EVM execution.
                     */
                    modifier proxyCallIfNotAdmin() {
                        if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                            _;
                        } else {
                            // This WILL halt the call frame on completion.
                            _doProxyCall();
                        }
                    }
                    /**
                     * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                     *         EIP-1967 admin storage slot so that accidental storage collision with the
                     *         implementation is not possible.
                     *
                     * @param _admin Address of the initial contract admin. Admin as the ability to access the
                     *               transparent proxy interface.
                     */
                    constructor(address _admin) {
                        _changeAdmin(_admin);
                    }
                    // slither-disable-next-line locked-ether
                    receive() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    // slither-disable-next-line locked-ether
                    fallback() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    /**
                     * @notice Set the implementation contract address. The code at the given address will execute
                     *         when this contract is called.
                     *
                     * @param _implementation Address of the implementation contract.
                     */
                    function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                        _setImplementation(_implementation);
                    }
                    /**
                     * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                     *         atomic execution of initialization-based upgrades.
                     *
                     * @param _implementation Address of the implementation contract.
                     * @param _data           Calldata to delegatecall the new implementation with.
                     */
                    function upgradeToAndCall(address _implementation, bytes calldata _data)
                        public
                        payable
                        virtual
                        proxyCallIfNotAdmin
                        returns (bytes memory)
                    {
                        _setImplementation(_implementation);
                        (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                        require(success, "Proxy: delegatecall to new implementation contract failed");
                        return returndata;
                    }
                    /**
                     * @notice Changes the owner of the proxy contract. Only callable by the owner.
                     *
                     * @param _admin New owner of the proxy contract.
                     */
                    function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                        _changeAdmin(_admin);
                    }
                    /**
                     * @notice Gets the owner of the proxy contract.
                     *
                     * @return Owner address.
                     */
                    function admin() public virtual proxyCallIfNotAdmin returns (address) {
                        return _getAdmin();
                    }
                    /**
                     * @notice Queries the implementation address.
                     *
                     * @return Implementation address.
                     */
                    function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                        return _getImplementation();
                    }
                    /**
                     * @notice Sets the implementation address.
                     *
                     * @param _implementation New implementation address.
                     */
                    function _setImplementation(address _implementation) internal {
                        assembly {
                            sstore(IMPLEMENTATION_KEY, _implementation)
                        }
                        emit Upgraded(_implementation);
                    }
                    /**
                     * @notice Changes the owner of the proxy contract.
                     *
                     * @param _admin New owner of the proxy contract.
                     */
                    function _changeAdmin(address _admin) internal {
                        address previous = _getAdmin();
                        assembly {
                            sstore(OWNER_KEY, _admin)
                        }
                        emit AdminChanged(previous, _admin);
                    }
                    /**
                     * @notice Performs the proxy call via a delegatecall.
                     */
                    function _doProxyCall() internal {
                        address impl = _getImplementation();
                        require(impl != address(0), "Proxy: implementation not initialized");
                        assembly {
                            // Copy calldata into memory at 0x0....calldatasize.
                            calldatacopy(0x0, 0x0, calldatasize())
                            // Perform the delegatecall, make sure to pass all available gas.
                            let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                            // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                            // overwrite the calldata that we just copied into memory but that doesn't really
                            // matter because we'll be returning in a second anyway.
                            returndatacopy(0x0, 0x0, returndatasize())
                            // Success == 0 means a revert. We'll revert too and pass the data up.
                            if iszero(success) {
                                revert(0x0, returndatasize())
                            }
                            // Otherwise we'll just return and pass the data up.
                            return(0x0, returndatasize())
                        }
                    }
                    /**
                     * @notice Queries the implementation address.
                     *
                     * @return Implementation address.
                     */
                    function _getImplementation() internal view returns (address) {
                        address impl;
                        assembly {
                            impl := sload(IMPLEMENTATION_KEY)
                        }
                        return impl;
                    }
                    /**
                     * @notice Queries the owner of the proxy contract.
                     *
                     * @return Owner address.
                     */
                    function _getAdmin() internal view returns (address) {
                        address owner;
                        assembly {
                            owner := sload(OWNER_KEY)
                        }
                        return owner;
                    }
                }
                

                File 4 of 11: Lib_ResolvedDelegateProxy
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.0 <0.8.0;
                import "../utils/Context.sol";
                /**
                 * @dev Contract module which provides a basic access control mechanism, where
                 * there is an account (an owner) that can be granted exclusive access to
                 * specific functions.
                 *
                 * By default, the owner account will be the one that deploys the contract. This
                 * can later be changed with {transferOwnership}.
                 *
                 * This module is used through inheritance. It will make available the modifier
                 * `onlyOwner`, which can be applied to your functions to restrict their use to
                 * the owner.
                 */
                abstract contract Ownable is Context {
                    address private _owner;
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    /**
                     * @dev Initializes the contract setting the deployer as the initial owner.
                     */
                    constructor () internal {
                        address msgSender = _msgSender();
                        _owner = msgSender;
                        emit OwnershipTransferred(address(0), msgSender);
                    }
                    /**
                     * @dev Returns the address of the current owner.
                     */
                    function owner() public view virtual returns (address) {
                        return _owner;
                    }
                    /**
                     * @dev Throws if called by any account other than the owner.
                     */
                    modifier onlyOwner() {
                        require(owner() == _msgSender(), "Ownable: caller is not the owner");
                        _;
                    }
                    /**
                     * @dev Leaves the contract without owner. It will not be possible to call
                     * `onlyOwner` functions anymore. Can only be called by the current owner.
                     *
                     * NOTE: Renouncing ownership will leave the contract without an owner,
                     * thereby removing any functionality that is only available to the owner.
                     */
                    function renounceOwnership() public virtual onlyOwner {
                        emit OwnershipTransferred(_owner, address(0));
                        _owner = address(0);
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Can only be called by the current owner.
                     */
                    function transferOwnership(address newOwner) public virtual onlyOwner {
                        require(newOwner != address(0), "Ownable: new owner is the zero address");
                        emit OwnershipTransferred(_owner, newOwner);
                        _owner = newOwner;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.0 <0.8.0;
                /*
                 * @dev Provides information about the current execution context, including the
                 * sender of the transaction and its data. While these are generally available
                 * via msg.sender and msg.data, they should not be accessed in such a direct
                 * manner, since when dealing with GSN meta-transactions the account sending and
                 * paying for execution may not be the actual sender (as far as an application
                 * is concerned).
                 *
                 * This contract is only required for intermediate, library-like contracts.
                 */
                abstract contract Context {
                    function _msgSender() internal view virtual returns (address payable) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes memory) {
                        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                        return msg.data;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >0.5.0 <0.8.0;
                /* External Imports */
                import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
                /**
                 * @title Lib_AddressManager
                 */
                contract Lib_AddressManager is Ownable {
                    /**********
                     * Events *
                     **********/
                    event AddressSet(
                        string indexed _name,
                        address _newAddress,
                        address _oldAddress
                    );
                    /*************
                     * Variables *
                     *************/
                    mapping (bytes32 => address) private addresses;
                    /********************
                     * Public Functions *
                     ********************/
                    /**
                     * Changes the address associated with a particular name.
                     * @param _name String name to associate an address with.
                     * @param _address Address to associate with the name.
                     */
                    function setAddress(
                        string memory _name,
                        address _address
                    )
                        external
                        onlyOwner
                    {
                        bytes32 nameHash = _getNameHash(_name);
                        address oldAddress = addresses[nameHash];
                        addresses[nameHash] = _address;
                        emit AddressSet(
                            _name,
                            _address,
                            oldAddress
                        );
                    }
                    /**
                     * Retrieves the address associated with a given name.
                     * @param _name Name to retrieve an address for.
                     * @return Address associated with the given name.
                     */
                    function getAddress(
                        string memory _name
                    )
                        external
                        view
                        returns (
                            address
                        )
                    {
                        return addresses[_getNameHash(_name)];
                    }
                    /**********************
                     * Internal Functions *
                     **********************/
                    /**
                     * Computes the hash of a name.
                     * @param _name Name to compute a hash for.
                     * @return Hash of the given name.
                     */
                    function _getNameHash(
                        string memory _name
                    )
                        internal
                        pure
                        returns (
                            bytes32
                        )
                    {
                        return keccak256(abi.encodePacked(_name));
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >0.5.0 <0.8.0;
                /* Library Imports */
                import { Lib_AddressManager } from "./Lib_AddressManager.sol";
                /**
                 * @title Lib_ResolvedDelegateProxy
                 */
                contract Lib_ResolvedDelegateProxy {
                    /*************
                     * Variables *
                     *************/
                    // Using mappings to store fields to avoid overwriting storage slots in the
                    // implementation contract. For example, instead of storing these fields at
                    // storage slot `0` & `1`, they are stored at `keccak256(key + slot)`.
                    // See: https://solidity.readthedocs.io/en/v0.7.0/internals/layout_in_storage.html
                    // NOTE: Do not use this code in your own contract system.
                    //      There is a known flaw in this contract, and we will remove it from the repository
                    //      in the near future. Due to the very limited way that we are using it, this flaw is
                    //      not an issue in our system.
                    mapping (address => string) private implementationName;
                    mapping (address => Lib_AddressManager) private addressManager;
                    /***************
                     * Constructor *
                     ***************/
                    /**
                     * @param _libAddressManager Address of the Lib_AddressManager.
                     * @param _implementationName implementationName of the contract to proxy to.
                     */
                    constructor(
                        address _libAddressManager,
                        string memory _implementationName
                    ) {
                        addressManager[address(this)] = Lib_AddressManager(_libAddressManager);
                        implementationName[address(this)] = _implementationName;
                    }
                    /*********************
                     * Fallback Function *
                     *********************/
                    fallback()
                        external
                        payable
                    {
                        address target = addressManager[address(this)].getAddress(
                            (implementationName[address(this)])
                        );
                        require(
                            target != address(0),
                            "Target address must be initialized."
                        );
                        (bool success, bytes memory returndata) = target.delegatecall(msg.data);
                        if (success == true) {
                            assembly {
                                return(add(returndata, 0x20), mload(returndata))
                            }
                        } else {
                            assembly {
                                revert(add(returndata, 0x20), mload(returndata))
                            }
                        }
                    }
                }
                

                File 5 of 11: ProxyAdmin
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
                /**
                 * @custom:legacy
                 * @title AddressManager
                 * @notice AddressManager is a legacy contract that was used in the old version of the Optimism
                 *         system to manage a registry of string names to addresses. We now use a more standard
                 *         proxy system instead, but this contract is still necessary for backwards compatibility
                 *         with several older contracts.
                 */
                contract AddressManager is Ownable {
                    /**
                     * @notice Mapping of the hashes of string names to addresses.
                     */
                    mapping(bytes32 => address) private addresses;
                    /**
                     * @notice Emitted when an address is modified in the registry.
                     *
                     * @param name       String name being set in the registry.
                     * @param newAddress Address set for the given name.
                     * @param oldAddress Address that was previously set for the given name.
                     */
                    event AddressSet(string indexed name, address newAddress, address oldAddress);
                    /**
                     * @notice Changes the address associated with a particular name.
                     *
                     * @param _name    String name to associate an address with.
                     * @param _address Address to associate with the name.
                     */
                    function setAddress(string memory _name, address _address) external onlyOwner {
                        bytes32 nameHash = _getNameHash(_name);
                        address oldAddress = addresses[nameHash];
                        addresses[nameHash] = _address;
                        emit AddressSet(_name, _address, oldAddress);
                    }
                    /**
                     * @notice Retrieves the address associated with a given name.
                     *
                     * @param _name Name to retrieve an address for.
                     *
                     * @return Address associated with the given name.
                     */
                    function getAddress(string memory _name) external view returns (address) {
                        return addresses[_getNameHash(_name)];
                    }
                    /**
                     * @notice Computes the hash of a name.
                     *
                     * @param _name Name to compute a hash for.
                     *
                     * @return Hash of the given name.
                     */
                    function _getNameHash(string memory _name) internal pure returns (bytes32) {
                        return keccak256(abi.encodePacked(_name));
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                /**
                 * @title IL1ChugSplashDeployer
                 */
                interface IL1ChugSplashDeployer {
                    function isUpgrading() external view returns (bool);
                }
                /**
                 * @custom:legacy
                 * @title L1ChugSplashProxy
                 * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
                 *         functions `setCode` and `setStorage` for changing the code or storage of the contract.
                 *
                 *         Note for future developers: do NOT make anything in this contract 'public' unless you
                 *         know what you're doing. Anything public can potentially have a function signature that
                 *         conflicts with a signature attached to the implementation contract. Public functions
                 *         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
                 *         reason not to have that modifier. And there almost certainly is not a good reason to not
                 *         have that modifier. Beware!
                 */
                contract L1ChugSplashProxy {
                    /**
                     * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
                     *         contract, the appended bytecode will be deployed as given.
                     */
                    bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
                    /**
                     * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                     */
                    bytes32 internal constant IMPLEMENTATION_KEY =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /**
                     * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                     */
                    bytes32 internal constant OWNER_KEY =
                        0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /**
                     * @notice Blocks a function from being called when the parent signals that the system should
                     *         be paused via an isUpgrading function.
                     */
                    modifier onlyWhenNotPaused() {
                        address owner = _getOwner();
                        // We do a low-level call because there's no guarantee that the owner actually *is* an
                        // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
                        // it turns out that it isn't the right type of contract.
                        (bool success, bytes memory returndata) = owner.staticcall(
                            abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector)
                        );
                        // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
                        // can just continue as normal. We also expect that the return value is exactly 32 bytes
                        // long. If this isn't the case then we can safely ignore the result.
                        if (success && returndata.length == 32) {
                            // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                            // case that the isUpgrading function returned something other than 0 or 1. But we only
                            // really care about the case where this value is 0 (= false).
                            uint256 ret = abi.decode(returndata, (uint256));
                            require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
                        }
                        _;
                    }
                    /**
                     * @notice Makes a proxy call instead of triggering the given function when the caller is
                     *         either the owner or the zero address. Caller can only ever be the zero address if
                     *         this function is being called off-chain via eth_call, which is totally fine and can
                     *         be convenient for client-side tooling. Avoids situations where the proxy and
                     *         implementation share a sighash and the proxy function ends up being called instead
                     *         of the implementation one.
                     *
                     *         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
                     *         there's a way for someone to send a transaction with msg.sender == address(0) in any
                     *         real context then we have much bigger problems. Primary reason to include this
                     *         additional allowed sender is because the owner address can be changed dynamically
                     *         and we do not want clients to have to keep track of the current owner in order to
                     *         make an eth_call that doesn't trigger the proxied contract.
                     */
                    // slither-disable-next-line incorrect-modifier
                    modifier proxyCallIfNotOwner() {
                        if (msg.sender == _getOwner() || msg.sender == address(0)) {
                            _;
                        } else {
                            // This WILL halt the call frame on completion.
                            _doProxyCall();
                        }
                    }
                    /**
                     * @param _owner Address of the initial contract owner.
                     */
                    constructor(address _owner) {
                        _setOwner(_owner);
                    }
                    // slither-disable-next-line locked-ether
                    receive() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    // slither-disable-next-line locked-ether
                    fallback() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    /**
                     * @notice Sets the code that should be running behind this proxy.
                     *
                     *         Note: This scheme is a bit different from the standard proxy scheme where one would
                     *         typically deploy the code separately and then set the implementation address. We're
                     *         doing it this way because it gives us a lot more freedom on the client side. Can
                     *         only be triggered by the contract owner.
                     *
                     * @param _code New contract code to run inside this contract.
                     */
                    function setCode(bytes memory _code) external proxyCallIfNotOwner {
                        // Get the code hash of the current implementation.
                        address implementation = _getImplementation();
                        // If the code hash matches the new implementation then we return early.
                        if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                            return;
                        }
                        // Create the deploycode by appending the magic prefix.
                        bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
                        // Deploy the code and set the new implementation address.
                        address newImplementation;
                        assembly {
                            newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
                        }
                        // Check that the code was actually deployed correctly. I'm not sure if you can ever
                        // actually fail this check. Should only happen if the contract creation from above runs
                        // out of gas but this parent execution thread does NOT run out of gas. Seems like we
                        // should be doing this check anyway though.
                        require(
                            _getAccountCodeHash(newImplementation) == keccak256(_code),
                            "L1ChugSplashProxy: code was not correctly deployed"
                        );
                        _setImplementation(newImplementation);
                    }
                    /**
                     * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
                     *         perform upgrades in a more transparent way. Only callable by the owner.
                     *
                     * @param _key   Storage key to modify.
                     * @param _value New value for the storage key.
                     */
                    function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
                        assembly {
                            sstore(_key, _value)
                        }
                    }
                    /**
                     * @notice Changes the owner of the proxy contract. Only callable by the owner.
                     *
                     * @param _owner New owner of the proxy contract.
                     */
                    function setOwner(address _owner) external proxyCallIfNotOwner {
                        _setOwner(_owner);
                    }
                    /**
                     * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
                     *         making an eth_call and setting the "from" address to address(0).
                     *
                     * @return Owner address.
                     */
                    function getOwner() external proxyCallIfNotOwner returns (address) {
                        return _getOwner();
                    }
                    /**
                     * @notice Queries the implementation address. Can only be called by the owner OR by making an
                     *         eth_call and setting the "from" address to address(0).
                     *
                     * @return Implementation address.
                     */
                    function getImplementation() external proxyCallIfNotOwner returns (address) {
                        return _getImplementation();
                    }
                    /**
                     * @notice Sets the implementation address.
                     *
                     * @param _implementation New implementation address.
                     */
                    function _setImplementation(address _implementation) internal {
                        assembly {
                            sstore(IMPLEMENTATION_KEY, _implementation)
                        }
                    }
                    /**
                     * @notice Changes the owner of the proxy contract.
                     *
                     * @param _owner New owner of the proxy contract.
                     */
                    function _setOwner(address _owner) internal {
                        assembly {
                            sstore(OWNER_KEY, _owner)
                        }
                    }
                    /**
                     * @notice Performs the proxy call via a delegatecall.
                     */
                    function _doProxyCall() internal onlyWhenNotPaused {
                        address implementation = _getImplementation();
                        require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
                        assembly {
                            // Copy calldata into memory at 0x0....calldatasize.
                            calldatacopy(0x0, 0x0, calldatasize())
                            // Perform the delegatecall, make sure to pass all available gas.
                            let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                            // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                            // overwrite the calldata that we just copied into memory but that doesn't really
                            // matter because we'll be returning in a second anyway.
                            returndatacopy(0x0, 0x0, returndatasize())
                            // Success == 0 means a revert. We'll revert too and pass the data up.
                            if iszero(success) {
                                revert(0x0, returndatasize())
                            }
                            // Otherwise we'll just return and pass the data up.
                            return(0x0, returndatasize())
                        }
                    }
                    /**
                     * @notice Queries the implementation address.
                     *
                     * @return Implementation address.
                     */
                    function _getImplementation() internal view returns (address) {
                        address implementation;
                        assembly {
                            implementation := sload(IMPLEMENTATION_KEY)
                        }
                        return implementation;
                    }
                    /**
                     * @notice Queries the owner of the proxy contract.
                     *
                     * @return Owner address.
                     */
                    function _getOwner() internal view returns (address) {
                        address owner;
                        assembly {
                            owner := sload(OWNER_KEY)
                        }
                        return owner;
                    }
                    /**
                     * @notice Gets the code hash for a given account.
                     *
                     * @param _account Address of the account to get a code hash for.
                     *
                     * @return Code hash for the account.
                     */
                    function _getAccountCodeHash(address _account) internal view returns (bytes32) {
                        bytes32 codeHash;
                        assembly {
                            codeHash := extcodehash(_account)
                        }
                        return codeHash;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                /**
                 * @title Proxy
                 * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
                 *         if the caller is address(0), meaning that the call originated from an off-chain
                 *         simulation.
                 */
                contract Proxy {
                    /**
                     * @notice The storage slot that holds the address of the implementation.
                     *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                     */
                    bytes32 internal constant IMPLEMENTATION_KEY =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /**
                     * @notice The storage slot that holds the address of the owner.
                     *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                     */
                    bytes32 internal constant OWNER_KEY =
                        0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /**
                     * @notice An event that is emitted each time the implementation is changed. This event is part
                     *         of the EIP-1967 specification.
                     *
                     * @param implementation The address of the implementation contract
                     */
                    event Upgraded(address indexed implementation);
                    /**
                     * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                     *         EIP-1967 specification.
                     *
                     * @param previousAdmin The previous owner of the contract
                     * @param newAdmin      The new owner of the contract
                     */
                    event AdminChanged(address previousAdmin, address newAdmin);
                    /**
                     * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                     *         eth_call to interact with this proxy without needing to use low-level storage
                     *         inspection. We assume that nobody is able to trigger calls from address(0) during
                     *         normal EVM execution.
                     */
                    modifier proxyCallIfNotAdmin() {
                        if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                            _;
                        } else {
                            // This WILL halt the call frame on completion.
                            _doProxyCall();
                        }
                    }
                    /**
                     * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                     *         EIP-1967 admin storage slot so that accidental storage collision with the
                     *         implementation is not possible.
                     *
                     * @param _admin Address of the initial contract admin. Admin as the ability to access the
                     *               transparent proxy interface.
                     */
                    constructor(address _admin) {
                        _changeAdmin(_admin);
                    }
                    // slither-disable-next-line locked-ether
                    receive() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    // slither-disable-next-line locked-ether
                    fallback() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    /**
                     * @notice Set the implementation contract address. The code at the given address will execute
                     *         when this contract is called.
                     *
                     * @param _implementation Address of the implementation contract.
                     */
                    function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                        _setImplementation(_implementation);
                    }
                    /**
                     * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                     *         atomic execution of initialization-based upgrades.
                     *
                     * @param _implementation Address of the implementation contract.
                     * @param _data           Calldata to delegatecall the new implementation with.
                     */
                    function upgradeToAndCall(address _implementation, bytes calldata _data)
                        public
                        payable
                        virtual
                        proxyCallIfNotAdmin
                        returns (bytes memory)
                    {
                        _setImplementation(_implementation);
                        (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                        require(success, "Proxy: delegatecall to new implementation contract failed");
                        return returndata;
                    }
                    /**
                     * @notice Changes the owner of the proxy contract. Only callable by the owner.
                     *
                     * @param _admin New owner of the proxy contract.
                     */
                    function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                        _changeAdmin(_admin);
                    }
                    /**
                     * @notice Gets the owner of the proxy contract.
                     *
                     * @return Owner address.
                     */
                    function admin() public virtual proxyCallIfNotAdmin returns (address) {
                        return _getAdmin();
                    }
                    /**
                     * @notice Queries the implementation address.
                     *
                     * @return Implementation address.
                     */
                    function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                        return _getImplementation();
                    }
                    /**
                     * @notice Sets the implementation address.
                     *
                     * @param _implementation New implementation address.
                     */
                    function _setImplementation(address _implementation) internal {
                        assembly {
                            sstore(IMPLEMENTATION_KEY, _implementation)
                        }
                        emit Upgraded(_implementation);
                    }
                    /**
                     * @notice Changes the owner of the proxy contract.
                     *
                     * @param _admin New owner of the proxy contract.
                     */
                    function _changeAdmin(address _admin) internal {
                        address previous = _getAdmin();
                        assembly {
                            sstore(OWNER_KEY, _admin)
                        }
                        emit AdminChanged(previous, _admin);
                    }
                    /**
                     * @notice Performs the proxy call via a delegatecall.
                     */
                    function _doProxyCall() internal {
                        address impl = _getImplementation();
                        require(impl != address(0), "Proxy: implementation not initialized");
                        assembly {
                            // Copy calldata into memory at 0x0....calldatasize.
                            calldatacopy(0x0, 0x0, calldatasize())
                            // Perform the delegatecall, make sure to pass all available gas.
                            let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                            // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                            // overwrite the calldata that we just copied into memory but that doesn't really
                            // matter because we'll be returning in a second anyway.
                            returndatacopy(0x0, 0x0, returndatasize())
                            // Success == 0 means a revert. We'll revert too and pass the data up.
                            if iszero(success) {
                                revert(0x0, returndatasize())
                            }
                            // Otherwise we'll just return and pass the data up.
                            return(0x0, returndatasize())
                        }
                    }
                    /**
                     * @notice Queries the implementation address.
                     *
                     * @return Implementation address.
                     */
                    function _getImplementation() internal view returns (address) {
                        address impl;
                        assembly {
                            impl := sload(IMPLEMENTATION_KEY)
                        }
                        return impl;
                    }
                    /**
                     * @notice Queries the owner of the proxy contract.
                     *
                     * @return Owner address.
                     */
                    function _getAdmin() internal view returns (address) {
                        address owner;
                        assembly {
                            owner := sload(OWNER_KEY)
                        }
                        return owner;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
                import { Proxy } from "./Proxy.sol";
                import { AddressManager } from "../legacy/AddressManager.sol";
                import { L1ChugSplashProxy } from "../legacy/L1ChugSplashProxy.sol";
                /**
                 * @title IStaticERC1967Proxy
                 * @notice IStaticERC1967Proxy is a static version of the ERC1967 proxy interface.
                 */
                interface IStaticERC1967Proxy {
                    function implementation() external view returns (address);
                    function admin() external view returns (address);
                }
                /**
                 * @title IStaticL1ChugSplashProxy
                 * @notice IStaticL1ChugSplashProxy is a static version of the ChugSplash proxy interface.
                 */
                interface IStaticL1ChugSplashProxy {
                    function getImplementation() external view returns (address);
                    function getOwner() external view returns (address);
                }
                /**
                 * @title ProxyAdmin
                 * @notice This is an auxiliary contract meant to be assigned as the admin of an ERC1967 Proxy,
                 *         based on the OpenZeppelin implementation. It has backwards compatibility logic to work
                 *         with the various types of proxies that have been deployed by Optimism in the past.
                 */
                contract ProxyAdmin is Ownable {
                    /**
                     * @notice The proxy types that the ProxyAdmin can manage.
                     *
                     * @custom:value ERC1967    Represents an ERC1967 compliant transparent proxy interface.
                     * @custom:value CHUGSPLASH Represents the Chugsplash proxy interface (legacy).
                     * @custom:value RESOLVED   Represents the ResolvedDelegate proxy (legacy).
                     */
                    enum ProxyType {
                        ERC1967,
                        CHUGSPLASH,
                        RESOLVED
                    }
                    /**
                     * @notice A mapping of proxy types, used for backwards compatibility.
                     */
                    mapping(address => ProxyType) public proxyType;
                    /**
                     * @notice A reverse mapping of addresses to names held in the AddressManager. This must be
                     *         manually kept up to date with changes in the AddressManager for this contract
                     *         to be able to work as an admin for the ResolvedDelegateProxy type.
                     */
                    mapping(address => string) public implementationName;
                    /**
                     * @notice The address of the address manager, this is required to manage the
                     *         ResolvedDelegateProxy type.
                     */
                    AddressManager public addressManager;
                    /**
                     * @notice A legacy upgrading indicator used by the old Chugsplash Proxy.
                     */
                    bool internal upgrading;
                    /**
                     * @param _owner Address of the initial owner of this contract.
                     */
                    constructor(address _owner) Ownable() {
                        _transferOwnership(_owner);
                    }
                    /**
                     * @notice Sets the proxy type for a given address. Only required for non-standard (legacy)
                     *         proxy types.
                     *
                     * @param _address Address of the proxy.
                     * @param _type    Type of the proxy.
                     */
                    function setProxyType(address _address, ProxyType _type) external onlyOwner {
                        proxyType[_address] = _type;
                    }
                    /**
                     * @notice Sets the implementation name for a given address. Only required for
                     *         ResolvedDelegateProxy type proxies that have an implementation name.
                     *
                     * @param _address Address of the ResolvedDelegateProxy.
                     * @param _name    Name of the implementation for the proxy.
                     */
                    function setImplementationName(address _address, string memory _name) external onlyOwner {
                        implementationName[_address] = _name;
                    }
                    /**
                     * @notice Set the address of the AddressManager. This is required to manage legacy
                     *         ResolvedDelegateProxy type proxy contracts.
                     *
                     * @param _address Address of the AddressManager.
                     */
                    function setAddressManager(AddressManager _address) external onlyOwner {
                        addressManager = _address;
                    }
                    /**
                     * @custom:legacy
                     * @notice Set an address in the address manager. Since only the owner of the AddressManager
                     *         can directly modify addresses and the ProxyAdmin will own the AddressManager, this
                     *         gives the owner of the ProxyAdmin the ability to modify addresses directly.
                     *
                     * @param _name    Name to set within the AddressManager.
                     * @param _address Address to attach to the given name.
                     */
                    function setAddress(string memory _name, address _address) external onlyOwner {
                        addressManager.setAddress(_name, _address);
                    }
                    /**
                     * @custom:legacy
                     * @notice Set the upgrading status for the Chugsplash proxy type.
                     *
                     * @param _upgrading Whether or not the system is upgrading.
                     */
                    function setUpgrading(bool _upgrading) external onlyOwner {
                        upgrading = _upgrading;
                    }
                    /**
                     * @custom:legacy
                     * @notice Legacy function used to tell ChugSplashProxy contracts if an upgrade is happening.
                     *
                     * @return Whether or not there is an upgrade going on. May not actually tell you whether an
                     *         upgrade is going on, since we don't currently plan to use this variable for anything
                     *         other than a legacy indicator to fix a UX bug in the ChugSplash proxy.
                     */
                    function isUpgrading() external view returns (bool) {
                        return upgrading;
                    }
                    /**
                     * @notice Returns the implementation of the given proxy address.
                     *
                     * @param _proxy Address of the proxy to get the implementation of.
                     *
                     * @return Address of the implementation of the proxy.
                     */
                    function getProxyImplementation(address _proxy) external view returns (address) {
                        ProxyType ptype = proxyType[_proxy];
                        if (ptype == ProxyType.ERC1967) {
                            return IStaticERC1967Proxy(_proxy).implementation();
                        } else if (ptype == ProxyType.CHUGSPLASH) {
                            return IStaticL1ChugSplashProxy(_proxy).getImplementation();
                        } else if (ptype == ProxyType.RESOLVED) {
                            return addressManager.getAddress(implementationName[_proxy]);
                        } else {
                            revert("ProxyAdmin: unknown proxy type");
                        }
                    }
                    /**
                     * @notice Returns the admin of the given proxy address.
                     *
                     * @param _proxy Address of the proxy to get the admin of.
                     *
                     * @return Address of the admin of the proxy.
                     */
                    function getProxyAdmin(address payable _proxy) external view returns (address) {
                        ProxyType ptype = proxyType[_proxy];
                        if (ptype == ProxyType.ERC1967) {
                            return IStaticERC1967Proxy(_proxy).admin();
                        } else if (ptype == ProxyType.CHUGSPLASH) {
                            return IStaticL1ChugSplashProxy(_proxy).getOwner();
                        } else if (ptype == ProxyType.RESOLVED) {
                            return addressManager.owner();
                        } else {
                            revert("ProxyAdmin: unknown proxy type");
                        }
                    }
                    /**
                     * @notice Updates the admin of the given proxy address.
                     *
                     * @param _proxy    Address of the proxy to update.
                     * @param _newAdmin Address of the new proxy admin.
                     */
                    function changeProxyAdmin(address payable _proxy, address _newAdmin) external onlyOwner {
                        ProxyType ptype = proxyType[_proxy];
                        if (ptype == ProxyType.ERC1967) {
                            Proxy(_proxy).changeAdmin(_newAdmin);
                        } else if (ptype == ProxyType.CHUGSPLASH) {
                            L1ChugSplashProxy(_proxy).setOwner(_newAdmin);
                        } else if (ptype == ProxyType.RESOLVED) {
                            addressManager.transferOwnership(_newAdmin);
                        } else {
                            revert("ProxyAdmin: unknown proxy type");
                        }
                    }
                    /**
                     * @notice Changes a proxy's implementation contract.
                     *
                     * @param _proxy          Address of the proxy to upgrade.
                     * @param _implementation Address of the new implementation address.
                     */
                    function upgrade(address payable _proxy, address _implementation) public onlyOwner {
                        ProxyType ptype = proxyType[_proxy];
                        if (ptype == ProxyType.ERC1967) {
                            Proxy(_proxy).upgradeTo(_implementation);
                        } else if (ptype == ProxyType.CHUGSPLASH) {
                            L1ChugSplashProxy(_proxy).setStorage(
                                // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc,
                                bytes32(uint256(uint160(_implementation)))
                            );
                        } else if (ptype == ProxyType.RESOLVED) {
                            string memory name = implementationName[_proxy];
                            addressManager.setAddress(name, _implementation);
                        } else {
                            // It should not be possible to retrieve a ProxyType value which is not matched by
                            // one of the previous conditions.
                            assert(false);
                        }
                    }
                    /**
                     * @notice Changes a proxy's implementation contract and delegatecalls the new implementation
                     *         with some given data. Useful for atomic upgrade-and-initialize calls.
                     *
                     * @param _proxy          Address of the proxy to upgrade.
                     * @param _implementation Address of the new implementation address.
                     * @param _data           Data to trigger the new implementation with.
                     */
                    function upgradeAndCall(
                        address payable _proxy,
                        address _implementation,
                        bytes memory _data
                    ) external payable onlyOwner {
                        ProxyType ptype = proxyType[_proxy];
                        if (ptype == ProxyType.ERC1967) {
                            Proxy(_proxy).upgradeToAndCall{ value: msg.value }(_implementation, _data);
                        } else {
                            // reverts if proxy type is unknown
                            upgrade(_proxy, _implementation);
                            (bool success, ) = _proxy.call{ value: msg.value }(_data);
                            require(success, "ProxyAdmin: call to proxy after upgrade failed");
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
                pragma solidity ^0.8.0;
                import "../utils/Context.sol";
                /**
                 * @dev Contract module which provides a basic access control mechanism, where
                 * there is an account (an owner) that can be granted exclusive access to
                 * specific functions.
                 *
                 * By default, the owner account will be the one that deploys the contract. This
                 * can later be changed with {transferOwnership}.
                 *
                 * This module is used through inheritance. It will make available the modifier
                 * `onlyOwner`, which can be applied to your functions to restrict their use to
                 * the owner.
                 */
                abstract contract Ownable is Context {
                    address private _owner;
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    /**
                     * @dev Initializes the contract setting the deployer as the initial owner.
                     */
                    constructor() {
                        _transferOwnership(_msgSender());
                    }
                    /**
                     * @dev Throws if called by any account other than the owner.
                     */
                    modifier onlyOwner() {
                        _checkOwner();
                        _;
                    }
                    /**
                     * @dev Returns the address of the current owner.
                     */
                    function owner() public view virtual returns (address) {
                        return _owner;
                    }
                    /**
                     * @dev Throws if the sender is not the owner.
                     */
                    function _checkOwner() internal view virtual {
                        require(owner() == _msgSender(), "Ownable: caller is not the owner");
                    }
                    /**
                     * @dev Leaves the contract without owner. It will not be possible to call
                     * `onlyOwner` functions anymore. Can only be called by the current owner.
                     *
                     * NOTE: Renouncing ownership will leave the contract without an owner,
                     * thereby removing any functionality that is only available to the owner.
                     */
                    function renounceOwnership() public virtual onlyOwner {
                        _transferOwnership(address(0));
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Can only be called by the current owner.
                     */
                    function transferOwnership(address newOwner) public virtual onlyOwner {
                        require(newOwner != address(0), "Ownable: new owner is the zero address");
                        _transferOwnership(newOwner);
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Internal function without access restriction.
                     */
                    function _transferOwnership(address newOwner) internal virtual {
                        address oldOwner = _owner;
                        _owner = newOwner;
                        emit OwnershipTransferred(oldOwner, newOwner);
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Provides information about the current execution context, including the
                 * sender of the transaction and its data. While these are generally available
                 * via msg.sender and msg.data, they should not be accessed in such a direct
                 * manner, since when dealing with meta-transactions the account sending and
                 * paying for execution may not be the actual sender (as far as an application
                 * is concerned).
                 *
                 * This contract is only required for intermediate, library-like contracts.
                 */
                abstract contract Context {
                    function _msgSender() internal view virtual returns (address) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes calldata) {
                        return msg.data;
                    }
                }
                

                File 6 of 11: L1StandardBridge
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                // Contracts
                import { StandardBridge } from "src/universal/StandardBridge.sol";
                // Libraries
                import { Predeploys } from "src/libraries/Predeploys.sol";
                // Interfaces
                import { ISemver } from "interfaces/universal/ISemver.sol";
                import { ICrossDomainMessenger } from "interfaces/universal/ICrossDomainMessenger.sol";
                import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
                /// @custom:proxied true
                /// @title L1StandardBridge
                /// @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and
                ///         L2. In the case that an ERC20 token is native to L1, it will be escrowed within this
                ///         contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was
                ///         stored within this contract. After Bedrock, ETH is instead stored inside the
                ///         OptimismPortal contract.
                ///         NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples
                ///         of some token types that may not be properly supported by this contract include, but are
                ///         not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists.
                contract L1StandardBridge is StandardBridge, ISemver {
                    /// @custom:legacy
                    /// @notice Emitted whenever a deposit of ETH from L1 into L2 is initiated.
                    /// @param from      Address of the depositor.
                    /// @param to        Address of the recipient on L2.
                    /// @param amount    Amount of ETH deposited.
                    /// @param extraData Extra data attached to the deposit.
                    event ETHDepositInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
                    /// @custom:legacy
                    /// @notice Emitted whenever a withdrawal of ETH from L2 to L1 is finalized.
                    /// @param from      Address of the withdrawer.
                    /// @param to        Address of the recipient on L1.
                    /// @param amount    Amount of ETH withdrawn.
                    /// @param extraData Extra data attached to the withdrawal.
                    event ETHWithdrawalFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
                    /// @custom:legacy
                    /// @notice Emitted whenever an ERC20 deposit is initiated.
                    /// @param l1Token   Address of the token on L1.
                    /// @param l2Token   Address of the corresponding token on L2.
                    /// @param from      Address of the depositor.
                    /// @param to        Address of the recipient on L2.
                    /// @param amount    Amount of the ERC20 deposited.
                    /// @param extraData Extra data attached to the deposit.
                    event ERC20DepositInitiated(
                        address indexed l1Token,
                        address indexed l2Token,
                        address indexed from,
                        address to,
                        uint256 amount,
                        bytes extraData
                    );
                    /// @custom:legacy
                    /// @notice Emitted whenever an ERC20 withdrawal is finalized.
                    /// @param l1Token   Address of the token on L1.
                    /// @param l2Token   Address of the corresponding token on L2.
                    /// @param from      Address of the withdrawer.
                    /// @param to        Address of the recipient on L1.
                    /// @param amount    Amount of the ERC20 withdrawn.
                    /// @param extraData Extra data attached to the withdrawal.
                    event ERC20WithdrawalFinalized(
                        address indexed l1Token,
                        address indexed l2Token,
                        address indexed from,
                        address to,
                        uint256 amount,
                        bytes extraData
                    );
                    /// @notice Semantic version.
                    /// @custom:semver 2.3.0
                    string public constant version = "2.3.0";
                    /// @notice Address of the SuperchainConfig contract.
                    ISuperchainConfig public superchainConfig;
                    /// @custom:legacy
                    /// @custom:spacer systemConfig
                    /// @notice Spacer taking up the legacy `systemConfig` slot.
                    address private spacer_51_0_20;
                    /// @notice Constructs the L1StandardBridge contract.
                    constructor() StandardBridge() {
                        _disableInitializers();
                    }
                    /// @notice Initializer.
                    /// @param _messenger        Contract for the CrossDomainMessenger on this network.
                    /// @param _superchainConfig Contract for the SuperchainConfig on this network.
                    function initialize(ICrossDomainMessenger _messenger, ISuperchainConfig _superchainConfig) external initializer {
                        superchainConfig = _superchainConfig;
                        __StandardBridge_init({
                            _messenger: _messenger,
                            _otherBridge: StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE))
                        });
                    }
                    /// @inheritdoc StandardBridge
                    function paused() public view override returns (bool) {
                        return superchainConfig.paused();
                    }
                    /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
                    receive() external payable override onlyEOA {
                        _initiateETHDeposit(msg.sender, msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
                    }
                    /// @custom:legacy
                    /// @notice Deposits some amount of ETH into the sender's account on L2.
                    /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                    /// @param _extraData   Optional data to forward to L2.
                    ///                     Data supplied here will not be used to execute any code on L2 and is
                    ///                     only emitted as extra data for the convenience of off-chain tooling.
                    function depositETH(uint32 _minGasLimit, bytes calldata _extraData) external payable onlyEOA {
                        _initiateETHDeposit(msg.sender, msg.sender, _minGasLimit, _extraData);
                    }
                    /// @custom:legacy
                    /// @notice Deposits some amount of ETH into a target account on L2.
                    ///         Note that if ETH is sent to a contract on L2 and the call fails, then that ETH will
                    ///         be locked in the L2StandardBridge. ETH may be recoverable if the call can be
                    ///         successfully replayed by increasing the amount of gas supplied to the call. If the
                    ///         call will fail for any amount of gas, then the ETH will be locked permanently.
                    /// @param _to          Address of the recipient on L2.
                    /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                    /// @param _extraData   Optional data to forward to L2.
                    ///                     Data supplied here will not be used to execute any code on L2 and is
                    ///                     only emitted as extra data for the convenience of off-chain tooling.
                    function depositETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) external payable {
                        _initiateETHDeposit(msg.sender, _to, _minGasLimit, _extraData);
                    }
                    /// @custom:legacy
                    /// @notice Deposits some amount of ERC20 tokens into the sender's account on L2.
                    /// @param _l1Token     Address of the L1 token being deposited.
                    /// @param _l2Token     Address of the corresponding token on L2.
                    /// @param _amount      Amount of the ERC20 to deposit.
                    /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                    /// @param _extraData   Optional data to forward to L2.
                    ///                     Data supplied here will not be used to execute any code on L2 and is
                    ///                     only emitted as extra data for the convenience of off-chain tooling.
                    function depositERC20(
                        address _l1Token,
                        address _l2Token,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes calldata _extraData
                    )
                        external
                        virtual
                        onlyEOA
                    {
                        _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
                    }
                    /// @custom:legacy
                    /// @notice Deposits some amount of ERC20 tokens into a target account on L2.
                    /// @param _l1Token     Address of the L1 token being deposited.
                    /// @param _l2Token     Address of the corresponding token on L2.
                    /// @param _to          Address of the recipient on L2.
                    /// @param _amount      Amount of the ERC20 to deposit.
                    /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                    /// @param _extraData   Optional data to forward to L2.
                    ///                     Data supplied here will not be used to execute any code on L2 and is
                    ///                     only emitted as extra data for the convenience of off-chain tooling.
                    function depositERC20To(
                        address _l1Token,
                        address _l2Token,
                        address _to,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes calldata _extraData
                    )
                        external
                        virtual
                    {
                        _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, _to, _amount, _minGasLimit, _extraData);
                    }
                    /// @custom:legacy
                    /// @notice Finalizes a withdrawal of ETH from L2.
                    /// @param _from      Address of the withdrawer on L2.
                    /// @param _to        Address of the recipient on L1.
                    /// @param _amount    Amount of ETH to withdraw.
                    /// @param _extraData Optional data forwarded from L2.
                    function finalizeETHWithdrawal(
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes calldata _extraData
                    )
                        external
                        payable
                    {
                        finalizeBridgeETH(_from, _to, _amount, _extraData);
                    }
                    /// @custom:legacy
                    /// @notice Finalizes a withdrawal of ERC20 tokens from L2.
                    /// @param _l1Token   Address of the token on L1.
                    /// @param _l2Token   Address of the corresponding token on L2.
                    /// @param _from      Address of the withdrawer on L2.
                    /// @param _to        Address of the recipient on L1.
                    /// @param _amount    Amount of the ERC20 to withdraw.
                    /// @param _extraData Optional data forwarded from L2.
                    function finalizeERC20Withdrawal(
                        address _l1Token,
                        address _l2Token,
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes calldata _extraData
                    )
                        external
                    {
                        finalizeBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _extraData);
                    }
                    /// @custom:legacy
                    /// @notice Retrieves the access of the corresponding L2 bridge contract.
                    /// @return Address of the corresponding L2 bridge contract.
                    function l2TokenBridge() external view returns (address) {
                        return address(otherBridge);
                    }
                    /// @notice Internal function for initiating an ETH deposit.
                    /// @param _from        Address of the sender on L1.
                    /// @param _to          Address of the recipient on L2.
                    /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                    /// @param _extraData   Optional data to forward to L2.
                    function _initiateETHDeposit(address _from, address _to, uint32 _minGasLimit, bytes memory _extraData) internal {
                        _initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData);
                    }
                    /// @notice Internal function for initiating an ERC20 deposit.
                    /// @param _l1Token     Address of the L1 token being deposited.
                    /// @param _l2Token     Address of the corresponding token on L2.
                    /// @param _from        Address of the sender on L1.
                    /// @param _to          Address of the recipient on L2.
                    /// @param _amount      Amount of the ERC20 to deposit.
                    /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                    /// @param _extraData   Optional data to forward to L2.
                    function _initiateERC20Deposit(
                        address _l1Token,
                        address _l2Token,
                        address _from,
                        address _to,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes memory _extraData
                    )
                        internal
                    {
                        _initiateBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _minGasLimit, _extraData);
                    }
                    /// @inheritdoc StandardBridge
                    /// @notice Emits the legacy ETHDepositInitiated event followed by the ETHBridgeInitiated event.
                    ///         This is necessary for backwards compatibility with the legacy bridge.
                    function _emitETHBridgeInitiated(
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        override
                    {
                        emit ETHDepositInitiated(_from, _to, _amount, _extraData);
                        super._emitETHBridgeInitiated(_from, _to, _amount, _extraData);
                    }
                    /// @inheritdoc StandardBridge
                    /// @notice Emits the legacy ERC20DepositInitiated event followed by the ERC20BridgeInitiated
                    ///         event. This is necessary for backwards compatibility with the legacy bridge.
                    function _emitETHBridgeFinalized(
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        override
                    {
                        emit ETHWithdrawalFinalized(_from, _to, _amount, _extraData);
                        super._emitETHBridgeFinalized(_from, _to, _amount, _extraData);
                    }
                    /// @inheritdoc StandardBridge
                    /// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
                    ///         event. This is necessary for backwards compatibility with the legacy bridge.
                    function _emitERC20BridgeInitiated(
                        address _localToken,
                        address _remoteToken,
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        override
                    {
                        emit ERC20DepositInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                        super._emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                    }
                    /// @inheritdoc StandardBridge
                    /// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
                    ///         event. This is necessary for backwards compatibility with the legacy bridge.
                    function _emitERC20BridgeFinalized(
                        address _localToken,
                        address _remoteToken,
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        override
                    {
                        emit ERC20WithdrawalFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                        super._emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                // Contracts
                import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
                // Libraries
                import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
                import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
                import { SafeCall } from "src/libraries/SafeCall.sol";
                import { EOA } from "src/libraries/EOA.sol";
                // Interfaces
                import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                import { IOptimismMintableERC20 } from "interfaces/universal/IOptimismMintableERC20.sol";
                import { ILegacyMintableERC20 } from "interfaces/legacy/ILegacyMintableERC20.sol";
                import { ICrossDomainMessenger } from "interfaces/universal/ICrossDomainMessenger.sol";
                /// @custom:upgradeable
                /// @title StandardBridge
                /// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
                ///         the core bridging logic, including escrowing tokens that are native to the local chain
                ///         and minting/burning tokens that are native to the remote chain.
                abstract contract StandardBridge is Initializable {
                    using SafeERC20 for IERC20;
                    /// @notice The L2 gas limit set when eth is depoisited using the receive() function.
                    uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;
                    /// @custom:legacy
                    /// @custom:spacer messenger
                    /// @notice Spacer for backwards compatibility.
                    bytes30 private spacer_0_2_30;
                    /// @custom:legacy
                    /// @custom:spacer l2TokenBridge
                    /// @notice Spacer for backwards compatibility.
                    address private spacer_1_0_20;
                    /// @notice Mapping that stores deposits for a given pair of local and remote tokens.
                    mapping(address => mapping(address => uint256)) public deposits;
                    /// @notice Messenger contract on this domain.
                    /// @custom:network-specific
                    ICrossDomainMessenger public messenger;
                    /// @notice Corresponding bridge on the other domain.
                    /// @custom:network-specific
                    StandardBridge public otherBridge;
                    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                    ///         A gap size of 45 was chosen here, so that the first slot used in a child contract
                    ///         would be a multiple of 50.
                    uint256[45] private __gap;
                    /// @notice Emitted when an ETH bridge is initiated to the other chain.
                    /// @param from      Address of the sender.
                    /// @param to        Address of the receiver.
                    /// @param amount    Amount of ETH sent.
                    /// @param extraData Extra data sent with the transaction.
                    event ETHBridgeInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
                    /// @notice Emitted when an ETH bridge is finalized on this chain.
                    /// @param from      Address of the sender.
                    /// @param to        Address of the receiver.
                    /// @param amount    Amount of ETH sent.
                    /// @param extraData Extra data sent with the transaction.
                    event ETHBridgeFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
                    /// @notice Emitted when an ERC20 bridge is initiated to the other chain.
                    /// @param localToken  Address of the ERC20 on this chain.
                    /// @param remoteToken Address of the ERC20 on the remote chain.
                    /// @param from        Address of the sender.
                    /// @param to          Address of the receiver.
                    /// @param amount      Amount of the ERC20 sent.
                    /// @param extraData   Extra data sent with the transaction.
                    event ERC20BridgeInitiated(
                        address indexed localToken,
                        address indexed remoteToken,
                        address indexed from,
                        address to,
                        uint256 amount,
                        bytes extraData
                    );
                    /// @notice Emitted when an ERC20 bridge is finalized on this chain.
                    /// @param localToken  Address of the ERC20 on this chain.
                    /// @param remoteToken Address of the ERC20 on the remote chain.
                    /// @param from        Address of the sender.
                    /// @param to          Address of the receiver.
                    /// @param amount      Amount of the ERC20 sent.
                    /// @param extraData   Extra data sent with the transaction.
                    event ERC20BridgeFinalized(
                        address indexed localToken,
                        address indexed remoteToken,
                        address indexed from,
                        address to,
                        uint256 amount,
                        bytes extraData
                    );
                    /// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
                    ///         calling code within their constructors, but also doesn't really matter since we're
                    ///         just trying to prevent users accidentally depositing with smart contract wallets.
                    modifier onlyEOA() {
                        require(EOA.isSenderEOA(), "StandardBridge: function can only be called from an EOA");
                        _;
                    }
                    /// @notice Ensures that the caller is a cross-chain message from the other bridge.
                    modifier onlyOtherBridge() {
                        require(
                            msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(otherBridge),
                            "StandardBridge: function can only be called from the other bridge"
                        );
                        _;
                    }
                    /// @notice Initializer.
                    /// @param _messenger   Contract for CrossDomainMessenger on this network.
                    /// @param _otherBridge Contract for the other StandardBridge contract.
                    function __StandardBridge_init(
                        ICrossDomainMessenger _messenger,
                        StandardBridge _otherBridge
                    )
                        internal
                        onlyInitializing
                    {
                        messenger = _messenger;
                        otherBridge = _otherBridge;
                    }
                    /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
                    ///         Must be implemented by contracts that inherit.
                    receive() external payable virtual;
                    /// @notice Getter for messenger contract.
                    ///         Public getter is legacy and will be removed in the future. Use `messenger` instead.
                    /// @return Contract of the messenger on this domain.
                    /// @custom:legacy
                    function MESSENGER() external view returns (ICrossDomainMessenger) {
                        return messenger;
                    }
                    /// @notice Getter for the other bridge contract.
                    ///         Public getter is legacy and will be removed in the future. Use `otherBridge` instead.
                    /// @return Contract of the bridge on the other network.
                    /// @custom:legacy
                    function OTHER_BRIDGE() external view returns (StandardBridge) {
                        return otherBridge;
                    }
                    /// @notice This function should return true if the contract is paused.
                    ///         On L1 this function will check the SuperchainConfig for its paused status.
                    ///         On L2 this function should be a no-op.
                    /// @return Whether or not the contract is paused.
                    function paused() public view virtual returns (bool) {
                        return false;
                    }
                    /// @notice Sends ETH to the sender's address on the other chain.
                    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA {
                        _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
                    }
                    /// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
                    ///         smart contract and the call fails, the ETH will be temporarily locked in the
                    ///         StandardBridge on the other chain until the call is replayed. If the call cannot be
                    ///         replayed with any amount of gas (call always reverts), then the ETH will be
                    ///         permanently locked in the StandardBridge on the other chain. ETH will also
                    ///         be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
                    ///         in that case.
                    /// @param _to          Address of the receiver.
                    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function bridgeETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) public payable {
                        _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
                    }
                    /// @notice Sends ERC20 tokens to the sender's address on the other chain.
                    /// @param _localToken  Address of the ERC20 on this chain.
                    /// @param _remoteToken Address of the corresponding token on the remote chain.
                    /// @param _amount      Amount of local tokens to deposit.
                    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function bridgeERC20(
                        address _localToken,
                        address _remoteToken,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes calldata _extraData
                    )
                        public
                        virtual
                        onlyEOA
                    {
                        _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
                    }
                    /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
                    /// @param _localToken  Address of the ERC20 on this chain.
                    /// @param _remoteToken Address of the corresponding token on the remote chain.
                    /// @param _to          Address of the receiver.
                    /// @param _amount      Amount of local tokens to deposit.
                    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function bridgeERC20To(
                        address _localToken,
                        address _remoteToken,
                        address _to,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes calldata _extraData
                    )
                        public
                        virtual
                    {
                        _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData);
                    }
                    /// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
                    ///         StandardBridge contract on the remote chain.
                    /// @param _from      Address of the sender.
                    /// @param _to        Address of the receiver.
                    /// @param _amount    Amount of ETH being bridged.
                    /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
                    ///                   not be triggered with this data, but it will be emitted and can be used
                    ///                   to identify the transaction.
                    function finalizeBridgeETH(
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes calldata _extraData
                    )
                        public
                        payable
                        onlyOtherBridge
                    {
                        require(paused() == false, "StandardBridge: paused");
                        require(msg.value == _amount, "StandardBridge: amount sent does not match amount required");
                        require(_to != address(this), "StandardBridge: cannot send to self");
                        require(_to != address(messenger), "StandardBridge: cannot send to messenger");
                        // Emit the correct events. By default this will be _amount, but child
                        // contracts may override this function in order to emit legacy events as well.
                        _emitETHBridgeFinalized(_from, _to, _amount, _extraData);
                        bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
                        require(success, "StandardBridge: ETH transfer failed");
                    }
                    /// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
                    ///         StandardBridge contract on the remote chain.
                    /// @param _localToken  Address of the ERC20 on this chain.
                    /// @param _remoteToken Address of the corresponding token on the remote chain.
                    /// @param _from        Address of the sender.
                    /// @param _to          Address of the receiver.
                    /// @param _amount      Amount of the ERC20 being bridged.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function finalizeBridgeERC20(
                        address _localToken,
                        address _remoteToken,
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes calldata _extraData
                    )
                        public
                        onlyOtherBridge
                    {
                        require(paused() == false, "StandardBridge: paused");
                        if (_isOptimismMintableERC20(_localToken)) {
                            require(
                                _isCorrectTokenPair(_localToken, _remoteToken),
                                "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                            );
                            IOptimismMintableERC20(_localToken).mint(_to, _amount);
                        } else {
                            deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount;
                            IERC20(_localToken).safeTransfer(_to, _amount);
                        }
                        // Emit the correct events. By default this will be ERC20BridgeFinalized, but child
                        // contracts may override this function in order to emit legacy events as well.
                        _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                    }
                    /// @notice Initiates a bridge of ETH through the CrossDomainMessenger.
                    /// @param _from        Address of the sender.
                    /// @param _to          Address of the receiver.
                    /// @param _amount      Amount of ETH being bridged.
                    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function _initiateBridgeETH(
                        address _from,
                        address _to,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes memory _extraData
                    )
                        internal
                    {
                        require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value");
                        // Emit the correct events. By default this will be _amount, but child
                        // contracts may override this function in order to emit legacy events as well.
                        _emitETHBridgeInitiated(_from, _to, _amount, _extraData);
                        messenger.sendMessage{ value: _amount }({
                            _target: address(otherBridge),
                            _message: abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData),
                            _minGasLimit: _minGasLimit
                        });
                    }
                    /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
                    /// @param _localToken  Address of the ERC20 on this chain.
                    /// @param _remoteToken Address of the corresponding token on the remote chain.
                    /// @param _to          Address of the receiver.
                    /// @param _amount      Amount of local tokens to deposit.
                    /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                    /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                    ///                     not be triggered with this data, but it will be emitted and can be used
                    ///                     to identify the transaction.
                    function _initiateBridgeERC20(
                        address _localToken,
                        address _remoteToken,
                        address _from,
                        address _to,
                        uint256 _amount,
                        uint32 _minGasLimit,
                        bytes memory _extraData
                    )
                        internal
                    {
                        require(msg.value == 0, "StandardBridge: cannot send value");
                        if (_isOptimismMintableERC20(_localToken)) {
                            require(
                                _isCorrectTokenPair(_localToken, _remoteToken),
                                "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                            );
                            IOptimismMintableERC20(_localToken).burn(_from, _amount);
                        } else {
                            IERC20(_localToken).safeTransferFrom(_from, address(this), _amount);
                            deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount;
                        }
                        // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
                        // contracts may override this function in order to emit legacy events as well.
                        _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                        messenger.sendMessage({
                            _target: address(otherBridge),
                            _message: abi.encodeWithSelector(
                                this.finalizeBridgeERC20.selector,
                                // Because this call will be executed on the remote chain, we reverse the order of
                                // the remote and local token addresses relative to their order in the
                                // finalizeBridgeERC20 function.
                                _remoteToken,
                                _localToken,
                                _from,
                                _to,
                                _amount,
                                _extraData
                            ),
                            _minGasLimit: _minGasLimit
                        });
                    }
                    /// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
                    ///         Just the way we like it.
                    /// @param _token Address of the token to check.
                    /// @return True if the token is an OptimismMintableERC20.
                    function _isOptimismMintableERC20(address _token) internal view returns (bool) {
                        return ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId)
                            || ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
                    }
                    /// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
                    ///         Calls can be saved in the future by combining this logic with
                    ///         `_isOptimismMintableERC20`.
                    /// @param _mintableToken OptimismMintableERC20 to check against.
                    /// @param _otherToken    Pair token to check.
                    /// @return True if the other token is the correct pair token for the OptimismMintableERC20.
                    function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) {
                        if (ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId)) {
                            return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token();
                        } else {
                            return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
                        }
                    }
                    /// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
                    ///         when an ETH bridge is finalized on this chain.
                    /// @param _from      Address of the sender.
                    /// @param _to        Address of the receiver.
                    /// @param _amount    Amount of ETH sent.
                    /// @param _extraData Extra data sent with the transaction.
                    function _emitETHBridgeInitiated(
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        virtual
                    {
                        emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
                    }
                    /// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
                    ///         ETH bridge is finalized on this chain.
                    /// @param _from      Address of the sender.
                    /// @param _to        Address of the receiver.
                    /// @param _amount    Amount of ETH sent.
                    /// @param _extraData Extra data sent with the transaction.
                    function _emitETHBridgeFinalized(
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        virtual
                    {
                        emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
                    }
                    /// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
                    ///         event when an ERC20 bridge is initiated to the other chain.
                    /// @param _localToken  Address of the ERC20 on this chain.
                    /// @param _remoteToken Address of the ERC20 on the remote chain.
                    /// @param _from        Address of the sender.
                    /// @param _to          Address of the receiver.
                    /// @param _amount      Amount of the ERC20 sent.
                    /// @param _extraData   Extra data sent with the transaction.
                    function _emitERC20BridgeInitiated(
                        address _localToken,
                        address _remoteToken,
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        virtual
                    {
                        emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                    }
                    /// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
                    ///         event when an ERC20 bridge is initiated to the other chain.
                    /// @param _localToken  Address of the ERC20 on this chain.
                    /// @param _remoteToken Address of the ERC20 on the remote chain.
                    /// @param _from        Address of the sender.
                    /// @param _to          Address of the receiver.
                    /// @param _amount      Amount of the ERC20 sent.
                    /// @param _extraData   Extra data sent with the transaction.
                    function _emitERC20BridgeFinalized(
                        address _localToken,
                        address _remoteToken,
                        address _from,
                        address _to,
                        uint256 _amount,
                        bytes memory _extraData
                    )
                        internal
                        virtual
                    {
                        emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Predeploys
                /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
                //          This excludes the preinstalls (non-protocol contracts).
                library Predeploys {
                    /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
                    uint256 internal constant PREDEPLOY_COUNT = 2048;
                    /// @custom:legacy
                    /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
                    ///         L2ToL1MessagePasser contract instead.
                    address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
                    /// @custom:legacy
                    /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
                    ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
                    ///         Not embedded into new OP-Stack chains.
                    address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
                    /// @custom:legacy
                    /// @notice Address of the DeployerWhitelist predeploy. No longer active.
                    address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
                    /// @notice Address of the canonical WETH contract.
                    address internal constant WETH = 0x4200000000000000000000000000000000000006;
                    /// @notice Address of the L2CrossDomainMessenger predeploy.
                    address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
                    /// @notice Address of the GasPriceOracle predeploy. Includes fee information
                    ///         and helpers for computing the L1 portion of the transaction fee.
                    address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
                    /// @notice Address of the L2StandardBridge predeploy.
                    address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
                    //// @notice Address of the SequencerFeeWallet predeploy.
                    address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
                    /// @notice Address of the OptimismMintableERC20Factory predeploy.
                    address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
                    /// @custom:legacy
                    /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
                    ///         instead, which exposes more information about the L1 state.
                    address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
                    /// @notice Address of the L2ERC721Bridge predeploy.
                    address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
                    /// @notice Address of the L1Block predeploy.
                    address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
                    /// @notice Address of the L2ToL1MessagePasser predeploy.
                    address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
                    /// @notice Address of the OptimismMintableERC721Factory predeploy.
                    address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
                    /// @notice Address of the ProxyAdmin predeploy.
                    address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
                    /// @notice Address of the BaseFeeVault predeploy.
                    address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
                    /// @notice Address of the L1FeeVault predeploy.
                    address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
                    /// @notice Address of the OperatorFeeVault predeploy.
                    address internal constant OPERATOR_FEE_VAULT = 0x420000000000000000000000000000000000001b;
                    /// @notice Address of the SchemaRegistry predeploy.
                    address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
                    /// @notice Address of the EAS predeploy.
                    address internal constant EAS = 0x4200000000000000000000000000000000000021;
                    /// @notice Address of the GovernanceToken predeploy.
                    address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
                    /// @custom:legacy
                    /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
                    ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
                    ///         can no longer be accessed.
                    address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
                    /// @notice Address of the CrossL2Inbox predeploy.
                    address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
                    /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
                    address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
                    /// @notice Address of the SuperchainWETH predeploy.
                    address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;
                    /// @notice Address of the ETHLiquidity predeploy.
                    address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;
                    /// @notice Address of the OptimismSuperchainERC20Factory predeploy.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;
                    /// @notice Address of the OptimismSuperchainERC20Beacon predeploy.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20_BEACON = 0x4200000000000000000000000000000000000027;
                    // TODO: Precalculate the address of the implementation contract
                    /// @notice Arbitrary address of the OptimismSuperchainERC20 implementation contract.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20 = 0xB9415c6cA93bdC545D4c5177512FCC22EFa38F28;
                    /// @notice Address of the SuperchainTokenBridge predeploy.
                    address internal constant SUPERCHAIN_TOKEN_BRIDGE = 0x4200000000000000000000000000000000000028;
                    /// @notice Returns the name of the predeploy at the given address.
                    function getName(address _addr) internal pure returns (string memory out_) {
                        require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
                        if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
                        if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
                        if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
                        if (_addr == WETH) return "WETH";
                        if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
                        if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
                        if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
                        if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
                        if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
                        if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
                        if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
                        if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
                        if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
                        if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
                        if (_addr == PROXY_ADMIN) return "ProxyAdmin";
                        if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
                        if (_addr == L1_FEE_VAULT) return "L1FeeVault";
                        if (_addr == OPERATOR_FEE_VAULT) return "OperatorFeeVault";
                        if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
                        if (_addr == EAS) return "EAS";
                        if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
                        if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
                        if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
                        if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
                        if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
                        if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
                        if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
                        if (_addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON) return "OptimismSuperchainERC20Beacon";
                        if (_addr == SUPERCHAIN_TOKEN_BRIDGE) return "SuperchainTokenBridge";
                        revert("Predeploys: unnamed predeploy");
                    }
                    /// @notice Returns true if the predeploy is not proxied.
                    function notProxied(address _addr) internal pure returns (bool) {
                        return _addr == GOVERNANCE_TOKEN || _addr == WETH;
                    }
                    /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
                    function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
                        return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
                            || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
                            || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
                            || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
                            || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
                            || _addr == L1_FEE_VAULT || _addr == OPERATOR_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS
                            || _addr == GOVERNANCE_TOKEN || (_useInterop && _addr == CROSS_L2_INBOX)
                            || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) || (_useInterop && _addr == SUPERCHAIN_WETH)
                            || (_useInterop && _addr == ETH_LIQUIDITY) || (_useInterop && _addr == SUPERCHAIN_TOKEN_BRIDGE);
                    }
                    function isPredeployNamespace(address _addr) internal pure returns (bool) {
                        return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
                    }
                    /// @notice Function to compute the expected address of the predeploy implementation
                    ///         in the genesis state.
                    function predeployToCodeNamespace(address _addr) internal pure returns (address) {
                        require(
                            isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
                        );
                        return address(
                            uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
                        );
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title ISemver
                /// @notice ISemver is a simple contract for ensuring that contracts are
                ///         versioned using semantic versioning.
                interface ISemver {
                    /// @notice Getter for the semantic version of the contract. This is not
                    ///         meant to be used onchain but instead meant to be used by offchain
                    ///         tooling.
                    /// @return Semver contract version as a string.
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface ICrossDomainMessenger {
                    event FailedRelayedMessage(bytes32 indexed msgHash);
                    event Initialized(uint8 version);
                    event RelayedMessage(bytes32 indexed msgHash);
                    event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
                    event SentMessageExtension1(address indexed sender, uint256 value);
                    function MESSAGE_VERSION() external view returns (uint16);
                    function MIN_GAS_CALLDATA_OVERHEAD() external view returns (uint64);
                    function MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR() external view returns (uint64);
                    function MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR() external view returns (uint64);
                    function OTHER_MESSENGER() external view returns (ICrossDomainMessenger);
                    function RELAY_CALL_OVERHEAD() external view returns (uint64);
                    function RELAY_CONSTANT_OVERHEAD() external view returns (uint64);
                    function RELAY_GAS_CHECK_BUFFER() external view returns (uint64);
                    function RELAY_RESERVED_GAS() external view returns (uint64);
                    function TX_BASE_GAS() external view returns (uint64);
                    function FLOOR_CALLDATA_OVERHEAD() external view returns (uint64);
                    function ENCODING_OVERHEAD() external view returns (uint64);
                    function baseGas(bytes memory _message, uint32 _minGasLimit) external pure returns (uint64);
                    function failedMessages(bytes32) external view returns (bool);
                    function messageNonce() external view returns (uint256);
                    function otherMessenger() external view returns (ICrossDomainMessenger);
                    function paused() external view returns (bool);
                    function relayMessage(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _minGasLimit,
                        bytes memory _message
                    )
                        external
                        payable;
                    function sendMessage(address _target, bytes memory _message, uint32 _minGasLimit) external payable;
                    function successfulMessages(bytes32) external view returns (bool);
                    function xDomainMessageSender() external view returns (address);
                    function __constructor__() external;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface ISuperchainConfig {
                    enum UpdateType {
                        GUARDIAN
                    }
                    event ConfigUpdate(UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event Paused(string identifier);
                    event Unpaused();
                    function GUARDIAN_SLOT() external view returns (bytes32);
                    function PAUSED_SLOT() external view returns (bytes32);
                    function guardian() external view returns (address guardian_);
                    function initialize(address _guardian, bool _paused) external;
                    function pause(string memory _identifier) external;
                    function paused() external view returns (bool paused_);
                    function unpause() external;
                    function version() external view returns (string memory);
                    function __constructor__() external;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
                pragma solidity ^0.8.2;
                import "../../utils/Address.sol";
                /**
                 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                 *
                 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                 * case an upgrade adds a module that needs to be initialized.
                 *
                 * For example:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * contract MyToken is ERC20Upgradeable {
                 *     function initialize() initializer public {
                 *         __ERC20_init("MyToken", "MTK");
                 *     }
                 * }
                 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                 *     function initializeV2() reinitializer(2) public {
                 *         __ERC20Permit_init("MyToken");
                 *     }
                 * }
                 * ```
                 *
                 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                 *
                 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                 *
                 * [CAUTION]
                 * ====
                 * Avoid leaving a contract uninitialized.
                 *
                 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * /// @custom:oz-upgrades-unsafe-allow constructor
                 * constructor() {
                 *     _disableInitializers();
                 * }
                 * ```
                 * ====
                 */
                abstract contract Initializable {
                    /**
                     * @dev Indicates that the contract has been initialized.
                     * @custom:oz-retyped-from bool
                     */
                    uint8 private _initialized;
                    /**
                     * @dev Indicates that the contract is in the process of being initialized.
                     */
                    bool private _initializing;
                    /**
                     * @dev Triggered when the contract has been initialized or reinitialized.
                     */
                    event Initialized(uint8 version);
                    /**
                     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                     */
                    modifier initializer() {
                        bool isTopLevelCall = !_initializing;
                        require(
                            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                            "Initializable: contract is already initialized"
                        );
                        _initialized = 1;
                        if (isTopLevelCall) {
                            _initializing = true;
                        }
                        _;
                        if (isTopLevelCall) {
                            _initializing = false;
                            emit Initialized(1);
                        }
                    }
                    /**
                     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                     * used to initialize parent contracts.
                     *
                     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                     * initialization step. This is essential to configure modules that are added through upgrades and that require
                     * initialization.
                     *
                     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                     * a contract, executing them in the right order is up to the developer or operator.
                     */
                    modifier reinitializer(uint8 version) {
                        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                        _initialized = version;
                        _initializing = true;
                        _;
                        _initializing = false;
                        emit Initialized(version);
                    }
                    /**
                     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                     * {initializer} and {reinitializer} modifiers, directly or indirectly.
                     */
                    modifier onlyInitializing() {
                        require(_initializing, "Initializable: contract is not initializing");
                        _;
                    }
                    /**
                     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                     * through proxies.
                     */
                    function _disableInitializers() internal virtual {
                        require(!_initializing, "Initializable: contract is initializing");
                        if (_initialized < type(uint8).max) {
                            _initialized = type(uint8).max;
                            emit Initialized(type(uint8).max);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)
                pragma solidity ^0.8.0;
                import "./IERC165.sol";
                /**
                 * @dev Library used to query support of an interface declared via {IERC165}.
                 *
                 * Note that these functions return the actual result of the query: they do not
                 * `revert` if an interface is not supported. It is up to the caller to decide
                 * what to do in these cases.
                 */
                library ERC165Checker {
                    // As per the EIP-165 spec, no interface should ever match 0xffffffff
                    bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
                    /**
                     * @dev Returns true if `account` supports the {IERC165} interface,
                     */
                    function supportsERC165(address account) internal view returns (bool) {
                        // Any contract that implements ERC165 must explicitly indicate support of
                        // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
                        return
                            _supportsERC165Interface(account, type(IERC165).interfaceId) &&
                            !_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
                    }
                    /**
                     * @dev Returns true if `account` supports the interface defined by
                     * `interfaceId`. Support for {IERC165} itself is queried automatically.
                     *
                     * See {IERC165-supportsInterface}.
                     */
                    function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
                        // query support of both ERC165 as per the spec and support of _interfaceId
                        return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
                    }
                    /**
                     * @dev Returns a boolean array where each value corresponds to the
                     * interfaces passed in and whether they're supported or not. This allows
                     * you to batch check interfaces for a contract where your expectation
                     * is that some interfaces may not be supported.
                     *
                     * See {IERC165-supportsInterface}.
                     *
                     * _Available since v3.4._
                     */
                    function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
                        internal
                        view
                        returns (bool[] memory)
                    {
                        // an array of booleans corresponding to interfaceIds and whether they're supported or not
                        bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
                        // query support of ERC165 itself
                        if (supportsERC165(account)) {
                            // query support of each interface in interfaceIds
                            for (uint256 i = 0; i < interfaceIds.length; i++) {
                                interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
                            }
                        }
                        return interfaceIdsSupported;
                    }
                    /**
                     * @dev Returns true if `account` supports all the interfaces defined in
                     * `interfaceIds`. Support for {IERC165} itself is queried automatically.
                     *
                     * Batch-querying can lead to gas savings by skipping repeated checks for
                     * {IERC165} support.
                     *
                     * See {IERC165-supportsInterface}.
                     */
                    function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
                        // query support of ERC165 itself
                        if (!supportsERC165(account)) {
                            return false;
                        }
                        // query support of each interface in _interfaceIds
                        for (uint256 i = 0; i < interfaceIds.length; i++) {
                            if (!_supportsERC165Interface(account, interfaceIds[i])) {
                                return false;
                            }
                        }
                        // all interfaces supported
                        return true;
                    }
                    /**
                     * @notice Query if a contract implements an interface, does not check ERC165 support
                     * @param account The address of the contract to query for support of an interface
                     * @param interfaceId The interface identifier, as specified in ERC-165
                     * @return true if the contract at account indicates support of the interface with
                     * identifier interfaceId, false otherwise
                     * @dev Assumes that account contains a contract that supports ERC165, otherwise
                     * the behavior of this method is undefined. This precondition can be checked
                     * with {supportsERC165}.
                     * Interface identification is specified in ERC-165.
                     */
                    function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
                        // prepare call
                        bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
                        // perform static call
                        bool success;
                        uint256 returnSize;
                        uint256 returnValue;
                        assembly {
                            success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
                            returnSize := returndatasize()
                            returnValue := mload(0x00)
                        }
                        return success && returnSize >= 0x20 && returnValue > 0;
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
                pragma solidity ^0.8.0;
                import "../IERC20.sol";
                import "../extensions/draft-IERC20Permit.sol";
                import "../../../utils/Address.sol";
                /**
                 * @title SafeERC20
                 * @dev Wrappers around ERC20 operations that throw on failure (when the token
                 * contract returns false). Tokens that return no value (and instead revert or
                 * throw on failure) are also supported, non-reverting calls are assumed to be
                 * successful.
                 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                 */
                library SafeERC20 {
                    using Address for address;
                    function safeTransfer(
                        IERC20 token,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                    }
                    function safeTransferFrom(
                        IERC20 token,
                        address from,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                    }
                    /**
                     * @dev Deprecated. This function has issues similar to the ones found in
                     * {IERC20-approve}, and its usage is discouraged.
                     *
                     * Whenever possible, use {safeIncreaseAllowance} and
                     * {safeDecreaseAllowance} instead.
                     */
                    function safeApprove(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        // safeApprove should only be called when setting an initial allowance,
                        // or when resetting it to zero. To increase and decrease it, use
                        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                        require(
                            (value == 0) || (token.allowance(address(this), spender) == 0),
                            "SafeERC20: approve from non-zero to non-zero allowance"
                        );
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                    }
                    function safeIncreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        uint256 newAllowance = token.allowance(address(this), spender) + value;
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                    function safeDecreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        unchecked {
                            uint256 oldAllowance = token.allowance(address(this), spender);
                            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                            uint256 newAllowance = oldAllowance - value;
                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                        }
                    }
                    function safePermit(
                        IERC20Permit token,
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal {
                        uint256 nonceBefore = token.nonces(owner);
                        token.permit(owner, spender, value, deadline, v, r, s);
                        uint256 nonceAfter = token.nonces(owner);
                        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                    }
                    /**
                     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                     * on the return value: the return value is optional (but if data is returned, it must not be false).
                     * @param token The token targeted by the call.
                     * @param data The call data (encoded using abi.encode or one of its variants).
                     */
                    function _callOptionalReturn(IERC20 token, bytes memory data) private {
                        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                        // the target address contains contract code and also asserts for success in the low-level call.
                        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                        if (returndata.length > 0) {
                            // Return data is optional
                            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title SafeCall
                /// @notice Perform low level safe calls
                library SafeCall {
                    /// @notice Performs a low level call without copying any returndata.
                    /// @dev Passes no calldata to the call context.
                    /// @param _target   Address to call
                    /// @param _gas      Amount of gas to pass to the call
                    /// @param _value    Amount of value to pass to the call
                    function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                        assembly {
                            success_ :=
                                call(
                                    _gas, // gas
                                    _target, // recipient
                                    _value, // ether value
                                    0, // inloc
                                    0, // inlen
                                    0, // outloc
                                    0 // outlen
                                )
                        }
                    }
                    /// @notice Perform a low level call with all gas without copying any returndata
                    /// @param _target   Address to call
                    /// @param _value    Amount of value to pass to the call
                    function send(address _target, uint256 _value) internal returns (bool success_) {
                        success_ = send(_target, gasleft(), _value);
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _gas      Amount of gas to pass to the call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function call(
                        address _target,
                        uint256 _gas,
                        uint256 _value,
                        bytes memory _calldata
                    )
                        internal
                        returns (bool success_)
                    {
                        assembly {
                            success_ :=
                                call(
                                    _gas, // gas
                                    _target, // recipient
                                    _value, // ether value
                                    add(_calldata, 32), // inloc
                                    mload(_calldata), // inlen
                                    0, // outloc
                                    0 // outlen
                                )
                        }
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                        success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _calldata Calldata to pass to the call
                    function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                        success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
                    }
                    /// @notice Helper function to determine if there is sufficient gas remaining within the context
                    ///         to guarantee that the minimum gas requirement for a call will be met as well as
                    ///         optionally reserving a specified amount of gas for after the call has concluded.
                    /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                    /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                    ///                     of the target context.
                    /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                    ///         context as well as reserve `_reservedGas` for the caller after the execution of
                    ///         the target context.
                    /// @dev !!!!! FOOTGUN ALERT !!!!!
                    ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                    ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                    ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                    ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                    ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                    ///          factors of the dynamic cost of the `CALL` opcode.
                    ///      2.) This function should *directly* precede the external call if possible. There is an
                    ///          added buffer to account for gas consumed between this check and the call, but it
                    ///          is only 5,700 gas.
                    ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                    ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                    ///          truncated.
                    ///      4.) Use wisely. This function is not a silver bullet.
                    function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                        bool _hasMinGas;
                        assembly {
                            // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                            _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                        }
                        return _hasMinGas;
                    }
                    /// @notice Perform a low level call without copying any returndata. This function
                    ///         will revert if the call cannot be performed with the specified minimum
                    ///         gas.
                    /// @param _target   Address to call
                    /// @param _minGas   The minimum amount of gas that may be passed to the call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function callWithMinGas(
                        address _target,
                        uint256 _minGas,
                        uint256 _value,
                        bytes memory _calldata
                    )
                        internal
                        returns (bool)
                    {
                        bool _success;
                        bool _hasMinGas = hasMinGas(_minGas, 0);
                        assembly {
                            // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                            if iszero(_hasMinGas) {
                                // Store the "Error(string)" selector in scratch space.
                                mstore(0, 0x08c379a0)
                                // Store the pointer to the string length in scratch space.
                                mstore(32, 32)
                                // Store the string.
                                //
                                // SAFETY:
                                // - We pad the beginning of the string with two zero bytes as well as the
                                // length (24) to ensure that we override the free memory pointer at offset
                                // 0x40. This is necessary because the free memory pointer is likely to
                                // be greater than 1 byte when this function is called, but it is incredibly
                                // unlikely that it will be greater than 3 bytes. As for the data within
                                // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                                // - It's fine to clobber the free memory pointer, we're reverting.
                                mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                                // Revert with 'Error("SafeCall: Not enough gas")'
                                revert(28, 100)
                            }
                            // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                            // above assertion. This ensures that, in all circumstances (except for when the
                            // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                            // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                            // the minimum amount of gas specified.
                            _success :=
                                call(
                                    gas(), // gas
                                    _target, // recipient
                                    _value, // ether value
                                    add(_calldata, 32), // inloc
                                    mload(_calldata), // inlen
                                    0x00, // outloc
                                    0x00 // outlen
                                )
                        }
                        return _success;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title EOA
                /// @notice A library for detecting if an address is an EOA.
                library EOA {
                    /// @notice Returns true if sender address is an EOA.
                    /// @return isEOA_ True if the sender address is an EOA.
                    function isSenderEOA() internal view returns (bool isEOA_) {
                        if (msg.sender == tx.origin) {
                            isEOA_ = true;
                        } else if (address(msg.sender).code.length == 23) {
                            // If the sender is not the origin, check for 7702 delegated EOAs.
                            assembly {
                                let ptr := mload(0x40)
                                mstore(0x40, add(ptr, 0x20))
                                extcodecopy(caller(), ptr, 0, 0x20)
                                isEOA_ := eq(shr(232, mload(ptr)), 0xEF0100)
                            }
                        } else {
                            // If more or less than 23 bytes of code, not a 7702 delegated EOA.
                            isEOA_ = false;
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 standard as defined in the EIP.
                 */
                interface IERC20 {
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `to`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address to, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `from` to `to` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 amount
                    ) external returns (bool);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
                /// @title IOptimismMintableERC20
                /// @notice This interface is available on the OptimismMintableERC20 contract.
                ///         We declare it as a separate interface so that it can be used in
                ///         custom implementations of OptimismMintableERC20.
                interface IOptimismMintableERC20 is IERC165 {
                    function remoteToken() external view returns (address);
                    function bridge() external returns (address);
                    function mint(address _to, uint256 _amount) external;
                    function burn(address _from, uint256 _amount) external;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
                /// @custom:legacy
                /// @title ILegacyMintableERC20
                /// @notice This interface was available on the legacy L2StandardERC20 contract.
                ///         It remains available on the OptimismMintableERC20 contract for
                ///         backwards compatibility.
                interface ILegacyMintableERC20 is IERC165 {
                    function l1Token() external view returns (address);
                    function mint(address _to, uint256 _amount) external;
                    function burn(address _from, uint256 _amount) external;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library Address {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(isContract(target), "Address: delegate call to non-contract");
                        (bool success, bytes memory returndata) = target.delegatecall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                /// @solidity memory-safe-assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC165 standard, as defined in the
                 * https://eips.ethereum.org/EIPS/eip-165[EIP].
                 *
                 * Implementers can declare support of contract interfaces, which can then be
                 * queried by others ({ERC165Checker}).
                 *
                 * For an implementation, see {ERC165}.
                 */
                interface IERC165 {
                    /**
                     * @dev Returns true if this contract implements the interface defined by
                     * `interfaceId`. See the corresponding
                     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
                     * to learn more about how these ids are created.
                     *
                     * This function call must use less than 30 000 gas.
                     */
                    function supportsInterface(bytes4 interfaceId) external view returns (bool);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                 *
                 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                 * need to send a transaction, and thus is not required to hold Ether at all.
                 */
                interface IERC20Permit {
                    /**
                     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                     * given ``owner``'s signed approval.
                     *
                     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                     * ordering also apply here.
                     *
                     * Emits an {Approval} event.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     * - `deadline` must be a timestamp in the future.
                     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                     * over the EIP712-formatted function arguments.
                     * - the signature must use ``owner``'s current nonce (see {nonces}).
                     *
                     * For more information on the signature format, see the
                     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                     * section].
                     */
                    function permit(
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) external;
                    /**
                     * @dev Returns the current nonce for `owner`. This value must be
                     * included whenever a signature is generated for {permit}.
                     *
                     * Every successful call to {permit} increases ``owner``'s nonce by one. This
                     * prevents a signature from being used multiple times.
                     */
                    function nonces(address owner) external view returns (uint256);
                    /**
                     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                     */
                    // solhint-disable-next-line func-name-mixedcase
                    function DOMAIN_SEPARATOR() external view returns (bytes32);
                }
                

                File 7 of 11: RocketStorage
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.0 <0.8.0;
                /**
                 * @dev Wrappers over Solidity's arithmetic operations with added overflow
                 * checks.
                 *
                 * Arithmetic operations in Solidity wrap on overflow. This can easily result
                 * in bugs, because programmers usually assume that an overflow raises an
                 * error, which is the standard behavior in high level programming languages.
                 * `SafeMath` restores this intuition by reverting the transaction when an
                 * operation overflows.
                 *
                 * Using this library instead of the unchecked operations eliminates an entire
                 * class of bugs, so it's recommended to use it always.
                 */
                library SafeMath {
                    /**
                     * @dev Returns the addition of two unsigned integers, with an overflow flag.
                     *
                     * _Available since v3.4._
                     */
                    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        uint256 c = a + b;
                        if (c < a) return (false, 0);
                        return (true, c);
                    }
                    /**
                     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
                     *
                     * _Available since v3.4._
                     */
                    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        if (b > a) return (false, 0);
                        return (true, a - b);
                    }
                    /**
                     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
                     *
                     * _Available since v3.4._
                     */
                    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                        // benefit is lost if 'b' is also tested.
                        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                        if (a == 0) return (true, 0);
                        uint256 c = a * b;
                        if (c / a != b) return (false, 0);
                        return (true, c);
                    }
                    /**
                     * @dev Returns the division of two unsigned integers, with a division by zero flag.
                     *
                     * _Available since v3.4._
                     */
                    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        if (b == 0) return (false, 0);
                        return (true, a / b);
                    }
                    /**
                     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
                     *
                     * _Available since v3.4._
                     */
                    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                        if (b == 0) return (false, 0);
                        return (true, a % b);
                    }
                    /**
                     * @dev Returns the addition of two unsigned integers, reverting on
                     * overflow.
                     *
                     * Counterpart to Solidity's `+` operator.
                     *
                     * Requirements:
                     *
                     * - Addition cannot overflow.
                     */
                    function add(uint256 a, uint256 b) internal pure returns (uint256) {
                        uint256 c = a + b;
                        require(c >= a, "SafeMath: addition overflow");
                        return c;
                    }
                    /**
                     * @dev Returns the subtraction of two unsigned integers, reverting on
                     * overflow (when the result is negative).
                     *
                     * Counterpart to Solidity's `-` operator.
                     *
                     * Requirements:
                     *
                     * - Subtraction cannot overflow.
                     */
                    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                        require(b <= a, "SafeMath: subtraction overflow");
                        return a - b;
                    }
                    /**
                     * @dev Returns the multiplication of two unsigned integers, reverting on
                     * overflow.
                     *
                     * Counterpart to Solidity's `*` operator.
                     *
                     * Requirements:
                     *
                     * - Multiplication cannot overflow.
                     */
                    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                        if (a == 0) return 0;
                        uint256 c = a * b;
                        require(c / a == b, "SafeMath: multiplication overflow");
                        return c;
                    }
                    /**
                     * @dev Returns the integer division of two unsigned integers, reverting on
                     * division by zero. The result is rounded towards zero.
                     *
                     * Counterpart to Solidity's `/` operator. Note: this function uses a
                     * `revert` opcode (which leaves remaining gas untouched) while Solidity
                     * uses an invalid opcode to revert (consuming all remaining gas).
                     *
                     * Requirements:
                     *
                     * - The divisor cannot be zero.
                     */
                    function div(uint256 a, uint256 b) internal pure returns (uint256) {
                        require(b > 0, "SafeMath: division by zero");
                        return a / b;
                    }
                    /**
                     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                     * reverting when dividing by zero.
                     *
                     * Counterpart to Solidity's `%` operator. This function uses a `revert`
                     * opcode (which leaves remaining gas untouched) while Solidity uses an
                     * invalid opcode to revert (consuming all remaining gas).
                     *
                     * Requirements:
                     *
                     * - The divisor cannot be zero.
                     */
                    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                        require(b > 0, "SafeMath: modulo by zero");
                        return a % b;
                    }
                    /**
                     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
                     * overflow (when the result is negative).
                     *
                     * CAUTION: This function is deprecated because it requires allocating memory for the error
                     * message unnecessarily. For custom revert reasons use {trySub}.
                     *
                     * Counterpart to Solidity's `-` operator.
                     *
                     * Requirements:
                     *
                     * - Subtraction cannot overflow.
                     */
                    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                        require(b <= a, errorMessage);
                        return a - b;
                    }
                    /**
                     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
                     * division by zero. The result is rounded towards zero.
                     *
                     * CAUTION: This function is deprecated because it requires allocating memory for the error
                     * message unnecessarily. For custom revert reasons use {tryDiv}.
                     *
                     * Counterpart to Solidity's `/` operator. Note: this function uses a
                     * `revert` opcode (which leaves remaining gas untouched) while Solidity
                     * uses an invalid opcode to revert (consuming all remaining gas).
                     *
                     * Requirements:
                     *
                     * - The divisor cannot be zero.
                     */
                    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                        require(b > 0, errorMessage);
                        return a / b;
                    }
                    /**
                     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                     * reverting with custom message when dividing by zero.
                     *
                     * CAUTION: This function is deprecated because it requires allocating memory for the error
                     * message unnecessarily. For custom revert reasons use {tryMod}.
                     *
                     * Counterpart to Solidity's `%` operator. This function uses a `revert`
                     * opcode (which leaves remaining gas untouched) while Solidity uses an
                     * invalid opcode to revert (consuming all remaining gas).
                     *
                     * Requirements:
                     *
                     * - The divisor cannot be zero.
                     */
                    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                        require(b > 0, errorMessage);
                        return a % b;
                    }
                }
                /**
                  *       .
                  *      / \\
                  *     |.'.|
                  *     |'.'|
                  *   ,'|   |`.
                  *  |,-'-|-'-.|
                  *   __|_| |         _        _      _____           _
                  *  | ___ \\|        | |      | |    | ___ \\         | |
                  *  | |_/ /|__   ___| | _____| |_   | |_/ /__   ___ | |
                  *  |    // _ \\ / __| |/ / _ \\ __|  |  __/ _ \\ / _ \\| |
                  *  | |\\ \\ (_) | (__|   <  __/ |_   | | | (_) | (_) | |
                  *  \\_| \\_\\___/ \\___|_|\\_\\___|\\__|  \\_|  \\___/ \\___/|_|
                  * +---------------------------------------------------+
                  * |    DECENTRALISED STAKING PROTOCOL FOR ETHEREUM    |
                  * +---------------------------------------------------+
                  *
                  *  Rocket Pool is a first-of-its-kind Ethereum staking pool protocol, designed to
                  *  be community-owned, decentralised, and trustless.
                  *
                  *  For more information about Rocket Pool, visit https://rocketpool.net
                  *
                  *  Authors: David Rugendyke, Jake Pospischil, Kane Wallmann, Darren Langley, Joe Clapis, Nick Doherty
                  *
                  */
                pragma solidity 0.7.6;
                // SPDX-License-Identifier: GPL-3.0-only
                import "../interface/RocketStorageInterface.sol";
                import "@openzeppelin/contracts/math/SafeMath.sol";
                /// @title The primary persistent storage for Rocket Pool
                /// @author David Rugendyke
                contract RocketStorage is RocketStorageInterface {
                    // Events
                    event NodeWithdrawalAddressSet(address indexed node, address indexed withdrawalAddress, uint256 time);
                    event GuardianChanged(address oldGuardian, address newGuardian);
                    // Libraries
                    using SafeMath for uint256;
                    // Storage maps
                    mapping(bytes32 => string)     private stringStorage;
                    mapping(bytes32 => bytes)      private bytesStorage;
                    mapping(bytes32 => uint256)    private uintStorage;
                    mapping(bytes32 => int256)     private intStorage;
                    mapping(bytes32 => address)    private addressStorage;
                    mapping(bytes32 => bool)       private booleanStorage;
                    mapping(bytes32 => bytes32)    private bytes32Storage;
                    // Protected storage (not accessible by network contracts)
                    mapping(address => address)    private withdrawalAddresses;
                    mapping(address => address)    private pendingWithdrawalAddresses;
                    // Guardian address
                    address guardian;
                    address newGuardian;
                    // Flag storage has been initialised
                    bool storageInit = false;
                    /// @dev Only allow access from the latest version of a contract in the Rocket Pool network after deployment
                    modifier onlyLatestRocketNetworkContract() {
                        if (storageInit == true) {
                            // Make sure the access is permitted to only contracts in our Dapp
                            require(booleanStorage[keccak256(abi.encodePacked("contract.exists", msg.sender))], "Invalid or outdated network contract");
                        } else {
                            // Only Dapp and the guardian account are allowed access during initialisation.
                            // tx.origin is only safe to use in this case for deployment since no external contracts are interacted with
                            require((
                                booleanStorage[keccak256(abi.encodePacked("contract.exists", msg.sender))] || tx.origin == guardian
                            ), "Invalid or outdated network contract attempting access during deployment");
                        }
                        _;
                    }
                    /// @dev Construct RocketStorage
                    constructor() {
                        // Set the guardian upon deployment
                        guardian = msg.sender;
                    }
                    // Get guardian address
                    function getGuardian() external override view returns (address) {
                        return guardian;
                    }
                    // Transfers guardianship to a new address
                    function setGuardian(address _newAddress) external override {
                        // Check tx comes from current guardian
                        require(msg.sender == guardian, "Is not guardian account");
                        // Store new address awaiting confirmation
                        newGuardian = _newAddress;
                    }
                    // Confirms change of guardian
                    function confirmGuardian() external override {
                        // Check tx came from new guardian address
                        require(msg.sender == newGuardian, "Confirmation must come from new guardian address");
                        // Store old guardian for event
                        address oldGuardian = guardian;
                        // Update guardian and clear storage
                        guardian = newGuardian;
                        delete newGuardian;
                        // Emit event
                        emit GuardianChanged(oldGuardian, guardian);
                    }
                    // Set this as being deployed now
                    function getDeployedStatus() external override view returns (bool) {
                        return storageInit;
                    }
                    // Set this as being deployed now
                    function setDeployedStatus() external {
                        // Only guardian can lock this down
                        require(msg.sender == guardian, "Is not guardian account");
                        // Set it now
                        storageInit = true;
                    }
                    // Protected storage
                    // Get a node's withdrawal address
                    function getNodeWithdrawalAddress(address _nodeAddress) public override view returns (address) {
                        // If no withdrawal address has been set, return the nodes address
                        address withdrawalAddress = withdrawalAddresses[_nodeAddress];
                        if (withdrawalAddress == address(0)) {
                            return _nodeAddress;
                        }
                        return withdrawalAddress;
                    }
                    // Get a node's pending withdrawal address
                    function getNodePendingWithdrawalAddress(address _nodeAddress) external override view returns (address) {
                        return pendingWithdrawalAddresses[_nodeAddress];
                    }
                    // Set a node's withdrawal address
                    function setWithdrawalAddress(address _nodeAddress, address _newWithdrawalAddress, bool _confirm) external override {
                        // Check new withdrawal address
                        require(_newWithdrawalAddress != address(0x0), "Invalid withdrawal address");
                        // Confirm the transaction is from the node's current withdrawal address
                        address withdrawalAddress = getNodeWithdrawalAddress(_nodeAddress);
                        require(withdrawalAddress == msg.sender, "Only a tx from a node's withdrawal address can update it");
                        // Update immediately if confirmed
                        if (_confirm) {
                            updateWithdrawalAddress(_nodeAddress, _newWithdrawalAddress);
                        }
                        // Set pending withdrawal address if not confirmed
                        else {
                            pendingWithdrawalAddresses[_nodeAddress] = _newWithdrawalAddress;
                        }
                    }
                    // Confirm a node's new withdrawal address
                    function confirmWithdrawalAddress(address _nodeAddress) external override {
                        // Get node by pending withdrawal address
                        require(pendingWithdrawalAddresses[_nodeAddress] == msg.sender, "Confirmation must come from the pending withdrawal address");
                        delete pendingWithdrawalAddresses[_nodeAddress];
                        // Update withdrawal address
                        updateWithdrawalAddress(_nodeAddress, msg.sender);
                    }
                    // Update a node's withdrawal address
                    function updateWithdrawalAddress(address _nodeAddress, address _newWithdrawalAddress) private {
                        // Set new withdrawal address
                        withdrawalAddresses[_nodeAddress] = _newWithdrawalAddress;
                        // Emit withdrawal address set event
                        emit NodeWithdrawalAddressSet(_nodeAddress, _newWithdrawalAddress, block.timestamp);
                    }
                    /// @param _key The key for the record
                    function getAddress(bytes32 _key) override external view returns (address r) {
                        return addressStorage[_key];
                    }
                    /// @param _key The key for the record
                    function getUint(bytes32 _key) override external view returns (uint256 r) {
                        return uintStorage[_key];
                    }
                    /// @param _key The key for the record
                    function getString(bytes32 _key) override external view returns (string memory) {
                        return stringStorage[_key];
                    }
                    /// @param _key The key for the record
                    function getBytes(bytes32 _key) override external view returns (bytes memory) {
                        return bytesStorage[_key];
                    }
                    /// @param _key The key for the record
                    function getBool(bytes32 _key) override external view returns (bool r) {
                        return booleanStorage[_key];
                    }
                    /// @param _key The key for the record
                    function getInt(bytes32 _key) override external view returns (int r) {
                        return intStorage[_key];
                    }
                    /// @param _key The key for the record
                    function getBytes32(bytes32 _key) override external view returns (bytes32 r) {
                        return bytes32Storage[_key];
                    }
                    /// @param _key The key for the record
                    function setAddress(bytes32 _key, address _value) onlyLatestRocketNetworkContract override external {
                        addressStorage[_key] = _value;
                    }
                    /// @param _key The key for the record
                    function setUint(bytes32 _key, uint _value) onlyLatestRocketNetworkContract override external {
                        uintStorage[_key] = _value;
                    }
                    /// @param _key The key for the record
                    function setString(bytes32 _key, string calldata _value) onlyLatestRocketNetworkContract override external {
                        stringStorage[_key] = _value;
                    }
                    /// @param _key The key for the record
                    function setBytes(bytes32 _key, bytes calldata _value) onlyLatestRocketNetworkContract override external {
                        bytesStorage[_key] = _value;
                    }
                    /// @param _key The key for the record
                    function setBool(bytes32 _key, bool _value) onlyLatestRocketNetworkContract override external {
                        booleanStorage[_key] = _value;
                    }
                    /// @param _key The key for the record
                    function setInt(bytes32 _key, int _value) onlyLatestRocketNetworkContract override external {
                        intStorage[_key] = _value;
                    }
                    /// @param _key The key for the record
                    function setBytes32(bytes32 _key, bytes32 _value) onlyLatestRocketNetworkContract override external {
                        bytes32Storage[_key] = _value;
                    }
                    /// @param _key The key for the record
                    function deleteAddress(bytes32 _key) onlyLatestRocketNetworkContract override external {
                        delete addressStorage[_key];
                    }
                    /// @param _key The key for the record
                    function deleteUint(bytes32 _key) onlyLatestRocketNetworkContract override external {
                        delete uintStorage[_key];
                    }
                    /// @param _key The key for the record
                    function deleteString(bytes32 _key) onlyLatestRocketNetworkContract override external {
                        delete stringStorage[_key];
                    }
                    /// @param _key The key for the record
                    function deleteBytes(bytes32 _key) onlyLatestRocketNetworkContract override external {
                        delete bytesStorage[_key];
                    }
                    /// @param _key The key for the record
                    function deleteBool(bytes32 _key) onlyLatestRocketNetworkContract override external {
                        delete booleanStorage[_key];
                    }
                    /// @param _key The key for the record
                    function deleteInt(bytes32 _key) onlyLatestRocketNetworkContract override external {
                        delete intStorage[_key];
                    }
                    /// @param _key The key for the record
                    function deleteBytes32(bytes32 _key) onlyLatestRocketNetworkContract override external {
                        delete bytes32Storage[_key];
                    }
                    /// @param _key The key for the record
                    /// @param _amount An amount to add to the record's value
                    function addUint(bytes32 _key, uint256 _amount) onlyLatestRocketNetworkContract override external {
                        uintStorage[_key] = uintStorage[_key].add(_amount);
                    }
                    /// @param _key The key for the record
                    /// @param _amount An amount to subtract from the record's value
                    function subUint(bytes32 _key, uint256 _amount) onlyLatestRocketNetworkContract override external {
                        uintStorage[_key] = uintStorage[_key].sub(_amount);
                    }
                }
                /**
                  *       .
                  *      / \\
                  *     |.'.|
                  *     |'.'|
                  *   ,'|   |`.
                  *  |,-'-|-'-.|
                  *   __|_| |         _        _      _____           _
                  *  | ___ \\|        | |      | |    | ___ \\         | |
                  *  | |_/ /|__   ___| | _____| |_   | |_/ /__   ___ | |
                  *  |    // _ \\ / __| |/ / _ \\ __|  |  __/ _ \\ / _ \\| |
                  *  | |\\ \\ (_) | (__|   <  __/ |_   | | | (_) | (_) | |
                  *  \\_| \\_\\___/ \\___|_|\\_\\___|\\__|  \\_|  \\___/ \\___/|_|
                  * +---------------------------------------------------+
                  * |    DECENTRALISED STAKING PROTOCOL FOR ETHEREUM    |
                  * +---------------------------------------------------+
                  *
                  *  Rocket Pool is a first-of-its-kind Ethereum staking pool protocol, designed to
                  *  be community-owned, decentralised, and trustless.
                  *
                  *  For more information about Rocket Pool, visit https://rocketpool.net
                  *
                  *  Authors: David Rugendyke, Jake Pospischil, Kane Wallmann, Darren Langley, Joe Clapis, Nick Doherty
                  *
                  */
                pragma solidity 0.7.6;
                // SPDX-License-Identifier: GPL-3.0-only
                interface RocketStorageInterface {
                    // Deploy status
                    function getDeployedStatus() external view returns (bool);
                    // Guardian
                    function getGuardian() external view returns(address);
                    function setGuardian(address _newAddress) external;
                    function confirmGuardian() external;
                    // Getters
                    function getAddress(bytes32 _key) external view returns (address);
                    function getUint(bytes32 _key) external view returns (uint);
                    function getString(bytes32 _key) external view returns (string memory);
                    function getBytes(bytes32 _key) external view returns (bytes memory);
                    function getBool(bytes32 _key) external view returns (bool);
                    function getInt(bytes32 _key) external view returns (int);
                    function getBytes32(bytes32 _key) external view returns (bytes32);
                    // Setters
                    function setAddress(bytes32 _key, address _value) external;
                    function setUint(bytes32 _key, uint _value) external;
                    function setString(bytes32 _key, string calldata _value) external;
                    function setBytes(bytes32 _key, bytes calldata _value) external;
                    function setBool(bytes32 _key, bool _value) external;
                    function setInt(bytes32 _key, int _value) external;
                    function setBytes32(bytes32 _key, bytes32 _value) external;
                    // Deleters
                    function deleteAddress(bytes32 _key) external;
                    function deleteUint(bytes32 _key) external;
                    function deleteString(bytes32 _key) external;
                    function deleteBytes(bytes32 _key) external;
                    function deleteBool(bytes32 _key) external;
                    function deleteInt(bytes32 _key) external;
                    function deleteBytes32(bytes32 _key) external;
                    // Arithmetic
                    function addUint(bytes32 _key, uint256 _amount) external;
                    function subUint(bytes32 _key, uint256 _amount) external;
                    // Protected storage
                    function getNodeWithdrawalAddress(address _nodeAddress) external view returns (address);
                    function getNodePendingWithdrawalAddress(address _nodeAddress) external view returns (address);
                    function setWithdrawalAddress(address _nodeAddress, address _newWithdrawalAddress, bool _confirm) external;
                    function confirmWithdrawalAddress(address _nodeAddress) external;
                }
                

                File 8 of 11: Lib_AddressManager
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.0 <0.8.0;
                import "../utils/Context.sol";
                /**
                 * @dev Contract module which provides a basic access control mechanism, where
                 * there is an account (an owner) that can be granted exclusive access to
                 * specific functions.
                 *
                 * By default, the owner account will be the one that deploys the contract. This
                 * can later be changed with {transferOwnership}.
                 *
                 * This module is used through inheritance. It will make available the modifier
                 * `onlyOwner`, which can be applied to your functions to restrict their use to
                 * the owner.
                 */
                abstract contract Ownable is Context {
                    address private _owner;
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    /**
                     * @dev Initializes the contract setting the deployer as the initial owner.
                     */
                    constructor () internal {
                        address msgSender = _msgSender();
                        _owner = msgSender;
                        emit OwnershipTransferred(address(0), msgSender);
                    }
                    /**
                     * @dev Returns the address of the current owner.
                     */
                    function owner() public view virtual returns (address) {
                        return _owner;
                    }
                    /**
                     * @dev Throws if called by any account other than the owner.
                     */
                    modifier onlyOwner() {
                        require(owner() == _msgSender(), "Ownable: caller is not the owner");
                        _;
                    }
                    /**
                     * @dev Leaves the contract without owner. It will not be possible to call
                     * `onlyOwner` functions anymore. Can only be called by the current owner.
                     *
                     * NOTE: Renouncing ownership will leave the contract without an owner,
                     * thereby removing any functionality that is only available to the owner.
                     */
                    function renounceOwnership() public virtual onlyOwner {
                        emit OwnershipTransferred(_owner, address(0));
                        _owner = address(0);
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Can only be called by the current owner.
                     */
                    function transferOwnership(address newOwner) public virtual onlyOwner {
                        require(newOwner != address(0), "Ownable: new owner is the zero address");
                        emit OwnershipTransferred(_owner, newOwner);
                        _owner = newOwner;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.6.0 <0.8.0;
                /*
                 * @dev Provides information about the current execution context, including the
                 * sender of the transaction and its data. While these are generally available
                 * via msg.sender and msg.data, they should not be accessed in such a direct
                 * manner, since when dealing with GSN meta-transactions the account sending and
                 * paying for execution may not be the actual sender (as far as an application
                 * is concerned).
                 *
                 * This contract is only required for intermediate, library-like contracts.
                 */
                abstract contract Context {
                    function _msgSender() internal view virtual returns (address payable) {
                        return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes memory) {
                        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                        return msg.data;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >0.5.0 <0.8.0;
                /* External Imports */
                import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
                /**
                 * @title Lib_AddressManager
                 */
                contract Lib_AddressManager is Ownable {
                    /**********
                     * Events *
                     **********/
                    event AddressSet(
                        string indexed _name,
                        address _newAddress,
                        address _oldAddress
                    );
                    /*************
                     * Variables *
                     *************/
                    mapping (bytes32 => address) private addresses;
                    /********************
                     * Public Functions *
                     ********************/
                    /**
                     * Changes the address associated with a particular name.
                     * @param _name String name to associate an address with.
                     * @param _address Address to associate with the name.
                     */
                    function setAddress(
                        string memory _name,
                        address _address
                    )
                        external
                        onlyOwner
                    {
                        bytes32 nameHash = _getNameHash(_name);
                        address oldAddress = addresses[nameHash];
                        addresses[nameHash] = _address;
                        emit AddressSet(
                            _name,
                            _address,
                            oldAddress
                        );
                    }
                    /**
                     * Retrieves the address associated with a given name.
                     * @param _name Name to retrieve an address for.
                     * @return Address associated with the given name.
                     */
                    function getAddress(
                        string memory _name
                    )
                        external
                        view
                        returns (
                            address
                        )
                    {
                        return addresses[_getNameHash(_name)];
                    }
                    /**********************
                     * Internal Functions *
                     **********************/
                    /**
                     * Computes the hash of a name.
                     * @param _name Name to compute a hash for.
                     * @return Hash of the given name.
                     */
                    function _getNameHash(
                        string memory _name
                    )
                        internal
                        pure
                        returns (
                            bytes32
                        )
                    {
                        return keccak256(abi.encodePacked(_name));
                    }
                }
                

                File 9 of 11: L1CrossDomainMessenger
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                // Contracts
                import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
                // Libraries
                import { Predeploys } from "src/libraries/Predeploys.sol";
                // Interfaces
                import { ISemver } from "interfaces/universal/ISemver.sol";
                import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
                import { IOptimismPortal2 as IOptimismPortal } from "interfaces/L1/IOptimismPortal2.sol";
                /// @custom:proxied true
                /// @title L1CrossDomainMessenger
                /// @notice The L1CrossDomainMessenger is a message passing interface between L1 and L2 responsible
                ///         for sending and receiving data on the L1 side. Users are encouraged to use this
                ///         interface instead of interacting with lower-level contracts directly.
                contract L1CrossDomainMessenger is CrossDomainMessenger, ISemver {
                    /// @notice Contract of the SuperchainConfig.
                    ISuperchainConfig public superchainConfig;
                    /// @notice Contract of the OptimismPortal.
                    /// @custom:network-specific
                    IOptimismPortal public portal;
                    /// @custom:legacy
                    /// @custom:spacer systemConfig
                    /// @notice Spacer taking up the legacy `systemConfig` slot.
                    address private spacer_253_0_20;
                    /// @notice Semantic version.
                    /// @custom:semver 2.6.0
                    string public constant version = "2.6.0";
                    /// @notice Constructs the L1CrossDomainMessenger contract.
                    constructor() {
                        _disableInitializers();
                    }
                    /// @notice Initializes the contract.
                    /// @param _superchainConfig Contract of the SuperchainConfig contract on this network.
                    /// @param _portal Contract of the OptimismPortal contract on this network.
                    function initialize(ISuperchainConfig _superchainConfig, IOptimismPortal _portal) external initializer {
                        superchainConfig = _superchainConfig;
                        portal = _portal;
                        __CrossDomainMessenger_init({ _otherMessenger: CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER) });
                    }
                    /// @notice Getter function for the OptimismPortal contract on this chain.
                    ///         Public getter is legacy and will be removed in the future. Use `portal()` instead.
                    /// @return Contract of the OptimismPortal on this chain.
                    /// @custom:legacy
                    function PORTAL() external view returns (IOptimismPortal) {
                        return portal;
                    }
                    /// @inheritdoc CrossDomainMessenger
                    function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal override {
                        portal.depositTransaction{ value: _value }({
                            _to: _to,
                            _value: _value,
                            _gasLimit: _gasLimit,
                            _isCreation: false,
                            _data: _data
                        });
                    }
                    /// @inheritdoc CrossDomainMessenger
                    function _isOtherMessenger() internal view override returns (bool) {
                        return msg.sender == address(portal) && portal.l2Sender() == address(otherMessenger);
                    }
                    /// @inheritdoc CrossDomainMessenger
                    function _isUnsafeTarget(address _target) internal view override returns (bool) {
                        return _target == address(this) || _target == address(portal);
                    }
                    /// @inheritdoc CrossDomainMessenger
                    function paused() public view override returns (bool) {
                        return superchainConfig.paused();
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                // Libraries
                import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
                import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
                import { SafeCall } from "src/libraries/SafeCall.sol";
                import { Hashing } from "src/libraries/Hashing.sol";
                import { Encoding } from "src/libraries/Encoding.sol";
                import { Constants } from "src/libraries/Constants.sol";
                /// @custom:legacy
                /// @title CrossDomainMessengerLegacySpacer0
                /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
                ///         libAddressManager variable used to exist. Must be the first contract in the inheritance
                ///         tree of the CrossDomainMessenger.
                contract CrossDomainMessengerLegacySpacer0 {
                    /// @custom:legacy
                    /// @custom:spacer libAddressManager
                    /// @notice Spacer for backwards compatibility.
                    address private spacer_0_0_20;
                }
                /// @custom:legacy
                /// @title CrossDomainMessengerLegacySpacer1
                /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
                ///         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
                ///         the third contract in the inheritance tree of the CrossDomainMessenger.
                contract CrossDomainMessengerLegacySpacer1 {
                    /// @custom:legacy
                    /// @custom:spacer ContextUpgradable's __gap
                    /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                    ///         ContextUpgradable.
                    uint256[50] private spacer_1_0_1600;
                    /// @custom:legacy
                    /// @custom:spacer OwnableUpgradeable's _owner
                    /// @notice Spacer for backwards compatibility.
                    ///         Come from OpenZeppelin OwnableUpgradeable.
                    address private spacer_51_0_20;
                    /// @custom:legacy
                    /// @custom:spacer OwnableUpgradeable's __gap
                    /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                    ///         OwnableUpgradeable.
                    uint256[49] private spacer_52_0_1568;
                    /// @custom:legacy
                    /// @custom:spacer PausableUpgradable's _paused
                    /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                    ///         PausableUpgradable.
                    bool private spacer_101_0_1;
                    /// @custom:legacy
                    /// @custom:spacer PausableUpgradable's __gap
                    /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                    ///         PausableUpgradable.
                    uint256[49] private spacer_102_0_1568;
                    /// @custom:legacy
                    /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
                    /// @notice Spacer for backwards compatibility.
                    uint256 private spacer_151_0_32;
                    /// @custom:legacy
                    /// @custom:spacer ReentrancyGuardUpgradeable's __gap
                    /// @notice Spacer for backwards compatibility.
                    uint256[49] private spacer_152_0_1568;
                    /// @custom:legacy
                    /// @custom:spacer blockedMessages
                    /// @notice Spacer for backwards compatibility.
                    mapping(bytes32 => bool) private spacer_201_0_32;
                    /// @custom:legacy
                    /// @custom:spacer relayedMessages
                    /// @notice Spacer for backwards compatibility.
                    mapping(bytes32 => bool) private spacer_202_0_32;
                }
                /// @custom:upgradeable
                /// @title CrossDomainMessenger
                /// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
                ///         cross-chain messenger contracts. It's designed to be a universal interface that only
                ///         needs to be extended slightly to provide low-level message passing functionality on each
                ///         chain it's deployed on. Currently only designed for message passing between two paired
                ///         chains and does not support one-to-many interactions.
                ///         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
                abstract contract CrossDomainMessenger is
                    CrossDomainMessengerLegacySpacer0,
                    Initializable,
                    CrossDomainMessengerLegacySpacer1
                {
                    /// @notice Current message version identifier.
                    uint16 public constant MESSAGE_VERSION = 1;
                    /// @notice Constant overhead added to the base gas for a message.
                    uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
                    /// @notice Numerator for dynamic overhead added to the base gas for a message.
                    uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
                    /// @notice Denominator for dynamic overhead added to the base gas for a message.
                    uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
                    /// @notice Extra gas added to base gas for each byte of calldata in a message.
                    uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
                    /// @notice Gas reserved for performing the external call in `relayMessage`.
                    uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
                    /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
                    uint64 public constant RELAY_RESERVED_GAS = 40_000;
                    /// @notice Gas reserved for the execution between the `hasMinGas` check and the external
                    ///         call in `relayMessage`.
                    uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
                    /// @notice Base gas required for any transaction in the EVM.
                    uint64 public constant TX_BASE_GAS = 21_000;
                    /// @notice Floor overhead per byte of non-zero calldata in a message. Calldata floor was
                    ///         introduced in EIP-7623.
                    uint64 public constant FLOOR_CALLDATA_OVERHEAD = 40;
                    /// @notice Overhead added to the internal message data when the full call to relayMessage is
                    ///         ABI encoded. This is a constant value that is specific to the V1 message encoding
                    ///         scheme. 260 is an upper bound, actual overhead can be as low as 228 bytes for an
                    ///         empty message.
                    uint64 public constant ENCODING_OVERHEAD = 260;
                    /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
                    ///         be present in this mapping if it has successfully been relayed on this chain, and
                    ///         can therefore not be relayed again.
                    mapping(bytes32 => bool) public successfulMessages;
                    /// @notice Address of the sender of the currently executing message on the other chain. If the
                    ///         value of this variable is the default value (0x00000000...dead) then no message is
                    ///         currently being executed. Use the xDomainMessageSender getter which will throw an
                    ///         error if this is the case.
                    address internal xDomainMsgSender;
                    /// @notice Nonce for the next message to be sent, without the message version applied. Use the
                    ///         messageNonce getter which will insert the message version into the nonce to give you
                    ///         the actual nonce to be used for the message.
                    uint240 internal msgNonce;
                    /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
                    ///         executed at least once. A message will not be present in this mapping if it
                    ///         successfully executed on the first attempt.
                    mapping(bytes32 => bool) public failedMessages;
                    /// @notice CrossDomainMessenger contract on the other chain.
                    /// @custom:network-specific
                    CrossDomainMessenger public otherMessenger;
                    /// @notice Reserve extra slots in the storage layout for future upgrades.
                    ///         A gap size of 43 was chosen here, so that the first slot used in a child contract
                    ///         would be 1 plus a multiple of 50.
                    uint256[43] private __gap;
                    /// @notice Emitted whenever a message is sent to the other chain.
                    /// @param target       Address of the recipient of the message.
                    /// @param sender       Address of the sender of the message.
                    /// @param message      Message to trigger the recipient address with.
                    /// @param messageNonce Unique nonce attached to the message.
                    /// @param gasLimit     Minimum gas limit that the message can be executed with.
                    event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
                    /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
                    ///         SentMessage event without breaking the ABI of this contract, this is good enough.
                    /// @param sender Address of the sender of the message.
                    /// @param value  ETH value sent along with the message to the recipient.
                    event SentMessageExtension1(address indexed sender, uint256 value);
                    /// @notice Emitted whenever a message is successfully relayed on this chain.
                    /// @param msgHash Hash of the message that was relayed.
                    event RelayedMessage(bytes32 indexed msgHash);
                    /// @notice Emitted whenever a message fails to be relayed on this chain.
                    /// @param msgHash Hash of the message that failed to be relayed.
                    event FailedRelayedMessage(bytes32 indexed msgHash);
                    /// @notice Sends a message to some target address on the other chain. Note that if the call
                    ///         always reverts, then the message will be unrelayable, and any ETH sent will be
                    ///         permanently locked. The same will occur if the target on the other chain is
                    ///         considered unsafe (see the _isUnsafeTarget() function).
                    /// @param _target      Target contract or wallet address.
                    /// @param _message     Message to trigger the target address with.
                    /// @param _minGasLimit Minimum gas limit that the message can be executed with.
                    function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
                        // Triggers a message to the other messenger. Note that the amount of gas provided to the
                        // message is the amount of gas requested by the user PLUS the base gas value. We want to
                        // guarantee the property that the call to the target contract will always have at least
                        // the minimum gas limit specified by the user.
                        _sendMessage({
                            _to: address(otherMessenger),
                            _gasLimit: baseGas(_message, _minGasLimit),
                            _value: msg.value,
                            _data: abi.encodeWithSelector(
                                this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
                            )
                        });
                        emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
                        emit SentMessageExtension1(msg.sender, msg.value);
                        unchecked {
                            ++msgNonce;
                        }
                    }
                    /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
                    ///         be executed via cross-chain call from the other messenger OR if the message was
                    ///         already received once and is currently being replayed.
                    /// @param _nonce       Nonce of the message being relayed.
                    /// @param _sender      Address of the user who sent the message.
                    /// @param _target      Address that the message is targeted at.
                    /// @param _value       ETH value to send with the message.
                    /// @param _minGasLimit Minimum amount of gas that the message can be executed with.
                    /// @param _message     Message to send to the target.
                    function relayMessage(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _minGasLimit,
                        bytes calldata _message
                    )
                        external
                        payable
                    {
                        // On L1 this function will check the Portal for its paused status.
                        // On L2 this function should be a no-op, because paused will always return false.
                        require(paused() == false, "CrossDomainMessenger: paused");
                        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                        require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
                        // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
                        // to check that the legacy version of the message has not already been relayed.
                        if (version == 0) {
                            bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
                            require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
                        }
                        // We use the v1 message hash as the unique identifier for the message because it commits
                        // to the value and minimum gas limit of the message.
                        bytes32 versionedHash =
                            Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
                        if (_isOtherMessenger()) {
                            // These properties should always hold when the message is first submitted (as
                            // opposed to being replayed).
                            assert(msg.value == _value);
                            assert(!failedMessages[versionedHash]);
                        } else {
                            require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
                            require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
                        }
                        require(
                            _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
                        );
                        require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
                        // If there is not enough gas left to perform the external call and finish the execution,
                        // return early and assign the message to the failedMessages mapping.
                        // We are asserting that we have enough gas to:
                        // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
                        //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
                        // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
                        //
                        // If `xDomainMsgSender` is not the default L2 sender, this function
                        // is being re-entered. This marks the message as failed to allow it to be replayed.
                        if (
                            !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
                                || xDomainMsgSender != Constants.DEFAULT_L2_SENDER
                        ) {
                            failedMessages[versionedHash] = true;
                            emit FailedRelayedMessage(versionedHash);
                            // Revert in this case if the transaction was triggered by the estimation address. This
                            // should only be possible during gas estimation or we have bigger problems. Reverting
                            // here will make the behavior of gas estimation change such that the gas limit
                            // computed will be the amount required to relay the message, even if that amount is
                            // greater than the minimum gas limit specified by the user.
                            if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                                revert("CrossDomainMessenger: failed to relay message");
                            }
                            return;
                        }
                        xDomainMsgSender = _sender;
                        bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
                        xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                        if (success) {
                            // This check is identical to one above, but it ensures that the same message cannot be relayed
                            // twice, and adds a layer of protection against rentrancy.
                            assert(successfulMessages[versionedHash] == false);
                            successfulMessages[versionedHash] = true;
                            emit RelayedMessage(versionedHash);
                        } else {
                            failedMessages[versionedHash] = true;
                            emit FailedRelayedMessage(versionedHash);
                            // Revert in this case if the transaction was triggered by the estimation address. This
                            // should only be possible during gas estimation or we have bigger problems. Reverting
                            // here will make the behavior of gas estimation change such that the gas limit
                            // computed will be the amount required to relay the message, even if that amount is
                            // greater than the minimum gas limit specified by the user.
                            if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                                revert("CrossDomainMessenger: failed to relay message");
                            }
                        }
                    }
                    /// @notice Retrieves the address of the contract or wallet that initiated the currently
                    ///         executing message on the other chain. Will throw an error if there is no message
                    ///         currently being executed. Allows the recipient of a call to see who triggered it.
                    /// @return Address of the sender of the currently executing message on the other chain.
                    function xDomainMessageSender() external view returns (address) {
                        require(
                            xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
                        );
                        return xDomainMsgSender;
                    }
                    /// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain
                    ///         Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead.
                    /// @return CrossDomainMessenger contract on the other chain.
                    /// @custom:legacy
                    function OTHER_MESSENGER() public view returns (CrossDomainMessenger) {
                        return otherMessenger;
                    }
                    /// @notice Retrieves the next message nonce. Message version will be added to the upper two
                    ///         bytes of the message nonce. Message version allows us to treat messages as having
                    ///         different structures.
                    /// @return Nonce of the next message to be sent, with added message version.
                    function messageNonce() public view returns (uint256) {
                        return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
                    }
                    /// @notice Computes the amount of gas required to guarantee that a given message will be
                    ///         received on the other chain without running out of gas. Guaranteeing that a message
                    ///         will not run out of gas is important because this ensures that a message can always
                    ///         be replayed on the other chain if it fails to execute completely.
                    /// @param _message     Message to compute the amount of required gas for.
                    /// @param _minGasLimit Minimum desired gas limit when message goes to target.
                    /// @return Amount of gas required to guarantee message receipt.
                    function baseGas(bytes memory _message, uint32 _minGasLimit) public pure returns (uint64) {
                        // Base gas should really be computed on the fully encoded message but that would break the
                        // expected API, so we instead just add the encoding overhead to the message length inside
                        // of this function.
                        // We need a minimum amount of execution gas to ensure that the message will be received on
                        // the other side without running out of gas (stored within the failedMessages mapping).
                        // If we get beyond the hasMinGas check, then we *must* supply more than minGasLimit to
                        // the external call.
                        uint64 executionGas = uint64(
                            // Constant costs for relayMessage
                            RELAY_CONSTANT_OVERHEAD
                            // Covers dynamic parts of the CALL opcode
                            + RELAY_CALL_OVERHEAD
                            // Ensures execution of relayMessage completes after call
                            + RELAY_RESERVED_GAS
                            // Buffer between hasMinGas check and the CALL
                            + RELAY_GAS_CHECK_BUFFER
                            // Minimum gas limit, multiplied by 64/63 to account for EIP-150.
                            + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
                        );
                        // Total message size is the result of properly ABI encoding the call to relayMessage.
                        // Since we only get the message data and not the rest of the calldata, we use the
                        // ENCODING_OVERHEAD constant to conservatively account for the remaining bytes.
                        uint64 totalMessageSize = uint64(_message.length + ENCODING_OVERHEAD);
                        // Finally, replicate the transaction cost formula as defined after EIP-7623. This is
                        // mostly relevant in the L1 -> L2 case because we need to be able to cover the intrinsic
                        // cost of the message but it doesn't hurt in the L2 -> L1 case. After EIP-7623, the cost
                        // of a transaction is floored by its calldata size. We don't need to account for the
                        // contract creation case because this is always a call to relayMessage.
                        return TX_BASE_GAS
                            + uint64(
                                Math.max(
                                    executionGas + (totalMessageSize * MIN_GAS_CALLDATA_OVERHEAD),
                                    (totalMessageSize * FLOOR_CALLDATA_OVERHEAD)
                                )
                            );
                    }
                    /// @notice Initializer.
                    /// @param _otherMessenger CrossDomainMessenger contract on the other chain.
                    function __CrossDomainMessenger_init(CrossDomainMessenger _otherMessenger) internal onlyInitializing {
                        // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
                        // meaning that this is a fresh contract deployment.
                        // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
                        // a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice.
                        if (xDomainMsgSender == address(0)) {
                            xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                        }
                        otherMessenger = _otherMessenger;
                    }
                    /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
                    ///         contracts because the logic for this depends on the network where the messenger is
                    ///         being deployed.
                    /// @param _to       Recipient of the message on the other chain.
                    /// @param _gasLimit Minimum gas limit the message can be executed with.
                    /// @param _value    Amount of ETH to send with the message.
                    /// @param _data     Message data.
                    function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
                    /// @notice Checks whether the message is coming from the other messenger. Implemented by child
                    ///         contracts because the logic for this depends on the network where the messenger is
                    ///         being deployed.
                    /// @return Whether the message is coming from the other messenger.
                    function _isOtherMessenger() internal view virtual returns (bool);
                    /// @notice Checks whether a given call target is a system address that could cause the
                    ///         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
                    ///         addresses. This is ONLY used to prevent the execution of messages to specific
                    ///         system addresses that could cause security issues, e.g., having the
                    ///         CrossDomainMessenger send messages to itself.
                    /// @param _target Address of the contract to check.
                    /// @return Whether or not the address is an unsafe system address.
                    function _isUnsafeTarget(address _target) internal view virtual returns (bool);
                    /// @notice This function should return true if the contract is paused.
                    ///         On L1 this function will check the SuperchainConfig for its paused status.
                    ///         On L2 this function should be a no-op.
                    /// @return Whether or not the contract is paused.
                    function paused() public view virtual returns (bool) {
                        return false;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Predeploys
                /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
                //          This excludes the preinstalls (non-protocol contracts).
                library Predeploys {
                    /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
                    uint256 internal constant PREDEPLOY_COUNT = 2048;
                    /// @custom:legacy
                    /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
                    ///         L2ToL1MessagePasser contract instead.
                    address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
                    /// @custom:legacy
                    /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
                    ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
                    ///         Not embedded into new OP-Stack chains.
                    address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
                    /// @custom:legacy
                    /// @notice Address of the DeployerWhitelist predeploy. No longer active.
                    address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
                    /// @notice Address of the canonical WETH contract.
                    address internal constant WETH = 0x4200000000000000000000000000000000000006;
                    /// @notice Address of the L2CrossDomainMessenger predeploy.
                    address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
                    /// @notice Address of the GasPriceOracle predeploy. Includes fee information
                    ///         and helpers for computing the L1 portion of the transaction fee.
                    address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
                    /// @notice Address of the L2StandardBridge predeploy.
                    address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
                    //// @notice Address of the SequencerFeeWallet predeploy.
                    address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
                    /// @notice Address of the OptimismMintableERC20Factory predeploy.
                    address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
                    /// @custom:legacy
                    /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
                    ///         instead, which exposes more information about the L1 state.
                    address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
                    /// @notice Address of the L2ERC721Bridge predeploy.
                    address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
                    /// @notice Address of the L1Block predeploy.
                    address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
                    /// @notice Address of the L2ToL1MessagePasser predeploy.
                    address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
                    /// @notice Address of the OptimismMintableERC721Factory predeploy.
                    address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
                    /// @notice Address of the ProxyAdmin predeploy.
                    address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
                    /// @notice Address of the BaseFeeVault predeploy.
                    address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
                    /// @notice Address of the L1FeeVault predeploy.
                    address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
                    /// @notice Address of the OperatorFeeVault predeploy.
                    address internal constant OPERATOR_FEE_VAULT = 0x420000000000000000000000000000000000001b;
                    /// @notice Address of the SchemaRegistry predeploy.
                    address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
                    /// @notice Address of the EAS predeploy.
                    address internal constant EAS = 0x4200000000000000000000000000000000000021;
                    /// @notice Address of the GovernanceToken predeploy.
                    address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
                    /// @custom:legacy
                    /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
                    ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
                    ///         can no longer be accessed.
                    address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
                    /// @notice Address of the CrossL2Inbox predeploy.
                    address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
                    /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
                    address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
                    /// @notice Address of the SuperchainWETH predeploy.
                    address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;
                    /// @notice Address of the ETHLiquidity predeploy.
                    address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;
                    /// @notice Address of the OptimismSuperchainERC20Factory predeploy.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;
                    /// @notice Address of the OptimismSuperchainERC20Beacon predeploy.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20_BEACON = 0x4200000000000000000000000000000000000027;
                    // TODO: Precalculate the address of the implementation contract
                    /// @notice Arbitrary address of the OptimismSuperchainERC20 implementation contract.
                    address internal constant OPTIMISM_SUPERCHAIN_ERC20 = 0xB9415c6cA93bdC545D4c5177512FCC22EFa38F28;
                    /// @notice Address of the SuperchainTokenBridge predeploy.
                    address internal constant SUPERCHAIN_TOKEN_BRIDGE = 0x4200000000000000000000000000000000000028;
                    /// @notice Returns the name of the predeploy at the given address.
                    function getName(address _addr) internal pure returns (string memory out_) {
                        require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
                        if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
                        if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
                        if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
                        if (_addr == WETH) return "WETH";
                        if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
                        if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
                        if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
                        if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
                        if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
                        if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
                        if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
                        if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
                        if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
                        if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
                        if (_addr == PROXY_ADMIN) return "ProxyAdmin";
                        if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
                        if (_addr == L1_FEE_VAULT) return "L1FeeVault";
                        if (_addr == OPERATOR_FEE_VAULT) return "OperatorFeeVault";
                        if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
                        if (_addr == EAS) return "EAS";
                        if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
                        if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
                        if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
                        if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
                        if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
                        if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
                        if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
                        if (_addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON) return "OptimismSuperchainERC20Beacon";
                        if (_addr == SUPERCHAIN_TOKEN_BRIDGE) return "SuperchainTokenBridge";
                        revert("Predeploys: unnamed predeploy");
                    }
                    /// @notice Returns true if the predeploy is not proxied.
                    function notProxied(address _addr) internal pure returns (bool) {
                        return _addr == GOVERNANCE_TOKEN || _addr == WETH;
                    }
                    /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
                    function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
                        return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
                            || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
                            || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
                            || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
                            || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
                            || _addr == L1_FEE_VAULT || _addr == OPERATOR_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS
                            || _addr == GOVERNANCE_TOKEN || (_useInterop && _addr == CROSS_L2_INBOX)
                            || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) || (_useInterop && _addr == SUPERCHAIN_WETH)
                            || (_useInterop && _addr == ETH_LIQUIDITY) || (_useInterop && _addr == SUPERCHAIN_TOKEN_BRIDGE);
                    }
                    function isPredeployNamespace(address _addr) internal pure returns (bool) {
                        return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
                    }
                    /// @notice Function to compute the expected address of the predeploy implementation
                    ///         in the genesis state.
                    function predeployToCodeNamespace(address _addr) internal pure returns (address) {
                        require(
                            isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
                        );
                        return address(
                            uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
                        );
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title ISemver
                /// @notice ISemver is a simple contract for ensuring that contracts are
                ///         versioned using semantic versioning.
                interface ISemver {
                    /// @notice Getter for the semantic version of the contract. This is not
                    ///         meant to be used onchain but instead meant to be used by offchain
                    ///         tooling.
                    /// @return Semver contract version as a string.
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface ISuperchainConfig {
                    enum UpdateType {
                        GUARDIAN
                    }
                    event ConfigUpdate(UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event Paused(string identifier);
                    event Unpaused();
                    function GUARDIAN_SLOT() external view returns (bytes32);
                    function PAUSED_SLOT() external view returns (bytes32);
                    function guardian() external view returns (address guardian_);
                    function initialize(address _guardian, bool _paused) external;
                    function pause(string memory _identifier) external;
                    function paused() external view returns (bool paused_);
                    function unpause() external;
                    function version() external view returns (string memory);
                    function __constructor__() external;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { Types } from "src/libraries/Types.sol";
                import { GameType, Timestamp } from "src/dispute/lib/LibUDT.sol";
                import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
                import { IDisputeGameFactory } from "interfaces/dispute/IDisputeGameFactory.sol";
                import { ISystemConfig } from "interfaces/L1/ISystemConfig.sol";
                import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
                interface IOptimismPortal2 {
                    error AlreadyFinalized();
                    error BadTarget();
                    error Blacklisted();
                    error CallPaused();
                    error ContentLengthMismatch();
                    error EmptyItem();
                    error GasEstimation();
                    error InvalidDataRemainder();
                    error InvalidDisputeGame();
                    error InvalidGameType();
                    error InvalidHeader();
                    error InvalidMerkleProof();
                    error InvalidProof();
                    error LargeCalldata();
                    error NonReentrant();
                    error OutOfGas();
                    error ProposalNotValidated();
                    error SmallGasLimit();
                    error Unauthorized();
                    error UnexpectedList();
                    error UnexpectedString();
                    error Unproven();
                    error LegacyGame();
                    event DisputeGameBlacklisted(IDisputeGame indexed disputeGame);
                    event Initialized(uint8 version);
                    event RespectedGameTypeSet(GameType indexed newGameType, Timestamp indexed updatedAt);
                    event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                    event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                    event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                    event WithdrawalProvenExtension1(bytes32 indexed withdrawalHash, address indexed proofSubmitter);
                    receive() external payable;
                    function blacklistDisputeGame(IDisputeGame _disputeGame) external;
                    function checkWithdrawal(bytes32 _withdrawalHash, address _proofSubmitter) external view;
                    function depositTransaction(
                        address _to,
                        uint256 _value,
                        uint64 _gasLimit,
                        bool _isCreation,
                        bytes memory _data
                    )
                        external
                        payable;
                    function disputeGameBlacklist(IDisputeGame) external view returns (bool);
                    function disputeGameFactory() external view returns (IDisputeGameFactory);
                    function disputeGameFinalityDelaySeconds() external view returns (uint256);
                    function donateETH() external payable;
                    function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external;
                    function finalizeWithdrawalTransactionExternalProof(
                        Types.WithdrawalTransaction memory _tx,
                        address _proofSubmitter
                    )
                        external;
                    function finalizedWithdrawals(bytes32) external view returns (bool);
                    function guardian() external view returns (address);
                    function initialize(
                        IDisputeGameFactory _disputeGameFactory,
                        ISystemConfig _systemConfig,
                        ISuperchainConfig _superchainConfig,
                        GameType _initialRespectedGameType
                    )
                        external;
                    function l2Sender() external view returns (address);
                    function minimumGasLimit(uint64 _byteCount) external pure returns (uint64);
                    function numProofSubmitters(bytes32 _withdrawalHash) external view returns (uint256);
                    function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep
                    function paused() external view returns (bool);
                    function proofMaturityDelaySeconds() external view returns (uint256);
                    function proofSubmitters(bytes32, uint256) external view returns (address);
                    function proveWithdrawalTransaction(
                        Types.WithdrawalTransaction memory _tx,
                        uint256 _disputeGameIndex,
                        Types.OutputRootProof memory _outputRootProof,
                        bytes[] memory _withdrawalProof
                    )
                        external;
                    function provenWithdrawals(
                        bytes32,
                        address
                    )
                        external
                        view
                        returns (IDisputeGame disputeGameProxy, uint64 timestamp); // nosemgrep
                    function respectedGameType() external view returns (GameType);
                    function respectedGameTypeUpdatedAt() external view returns (uint64);
                    function setRespectedGameType(GameType _gameType) external;
                    function superchainConfig() external view returns (ISuperchainConfig);
                    function systemConfig() external view returns (ISystemConfig);
                    function version() external pure returns (string memory);
                    function __constructor__(uint256 _proofMaturityDelaySeconds, uint256 _disputeGameFinalityDelaySeconds) external;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
                pragma solidity ^0.8.2;
                import "../../utils/AddressUpgradeable.sol";
                /**
                 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                 *
                 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                 * case an upgrade adds a module that needs to be initialized.
                 *
                 * For example:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * contract MyToken is ERC20Upgradeable {
                 *     function initialize() initializer public {
                 *         __ERC20_init("MyToken", "MTK");
                 *     }
                 * }
                 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                 *     function initializeV2() reinitializer(2) public {
                 *         __ERC20Permit_init("MyToken");
                 *     }
                 * }
                 * ```
                 *
                 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                 *
                 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                 *
                 * [CAUTION]
                 * ====
                 * Avoid leaving a contract uninitialized.
                 *
                 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * /// @custom:oz-upgrades-unsafe-allow constructor
                 * constructor() {
                 *     _disableInitializers();
                 * }
                 * ```
                 * ====
                 */
                abstract contract Initializable {
                    /**
                     * @dev Indicates that the contract has been initialized.
                     * @custom:oz-retyped-from bool
                     */
                    uint8 private _initialized;
                    /**
                     * @dev Indicates that the contract is in the process of being initialized.
                     */
                    bool private _initializing;
                    /**
                     * @dev Triggered when the contract has been initialized or reinitialized.
                     */
                    event Initialized(uint8 version);
                    /**
                     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                     */
                    modifier initializer() {
                        bool isTopLevelCall = !_initializing;
                        require(
                            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                            "Initializable: contract is already initialized"
                        );
                        _initialized = 1;
                        if (isTopLevelCall) {
                            _initializing = true;
                        }
                        _;
                        if (isTopLevelCall) {
                            _initializing = false;
                            emit Initialized(1);
                        }
                    }
                    /**
                     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                     * used to initialize parent contracts.
                     *
                     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                     * initialization step. This is essential to configure modules that are added through upgrades and that require
                     * initialization.
                     *
                     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                     * a contract, executing them in the right order is up to the developer or operator.
                     */
                    modifier reinitializer(uint8 version) {
                        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                        _initialized = version;
                        _initializing = true;
                        _;
                        _initializing = false;
                        emit Initialized(version);
                    }
                    /**
                     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                     * {initializer} and {reinitializer} modifiers, directly or indirectly.
                     */
                    modifier onlyInitializing() {
                        require(_initializing, "Initializable: contract is not initializing");
                        _;
                    }
                    /**
                     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                     * through proxies.
                     */
                    function _disableInitializers() internal virtual {
                        require(!_initializing, "Initializable: contract is initializing");
                        if (_initialized < type(uint8).max) {
                            _initialized = type(uint8).max;
                            emit Initialized(type(uint8).max);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Standard math utilities missing in the Solidity language.
                 */
                library Math {
                    enum Rounding {
                        Down, // Toward negative infinity
                        Up, // Toward infinity
                        Zero // Toward zero
                    }
                    /**
                     * @dev Returns the largest of two numbers.
                     */
                    function max(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a >= b ? a : b;
                    }
                    /**
                     * @dev Returns the smallest of two numbers.
                     */
                    function min(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a < b ? a : b;
                    }
                    /**
                     * @dev Returns the average of two numbers. The result is rounded towards
                     * zero.
                     */
                    function average(uint256 a, uint256 b) internal pure returns (uint256) {
                        // (a + b) / 2 can overflow.
                        return (a & b) + (a ^ b) / 2;
                    }
                    /**
                     * @dev Returns the ceiling of the division of two numbers.
                     *
                     * This differs from standard division with `/` in that it rounds up instead
                     * of rounding down.
                     */
                    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                        // (a + b - 1) / b can overflow on addition, so we distribute.
                        return a == 0 ? 0 : (a - 1) / b + 1;
                    }
                    /**
                     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                     * with further edits by Uniswap Labs also under MIT license.
                     */
                    function mulDiv(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 result) {
                        unchecked {
                            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                            // variables such that product = prod1 * 2^256 + prod0.
                            uint256 prod0; // Least significant 256 bits of the product
                            uint256 prod1; // Most significant 256 bits of the product
                            assembly {
                                let mm := mulmod(x, y, not(0))
                                prod0 := mul(x, y)
                                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                            }
                            // Handle non-overflow cases, 256 by 256 division.
                            if (prod1 == 0) {
                                return prod0 / denominator;
                            }
                            // Make sure the result is less than 2^256. Also prevents denominator == 0.
                            require(denominator > prod1);
                            ///////////////////////////////////////////////
                            // 512 by 256 division.
                            ///////////////////////////////////////////////
                            // Make division exact by subtracting the remainder from [prod1 prod0].
                            uint256 remainder;
                            assembly {
                                // Compute remainder using mulmod.
                                remainder := mulmod(x, y, denominator)
                                // Subtract 256 bit number from 512 bit number.
                                prod1 := sub(prod1, gt(remainder, prod0))
                                prod0 := sub(prod0, remainder)
                            }
                            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                            // See https://cs.stackexchange.com/q/138556/92363.
                            // Does not overflow because the denominator cannot be zero at this stage in the function.
                            uint256 twos = denominator & (~denominator + 1);
                            assembly {
                                // Divide denominator by twos.
                                denominator := div(denominator, twos)
                                // Divide [prod1 prod0] by twos.
                                prod0 := div(prod0, twos)
                                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                                twos := add(div(sub(0, twos), twos), 1)
                            }
                            // Shift in bits from prod1 into prod0.
                            prod0 |= prod1 * twos;
                            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                            // four bits. That is, denominator * inv = 1 mod 2^4.
                            uint256 inverse = (3 * denominator) ^ 2;
                            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                            // in modular arithmetic, doubling the correct bits in each step.
                            inverse *= 2 - denominator * inverse; // inverse mod 2^8
                            inverse *= 2 - denominator * inverse; // inverse mod 2^16
                            inverse *= 2 - denominator * inverse; // inverse mod 2^32
                            inverse *= 2 - denominator * inverse; // inverse mod 2^64
                            inverse *= 2 - denominator * inverse; // inverse mod 2^128
                            inverse *= 2 - denominator * inverse; // inverse mod 2^256
                            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                            // is no longer required.
                            result = prod0 * inverse;
                            return result;
                        }
                    }
                    /**
                     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                     */
                    function mulDiv(
                        uint256 x,
                        uint256 y,
                        uint256 denominator,
                        Rounding rounding
                    ) internal pure returns (uint256) {
                        uint256 result = mulDiv(x, y, denominator);
                        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                            result += 1;
                        }
                        return result;
                    }
                    /**
                     * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                     *
                     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                     */
                    function sqrt(uint256 a) internal pure returns (uint256) {
                        if (a == 0) {
                            return 0;
                        }
                        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                        // `msb(a) <= a < 2*msb(a)`.
                        // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                        // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                        // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                        // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                        uint256 result = 1;
                        uint256 x = a;
                        if (x >> 128 > 0) {
                            x >>= 128;
                            result <<= 64;
                        }
                        if (x >> 64 > 0) {
                            x >>= 64;
                            result <<= 32;
                        }
                        if (x >> 32 > 0) {
                            x >>= 32;
                            result <<= 16;
                        }
                        if (x >> 16 > 0) {
                            x >>= 16;
                            result <<= 8;
                        }
                        if (x >> 8 > 0) {
                            x >>= 8;
                            result <<= 4;
                        }
                        if (x >> 4 > 0) {
                            x >>= 4;
                            result <<= 2;
                        }
                        if (x >> 2 > 0) {
                            result <<= 1;
                        }
                        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                        // into the expected uint128 result.
                        unchecked {
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            return min(result, a / result);
                        }
                    }
                    /**
                     * @notice Calculates sqrt(a), following the selected rounding direction.
                     */
                    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                        uint256 result = sqrt(a);
                        if (rounding == Rounding.Up && result * result < a) {
                            result += 1;
                        }
                        return result;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title SafeCall
                /// @notice Perform low level safe calls
                library SafeCall {
                    /// @notice Performs a low level call without copying any returndata.
                    /// @dev Passes no calldata to the call context.
                    /// @param _target   Address to call
                    /// @param _gas      Amount of gas to pass to the call
                    /// @param _value    Amount of value to pass to the call
                    function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                        assembly {
                            success_ :=
                                call(
                                    _gas, // gas
                                    _target, // recipient
                                    _value, // ether value
                                    0, // inloc
                                    0, // inlen
                                    0, // outloc
                                    0 // outlen
                                )
                        }
                    }
                    /// @notice Perform a low level call with all gas without copying any returndata
                    /// @param _target   Address to call
                    /// @param _value    Amount of value to pass to the call
                    function send(address _target, uint256 _value) internal returns (bool success_) {
                        success_ = send(_target, gasleft(), _value);
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _gas      Amount of gas to pass to the call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function call(
                        address _target,
                        uint256 _gas,
                        uint256 _value,
                        bytes memory _calldata
                    )
                        internal
                        returns (bool success_)
                    {
                        assembly {
                            success_ :=
                                call(
                                    _gas, // gas
                                    _target, // recipient
                                    _value, // ether value
                                    add(_calldata, 32), // inloc
                                    mload(_calldata), // inlen
                                    0, // outloc
                                    0 // outlen
                                )
                        }
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                        success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _calldata Calldata to pass to the call
                    function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                        success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
                    }
                    /// @notice Helper function to determine if there is sufficient gas remaining within the context
                    ///         to guarantee that the minimum gas requirement for a call will be met as well as
                    ///         optionally reserving a specified amount of gas for after the call has concluded.
                    /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                    /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                    ///                     of the target context.
                    /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                    ///         context as well as reserve `_reservedGas` for the caller after the execution of
                    ///         the target context.
                    /// @dev !!!!! FOOTGUN ALERT !!!!!
                    ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                    ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                    ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                    ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                    ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                    ///          factors of the dynamic cost of the `CALL` opcode.
                    ///      2.) This function should *directly* precede the external call if possible. There is an
                    ///          added buffer to account for gas consumed between this check and the call, but it
                    ///          is only 5,700 gas.
                    ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                    ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                    ///          truncated.
                    ///      4.) Use wisely. This function is not a silver bullet.
                    function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                        bool _hasMinGas;
                        assembly {
                            // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                            _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                        }
                        return _hasMinGas;
                    }
                    /// @notice Perform a low level call without copying any returndata. This function
                    ///         will revert if the call cannot be performed with the specified minimum
                    ///         gas.
                    /// @param _target   Address to call
                    /// @param _minGas   The minimum amount of gas that may be passed to the call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function callWithMinGas(
                        address _target,
                        uint256 _minGas,
                        uint256 _value,
                        bytes memory _calldata
                    )
                        internal
                        returns (bool)
                    {
                        bool _success;
                        bool _hasMinGas = hasMinGas(_minGas, 0);
                        assembly {
                            // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                            if iszero(_hasMinGas) {
                                // Store the "Error(string)" selector in scratch space.
                                mstore(0, 0x08c379a0)
                                // Store the pointer to the string length in scratch space.
                                mstore(32, 32)
                                // Store the string.
                                //
                                // SAFETY:
                                // - We pad the beginning of the string with two zero bytes as well as the
                                // length (24) to ensure that we override the free memory pointer at offset
                                // 0x40. This is necessary because the free memory pointer is likely to
                                // be greater than 1 byte when this function is called, but it is incredibly
                                // unlikely that it will be greater than 3 bytes. As for the data within
                                // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                                // - It's fine to clobber the free memory pointer, we're reverting.
                                mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                                // Revert with 'Error("SafeCall: Not enough gas")'
                                revert(28, 100)
                            }
                            // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                            // above assertion. This ensures that, in all circumstances (except for when the
                            // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                            // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                            // the minimum amount of gas specified.
                            _success :=
                                call(
                                    gas(), // gas
                                    _target, // recipient
                                    _value, // ether value
                                    add(_calldata, 32), // inloc
                                    mload(_calldata), // inlen
                                    0x00, // outloc
                                    0x00 // outlen
                                )
                        }
                        return _success;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                // Libraries
                import { Types } from "src/libraries/Types.sol";
                import { Encoding } from "src/libraries/Encoding.sol";
                /// @title Hashing
                /// @notice Hashing handles Optimism's various different hashing schemes.
                library Hashing {
                    /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                    ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                    ///         system.
                    /// @param _tx User deposit transaction to hash.
                    /// @return Hash of the RLP encoded L2 deposit transaction.
                    function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                        return keccak256(Encoding.encodeDepositTransaction(_tx));
                    }
                    /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                    ///         of the L2 transaction that corresponds to a deposit is unique and is
                    ///         deterministically generated from L1 transaction data.
                    /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                    /// @param _logIndex    The index of the log that created the deposit transaction.
                    /// @return Hash of the deposit transaction's "source hash".
                    function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                        bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                        return keccak256(abi.encode(bytes32(0), depositId));
                    }
                    /// @notice Hashes the cross domain message based on the version that is encoded into the
                    ///         message nonce.
                    /// @param _nonce    Message nonce with version encoded into the first two bytes.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Hashed cross domain message.
                    function hashCrossDomainMessage(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                        if (version == 0) {
                            return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                        } else if (version == 1) {
                            return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                        } else {
                            revert("Hashing: unknown cross domain message version");
                        }
                    }
                    /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                    /// @param _target Address of the target of the message.
                    /// @param _sender Address of the sender of the message.
                    /// @param _data   Data to send with the message.
                    /// @param _nonce  Message nonce.
                    /// @return Hashed cross domain message.
                    function hashCrossDomainMessageV0(
                        address _target,
                        address _sender,
                        bytes memory _data,
                        uint256 _nonce
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                    }
                    /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                    /// @param _nonce    Message nonce.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Hashed cross domain message.
                    function hashCrossDomainMessageV1(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                    }
                    /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                    /// @param _tx Withdrawal transaction to hash.
                    /// @return Hashed withdrawal transaction.
                    function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                        return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                    }
                    /// @notice Hashes the various elements of an output root proof into an output root hash which
                    ///         can be used to check if the proof is valid.
                    /// @param _outputRootProof Output root proof which should hash to an output root.
                    /// @return Hashed output root proof.
                    function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                        return keccak256(
                            abi.encode(
                                _outputRootProof.version,
                                _outputRootProof.stateRoot,
                                _outputRootProof.messagePasserStorageRoot,
                                _outputRootProof.latestBlockhash
                            )
                        );
                    }
                    /// @notice Generates a unique hash for cross l2 messages. This hash is used to identify
                    ///         the message and ensure it is not relayed more than once.
                    /// @param _destination Chain ID of the destination chain.
                    /// @param _source Chain ID of the source chain.
                    /// @param _nonce Unique nonce associated with the message to prevent replay attacks.
                    /// @param _sender Address of the user who originally sent the message.
                    /// @param _target Address of the contract or wallet that the message is targeting on the destination chain.
                    /// @param _message The message payload to be relayed to the target on the destination chain.
                    /// @return Hash of the encoded message parameters, used to uniquely identify the message.
                    function hashL2toL2CrossDomainMessage(
                        uint256 _destination,
                        uint256 _source,
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        bytes memory _message
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        return keccak256(abi.encode(_destination, _source, _nonce, _sender, _target, _message));
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                // Libraries
                import { Types } from "src/libraries/Types.sol";
                import { Hashing } from "src/libraries/Hashing.sol";
                import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
                /// @title Encoding
                /// @notice Encoding handles Optimism's various different encoding schemes.
                library Encoding {
                    /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                    ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                    ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                    /// @param _tx User deposit transaction to encode.
                    /// @return RLP encoded L2 deposit transaction.
                    function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                        bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                        bytes[] memory raw = new bytes[](8);
                        raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                        raw[1] = RLPWriter.writeAddress(_tx.from);
                        raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                        raw[3] = RLPWriter.writeUint(_tx.mint);
                        raw[4] = RLPWriter.writeUint(_tx.value);
                        raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                        raw[6] = RLPWriter.writeBool(false);
                        raw[7] = RLPWriter.writeBytes(_tx.data);
                        return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                    }
                    /// @notice Encodes the cross domain message based on the version that is encoded into the
                    ///         message nonce.
                    /// @param _nonce    Message nonce with version encoded into the first two bytes.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Encoded cross domain message.
                    function encodeCrossDomainMessage(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        (, uint16 version) = decodeVersionedNonce(_nonce);
                        if (version == 0) {
                            return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                        } else if (version == 1) {
                            return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                        } else {
                            revert("Encoding: unknown cross domain message version");
                        }
                    }
                    /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                    /// @param _target Address of the target of the message.
                    /// @param _sender Address of the sender of the message.
                    /// @param _data   Data to send with the message.
                    /// @param _nonce  Message nonce.
                    /// @return Encoded cross domain message.
                    function encodeCrossDomainMessageV0(
                        address _target,
                        address _sender,
                        bytes memory _data,
                        uint256 _nonce
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        // nosemgrep: sol-style-use-abi-encodecall
                        return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                    }
                    /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                    /// @param _nonce    Message nonce.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Encoded cross domain message.
                    function encodeCrossDomainMessageV1(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        // nosemgrep: sol-style-use-abi-encodecall
                        return abi.encodeWithSignature(
                            "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                            _nonce,
                            _sender,
                            _target,
                            _value,
                            _gasLimit,
                            _data
                        );
                    }
                    /// @notice Adds a version number into the first two bytes of a message nonce.
                    /// @param _nonce   Message nonce to encode into.
                    /// @param _version Version number to encode into the message nonce.
                    /// @return Message nonce with version encoded into the first two bytes.
                    function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                        uint256 nonce;
                        assembly {
                            nonce := or(shl(240, _version), _nonce)
                        }
                        return nonce;
                    }
                    /// @notice Pulls the version out of a version-encoded nonce.
                    /// @param _nonce Message nonce with version encoded into the first two bytes.
                    /// @return Nonce without encoded version.
                    /// @return Version of the message.
                    function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                        uint240 nonce;
                        uint16 version;
                        assembly {
                            nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                            version := shr(240, _nonce)
                        }
                        return (nonce, version);
                    }
                    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                    /// @param _baseFeeScalar       L1 base fee Scalar
                    /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                    /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                    /// @param _timestamp           L1 timestamp.
                    /// @param _number              L1 blocknumber.
                    /// @param _baseFee             L1 base fee.
                    /// @param _blobBaseFee         L1 blob base fee.
                    /// @param _hash                L1 blockhash.
                    /// @param _batcherHash         Versioned hash to authenticate batcher by.
                    function encodeSetL1BlockValuesEcotone(
                        uint32 _baseFeeScalar,
                        uint32 _blobBaseFeeScalar,
                        uint64 _sequenceNumber,
                        uint64 _timestamp,
                        uint64 _number,
                        uint256 _baseFee,
                        uint256 _blobBaseFee,
                        bytes32 _hash,
                        bytes32 _batcherHash
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                        return abi.encodePacked(
                            functionSignature,
                            _baseFeeScalar,
                            _blobBaseFeeScalar,
                            _sequenceNumber,
                            _timestamp,
                            _number,
                            _baseFee,
                            _blobBaseFee,
                            _hash,
                            _batcherHash
                        );
                    }
                    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesIsthmus
                    /// @param _baseFeeScalar       L1 base fee Scalar
                    /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                    /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                    /// @param _timestamp           L1 timestamp.
                    /// @param _number              L1 blocknumber.
                    /// @param _baseFee             L1 base fee.
                    /// @param _blobBaseFee         L1 blob base fee.
                    /// @param _hash                L1 blockhash.
                    /// @param _batcherHash         Versioned hash to authenticate batcher by.
                    /// @param _operatorFeeScalar   Operator fee scalar.
                    /// @param _operatorFeeConstant Operator fee constant.
                    function encodeSetL1BlockValuesIsthmus(
                        uint32 _baseFeeScalar,
                        uint32 _blobBaseFeeScalar,
                        uint64 _sequenceNumber,
                        uint64 _timestamp,
                        uint64 _number,
                        uint256 _baseFee,
                        uint256 _blobBaseFee,
                        bytes32 _hash,
                        bytes32 _batcherHash,
                        uint32 _operatorFeeScalar,
                        uint64 _operatorFeeConstant
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesIsthmus()"));
                        return abi.encodePacked(
                            functionSignature,
                            _baseFeeScalar,
                            _blobBaseFeeScalar,
                            _sequenceNumber,
                            _timestamp,
                            _number,
                            _baseFee,
                            _blobBaseFee,
                            _hash,
                            _batcherHash,
                            _operatorFeeScalar,
                            _operatorFeeConstant
                        );
                    }
                    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
                    /// @param _baseFeeScalar       L1 base fee Scalar
                    /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                    /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                    /// @param _timestamp           L1 timestamp.
                    /// @param _number              L1 blocknumber.
                    /// @param _baseFee             L1 base fee.
                    /// @param _blobBaseFee         L1 blob base fee.
                    /// @param _hash                L1 blockhash.
                    /// @param _batcherHash         Versioned hash to authenticate batcher by.
                    function encodeSetL1BlockValuesInterop(
                        uint32 _baseFeeScalar,
                        uint32 _blobBaseFeeScalar,
                        uint64 _sequenceNumber,
                        uint64 _timestamp,
                        uint64 _number,
                        uint256 _baseFee,
                        uint256 _blobBaseFee,
                        bytes32 _hash,
                        bytes32 _batcherHash
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()"));
                        return abi.encodePacked(
                            functionSignature,
                            _baseFeeScalar,
                            _blobBaseFeeScalar,
                            _sequenceNumber,
                            _timestamp,
                            _number,
                            _baseFee,
                            _blobBaseFee,
                            _hash,
                            _batcherHash
                        );
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                // Interfaces
                import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
                /// @title Constants
                /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
                ///         the stuff used in multiple contracts. Constants that only apply to a single contract
                ///         should be defined in that contract instead.
                library Constants {
                    /// @notice Special address to be used as the tx origin for gas estimation calls in the
                    ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                    ///         the minimum gas limit specified by the user is not actually enough to execute the
                    ///         given message and you're attempting to estimate the actual necessary gas limit. We
                    ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                    ///         never have any code on any EVM chain.
                    address internal constant ESTIMATION_ADDRESS = address(1);
                    /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                    ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                    ///         non-zero to reduce the gas cost of message passing transactions.
                    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                    /// @notice The storage slot that holds the address of a proxy implementation.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                    bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /// @notice The storage slot that holds the address of the owner.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                    bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /// @notice The address that represents ether when dealing with ERC20 token addresses.
                    address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                    /// @notice The address that represents the system caller responsible for L1 attributes
                    ///         transactions.
                    address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
                    /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                    ///         for a production network.
                    function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
                        IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
                            maxResourceLimit: 20_000_000,
                            elasticityMultiplier: 10,
                            baseFeeMaxChangeDenominator: 8,
                            minimumBaseFee: 1 gwei,
                            systemTxMaxGas: 1_000_000,
                            maximumBaseFee: type(uint128).max
                        });
                        return config;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Types
                /// @notice Contains various types used throughout the Optimism contract system.
                library Types {
                    /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                    ///         timestamp that the output root is posted. This timestamp is used to verify that the
                    ///         finalization period has passed since the output root was submitted.
                    /// @custom:field outputRoot    Hash of the L2 output.
                    /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                    /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                    struct OutputProposal {
                        bytes32 outputRoot;
                        uint128 timestamp;
                        uint128 l2BlockNumber;
                    }
                    /// @notice Struct representing the elements that are hashed together to generate an output root
                    ///         which itself represents a snapshot of the L2 state.
                    /// @custom:field version                  Version of the output root.
                    /// @custom:field stateRoot                Root of the state trie at the block of this output.
                    /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                    /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                    struct OutputRootProof {
                        bytes32 version;
                        bytes32 stateRoot;
                        bytes32 messagePasserStorageRoot;
                        bytes32 latestBlockhash;
                    }
                    /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                    ///         user (as opposed to a system deposit transaction generated by the system).
                    /// @custom:field from        Address of the sender of the transaction.
                    /// @custom:field to          Address of the recipient of the transaction.
                    /// @custom:field isCreation  True if the transaction is a contract creation.
                    /// @custom:field value       Value to send to the recipient.
                    /// @custom:field mint        Amount of ETH to mint.
                    /// @custom:field gasLimit    Gas limit of the transaction.
                    /// @custom:field data        Data of the transaction.
                    /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                    /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                    struct UserDepositTransaction {
                        address from;
                        address to;
                        bool isCreation;
                        uint256 value;
                        uint256 mint;
                        uint64 gasLimit;
                        bytes data;
                        bytes32 l1BlockHash;
                        uint256 logIndex;
                    }
                    /// @notice Struct representing a withdrawal transaction.
                    /// @custom:field nonce    Nonce of the withdrawal transaction
                    /// @custom:field sender   Address of the sender of the transaction.
                    /// @custom:field target   Address of the recipient of the transaction.
                    /// @custom:field value    Value to send to the recipient.
                    /// @custom:field gasLimit Gas limit of the transaction.
                    /// @custom:field data     Data of the transaction.
                    struct WithdrawalTransaction {
                        uint256 nonce;
                        address sender;
                        address target;
                        uint256 value;
                        uint256 gasLimit;
                        bytes data;
                    }
                    /// @notice Enum representing where the FeeVault withdraws funds to.
                    /// @custom:value L1 FeeVault withdraws funds to L1.
                    /// @custom:value L2 FeeVault withdraws funds to L2.
                    enum WithdrawalNetwork {
                        L1,
                        L2
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.15;
                // Libraries
                import { Position } from "src/dispute/lib/LibPosition.sol";
                using LibClaim for Claim global;
                using LibHash for Hash global;
                using LibDuration for Duration global;
                using LibClock for Clock global;
                using LibGameId for GameId global;
                using LibTimestamp for Timestamp global;
                using LibVMStatus for VMStatus global;
                using LibGameType for GameType global;
                /// @notice A `Clock` represents a packed `Duration` and `Timestamp`
                /// @dev The packed layout of this type is as follows:
                /// ┌────────────┬────────────────┐
                /// │    Bits    │     Value      │
                /// ├────────────┼────────────────┤
                /// │ [0, 64)    │ Duration       │
                /// │ [64, 128)  │ Timestamp      │
                /// └────────────┴────────────────┘
                type Clock is uint128;
                /// @title LibClock
                /// @notice This library contains helper functions for working with the `Clock` type.
                library LibClock {
                    /// @notice Packs a `Duration` and `Timestamp` into a `Clock` type.
                    /// @param _duration The `Duration` to pack into the `Clock` type.
                    /// @param _timestamp The `Timestamp` to pack into the `Clock` type.
                    /// @return clock_ The `Clock` containing the `_duration` and `_timestamp`.
                    function wrap(Duration _duration, Timestamp _timestamp) internal pure returns (Clock clock_) {
                        assembly {
                            clock_ := or(shl(0x40, _duration), _timestamp)
                        }
                    }
                    /// @notice Pull the `Duration` out of a `Clock` type.
                    /// @param _clock The `Clock` type to pull the `Duration` out of.
                    /// @return duration_ The `Duration` pulled out of `_clock`.
                    function duration(Clock _clock) internal pure returns (Duration duration_) {
                        // Shift the high-order 64 bits into the low-order 64 bits, leaving only the `duration`.
                        assembly {
                            duration_ := shr(0x40, _clock)
                        }
                    }
                    /// @notice Pull the `Timestamp` out of a `Clock` type.
                    /// @param _clock The `Clock` type to pull the `Timestamp` out of.
                    /// @return timestamp_ The `Timestamp` pulled out of `_clock`.
                    function timestamp(Clock _clock) internal pure returns (Timestamp timestamp_) {
                        // Clean the high-order 192 bits by shifting the clock left and then right again, leaving
                        // only the `timestamp`.
                        assembly {
                            timestamp_ := shr(0xC0, shl(0xC0, _clock))
                        }
                    }
                    /// @notice Get the value of a `Clock` type in the form of the underlying uint128.
                    /// @param _clock The `Clock` type to get the value of.
                    /// @return clock_ The value of the `Clock` type as a uint128 type.
                    function raw(Clock _clock) internal pure returns (uint128 clock_) {
                        assembly {
                            clock_ := _clock
                        }
                    }
                }
                /// @notice A `GameId` represents a packed 4 byte game ID, a 8 byte timestamp, and a 20 byte address.
                /// @dev The packed layout of this type is as follows:
                /// ┌───────────┬───────────┐
                /// │   Bits    │   Value   │
                /// ├───────────┼───────────┤
                /// │ [0, 32)   │ Game Type │
                /// │ [32, 96)  │ Timestamp │
                /// │ [96, 256) │ Address   │
                /// └───────────┴───────────┘
                type GameId is bytes32;
                /// @title LibGameId
                /// @notice Utility functions for packing and unpacking GameIds.
                library LibGameId {
                    /// @notice Packs values into a 32 byte GameId type.
                    /// @param _gameType The game type.
                    /// @param _timestamp The timestamp of the game's creation.
                    /// @param _gameProxy The game proxy address.
                    /// @return gameId_ The packed GameId.
                    function pack(
                        GameType _gameType,
                        Timestamp _timestamp,
                        address _gameProxy
                    )
                        internal
                        pure
                        returns (GameId gameId_)
                    {
                        assembly {
                            gameId_ := or(or(shl(224, _gameType), shl(160, _timestamp)), _gameProxy)
                        }
                    }
                    /// @notice Unpacks values from a 32 byte GameId type.
                    /// @param _gameId The packed GameId.
                    /// @return gameType_ The game type.
                    /// @return timestamp_ The timestamp of the game's creation.
                    /// @return gameProxy_ The game proxy address.
                    function unpack(GameId _gameId)
                        internal
                        pure
                        returns (GameType gameType_, Timestamp timestamp_, address gameProxy_)
                    {
                        assembly {
                            gameType_ := shr(224, _gameId)
                            timestamp_ := and(shr(160, _gameId), 0xFFFFFFFFFFFFFFFF)
                            gameProxy_ := and(_gameId, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                        }
                    }
                }
                /// @notice A claim represents an MPT root representing the state of the fault proof program.
                type Claim is bytes32;
                /// @title LibClaim
                /// @notice This library contains helper functions for working with the `Claim` type.
                library LibClaim {
                    /// @notice Get the value of a `Claim` type in the form of the underlying bytes32.
                    /// @param _claim The `Claim` type to get the value of.
                    /// @return claim_ The value of the `Claim` type as a bytes32 type.
                    function raw(Claim _claim) internal pure returns (bytes32 claim_) {
                        assembly {
                            claim_ := _claim
                        }
                    }
                    /// @notice Hashes a claim and a position together.
                    /// @param _claim A Claim type.
                    /// @param _position The position of `claim`.
                    /// @param _challengeIndex The index of the claim being moved against.
                    /// @return claimHash_ A hash of abi.encodePacked(claim, position|challengeIndex);
                    function hashClaimPos(
                        Claim _claim,
                        Position _position,
                        uint256 _challengeIndex
                    )
                        internal
                        pure
                        returns (Hash claimHash_)
                    {
                        assembly {
                            mstore(0x00, _claim)
                            mstore(0x20, or(shl(128, _position), and(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, _challengeIndex)))
                            claimHash_ := keccak256(0x00, 0x40)
                        }
                    }
                }
                /// @notice A dedicated duration type.
                /// @dev Unit: seconds
                type Duration is uint64;
                /// @title LibDuration
                /// @notice This library contains helper functions for working with the `Duration` type.
                library LibDuration {
                    /// @notice Get the value of a `Duration` type in the form of the underlying uint64.
                    /// @param _duration The `Duration` type to get the value of.
                    /// @return duration_ The value of the `Duration` type as a uint64 type.
                    function raw(Duration _duration) internal pure returns (uint64 duration_) {
                        assembly {
                            duration_ := _duration
                        }
                    }
                }
                /// @notice A custom type for a generic hash.
                type Hash is bytes32;
                /// @title LibHash
                /// @notice This library contains helper functions for working with the `Hash` type.
                library LibHash {
                    /// @notice Get the value of a `Hash` type in the form of the underlying bytes32.
                    /// @param _hash The `Hash` type to get the value of.
                    /// @return hash_ The value of the `Hash` type as a bytes32 type.
                    function raw(Hash _hash) internal pure returns (bytes32 hash_) {
                        assembly {
                            hash_ := _hash
                        }
                    }
                }
                /// @notice A dedicated timestamp type.
                type Timestamp is uint64;
                /// @title LibTimestamp
                /// @notice This library contains helper functions for working with the `Timestamp` type.
                library LibTimestamp {
                    /// @notice Get the value of a `Timestamp` type in the form of the underlying uint64.
                    /// @param _timestamp The `Timestamp` type to get the value of.
                    /// @return timestamp_ The value of the `Timestamp` type as a uint64 type.
                    function raw(Timestamp _timestamp) internal pure returns (uint64 timestamp_) {
                        assembly {
                            timestamp_ := _timestamp
                        }
                    }
                }
                /// @notice A `VMStatus` represents the status of a VM execution.
                type VMStatus is uint8;
                /// @title LibVMStatus
                /// @notice This library contains helper functions for working with the `VMStatus` type.
                library LibVMStatus {
                    /// @notice Get the value of a `VMStatus` type in the form of the underlying uint8.
                    /// @param _vmstatus The `VMStatus` type to get the value of.
                    /// @return vmstatus_ The value of the `VMStatus` type as a uint8 type.
                    function raw(VMStatus _vmstatus) internal pure returns (uint8 vmstatus_) {
                        assembly {
                            vmstatus_ := _vmstatus
                        }
                    }
                }
                /// @notice A `GameType` represents the type of game being played.
                type GameType is uint32;
                /// @title LibGameType
                /// @notice This library contains helper functions for working with the `GameType` type.
                library LibGameType {
                    /// @notice Get the value of a `GameType` type in the form of the underlying uint32.
                    /// @param _gametype The `GameType` type to get the value of.
                    /// @return gametype_ The value of the `GameType` type as a uint32 type.
                    function raw(GameType _gametype) internal pure returns (uint32 gametype_) {
                        assembly {
                            gametype_ := _gametype
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IInitializable } from "interfaces/dispute/IInitializable.sol";
                import { Timestamp, GameStatus, GameType, Claim, Hash } from "src/dispute/lib/Types.sol";
                interface IDisputeGame is IInitializable {
                    event Resolved(GameStatus indexed status);
                    function createdAt() external view returns (Timestamp);
                    function resolvedAt() external view returns (Timestamp);
                    function status() external view returns (GameStatus);
                    function gameType() external view returns (GameType gameType_);
                    function gameCreator() external pure returns (address creator_);
                    function rootClaim() external pure returns (Claim rootClaim_);
                    function l1Head() external pure returns (Hash l1Head_);
                    function l2BlockNumber() external pure returns (uint256 l2BlockNumber_);
                    function extraData() external pure returns (bytes memory extraData_);
                    function resolve() external returns (GameStatus status_);
                    function gameData() external view returns (GameType gameType_, Claim rootClaim_, bytes memory extraData_);
                    function wasRespectedGameTypeWhenCreated() external view returns (bool);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
                import { GameId, Timestamp, Claim, Hash, GameType } from "src/dispute/lib/Types.sol";
                interface IDisputeGameFactory {
                    struct GameSearchResult {
                        uint256 index;
                        GameId metadata;
                        Timestamp timestamp;
                        Claim rootClaim;
                        bytes extraData;
                    }
                    error GameAlreadyExists(Hash uuid);
                    error IncorrectBondAmount();
                    error NoImplementation(GameType gameType);
                    event DisputeGameCreated(address indexed disputeProxy, GameType indexed gameType, Claim indexed rootClaim);
                    event ImplementationSet(address indexed impl, GameType indexed gameType);
                    event InitBondUpdated(GameType indexed gameType, uint256 indexed newBond);
                    event Initialized(uint8 version);
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    function create(
                        GameType _gameType,
                        Claim _rootClaim,
                        bytes memory _extraData
                    )
                        external
                        payable
                        returns (IDisputeGame proxy_);
                    function findLatestGames(
                        GameType _gameType,
                        uint256 _start,
                        uint256 _n
                    )
                        external
                        view
                        returns (GameSearchResult[] memory games_);
                    function gameAtIndex(uint256 _index)
                        external
                        view
                        returns (GameType gameType_, Timestamp timestamp_, IDisputeGame proxy_);
                    function gameCount() external view returns (uint256 gameCount_);
                    function gameImpls(GameType) external view returns (IDisputeGame);
                    function games(
                        GameType _gameType,
                        Claim _rootClaim,
                        bytes memory _extraData
                    )
                        external
                        view
                        returns (IDisputeGame proxy_, Timestamp timestamp_);
                    function getGameUUID(
                        GameType _gameType,
                        Claim _rootClaim,
                        bytes memory _extraData
                    )
                        external
                        pure
                        returns (Hash uuid_);
                    function initBonds(GameType) external view returns (uint256);
                    function initialize(address _owner) external;
                    function owner() external view returns (address);
                    function renounceOwnership() external;
                    function setImplementation(GameType _gameType, IDisputeGame _impl) external;
                    function setInitBond(GameType _gameType, uint256 _initBond) external;
                    function transferOwnership(address newOwner) external; // nosemgrep
                    function version() external view returns (string memory);
                    function __constructor__() external;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
                interface ISystemConfig {
                    enum UpdateType {
                        BATCHER,
                        FEE_SCALARS,
                        GAS_LIMIT,
                        UNSAFE_BLOCK_SIGNER,
                        EIP_1559_PARAMS,
                        OPERATOR_FEE_PARAMS
                    }
                    struct Addresses {
                        address l1CrossDomainMessenger;
                        address l1ERC721Bridge;
                        address l1StandardBridge;
                        address disputeGameFactory;
                        address optimismPortal;
                        address optimismMintableERC20Factory;
                    }
                    event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    function BATCH_INBOX_SLOT() external view returns (bytes32);
                    function DISPUTE_GAME_FACTORY_SLOT() external view returns (bytes32);
                    function L1_CROSS_DOMAIN_MESSENGER_SLOT() external view returns (bytes32);
                    function L1_ERC_721_BRIDGE_SLOT() external view returns (bytes32);
                    function L1_STANDARD_BRIDGE_SLOT() external view returns (bytes32);
                    function OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT() external view returns (bytes32);
                    function OPTIMISM_PORTAL_SLOT() external view returns (bytes32);
                    function START_BLOCK_SLOT() external view returns (bytes32);
                    function UNSAFE_BLOCK_SIGNER_SLOT() external view returns (bytes32);
                    function VERSION() external view returns (uint256);
                    function basefeeScalar() external view returns (uint32);
                    function batchInbox() external view returns (address addr_);
                    function batcherHash() external view returns (bytes32);
                    function blobbasefeeScalar() external view returns (uint32);
                    function disputeGameFactory() external view returns (address addr_);
                    function gasLimit() external view returns (uint64);
                    function eip1559Denominator() external view returns (uint32);
                    function eip1559Elasticity() external view returns (uint32);
                    function getAddresses() external view returns (Addresses memory);
                    function initialize(
                        address _owner,
                        uint32 _basefeeScalar,
                        uint32 _blobbasefeeScalar,
                        bytes32 _batcherHash,
                        uint64 _gasLimit,
                        address _unsafeBlockSigner,
                        IResourceMetering.ResourceConfig memory _config,
                        address _batchInbox,
                        Addresses memory _addresses
                    )
                        external;
                    function l1CrossDomainMessenger() external view returns (address addr_);
                    function l1ERC721Bridge() external view returns (address addr_);
                    function l1StandardBridge() external view returns (address addr_);
                    function maximumGasLimit() external pure returns (uint64);
                    function minimumGasLimit() external view returns (uint64);
                    function operatorFeeConstant() external view returns (uint64);
                    function operatorFeeScalar() external view returns (uint32);
                    function optimismMintableERC20Factory() external view returns (address addr_);
                    function optimismPortal() external view returns (address addr_);
                    function overhead() external view returns (uint256);
                    function owner() external view returns (address);
                    function renounceOwnership() external;
                    function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory);
                    function scalar() external view returns (uint256);
                    function setBatcherHash(bytes32 _batcherHash) external;
                    function setGasConfig(uint256 _overhead, uint256 _scalar) external;
                    function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external;
                    function setGasLimit(uint64 _gasLimit) external;
                    function setOperatorFeeScalars(uint32 _operatorFeeScalar, uint64 _operatorFeeConstant) external;
                    function setUnsafeBlockSigner(address _unsafeBlockSigner) external;
                    function setEIP1559Params(uint32 _denominator, uint32 _elasticity) external;
                    function startBlock() external view returns (uint256 startBlock_);
                    function transferOwnership(address newOwner) external; // nosemgrep
                    function unsafeBlockSigner() external view returns (address addr_);
                    function version() external pure returns (string memory);
                    function __constructor__() external;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library AddressUpgradeable {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                /// @solidity memory-safe-assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
                /// @title RLPWriter
                /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
                ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
                ///         modifications to improve legibility.
                library RLPWriter {
                    /// @notice RLP encodes a byte string.
                    /// @param _in The byte string to encode.
                    /// @return out_ The RLP encoded string in bytes.
                    function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                        if (_in.length == 1 && uint8(_in[0]) < 128) {
                            out_ = _in;
                        } else {
                            out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                        }
                    }
                    /// @notice RLP encodes a list of RLP encoded byte byte strings.
                    /// @param _in The list of RLP encoded byte strings.
                    /// @return list_ The RLP encoded list of items in bytes.
                    function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                        list_ = _flatten(_in);
                        list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                    }
                    /// @notice RLP encodes a string.
                    /// @param _in The string to encode.
                    /// @return out_ The RLP encoded string in bytes.
                    function writeString(string memory _in) internal pure returns (bytes memory out_) {
                        out_ = writeBytes(bytes(_in));
                    }
                    /// @notice RLP encodes an address.
                    /// @param _in The address to encode.
                    /// @return out_ The RLP encoded address in bytes.
                    function writeAddress(address _in) internal pure returns (bytes memory out_) {
                        out_ = writeBytes(abi.encodePacked(_in));
                    }
                    /// @notice RLP encodes a uint.
                    /// @param _in The uint256 to encode.
                    /// @return out_ The RLP encoded uint256 in bytes.
                    function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                        out_ = writeBytes(_toBinary(_in));
                    }
                    /// @notice RLP encodes a bool.
                    /// @param _in The bool to encode.
                    /// @return out_ The RLP encoded bool in bytes.
                    function writeBool(bool _in) internal pure returns (bytes memory out_) {
                        out_ = new bytes(1);
                        out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                    }
                    /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                    /// @param _len    The length of the string or the payload.
                    /// @param _offset 128 if item is string, 192 if item is list.
                    /// @return out_ RLP encoded bytes.
                    function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                        if (_len < 56) {
                            out_ = new bytes(1);
                            out_[0] = bytes1(uint8(_len) + uint8(_offset));
                        } else {
                            uint256 lenLen;
                            uint256 i = 1;
                            while (_len / i != 0) {
                                lenLen++;
                                i *= 256;
                            }
                            out_ = new bytes(lenLen + 1);
                            out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                            for (i = 1; i <= lenLen; i++) {
                                out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                            }
                        }
                    }
                    /// @notice Encode integer in big endian binary form with no leading zeroes.
                    /// @param _x The integer to encode.
                    /// @return out_ RLP encoded bytes.
                    function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                        bytes memory b = abi.encodePacked(_x);
                        uint256 i = 0;
                        for (; i < 32; i++) {
                            if (b[i] != 0) {
                                break;
                            }
                        }
                        out_ = new bytes(32 - i);
                        for (uint256 j = 0; j < out_.length; j++) {
                            out_[j] = b[i++];
                        }
                    }
                    /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                    /// @notice Copies a piece of memory to another location.
                    /// @param _dest Destination location.
                    /// @param _src  Source location.
                    /// @param _len  Length of memory to copy.
                    function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                        uint256 dest = _dest;
                        uint256 src = _src;
                        uint256 len = _len;
                        for (; len >= 32; len -= 32) {
                            assembly {
                                mstore(dest, mload(src))
                            }
                            dest += 32;
                            src += 32;
                        }
                        uint256 mask;
                        unchecked {
                            mask = 256 ** (32 - len) - 1;
                        }
                        assembly {
                            let srcpart := and(mload(src), not(mask))
                            let destpart := and(mload(dest), mask)
                            mstore(dest, or(destpart, srcpart))
                        }
                    }
                    /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                    /// @notice Flattens a list of byte strings into one byte string.
                    /// @param _list List of byte strings to flatten.
                    /// @return out_ The flattened byte string.
                    function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                        if (_list.length == 0) {
                            return new bytes(0);
                        }
                        uint256 len;
                        uint256 i = 0;
                        for (; i < _list.length; i++) {
                            len += _list[i].length;
                        }
                        out_ = new bytes(len);
                        uint256 flattenedPtr;
                        assembly {
                            flattenedPtr := add(out_, 0x20)
                        }
                        for (i = 0; i < _list.length; i++) {
                            bytes memory item = _list[i];
                            uint256 listPtr;
                            assembly {
                                listPtr := add(item, 0x20)
                            }
                            _memcpy(flattenedPtr, listPtr, item.length);
                            flattenedPtr += _list[i].length;
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface IResourceMetering {
                    struct ResourceParams {
                        uint128 prevBaseFee;
                        uint64 prevBoughtGas;
                        uint64 prevBlockNum;
                    }
                    struct ResourceConfig {
                        uint32 maxResourceLimit;
                        uint8 elasticityMultiplier;
                        uint8 baseFeeMaxChangeDenominator;
                        uint32 minimumBaseFee;
                        uint32 systemTxMaxGas;
                        uint128 maximumBaseFee;
                    }
                    error OutOfGas();
                    event Initialized(uint8 version);
                    function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep
                    function __constructor__() external;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.15;
                using LibPosition for Position global;
                /// @notice A `Position` represents a position of a claim within the game tree.
                /// @dev This is represented as a "generalized index" where the high-order bit
                /// is the level in the tree and the remaining bits is a unique bit pattern, allowing
                /// a unique identifier for each node in the tree. Mathematically, it is calculated
                /// as 2^{depth} + indexAtDepth.
                type Position is uint128;
                /// @title LibPosition
                /// @notice This library contains helper functions for working with the `Position` type.
                library LibPosition {
                    /// @notice the `MAX_POSITION_BITLEN` is the number of bits that the `Position` type, and the implementation of
                    ///         its behavior within this library, can safely support.
                    uint8 internal constant MAX_POSITION_BITLEN = 126;
                    /// @notice Computes a generalized index (2^{depth} + indexAtDepth).
                    /// @param _depth The depth of the position.
                    /// @param _indexAtDepth The index at the depth of the position.
                    /// @return position_ The computed generalized index.
                    function wrap(uint8 _depth, uint128 _indexAtDepth) internal pure returns (Position position_) {
                        assembly {
                            // gindex = 2^{_depth} + _indexAtDepth
                            position_ := add(shl(_depth, 1), _indexAtDepth)
                        }
                    }
                    /// @notice Pulls the `depth` out of a `Position` type.
                    /// @param _position The generalized index to get the `depth` of.
                    /// @return depth_ The `depth` of the `position` gindex.
                    /// @custom:attribution Solady <https://github.com/Vectorized/Solady>
                    function depth(Position _position) internal pure returns (uint8 depth_) {
                        // Return the most significant bit offset, which signifies the depth of the gindex.
                        assembly {
                            depth_ := or(depth_, shl(6, lt(0xffffffffffffffff, shr(depth_, _position))))
                            depth_ := or(depth_, shl(5, lt(0xffffffff, shr(depth_, _position))))
                            // For the remaining 32 bits, use a De Bruijn lookup.
                            _position := shr(depth_, _position)
                            _position := or(_position, shr(1, _position))
                            _position := or(_position, shr(2, _position))
                            _position := or(_position, shr(4, _position))
                            _position := or(_position, shr(8, _position))
                            _position := or(_position, shr(16, _position))
                            depth_ :=
                                or(
                                    depth_,
                                    byte(
                                        shr(251, mul(_position, shl(224, 0x07c4acdd))),
                                        0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f
                                    )
                                )
                        }
                    }
                    /// @notice Pulls the `indexAtDepth` out of a `Position` type.
                    ///         The `indexAtDepth` is the left/right index of a position at a specific depth within
                    ///         the binary tree, starting from index 0. For example, at gindex 2, the `depth` = 1
                    ///         and the `indexAtDepth` = 0.
                    /// @param _position The generalized index to get the `indexAtDepth` of.
                    /// @return indexAtDepth_ The `indexAtDepth` of the `position` gindex.
                    function indexAtDepth(Position _position) internal pure returns (uint128 indexAtDepth_) {
                        // Return bits p_{msb-1}...p_{0}. This effectively pulls the 2^{depth} out of the gindex,
                        // leaving only the `indexAtDepth`.
                        uint256 msb = depth(_position);
                        assembly {
                            indexAtDepth_ := sub(_position, shl(msb, 1))
                        }
                    }
                    /// @notice Get the left child of `_position`.
                    /// @param _position The position to get the left position of.
                    /// @return left_ The position to the left of `position`.
                    function left(Position _position) internal pure returns (Position left_) {
                        assembly {
                            left_ := shl(1, _position)
                        }
                    }
                    /// @notice Get the right child of `_position`
                    /// @param _position The position to get the right position of.
                    /// @return right_ The position to the right of `position`.
                    function right(Position _position) internal pure returns (Position right_) {
                        assembly {
                            right_ := or(1, shl(1, _position))
                        }
                    }
                    /// @notice Get the parent position of `_position`.
                    /// @param _position The position to get the parent position of.
                    /// @return parent_ The parent position of `position`.
                    function parent(Position _position) internal pure returns (Position parent_) {
                        assembly {
                            parent_ := shr(1, _position)
                        }
                    }
                    /// @notice Get the deepest, right most gindex relative to the `position`. This is equivalent to
                    ///         calling `right` on a position until the maximum depth is reached.
                    /// @param _position The position to get the relative deepest, right most gindex of.
                    /// @param _maxDepth The maximum depth of the game.
                    /// @return rightIndex_ The deepest, right most gindex relative to the `position`.
                    function rightIndex(Position _position, uint256 _maxDepth) internal pure returns (Position rightIndex_) {
                        uint256 msb = depth(_position);
                        assembly {
                            let remaining := sub(_maxDepth, msb)
                            rightIndex_ := or(shl(remaining, _position), sub(shl(remaining, 1), 1))
                        }
                    }
                    /// @notice Get the deepest, right most trace index relative to the `position`. This is
                    ///         equivalent to calling `right` on a position until the maximum depth is reached and
                    ///         then finding its index at depth.
                    /// @param _position The position to get the relative trace index of.
                    /// @param _maxDepth The maximum depth of the game.
                    /// @return traceIndex_ The trace index relative to the `position`.
                    function traceIndex(Position _position, uint256 _maxDepth) internal pure returns (uint256 traceIndex_) {
                        uint256 msb = depth(_position);
                        assembly {
                            let remaining := sub(_maxDepth, msb)
                            traceIndex_ := sub(or(shl(remaining, _position), sub(shl(remaining, 1), 1)), shl(_maxDepth, 1))
                        }
                    }
                    /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                    ///         trace index.
                    /// @param _position The position to get the highest ancestor of.
                    /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                    function traceAncestor(Position _position) internal pure returns (Position ancestor_) {
                        // Create a field with only the lowest unset bit of `_position` set.
                        Position lsb;
                        assembly {
                            lsb := and(not(_position), add(_position, 1))
                        }
                        // Find the index of the lowest unset bit within the field.
                        uint256 msb = depth(lsb);
                        // The highest ancestor that commits to the same trace index is the original position
                        // shifted right by the index of the lowest unset bit.
                        assembly {
                            let a := shr(msb, _position)
                            // Bound the ancestor to the minimum gindex, 1.
                            ancestor_ := or(a, iszero(a))
                        }
                    }
                    /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                    ///         trace index, while still being below `_upperBoundExclusive`.
                    /// @param _position The position to get the highest ancestor of.
                    /// @param _upperBoundExclusive The exclusive upper depth bound, used to inform where to stop in order
                    ///                             to not escape a sub-tree.
                    /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                    function traceAncestorBounded(
                        Position _position,
                        uint256 _upperBoundExclusive
                    )
                        internal
                        pure
                        returns (Position ancestor_)
                    {
                        // This function only works for positions that are below the upper bound.
                        if (_position.depth() <= _upperBoundExclusive) {
                            assembly {
                                // Revert with `ClaimAboveSplit()`
                                mstore(0x00, 0xb34b5c22)
                                revert(0x1C, 0x04)
                            }
                        }
                        // Grab the global trace ancestor.
                        ancestor_ = traceAncestor(_position);
                        // If the ancestor is above or at the upper bound, shift it to be below the upper bound.
                        // This should be a special case that only covers positions that commit to the final leaf
                        // in a sub-tree.
                        if (ancestor_.depth() <= _upperBoundExclusive) {
                            ancestor_ = ancestor_.rightIndex(_upperBoundExclusive + 1);
                        }
                    }
                    /// @notice Get the move position of `_position`, which is the left child of:
                    ///         1. `_position` if `_isAttack` is true.
                    ///         2. `_position | 1` if `_isAttack` is false.
                    /// @param _position The position to get the relative attack/defense position of.
                    /// @param _isAttack Whether or not the move is an attack move.
                    /// @return move_ The move position relative to `position`.
                    function move(Position _position, bool _isAttack) internal pure returns (Position move_) {
                        assembly {
                            move_ := shl(1, or(iszero(_isAttack), _position))
                        }
                    }
                    /// @notice Get the value of a `Position` type in the form of the underlying uint128.
                    /// @param _position The position to get the value of.
                    /// @return raw_ The value of the `position` as a uint128 type.
                    function raw(Position _position) internal pure returns (uint128 raw_) {
                        assembly {
                            raw_ := _position
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface IInitializable {
                    function initialize() external payable;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.15;
                // Libraries
                import {
                    Position,
                    Hash,
                    GameType,
                    VMStatus,
                    Timestamp,
                    Duration,
                    Clock,
                    GameId,
                    Claim,
                    LibGameId,
                    LibClock
                } from "src/dispute/lib/LibUDT.sol";
                /// @notice The current status of the dispute game.
                enum GameStatus {
                    // The game is currently in progress, and has not been resolved.
                    IN_PROGRESS,
                    // The game has concluded, and the `rootClaim` was challenged successfully.
                    CHALLENGER_WINS,
                    // The game has concluded, and the `rootClaim` could not be contested.
                    DEFENDER_WINS
                }
                /// @notice The game's bond distribution type. Games are expected to start in the `UNDECIDED`
                ///         state, and then choose either `NORMAL` or `REFUND`.
                enum BondDistributionMode {
                    // Bond distribution strategy has not been chosen.
                    UNDECIDED,
                    // Bonds should be distributed as normal.
                    NORMAL,
                    // Bonds should be refunded to claimants.
                    REFUND
                }
                /// @notice Represents an L2 output root and the L2 block number at which it was generated.
                /// @custom:field root The output root.
                /// @custom:field l2BlockNumber The L2 block number at which the output root was generated.
                struct OutputRoot {
                    Hash root;
                    uint256 l2BlockNumber;
                }
                /// @title GameTypes
                /// @notice A library that defines the IDs of games that can be played.
                library GameTypes {
                    /// @dev A dispute game type the uses the cannon vm.
                    GameType internal constant CANNON = GameType.wrap(0);
                    /// @dev A permissioned dispute game type that uses the cannon vm.
                    GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1);
                    /// @notice A dispute game type that uses the asterisc vm.
                    GameType internal constant ASTERISC = GameType.wrap(2);
                    /// @notice A dispute game type that uses the asterisc vm with Kona.
                    GameType internal constant ASTERISC_KONA = GameType.wrap(3);
                    /// @notice A dispute game type that uses OP Succinct
                    GameType internal constant OP_SUCCINCT = GameType.wrap(6);
                    /// @notice A dispute game type with short game duration for testing withdrawals.
                    ///         Not intended for production use.
                    GameType internal constant FAST = GameType.wrap(254);
                    /// @notice A dispute game type that uses an alphabet vm.
                    ///         Not intended for production use.
                    GameType internal constant ALPHABET = GameType.wrap(255);
                    /// @notice A dispute game type that uses RISC Zero's Kailua
                    GameType internal constant KAILUA = GameType.wrap(1337);
                }
                /// @title VMStatuses
                /// @notice Named type aliases for the various valid VM status bytes.
                library VMStatuses {
                    /// @notice The VM has executed successfully and the outcome is valid.
                    VMStatus internal constant VALID = VMStatus.wrap(0);
                    /// @notice The VM has executed successfully and the outcome is invalid.
                    VMStatus internal constant INVALID = VMStatus.wrap(1);
                    /// @notice The VM has paniced.
                    VMStatus internal constant PANIC = VMStatus.wrap(2);
                    /// @notice The VM execution is still in progress.
                    VMStatus internal constant UNFINISHED = VMStatus.wrap(3);
                }
                /// @title LocalPreimageKey
                /// @notice Named type aliases for local `PreimageOracle` key identifiers.
                library LocalPreimageKey {
                    /// @notice The identifier for the L1 head hash.
                    uint256 internal constant L1_HEAD_HASH = 0x01;
                    /// @notice The identifier for the starting output root.
                    uint256 internal constant STARTING_OUTPUT_ROOT = 0x02;
                    /// @notice The identifier for the disputed output root.
                    uint256 internal constant DISPUTED_OUTPUT_ROOT = 0x03;
                    /// @notice The identifier for the disputed L2 block number.
                    uint256 internal constant DISPUTED_L2_BLOCK_NUMBER = 0x04;
                    /// @notice The identifier for the chain ID.
                    uint256 internal constant CHAIN_ID = 0x05;
                }
                

                File 10 of 11: OptimismPortal2
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                // Contracts
                import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
                import { ResourceMetering } from "src/L1/ResourceMetering.sol";
                // Libraries
                import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
                import { EOA } from "src/libraries/EOA.sol";
                import { SafeCall } from "src/libraries/SafeCall.sol";
                import { Constants } from "src/libraries/Constants.sol";
                import { Types } from "src/libraries/Types.sol";
                import { Hashing } from "src/libraries/Hashing.sol";
                import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
                import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
                import {
                    BadTarget,
                    LargeCalldata,
                    SmallGasLimit,
                    Unauthorized,
                    CallPaused,
                    GasEstimation,
                    NonReentrant,
                    InvalidProof,
                    InvalidGameType,
                    InvalidDisputeGame,
                    InvalidMerkleProof,
                    Blacklisted,
                    Unproven,
                    ProposalNotValidated,
                    AlreadyFinalized,
                    LegacyGame
                } from "src/libraries/PortalErrors.sol";
                import { GameStatus, GameType, Claim, Timestamp } from "src/dispute/lib/Types.sol";
                // Interfaces
                import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                import { ISemver } from "interfaces/universal/ISemver.sol";
                import { ISystemConfig } from "interfaces/L1/ISystemConfig.sol";
                import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
                import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
                import { IDisputeGameFactory } from "interfaces/dispute/IDisputeGameFactory.sol";
                import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
                /// @custom:proxied true
                /// @title OptimismPortal2
                /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
                ///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
                ///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
                contract OptimismPortal2 is Initializable, ResourceMetering, ISemver {
                    /// @notice Allows for interactions with non standard ERC20 tokens.
                    using SafeERC20 for IERC20;
                    /// @notice Represents a proven withdrawal.
                    /// @custom:field disputeGameProxy The address of the dispute game proxy that the withdrawal was proven against.
                    /// @custom:field timestamp        Timestamp at which the withdrawal was proven.
                    struct ProvenWithdrawal {
                        IDisputeGame disputeGameProxy;
                        uint64 timestamp;
                    }
                    /// @notice The delay between when a withdrawal transaction is proven and when it may be finalized.
                    uint256 internal immutable PROOF_MATURITY_DELAY_SECONDS;
                    /// @notice The delay between when a dispute game is resolved and when a withdrawal proven against it may be
                    ///         finalized.
                    uint256 internal immutable DISPUTE_GAME_FINALITY_DELAY_SECONDS;
                    /// @notice Version of the deposit event.
                    uint256 internal constant DEPOSIT_VERSION = 0;
                    /// @notice The L2 gas limit set when eth is deposited using the receive() function.
                    uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
                    /// @notice The L2 gas limit for system deposit transactions that are initiated from L1.
                    uint32 internal constant SYSTEM_DEPOSIT_GAS_LIMIT = 200_000;
                    /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
                    ///         If the of this variable is the default L2 sender address, then we are NOT inside of
                    ///         a call to finalizeWithdrawalTransaction.
                    address public l2Sender;
                    /// @notice A list of withdrawal hashes which have been successfully finalized.
                    mapping(bytes32 => bool) public finalizedWithdrawals;
                    /// @custom:legacy
                    /// @custom:spacer provenWithdrawals
                    /// @notice Spacer taking up the legacy `provenWithdrawals` mapping slot.
                    bytes32 private spacer_52_0_32;
                    /// @custom:legacy
                    /// @custom:spacer paused
                    /// @notice Spacer for backwards compatibility.
                    bool private spacer_53_0_1;
                    /// @notice Contract of the Superchain Config.
                    ISuperchainConfig public superchainConfig;
                    /// @custom:legacy
                    /// @custom:spacer l2Oracle
                    /// @notice Spacer taking up the legacy `l2Oracle` address slot.
                    address private spacer_54_0_20;
                    /// @notice Contract of the SystemConfig.
                    /// @custom:network-specific
                    ISystemConfig public systemConfig;
                    /// @notice Address of the DisputeGameFactory.
                    /// @custom:network-specific
                    IDisputeGameFactory public disputeGameFactory;
                    /// @notice A mapping of withdrawal hashes to proof submitters to `ProvenWithdrawal` data.
                    mapping(bytes32 => mapping(address => ProvenWithdrawal)) public provenWithdrawals;
                    /// @notice A mapping of dispute game addresses to whether or not they are blacklisted.
                    mapping(IDisputeGame => bool) public disputeGameBlacklist;
                    /// @notice The game type that the OptimismPortal consults for output proposals.
                    GameType public respectedGameType;
                    /// @notice The timestamp at which the respected game type was last updated.
                    uint64 public respectedGameTypeUpdatedAt;
                    /// @notice Mapping of withdrawal hashes to addresses that have submitted a proof for the
                    ///         withdrawal. Original OptimismPortal contract only allowed one proof to be submitted
                    ///         for any given withdrawal hash. Fault Proofs version of this contract must allow
                    ///         multiple proofs for the same withdrawal hash to prevent a malicious user from
                    ///         blocking other withdrawals by proving them against invalid proposals. Submitters
                    ///         are tracked in an array to simplify the off-chain process of determining which
                    ///         proof submission should be used when finalizing a withdrawal.
                    mapping(bytes32 => address[]) public proofSubmitters;
                    /// @custom:legacy
                    /// @custom:spacer _balance
                    /// @notice Spacer taking up the legacy `_balance` slot.
                    uint256 private spacer_61_0_32;
                    /// @notice Emitted when a transaction is deposited from L1 to L2.
                    ///         The parameters of this event are read by the rollup node and used to derive deposit
                    ///         transactions on L2.
                    /// @param from       Address that triggered the deposit transaction.
                    /// @param to         Address that the deposit transaction is directed to.
                    /// @param version    Version of this deposit transaction event.
                    /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
                    event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                    /// @notice Emitted when a withdrawal transaction is proven.
                    /// @param withdrawalHash Hash of the withdrawal transaction.
                    /// @param from           Address that triggered the withdrawal transaction.
                    /// @param to             Address that the withdrawal transaction is directed to.
                    event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                    /// @notice Emitted when a withdrawal transaction is proven. Exists as a separate event to allow for backwards
                    ///         compatibility for tooling that observes the `WithdrawalProven` event.
                    /// @param withdrawalHash Hash of the withdrawal transaction.
                    /// @param proofSubmitter Address of the proof submitter.
                    event WithdrawalProvenExtension1(bytes32 indexed withdrawalHash, address indexed proofSubmitter);
                    /// @notice Emitted when a withdrawal transaction is finalized.
                    /// @param withdrawalHash Hash of the withdrawal transaction.
                    /// @param success        Whether the withdrawal transaction was successful.
                    event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                    /// @notice Emitted when a dispute game is blacklisted by the Guardian.
                    /// @param disputeGame Address of the dispute game that was blacklisted.
                    event DisputeGameBlacklisted(IDisputeGame indexed disputeGame);
                    /// @notice Emitted when the Guardian changes the respected game type in the portal.
                    /// @param newGameType The new respected game type.
                    /// @param updatedAt   The timestamp at which the respected game type was updated.
                    event RespectedGameTypeSet(GameType indexed newGameType, Timestamp indexed updatedAt);
                    /// @notice Reverts when paused.
                    modifier whenNotPaused() {
                        if (paused()) revert CallPaused();
                        _;
                    }
                    /// @notice Semantic version.
                    /// @custom:semver 3.14.0
                    function version() public pure virtual returns (string memory) {
                        return "3.14.0";
                    }
                    /// @notice Constructs the OptimismPortal contract.
                    constructor(uint256 _proofMaturityDelaySeconds, uint256 _disputeGameFinalityDelaySeconds) {
                        PROOF_MATURITY_DELAY_SECONDS = _proofMaturityDelaySeconds;
                        DISPUTE_GAME_FINALITY_DELAY_SECONDS = _disputeGameFinalityDelaySeconds;
                        _disableInitializers();
                    }
                    /// @notice Initializer.
                    /// @param _disputeGameFactory Contract of the DisputeGameFactory.
                    /// @param _systemConfig Contract of the SystemConfig.
                    /// @param _superchainConfig Contract of the SuperchainConfig.
                    function initialize(
                        IDisputeGameFactory _disputeGameFactory,
                        ISystemConfig _systemConfig,
                        ISuperchainConfig _superchainConfig,
                        GameType _initialRespectedGameType
                    )
                        external
                        initializer
                    {
                        disputeGameFactory = _disputeGameFactory;
                        systemConfig = _systemConfig;
                        superchainConfig = _superchainConfig;
                        // Set the `l2Sender` slot, only if it is currently empty. This signals the first initialization of the
                        // contract.
                        if (l2Sender == address(0)) {
                            l2Sender = Constants.DEFAULT_L2_SENDER;
                            // Set the `respectedGameTypeUpdatedAt` timestamp, to ignore all games of the respected type prior
                            // to this operation.
                            respectedGameTypeUpdatedAt = uint64(block.timestamp);
                            // Set the initial respected game type
                            respectedGameType = _initialRespectedGameType;
                        }
                        __ResourceMetering_init();
                    }
                    /// @notice Getter function for the address of the guardian.
                    ///         Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
                    /// @return Address of the guardian.
                    /// @custom:legacy
                    function guardian() public view returns (address) {
                        return superchainConfig.guardian();
                    }
                    /// @notice Getter for the current paused status.
                    function paused() public view returns (bool) {
                        return superchainConfig.paused();
                    }
                    /// @notice Getter for the proof maturity delay.
                    function proofMaturityDelaySeconds() public view returns (uint256) {
                        return PROOF_MATURITY_DELAY_SECONDS;
                    }
                    /// @notice Getter for the dispute game finality delay.
                    function disputeGameFinalityDelaySeconds() public view returns (uint256) {
                        return DISPUTE_GAME_FINALITY_DELAY_SECONDS;
                    }
                    /// @notice Computes the minimum gas limit for a deposit.
                    ///         The minimum gas limit linearly increases based on the size of the calldata.
                    ///         This is to prevent users from creating L2 resource usage without paying for it.
                    ///         This function can be used when interacting with the portal to ensure forwards
                    ///         compatibility.
                    /// @param _byteCount Number of bytes in the calldata.
                    /// @return The minimum gas limit for a deposit.
                    function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
                        return _byteCount * 40 + 21000;
                    }
                    /// @notice Accepts value so that users can send ETH directly to this contract and have the
                    ///         funds be deposited to their address on L2. This is intended as a convenience
                    ///         function for EOAs. Contracts should call the depositTransaction() function directly
                    ///         otherwise any deposited funds will be lost due to address aliasing.
                    receive() external payable {
                        depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
                    }
                    /// @notice Accepts ETH value without triggering a deposit to L2.
                    ///         This function mainly exists for the sake of the migration between the legacy
                    ///         Optimism system and Bedrock.
                    function donateETH() external payable {
                        // Intentionally empty.
                    }
                    /// @notice Getter for the resource config.
                    ///         Used internally by the ResourceMetering contract.
                    ///         The SystemConfig is the source of truth for the resource config.
                    /// @return config_ ResourceMetering ResourceConfig
                    function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory config_) {
                        IResourceMetering.ResourceConfig memory config = systemConfig.resourceConfig();
                        assembly ("memory-safe") {
                            config_ := config
                        }
                    }
                    /// @notice Proves a withdrawal transaction.
                    /// @param _tx               Withdrawal transaction to finalize.
                    /// @param _disputeGameIndex Index of the dispute game to prove the withdrawal against.
                    /// @param _outputRootProof  Inclusion proof of the L2ToL1MessagePasser contract's storage root.
                    /// @param _withdrawalProof  Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
                    function proveWithdrawalTransaction(
                        Types.WithdrawalTransaction memory _tx,
                        uint256 _disputeGameIndex,
                        Types.OutputRootProof calldata _outputRootProof,
                        bytes[] calldata _withdrawalProof
                    )
                        external
                        whenNotPaused
                    {
                        // Prevent users from creating a deposit transaction where this address is the message
                        // sender on L2. Because this is checked here, we do not need to check again in
                        // `finalizeWithdrawalTransaction`.
                        if (_tx.target == address(this)) revert BadTarget();
                        // Fetch the dispute game proxy from the `DisputeGameFactory` contract.
                        (GameType gameType,, IDisputeGame gameProxy) = disputeGameFactory.gameAtIndex(_disputeGameIndex);
                        Claim outputRoot = gameProxy.rootClaim();
                        // The game type of the dispute game must be the respected game type.
                        if (gameType.raw() != respectedGameType.raw()) revert InvalidGameType();
                        // The game type of the DisputeGame must have been the respected game type at creation.
                        // eip150-safe
                        try gameProxy.wasRespectedGameTypeWhenCreated() returns (bool wasRespected_) {
                            if (!wasRespected_) revert InvalidGameType();
                        } catch {
                            revert LegacyGame();
                        }
                        // Game must have been created after the respected game type was updated. This check is a
                        // strict inequality because we want to prevent users from being able to prove or finalize
                        // withdrawals against games that were created in the same block that the retirement
                        // timestamp was set. If the retirement timestamp and game type are changed in the same
                        // block, such games could still be considered valid even if they used the old game type
                        // that we intended to invalidate.
                        require(
                            gameProxy.createdAt().raw() > respectedGameTypeUpdatedAt,
                            "OptimismPortal: dispute game created before respected game type was updated"
                        );
                        // Verify that the output root can be generated with the elements in the proof.
                        if (outputRoot.raw() != Hashing.hashOutputRootProof(_outputRootProof)) revert InvalidProof();
                        // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
                        bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                        // We do not allow for proving withdrawals against dispute games that have resolved against the favor
                        // of the root claim.
                        if (gameProxy.status() == GameStatus.CHALLENGER_WINS) revert InvalidDisputeGame();
                        // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
                        // Refer to the Solidity documentation for more information on how storage layouts are
                        // computed for mappings.
                        bytes32 storageKey = keccak256(
                            abi.encode(
                                withdrawalHash,
                                uint256(0) // The withdrawals mapping is at the first slot in the layout.
                            )
                        );
                        // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
                        // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
                        // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
                        // be relayed on L1.
                        if (
                            SecureMerkleTrie.verifyInclusionProof({
                                _key: abi.encode(storageKey),
                                _value: hex"01",
                                _proof: _withdrawalProof,
                                _root: _outputRootProof.messagePasserStorageRoot
                            }) == false
                        ) revert InvalidMerkleProof();
                        // Designate the withdrawalHash as proven by storing the `disputeGameProxy` & `timestamp` in the
                        // `provenWithdrawals` mapping. A `withdrawalHash` can only be proven once unless the dispute game it proved
                        // against resolves against the favor of the root claim.
                        provenWithdrawals[withdrawalHash][msg.sender] =
                            ProvenWithdrawal({ disputeGameProxy: gameProxy, timestamp: uint64(block.timestamp) });
                        // Emit a `WithdrawalProven` event.
                        emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
                        // Emit a `WithdrawalProvenExtension1` event.
                        emit WithdrawalProvenExtension1(withdrawalHash, msg.sender);
                        // Add the proof submitter to the list of proof submitters for this withdrawal hash.
                        proofSubmitters[withdrawalHash].push(msg.sender);
                    }
                    /// @notice Finalizes a withdrawal transaction.
                    /// @param _tx Withdrawal transaction to finalize.
                    function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused {
                        finalizeWithdrawalTransactionExternalProof(_tx, msg.sender);
                    }
                    /// @notice Finalizes a withdrawal transaction, using an external proof submitter.
                    /// @param _tx Withdrawal transaction to finalize.
                    /// @param _proofSubmitter Address of the proof submitter.
                    function finalizeWithdrawalTransactionExternalProof(
                        Types.WithdrawalTransaction memory _tx,
                        address _proofSubmitter
                    )
                        public
                        whenNotPaused
                    {
                        // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
                        // than the default value when a withdrawal transaction is being finalized. This check is
                        // a defacto reentrancy guard.
                        if (l2Sender != Constants.DEFAULT_L2_SENDER) revert NonReentrant();
                        // Compute the withdrawal hash.
                        bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                        // Check that the withdrawal can be finalized.
                        checkWithdrawal(withdrawalHash, _proofSubmitter);
                        // Mark the withdrawal as finalized so it can't be replayed.
                        finalizedWithdrawals[withdrawalHash] = true;
                        // Set the l2Sender so contracts know who triggered this withdrawal on L2.
                        l2Sender = _tx.sender;
                        // Trigger the call to the target contract. We use a custom low level method
                        // SafeCall.callWithMinGas to ensure two key properties
                        //   1. Target contracts cannot force this call to run out of gas by returning a very large
                        //      amount of data (and this is OK because we don't care about the returndata here).
                        //   2. The amount of gas provided to the execution context of the target is at least the
                        //      gas limit specified by the user. If there is not enough gas in the current context
                        //      to accomplish this, `callWithMinGas` will revert.
                        bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
                        // Reset the l2Sender back to the default value.
                        l2Sender = Constants.DEFAULT_L2_SENDER;
                        // All withdrawals are immediately finalized. Replayability can
                        // be achieved through contracts built on top of this contract
                        emit WithdrawalFinalized(withdrawalHash, success);
                        // Reverting here is useful for determining the exact gas cost to successfully execute the
                        // sub call to the target contract if the minimum gas limit specified by the user would not
                        // be sufficient to execute the sub call.
                        if (!success && tx.origin == Constants.ESTIMATION_ADDRESS) {
                            revert GasEstimation();
                        }
                    }
                    /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
                    ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
                    ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
                    ///         using the CrossDomainMessenger contracts for a simpler developer experience.
                    /// @param _to         Target address on L2.
                    /// @param _value      ETH value to send to the recipient.
                    /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
                    /// @param _isCreation Whether or not the transaction is a contract creation.
                    /// @param _data       Data to trigger the recipient with.
                    function depositTransaction(
                        address _to,
                        uint256 _value,
                        uint64 _gasLimit,
                        bool _isCreation,
                        bytes memory _data
                    )
                        public
                        payable
                        metered(_gasLimit)
                    {
                        // Just to be safe, make sure that people specify address(0) as the target when doing
                        // contract creations.
                        if (_isCreation && _to != address(0)) revert BadTarget();
                        // Prevent depositing transactions that have too small of a gas limit. Users should pay
                        // more for more resource usage.
                        if (_gasLimit < minimumGasLimit(uint64(_data.length))) revert SmallGasLimit();
                        // Prevent the creation of deposit transactions that have too much calldata. This gives an
                        // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
                        // that the transaction can fit into the p2p network policy of 128kb even though deposit
                        // transactions are not gossipped over the p2p network.
                        if (_data.length > 120_000) revert LargeCalldata();
                        // Transform the from-address to its alias if the caller is a contract.
                        address from = msg.sender;
                        if (!EOA.isSenderEOA()) {
                            from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
                        }
                        // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
                        // We use opaque data so that we can update the TransactionDeposited event in the future
                        // without breaking the current interface.
                        bytes memory opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
                        // Emit a TransactionDeposited event so that the rollup node can derive a deposit
                        // transaction for this deposit.
                        emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
                    }
                    /// @notice Blacklists a dispute game. Should only be used in the event that a dispute game resolves incorrectly.
                    /// @param _disputeGame Dispute game to blacklist.
                    function blacklistDisputeGame(IDisputeGame _disputeGame) external {
                        if (msg.sender != guardian()) revert Unauthorized();
                        disputeGameBlacklist[_disputeGame] = true;
                        emit DisputeGameBlacklisted(_disputeGame);
                    }
                    /// @notice Sets the respected game type. Changing this value can alter the security properties of the system,
                    ///         depending on the new game's behavior.
                    /// @param _gameType The game type to consult for output proposals.
                    function setRespectedGameType(GameType _gameType) external {
                        if (msg.sender != guardian()) revert Unauthorized();
                        // respectedGameTypeUpdatedAt is now no longer set by default. We want to avoid modifying
                        // this function's signature as that would result in changes to the DeputyGuardianModule.
                        // We use type(uint32).max as a temporary solution to allow us to update the
                        // respectedGameTypeUpdatedAt timestamp without modifying this function's signature.
                        if (_gameType.raw() == type(uint32).max) {
                            respectedGameTypeUpdatedAt = uint64(block.timestamp);
                        } else {
                            respectedGameType = _gameType;
                        }
                        emit RespectedGameTypeSet(respectedGameType, Timestamp.wrap(respectedGameTypeUpdatedAt));
                    }
                    /// @notice Checks if a withdrawal can be finalized. This function will revert if the withdrawal cannot be
                    ///         finalized, and otherwise has no side-effects.
                    /// @param _withdrawalHash Hash of the withdrawal to check.
                    /// @param _proofSubmitter The submitter of the proof for the withdrawal hash
                    function checkWithdrawal(bytes32 _withdrawalHash, address _proofSubmitter) public view {
                        ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[_withdrawalHash][_proofSubmitter];
                        IDisputeGame disputeGameProxy = provenWithdrawal.disputeGameProxy;
                        // The dispute game must not be blacklisted.
                        if (disputeGameBlacklist[disputeGameProxy]) revert Blacklisted();
                        // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
                        // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
                        // a timestamp of zero.
                        if (provenWithdrawal.timestamp == 0) revert Unproven();
                        // Grab the createdAt timestamp once.
                        uint64 createdAt = disputeGameProxy.createdAt().raw();
                        // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
                        // starting timestamp inside the Dispute Game. Not strictly necessary but extra layer of
                        // safety against weird bugs in the proving step.
                        require(
                            provenWithdrawal.timestamp > createdAt,
                            "OptimismPortal: withdrawal timestamp less than dispute game creation timestamp"
                        );
                        // A proven withdrawal must wait at least `PROOF_MATURITY_DELAY_SECONDS` before finalizing.
                        require(
                            block.timestamp - provenWithdrawal.timestamp > PROOF_MATURITY_DELAY_SECONDS,
                            "OptimismPortal: proven withdrawal has not matured yet"
                        );
                        // A proven withdrawal must wait until the dispute game it was proven against has been
                        // resolved in favor of the root claim (the output proposal). This is to prevent users
                        // from finalizing withdrawals proven against non-finalized output roots.
                        if (disputeGameProxy.status() != GameStatus.DEFENDER_WINS) revert ProposalNotValidated();
                        // The game type of the dispute game must have been the respected game type at creation
                        // time. We check that the game type is the respected game type at proving time, but it's
                        // possible that the respected game type has since changed. Users can still use this game
                        // to finalize a withdrawal as long as it has not been otherwise invalidated.
                        // The game type of the DisputeGame must have been the respected game type at creation.
                        // eip150-safe
                        try disputeGameProxy.wasRespectedGameTypeWhenCreated() returns (bool wasRespected_) {
                            if (!wasRespected_) revert InvalidGameType();
                        } catch {
                            revert LegacyGame();
                        }
                        // Game must have been created after the respected game type was updated. This check is a
                        // strict inequality because we want to prevent users from being able to prove or finalize
                        // withdrawals against games that were created in the same block that the retirement
                        // timestamp was set. If the retirement timestamp and game type are changed in the same
                        // block, such games could still be considered valid even if they used the old game type
                        // that we intended to invalidate.
                        require(
                            createdAt > respectedGameTypeUpdatedAt,
                            "OptimismPortal: dispute game created before respected game type was updated"
                        );
                        // Before a withdrawal can be finalized, the dispute game it was proven against must have been
                        // resolved for at least `DISPUTE_GAME_FINALITY_DELAY_SECONDS`. This is to allow for manual
                        // intervention in the event that a dispute game is resolved incorrectly.
                        require(
                            block.timestamp - disputeGameProxy.resolvedAt().raw() > DISPUTE_GAME_FINALITY_DELAY_SECONDS,
                            "OptimismPortal: output proposal in air-gap"
                        );
                        // Check that this withdrawal has not already been finalized, this is replay protection.
                        if (finalizedWithdrawals[_withdrawalHash]) revert AlreadyFinalized();
                    }
                    /// @notice External getter for the number of proof submitters for a withdrawal hash.
                    /// @param _withdrawalHash Hash of the withdrawal.
                    /// @return The number of proof submitters for the withdrawal hash.
                    function numProofSubmitters(bytes32 _withdrawalHash) external view returns (uint256) {
                        return proofSubmitters[_withdrawalHash].length;
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
                pragma solidity ^0.8.2;
                import "../../utils/Address.sol";
                /**
                 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                 *
                 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                 * case an upgrade adds a module that needs to be initialized.
                 *
                 * For example:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * contract MyToken is ERC20Upgradeable {
                 *     function initialize() initializer public {
                 *         __ERC20_init("MyToken", "MTK");
                 *     }
                 * }
                 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                 *     function initializeV2() reinitializer(2) public {
                 *         __ERC20Permit_init("MyToken");
                 *     }
                 * }
                 * ```
                 *
                 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                 *
                 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                 *
                 * [CAUTION]
                 * ====
                 * Avoid leaving a contract uninitialized.
                 *
                 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                 *
                 * [.hljs-theme-light.nopadding]
                 * ```
                 * /// @custom:oz-upgrades-unsafe-allow constructor
                 * constructor() {
                 *     _disableInitializers();
                 * }
                 * ```
                 * ====
                 */
                abstract contract Initializable {
                    /**
                     * @dev Indicates that the contract has been initialized.
                     * @custom:oz-retyped-from bool
                     */
                    uint8 private _initialized;
                    /**
                     * @dev Indicates that the contract is in the process of being initialized.
                     */
                    bool private _initializing;
                    /**
                     * @dev Triggered when the contract has been initialized or reinitialized.
                     */
                    event Initialized(uint8 version);
                    /**
                     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                     */
                    modifier initializer() {
                        bool isTopLevelCall = !_initializing;
                        require(
                            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                            "Initializable: contract is already initialized"
                        );
                        _initialized = 1;
                        if (isTopLevelCall) {
                            _initializing = true;
                        }
                        _;
                        if (isTopLevelCall) {
                            _initializing = false;
                            emit Initialized(1);
                        }
                    }
                    /**
                     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                     * used to initialize parent contracts.
                     *
                     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                     * initialization step. This is essential to configure modules that are added through upgrades and that require
                     * initialization.
                     *
                     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                     * a contract, executing them in the right order is up to the developer or operator.
                     */
                    modifier reinitializer(uint8 version) {
                        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                        _initialized = version;
                        _initializing = true;
                        _;
                        _initializing = false;
                        emit Initialized(version);
                    }
                    /**
                     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                     * {initializer} and {reinitializer} modifiers, directly or indirectly.
                     */
                    modifier onlyInitializing() {
                        require(_initializing, "Initializable: contract is not initializing");
                        _;
                    }
                    /**
                     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                     * through proxies.
                     */
                    function _disableInitializers() internal virtual {
                        require(!_initializing, "Initializable: contract is initializing");
                        if (_initialized < type(uint8).max) {
                            _initialized = type(uint8).max;
                            emit Initialized(type(uint8).max);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                // Contracts
                import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
                // Libraries
                import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
                import { Burn } from "src/libraries/Burn.sol";
                import { Arithmetic } from "src/libraries/Arithmetic.sol";
                /// @custom:upgradeable
                /// @title ResourceMetering
                /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
                ///         updates automatically based on current demand.
                abstract contract ResourceMetering is Initializable {
                    /// @notice Error returned when too much gas resource is consumed.
                    error OutOfGas();
                    /// @notice Represents the various parameters that control the way in which resources are
                    ///         metered. Corresponds to the EIP-1559 resource metering system.
                    /// @custom:field prevBaseFee   Base fee from the previous block(s).
                    /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                    /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                    struct ResourceParams {
                        uint128 prevBaseFee;
                        uint64 prevBoughtGas;
                        uint64 prevBlockNum;
                    }
                    /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                    ///         market. These values should be set with care as it is possible to set them in
                    ///         a way that breaks the deposit gas market. The target resource limit is defined as
                    ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                    ///         single word. There is additional space for additions in the future.
                    /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                    ///                                            can be purchased per block.
                    /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                    ///                                            the resource limit.
                    /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                    /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                    ///                                            value.
                    /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                    ///                                            transaction. This should be set to the same
                    ///                                            number that the op-node sets as the gas limit
                    ///                                            for the system transaction.
                    /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                    ///                                            value.
                    struct ResourceConfig {
                        uint32 maxResourceLimit;
                        uint8 elasticityMultiplier;
                        uint8 baseFeeMaxChangeDenominator;
                        uint32 minimumBaseFee;
                        uint32 systemTxMaxGas;
                        uint128 maximumBaseFee;
                    }
                    /// @notice EIP-1559 style gas parameters.
                    ResourceParams public params;
                    /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                    uint256[48] private __gap;
                    /// @notice Meters access to a function based an amount of a requested resource.
                    /// @param _amount Amount of the resource requested.
                    modifier metered(uint64 _amount) {
                        // Record initial gas amount so we can refund for it later.
                        uint256 initialGas = gasleft();
                        // Run the underlying function.
                        _;
                        // Run the metering function.
                        _metered(_amount, initialGas);
                    }
                    /// @notice An internal function that holds all of the logic for metering a resource.
                    /// @param _amount     Amount of the resource requested.
                    /// @param _initialGas The amount of gas before any modifier execution.
                    function _metered(uint64 _amount, uint256 _initialGas) internal {
                        // Update block number and base fee if necessary.
                        uint256 blockDiff = block.number - params.prevBlockNum;
                        ResourceConfig memory config = _resourceConfig();
                        int256 targetResourceLimit =
                            int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                        if (blockDiff > 0) {
                            // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                            // at which deposits can be created and therefore limit the potential for deposits to
                            // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                            int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                            int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                                / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                            // Update base fee by adding the base fee delta and clamp the resulting value between
                            // min and max.
                            int256 newBaseFee = Arithmetic.clamp({
                                _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                                _min: int256(uint256(config.minimumBaseFee)),
                                _max: int256(uint256(config.maximumBaseFee))
                            });
                            // If we skipped more than one block, we also need to account for every empty block.
                            // Empty block means there was no demand for deposits in that block, so we should
                            // reflect this lack of demand in the fee.
                            if (blockDiff > 1) {
                                // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                                // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                                // between min and max.
                                newBaseFee = Arithmetic.clamp({
                                    _value: Arithmetic.cdexp({
                                        _coefficient: newBaseFee,
                                        _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                        _exponent: int256(blockDiff - 1)
                                    }),
                                    _min: int256(uint256(config.minimumBaseFee)),
                                    _max: int256(uint256(config.maximumBaseFee))
                                });
                            }
                            // Update new base fee, reset bought gas, and update block number.
                            params.prevBaseFee = uint128(uint256(newBaseFee));
                            params.prevBoughtGas = 0;
                            params.prevBlockNum = uint64(block.number);
                        }
                        // Make sure we can actually buy the resource amount requested by the user.
                        params.prevBoughtGas += _amount;
                        if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) {
                            revert OutOfGas();
                        }
                        // Determine the amount of ETH to be paid.
                        uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                        // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                        // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                        // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                        // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                        // during any 1 day period in the last 5 years, so should be fine.
                        uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                        // Give the user a refund based on the amount of gas they used to do all of the work up to
                        // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                        // effectively like a dynamic stipend (with a minimum value).
                        uint256 usedGas = _initialGas - gasleft();
                        if (gasCost > usedGas) {
                            Burn.gas(gasCost - usedGas);
                        }
                    }
                    /// @notice Adds an amount of L2 gas consumed to the prev bought gas params. This is meant to be used
                    ///         when L2 system transactions are generated from L1.
                    /// @param _amount Amount of the L2 gas resource requested.
                    function useGas(uint32 _amount) internal {
                        params.prevBoughtGas += uint64(_amount);
                    }
                    /// @notice Virtual function that returns the resource config.
                    ///         Contracts that inherit this contract must implement this function.
                    /// @return ResourceConfig
                    function _resourceConfig() internal virtual returns (ResourceConfig memory);
                    /// @notice Sets initial resource parameter values.
                    ///         This function must either be called by the initializer function of an upgradeable
                    ///         child contract.
                    function __ResourceMetering_init() internal onlyInitializing {
                        if (params.prevBlockNum == 0) {
                            params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
                pragma solidity ^0.8.0;
                import "../IERC20.sol";
                import "../extensions/draft-IERC20Permit.sol";
                import "../../../utils/Address.sol";
                /**
                 * @title SafeERC20
                 * @dev Wrappers around ERC20 operations that throw on failure (when the token
                 * contract returns false). Tokens that return no value (and instead revert or
                 * throw on failure) are also supported, non-reverting calls are assumed to be
                 * successful.
                 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                 */
                library SafeERC20 {
                    using Address for address;
                    function safeTransfer(
                        IERC20 token,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                    }
                    function safeTransferFrom(
                        IERC20 token,
                        address from,
                        address to,
                        uint256 value
                    ) internal {
                        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                    }
                    /**
                     * @dev Deprecated. This function has issues similar to the ones found in
                     * {IERC20-approve}, and its usage is discouraged.
                     *
                     * Whenever possible, use {safeIncreaseAllowance} and
                     * {safeDecreaseAllowance} instead.
                     */
                    function safeApprove(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        // safeApprove should only be called when setting an initial allowance,
                        // or when resetting it to zero. To increase and decrease it, use
                        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                        require(
                            (value == 0) || (token.allowance(address(this), spender) == 0),
                            "SafeERC20: approve from non-zero to non-zero allowance"
                        );
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                    }
                    function safeIncreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        uint256 newAllowance = token.allowance(address(this), spender) + value;
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                    function safeDecreaseAllowance(
                        IERC20 token,
                        address spender,
                        uint256 value
                    ) internal {
                        unchecked {
                            uint256 oldAllowance = token.allowance(address(this), spender);
                            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                            uint256 newAllowance = oldAllowance - value;
                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                        }
                    }
                    function safePermit(
                        IERC20Permit token,
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) internal {
                        uint256 nonceBefore = token.nonces(owner);
                        token.permit(owner, spender, value, deadline, v, r, s);
                        uint256 nonceAfter = token.nonces(owner);
                        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                    }
                    /**
                     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                     * on the return value: the return value is optional (but if data is returned, it must not be false).
                     * @param token The token targeted by the call.
                     * @param data The call data (encoded using abi.encode or one of its variants).
                     */
                    function _callOptionalReturn(IERC20 token, bytes memory data) private {
                        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                        // the target address contains contract code and also asserts for success in the low-level call.
                        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                        if (returndata.length > 0) {
                            // Return data is optional
                            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title EOA
                /// @notice A library for detecting if an address is an EOA.
                library EOA {
                    /// @notice Returns true if sender address is an EOA.
                    /// @return isEOA_ True if the sender address is an EOA.
                    function isSenderEOA() internal view returns (bool isEOA_) {
                        if (msg.sender == tx.origin) {
                            isEOA_ = true;
                        } else if (address(msg.sender).code.length == 23) {
                            // If the sender is not the origin, check for 7702 delegated EOAs.
                            assembly {
                                let ptr := mload(0x40)
                                mstore(0x40, add(ptr, 0x20))
                                extcodecopy(caller(), ptr, 0, 0x20)
                                isEOA_ := eq(shr(232, mload(ptr)), 0xEF0100)
                            }
                        } else {
                            // If more or less than 23 bytes of code, not a 7702 delegated EOA.
                            isEOA_ = false;
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title SafeCall
                /// @notice Perform low level safe calls
                library SafeCall {
                    /// @notice Performs a low level call without copying any returndata.
                    /// @dev Passes no calldata to the call context.
                    /// @param _target   Address to call
                    /// @param _gas      Amount of gas to pass to the call
                    /// @param _value    Amount of value to pass to the call
                    function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                        assembly {
                            success_ :=
                                call(
                                    _gas, // gas
                                    _target, // recipient
                                    _value, // ether value
                                    0, // inloc
                                    0, // inlen
                                    0, // outloc
                                    0 // outlen
                                )
                        }
                    }
                    /// @notice Perform a low level call with all gas without copying any returndata
                    /// @param _target   Address to call
                    /// @param _value    Amount of value to pass to the call
                    function send(address _target, uint256 _value) internal returns (bool success_) {
                        success_ = send(_target, gasleft(), _value);
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _gas      Amount of gas to pass to the call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function call(
                        address _target,
                        uint256 _gas,
                        uint256 _value,
                        bytes memory _calldata
                    )
                        internal
                        returns (bool success_)
                    {
                        assembly {
                            success_ :=
                                call(
                                    _gas, // gas
                                    _target, // recipient
                                    _value, // ether value
                                    add(_calldata, 32), // inloc
                                    mload(_calldata), // inlen
                                    0, // outloc
                                    0 // outlen
                                )
                        }
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                        success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
                    }
                    /// @notice Perform a low level call without copying any returndata
                    /// @param _target   Address to call
                    /// @param _calldata Calldata to pass to the call
                    function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                        success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
                    }
                    /// @notice Helper function to determine if there is sufficient gas remaining within the context
                    ///         to guarantee that the minimum gas requirement for a call will be met as well as
                    ///         optionally reserving a specified amount of gas for after the call has concluded.
                    /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                    /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                    ///                     of the target context.
                    /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                    ///         context as well as reserve `_reservedGas` for the caller after the execution of
                    ///         the target context.
                    /// @dev !!!!! FOOTGUN ALERT !!!!!
                    ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                    ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                    ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                    ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                    ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                    ///          factors of the dynamic cost of the `CALL` opcode.
                    ///      2.) This function should *directly* precede the external call if possible. There is an
                    ///          added buffer to account for gas consumed between this check and the call, but it
                    ///          is only 5,700 gas.
                    ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                    ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                    ///          truncated.
                    ///      4.) Use wisely. This function is not a silver bullet.
                    function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                        bool _hasMinGas;
                        assembly {
                            // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                            _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                        }
                        return _hasMinGas;
                    }
                    /// @notice Perform a low level call without copying any returndata. This function
                    ///         will revert if the call cannot be performed with the specified minimum
                    ///         gas.
                    /// @param _target   Address to call
                    /// @param _minGas   The minimum amount of gas that may be passed to the call
                    /// @param _value    Amount of value to pass to the call
                    /// @param _calldata Calldata to pass to the call
                    function callWithMinGas(
                        address _target,
                        uint256 _minGas,
                        uint256 _value,
                        bytes memory _calldata
                    )
                        internal
                        returns (bool)
                    {
                        bool _success;
                        bool _hasMinGas = hasMinGas(_minGas, 0);
                        assembly {
                            // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                            if iszero(_hasMinGas) {
                                // Store the "Error(string)" selector in scratch space.
                                mstore(0, 0x08c379a0)
                                // Store the pointer to the string length in scratch space.
                                mstore(32, 32)
                                // Store the string.
                                //
                                // SAFETY:
                                // - We pad the beginning of the string with two zero bytes as well as the
                                // length (24) to ensure that we override the free memory pointer at offset
                                // 0x40. This is necessary because the free memory pointer is likely to
                                // be greater than 1 byte when this function is called, but it is incredibly
                                // unlikely that it will be greater than 3 bytes. As for the data within
                                // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                                // - It's fine to clobber the free memory pointer, we're reverting.
                                mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                                // Revert with 'Error("SafeCall: Not enough gas")'
                                revert(28, 100)
                            }
                            // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                            // above assertion. This ensures that, in all circumstances (except for when the
                            // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                            // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                            // the minimum amount of gas specified.
                            _success :=
                                call(
                                    gas(), // gas
                                    _target, // recipient
                                    _value, // ether value
                                    add(_calldata, 32), // inloc
                                    mload(_calldata), // inlen
                                    0x00, // outloc
                                    0x00 // outlen
                                )
                        }
                        return _success;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                // Interfaces
                import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
                /// @title Constants
                /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
                ///         the stuff used in multiple contracts. Constants that only apply to a single contract
                ///         should be defined in that contract instead.
                library Constants {
                    /// @notice Special address to be used as the tx origin for gas estimation calls in the
                    ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                    ///         the minimum gas limit specified by the user is not actually enough to execute the
                    ///         given message and you're attempting to estimate the actual necessary gas limit. We
                    ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                    ///         never have any code on any EVM chain.
                    address internal constant ESTIMATION_ADDRESS = address(1);
                    /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                    ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                    ///         non-zero to reduce the gas cost of message passing transactions.
                    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                    /// @notice The storage slot that holds the address of a proxy implementation.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                    bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /// @notice The storage slot that holds the address of the owner.
                    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                    bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /// @notice The address that represents ether when dealing with ERC20 token addresses.
                    address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                    /// @notice The address that represents the system caller responsible for L1 attributes
                    ///         transactions.
                    address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
                    /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                    ///         for a production network.
                    function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
                        IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
                            maxResourceLimit: 20_000_000,
                            elasticityMultiplier: 10,
                            baseFeeMaxChangeDenominator: 8,
                            minimumBaseFee: 1 gwei,
                            systemTxMaxGas: 1_000_000,
                            maximumBaseFee: type(uint128).max
                        });
                        return config;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Types
                /// @notice Contains various types used throughout the Optimism contract system.
                library Types {
                    /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                    ///         timestamp that the output root is posted. This timestamp is used to verify that the
                    ///         finalization period has passed since the output root was submitted.
                    /// @custom:field outputRoot    Hash of the L2 output.
                    /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                    /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                    struct OutputProposal {
                        bytes32 outputRoot;
                        uint128 timestamp;
                        uint128 l2BlockNumber;
                    }
                    /// @notice Struct representing the elements that are hashed together to generate an output root
                    ///         which itself represents a snapshot of the L2 state.
                    /// @custom:field version                  Version of the output root.
                    /// @custom:field stateRoot                Root of the state trie at the block of this output.
                    /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                    /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                    struct OutputRootProof {
                        bytes32 version;
                        bytes32 stateRoot;
                        bytes32 messagePasserStorageRoot;
                        bytes32 latestBlockhash;
                    }
                    /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                    ///         user (as opposed to a system deposit transaction generated by the system).
                    /// @custom:field from        Address of the sender of the transaction.
                    /// @custom:field to          Address of the recipient of the transaction.
                    /// @custom:field isCreation  True if the transaction is a contract creation.
                    /// @custom:field value       Value to send to the recipient.
                    /// @custom:field mint        Amount of ETH to mint.
                    /// @custom:field gasLimit    Gas limit of the transaction.
                    /// @custom:field data        Data of the transaction.
                    /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                    /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                    struct UserDepositTransaction {
                        address from;
                        address to;
                        bool isCreation;
                        uint256 value;
                        uint256 mint;
                        uint64 gasLimit;
                        bytes data;
                        bytes32 l1BlockHash;
                        uint256 logIndex;
                    }
                    /// @notice Struct representing a withdrawal transaction.
                    /// @custom:field nonce    Nonce of the withdrawal transaction
                    /// @custom:field sender   Address of the sender of the transaction.
                    /// @custom:field target   Address of the recipient of the transaction.
                    /// @custom:field value    Value to send to the recipient.
                    /// @custom:field gasLimit Gas limit of the transaction.
                    /// @custom:field data     Data of the transaction.
                    struct WithdrawalTransaction {
                        uint256 nonce;
                        address sender;
                        address target;
                        uint256 value;
                        uint256 gasLimit;
                        bytes data;
                    }
                    /// @notice Enum representing where the FeeVault withdraws funds to.
                    /// @custom:value L1 FeeVault withdraws funds to L1.
                    /// @custom:value L2 FeeVault withdraws funds to L2.
                    enum WithdrawalNetwork {
                        L1,
                        L2
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                // Libraries
                import { Types } from "src/libraries/Types.sol";
                import { Encoding } from "src/libraries/Encoding.sol";
                /// @title Hashing
                /// @notice Hashing handles Optimism's various different hashing schemes.
                library Hashing {
                    /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                    ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                    ///         system.
                    /// @param _tx User deposit transaction to hash.
                    /// @return Hash of the RLP encoded L2 deposit transaction.
                    function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                        return keccak256(Encoding.encodeDepositTransaction(_tx));
                    }
                    /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                    ///         of the L2 transaction that corresponds to a deposit is unique and is
                    ///         deterministically generated from L1 transaction data.
                    /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                    /// @param _logIndex    The index of the log that created the deposit transaction.
                    /// @return Hash of the deposit transaction's "source hash".
                    function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                        bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                        return keccak256(abi.encode(bytes32(0), depositId));
                    }
                    /// @notice Hashes the cross domain message based on the version that is encoded into the
                    ///         message nonce.
                    /// @param _nonce    Message nonce with version encoded into the first two bytes.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Hashed cross domain message.
                    function hashCrossDomainMessage(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                        if (version == 0) {
                            return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                        } else if (version == 1) {
                            return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                        } else {
                            revert("Hashing: unknown cross domain message version");
                        }
                    }
                    /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                    /// @param _target Address of the target of the message.
                    /// @param _sender Address of the sender of the message.
                    /// @param _data   Data to send with the message.
                    /// @param _nonce  Message nonce.
                    /// @return Hashed cross domain message.
                    function hashCrossDomainMessageV0(
                        address _target,
                        address _sender,
                        bytes memory _data,
                        uint256 _nonce
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                    }
                    /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                    /// @param _nonce    Message nonce.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Hashed cross domain message.
                    function hashCrossDomainMessageV1(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                    }
                    /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                    /// @param _tx Withdrawal transaction to hash.
                    /// @return Hashed withdrawal transaction.
                    function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                        return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                    }
                    /// @notice Hashes the various elements of an output root proof into an output root hash which
                    ///         can be used to check if the proof is valid.
                    /// @param _outputRootProof Output root proof which should hash to an output root.
                    /// @return Hashed output root proof.
                    function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                        return keccak256(
                            abi.encode(
                                _outputRootProof.version,
                                _outputRootProof.stateRoot,
                                _outputRootProof.messagePasserStorageRoot,
                                _outputRootProof.latestBlockhash
                            )
                        );
                    }
                    /// @notice Generates a unique hash for cross l2 messages. This hash is used to identify
                    ///         the message and ensure it is not relayed more than once.
                    /// @param _destination Chain ID of the destination chain.
                    /// @param _source Chain ID of the source chain.
                    /// @param _nonce Unique nonce associated with the message to prevent replay attacks.
                    /// @param _sender Address of the user who originally sent the message.
                    /// @param _target Address of the contract or wallet that the message is targeting on the destination chain.
                    /// @param _message The message payload to be relayed to the target on the destination chain.
                    /// @return Hash of the encoded message parameters, used to uniquely identify the message.
                    function hashL2toL2CrossDomainMessage(
                        uint256 _destination,
                        uint256 _source,
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        bytes memory _message
                    )
                        internal
                        pure
                        returns (bytes32)
                    {
                        return keccak256(abi.encode(_destination, _source, _nonce, _sender, _target, _message));
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                // Libraries
                import { MerkleTrie } from "src/libraries/trie/MerkleTrie.sol";
                /// @title SecureMerkleTrie
                /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
                ///         keys. Ethereum's state trie hashes input keys before storing them.
                library SecureMerkleTrie {
                    /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
                    /// @param _key   Key of the node to search for, as a hex string.
                    /// @param _value Value of the node to search for, as a hex string.
                    /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                    ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                    ///               nodes that make a path down to the target node.
                    /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                    ///               correctly constructed.
                    /// @return valid_ Whether or not the proof is valid.
                    function verifyInclusionProof(
                        bytes memory _key,
                        bytes memory _value,
                        bytes[] memory _proof,
                        bytes32 _root
                    )
                        internal
                        pure
                        returns (bool valid_)
                    {
                        bytes memory key = _getSecureKey(_key);
                        valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
                    }
                    /// @notice Retrieves the value associated with a given key.
                    /// @param _key   Key to search for, as hex bytes.
                    /// @param _proof Merkle trie inclusion proof for the key.
                    /// @param _root  Known root of the Merkle trie.
                    /// @return value_ Value of the key if it exists.
                    function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                        bytes memory key = _getSecureKey(_key);
                        value_ = MerkleTrie.get(key, _proof, _root);
                    }
                    /// @notice Computes the hashed version of the input key.
                    /// @param _key Key to hash.
                    /// @return hash_ Hashed version of the key.
                    function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
                        hash_ = abi.encodePacked(keccak256(_key));
                    }
                }
                // SPDX-License-Identifier: Apache-2.0
                /*
                 * Copyright 2019-2021, Offchain Labs, Inc.
                 *
                 * Licensed under the Apache License, Version 2.0 (the "License");
                 * you may not use this file except in compliance with the License.
                 * You may obtain a copy of the License at
                 *
                 *    http://www.apache.org/licenses/LICENSE-2.0
                 *
                 * Unless required by applicable law or agreed to in writing, software
                 * distributed under the License is distributed on an "AS IS" BASIS,
                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                 * See the License for the specific language governing permissions and
                 * limitations under the License.
                 */
                pragma solidity ^0.8.0;
                library AddressAliasHelper {
                    uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
                    /// @notice Utility function that converts the address in the L1 that submitted a tx to
                    /// the inbox to the msg.sender viewed in the L2
                    /// @param l1Address the address in the L1 that triggered the tx to L2
                    /// @return l2Address L2 address as viewed in msg.sender
                    function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                        unchecked {
                            l2Address = address(uint160(l1Address) + offset);
                        }
                    }
                    /// @notice Utility function that converts the msg.sender viewed in the L2 to the
                    /// address in the L1 that submitted a tx to the inbox
                    /// @param l2Address L2 address as viewed in msg.sender
                    /// @return l1Address the address in the L1 that triggered the tx to L2
                    function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                        unchecked {
                            l1Address = address(uint160(l2Address) - offset);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @notice Error for when a deposit or withdrawal is to a bad target.
                error BadTarget();
                /// @notice Error for when a deposit has too much calldata.
                error LargeCalldata();
                /// @notice Error for when a deposit has too small of a gas limit.
                error SmallGasLimit();
                /// @notice Error for when a withdrawal transfer fails.
                error TransferFailed();
                /// @notice Error for when a method cannot be called with non zero CALLVALUE.
                error NoValue();
                /// @notice Error for an unauthorized CALLER.
                error Unauthorized();
                /// @notice Error for when a method cannot be called when paused. This could be renamed
                ///         to `Paused` in the future, but it collides with the `Paused` event.
                error CallPaused();
                /// @notice Error for special gas estimation.
                error GasEstimation();
                /// @notice Error for when a method is being reentered.
                error NonReentrant();
                /// @notice Error for invalid proof.
                error InvalidProof();
                /// @notice Error for invalid game type.
                error InvalidGameType();
                /// @notice Error for an invalid dispute game.
                error InvalidDisputeGame();
                /// @notice Error for an invalid merkle proof.
                error InvalidMerkleProof();
                /// @notice Error for when a dispute game has been blacklisted.
                error Blacklisted();
                /// @notice Error for when trying to withdrawal without first proven.
                error Unproven();
                /// @notice Error for when a proposal is not validated.
                error ProposalNotValidated();
                /// @notice Error for when a withdrawal has already been finalized.
                error AlreadyFinalized();
                /// @notice Error for when a game is a legacy game.
                error LegacyGame();
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.15;
                // Libraries
                import {
                    Position,
                    Hash,
                    GameType,
                    VMStatus,
                    Timestamp,
                    Duration,
                    Clock,
                    GameId,
                    Claim,
                    LibGameId,
                    LibClock
                } from "src/dispute/lib/LibUDT.sol";
                /// @notice The current status of the dispute game.
                enum GameStatus {
                    // The game is currently in progress, and has not been resolved.
                    IN_PROGRESS,
                    // The game has concluded, and the `rootClaim` was challenged successfully.
                    CHALLENGER_WINS,
                    // The game has concluded, and the `rootClaim` could not be contested.
                    DEFENDER_WINS
                }
                /// @notice The game's bond distribution type. Games are expected to start in the `UNDECIDED`
                ///         state, and then choose either `NORMAL` or `REFUND`.
                enum BondDistributionMode {
                    // Bond distribution strategy has not been chosen.
                    UNDECIDED,
                    // Bonds should be distributed as normal.
                    NORMAL,
                    // Bonds should be refunded to claimants.
                    REFUND
                }
                /// @notice Represents an L2 output root and the L2 block number at which it was generated.
                /// @custom:field root The output root.
                /// @custom:field l2BlockNumber The L2 block number at which the output root was generated.
                struct OutputRoot {
                    Hash root;
                    uint256 l2BlockNumber;
                }
                /// @title GameTypes
                /// @notice A library that defines the IDs of games that can be played.
                library GameTypes {
                    /// @dev A dispute game type the uses the cannon vm.
                    GameType internal constant CANNON = GameType.wrap(0);
                    /// @dev A permissioned dispute game type that uses the cannon vm.
                    GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1);
                    /// @notice A dispute game type that uses the asterisc vm.
                    GameType internal constant ASTERISC = GameType.wrap(2);
                    /// @notice A dispute game type that uses the asterisc vm with Kona.
                    GameType internal constant ASTERISC_KONA = GameType.wrap(3);
                    /// @notice A dispute game type that uses OP Succinct
                    GameType internal constant OP_SUCCINCT = GameType.wrap(6);
                    /// @notice A dispute game type with short game duration for testing withdrawals.
                    ///         Not intended for production use.
                    GameType internal constant FAST = GameType.wrap(254);
                    /// @notice A dispute game type that uses an alphabet vm.
                    ///         Not intended for production use.
                    GameType internal constant ALPHABET = GameType.wrap(255);
                    /// @notice A dispute game type that uses RISC Zero's Kailua
                    GameType internal constant KAILUA = GameType.wrap(1337);
                }
                /// @title VMStatuses
                /// @notice Named type aliases for the various valid VM status bytes.
                library VMStatuses {
                    /// @notice The VM has executed successfully and the outcome is valid.
                    VMStatus internal constant VALID = VMStatus.wrap(0);
                    /// @notice The VM has executed successfully and the outcome is invalid.
                    VMStatus internal constant INVALID = VMStatus.wrap(1);
                    /// @notice The VM has paniced.
                    VMStatus internal constant PANIC = VMStatus.wrap(2);
                    /// @notice The VM execution is still in progress.
                    VMStatus internal constant UNFINISHED = VMStatus.wrap(3);
                }
                /// @title LocalPreimageKey
                /// @notice Named type aliases for local `PreimageOracle` key identifiers.
                library LocalPreimageKey {
                    /// @notice The identifier for the L1 head hash.
                    uint256 internal constant L1_HEAD_HASH = 0x01;
                    /// @notice The identifier for the starting output root.
                    uint256 internal constant STARTING_OUTPUT_ROOT = 0x02;
                    /// @notice The identifier for the disputed output root.
                    uint256 internal constant DISPUTED_OUTPUT_ROOT = 0x03;
                    /// @notice The identifier for the disputed L2 block number.
                    uint256 internal constant DISPUTED_L2_BLOCK_NUMBER = 0x04;
                    /// @notice The identifier for the chain ID.
                    uint256 internal constant CHAIN_ID = 0x05;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 standard as defined in the EIP.
                 */
                interface IERC20 {
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `to`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address to, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `from` to `to` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(
                        address from,
                        address to,
                        uint256 amount
                    ) external returns (bool);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title ISemver
                /// @notice ISemver is a simple contract for ensuring that contracts are
                ///         versioned using semantic versioning.
                interface ISemver {
                    /// @notice Getter for the semantic version of the contract. This is not
                    ///         meant to be used onchain but instead meant to be used by offchain
                    ///         tooling.
                    /// @return Semver contract version as a string.
                    function version() external view returns (string memory);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
                interface ISystemConfig {
                    enum UpdateType {
                        BATCHER,
                        FEE_SCALARS,
                        GAS_LIMIT,
                        UNSAFE_BLOCK_SIGNER,
                        EIP_1559_PARAMS,
                        OPERATOR_FEE_PARAMS
                    }
                    struct Addresses {
                        address l1CrossDomainMessenger;
                        address l1ERC721Bridge;
                        address l1StandardBridge;
                        address disputeGameFactory;
                        address optimismPortal;
                        address optimismMintableERC20Factory;
                    }
                    event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    function BATCH_INBOX_SLOT() external view returns (bytes32);
                    function DISPUTE_GAME_FACTORY_SLOT() external view returns (bytes32);
                    function L1_CROSS_DOMAIN_MESSENGER_SLOT() external view returns (bytes32);
                    function L1_ERC_721_BRIDGE_SLOT() external view returns (bytes32);
                    function L1_STANDARD_BRIDGE_SLOT() external view returns (bytes32);
                    function OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT() external view returns (bytes32);
                    function OPTIMISM_PORTAL_SLOT() external view returns (bytes32);
                    function START_BLOCK_SLOT() external view returns (bytes32);
                    function UNSAFE_BLOCK_SIGNER_SLOT() external view returns (bytes32);
                    function VERSION() external view returns (uint256);
                    function basefeeScalar() external view returns (uint32);
                    function batchInbox() external view returns (address addr_);
                    function batcherHash() external view returns (bytes32);
                    function blobbasefeeScalar() external view returns (uint32);
                    function disputeGameFactory() external view returns (address addr_);
                    function gasLimit() external view returns (uint64);
                    function eip1559Denominator() external view returns (uint32);
                    function eip1559Elasticity() external view returns (uint32);
                    function getAddresses() external view returns (Addresses memory);
                    function initialize(
                        address _owner,
                        uint32 _basefeeScalar,
                        uint32 _blobbasefeeScalar,
                        bytes32 _batcherHash,
                        uint64 _gasLimit,
                        address _unsafeBlockSigner,
                        IResourceMetering.ResourceConfig memory _config,
                        address _batchInbox,
                        Addresses memory _addresses
                    )
                        external;
                    function l1CrossDomainMessenger() external view returns (address addr_);
                    function l1ERC721Bridge() external view returns (address addr_);
                    function l1StandardBridge() external view returns (address addr_);
                    function maximumGasLimit() external pure returns (uint64);
                    function minimumGasLimit() external view returns (uint64);
                    function operatorFeeConstant() external view returns (uint64);
                    function operatorFeeScalar() external view returns (uint32);
                    function optimismMintableERC20Factory() external view returns (address addr_);
                    function optimismPortal() external view returns (address addr_);
                    function overhead() external view returns (uint256);
                    function owner() external view returns (address);
                    function renounceOwnership() external;
                    function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory);
                    function scalar() external view returns (uint256);
                    function setBatcherHash(bytes32 _batcherHash) external;
                    function setGasConfig(uint256 _overhead, uint256 _scalar) external;
                    function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external;
                    function setGasLimit(uint64 _gasLimit) external;
                    function setOperatorFeeScalars(uint32 _operatorFeeScalar, uint64 _operatorFeeConstant) external;
                    function setUnsafeBlockSigner(address _unsafeBlockSigner) external;
                    function setEIP1559Params(uint32 _denominator, uint32 _elasticity) external;
                    function startBlock() external view returns (uint256 startBlock_);
                    function transferOwnership(address newOwner) external; // nosemgrep
                    function unsafeBlockSigner() external view returns (address addr_);
                    function version() external pure returns (string memory);
                    function __constructor__() external;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface IResourceMetering {
                    struct ResourceParams {
                        uint128 prevBaseFee;
                        uint64 prevBoughtGas;
                        uint64 prevBlockNum;
                    }
                    struct ResourceConfig {
                        uint32 maxResourceLimit;
                        uint8 elasticityMultiplier;
                        uint8 baseFeeMaxChangeDenominator;
                        uint32 minimumBaseFee;
                        uint32 systemTxMaxGas;
                        uint128 maximumBaseFee;
                    }
                    error OutOfGas();
                    event Initialized(uint8 version);
                    function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep
                    function __constructor__() external;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface ISuperchainConfig {
                    enum UpdateType {
                        GUARDIAN
                    }
                    event ConfigUpdate(UpdateType indexed updateType, bytes data);
                    event Initialized(uint8 version);
                    event Paused(string identifier);
                    event Unpaused();
                    function GUARDIAN_SLOT() external view returns (bytes32);
                    function PAUSED_SLOT() external view returns (bytes32);
                    function guardian() external view returns (address guardian_);
                    function initialize(address _guardian, bool _paused) external;
                    function pause(string memory _identifier) external;
                    function paused() external view returns (bool paused_);
                    function unpause() external;
                    function version() external view returns (string memory);
                    function __constructor__() external;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
                import { GameId, Timestamp, Claim, Hash, GameType } from "src/dispute/lib/Types.sol";
                interface IDisputeGameFactory {
                    struct GameSearchResult {
                        uint256 index;
                        GameId metadata;
                        Timestamp timestamp;
                        Claim rootClaim;
                        bytes extraData;
                    }
                    error GameAlreadyExists(Hash uuid);
                    error IncorrectBondAmount();
                    error NoImplementation(GameType gameType);
                    event DisputeGameCreated(address indexed disputeProxy, GameType indexed gameType, Claim indexed rootClaim);
                    event ImplementationSet(address indexed impl, GameType indexed gameType);
                    event InitBondUpdated(GameType indexed gameType, uint256 indexed newBond);
                    event Initialized(uint8 version);
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    function create(
                        GameType _gameType,
                        Claim _rootClaim,
                        bytes memory _extraData
                    )
                        external
                        payable
                        returns (IDisputeGame proxy_);
                    function findLatestGames(
                        GameType _gameType,
                        uint256 _start,
                        uint256 _n
                    )
                        external
                        view
                        returns (GameSearchResult[] memory games_);
                    function gameAtIndex(uint256 _index)
                        external
                        view
                        returns (GameType gameType_, Timestamp timestamp_, IDisputeGame proxy_);
                    function gameCount() external view returns (uint256 gameCount_);
                    function gameImpls(GameType) external view returns (IDisputeGame);
                    function games(
                        GameType _gameType,
                        Claim _rootClaim,
                        bytes memory _extraData
                    )
                        external
                        view
                        returns (IDisputeGame proxy_, Timestamp timestamp_);
                    function getGameUUID(
                        GameType _gameType,
                        Claim _rootClaim,
                        bytes memory _extraData
                    )
                        external
                        pure
                        returns (Hash uuid_);
                    function initBonds(GameType) external view returns (uint256);
                    function initialize(address _owner) external;
                    function owner() external view returns (address);
                    function renounceOwnership() external;
                    function setImplementation(GameType _gameType, IDisputeGame _impl) external;
                    function setInitBond(GameType _gameType, uint256 _initBond) external;
                    function transferOwnership(address newOwner) external; // nosemgrep
                    function version() external view returns (string memory);
                    function __constructor__() external;
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                import { IInitializable } from "interfaces/dispute/IInitializable.sol";
                import { Timestamp, GameStatus, GameType, Claim, Hash } from "src/dispute/lib/Types.sol";
                interface IDisputeGame is IInitializable {
                    event Resolved(GameStatus indexed status);
                    function createdAt() external view returns (Timestamp);
                    function resolvedAt() external view returns (Timestamp);
                    function status() external view returns (GameStatus);
                    function gameType() external view returns (GameType gameType_);
                    function gameCreator() external pure returns (address creator_);
                    function rootClaim() external pure returns (Claim rootClaim_);
                    function l1Head() external pure returns (Hash l1Head_);
                    function l2BlockNumber() external pure returns (uint256 l2BlockNumber_);
                    function extraData() external pure returns (bytes memory extraData_);
                    function resolve() external returns (GameStatus status_);
                    function gameData() external view returns (GameType gameType_, Claim rootClaim_, bytes memory extraData_);
                    function wasRespectedGameTypeWhenCreated() external view returns (bool);
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
                pragma solidity ^0.8.1;
                /**
                 * @dev Collection of functions related to the address type
                 */
                library Address {
                    /**
                     * @dev Returns true if `account` is a contract.
                     *
                     * [IMPORTANT]
                     * ====
                     * It is unsafe to assume that an address for which this function returns
                     * false is an externally-owned account (EOA) and not a contract.
                     *
                     * Among others, `isContract` will return false for the following
                     * types of addresses:
                     *
                     *  - an externally-owned account
                     *  - a contract in construction
                     *  - an address where a contract will be created
                     *  - an address where a contract lived, but was destroyed
                     * ====
                     *
                     * [IMPORTANT]
                     * ====
                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                     *
                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                     * constructor.
                     * ====
                     */
                    function isContract(address account) internal view returns (bool) {
                        // This method relies on extcodesize/address.code.length, which returns 0
                        // for contracts in construction, since the code is only stored at the end
                        // of the constructor execution.
                        return account.code.length > 0;
                    }
                    /**
                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                     * `recipient`, forwarding all available gas and reverting on errors.
                     *
                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                     * imposed by `transfer`, making them unable to receive funds via
                     * `transfer`. {sendValue} removes this limitation.
                     *
                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                     *
                     * IMPORTANT: because control is transferred to `recipient`, care must be
                     * taken to not create reentrancy vulnerabilities. Consider using
                     * {ReentrancyGuard} or the
                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                     */
                    function sendValue(address payable recipient, uint256 amount) internal {
                        require(address(this).balance >= amount, "Address: insufficient balance");
                        (bool success, ) = recipient.call{value: amount}("");
                        require(success, "Address: unable to send value, recipient may have reverted");
                    }
                    /**
                     * @dev Performs a Solidity function call using a low level `call`. A
                     * plain `call` is an unsafe replacement for a function call: use this
                     * function instead.
                     *
                     * If `target` reverts with a revert reason, it is bubbled up by this
                     * function (like regular Solidity function calls).
                     *
                     * Returns the raw returned data. To convert to the expected return value,
                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                     *
                     * Requirements:
                     *
                     * - `target` must be a contract.
                     * - calling `target` with `data` must not revert.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionCall(target, data, "Address: low-level call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                     * `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, 0, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but also transferring `value` wei to `target`.
                     *
                     * Requirements:
                     *
                     * - the calling contract must have an ETH balance of at least `value`.
                     * - the called Solidity function must be `payable`.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value
                    ) internal returns (bytes memory) {
                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                     *
                     * _Available since v3.1._
                     */
                    function functionCallWithValue(
                        address target,
                        bytes memory data,
                        uint256 value,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(address(this).balance >= value, "Address: insufficient balance for call");
                        require(isContract(target), "Address: call to non-contract");
                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                        return functionStaticCall(target, data, "Address: low-level static call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a static call.
                     *
                     * _Available since v3.3._
                     */
                    function functionStaticCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal view returns (bytes memory) {
                        require(isContract(target), "Address: static call to non-contract");
                        (bool success, bytes memory returndata) = target.staticcall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                    }
                    /**
                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                     * but performing a delegate call.
                     *
                     * _Available since v3.4._
                     */
                    function functionDelegateCall(
                        address target,
                        bytes memory data,
                        string memory errorMessage
                    ) internal returns (bytes memory) {
                        require(isContract(target), "Address: delegate call to non-contract");
                        (bool success, bytes memory returndata) = target.delegatecall(data);
                        return verifyCallResult(success, returndata, errorMessage);
                    }
                    /**
                     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                     * revert reason using the provided one.
                     *
                     * _Available since v4.3._
                     */
                    function verifyCallResult(
                        bool success,
                        bytes memory returndata,
                        string memory errorMessage
                    ) internal pure returns (bytes memory) {
                        if (success) {
                            return returndata;
                        } else {
                            // Look for revert reason and bubble it up if present
                            if (returndata.length > 0) {
                                // The easiest way to bubble the revert reason is using memory via assembly
                                /// @solidity memory-safe-assembly
                                assembly {
                                    let returndata_size := mload(returndata)
                                    revert(add(32, returndata), returndata_size)
                                }
                            } else {
                                revert(errorMessage);
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Standard math utilities missing in the Solidity language.
                 */
                library Math {
                    enum Rounding {
                        Down, // Toward negative infinity
                        Up, // Toward infinity
                        Zero // Toward zero
                    }
                    /**
                     * @dev Returns the largest of two numbers.
                     */
                    function max(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a >= b ? a : b;
                    }
                    /**
                     * @dev Returns the smallest of two numbers.
                     */
                    function min(uint256 a, uint256 b) internal pure returns (uint256) {
                        return a < b ? a : b;
                    }
                    /**
                     * @dev Returns the average of two numbers. The result is rounded towards
                     * zero.
                     */
                    function average(uint256 a, uint256 b) internal pure returns (uint256) {
                        // (a + b) / 2 can overflow.
                        return (a & b) + (a ^ b) / 2;
                    }
                    /**
                     * @dev Returns the ceiling of the division of two numbers.
                     *
                     * This differs from standard division with `/` in that it rounds up instead
                     * of rounding down.
                     */
                    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                        // (a + b - 1) / b can overflow on addition, so we distribute.
                        return a == 0 ? 0 : (a - 1) / b + 1;
                    }
                    /**
                     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                     * with further edits by Uniswap Labs also under MIT license.
                     */
                    function mulDiv(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 result) {
                        unchecked {
                            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                            // variables such that product = prod1 * 2^256 + prod0.
                            uint256 prod0; // Least significant 256 bits of the product
                            uint256 prod1; // Most significant 256 bits of the product
                            assembly {
                                let mm := mulmod(x, y, not(0))
                                prod0 := mul(x, y)
                                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                            }
                            // Handle non-overflow cases, 256 by 256 division.
                            if (prod1 == 0) {
                                return prod0 / denominator;
                            }
                            // Make sure the result is less than 2^256. Also prevents denominator == 0.
                            require(denominator > prod1);
                            ///////////////////////////////////////////////
                            // 512 by 256 division.
                            ///////////////////////////////////////////////
                            // Make division exact by subtracting the remainder from [prod1 prod0].
                            uint256 remainder;
                            assembly {
                                // Compute remainder using mulmod.
                                remainder := mulmod(x, y, denominator)
                                // Subtract 256 bit number from 512 bit number.
                                prod1 := sub(prod1, gt(remainder, prod0))
                                prod0 := sub(prod0, remainder)
                            }
                            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                            // See https://cs.stackexchange.com/q/138556/92363.
                            // Does not overflow because the denominator cannot be zero at this stage in the function.
                            uint256 twos = denominator & (~denominator + 1);
                            assembly {
                                // Divide denominator by twos.
                                denominator := div(denominator, twos)
                                // Divide [prod1 prod0] by twos.
                                prod0 := div(prod0, twos)
                                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                                twos := add(div(sub(0, twos), twos), 1)
                            }
                            // Shift in bits from prod1 into prod0.
                            prod0 |= prod1 * twos;
                            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                            // four bits. That is, denominator * inv = 1 mod 2^4.
                            uint256 inverse = (3 * denominator) ^ 2;
                            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                            // in modular arithmetic, doubling the correct bits in each step.
                            inverse *= 2 - denominator * inverse; // inverse mod 2^8
                            inverse *= 2 - denominator * inverse; // inverse mod 2^16
                            inverse *= 2 - denominator * inverse; // inverse mod 2^32
                            inverse *= 2 - denominator * inverse; // inverse mod 2^64
                            inverse *= 2 - denominator * inverse; // inverse mod 2^128
                            inverse *= 2 - denominator * inverse; // inverse mod 2^256
                            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                            // is no longer required.
                            result = prod0 * inverse;
                            return result;
                        }
                    }
                    /**
                     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                     */
                    function mulDiv(
                        uint256 x,
                        uint256 y,
                        uint256 denominator,
                        Rounding rounding
                    ) internal pure returns (uint256) {
                        uint256 result = mulDiv(x, y, denominator);
                        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                            result += 1;
                        }
                        return result;
                    }
                    /**
                     * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                     *
                     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                     */
                    function sqrt(uint256 a) internal pure returns (uint256) {
                        if (a == 0) {
                            return 0;
                        }
                        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                        // `msb(a) <= a < 2*msb(a)`.
                        // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                        // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                        // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                        // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                        uint256 result = 1;
                        uint256 x = a;
                        if (x >> 128 > 0) {
                            x >>= 128;
                            result <<= 64;
                        }
                        if (x >> 64 > 0) {
                            x >>= 64;
                            result <<= 32;
                        }
                        if (x >> 32 > 0) {
                            x >>= 32;
                            result <<= 16;
                        }
                        if (x >> 16 > 0) {
                            x >>= 16;
                            result <<= 8;
                        }
                        if (x >> 8 > 0) {
                            x >>= 8;
                            result <<= 4;
                        }
                        if (x >> 4 > 0) {
                            x >>= 4;
                            result <<= 2;
                        }
                        if (x >> 2 > 0) {
                            result <<= 1;
                        }
                        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                        // into the expected uint128 result.
                        unchecked {
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            result = (result + a / result) >> 1;
                            return min(result, a / result);
                        }
                    }
                    /**
                     * @notice Calculates sqrt(a), following the selected rounding direction.
                     */
                    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                        uint256 result = sqrt(a);
                        if (rounding == Rounding.Up && result * result < a) {
                            result += 1;
                        }
                        return result;
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                /// @title Burn
                /// @notice Utilities for burning stuff.
                library Burn {
                    /// @notice Burns a given amount of ETH.
                    /// @param _amount Amount of ETH to burn.
                    function eth(uint256 _amount) internal {
                        new Burner{ value: _amount }();
                    }
                    /// @notice Burns a given amount of gas.
                    /// @param _amount Amount of gas to burn.
                    function gas(uint256 _amount) internal view {
                        uint256 i = 0;
                        uint256 initialGas = gasleft();
                        while (initialGas - gasleft() < _amount) {
                            ++i;
                        }
                    }
                }
                /// @title Burner
                /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
                ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
                ///         from the circulating supply.
                contract Burner {
                    constructor() payable {
                        selfdestruct(payable(address(this)));
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                // Libraries
                import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
                import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
                /// @title Arithmetic
                /// @notice Even more math than before.
                library Arithmetic {
                    /// @notice Clamps a value between a minimum and maximum.
                    /// @param _value The value to clamp.
                    /// @param _min   The minimum value.
                    /// @param _max   The maximum value.
                    /// @return The clamped value.
                    function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                        return SignedMath.min(SignedMath.max(_value, _min), _max);
                    }
                    /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                    ///         Returns the result of: c * (1 - 1/d)^exp.
                    /// @param _coefficient Coefficient of the function.
                    /// @param _denominator Fractional denominator.
                    /// @param _exponent    Power function exponent.
                    /// @return Result of c * (1 - 1/d)^exp.
                    function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                        return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                    }
                    /// @notice Saturating addition.
                    /// @param _x The first value.
                    /// @param _y The second value.
                    /// @return z_ The sum of the two values, or the maximum value if the sum overflows.
                    /// @dev Returns `min(2 ** 256 - 1, x + y)`.
                    /// @dev Taken from Solady
                    /// https://github.com/Vectorized/solady/blob/63416d60c78aba70a12ca1b3c11125d1061caa12/src/utils/FixedPointMathLib.sol#L673
                    function saturatingAdd(uint256 _x, uint256 _y) internal pure returns (uint256 z_) {
                        assembly ("memory-safe") {
                            z_ := or(sub(0, lt(add(_x, _y), _x)), add(_x, _y))
                        }
                    }
                    /// @notice Saturating multiplication.
                    /// @param _x The first value.
                    /// @param _y The second value.
                    /// @return z_ The product of the two values, or the maximum value if the product overflows.
                    /// @dev Returns `min(2 ** 256 - 1, x * y).
                    /// @dev Taken from Solady
                    /// https://github.com/Vectorized/solady/blob/63416d60c78aba70a12ca1b3c11125d1061caa12/src/utils/FixedPointMathLib.sol#L681
                    function saturatingMul(uint256 _x, uint256 _y) internal pure returns (uint256 z_) {
                        assembly ("memory-safe") {
                            z_ := or(sub(or(iszero(_x), eq(div(mul(_x, _y), _x), _y)), 1), mul(_x, _y))
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                 *
                 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                 * need to send a transaction, and thus is not required to hold Ether at all.
                 */
                interface IERC20Permit {
                    /**
                     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                     * given ``owner``'s signed approval.
                     *
                     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                     * ordering also apply here.
                     *
                     * Emits an {Approval} event.
                     *
                     * Requirements:
                     *
                     * - `spender` cannot be the zero address.
                     * - `deadline` must be a timestamp in the future.
                     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                     * over the EIP712-formatted function arguments.
                     * - the signature must use ``owner``'s current nonce (see {nonces}).
                     *
                     * For more information on the signature format, see the
                     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                     * section].
                     */
                    function permit(
                        address owner,
                        address spender,
                        uint256 value,
                        uint256 deadline,
                        uint8 v,
                        bytes32 r,
                        bytes32 s
                    ) external;
                    /**
                     * @dev Returns the current nonce for `owner`. This value must be
                     * included whenever a signature is generated for {permit}.
                     *
                     * Every successful call to {permit} increases ``owner``'s nonce by one. This
                     * prevents a signature from being used multiple times.
                     */
                    function nonces(address owner) external view returns (uint256);
                    /**
                     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                     */
                    // solhint-disable-next-line func-name-mixedcase
                    function DOMAIN_SEPARATOR() external view returns (bytes32);
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                // Libraries
                import { Types } from "src/libraries/Types.sol";
                import { Hashing } from "src/libraries/Hashing.sol";
                import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
                /// @title Encoding
                /// @notice Encoding handles Optimism's various different encoding schemes.
                library Encoding {
                    /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                    ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                    ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                    /// @param _tx User deposit transaction to encode.
                    /// @return RLP encoded L2 deposit transaction.
                    function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                        bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                        bytes[] memory raw = new bytes[](8);
                        raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                        raw[1] = RLPWriter.writeAddress(_tx.from);
                        raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                        raw[3] = RLPWriter.writeUint(_tx.mint);
                        raw[4] = RLPWriter.writeUint(_tx.value);
                        raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                        raw[6] = RLPWriter.writeBool(false);
                        raw[7] = RLPWriter.writeBytes(_tx.data);
                        return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                    }
                    /// @notice Encodes the cross domain message based on the version that is encoded into the
                    ///         message nonce.
                    /// @param _nonce    Message nonce with version encoded into the first two bytes.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Encoded cross domain message.
                    function encodeCrossDomainMessage(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        (, uint16 version) = decodeVersionedNonce(_nonce);
                        if (version == 0) {
                            return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                        } else if (version == 1) {
                            return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                        } else {
                            revert("Encoding: unknown cross domain message version");
                        }
                    }
                    /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                    /// @param _target Address of the target of the message.
                    /// @param _sender Address of the sender of the message.
                    /// @param _data   Data to send with the message.
                    /// @param _nonce  Message nonce.
                    /// @return Encoded cross domain message.
                    function encodeCrossDomainMessageV0(
                        address _target,
                        address _sender,
                        bytes memory _data,
                        uint256 _nonce
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        // nosemgrep: sol-style-use-abi-encodecall
                        return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                    }
                    /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                    /// @param _nonce    Message nonce.
                    /// @param _sender   Address of the sender of the message.
                    /// @param _target   Address of the target of the message.
                    /// @param _value    ETH value to send to the target.
                    /// @param _gasLimit Gas limit to use for the message.
                    /// @param _data     Data to send with the message.
                    /// @return Encoded cross domain message.
                    function encodeCrossDomainMessageV1(
                        uint256 _nonce,
                        address _sender,
                        address _target,
                        uint256 _value,
                        uint256 _gasLimit,
                        bytes memory _data
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        // nosemgrep: sol-style-use-abi-encodecall
                        return abi.encodeWithSignature(
                            "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                            _nonce,
                            _sender,
                            _target,
                            _value,
                            _gasLimit,
                            _data
                        );
                    }
                    /// @notice Adds a version number into the first two bytes of a message nonce.
                    /// @param _nonce   Message nonce to encode into.
                    /// @param _version Version number to encode into the message nonce.
                    /// @return Message nonce with version encoded into the first two bytes.
                    function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                        uint256 nonce;
                        assembly {
                            nonce := or(shl(240, _version), _nonce)
                        }
                        return nonce;
                    }
                    /// @notice Pulls the version out of a version-encoded nonce.
                    /// @param _nonce Message nonce with version encoded into the first two bytes.
                    /// @return Nonce without encoded version.
                    /// @return Version of the message.
                    function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                        uint240 nonce;
                        uint16 version;
                        assembly {
                            nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                            version := shr(240, _nonce)
                        }
                        return (nonce, version);
                    }
                    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                    /// @param _baseFeeScalar       L1 base fee Scalar
                    /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                    /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                    /// @param _timestamp           L1 timestamp.
                    /// @param _number              L1 blocknumber.
                    /// @param _baseFee             L1 base fee.
                    /// @param _blobBaseFee         L1 blob base fee.
                    /// @param _hash                L1 blockhash.
                    /// @param _batcherHash         Versioned hash to authenticate batcher by.
                    function encodeSetL1BlockValuesEcotone(
                        uint32 _baseFeeScalar,
                        uint32 _blobBaseFeeScalar,
                        uint64 _sequenceNumber,
                        uint64 _timestamp,
                        uint64 _number,
                        uint256 _baseFee,
                        uint256 _blobBaseFee,
                        bytes32 _hash,
                        bytes32 _batcherHash
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                        return abi.encodePacked(
                            functionSignature,
                            _baseFeeScalar,
                            _blobBaseFeeScalar,
                            _sequenceNumber,
                            _timestamp,
                            _number,
                            _baseFee,
                            _blobBaseFee,
                            _hash,
                            _batcherHash
                        );
                    }
                    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesIsthmus
                    /// @param _baseFeeScalar       L1 base fee Scalar
                    /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                    /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                    /// @param _timestamp           L1 timestamp.
                    /// @param _number              L1 blocknumber.
                    /// @param _baseFee             L1 base fee.
                    /// @param _blobBaseFee         L1 blob base fee.
                    /// @param _hash                L1 blockhash.
                    /// @param _batcherHash         Versioned hash to authenticate batcher by.
                    /// @param _operatorFeeScalar   Operator fee scalar.
                    /// @param _operatorFeeConstant Operator fee constant.
                    function encodeSetL1BlockValuesIsthmus(
                        uint32 _baseFeeScalar,
                        uint32 _blobBaseFeeScalar,
                        uint64 _sequenceNumber,
                        uint64 _timestamp,
                        uint64 _number,
                        uint256 _baseFee,
                        uint256 _blobBaseFee,
                        bytes32 _hash,
                        bytes32 _batcherHash,
                        uint32 _operatorFeeScalar,
                        uint64 _operatorFeeConstant
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesIsthmus()"));
                        return abi.encodePacked(
                            functionSignature,
                            _baseFeeScalar,
                            _blobBaseFeeScalar,
                            _sequenceNumber,
                            _timestamp,
                            _number,
                            _baseFee,
                            _blobBaseFee,
                            _hash,
                            _batcherHash,
                            _operatorFeeScalar,
                            _operatorFeeConstant
                        );
                    }
                    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
                    /// @param _baseFeeScalar       L1 base fee Scalar
                    /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                    /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                    /// @param _timestamp           L1 timestamp.
                    /// @param _number              L1 blocknumber.
                    /// @param _baseFee             L1 base fee.
                    /// @param _blobBaseFee         L1 blob base fee.
                    /// @param _hash                L1 blockhash.
                    /// @param _batcherHash         Versioned hash to authenticate batcher by.
                    function encodeSetL1BlockValuesInterop(
                        uint32 _baseFeeScalar,
                        uint32 _blobBaseFeeScalar,
                        uint64 _sequenceNumber,
                        uint64 _timestamp,
                        uint64 _number,
                        uint256 _baseFee,
                        uint256 _blobBaseFee,
                        bytes32 _hash,
                        bytes32 _batcherHash
                    )
                        internal
                        pure
                        returns (bytes memory)
                    {
                        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()"));
                        return abi.encodePacked(
                            functionSignature,
                            _baseFeeScalar,
                            _blobBaseFeeScalar,
                            _sequenceNumber,
                            _timestamp,
                            _number,
                            _baseFee,
                            _blobBaseFee,
                            _hash,
                            _batcherHash
                        );
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                // Libraries
                import { Bytes } from "src/libraries/Bytes.sol";
                import { RLPReader } from "src/libraries/rlp/RLPReader.sol";
                /// @title MerkleTrie
                /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
                ///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
                ///         trie radix constant to support other trie radixes.
                library MerkleTrie {
                    /// @notice Struct representing a node in the trie.
                    /// @custom:field encoded The RLP-encoded node.
                    /// @custom:field decoded The RLP-decoded node.
                    struct TrieNode {
                        bytes encoded;
                        RLPReader.RLPItem[] decoded;
                    }
                    /// @notice Determines the number of elements per branch node.
                    uint256 internal constant TREE_RADIX = 16;
                    /// @notice Branch nodes have TREE_RADIX elements and one value element.
                    uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
                    /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
                    uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
                    /// @notice Prefix for even-nibbled extension node paths.
                    uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
                    /// @notice Prefix for odd-nibbled extension node paths.
                    uint8 internal constant PREFIX_EXTENSION_ODD = 1;
                    /// @notice Prefix for even-nibbled leaf node paths.
                    uint8 internal constant PREFIX_LEAF_EVEN = 2;
                    /// @notice Prefix for odd-nibbled leaf node paths.
                    uint8 internal constant PREFIX_LEAF_ODD = 3;
                    /// @notice Verifies a proof that a given key/value pair is present in the trie.
                    /// @param _key   Key of the node to search for, as a hex string.
                    /// @param _value Value of the node to search for, as a hex string.
                    /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                    ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                    ///               nodes that make a path down to the target node.
                    /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                    ///               correctly constructed.
                    /// @return valid_ Whether or not the proof is valid.
                    function verifyInclusionProof(
                        bytes memory _key,
                        bytes memory _value,
                        bytes[] memory _proof,
                        bytes32 _root
                    )
                        internal
                        pure
                        returns (bool valid_)
                    {
                        valid_ = Bytes.equal(_value, get(_key, _proof, _root));
                    }
                    /// @notice Retrieves the value associated with a given key.
                    /// @param _key   Key to search for, as hex bytes.
                    /// @param _proof Merkle trie inclusion proof for the key.
                    /// @param _root  Known root of the Merkle trie.
                    /// @return value_ Value of the key if it exists.
                    function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                        require(_key.length > 0, "MerkleTrie: empty key");
                        TrieNode[] memory proof = _parseProof(_proof);
                        bytes memory key = Bytes.toNibbles(_key);
                        bytes memory currentNodeID = abi.encodePacked(_root);
                        uint256 currentKeyIndex = 0;
                        // Proof is top-down, so we start at the first element (root).
                        for (uint256 i = 0; i < proof.length; i++) {
                            TrieNode memory currentNode = proof[i];
                            // Key index should never exceed total key length or we'll be out of bounds.
                            require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
                            if (currentKeyIndex == 0) {
                                // First proof element is always the root node.
                                require(
                                    Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                    "MerkleTrie: invalid root hash"
                                );
                            } else if (currentNode.encoded.length >= 32) {
                                // Nodes 32 bytes or larger are hashed inside branch nodes.
                                require(
                                    Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                    "MerkleTrie: invalid large internal hash"
                                );
                            } else {
                                // Nodes smaller than 32 bytes aren't hashed.
                                require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
                            }
                            if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                                if (currentKeyIndex == key.length) {
                                    // Value is the last element of the decoded list (for branch nodes). There's
                                    // some ambiguity in the Merkle trie specification because bytes(0) is a
                                    // valid value to place into the trie, but for branch nodes bytes(0) can exist
                                    // even when the value wasn't explicitly placed there. Geth treats a value of
                                    // bytes(0) as "key does not exist" and so we do the same.
                                    value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                                    require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
                                    // Extra proof elements are not allowed.
                                    require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
                                    return value_;
                                } else {
                                    // We're not at the end of the key yet.
                                    // Figure out what the next node ID should be and continue.
                                    uint8 branchKey = uint8(key[currentKeyIndex]);
                                    RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                                    currentNodeID = _getNodeID(nextNode);
                                    currentKeyIndex += 1;
                                }
                            } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                                bytes memory path = _getNodePath(currentNode);
                                uint8 prefix = uint8(path[0]);
                                uint8 offset = 2 - (prefix % 2);
                                bytes memory pathRemainder = Bytes.slice(path, offset);
                                bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                                uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                                // Whether this is a leaf node or an extension node, the path remainder MUST be a
                                // prefix of the key remainder (or be equal to the key remainder) or the proof is
                                // considered invalid.
                                require(
                                    pathRemainder.length == sharedNibbleLength,
                                    "MerkleTrie: path remainder must share all nibbles with key"
                                );
                                if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                                    // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                                    // the key remainder must be exactly equal to the path remainder. We already
                                    // did the necessary byte comparison, so it's more efficient here to check that
                                    // the key remainder length equals the shared nibble length, which implies
                                    // equality with the path remainder (since we already did the same check with
                                    // the path remainder and the shared nibble length).
                                    require(
                                        keyRemainder.length == sharedNibbleLength,
                                        "MerkleTrie: key remainder must be identical to path remainder"
                                    );
                                    // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                                    // state trie. Empty values are not allowed in the state trie, so we can safely
                                    // say that if the value is empty, the key should not exist and the proof is
                                    // invalid.
                                    value_ = RLPReader.readBytes(currentNode.decoded[1]);
                                    require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
                                    // Extra proof elements are not allowed.
                                    require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
                                    return value_;
                                } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                                    // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                                    // in the proof and increment the key index by the length of the path remainder
                                    // which is equal to the shared nibble length.
                                    currentNodeID = _getNodeID(currentNode.decoded[1]);
                                    currentKeyIndex += sharedNibbleLength;
                                } else {
                                    revert("MerkleTrie: received a node with an unknown prefix");
                                }
                            } else {
                                revert("MerkleTrie: received an unparseable node");
                            }
                        }
                        revert("MerkleTrie: ran out of proof elements");
                    }
                    /// @notice Parses an array of proof elements into a new array that contains both the original
                    ///         encoded element and the RLP-decoded element.
                    /// @param _proof Array of proof elements to parse.
                    /// @return proof_ Proof parsed into easily accessible structs.
                    function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
                        uint256 length = _proof.length;
                        proof_ = new TrieNode[](length);
                        for (uint256 i = 0; i < length;) {
                            proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                            unchecked {
                                ++i;
                            }
                        }
                    }
                    /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
                    ///         specification, but nodes < 32 bytes are not actually hashed.
                    /// @param _node Node to pull an ID for.
                    /// @return id_ ID for the node, depending on the size of its contents.
                    function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
                        id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
                    }
                    /// @notice Gets the path for a leaf or extension node.
                    /// @param _node Node to get a path for.
                    /// @return nibbles_ Node path, converted to an array of nibbles.
                    function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
                        nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
                    }
                    /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
                    /// @param _a First nibble array.
                    /// @param _b Second nibble array.
                    /// @return shared_ Number of shared nibbles.
                    function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
                        uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
                        for (; shared_ < max && _a[shared_] == _b[shared_];) {
                            unchecked {
                                ++shared_;
                            }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.15;
                // Libraries
                import { Position } from "src/dispute/lib/LibPosition.sol";
                using LibClaim for Claim global;
                using LibHash for Hash global;
                using LibDuration for Duration global;
                using LibClock for Clock global;
                using LibGameId for GameId global;
                using LibTimestamp for Timestamp global;
                using LibVMStatus for VMStatus global;
                using LibGameType for GameType global;
                /// @notice A `Clock` represents a packed `Duration` and `Timestamp`
                /// @dev The packed layout of this type is as follows:
                /// ┌────────────┬────────────────┐
                /// │    Bits    │     Value      │
                /// ├────────────┼────────────────┤
                /// │ [0, 64)    │ Duration       │
                /// │ [64, 128)  │ Timestamp      │
                /// └────────────┴────────────────┘
                type Clock is uint128;
                /// @title LibClock
                /// @notice This library contains helper functions for working with the `Clock` type.
                library LibClock {
                    /// @notice Packs a `Duration` and `Timestamp` into a `Clock` type.
                    /// @param _duration The `Duration` to pack into the `Clock` type.
                    /// @param _timestamp The `Timestamp` to pack into the `Clock` type.
                    /// @return clock_ The `Clock` containing the `_duration` and `_timestamp`.
                    function wrap(Duration _duration, Timestamp _timestamp) internal pure returns (Clock clock_) {
                        assembly {
                            clock_ := or(shl(0x40, _duration), _timestamp)
                        }
                    }
                    /// @notice Pull the `Duration` out of a `Clock` type.
                    /// @param _clock The `Clock` type to pull the `Duration` out of.
                    /// @return duration_ The `Duration` pulled out of `_clock`.
                    function duration(Clock _clock) internal pure returns (Duration duration_) {
                        // Shift the high-order 64 bits into the low-order 64 bits, leaving only the `duration`.
                        assembly {
                            duration_ := shr(0x40, _clock)
                        }
                    }
                    /// @notice Pull the `Timestamp` out of a `Clock` type.
                    /// @param _clock The `Clock` type to pull the `Timestamp` out of.
                    /// @return timestamp_ The `Timestamp` pulled out of `_clock`.
                    function timestamp(Clock _clock) internal pure returns (Timestamp timestamp_) {
                        // Clean the high-order 192 bits by shifting the clock left and then right again, leaving
                        // only the `timestamp`.
                        assembly {
                            timestamp_ := shr(0xC0, shl(0xC0, _clock))
                        }
                    }
                    /// @notice Get the value of a `Clock` type in the form of the underlying uint128.
                    /// @param _clock The `Clock` type to get the value of.
                    /// @return clock_ The value of the `Clock` type as a uint128 type.
                    function raw(Clock _clock) internal pure returns (uint128 clock_) {
                        assembly {
                            clock_ := _clock
                        }
                    }
                }
                /// @notice A `GameId` represents a packed 4 byte game ID, a 8 byte timestamp, and a 20 byte address.
                /// @dev The packed layout of this type is as follows:
                /// ┌───────────┬───────────┐
                /// │   Bits    │   Value   │
                /// ├───────────┼───────────┤
                /// │ [0, 32)   │ Game Type │
                /// │ [32, 96)  │ Timestamp │
                /// │ [96, 256) │ Address   │
                /// └───────────┴───────────┘
                type GameId is bytes32;
                /// @title LibGameId
                /// @notice Utility functions for packing and unpacking GameIds.
                library LibGameId {
                    /// @notice Packs values into a 32 byte GameId type.
                    /// @param _gameType The game type.
                    /// @param _timestamp The timestamp of the game's creation.
                    /// @param _gameProxy The game proxy address.
                    /// @return gameId_ The packed GameId.
                    function pack(
                        GameType _gameType,
                        Timestamp _timestamp,
                        address _gameProxy
                    )
                        internal
                        pure
                        returns (GameId gameId_)
                    {
                        assembly {
                            gameId_ := or(or(shl(224, _gameType), shl(160, _timestamp)), _gameProxy)
                        }
                    }
                    /// @notice Unpacks values from a 32 byte GameId type.
                    /// @param _gameId The packed GameId.
                    /// @return gameType_ The game type.
                    /// @return timestamp_ The timestamp of the game's creation.
                    /// @return gameProxy_ The game proxy address.
                    function unpack(GameId _gameId)
                        internal
                        pure
                        returns (GameType gameType_, Timestamp timestamp_, address gameProxy_)
                    {
                        assembly {
                            gameType_ := shr(224, _gameId)
                            timestamp_ := and(shr(160, _gameId), 0xFFFFFFFFFFFFFFFF)
                            gameProxy_ := and(_gameId, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                        }
                    }
                }
                /// @notice A claim represents an MPT root representing the state of the fault proof program.
                type Claim is bytes32;
                /// @title LibClaim
                /// @notice This library contains helper functions for working with the `Claim` type.
                library LibClaim {
                    /// @notice Get the value of a `Claim` type in the form of the underlying bytes32.
                    /// @param _claim The `Claim` type to get the value of.
                    /// @return claim_ The value of the `Claim` type as a bytes32 type.
                    function raw(Claim _claim) internal pure returns (bytes32 claim_) {
                        assembly {
                            claim_ := _claim
                        }
                    }
                    /// @notice Hashes a claim and a position together.
                    /// @param _claim A Claim type.
                    /// @param _position The position of `claim`.
                    /// @param _challengeIndex The index of the claim being moved against.
                    /// @return claimHash_ A hash of abi.encodePacked(claim, position|challengeIndex);
                    function hashClaimPos(
                        Claim _claim,
                        Position _position,
                        uint256 _challengeIndex
                    )
                        internal
                        pure
                        returns (Hash claimHash_)
                    {
                        assembly {
                            mstore(0x00, _claim)
                            mstore(0x20, or(shl(128, _position), and(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, _challengeIndex)))
                            claimHash_ := keccak256(0x00, 0x40)
                        }
                    }
                }
                /// @notice A dedicated duration type.
                /// @dev Unit: seconds
                type Duration is uint64;
                /// @title LibDuration
                /// @notice This library contains helper functions for working with the `Duration` type.
                library LibDuration {
                    /// @notice Get the value of a `Duration` type in the form of the underlying uint64.
                    /// @param _duration The `Duration` type to get the value of.
                    /// @return duration_ The value of the `Duration` type as a uint64 type.
                    function raw(Duration _duration) internal pure returns (uint64 duration_) {
                        assembly {
                            duration_ := _duration
                        }
                    }
                }
                /// @notice A custom type for a generic hash.
                type Hash is bytes32;
                /// @title LibHash
                /// @notice This library contains helper functions for working with the `Hash` type.
                library LibHash {
                    /// @notice Get the value of a `Hash` type in the form of the underlying bytes32.
                    /// @param _hash The `Hash` type to get the value of.
                    /// @return hash_ The value of the `Hash` type as a bytes32 type.
                    function raw(Hash _hash) internal pure returns (bytes32 hash_) {
                        assembly {
                            hash_ := _hash
                        }
                    }
                }
                /// @notice A dedicated timestamp type.
                type Timestamp is uint64;
                /// @title LibTimestamp
                /// @notice This library contains helper functions for working with the `Timestamp` type.
                library LibTimestamp {
                    /// @notice Get the value of a `Timestamp` type in the form of the underlying uint64.
                    /// @param _timestamp The `Timestamp` type to get the value of.
                    /// @return timestamp_ The value of the `Timestamp` type as a uint64 type.
                    function raw(Timestamp _timestamp) internal pure returns (uint64 timestamp_) {
                        assembly {
                            timestamp_ := _timestamp
                        }
                    }
                }
                /// @notice A `VMStatus` represents the status of a VM execution.
                type VMStatus is uint8;
                /// @title LibVMStatus
                /// @notice This library contains helper functions for working with the `VMStatus` type.
                library LibVMStatus {
                    /// @notice Get the value of a `VMStatus` type in the form of the underlying uint8.
                    /// @param _vmstatus The `VMStatus` type to get the value of.
                    /// @return vmstatus_ The value of the `VMStatus` type as a uint8 type.
                    function raw(VMStatus _vmstatus) internal pure returns (uint8 vmstatus_) {
                        assembly {
                            vmstatus_ := _vmstatus
                        }
                    }
                }
                /// @notice A `GameType` represents the type of game being played.
                type GameType is uint32;
                /// @title LibGameType
                /// @notice This library contains helper functions for working with the `GameType` type.
                library LibGameType {
                    /// @notice Get the value of a `GameType` type in the form of the underlying uint32.
                    /// @param _gametype The `GameType` type to get the value of.
                    /// @return gametype_ The value of the `GameType` type as a uint32 type.
                    function raw(GameType _gametype) internal pure returns (uint32 gametype_) {
                        assembly {
                            gametype_ := _gametype
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                interface IInitializable {
                    function initialize() external payable;
                }
                // SPDX-License-Identifier: MIT
                // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
                pragma solidity ^0.8.0;
                /**
                 * @dev Standard signed math utilities missing in the Solidity language.
                 */
                library SignedMath {
                    /**
                     * @dev Returns the largest of two signed numbers.
                     */
                    function max(int256 a, int256 b) internal pure returns (int256) {
                        return a >= b ? a : b;
                    }
                    /**
                     * @dev Returns the smallest of two signed numbers.
                     */
                    function min(int256 a, int256 b) internal pure returns (int256) {
                        return a < b ? a : b;
                    }
                    /**
                     * @dev Returns the average of two signed numbers without overflow.
                     * The result is rounded towards zero.
                     */
                    function average(int256 a, int256 b) internal pure returns (int256) {
                        // Formula from the book "Hacker's Delight"
                        int256 x = (a & b) + ((a ^ b) >> 1);
                        return x + (int256(uint256(x) >> 255) & (a ^ b));
                    }
                    /**
                     * @dev Returns the absolute unsigned value of a signed value.
                     */
                    function abs(int256 n) internal pure returns (uint256) {
                        unchecked {
                            // must be unchecked in order to support `n = type(int256).min`
                            return uint256(n >= 0 ? n : -n);
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity >=0.8.0;
                /// @notice Arithmetic library with operations for fixed-point numbers.
                /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
                library FixedPointMathLib {
                    /*//////////////////////////////////////////////////////////////
                                    SIMPLIFIED FIXED POINT OPERATIONS
                    //////////////////////////////////////////////////////////////*/
                    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                    }
                    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                    }
                    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                    }
                    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                    }
                    function powWad(int256 x, int256 y) internal pure returns (int256) {
                        // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                        return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                    }
                    function expWad(int256 x) internal pure returns (int256 r) {
                        unchecked {
                            // When the result is < 0.5 we return zero. This happens when
                            // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                            if (x <= -42139678854452767551) return 0;
                            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                            if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                            // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                            // for more intermediate precision and a binary basis. This base conversion
                            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                            x = (x << 78) / 5**18;
                            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                            int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                            x = x - k * 54916777467707473351141471128;
                            // k is in the range [-61, 195].
                            // Evaluate using a (6, 7)-term rational approximation.
                            // p is made monic, we'll multiply by a scale factor later.
                            int256 y = x + 1346386616545796478920950773328;
                            y = ((y * x) >> 96) + 57155421227552351082224309758442;
                            int256 p = y + x - 94201549194550492254356042504812;
                            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                            p = p * x + (4385272521454847904659076985693276 << 96);
                            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                            int256 q = x - 2855989394907223263936484059900;
                            q = ((q * x) >> 96) + 50020603652535783019961831881945;
                            q = ((q * x) >> 96) - 533845033583426703283633433725380;
                            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                            q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                            assembly {
                                // Div in assembly because solidity adds a zero check despite the unchecked.
                                // The q polynomial won't have zeros in the domain as all its roots are complex.
                                // No scaling is necessary because p is already 2**96 too large.
                                r := sdiv(p, q)
                            }
                            // r should be in the range (0.09, 0.25) * 2**96.
                            // We now need to multiply r by:
                            // * the scale factor s = ~6.031367120.
                            // * the 2**k factor from the range reduction.
                            // * the 1e18 / 2**96 factor for base conversion.
                            // We do this all at once, with an intermediate result in 2**213
                            // basis, so the final right shift is always by a positive amount.
                            r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                        }
                    }
                    function lnWad(int256 x) internal pure returns (int256 r) {
                        unchecked {
                            require(x > 0, "UNDEFINED");
                            // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                            // We do this by multiplying by 2**96 / 10**18. But since
                            // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                            // and add ln(2**96 / 10**18) at the end.
                            // Reduce range of x to (1, 2) * 2**96
                            // ln(2^k * x) = k * ln(2) + ln(x)
                            int256 k = int256(log2(uint256(x))) - 96;
                            x <<= uint256(159 - k);
                            x = int256(uint256(x) >> 159);
                            // Evaluate using a (8, 8)-term rational approximation.
                            // p is made monic, we will multiply by a scale factor later.
                            int256 p = x + 3273285459638523848632254066296;
                            p = ((p * x) >> 96) + 24828157081833163892658089445524;
                            p = ((p * x) >> 96) + 43456485725739037958740375743393;
                            p = ((p * x) >> 96) - 11111509109440967052023855526967;
                            p = ((p * x) >> 96) - 45023709667254063763336534515857;
                            p = ((p * x) >> 96) - 14706773417378608786704636184526;
                            p = p * x - (795164235651350426258249787498 << 96);
                            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                            // q is monic by convention.
                            int256 q = x + 5573035233440673466300451813936;
                            q = ((q * x) >> 96) + 71694874799317883764090561454958;
                            q = ((q * x) >> 96) + 283447036172924575727196451306956;
                            q = ((q * x) >> 96) + 401686690394027663651624208769553;
                            q = ((q * x) >> 96) + 204048457590392012362485061816622;
                            q = ((q * x) >> 96) + 31853899698501571402653359427138;
                            q = ((q * x) >> 96) + 909429971244387300277376558375;
                            assembly {
                                // Div in assembly because solidity adds a zero check despite the unchecked.
                                // The q polynomial is known not to have zeros in the domain.
                                // No scaling required because p is already 2**96 too large.
                                r := sdiv(p, q)
                            }
                            // r is in the range (0, 0.125) * 2**96
                            // Finalization, we need to:
                            // * multiply by the scale factor s = 5.549…
                            // * add ln(2**96 / 10**18)
                            // * add k * ln(2)
                            // * multiply by 10**18 / 2**96 = 5**18 >> 78
                            // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                            r *= 1677202110996718588342820967067443963516166;
                            // add ln(2) * k * 5e18 * 2**192
                            r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                            // add ln(2**96 / 10**18) * 5e18 * 2**192
                            r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                            // base conversion: mul 2**18 / 2**192
                            r >>= 174;
                        }
                    }
                    /*//////////////////////////////////////////////////////////////
                                    LOW LEVEL FIXED POINT OPERATIONS
                    //////////////////////////////////////////////////////////////*/
                    function mulDivDown(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 z) {
                        assembly {
                            // Store x * y in z for now.
                            z := mul(x, y)
                            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                                revert(0, 0)
                            }
                            // Divide z by the denominator.
                            z := div(z, denominator)
                        }
                    }
                    function mulDivUp(
                        uint256 x,
                        uint256 y,
                        uint256 denominator
                    ) internal pure returns (uint256 z) {
                        assembly {
                            // Store x * y in z for now.
                            z := mul(x, y)
                            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                                revert(0, 0)
                            }
                            // First, divide z - 1 by the denominator and add 1.
                            // We allow z - 1 to underflow if z is 0, because we multiply the
                            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                        }
                    }
                    function rpow(
                        uint256 x,
                        uint256 n,
                        uint256 scalar
                    ) internal pure returns (uint256 z) {
                        assembly {
                            switch x
                            case 0 {
                                switch n
                                case 0 {
                                    // 0 ** 0 = 1
                                    z := scalar
                                }
                                default {
                                    // 0 ** n = 0
                                    z := 0
                                }
                            }
                            default {
                                switch mod(n, 2)
                                case 0 {
                                    // If n is even, store scalar in z for now.
                                    z := scalar
                                }
                                default {
                                    // If n is odd, store x in z for now.
                                    z := x
                                }
                                // Shifting right by 1 is like dividing by 2.
                                let half := shr(1, scalar)
                                for {
                                    // Shift n right by 1 before looping to halve it.
                                    n := shr(1, n)
                                } n {
                                    // Shift n right by 1 each iteration to halve it.
                                    n := shr(1, n)
                                } {
                                    // Revert immediately if x ** 2 would overflow.
                                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                                    if shr(128, x) {
                                        revert(0, 0)
                                    }
                                    // Store x squared.
                                    let xx := mul(x, x)
                                    // Round to the nearest number.
                                    let xxRound := add(xx, half)
                                    // Revert if xx + half overflowed.
                                    if lt(xxRound, xx) {
                                        revert(0, 0)
                                    }
                                    // Set x to scaled xxRound.
                                    x := div(xxRound, scalar)
                                    // If n is even:
                                    if mod(n, 2) {
                                        // Compute z * x.
                                        let zx := mul(z, x)
                                        // If z * x overflowed:
                                        if iszero(eq(div(zx, x), z)) {
                                            // Revert if x is non-zero.
                                            if iszero(iszero(x)) {
                                                revert(0, 0)
                                            }
                                        }
                                        // Round to the nearest number.
                                        let zxRound := add(zx, half)
                                        // Revert if zx + half overflowed.
                                        if lt(zxRound, zx) {
                                            revert(0, 0)
                                        }
                                        // Return properly scaled zxRound.
                                        z := div(zxRound, scalar)
                                    }
                                }
                            }
                        }
                    }
                    /*//////////////////////////////////////////////////////////////
                                        GENERAL NUMBER UTILITIES
                    //////////////////////////////////////////////////////////////*/
                    function sqrt(uint256 x) internal pure returns (uint256 z) {
                        assembly {
                            let y := x // We start y at x, which will help us make our initial estimate.
                            z := 181 // The "correct" value is 1, but this saves a multiplication later.
                            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                            // We check y >= 2^(k + 8) but shift right by k bits
                            // each branch to ensure that if x >= 256, then y >= 256.
                            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                                y := shr(128, y)
                                z := shl(64, z)
                            }
                            if iszero(lt(y, 0x1000000000000000000)) {
                                y := shr(64, y)
                                z := shl(32, z)
                            }
                            if iszero(lt(y, 0x10000000000)) {
                                y := shr(32, y)
                                z := shl(16, z)
                            }
                            if iszero(lt(y, 0x1000000)) {
                                y := shr(16, y)
                                z := shl(8, z)
                            }
                            // Goal was to get z*z*y within a small factor of x. More iterations could
                            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                            // That's not possible if x < 256 but we can just verify those cases exhaustively.
                            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                            // There is no overflow risk here since y < 2^136 after the first branch above.
                            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            z := shr(1, add(z, div(x, z)))
                            // If x+1 is a perfect square, the Babylonian method cycles between
                            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                            z := sub(z, lt(div(x, z), z))
                        }
                    }
                    function log2(uint256 x) internal pure returns (uint256 r) {
                        require(x > 0, "UNDEFINED");
                        assembly {
                            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                            r := or(r, shl(4, lt(0xffff, shr(r, x))))
                            r := or(r, shl(3, lt(0xff, shr(r, x))))
                            r := or(r, shl(2, lt(0xf, shr(r, x))))
                            r := or(r, shl(1, lt(0x3, shr(r, x))))
                            r := or(r, lt(0x1, shr(r, x)))
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
                /// @title RLPWriter
                /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
                ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
                ///         modifications to improve legibility.
                library RLPWriter {
                    /// @notice RLP encodes a byte string.
                    /// @param _in The byte string to encode.
                    /// @return out_ The RLP encoded string in bytes.
                    function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                        if (_in.length == 1 && uint8(_in[0]) < 128) {
                            out_ = _in;
                        } else {
                            out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                        }
                    }
                    /// @notice RLP encodes a list of RLP encoded byte byte strings.
                    /// @param _in The list of RLP encoded byte strings.
                    /// @return list_ The RLP encoded list of items in bytes.
                    function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                        list_ = _flatten(_in);
                        list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                    }
                    /// @notice RLP encodes a string.
                    /// @param _in The string to encode.
                    /// @return out_ The RLP encoded string in bytes.
                    function writeString(string memory _in) internal pure returns (bytes memory out_) {
                        out_ = writeBytes(bytes(_in));
                    }
                    /// @notice RLP encodes an address.
                    /// @param _in The address to encode.
                    /// @return out_ The RLP encoded address in bytes.
                    function writeAddress(address _in) internal pure returns (bytes memory out_) {
                        out_ = writeBytes(abi.encodePacked(_in));
                    }
                    /// @notice RLP encodes a uint.
                    /// @param _in The uint256 to encode.
                    /// @return out_ The RLP encoded uint256 in bytes.
                    function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                        out_ = writeBytes(_toBinary(_in));
                    }
                    /// @notice RLP encodes a bool.
                    /// @param _in The bool to encode.
                    /// @return out_ The RLP encoded bool in bytes.
                    function writeBool(bool _in) internal pure returns (bytes memory out_) {
                        out_ = new bytes(1);
                        out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                    }
                    /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                    /// @param _len    The length of the string or the payload.
                    /// @param _offset 128 if item is string, 192 if item is list.
                    /// @return out_ RLP encoded bytes.
                    function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                        if (_len < 56) {
                            out_ = new bytes(1);
                            out_[0] = bytes1(uint8(_len) + uint8(_offset));
                        } else {
                            uint256 lenLen;
                            uint256 i = 1;
                            while (_len / i != 0) {
                                lenLen++;
                                i *= 256;
                            }
                            out_ = new bytes(lenLen + 1);
                            out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                            for (i = 1; i <= lenLen; i++) {
                                out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                            }
                        }
                    }
                    /// @notice Encode integer in big endian binary form with no leading zeroes.
                    /// @param _x The integer to encode.
                    /// @return out_ RLP encoded bytes.
                    function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                        bytes memory b = abi.encodePacked(_x);
                        uint256 i = 0;
                        for (; i < 32; i++) {
                            if (b[i] != 0) {
                                break;
                            }
                        }
                        out_ = new bytes(32 - i);
                        for (uint256 j = 0; j < out_.length; j++) {
                            out_[j] = b[i++];
                        }
                    }
                    /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                    /// @notice Copies a piece of memory to another location.
                    /// @param _dest Destination location.
                    /// @param _src  Source location.
                    /// @param _len  Length of memory to copy.
                    function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                        uint256 dest = _dest;
                        uint256 src = _src;
                        uint256 len = _len;
                        for (; len >= 32; len -= 32) {
                            assembly {
                                mstore(dest, mload(src))
                            }
                            dest += 32;
                            src += 32;
                        }
                        uint256 mask;
                        unchecked {
                            mask = 256 ** (32 - len) - 1;
                        }
                        assembly {
                            let srcpart := and(mload(src), not(mask))
                            let destpart := and(mload(dest), mask)
                            mstore(dest, or(destpart, srcpart))
                        }
                    }
                    /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                    /// @notice Flattens a list of byte strings into one byte string.
                    /// @param _list List of byte strings to flatten.
                    /// @return out_ The flattened byte string.
                    function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                        if (_list.length == 0) {
                            return new bytes(0);
                        }
                        uint256 len;
                        uint256 i = 0;
                        for (; i < _list.length; i++) {
                            len += _list[i].length;
                        }
                        out_ = new bytes(len);
                        uint256 flattenedPtr;
                        assembly {
                            flattenedPtr := add(out_, 0x20)
                        }
                        for (i = 0; i < _list.length; i++) {
                            bytes memory item = _list[i];
                            uint256 listPtr;
                            assembly {
                                listPtr := add(item, 0x20)
                            }
                            _memcpy(flattenedPtr, listPtr, item.length);
                            flattenedPtr += _list[i].length;
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @title Bytes
                /// @notice Bytes is a library for manipulating byte arrays.
                library Bytes {
                    /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
                    /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
                    ///         as opposed to a pointer to the original array. Will throw if trying to slice more
                    ///         bytes than exist in the array.
                    /// @param _bytes Byte array to slice.
                    /// @param _start Starting index of the slice.
                    /// @param _length Length of the slice.
                    /// @return Slice of the input byte array.
                    function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
                        unchecked {
                            require(_length + 31 >= _length, "slice_overflow");
                            require(_start + _length >= _start, "slice_overflow");
                            require(_bytes.length >= _start + _length, "slice_outOfBounds");
                        }
                        bytes memory tempBytes;
                        assembly {
                            switch iszero(_length)
                            case 0 {
                                // Get a location of some free memory and store it in tempBytes as
                                // Solidity does for memory variables.
                                tempBytes := mload(0x40)
                                // The first word of the slice result is potentially a partial
                                // word read from the original array. To read it, we calculate
                                // the length of that partial word and start copying that many
                                // bytes into the array. The first word we copy will start with
                                // data we don't care about, but the last `lengthmod` bytes will
                                // land at the beginning of the contents of the new array. When
                                // we're done copying, we overwrite the full first word with
                                // the actual length of the slice.
                                let lengthmod := and(_length, 31)
                                // The multiplication in the next line is necessary
                                // because when slicing multiples of 32 bytes (lengthmod == 0)
                                // the following copy loop was copying the origin's length
                                // and then ending prematurely not copying everything it should.
                                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                                let end := add(mc, _length)
                                for {
                                    // The multiplication in the next line has the same exact purpose
                                    // as the one above.
                                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                                } lt(mc, end) {
                                    mc := add(mc, 0x20)
                                    cc := add(cc, 0x20)
                                } { mstore(mc, mload(cc)) }
                                mstore(tempBytes, _length)
                                //update free-memory pointer
                                //allocating the array padded to 32 bytes like the compiler does now
                                mstore(0x40, and(add(mc, 31), not(31)))
                            }
                            //if we want a zero-length slice let's just return a zero-length array
                            default {
                                tempBytes := mload(0x40)
                                //zero out the 32 bytes slice we are about to return
                                //we need to do it because Solidity does not garbage collect
                                mstore(tempBytes, 0)
                                mstore(0x40, add(tempBytes, 0x20))
                            }
                        }
                        return tempBytes;
                    }
                    /// @notice Slices a byte array with a given starting index up to the end of the original byte
                    ///         array. Returns a new array rathern than a pointer to the original.
                    /// @param _bytes Byte array to slice.
                    /// @param _start Starting index of the slice.
                    /// @return Slice of the input byte array.
                    function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                        if (_start >= _bytes.length) {
                            return bytes("");
                        }
                        return slice(_bytes, _start, _bytes.length - _start);
                    }
                    /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
                    ///         Resulting nibble array will be exactly twice as long as the input byte array.
                    /// @param _bytes Input byte array to convert.
                    /// @return Resulting nibble array.
                    function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                        bytes memory _nibbles;
                        assembly {
                            // Grab a free memory offset for the new array
                            _nibbles := mload(0x40)
                            // Load the length of the passed bytes array from memory
                            let bytesLength := mload(_bytes)
                            // Calculate the length of the new nibble array
                            // This is the length of the input array times 2
                            let nibblesLength := shl(0x01, bytesLength)
                            // Update the free memory pointer to allocate memory for the new array.
                            // To do this, we add the length of the new array + 32 bytes for the array length
                            // rounded up to the nearest 32 byte boundary to the current free memory pointer.
                            mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
                            // Store the length of the new array in memory
                            mstore(_nibbles, nibblesLength)
                            // Store the memory offset of the _bytes array's contents on the stack
                            let bytesStart := add(_bytes, 0x20)
                            // Store the memory offset of the nibbles array's contents on the stack
                            let nibblesStart := add(_nibbles, 0x20)
                            // Loop through each byte in the input array
                            for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                                // Get the starting offset of the next 2 bytes in the nibbles array
                                let offset := add(nibblesStart, shl(0x01, i))
                                // Load the byte at the current index within the `_bytes` array
                                let b := byte(0x00, mload(add(bytesStart, i)))
                                // Pull out the first nibble and store it in the new array
                                mstore8(offset, shr(0x04, b))
                                // Pull out the second nibble and store it in the new array
                                mstore8(add(offset, 0x01), and(b, 0x0F))
                            }
                        }
                        return _nibbles;
                    }
                    /// @notice Compares two byte arrays by comparing their keccak256 hashes.
                    /// @param _bytes First byte array to compare.
                    /// @param _other Second byte array to compare.
                    /// @return True if the two byte arrays are equal, false otherwise.
                    function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                        return keccak256(_bytes) == keccak256(_other);
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.8;
                // Libraries
                import {
                    EmptyItem,
                    UnexpectedString,
                    InvalidDataRemainder,
                    ContentLengthMismatch,
                    InvalidHeader,
                    UnexpectedList
                } from "src/libraries/rlp/RLPErrors.sol";
                /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
                /// @title RLPReader
                /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
                ///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
                ///         various tweaks to improve readability.
                library RLPReader {
                    /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
                    type MemoryPointer is uint256;
                    /// @notice RLP item types.
                    /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
                    /// @custom:value LIST_ITEM Represents an RLP list item.
                    enum RLPItemType {
                        DATA_ITEM,
                        LIST_ITEM
                    }
                    /// @notice Struct representing an RLP item.
                    /// @custom:field length Length of the RLP item.
                    /// @custom:field ptr    Pointer to the RLP item in memory.
                    struct RLPItem {
                        uint256 length;
                        MemoryPointer ptr;
                    }
                    /// @notice Max list length that this library will accept.
                    uint256 internal constant MAX_LIST_LENGTH = 32;
                    /// @notice Converts bytes to a reference to memory position and length.
                    /// @param _in Input bytes to convert.
                    /// @return out_ Output memory reference.
                    function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
                        // Empty arrays are not RLP items.
                        if (_in.length == 0) revert EmptyItem();
                        MemoryPointer ptr;
                        assembly {
                            ptr := add(_in, 32)
                        }
                        out_ = RLPItem({ length: _in.length, ptr: ptr });
                    }
                    /// @notice Reads an RLP list value into a list of RLP items.
                    /// @param _in RLP list value.
                    /// @return out_ Decoded RLP list items.
                    function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
                        (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
                        if (itemType != RLPItemType.LIST_ITEM) revert UnexpectedString();
                        if (listOffset + listLength != _in.length) revert InvalidDataRemainder();
                        // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                        // writing to the length. Since we can't know the number of RLP items without looping over
                        // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                        // simply set a reasonable maximum list length and decrease the size before we finish.
                        out_ = new RLPItem[](MAX_LIST_LENGTH);
                        uint256 itemCount = 0;
                        uint256 offset = listOffset;
                        while (offset < _in.length) {
                            (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                                RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
                            );
                            // We don't need to check itemCount < out.length explicitly because Solidity already
                            // handles this check on our behalf, we'd just be wasting gas.
                            out_[itemCount] = RLPItem({
                                length: itemLength + itemOffset,
                                ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                            });
                            itemCount += 1;
                            offset += itemOffset + itemLength;
                        }
                        // Decrease the array size to match the actual item count.
                        assembly {
                            mstore(out_, itemCount)
                        }
                    }
                    /// @notice Reads an RLP list value into a list of RLP items.
                    /// @param _in RLP list value.
                    /// @return out_ Decoded RLP list items.
                    function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
                        out_ = readList(toRLPItem(_in));
                    }
                    /// @notice Reads an RLP bytes value into bytes.
                    /// @param _in RLP bytes value.
                    /// @return out_ Decoded bytes.
                    function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                        (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                        if (itemType != RLPItemType.DATA_ITEM) revert UnexpectedList();
                        if (_in.length != itemOffset + itemLength) revert InvalidDataRemainder();
                        out_ = _copy(_in.ptr, itemOffset, itemLength);
                    }
                    /// @notice Reads an RLP bytes value into bytes.
                    /// @param _in RLP bytes value.
                    /// @return out_ Decoded bytes.
                    function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                        out_ = readBytes(toRLPItem(_in));
                    }
                    /// @notice Reads the raw bytes of an RLP item.
                    /// @param _in RLP item to read.
                    /// @return out_ Raw RLP bytes.
                    function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                        out_ = _copy(_in.ptr, 0, _in.length);
                    }
                    /// @notice Decodes the length of an RLP item.
                    /// @param _in RLP item to decode.
                    /// @return offset_ Offset of the encoded data.
                    /// @return length_ Length of the encoded data.
                    /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
                    function _decodeLength(RLPItem memory _in)
                        private
                        pure
                        returns (uint256 offset_, uint256 length_, RLPItemType type_)
                    {
                        // Short-circuit if there's nothing to decode, note that we perform this check when
                        // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
                        // that function and create an RLP item directly. So we need to check this anyway.
                        if (_in.length == 0) revert EmptyItem();
                        MemoryPointer ptr = _in.ptr;
                        uint256 prefix;
                        assembly {
                            prefix := byte(0, mload(ptr))
                        }
                        if (prefix <= 0x7f) {
                            // Single byte.
                            return (0, 1, RLPItemType.DATA_ITEM);
                        } else if (prefix <= 0xb7) {
                            // Short string.
                            // slither-disable-next-line variable-scope
                            uint256 strLen = prefix - 0x80;
                            if (_in.length <= strLen) revert ContentLengthMismatch();
                            bytes1 firstByteOfContent;
                            assembly {
                                firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                            }
                            if (strLen == 1 && firstByteOfContent < 0x80) revert InvalidHeader();
                            return (1, strLen, RLPItemType.DATA_ITEM);
                        } else if (prefix <= 0xbf) {
                            // Long string.
                            uint256 lenOfStrLen = prefix - 0xb7;
                            if (_in.length <= lenOfStrLen) revert ContentLengthMismatch();
                            bytes1 firstByteOfContent;
                            assembly {
                                firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                            }
                            if (firstByteOfContent == 0x00) revert InvalidHeader();
                            uint256 strLen;
                            assembly {
                                strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                            }
                            if (strLen <= 55) revert InvalidHeader();
                            if (_in.length <= lenOfStrLen + strLen) revert ContentLengthMismatch();
                            return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                        } else if (prefix <= 0xf7) {
                            // Short list.
                            // slither-disable-next-line variable-scope
                            uint256 listLen = prefix - 0xc0;
                            if (_in.length <= listLen) revert ContentLengthMismatch();
                            return (1, listLen, RLPItemType.LIST_ITEM);
                        } else {
                            // Long list.
                            uint256 lenOfListLen = prefix - 0xf7;
                            if (_in.length <= lenOfListLen) revert ContentLengthMismatch();
                            bytes1 firstByteOfContent;
                            assembly {
                                firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                            }
                            if (firstByteOfContent == 0x00) revert InvalidHeader();
                            uint256 listLen;
                            assembly {
                                listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                            }
                            if (listLen <= 55) revert InvalidHeader();
                            if (_in.length <= lenOfListLen + listLen) revert ContentLengthMismatch();
                            return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                        }
                    }
                    /// @notice Copies the bytes from a memory location.
                    /// @param _src    Pointer to the location to read from.
                    /// @param _offset Offset to start reading from.
                    /// @param _length Number of bytes to read.
                    /// @return out_ Copied bytes.
                    function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
                        out_ = new bytes(_length);
                        if (_length == 0) {
                            return out_;
                        }
                        // Mostly based on Solidity's copy_memory_to_memory:
                        // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
                        uint256 src = MemoryPointer.unwrap(_src) + _offset;
                        assembly {
                            let dest := add(out_, 32)
                            let i := 0
                            for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
                            if gt(i, _length) { mstore(add(dest, _length), 0) }
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.15;
                using LibPosition for Position global;
                /// @notice A `Position` represents a position of a claim within the game tree.
                /// @dev This is represented as a "generalized index" where the high-order bit
                /// is the level in the tree and the remaining bits is a unique bit pattern, allowing
                /// a unique identifier for each node in the tree. Mathematically, it is calculated
                /// as 2^{depth} + indexAtDepth.
                type Position is uint128;
                /// @title LibPosition
                /// @notice This library contains helper functions for working with the `Position` type.
                library LibPosition {
                    /// @notice the `MAX_POSITION_BITLEN` is the number of bits that the `Position` type, and the implementation of
                    ///         its behavior within this library, can safely support.
                    uint8 internal constant MAX_POSITION_BITLEN = 126;
                    /// @notice Computes a generalized index (2^{depth} + indexAtDepth).
                    /// @param _depth The depth of the position.
                    /// @param _indexAtDepth The index at the depth of the position.
                    /// @return position_ The computed generalized index.
                    function wrap(uint8 _depth, uint128 _indexAtDepth) internal pure returns (Position position_) {
                        assembly {
                            // gindex = 2^{_depth} + _indexAtDepth
                            position_ := add(shl(_depth, 1), _indexAtDepth)
                        }
                    }
                    /// @notice Pulls the `depth` out of a `Position` type.
                    /// @param _position The generalized index to get the `depth` of.
                    /// @return depth_ The `depth` of the `position` gindex.
                    /// @custom:attribution Solady <https://github.com/Vectorized/Solady>
                    function depth(Position _position) internal pure returns (uint8 depth_) {
                        // Return the most significant bit offset, which signifies the depth of the gindex.
                        assembly {
                            depth_ := or(depth_, shl(6, lt(0xffffffffffffffff, shr(depth_, _position))))
                            depth_ := or(depth_, shl(5, lt(0xffffffff, shr(depth_, _position))))
                            // For the remaining 32 bits, use a De Bruijn lookup.
                            _position := shr(depth_, _position)
                            _position := or(_position, shr(1, _position))
                            _position := or(_position, shr(2, _position))
                            _position := or(_position, shr(4, _position))
                            _position := or(_position, shr(8, _position))
                            _position := or(_position, shr(16, _position))
                            depth_ :=
                                or(
                                    depth_,
                                    byte(
                                        shr(251, mul(_position, shl(224, 0x07c4acdd))),
                                        0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f
                                    )
                                )
                        }
                    }
                    /// @notice Pulls the `indexAtDepth` out of a `Position` type.
                    ///         The `indexAtDepth` is the left/right index of a position at a specific depth within
                    ///         the binary tree, starting from index 0. For example, at gindex 2, the `depth` = 1
                    ///         and the `indexAtDepth` = 0.
                    /// @param _position The generalized index to get the `indexAtDepth` of.
                    /// @return indexAtDepth_ The `indexAtDepth` of the `position` gindex.
                    function indexAtDepth(Position _position) internal pure returns (uint128 indexAtDepth_) {
                        // Return bits p_{msb-1}...p_{0}. This effectively pulls the 2^{depth} out of the gindex,
                        // leaving only the `indexAtDepth`.
                        uint256 msb = depth(_position);
                        assembly {
                            indexAtDepth_ := sub(_position, shl(msb, 1))
                        }
                    }
                    /// @notice Get the left child of `_position`.
                    /// @param _position The position to get the left position of.
                    /// @return left_ The position to the left of `position`.
                    function left(Position _position) internal pure returns (Position left_) {
                        assembly {
                            left_ := shl(1, _position)
                        }
                    }
                    /// @notice Get the right child of `_position`
                    /// @param _position The position to get the right position of.
                    /// @return right_ The position to the right of `position`.
                    function right(Position _position) internal pure returns (Position right_) {
                        assembly {
                            right_ := or(1, shl(1, _position))
                        }
                    }
                    /// @notice Get the parent position of `_position`.
                    /// @param _position The position to get the parent position of.
                    /// @return parent_ The parent position of `position`.
                    function parent(Position _position) internal pure returns (Position parent_) {
                        assembly {
                            parent_ := shr(1, _position)
                        }
                    }
                    /// @notice Get the deepest, right most gindex relative to the `position`. This is equivalent to
                    ///         calling `right` on a position until the maximum depth is reached.
                    /// @param _position The position to get the relative deepest, right most gindex of.
                    /// @param _maxDepth The maximum depth of the game.
                    /// @return rightIndex_ The deepest, right most gindex relative to the `position`.
                    function rightIndex(Position _position, uint256 _maxDepth) internal pure returns (Position rightIndex_) {
                        uint256 msb = depth(_position);
                        assembly {
                            let remaining := sub(_maxDepth, msb)
                            rightIndex_ := or(shl(remaining, _position), sub(shl(remaining, 1), 1))
                        }
                    }
                    /// @notice Get the deepest, right most trace index relative to the `position`. This is
                    ///         equivalent to calling `right` on a position until the maximum depth is reached and
                    ///         then finding its index at depth.
                    /// @param _position The position to get the relative trace index of.
                    /// @param _maxDepth The maximum depth of the game.
                    /// @return traceIndex_ The trace index relative to the `position`.
                    function traceIndex(Position _position, uint256 _maxDepth) internal pure returns (uint256 traceIndex_) {
                        uint256 msb = depth(_position);
                        assembly {
                            let remaining := sub(_maxDepth, msb)
                            traceIndex_ := sub(or(shl(remaining, _position), sub(shl(remaining, 1), 1)), shl(_maxDepth, 1))
                        }
                    }
                    /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                    ///         trace index.
                    /// @param _position The position to get the highest ancestor of.
                    /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                    function traceAncestor(Position _position) internal pure returns (Position ancestor_) {
                        // Create a field with only the lowest unset bit of `_position` set.
                        Position lsb;
                        assembly {
                            lsb := and(not(_position), add(_position, 1))
                        }
                        // Find the index of the lowest unset bit within the field.
                        uint256 msb = depth(lsb);
                        // The highest ancestor that commits to the same trace index is the original position
                        // shifted right by the index of the lowest unset bit.
                        assembly {
                            let a := shr(msb, _position)
                            // Bound the ancestor to the minimum gindex, 1.
                            ancestor_ := or(a, iszero(a))
                        }
                    }
                    /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                    ///         trace index, while still being below `_upperBoundExclusive`.
                    /// @param _position The position to get the highest ancestor of.
                    /// @param _upperBoundExclusive The exclusive upper depth bound, used to inform where to stop in order
                    ///                             to not escape a sub-tree.
                    /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                    function traceAncestorBounded(
                        Position _position,
                        uint256 _upperBoundExclusive
                    )
                        internal
                        pure
                        returns (Position ancestor_)
                    {
                        // This function only works for positions that are below the upper bound.
                        if (_position.depth() <= _upperBoundExclusive) {
                            assembly {
                                // Revert with `ClaimAboveSplit()`
                                mstore(0x00, 0xb34b5c22)
                                revert(0x1C, 0x04)
                            }
                        }
                        // Grab the global trace ancestor.
                        ancestor_ = traceAncestor(_position);
                        // If the ancestor is above or at the upper bound, shift it to be below the upper bound.
                        // This should be a special case that only covers positions that commit to the final leaf
                        // in a sub-tree.
                        if (ancestor_.depth() <= _upperBoundExclusive) {
                            ancestor_ = ancestor_.rightIndex(_upperBoundExclusive + 1);
                        }
                    }
                    /// @notice Get the move position of `_position`, which is the left child of:
                    ///         1. `_position` if `_isAttack` is true.
                    ///         2. `_position | 1` if `_isAttack` is false.
                    /// @param _position The position to get the relative attack/defense position of.
                    /// @param _isAttack Whether or not the move is an attack move.
                    /// @return move_ The move position relative to `position`.
                    function move(Position _position, bool _isAttack) internal pure returns (Position move_) {
                        assembly {
                            move_ := shl(1, or(iszero(_isAttack), _position))
                        }
                    }
                    /// @notice Get the value of a `Position` type in the form of the underlying uint128.
                    /// @param _position The position to get the value of.
                    /// @return raw_ The value of the `position` as a uint128 type.
                    function raw(Position _position) internal pure returns (uint128 raw_) {
                        assembly {
                            raw_ := _position
                        }
                    }
                }
                // SPDX-License-Identifier: MIT
                pragma solidity ^0.8.0;
                /// @notice The length of an RLP item must be greater than zero to be decodable
                error EmptyItem();
                /// @notice The decoded item type for list is not a list item
                error UnexpectedString();
                /// @notice The RLP item has an invalid data remainder
                error InvalidDataRemainder();
                /// @notice Decoded item type for bytes is not a string item
                error UnexpectedList();
                /// @notice The length of the content must be greater than the RLP item length
                error ContentLengthMismatch();
                /// @notice Invalid RLP header for RLP item
                error InvalidHeader();
                

                File 11 of 11: Proxy
                // SPDX-License-Identifier: MIT
                pragma solidity 0.8.15;
                /**
                 * @title Proxy
                 * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
                 *         if the caller is address(0), meaning that the call originated from an off-chain
                 *         simulation.
                 */
                contract Proxy {
                    /**
                     * @notice The storage slot that holds the address of the implementation.
                     *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                     */
                    bytes32 internal constant IMPLEMENTATION_KEY =
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                    /**
                     * @notice The storage slot that holds the address of the owner.
                     *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                     */
                    bytes32 internal constant OWNER_KEY =
                        0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                    /**
                     * @notice An event that is emitted each time the implementation is changed. This event is part
                     *         of the EIP-1967 specification.
                     *
                     * @param implementation The address of the implementation contract
                     */
                    event Upgraded(address indexed implementation);
                    /**
                     * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                     *         EIP-1967 specification.
                     *
                     * @param previousAdmin The previous owner of the contract
                     * @param newAdmin      The new owner of the contract
                     */
                    event AdminChanged(address previousAdmin, address newAdmin);
                    /**
                     * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                     *         eth_call to interact with this proxy without needing to use low-level storage
                     *         inspection. We assume that nobody is able to trigger calls from address(0) during
                     *         normal EVM execution.
                     */
                    modifier proxyCallIfNotAdmin() {
                        if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                            _;
                        } else {
                            // This WILL halt the call frame on completion.
                            _doProxyCall();
                        }
                    }
                    /**
                     * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                     *         EIP-1967 admin storage slot so that accidental storage collision with the
                     *         implementation is not possible.
                     *
                     * @param _admin Address of the initial contract admin. Admin as the ability to access the
                     *               transparent proxy interface.
                     */
                    constructor(address _admin) {
                        _changeAdmin(_admin);
                    }
                    // slither-disable-next-line locked-ether
                    receive() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    // slither-disable-next-line locked-ether
                    fallback() external payable {
                        // Proxy call by default.
                        _doProxyCall();
                    }
                    /**
                     * @notice Set the implementation contract address. The code at the given address will execute
                     *         when this contract is called.
                     *
                     * @param _implementation Address of the implementation contract.
                     */
                    function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                        _setImplementation(_implementation);
                    }
                    /**
                     * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                     *         atomic execution of initialization-based upgrades.
                     *
                     * @param _implementation Address of the implementation contract.
                     * @param _data           Calldata to delegatecall the new implementation with.
                     */
                    function upgradeToAndCall(address _implementation, bytes calldata _data)
                        public
                        payable
                        virtual
                        proxyCallIfNotAdmin
                        returns (bytes memory)
                    {
                        _setImplementation(_implementation);
                        (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                        require(success, "Proxy: delegatecall to new implementation contract failed");
                        return returndata;
                    }
                    /**
                     * @notice Changes the owner of the proxy contract. Only callable by the owner.
                     *
                     * @param _admin New owner of the proxy contract.
                     */
                    function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                        _changeAdmin(_admin);
                    }
                    /**
                     * @notice Gets the owner of the proxy contract.
                     *
                     * @return Owner address.
                     */
                    function admin() public virtual proxyCallIfNotAdmin returns (address) {
                        return _getAdmin();
                    }
                    /**
                     * @notice Queries the implementation address.
                     *
                     * @return Implementation address.
                     */
                    function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                        return _getImplementation();
                    }
                    /**
                     * @notice Sets the implementation address.
                     *
                     * @param _implementation New implementation address.
                     */
                    function _setImplementation(address _implementation) internal {
                        assembly {
                            sstore(IMPLEMENTATION_KEY, _implementation)
                        }
                        emit Upgraded(_implementation);
                    }
                    /**
                     * @notice Changes the owner of the proxy contract.
                     *
                     * @param _admin New owner of the proxy contract.
                     */
                    function _changeAdmin(address _admin) internal {
                        address previous = _getAdmin();
                        assembly {
                            sstore(OWNER_KEY, _admin)
                        }
                        emit AdminChanged(previous, _admin);
                    }
                    /**
                     * @notice Performs the proxy call via a delegatecall.
                     */
                    function _doProxyCall() internal {
                        address impl = _getImplementation();
                        require(impl != address(0), "Proxy: implementation not initialized");
                        assembly {
                            // Copy calldata into memory at 0x0....calldatasize.
                            calldatacopy(0x0, 0x0, calldatasize())
                            // Perform the delegatecall, make sure to pass all available gas.
                            let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                            // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                            // overwrite the calldata that we just copied into memory but that doesn't really
                            // matter because we'll be returning in a second anyway.
                            returndatacopy(0x0, 0x0, returndatasize())
                            // Success == 0 means a revert. We'll revert too and pass the data up.
                            if iszero(success) {
                                revert(0x0, returndatasize())
                            }
                            // Otherwise we'll just return and pass the data up.
                            return(0x0, returndatasize())
                        }
                    }
                    /**
                     * @notice Queries the implementation address.
                     *
                     * @return Implementation address.
                     */
                    function _getImplementation() internal view returns (address) {
                        address impl;
                        assembly {
                            impl := sload(IMPLEMENTATION_KEY)
                        }
                        return impl;
                    }
                    /**
                     * @notice Queries the owner of the proxy contract.
                     *
                     * @return Owner address.
                     */
                    function _getAdmin() internal view returns (address) {
                        address owner;
                        assembly {
                            owner := sload(OWNER_KEY)
                        }
                        return owner;
                    }
                }