ETH Price: $2,816.15 (+1.82%)

Transaction Decoder

Block:
22880818 at Jul-09-2025 09:44:59 AM +UTC
Transaction Fee:
0.000151739399878975 ETH $0.43
Gas Used:
221,995 Gas / 0.683526205 Gwei

Emitted Events:

460 WETH9.Approval( src=[Receiver] 0xe01d75e02d7aa5035a2f219c37bdb93492fa3f75, guy=LiFiDiamond, wad=380000000000000 )
461 WETH9.Transfer( src=[Receiver] 0xe01d75e02d7aa5035a2f219c37bdb93492fa3f75, dst=LiFiDiamond, wad=380000000000000 )
462 WETH9.Transfer( src=LiFiDiamond, dst=TokenWrapper, wad=380000000000000 )
463 WETH9.Withdrawal( src=TokenWrapper, wad=380000000000000 )
464 LiFiDiamond.0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38( 0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38, 002d6866cd964de5b12c0e9e23f805093dfbf503d22a0fe4c869dcad44adb182, 0000000000000000000000005215e9fd223bc909083fbdb2860213873046e45d, 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000001599ba503c000, 0000000000000000000000000000000000000000000000000001599ba503c000, 00000000000000000000000000000000000000000000000000000000686e3a1b )
465 RelayReceiver.FundsForwardedWithData( data=0x5BF73361632B68C3D70EEF97D28A80FB21F41702C545AD027ED91CD4EF9EFFDE )
466 LiFiDiamond.0x7be3e48a8a8b4d32138937e1809ac83481fffe48e49bb60e43ed1d3d50349e4c( 0x7be3e48a8a8b4d32138937e1809ac83481fffe48e49bb60e43ed1d3d50349e4c, 0x002d6866cd964de5b12c0e9e23f805093dfbf503d22a0fe4c869dcad44adb182, 0x000000000000000000000000000000000000000000000000000000002f3fb341, 3a0b6b23f43c3eb06c6b1650a323fd1c5a5facb7879547523b9f848157b506aa )
467 LiFiDiamond.0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1( 0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1, 0000000000000000000000000000000000000000000000000000000000000020, 002d6866cd964de5b12c0e9e23f805093dfbf503d22a0fe4c869dcad44adb182, 0000000000000000000000000000000000000000000000000000000000000140, 0000000000000000000000000000000000000000000000000000000000000180, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 00000000000000000000000011f111f111f111f111f111f111f111f111f111f1, 0000000000000000000000000000000000000000000000000001599ba503c000, 000000000000000000000000000000000000000000000000000416edef1601be, 0000000000000000000000000000000000000000000000000000000000000001, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000005, 72656c6179000000000000000000000000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000000000f, 6a756d7065722e65786368616e67650000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x1231DEB6...7486F4EaE
(LI.FI: LiFi Diamond)
(Titan Builder)
68.14579564721010973 Eth68.14579566940960973 Eth0.0000000221995
0xC02aaA39...83C756Cc2 2,585,011.704880120400372303 Eth2,585,011.704500120400372303 Eth0.00038
0xE01d75E0...492FA3F75
0.000454532911040036 Eth
Nonce: 15
0.000302793511161061 Eth
Nonce: 17
0.000151739399878975From: 0 To: 22892026855592066050609947431602401211538835161166308139
0xf70da978...8dfA3dbEF
(Relay: Solver)
717.245695625539386653 Eth717.246075625539386653 Eth0.00038

Execution Trace

0xe01d75e02d7aa5035a2f219c37bdb93492fa3f75.e9ae5c53( )
  • WETH9.approve( guy=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, wad=380000000000000 ) => ( True )
  • LiFiDiamond.25d374e8( )
    • RelayFacet.swapAndStartBridgeTokensViaRelay( _bridgeData=[{name:transactionId, type:bytes32, order:1, indexed:false, value:002D6866CD964DE5B12C0E9E23F805093DFBF503D22A0FE4C869DCAD44ADB182, valueString:002D6866CD964DE5B12C0E9E23F805093DFBF503D22A0FE4C869DCAD44ADB182}, {name:bridge, type:string, order:2, indexed:false, value:relay, valueString:relay}, {name:integrator, type:string, order:3, indexed:false, value:jumper.exchange, valueString:jumper.exchange}, {name:referrer, type:address, order:4, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:sendingAssetId, type:address, order:5, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:receiver, type:address, order:6, indexed:false, value:0x11f111f111f111F111f111f111F111f111f111F1, valueString:0x11f111f111f111F111f111f111F111f111f111F1}, {name:minAmount, type:uint256, order:7, indexed:false, value:380000000000000, valueString:380000000000000}, {name:destinationChainId, type:uint256, order:8, indexed:false, value:1151111081099710, valueString:1151111081099710}, {name:hasSourceSwaps, type:bool, order:9, indexed:false, value:true, valueString:True}, {name:hasDestinationCall, type:bool, order:10, indexed:false, value:false, valueString:False}], _swapData=, _relayData=[{name:requestId, type:bytes32, order:1, indexed:false, value:5BF73361632B68C3D70EEF97D28A80FB21F41702C545AD027ED91CD4EF9EFFDE, valueString:5BF73361632B68C3D70EEF97D28A80FB21F41702C545AD027ED91CD4EF9EFFDE}, {name:nonEVMReceiver, type:bytes32, order:2, indexed:false, value:3A0B6B23F43C3EB06C6B1650A323FD1C5A5FACB7879547523B9F848157B506AA, valueString:3A0B6B23F43C3EB06C6B1650A323FD1C5A5FACB7879547523B9F848157B506AA}, {name:receivingAssetId, type:bytes32, order:3, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:signature, type:bytes, order:4, indexed:false, value:0xB88FAA0C4DAD8131ACDFA1616E39BF932F7FED1344852C87A42C5A08EFD1B47661519AE77507ED780259DB0FAEC79CE6E893F193AF5CC5628A2BC3B3AAA493521B, valueString:0xB88FAA0C4DAD8131ACDFA1616E39BF932F7FED1344852C87A42C5A08EFD1B47661519AE77507ED780259DB0FAEC79CE6E893F193AF5CC5628A2BC3B3AAA493521B}] )
      • Null: 0x000...001.94e4d5a3( )
      • WETH9.balanceOf( 0xE01d75E02d7AA5035A2f219C37BDb93492FA3F75 ) => ( 380000000000000 )
      • WETH9.balanceOf( 0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 0 )
      • WETH9.transferFrom( src=0xE01d75E02d7AA5035A2f219C37BDb93492FA3F75, dst=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, wad=380000000000000 ) => ( True )
      • WETH9.balanceOf( 0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 380000000000000 )
      • WETH9.balanceOf( 0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 380000000000000 )
      • WETH9.allowance( 0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, 0x5215E9fd223BC909083fbdB2860213873046e45d ) => ( 115792089237316195423570985008687907853269984665640564039457584007913129639935 )
      • TokenWrapper.CALL( )
        • WETH9.balanceOf( 0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 380000000000000 )
        • WETH9.transferFrom( src=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, dst=0x5215E9fd223BC909083fbdB2860213873046e45d, wad=380000000000000 ) => ( True )
        • WETH9.withdraw( wad=380000000000000 )
          • ETH 0.00038 TokenWrapper.CALL( )
          • ETH 0.00038 LiFiDiamond.CALL( )
          • ETH 0.00038 RelayReceiver.5bf73361( )
            • ETH 0.00038 Relay: Solver.CALL( )
              File 1 of 5: WETH9
              // Copyright (C) 2015, 2016, 2017 Dapphub
              
              // This program is free software: you can redistribute it and/or modify
              // it under the terms of the GNU General Public License as published by
              // the Free Software Foundation, either version 3 of the License, or
              // (at your option) any later version.
              
              // This program is distributed in the hope that it will be useful,
              // but WITHOUT ANY WARRANTY; without even the implied warranty of
              // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
              // GNU General Public License for more details.
              
              // You should have received a copy of the GNU General Public License
              // along with this program.  If not, see <http://www.gnu.org/licenses/>.
              
              pragma solidity ^0.4.18;
              
              contract WETH9 {
                  string public name     = "Wrapped Ether";
                  string public symbol   = "WETH";
                  uint8  public decimals = 18;
              
                  event  Approval(address indexed src, address indexed guy, uint wad);
                  event  Transfer(address indexed src, address indexed dst, uint wad);
                  event  Deposit(address indexed dst, uint wad);
                  event  Withdrawal(address indexed src, uint wad);
              
                  mapping (address => uint)                       public  balanceOf;
                  mapping (address => mapping (address => uint))  public  allowance;
              
                  function() public payable {
                      deposit();
                  }
                  function deposit() public payable {
                      balanceOf[msg.sender] += msg.value;
                      Deposit(msg.sender, msg.value);
                  }
                  function withdraw(uint wad) public {
                      require(balanceOf[msg.sender] >= wad);
                      balanceOf[msg.sender] -= wad;
                      msg.sender.transfer(wad);
                      Withdrawal(msg.sender, wad);
                  }
              
                  function totalSupply() public view returns (uint) {
                      return this.balance;
                  }
              
                  function approve(address guy, uint wad) public returns (bool) {
                      allowance[msg.sender][guy] = wad;
                      Approval(msg.sender, guy, wad);
                      return true;
                  }
              
                  function transfer(address dst, uint wad) public returns (bool) {
                      return transferFrom(msg.sender, dst, wad);
                  }
              
                  function transferFrom(address src, address dst, uint wad)
                      public
                      returns (bool)
                  {
                      require(balanceOf[src] >= wad);
              
                      if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                          require(allowance[src][msg.sender] >= wad);
                          allowance[src][msg.sender] -= wad;
                      }
              
                      balanceOf[src] -= wad;
                      balanceOf[dst] += wad;
              
                      Transfer(src, dst, wad);
              
                      return true;
                  }
              }
              
              
              /*
                                  GNU GENERAL PUBLIC LICENSE
                                     Version 3, 29 June 2007
              
               Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
               Everyone is permitted to copy and distribute verbatim copies
               of this license document, but changing it is not allowed.
              
                                          Preamble
              
                The GNU General Public License is a free, copyleft license for
              software and other kinds of works.
              
                The licenses for most software and other practical works are designed
              to take away your freedom to share and change the works.  By contrast,
              the GNU General Public License is intended to guarantee your freedom to
              share and change all versions of a program--to make sure it remains free
              software for all its users.  We, the Free Software Foundation, use the
              GNU General Public License for most of our software; it applies also to
              any other work released this way by its authors.  You can apply it to
              your programs, too.
              
                When we speak of free software, we are referring to freedom, not
              price.  Our General Public Licenses are designed to make sure that you
              have the freedom to distribute copies of free software (and charge for
              them if you wish), that you receive source code or can get it if you
              want it, that you can change the software or use pieces of it in new
              free programs, and that you know you can do these things.
              
                To protect your rights, we need to prevent others from denying you
              these rights or asking you to surrender the rights.  Therefore, you have
              certain responsibilities if you distribute copies of the software, or if
              you modify it: responsibilities to respect the freedom of others.
              
                For example, if you distribute copies of such a program, whether
              gratis or for a fee, you must pass on to the recipients the same
              freedoms that you received.  You must make sure that they, too, receive
              or can get the source code.  And you must show them these terms so they
              know their rights.
              
                Developers that use the GNU GPL protect your rights with two steps:
              (1) assert copyright on the software, and (2) offer you this License
              giving you legal permission to copy, distribute and/or modify it.
              
                For the developers' and authors' protection, the GPL clearly explains
              that there is no warranty for this free software.  For both users' and
              authors' sake, the GPL requires that modified versions be marked as
              changed, so that their problems will not be attributed erroneously to
              authors of previous versions.
              
                Some devices are designed to deny users access to install or run
              modified versions of the software inside them, although the manufacturer
              can do so.  This is fundamentally incompatible with the aim of
              protecting users' freedom to change the software.  The systematic
              pattern of such abuse occurs in the area of products for individuals to
              use, which is precisely where it is most unacceptable.  Therefore, we
              have designed this version of the GPL to prohibit the practice for those
              products.  If such problems arise substantially in other domains, we
              stand ready to extend this provision to those domains in future versions
              of the GPL, as needed to protect the freedom of users.
              
                Finally, every program is threatened constantly by software patents.
              States should not allow patents to restrict development and use of
              software on general-purpose computers, but in those that do, we wish to
              avoid the special danger that patents applied to a free program could
              make it effectively proprietary.  To prevent this, the GPL assures that
              patents cannot be used to render the program non-free.
              
                The precise terms and conditions for copying, distribution and
              modification follow.
              
                                     TERMS AND CONDITIONS
              
                0. Definitions.
              
                "This License" refers to version 3 of the GNU General Public License.
              
                "Copyright" also means copyright-like laws that apply to other kinds of
              works, such as semiconductor masks.
              
                "The Program" refers to any copyrightable work licensed under this
              License.  Each licensee is addressed as "you".  "Licensees" and
              "recipients" may be individuals or organizations.
              
                To "modify" a work means to copy from or adapt all or part of the work
              in a fashion requiring copyright permission, other than the making of an
              exact copy.  The resulting work is called a "modified version" of the
              earlier work or a work "based on" the earlier work.
              
                A "covered work" means either the unmodified Program or a work based
              on the Program.
              
                To "propagate" a work means to do anything with it that, without
              permission, would make you directly or secondarily liable for
              infringement under applicable copyright law, except executing it on a
              computer or modifying a private copy.  Propagation includes copying,
              distribution (with or without modification), making available to the
              public, and in some countries other activities as well.
              
                To "convey" a work means any kind of propagation that enables other
              parties to make or receive copies.  Mere interaction with a user through
              a computer network, with no transfer of a copy, is not conveying.
              
                An interactive user interface displays "Appropriate Legal Notices"
              to the extent that it includes a convenient and prominently visible
              feature that (1) displays an appropriate copyright notice, and (2)
              tells the user that there is no warranty for the work (except to the
              extent that warranties are provided), that licensees may convey the
              work under this License, and how to view a copy of this License.  If
              the interface presents a list of user commands or options, such as a
              menu, a prominent item in the list meets this criterion.
              
                1. Source Code.
              
                The "source code" for a work means the preferred form of the work
              for making modifications to it.  "Object code" means any non-source
              form of a work.
              
                A "Standard Interface" means an interface that either is an official
              standard defined by a recognized standards body, or, in the case of
              interfaces specified for a particular programming language, one that
              is widely used among developers working in that language.
              
                The "System Libraries" of an executable work include anything, other
              than the work as a whole, that (a) is included in the normal form of
              packaging a Major Component, but which is not part of that Major
              Component, and (b) serves only to enable use of the work with that
              Major Component, or to implement a Standard Interface for which an
              implementation is available to the public in source code form.  A
              "Major Component", in this context, means a major essential component
              (kernel, window system, and so on) of the specific operating system
              (if any) on which the executable work runs, or a compiler used to
              produce the work, or an object code interpreter used to run it.
              
                The "Corresponding Source" for a work in object code form means all
              the source code needed to generate, install, and (for an executable
              work) run the object code and to modify the work, including scripts to
              control those activities.  However, it does not include the work's
              System Libraries, or general-purpose tools or generally available free
              programs which are used unmodified in performing those activities but
              which are not part of the work.  For example, Corresponding Source
              includes interface definition files associated with source files for
              the work, and the source code for shared libraries and dynamically
              linked subprograms that the work is specifically designed to require,
              such as by intimate data communication or control flow between those
              subprograms and other parts of the work.
              
                The Corresponding Source need not include anything that users
              can regenerate automatically from other parts of the Corresponding
              Source.
              
                The Corresponding Source for a work in source code form is that
              same work.
              
                2. Basic Permissions.
              
                All rights granted under this License are granted for the term of
              copyright on the Program, and are irrevocable provided the stated
              conditions are met.  This License explicitly affirms your unlimited
              permission to run the unmodified Program.  The output from running a
              covered work is covered by this License only if the output, given its
              content, constitutes a covered work.  This License acknowledges your
              rights of fair use or other equivalent, as provided by copyright law.
              
                You may make, run and propagate covered works that you do not
              convey, without conditions so long as your license otherwise remains
              in force.  You may convey covered works to others for the sole purpose
              of having them make modifications exclusively for you, or provide you
              with facilities for running those works, provided that you comply with
              the terms of this License in conveying all material for which you do
              not control copyright.  Those thus making or running the covered works
              for you must do so exclusively on your behalf, under your direction
              and control, on terms that prohibit them from making any copies of
              your copyrighted material outside their relationship with you.
              
                Conveying under any other circumstances is permitted solely under
              the conditions stated below.  Sublicensing is not allowed; section 10
              makes it unnecessary.
              
                3. Protecting Users' Legal Rights From Anti-Circumvention Law.
              
                No covered work shall be deemed part of an effective technological
              measure under any applicable law fulfilling obligations under article
              11 of the WIPO copyright treaty adopted on 20 December 1996, or
              similar laws prohibiting or restricting circumvention of such
              measures.
              
                When you convey a covered work, you waive any legal power to forbid
              circumvention of technological measures to the extent such circumvention
              is effected by exercising rights under this License with respect to
              the covered work, and you disclaim any intention to limit operation or
              modification of the work as a means of enforcing, against the work's
              users, your or third parties' legal rights to forbid circumvention of
              technological measures.
              
                4. Conveying Verbatim Copies.
              
                You may convey verbatim copies of the Program's source code as you
              receive it, in any medium, provided that you conspicuously and
              appropriately publish on each copy an appropriate copyright notice;
              keep intact all notices stating that this License and any
              non-permissive terms added in accord with section 7 apply to the code;
              keep intact all notices of the absence of any warranty; and give all
              recipients a copy of this License along with the Program.
              
                You may charge any price or no price for each copy that you convey,
              and you may offer support or warranty protection for a fee.
              
                5. Conveying Modified Source Versions.
              
                You may convey a work based on the Program, or the modifications to
              produce it from the Program, in the form of source code under the
              terms of section 4, provided that you also meet all of these conditions:
              
                  a) The work must carry prominent notices stating that you modified
                  it, and giving a relevant date.
              
                  b) The work must carry prominent notices stating that it is
                  released under this License and any conditions added under section
                  7.  This requirement modifies the requirement in section 4 to
                  "keep intact all notices".
              
                  c) You must license the entire work, as a whole, under this
                  License to anyone who comes into possession of a copy.  This
                  License will therefore apply, along with any applicable section 7
                  additional terms, to the whole of the work, and all its parts,
                  regardless of how they are packaged.  This License gives no
                  permission to license the work in any other way, but it does not
                  invalidate such permission if you have separately received it.
              
                  d) If the work has interactive user interfaces, each must display
                  Appropriate Legal Notices; however, if the Program has interactive
                  interfaces that do not display Appropriate Legal Notices, your
                  work need not make them do so.
              
                A compilation of a covered work with other separate and independent
              works, which are not by their nature extensions of the covered work,
              and which are not combined with it such as to form a larger program,
              in or on a volume of a storage or distribution medium, is called an
              "aggregate" if the compilation and its resulting copyright are not
              used to limit the access or legal rights of the compilation's users
              beyond what the individual works permit.  Inclusion of a covered work
              in an aggregate does not cause this License to apply to the other
              parts of the aggregate.
              
                6. Conveying Non-Source Forms.
              
                You may convey a covered work in object code form under the terms
              of sections 4 and 5, provided that you also convey the
              machine-readable Corresponding Source under the terms of this License,
              in one of these ways:
              
                  a) Convey the object code in, or embodied in, a physical product
                  (including a physical distribution medium), accompanied by the
                  Corresponding Source fixed on a durable physical medium
                  customarily used for software interchange.
              
                  b) Convey the object code in, or embodied in, a physical product
                  (including a physical distribution medium), accompanied by a
                  written offer, valid for at least three years and valid for as
                  long as you offer spare parts or customer support for that product
                  model, to give anyone who possesses the object code either (1) a
                  copy of the Corresponding Source for all the software in the
                  product that is covered by this License, on a durable physical
                  medium customarily used for software interchange, for a price no
                  more than your reasonable cost of physically performing this
                  conveying of source, or (2) access to copy the
                  Corresponding Source from a network server at no charge.
              
                  c) Convey individual copies of the object code with a copy of the
                  written offer to provide the Corresponding Source.  This
                  alternative is allowed only occasionally and noncommercially, and
                  only if you received the object code with such an offer, in accord
                  with subsection 6b.
              
                  d) Convey the object code by offering access from a designated
                  place (gratis or for a charge), and offer equivalent access to the
                  Corresponding Source in the same way through the same place at no
                  further charge.  You need not require recipients to copy the
                  Corresponding Source along with the object code.  If the place to
                  copy the object code is a network server, the Corresponding Source
                  may be on a different server (operated by you or a third party)
                  that supports equivalent copying facilities, provided you maintain
                  clear directions next to the object code saying where to find the
                  Corresponding Source.  Regardless of what server hosts the
                  Corresponding Source, you remain obligated to ensure that it is
                  available for as long as needed to satisfy these requirements.
              
                  e) Convey the object code using peer-to-peer transmission, provided
                  you inform other peers where the object code and Corresponding
                  Source of the work are being offered to the general public at no
                  charge under subsection 6d.
              
                A separable portion of the object code, whose source code is excluded
              from the Corresponding Source as a System Library, need not be
              included in conveying the object code work.
              
                A "User Product" is either (1) a "consumer product", which means any
              tangible personal property which is normally used for personal, family,
              or household purposes, or (2) anything designed or sold for incorporation
              into a dwelling.  In determining whether a product is a consumer product,
              doubtful cases shall be resolved in favor of coverage.  For a particular
              product received by a particular user, "normally used" refers to a
              typical or common use of that class of product, regardless of the status
              of the particular user or of the way in which the particular user
              actually uses, or expects or is expected to use, the product.  A product
              is a consumer product regardless of whether the product has substantial
              commercial, industrial or non-consumer uses, unless such uses represent
              the only significant mode of use of the product.
              
                "Installation Information" for a User Product means any methods,
              procedures, authorization keys, or other information required to install
              and execute modified versions of a covered work in that User Product from
              a modified version of its Corresponding Source.  The information must
              suffice to ensure that the continued functioning of the modified object
              code is in no case prevented or interfered with solely because
              modification has been made.
              
                If you convey an object code work under this section in, or with, or
              specifically for use in, a User Product, and the conveying occurs as
              part of a transaction in which the right of possession and use of the
              User Product is transferred to the recipient in perpetuity or for a
              fixed term (regardless of how the transaction is characterized), the
              Corresponding Source conveyed under this section must be accompanied
              by the Installation Information.  But this requirement does not apply
              if neither you nor any third party retains the ability to install
              modified object code on the User Product (for example, the work has
              been installed in ROM).
              
                The requirement to provide Installation Information does not include a
              requirement to continue to provide support service, warranty, or updates
              for a work that has been modified or installed by the recipient, or for
              the User Product in which it has been modified or installed.  Access to a
              network may be denied when the modification itself materially and
              adversely affects the operation of the network or violates the rules and
              protocols for communication across the network.
              
                Corresponding Source conveyed, and Installation Information provided,
              in accord with this section must be in a format that is publicly
              documented (and with an implementation available to the public in
              source code form), and must require no special password or key for
              unpacking, reading or copying.
              
                7. Additional Terms.
              
                "Additional permissions" are terms that supplement the terms of this
              License by making exceptions from one or more of its conditions.
              Additional permissions that are applicable to the entire Program shall
              be treated as though they were included in this License, to the extent
              that they are valid under applicable law.  If additional permissions
              apply only to part of the Program, that part may be used separately
              under those permissions, but the entire Program remains governed by
              this License without regard to the additional permissions.
              
                When you convey a copy of a covered work, you may at your option
              remove any additional permissions from that copy, or from any part of
              it.  (Additional permissions may be written to require their own
              removal in certain cases when you modify the work.)  You may place
              additional permissions on material, added by you to a covered work,
              for which you have or can give appropriate copyright permission.
              
                Notwithstanding any other provision of this License, for material you
              add to a covered work, you may (if authorized by the copyright holders of
              that material) supplement the terms of this License with terms:
              
                  a) Disclaiming warranty or limiting liability differently from the
                  terms of sections 15 and 16 of this License; or
              
                  b) Requiring preservation of specified reasonable legal notices or
                  author attributions in that material or in the Appropriate Legal
                  Notices displayed by works containing it; or
              
                  c) Prohibiting misrepresentation of the origin of that material, or
                  requiring that modified versions of such material be marked in
                  reasonable ways as different from the original version; or
              
                  d) Limiting the use for publicity purposes of names of licensors or
                  authors of the material; or
              
                  e) Declining to grant rights under trademark law for use of some
                  trade names, trademarks, or service marks; or
              
                  f) Requiring indemnification of licensors and authors of that
                  material by anyone who conveys the material (or modified versions of
                  it) with contractual assumptions of liability to the recipient, for
                  any liability that these contractual assumptions directly impose on
                  those licensors and authors.
              
                All other non-permissive additional terms are considered "further
              restrictions" within the meaning of section 10.  If the Program as you
              received it, or any part of it, contains a notice stating that it is
              governed by this License along with a term that is a further
              restriction, you may remove that term.  If a license document contains
              a further restriction but permits relicensing or conveying under this
              License, you may add to a covered work material governed by the terms
              of that license document, provided that the further restriction does
              not survive such relicensing or conveying.
              
                If you add terms to a covered work in accord with this section, you
              must place, in the relevant source files, a statement of the
              additional terms that apply to those files, or a notice indicating
              where to find the applicable terms.
              
                Additional terms, permissive or non-permissive, may be stated in the
              form of a separately written license, or stated as exceptions;
              the above requirements apply either way.
              
                8. Termination.
              
                You may not propagate or modify a covered work except as expressly
              provided under this License.  Any attempt otherwise to propagate or
              modify it is void, and will automatically terminate your rights under
              this License (including any patent licenses granted under the third
              paragraph of section 11).
              
                However, if you cease all violation of this License, then your
              license from a particular copyright holder is reinstated (a)
              provisionally, unless and until the copyright holder explicitly and
              finally terminates your license, and (b) permanently, if the copyright
              holder fails to notify you of the violation by some reasonable means
              prior to 60 days after the cessation.
              
                Moreover, your license from a particular copyright holder is
              reinstated permanently if the copyright holder notifies you of the
              violation by some reasonable means, this is the first time you have
              received notice of violation of this License (for any work) from that
              copyright holder, and you cure the violation prior to 30 days after
              your receipt of the notice.
              
                Termination of your rights under this section does not terminate the
              licenses of parties who have received copies or rights from you under
              this License.  If your rights have been terminated and not permanently
              reinstated, you do not qualify to receive new licenses for the same
              material under section 10.
              
                9. Acceptance Not Required for Having Copies.
              
                You are not required to accept this License in order to receive or
              run a copy of the Program.  Ancillary propagation of a covered work
              occurring solely as a consequence of using peer-to-peer transmission
              to receive a copy likewise does not require acceptance.  However,
              nothing other than this License grants you permission to propagate or
              modify any covered work.  These actions infringe copyright if you do
              not accept this License.  Therefore, by modifying or propagating a
              covered work, you indicate your acceptance of this License to do so.
              
                10. Automatic Licensing of Downstream Recipients.
              
                Each time you convey a covered work, the recipient automatically
              receives a license from the original licensors, to run, modify and
              propagate that work, subject to this License.  You are not responsible
              for enforcing compliance by third parties with this License.
              
                An "entity transaction" is a transaction transferring control of an
              organization, or substantially all assets of one, or subdividing an
              organization, or merging organizations.  If propagation of a covered
              work results from an entity transaction, each party to that
              transaction who receives a copy of the work also receives whatever
              licenses to the work the party's predecessor in interest had or could
              give under the previous paragraph, plus a right to possession of the
              Corresponding Source of the work from the predecessor in interest, if
              the predecessor has it or can get it with reasonable efforts.
              
                You may not impose any further restrictions on the exercise of the
              rights granted or affirmed under this License.  For example, you may
              not impose a license fee, royalty, or other charge for exercise of
              rights granted under this License, and you may not initiate litigation
              (including a cross-claim or counterclaim in a lawsuit) alleging that
              any patent claim is infringed by making, using, selling, offering for
              sale, or importing the Program or any portion of it.
              
                11. Patents.
              
                A "contributor" is a copyright holder who authorizes use under this
              License of the Program or a work on which the Program is based.  The
              work thus licensed is called the contributor's "contributor version".
              
                A contributor's "essential patent claims" are all patent claims
              owned or controlled by the contributor, whether already acquired or
              hereafter acquired, that would be infringed by some manner, permitted
              by this License, of making, using, or selling its contributor version,
              but do not include claims that would be infringed only as a
              consequence of further modification of the contributor version.  For
              purposes of this definition, "control" includes the right to grant
              patent sublicenses in a manner consistent with the requirements of
              this License.
              
                Each contributor grants you a non-exclusive, worldwide, royalty-free
              patent license under the contributor's essential patent claims, to
              make, use, sell, offer for sale, import and otherwise run, modify and
              propagate the contents of its contributor version.
              
                In the following three paragraphs, a "patent license" is any express
              agreement or commitment, however denominated, not to enforce a patent
              (such as an express permission to practice a patent or covenant not to
              sue for patent infringement).  To "grant" such a patent license to a
              party means to make such an agreement or commitment not to enforce a
              patent against the party.
              
                If you convey a covered work, knowingly relying on a patent license,
              and the Corresponding Source of the work is not available for anyone
              to copy, free of charge and under the terms of this License, through a
              publicly available network server or other readily accessible means,
              then you must either (1) cause the Corresponding Source to be so
              available, or (2) arrange to deprive yourself of the benefit of the
              patent license for this particular work, or (3) arrange, in a manner
              consistent with the requirements of this License, to extend the patent
              license to downstream recipients.  "Knowingly relying" means you have
              actual knowledge that, but for the patent license, your conveying the
              covered work in a country, or your recipient's use of the covered work
              in a country, would infringe one or more identifiable patents in that
              country that you have reason to believe are valid.
              
                If, pursuant to or in connection with a single transaction or
              arrangement, you convey, or propagate by procuring conveyance of, a
              covered work, and grant a patent license to some of the parties
              receiving the covered work authorizing them to use, propagate, modify
              or convey a specific copy of the covered work, then the patent license
              you grant is automatically extended to all recipients of the covered
              work and works based on it.
              
                A patent license is "discriminatory" if it does not include within
              the scope of its coverage, prohibits the exercise of, or is
              conditioned on the non-exercise of one or more of the rights that are
              specifically granted under this License.  You may not convey a covered
              work if you are a party to an arrangement with a third party that is
              in the business of distributing software, under which you make payment
              to the third party based on the extent of your activity of conveying
              the work, and under which the third party grants, to any of the
              parties who would receive the covered work from you, a discriminatory
              patent license (a) in connection with copies of the covered work
              conveyed by you (or copies made from those copies), or (b) primarily
              for and in connection with specific products or compilations that
              contain the covered work, unless you entered into that arrangement,
              or that patent license was granted, prior to 28 March 2007.
              
                Nothing in this License shall be construed as excluding or limiting
              any implied license or other defenses to infringement that may
              otherwise be available to you under applicable patent law.
              
                12. No Surrender of Others' Freedom.
              
                If conditions are imposed on you (whether by court order, agreement or
              otherwise) that contradict the conditions of this License, they do not
              excuse you from the conditions of this License.  If you cannot convey a
              covered work so as to satisfy simultaneously your obligations under this
              License and any other pertinent obligations, then as a consequence you may
              not convey it at all.  For example, if you agree to terms that obligate you
              to collect a royalty for further conveying from those to whom you convey
              the Program, the only way you could satisfy both those terms and this
              License would be to refrain entirely from conveying the Program.
              
                13. Use with the GNU Affero General Public License.
              
                Notwithstanding any other provision of this License, you have
              permission to link or combine any covered work with a work licensed
              under version 3 of the GNU Affero General Public License into a single
              combined work, and to convey the resulting work.  The terms of this
              License will continue to apply to the part which is the covered work,
              but the special requirements of the GNU Affero General Public License,
              section 13, concerning interaction through a network will apply to the
              combination as such.
              
                14. Revised Versions of this License.
              
                The Free Software Foundation may publish revised and/or new versions of
              the GNU General Public License from time to time.  Such new versions will
              be similar in spirit to the present version, but may differ in detail to
              address new problems or concerns.
              
                Each version is given a distinguishing version number.  If the
              Program specifies that a certain numbered version of the GNU General
              Public License "or any later version" applies to it, you have the
              option of following the terms and conditions either of that numbered
              version or of any later version published by the Free Software
              Foundation.  If the Program does not specify a version number of the
              GNU General Public License, you may choose any version ever published
              by the Free Software Foundation.
              
                If the Program specifies that a proxy can decide which future
              versions of the GNU General Public License can be used, that proxy's
              public statement of acceptance of a version permanently authorizes you
              to choose that version for the Program.
              
                Later license versions may give you additional or different
              permissions.  However, no additional obligations are imposed on any
              author or copyright holder as a result of your choosing to follow a
              later version.
              
                15. Disclaimer of Warranty.
              
                THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
              APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
              HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
              OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
              THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
              PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
              IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
              ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
              
                16. Limitation of Liability.
              
                IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
              WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
              THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
              GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
              USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
              DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
              PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
              EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
              SUCH DAMAGES.
              
                17. Interpretation of Sections 15 and 16.
              
                If the disclaimer of warranty and limitation of liability provided
              above cannot be given local legal effect according to their terms,
              reviewing courts shall apply local law that most closely approximates
              an absolute waiver of all civil liability in connection with the
              Program, unless a warranty or assumption of liability accompanies a
              copy of the Program in return for a fee.
              
                                   END OF TERMS AND CONDITIONS
              
                          How to Apply These Terms to Your New Programs
              
                If you develop a new program, and you want it to be of the greatest
              possible use to the public, the best way to achieve this is to make it
              free software which everyone can redistribute and change under these terms.
              
                To do so, attach the following notices to the program.  It is safest
              to attach them to the start of each source file to most effectively
              state the exclusion of warranty; and each file should have at least
              the "copyright" line and a pointer to where the full notice is found.
              
                  <one line to give the program's name and a brief idea of what it does.>
                  Copyright (C) <year>  <name of author>
              
                  This program is free software: you can redistribute it and/or modify
                  it under the terms of the GNU General Public License as published by
                  the Free Software Foundation, either version 3 of the License, or
                  (at your option) any later version.
              
                  This program is distributed in the hope that it will be useful,
                  but WITHOUT ANY WARRANTY; without even the implied warranty of
                  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                  GNU General Public License for more details.
              
                  You should have received a copy of the GNU General Public License
                  along with this program.  If not, see <http://www.gnu.org/licenses/>.
              
              Also add information on how to contact you by electronic and paper mail.
              
                If the program does terminal interaction, make it output a short
              notice like this when it starts in an interactive mode:
              
                  <program>  Copyright (C) <year>  <name of author>
                  This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
                  This is free software, and you are welcome to redistribute it
                  under certain conditions; type `show c' for details.
              
              The hypothetical commands `show w' and `show c' should show the appropriate
              parts of the General Public License.  Of course, your program's commands
              might be different; for a GUI interface, you would use an "about box".
              
                You should also get your employer (if you work as a programmer) or school,
              if any, to sign a "copyright disclaimer" for the program, if necessary.
              For more information on this, and how to apply and follow the GNU GPL, see
              <http://www.gnu.org/licenses/>.
              
                The GNU General Public License does not permit incorporating your program
              into proprietary programs.  If your program is a subroutine library, you
              may consider it more useful to permit linking proprietary applications with
              the library.  If this is what you want to do, use the GNU Lesser General
              Public License instead of this License.  But first, please read
              <http://www.gnu.org/philosophy/why-not-lgpl.html>.
              
              */

              File 2 of 5: LiFiDiamond
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              error TokenAddressIsZero();
              error TokenNotSupported();
              error CannotBridgeToSameNetwork();
              error ZeroPostSwapBalance();
              error NoSwapDataProvided();
              error NativeValueWithERC();
              error ContractCallNotAllowed();
              error NullAddrIsNotAValidSpender();
              error NullAddrIsNotAnERC20Token();
              error NoTransferToNullAddress();
              error NativeAssetTransferFailed();
              error InvalidBridgeConfigLength();
              error InvalidAmount();
              error InvalidContract();
              error InvalidConfig();
              error UnsupportedChainId(uint256 chainId);
              error InvalidReceiver();
              error InvalidDestinationChain();
              error InvalidSendingToken();
              error InvalidCaller();
              error AlreadyInitialized();
              error NotInitialized();
              error OnlyContractOwner();
              error CannotAuthoriseSelf();
              error RecoveryAddressCannotBeZero();
              error CannotDepositNativeToken();
              error InvalidCallData();
              error NativeAssetNotSupported();
              error UnAuthorized();
              error NoSwapFromZeroBalance();
              error InvalidFallbackAddress();
              error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
              error InsufficientBalance(uint256 required, uint256 balance);
              error ZeroAmount();
              error InvalidFee();
              error InformationMismatch();
              error NotAContract();
              error NotEnoughBalance(uint256 requested, uint256 available);
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              interface IDiamondCut {
                  enum FacetCutAction {
                      Add,
                      Replace,
                      Remove
                  }
                  // Add=0, Replace=1, Remove=2
                  struct FacetCut {
                      address facetAddress;
                      FacetCutAction action;
                      bytes4[] functionSelectors;
                  }
                  /// @notice Add/replace/remove any number of functions and optionally execute
                  ///         a function with delegatecall
                  /// @param _diamondCut Contains the facet addresses and function selectors
                  /// @param _init The address of the contract or facet to execute _calldata
                  /// @param _calldata A function call, including function selector and arguments
                  ///                  _calldata is executed with delegatecall on _init
                  function diamondCut(
                      FacetCut[] calldata _diamondCut,
                      address _init,
                      bytes calldata _calldata
                  ) external;
                  event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import { LibDiamond } from "./Libraries/LibDiamond.sol";
              import { IDiamondCut } from "./Interfaces/IDiamondCut.sol";
              import { LibUtil } from "./Libraries/LibUtil.sol";
              contract LiFiDiamond {
                  constructor(address _contractOwner, address _diamondCutFacet) payable {
                      LibDiamond.setContractOwner(_contractOwner);
                      // Add the diamondCut external function from the diamondCutFacet
                      IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
                      bytes4[] memory functionSelectors = new bytes4[](1);
                      functionSelectors[0] = IDiamondCut.diamondCut.selector;
                      cut[0] = IDiamondCut.FacetCut({
                          facetAddress: _diamondCutFacet,
                          action: IDiamondCut.FacetCutAction.Add,
                          functionSelectors: functionSelectors
                      });
                      LibDiamond.diamondCut(cut, address(0), "");
                  }
                  // Find facet for function that is called and execute the
                  // function if a facet is found and return any value.
                  // solhint-disable-next-line no-complex-fallback
                  fallback() external payable {
                      LibDiamond.DiamondStorage storage ds;
                      bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
                      // get diamond storage
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          ds.slot := position
                      }
                      // get facet from function selector
                      address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
                      if (facet == address(0)) {
                          revert LibDiamond.FunctionDoesNotExist();
                      }
                      // Execute external function from facet using delegatecall and return any value.
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          // copy function selector and any arguments
                          calldatacopy(0, 0, calldatasize())
                          // execute function call using the facet
                          let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
                          // get any return value
                          returndatacopy(0, 0, returndatasize())
                          // return any return value or error back to the caller
                          switch result
                          case 0 {
                              revert(0, returndatasize())
                          }
                          default {
                              return(0, returndatasize())
                          }
                      }
                  }
                  // Able to receive ether
                  // solhint-disable-next-line no-empty-blocks
                  receive() external payable {}
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              library LibBytes {
                  // solhint-disable no-inline-assembly
                  // LibBytes specific errors
                  error SliceOverflow();
                  error SliceOutOfBounds();
                  error AddressOutOfBounds();
                  error UintOutOfBounds();
                  // -------------------------
                  function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
                      bytes memory tempBytes;
                      assembly {
                          // Get a location of some free memory and store it in tempBytes as
                          // Solidity does for memory variables.
                          tempBytes := mload(0x40)
                          // Store the length of the first bytes array at the beginning of
                          // the memory for tempBytes.
                          let length := mload(_preBytes)
                          mstore(tempBytes, length)
                          // Maintain a memory counter for the current write location in the
                          // temp bytes array by adding the 32 bytes for the array length to
                          // the starting location.
                          let mc := add(tempBytes, 0x20)
                          // Stop copying when the memory counter reaches the length of the
                          // first bytes array.
                          let end := add(mc, length)
                          for {
                              // Initialize a copy counter to the start of the _preBytes data,
                              // 32 bytes into its memory.
                              let cc := add(_preBytes, 0x20)
                          } lt(mc, end) {
                              // Increase both counters by 32 bytes each iteration.
                              mc := add(mc, 0x20)
                              cc := add(cc, 0x20)
                          } {
                              // Write the _preBytes data into the tempBytes memory 32 bytes
                              // at a time.
                              mstore(mc, mload(cc))
                          }
                          // Add the length of _postBytes to the current length of tempBytes
                          // and store it as the new length in the first 32 bytes of the
                          // tempBytes memory.
                          length := mload(_postBytes)
                          mstore(tempBytes, add(length, mload(tempBytes)))
                          // Move the memory counter back from a multiple of 0x20 to the
                          // actual end of the _preBytes data.
                          mc := end
                          // Stop copying when the memory counter reaches the new combined
                          // length of the arrays.
                          end := add(mc, length)
                          for {
                              let cc := add(_postBytes, 0x20)
                          } lt(mc, end) {
                              mc := add(mc, 0x20)
                              cc := add(cc, 0x20)
                          } {
                              mstore(mc, mload(cc))
                          }
                          // Update the free-memory pointer by padding our last write location
                          // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
                          // next 32 byte block, then round down to the nearest multiple of
                          // 32. If the sum of the length of the two arrays is zero then add
                          // one before rounding down to leave a blank 32 bytes (the length block with 0).
                          mstore(
                              0x40,
                              and(
                                  add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                                  not(31) // Round down to the nearest 32 bytes.
                              )
                          )
                      }
                      return tempBytes;
                  }
                  function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
                      assembly {
                          // Read the first 32 bytes of _preBytes storage, which is the length
                          // of the array. (We don't need to use the offset into the slot
                          // because arrays use the entire slot.)
                          let fslot := sload(_preBytes.slot)
                          // Arrays of 31 bytes or less have an even value in their slot,
                          // while longer arrays have an odd value. The actual length is
                          // the slot divided by two for odd values, and the lowest order
                          // byte divided by two for even values.
                          // If the slot is even, bitwise and the slot with 255 and divide by
                          // two to get the length. If the slot is odd, bitwise and the slot
                          // with -1 and divide by two.
                          let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                          let mlength := mload(_postBytes)
                          let newlength := add(slength, mlength)
                          // slength can contain both the length and contents of the array
                          // if length < 32 bytes so let's prepare for that
                          // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                          switch add(lt(slength, 32), lt(newlength, 32))
                          case 2 {
                              // Since the new array still fits in the slot, we just need to
                              // update the contents of the slot.
                              // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                              sstore(
                                  _preBytes.slot,
                                  // all the modifications to the slot are inside this
                                  // next block
                                  add(
                                      // we can just add to the slot contents because the
                                      // bytes we want to change are the LSBs
                                      fslot,
                                      add(
                                          mul(
                                              div(
                                                  // load the bytes from memory
                                                  mload(add(_postBytes, 0x20)),
                                                  // zero all bytes to the right
                                                  exp(0x100, sub(32, mlength))
                                              ),
                                              // and now shift left the number of bytes to
                                              // leave space for the length in the slot
                                              exp(0x100, sub(32, newlength))
                                          ),
                                          // increase length by the double of the memory
                                          // bytes length
                                          mul(mlength, 2)
                                      )
                                  )
                              )
                          }
                          case 1 {
                              // The stored value fits in the slot, but the combined value
                              // will exceed it.
                              // get the keccak hash to get the contents of the array
                              mstore(0x0, _preBytes.slot)
                              let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                              // save new length
                              sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                              // The contents of the _postBytes array start 32 bytes into
                              // the structure. Our first read should obtain the `submod`
                              // bytes that can fit into the unused space in the last word
                              // of the stored array. To get this, we read 32 bytes starting
                              // from `submod`, so the data we read overlaps with the array
                              // contents by `submod` bytes. Masking the lowest-order
                              // `submod` bytes allows us to add that value directly to the
                              // stored value.
                              let submod := sub(32, slength)
                              let mc := add(_postBytes, submod)
                              let end := add(_postBytes, mlength)
                              let mask := sub(exp(0x100, submod), 1)
                              sstore(
                                  sc,
                                  add(
                                      and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
                                      and(mload(mc), mask)
                                  )
                              )
                              for {
                                  mc := add(mc, 0x20)
                                  sc := add(sc, 1)
                              } lt(mc, end) {
                                  sc := add(sc, 1)
                                  mc := add(mc, 0x20)
                              } {
                                  sstore(sc, mload(mc))
                              }
                              mask := exp(0x100, sub(mc, end))
                              sstore(sc, mul(div(mload(mc), mask), mask))
                          }
                          default {
                              // get the keccak hash to get the contents of the array
                              mstore(0x0, _preBytes.slot)
                              // Start copying to the last used word of the stored array.
                              let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                              // save new length
                              sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                              // Copy over the first `submod` bytes of the new data as in
                              // case 1 above.
                              let slengthmod := mod(slength, 32)
                              let submod := sub(32, slengthmod)
                              let mc := add(_postBytes, submod)
                              let end := add(_postBytes, mlength)
                              let mask := sub(exp(0x100, submod), 1)
                              sstore(sc, add(sload(sc), and(mload(mc), mask)))
                              for {
                                  sc := add(sc, 1)
                                  mc := add(mc, 0x20)
                              } lt(mc, end) {
                                  sc := add(sc, 1)
                                  mc := add(mc, 0x20)
                              } {
                                  sstore(sc, mload(mc))
                              }
                              mask := exp(0x100, sub(mc, end))
                              sstore(sc, mul(div(mload(mc), mask), mask))
                          }
                      }
                  }
                  function slice(
                      bytes memory _bytes,
                      uint256 _start,
                      uint256 _length
                  ) internal pure returns (bytes memory) {
                      if (_length + 31 < _length) revert SliceOverflow();
                      if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                      bytes memory tempBytes;
                      assembly {
                          switch iszero(_length)
                          case 0 {
                              // Get a location of some free memory and store it in tempBytes as
                              // Solidity does for memory variables.
                              tempBytes := mload(0x40)
                              // The first word of the slice result is potentially a partial
                              // word read from the original array. To read it, we calculate
                              // the length of that partial word and start copying that many
                              // bytes into the array. The first word we copy will start with
                              // data we don't care about, but the last `lengthmod` bytes will
                              // land at the beginning of the contents of the new array. When
                              // we're done copying, we overwrite the full first word with
                              // the actual length of the slice.
                              let lengthmod := and(_length, 31)
                              // The multiplication in the next line is necessary
                              // because when slicing multiples of 32 bytes (lengthmod == 0)
                              // the following copy loop was copying the origin's length
                              // and then ending prematurely not copying everything it should.
                              let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                              let end := add(mc, _length)
                              for {
                                  // The multiplication in the next line has the same exact purpose
                                  // as the one above.
                                  let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                              } lt(mc, end) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  mstore(mc, mload(cc))
                              }
                              mstore(tempBytes, _length)
                              //update free-memory pointer
                              //allocating the array padded to 32 bytes like the compiler does now
                              mstore(0x40, and(add(mc, 31), not(31)))
                          }
                          //if we want a zero-length slice let's just return a zero-length array
                          default {
                              tempBytes := mload(0x40)
                              //zero out the 32 bytes slice we are about to return
                              //we need to do it because Solidity does not garbage collect
                              mstore(tempBytes, 0)
                              mstore(0x40, add(tempBytes, 0x20))
                          }
                      }
                      return tempBytes;
                  }
                  function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
                      if (_bytes.length < _start + 20) {
                          revert AddressOutOfBounds();
                      }
                      address tempAddress;
                      assembly {
                          tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
                      }
                      return tempAddress;
                  }
                  function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
                      if (_bytes.length < _start + 1) {
                          revert UintOutOfBounds();
                      }
                      uint8 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x1), _start))
                      }
                      return tempUint;
                  }
                  function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
                      if (_bytes.length < _start + 2) {
                          revert UintOutOfBounds();
                      }
                      uint16 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x2), _start))
                      }
                      return tempUint;
                  }
                  function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
                      if (_bytes.length < _start + 4) {
                          revert UintOutOfBounds();
                      }
                      uint32 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x4), _start))
                      }
                      return tempUint;
                  }
                  function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
                      if (_bytes.length < _start + 8) {
                          revert UintOutOfBounds();
                      }
                      uint64 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x8), _start))
                      }
                      return tempUint;
                  }
                  function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
                      if (_bytes.length < _start + 12) {
                          revert UintOutOfBounds();
                      }
                      uint96 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0xc), _start))
                      }
                      return tempUint;
                  }
                  function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
                      if (_bytes.length < _start + 16) {
                          revert UintOutOfBounds();
                      }
                      uint128 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x10), _start))
                      }
                      return tempUint;
                  }
                  function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
                      if (_bytes.length < _start + 32) {
                          revert UintOutOfBounds();
                      }
                      uint256 tempUint;
                      assembly {
                          tempUint := mload(add(add(_bytes, 0x20), _start))
                      }
                      return tempUint;
                  }
                  function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
                      if (_bytes.length < _start + 32) {
                          revert UintOutOfBounds();
                      }
                      bytes32 tempBytes32;
                      assembly {
                          tempBytes32 := mload(add(add(_bytes, 0x20), _start))
                      }
                      return tempBytes32;
                  }
                  function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
                      bool success = true;
                      assembly {
                          let length := mload(_preBytes)
                          // if lengths don't match the arrays are not equal
                          switch eq(length, mload(_postBytes))
                          case 1 {
                              // cb is a circuit breaker in the for loop since there's
                              //  no said feature for inline assembly loops
                              // cb = 1 - don't breaker
                              // cb = 0 - break
                              let cb := 1
                              let mc := add(_preBytes, 0x20)
                              let end := add(mc, length)
                              for {
                                  let cc := add(_postBytes, 0x20)
                                  // the next line is the loop condition:
                                  // while(uint256(mc < end) + cb == 2)
                              } eq(add(lt(mc, end), cb), 2) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  // if any of these checks fails then arrays are not equal
                                  if iszero(eq(mload(mc), mload(cc))) {
                                      // unsuccess:
                                      success := 0
                                      cb := 0
                                  }
                              }
                          }
                          default {
                              // unsuccess:
                              success := 0
                          }
                      }
                      return success;
                  }
                  function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
                      bool success = true;
                      assembly {
                          // we know _preBytes_offset is 0
                          let fslot := sload(_preBytes.slot)
                          // Decode the length of the stored array like in concatStorage().
                          let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                          let mlength := mload(_postBytes)
                          // if lengths don't match the arrays are not equal
                          switch eq(slength, mlength)
                          case 1 {
                              // slength can contain both the length and contents of the array
                              // if length < 32 bytes so let's prepare for that
                              // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                              if iszero(iszero(slength)) {
                                  switch lt(slength, 32)
                                  case 1 {
                                      // blank the last byte which is the length
                                      fslot := mul(div(fslot, 0x100), 0x100)
                                      if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                                          // unsuccess:
                                          success := 0
                                      }
                                  }
                                  default {
                                      // cb is a circuit breaker in the for loop since there's
                                      //  no said feature for inline assembly loops
                                      // cb = 1 - don't breaker
                                      // cb = 0 - break
                                      let cb := 1
                                      // get the keccak hash to get the contents of the array
                                      mstore(0x0, _preBytes.slot)
                                      let sc := keccak256(0x0, 0x20)
                                      let mc := add(_postBytes, 0x20)
                                      let end := add(mc, mlength)
                                      // the next line is the loop condition:
                                      // while(uint256(mc < end) + cb == 2)
                                      // solhint-disable-next-line no-empty-blocks
                                      for {
                                      } eq(add(lt(mc, end), cb), 2) {
                                          sc := add(sc, 1)
                                          mc := add(mc, 0x20)
                                      } {
                                          if iszero(eq(sload(sc), mload(mc))) {
                                              // unsuccess:
                                              success := 0
                                              cb := 0
                                          }
                                      }
                                  }
                              }
                          }
                          default {
                              // unsuccess:
                              success := 0
                          }
                      }
                      return success;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
              import { LibUtil } from "../Libraries/LibUtil.sol";
              import { OnlyContractOwner } from "../Errors/GenericErrors.sol";
              /// Implementation of EIP-2535 Diamond Standard
              /// https://eips.ethereum.org/EIPS/eip-2535
              library LibDiamond {
                  bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");
                  // Diamond specific errors
                  error IncorrectFacetCutAction();
                  error NoSelectorsInFace();
                  error FunctionAlreadyExists();
                  error FacetAddressIsZero();
                  error FacetAddressIsNotZero();
                  error FacetContainsNoCode();
                  error FunctionDoesNotExist();
                  error FunctionIsImmutable();
                  error InitZeroButCalldataNotEmpty();
                  error CalldataEmptyButInitNotZero();
                  error InitReverted();
                  // ----------------
                  struct FacetAddressAndPosition {
                      address facetAddress;
                      uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
                  }
                  struct FacetFunctionSelectors {
                      bytes4[] functionSelectors;
                      uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
                  }
                  struct DiamondStorage {
                      // maps function selector to the facet address and
                      // the position of the selector in the facetFunctionSelectors.selectors array
                      mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
                      // maps facet addresses to function selectors
                      mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
                      // facet addresses
                      address[] facetAddresses;
                      // Used to query if a contract implements an interface.
                      // Used to implement ERC-165.
                      mapping(bytes4 => bool) supportedInterfaces;
                      // owner of the contract
                      address contractOwner;
                  }
                  function diamondStorage() internal pure returns (DiamondStorage storage ds) {
                      bytes32 position = DIAMOND_STORAGE_POSITION;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          ds.slot := position
                      }
                  }
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  function setContractOwner(address _newOwner) internal {
                      DiamondStorage storage ds = diamondStorage();
                      address previousOwner = ds.contractOwner;
                      ds.contractOwner = _newOwner;
                      emit OwnershipTransferred(previousOwner, _newOwner);
                  }
                  function contractOwner() internal view returns (address contractOwner_) {
                      contractOwner_ = diamondStorage().contractOwner;
                  }
                  function enforceIsContractOwner() internal view {
                      if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
                  }
                  event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
                  // Internal function version of diamondCut
                  function diamondCut(
                      IDiamondCut.FacetCut[] memory _diamondCut,
                      address _init,
                      bytes memory _calldata
                  ) internal {
                      for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
                          IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
                          if (action == IDiamondCut.FacetCutAction.Add) {
                              addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                          } else if (action == IDiamondCut.FacetCutAction.Replace) {
                              replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                          } else if (action == IDiamondCut.FacetCutAction.Remove) {
                              removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                          } else {
                              revert IncorrectFacetCutAction();
                          }
                          unchecked {
                              ++facetIndex;
                          }
                      }
                      emit DiamondCut(_diamondCut, _init, _calldata);
                      initializeDiamondCut(_init, _calldata);
                  }
                  function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                      if (_functionSelectors.length == 0) {
                          revert NoSelectorsInFace();
                      }
                      DiamondStorage storage ds = diamondStorage();
                      if (LibUtil.isZeroAddress(_facetAddress)) {
                          revert FacetAddressIsZero();
                      }
                      uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                      // add new facet address if it does not exist
                      if (selectorPosition == 0) {
                          addFacet(ds, _facetAddress);
                      }
                      for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                          bytes4 selector = _functionSelectors[selectorIndex];
                          address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                          if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                              revert FunctionAlreadyExists();
                          }
                          addFunction(ds, selector, selectorPosition, _facetAddress);
                          unchecked {
                              ++selectorPosition;
                              ++selectorIndex;
                          }
                      }
                  }
                  function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                      if (_functionSelectors.length == 0) {
                          revert NoSelectorsInFace();
                      }
                      DiamondStorage storage ds = diamondStorage();
                      if (LibUtil.isZeroAddress(_facetAddress)) {
                          revert FacetAddressIsZero();
                      }
                      uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                      // add new facet address if it does not exist
                      if (selectorPosition == 0) {
                          addFacet(ds, _facetAddress);
                      }
                      for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                          bytes4 selector = _functionSelectors[selectorIndex];
                          address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                          if (oldFacetAddress == _facetAddress) {
                              revert FunctionAlreadyExists();
                          }
                          removeFunction(ds, oldFacetAddress, selector);
                          addFunction(ds, selector, selectorPosition, _facetAddress);
                          unchecked {
                              ++selectorPosition;
                              ++selectorIndex;
                          }
                      }
                  }
                  function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                      if (_functionSelectors.length == 0) {
                          revert NoSelectorsInFace();
                      }
                      DiamondStorage storage ds = diamondStorage();
                      // if function does not exist then do nothing and return
                      if (!LibUtil.isZeroAddress(_facetAddress)) {
                          revert FacetAddressIsNotZero();
                      }
                      for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                          bytes4 selector = _functionSelectors[selectorIndex];
                          address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                          removeFunction(ds, oldFacetAddress, selector);
                          unchecked {
                              ++selectorIndex;
                          }
                      }
                  }
                  function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
                      enforceHasContractCode(_facetAddress);
                      ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
                      ds.facetAddresses.push(_facetAddress);
                  }
                  function addFunction(
                      DiamondStorage storage ds,
                      bytes4 _selector,
                      uint96 _selectorPosition,
                      address _facetAddress
                  ) internal {
                      ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
                      ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
                      ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
                  }
                  function removeFunction(
                      DiamondStorage storage ds,
                      address _facetAddress,
                      bytes4 _selector
                  ) internal {
                      if (LibUtil.isZeroAddress(_facetAddress)) {
                          revert FunctionDoesNotExist();
                      }
                      // an immutable function is a function defined directly in a diamond
                      if (_facetAddress == address(this)) {
                          revert FunctionIsImmutable();
                      }
                      // replace selector with last selector, then delete last selector
                      uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
                      uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
                      // if not the same then replace _selector with lastSelector
                      if (selectorPosition != lastSelectorPosition) {
                          bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
                          ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
                          ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
                      }
                      // delete the last selector
                      ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
                      delete ds.selectorToFacetAndPosition[_selector];
                      // if no more selectors for facet address then delete the facet address
                      if (lastSelectorPosition == 0) {
                          // replace facet address with last facet address and delete last facet address
                          uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
                          uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                          if (facetAddressPosition != lastFacetAddressPosition) {
                              address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                              ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                              ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
                          }
                          ds.facetAddresses.pop();
                          delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                      }
                  }
                  function initializeDiamondCut(address _init, bytes memory _calldata) internal {
                      if (LibUtil.isZeroAddress(_init)) {
                          if (_calldata.length != 0) {
                              revert InitZeroButCalldataNotEmpty();
                          }
                      } else {
                          if (_calldata.length == 0) {
                              revert CalldataEmptyButInitNotZero();
                          }
                          if (_init != address(this)) {
                              enforceHasContractCode(_init);
                          }
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory error) = _init.delegatecall(_calldata);
                          if (!success) {
                              if (error.length > 0) {
                                  // bubble up the error
                                  revert(string(error));
                              } else {
                                  revert InitReverted();
                              }
                          }
                      }
                  }
                  function enforceHasContractCode(address _contract) internal view {
                      uint256 contractSize;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          contractSize := extcodesize(_contract)
                      }
                      if (contractSize == 0) {
                          revert FacetContainsNoCode();
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import "./LibBytes.sol";
              library LibUtil {
                  using LibBytes for bytes;
                  function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
                      // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                      if (_res.length < 68) return "Transaction reverted silently";
                      bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                      return abi.decode(revertData, (string)); // All that remains is the revert string
                  }
                  /// @notice Determines whether the given address is the zero address
                  /// @param addr The address to verify
                  /// @return Boolean indicating if the address is the zero address
                  function isZeroAddress(address addr) internal pure returns (bool) {
                      return addr == address(0);
                  }
              }
              

              File 3 of 5: TokenWrapper
              // SPDX-License-Identifier: UNLICENSED
              pragma solidity 0.8.17;
              import { LibAsset } from "../Libraries/LibAsset.sol";
              import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              /// External wrapper interface
              interface IWrapper {
                  function deposit() external payable;
                  function withdraw(uint wad) external;
              }
              /// @title TokenWrapper
              /// @author LI.FI (https://li.fi)
              /// @notice Provides functionality for wrapping and unwrapping tokens
              /// @custom:version 1.0.0
              contract TokenWrapper {
                  uint256 private constant MAX_INT = 2**256 - 1;
                  address public wrappedToken;
                  /// Errors ///
                  error WithdrawFailure();
                  /// Constructor ///
                  // solhint-disable-next-line no-empty-blocks
                  constructor(address _wrappedToken) {
                      wrappedToken = _wrappedToken;
                      IERC20(wrappedToken).approve(address(this), MAX_INT);
                  }
                  /// External Methods ///
                  /// @notice Wraps the native token
                  function deposit(
                  ) external payable {
                      IWrapper(wrappedToken).deposit{value: msg.value}();
                      IERC20(wrappedToken).transfer(msg.sender, msg.value);
                  }
                  /// @notice Unwraps all the caller's balance of wrapped token
                  function withdraw() external {
                      // While in a general purpose contract it would make sense
                      // to have `wad` equal to the minimum between the balance and the
                      // given allowance, in our specific usecase allowance is always
                      // nearly MAX_UINT256. Using the balance only is a gas optimisation.
                      uint256 wad = IERC20(wrappedToken).balanceOf(msg.sender);
                      IERC20(wrappedToken).transferFrom(msg.sender, address(this), wad);
                      IWrapper(wrappedToken).withdraw(wad);
                      (bool success, ) = payable(msg.sender).call{value: wad}("");
                      if (!success) {
                          revert WithdrawFailure();
                      }
                  }
                  // Needs to be able to receive native on `withdraw`
                  receive() external payable {}
              }
              // SPDX-License-Identifier: UNLICENSED
              pragma solidity 0.8.17;
              import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
              import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
              import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              import { LibSwap } from "./LibSwap.sol";
              /// @title LibAsset
              /// @notice This library contains helpers for dealing with onchain transfers
              ///         of assets, including accounting for the native asset `assetId`
              ///         conventions and any noncompliant ERC20 transfers
              library LibAsset {
                  uint256 private constant MAX_UINT = type(uint256).max;
                  address internal constant NULL_ADDRESS = address(0);
                  /// @dev All native assets use the empty address for their asset id
                  ///      by convention
                  address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
                  /// @notice Gets the balance of the inheriting contract for the given asset
                  /// @param assetId The asset identifier to get the balance of
                  /// @return Balance held by contracts using this library
                  function getOwnBalance(address assetId) internal view returns (uint256) {
                      return
                          isNativeAsset(assetId)
                              ? address(this).balance
                              : IERC20(assetId).balanceOf(address(this));
                  }
                  /// @notice Transfers ether from the inheriting contract to a given
                  ///         recipient
                  /// @param recipient Address to send ether to
                  /// @param amount Amount to send to given recipient
                  function transferNativeAsset(
                      address payable recipient,
                      uint256 amount
                  ) private {
                      if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
                      if (amount > address(this).balance)
                          revert InsufficientBalance(amount, address(this).balance);
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, ) = recipient.call{ value: amount }("");
                      if (!success) revert NativeAssetTransferFailed();
                  }
                  /// @notice If the current allowance is insufficient, the allowance for a given spender
                  /// is set to MAX_UINT.
                  /// @param assetId Token address to transfer
                  /// @param spender Address to give spend approval to
                  /// @param amount Amount to approve for spending
                  function maxApproveERC20(
                      IERC20 assetId,
                      address spender,
                      uint256 amount
                  ) internal {
                      if (isNativeAsset(address(assetId))) {
                          return;
                      }
                      if (spender == NULL_ADDRESS) {
                          revert NullAddrIsNotAValidSpender();
                      }
                      if (assetId.allowance(address(this), spender) < amount) {
                          SafeERC20.safeApprove(IERC20(assetId), spender, 0);
                          SafeERC20.safeApprove(IERC20(assetId), spender, MAX_UINT);
                      }
                  }
                  /// @notice Transfers tokens from the inheriting contract to a given
                  ///         recipient
                  /// @param assetId Token address to transfer
                  /// @param recipient Address to send token to
                  /// @param amount Amount to send to given recipient
                  function transferERC20(
                      address assetId,
                      address recipient,
                      uint256 amount
                  ) private {
                      if (isNativeAsset(assetId)) {
                          revert NullAddrIsNotAnERC20Token();
                      }
                      if (recipient == NULL_ADDRESS) {
                          revert NoTransferToNullAddress();
                      }
                      uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
                      if (amount > assetBalance) {
                          revert InsufficientBalance(amount, assetBalance);
                      }
                      SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
                  }
                  /// @notice Transfers tokens from a sender to a given recipient
                  /// @param assetId Token address to transfer
                  /// @param from Address of sender/owner
                  /// @param to Address of recipient/spender
                  /// @param amount Amount to transfer from owner to spender
                  function transferFromERC20(
                      address assetId,
                      address from,
                      address to,
                      uint256 amount
                  ) internal {
                      if (isNativeAsset(assetId)) {
                          revert NullAddrIsNotAnERC20Token();
                      }
                      if (to == NULL_ADDRESS) {
                          revert NoTransferToNullAddress();
                      }
                      IERC20 asset = IERC20(assetId);
                      uint256 prevBalance = asset.balanceOf(to);
                      SafeERC20.safeTransferFrom(asset, from, to, amount);
                      if (asset.balanceOf(to) - prevBalance != amount) {
                          revert InvalidAmount();
                      }
                  }
                  function depositAsset(address assetId, uint256 amount) internal {
                      if (amount == 0) revert InvalidAmount();
                      if (isNativeAsset(assetId)) {
                          if (msg.value < amount) revert InvalidAmount();
                      } else {
                          uint256 balance = IERC20(assetId).balanceOf(msg.sender);
                          if (balance < amount) revert InsufficientBalance(amount, balance);
                          transferFromERC20(assetId, msg.sender, address(this), amount);
                      }
                  }
                  function depositAssets(LibSwap.SwapData[] calldata swaps) internal {
                      for (uint256 i = 0; i < swaps.length; ) {
                          LibSwap.SwapData calldata swap = swaps[i];
                          if (swap.requiresDeposit) {
                              depositAsset(swap.sendingAssetId, swap.fromAmount);
                          }
                          unchecked {
                              i++;
                          }
                      }
                  }
                  /// @notice Determines whether the given assetId is the native asset
                  /// @param assetId The asset identifier to evaluate
                  /// @return Boolean indicating if the asset is the native asset
                  function isNativeAsset(address assetId) internal pure returns (bool) {
                      return assetId == NATIVE_ASSETID;
                  }
                  /// @notice Wrapper function to transfer a given asset (native or erc20) to
                  ///         some recipient. Should handle all non-compliant return value
                  ///         tokens as well by using the SafeERC20 contract by open zeppelin.
                  /// @param assetId Asset id for transfer (address(0) for native asset,
                  ///                token address for erc20s)
                  /// @param recipient Address to send asset to
                  /// @param amount Amount to send to given recipient
                  function transferAsset(
                      address assetId,
                      address payable recipient,
                      uint256 amount
                  ) internal {
                      isNativeAsset(assetId)
                          ? transferNativeAsset(recipient, amount)
                          : transferERC20(assetId, recipient, amount);
                  }
                  /// @dev Checks whether the given address is a contract and contains code
                  function isContract(address _contractAddr) internal view returns (bool) {
                      uint256 size;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          size := extcodesize(_contractAddr)
                      }
                      return size > 0;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `to`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address to, uint256 amount) external returns (bool);
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
                  /**
                   * @dev Moves `amount` tokens from `from` to `to` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(address from, address to, uint256 amount) external returns (bool);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              error AlreadyInitialized();
              error CannotAuthoriseSelf();
              error CannotBridgeToSameNetwork();
              error ContractCallNotAllowed();
              error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
              error ExternalCallFailed();
              error InformationMismatch();
              error InsufficientBalance(uint256 required, uint256 balance);
              error InvalidAmount();
              error InvalidCallData();
              error InvalidConfig();
              error InvalidContract();
              error InvalidDestinationChain();
              error InvalidFallbackAddress();
              error InvalidReceiver();
              error InvalidSendingToken();
              error NativeAssetNotSupported();
              error NativeAssetTransferFailed();
              error NoSwapDataProvided();
              error NoSwapFromZeroBalance();
              error NotAContract();
              error NotInitialized();
              error NoTransferToNullAddress();
              error NullAddrIsNotAnERC20Token();
              error NullAddrIsNotAValidSpender();
              error OnlyContractOwner();
              error RecoveryAddressCannotBeZero();
              error ReentrancyError();
              error TokenNotSupported();
              error UnAuthorized();
              error UnsupportedChainId(uint256 chainId);
              error WithdrawFailed();
              error ZeroAmount();
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
              pragma solidity ^0.8.0;
              import "../IERC20.sol";
              import "../extensions/IERC20Permit.sol";
              import "../../../utils/Address.sol";
              /**
               * @title SafeERC20
               * @dev Wrappers around ERC20 operations that throw on failure (when the token
               * contract returns false). Tokens that return no value (and instead revert or
               * throw on failure) are also supported, non-reverting calls are assumed to be
               * successful.
               * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
               * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
               */
              library SafeERC20 {
                  using Address for address;
                  /**
                   * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
                   * non-reverting calls are assumed to be successful.
                   */
                  function safeTransfer(IERC20 token, address to, uint256 value) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                  }
                  /**
                   * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
                   * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
                   */
                  function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                  }
                  /**
                   * @dev Deprecated. This function has issues similar to the ones found in
                   * {IERC20-approve}, and its usage is discouraged.
                   *
                   * Whenever possible, use {safeIncreaseAllowance} and
                   * {safeDecreaseAllowance} instead.
                   */
                  function safeApprove(IERC20 token, address spender, uint256 value) internal {
                      // safeApprove should only be called when setting an initial allowance,
                      // or when resetting it to zero. To increase and decrease it, use
                      // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                      require(
                          (value == 0) || (token.allowance(address(this), spender) == 0),
                          "SafeERC20: approve from non-zero to non-zero allowance"
                      );
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                  }
                  /**
                   * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
                   * non-reverting calls are assumed to be successful.
                   */
                  function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                      uint256 oldAllowance = token.allowance(address(this), spender);
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
                  }
                  /**
                   * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
                   * non-reverting calls are assumed to be successful.
                   */
                  function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                      unchecked {
                          uint256 oldAllowance = token.allowance(address(this), spender);
                          require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
                      }
                  }
                  /**
                   * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
                   * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
                   * 0 before setting it to a non-zero value.
                   */
                  function forceApprove(IERC20 token, address spender, uint256 value) internal {
                      bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
                      if (!_callOptionalReturnBool(token, approvalCall)) {
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
                          _callOptionalReturn(token, approvalCall);
                      }
                  }
                  /**
                   * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
                   * Revert on invalid signature.
                   */
                  function safePermit(
                      IERC20Permit token,
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) internal {
                      uint256 nonceBefore = token.nonces(owner);
                      token.permit(owner, spender, value, deadline, v, r, s);
                      uint256 nonceAfter = token.nonces(owner);
                      require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                  }
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   */
                  function _callOptionalReturn(IERC20 token, bytes memory data) private {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                      // the target address contains contract code and also asserts for success in the low-level call.
                      bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                      require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                  }
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   *
                   * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
                   */
                  function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
                      // and not revert is the subcall reverts.
                      (bool success, bytes memory returndata) = address(token).call(data);
                      return
                          success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import { LibAsset } from "./LibAsset.sol";
              import { LibUtil } from "./LibUtil.sol";
              import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance } from "../Errors/GenericErrors.sol";
              import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              library LibSwap {
                  struct SwapData {
                      address callTo;
                      address approveTo;
                      address sendingAssetId;
                      address receivingAssetId;
                      uint256 fromAmount;
                      bytes callData;
                      bool requiresDeposit;
                  }
                  event AssetSwapped(
                      bytes32 transactionId,
                      address dex,
                      address fromAssetId,
                      address toAssetId,
                      uint256 fromAmount,
                      uint256 toAmount,
                      uint256 timestamp
                  );
                  function swap(bytes32 transactionId, SwapData calldata _swap) internal {
                      if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
                      uint256 fromAmount = _swap.fromAmount;
                      if (fromAmount == 0) revert NoSwapFromZeroBalance();
                      uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
                          ? _swap.fromAmount
                          : 0;
                      uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(
                          _swap.sendingAssetId
                      );
                      uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
                          _swap.receivingAssetId
                      );
                      if (nativeValue == 0) {
                          LibAsset.maxApproveERC20(
                              IERC20(_swap.sendingAssetId),
                              _swap.approveTo,
                              _swap.fromAmount
                          );
                      }
                      if (initialSendingAssetBalance < _swap.fromAmount) {
                          revert InsufficientBalance(
                              _swap.fromAmount,
                              initialSendingAssetBalance
                          );
                      }
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory res) = _swap.callTo.call{
                          value: nativeValue
                      }(_swap.callData);
                      if (!success) {
                          string memory reason = LibUtil.getRevertMsg(res);
                          revert(reason);
                      }
                      uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                      emit AssetSwapped(
                          transactionId,
                          _swap.callTo,
                          _swap.sendingAssetId,
                          _swap.receivingAssetId,
                          _swap.fromAmount,
                          newBalance > initialReceivingAssetBalance
                              ? newBalance - initialReceivingAssetBalance
                              : newBalance,
                          block.timestamp
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
               * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
               *
               * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
               * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
               * need to send a transaction, and thus is not required to hold Ether at all.
               */
              interface IERC20Permit {
                  /**
                   * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                   * given ``owner``'s signed approval.
                   *
                   * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                   * ordering also apply here.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `deadline` must be a timestamp in the future.
                   * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                   * over the EIP712-formatted function arguments.
                   * - the signature must use ``owner``'s current nonce (see {nonces}).
                   *
                   * For more information on the signature format, see the
                   * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                   * section].
                   */
                  function permit(
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) external;
                  /**
                   * @dev Returns the current nonce for `owner`. This value must be
                   * included whenever a signature is generated for {permit}.
                   *
                   * Every successful call to {permit} increases ``owner``'s nonce by one. This
                   * prevents a signature from being used multiple times.
                   */
                  function nonces(address owner) external view returns (uint256);
                  /**
                   * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                   */
                  // solhint-disable-next-line func-name-mixedcase
                  function DOMAIN_SEPARATOR() external view returns (bytes32);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   *
                   * Furthermore, `isContract` will also return true if the target contract within
                   * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
                   * which only has an effect at the end of a transaction.
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                   * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                   *
                   * _Available since v4.8._
                   */
                  function verifyCallResultFromTarget(
                      address target,
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      if (success) {
                          if (returndata.length == 0) {
                              // only check isContract if the call was successful and the return data is empty
                              // otherwise we already know that it was a contract
                              require(isContract(target), "Address: call to non-contract");
                          }
                          return returndata;
                      } else {
                          _revert(returndata, errorMessage);
                      }
                  }
                  /**
                   * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason or using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          _revert(returndata, errorMessage);
                      }
                  }
                  function _revert(bytes memory returndata, string memory errorMessage) private pure {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              import "./LibBytes.sol";
              library LibUtil {
                  using LibBytes for bytes;
                  function getRevertMsg(
                      bytes memory _res
                  ) internal pure returns (string memory) {
                      // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                      if (_res.length < 68) return "Transaction reverted silently";
                      bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                      return abi.decode(revertData, (string)); // All that remains is the revert string
                  }
                  /// @notice Determines whether the given address is the zero address
                  /// @param addr The address to verify
                  /// @return Boolean indicating if the address is the zero address
                  function isZeroAddress(address addr) internal pure returns (bool) {
                      return addr == address(0);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.17;
              library LibBytes {
                  // solhint-disable no-inline-assembly
                  // LibBytes specific errors
                  error SliceOverflow();
                  error SliceOutOfBounds();
                  error AddressOutOfBounds();
                  bytes16 private constant _SYMBOLS = "0123456789abcdef";
                  // -------------------------
                  function slice(
                      bytes memory _bytes,
                      uint256 _start,
                      uint256 _length
                  ) internal pure returns (bytes memory) {
                      if (_length + 31 < _length) revert SliceOverflow();
                      if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                      bytes memory tempBytes;
                      assembly {
                          switch iszero(_length)
                          case 0 {
                              // Get a location of some free memory and store it in tempBytes as
                              // Solidity does for memory variables.
                              tempBytes := mload(0x40)
                              // The first word of the slice result is potentially a partial
                              // word read from the original array. To read it, we calculate
                              // the length of that partial word and start copying that many
                              // bytes into the array. The first word we copy will start with
                              // data we don't care about, but the last `lengthmod` bytes will
                              // land at the beginning of the contents of the new array. When
                              // we're done copying, we overwrite the full first word with
                              // the actual length of the slice.
                              let lengthmod := and(_length, 31)
                              // The multiplication in the next line is necessary
                              // because when slicing multiples of 32 bytes (lengthmod == 0)
                              // the following copy loop was copying the origin's length
                              // and then ending prematurely not copying everything it should.
                              let mc := add(
                                  add(tempBytes, lengthmod),
                                  mul(0x20, iszero(lengthmod))
                              )
                              let end := add(mc, _length)
                              for {
                                  // The multiplication in the next line has the same exact purpose
                                  // as the one above.
                                  let cc := add(
                                      add(
                                          add(_bytes, lengthmod),
                                          mul(0x20, iszero(lengthmod))
                                      ),
                                      _start
                                  )
                              } lt(mc, end) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  mstore(mc, mload(cc))
                              }
                              mstore(tempBytes, _length)
                              //update free-memory pointer
                              //allocating the array padded to 32 bytes like the compiler does now
                              mstore(0x40, and(add(mc, 31), not(31)))
                          }
                          //if we want a zero-length slice let's just return a zero-length array
                          default {
                              tempBytes := mload(0x40)
                              //zero out the 32 bytes slice we are about to return
                              //we need to do it because Solidity does not garbage collect
                              mstore(tempBytes, 0)
                              mstore(0x40, add(tempBytes, 0x20))
                          }
                      }
                      return tempBytes;
                  }
                  function toAddress(
                      bytes memory _bytes,
                      uint256 _start
                  ) internal pure returns (address) {
                      if (_bytes.length < _start + 20) {
                          revert AddressOutOfBounds();
                      }
                      address tempAddress;
                      assembly {
                          tempAddress := div(
                              mload(add(add(_bytes, 0x20), _start)),
                              0x1000000000000000000000000
                          )
                      }
                      return tempAddress;
                  }
                  /// Copied from OpenZeppelin's `Strings.sol` utility library.
                  /// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8335676b0e99944eef6a742e16dcd9ff6e68e609/contracts/utils/Strings.sol
                  function toHexString(
                      uint256 value,
                      uint256 length
                  ) internal pure returns (string memory) {
                      bytes memory buffer = new bytes(2 * length + 2);
                      buffer[0] = "0";
                      buffer[1] = "x";
                      for (uint256 i = 2 * length + 1; i > 1; --i) {
                          buffer[i] = _SYMBOLS[value & 0xf];
                          value >>= 4;
                      }
                      require(value == 0, "Strings: hex length insufficient");
                      return string(buffer);
                  }
              }
              

              File 4 of 5: RelayReceiver
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.23;
              contract RelayReceiver {
                  // --- Structs ---
                  struct Call {
                      address to;
                      bytes data;
                      uint256 value;
                  }
                  // --- Errors ---
                  error CallFailed();
                  error NativeTransferFailed();
                  error Unauthorized();
                  // --- Events ---
                  event FundsForwardedWithData(bytes data);
                  // --- Fields ---
                  address private immutable SOLVER;
                  // --- Constructor ---
                  constructor(address solver) {
                      SOLVER = solver;
                  }
                  // --- Public methods ---
                  fallback() external payable {
                      send(SOLVER, msg.value);
                      emit FundsForwardedWithData(msg.data);
                  }
                  function forward(bytes calldata data) external payable {
                      send(SOLVER, msg.value);
                      emit FundsForwardedWithData(data);
                  }
                  // --- Restricted methods ---
                  function makeCalls(Call[] calldata calls) external payable {
                      if (msg.sender != SOLVER) {
                          revert Unauthorized();
                      }
                      unchecked {
                          uint256 length = calls.length;
                          for (uint256 i; i < length; i++) {
                              Call memory c = calls[i];
                              (bool success, ) = c.to.call{value: c.value}(c.data);
                              if (!success) {
                                  revert CallFailed();
                              }
                          }
                      }
                  }
                  // --- Internal methods ---
                  function send(address to, uint256 value) internal {
                      bool success;
                      assembly {
                          // Save gas by avoiding copying the return data to memory.
                          // Provide at most 100k gas to the internal call, which is
                          // more than enough to cover common use-cases of logic for
                          // receiving native tokens (eg. SCW payable fallbacks).
                          success := call(100000, to, value, 0, 0, 0, 0)
                      }
                      if (!success) {
                          revert NativeTransferFailed();
                      }
                  }
              }
              

              File 5 of 5: RelayFacet
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.17;
              import { ILiFi } from "../Interfaces/ILiFi.sol";
              import { LibAsset } from "../Libraries/LibAsset.sol";
              import { LibSwap } from "../Libraries/LibSwap.sol";
              import { LibUtil } from "../Libraries/LibUtil.sol";
              import { ReentrancyGuard } from "../Helpers/ReentrancyGuard.sol";
              import { SwapperV2 } from "../Helpers/SwapperV2.sol";
              import { Validatable } from "../Helpers/Validatable.sol";
              import { ECDSA } from "solady/utils/ECDSA.sol";
              /// @title Relay Facet
              /// @author LI.FI (https://li.fi)
              /// @notice Provides functionality for bridging through Relay Protocol
              /// @custom:version 1.0.0
              contract RelayFacet is ILiFi, ReentrancyGuard, SwapperV2, Validatable {
                  // Receiver for native transfers
                  address public immutable relayReceiver;
                  // Relayer wallet for ERC20 transfers
                  address public immutable relaySolver;
                  /// Storage ///
                  mapping(bytes32 => bool) public consumedIds;
                  /// Types ///
                  /// @dev Relay specific parameters
                  /// @param requestId Relay API request ID
                  /// @param nonEVMReceiver set only if bridging to non-EVM chain
                  /// @params receivingAssetId address of receiving asset
                  /// @params signature attestation signature provided by the Relay solver
                  struct RelayData {
                      bytes32 requestId;
                      bytes32 nonEVMReceiver;
                      bytes32 receivingAssetId;
                      bytes signature;
                  }
                  /// Events ///
                  event BridgeToNonEVMChain(
                      bytes32 indexed transactionId,
                      uint256 indexed destinationChainId,
                      bytes32 receiver
                  );
                  /// Errors ///
                  error InvalidQuote();
                  /// Modifiers ///
                  /// @param _bridgeData The core information needed for bridging
                  /// @param _relayData Data specific to Relay
                  modifier onlyValidQuote(
                      ILiFi.BridgeData memory _bridgeData,
                      RelayData calldata _relayData
                  ) {
                      // Ensure that the id isn't already consumed
                      if (consumedIds[_relayData.requestId]) {
                          revert InvalidQuote();
                      }
                      // Ensure nonEVMAddress is not empty
                      if (
                          _bridgeData.receiver == LibAsset.NON_EVM_ADDRESS &&
                          _relayData.nonEVMReceiver == bytes32(0)
                      ) {
                          revert InvalidQuote();
                      }
                      // Verify that the bridging quote has been signed by the Relay solver
                      // as attested using the attestation API
                      // API URL: https://api.relay.link/requests/{requestId}/signature/v2
                      bytes32 message = ECDSA.toEthSignedMessageHash(
                          keccak256(
                              abi.encodePacked(
                                  _relayData.requestId,
                                  block.chainid,
                                  bytes32(uint256(uint160(address(this)))),
                                  bytes32(uint256(uint160(_bridgeData.sendingAssetId))),
                                  _getMappedChainId(_bridgeData.destinationChainId),
                                  _bridgeData.receiver == LibAsset.NON_EVM_ADDRESS
                                      ? _relayData.nonEVMReceiver
                                      : bytes32(uint256(uint160(_bridgeData.receiver))),
                                  _relayData.receivingAssetId
                              )
                          )
                      );
                      address signer = ECDSA.recover(message, _relayData.signature);
                      if (signer != relaySolver) {
                          revert InvalidQuote();
                      }
                      _;
                  }
                  /// Constructor ///
                  /// @param _relayReceiver The receiver for native transfers
                  /// @param _relaySolver The relayer wallet for ERC20 transfers
                  constructor(address _relayReceiver, address _relaySolver) {
                      relayReceiver = _relayReceiver;
                      relaySolver = _relaySolver;
                  }
                  /// External Methods ///
                  /// @notice Bridges tokens via Relay
                  /// @param _bridgeData The core information needed for bridging
                  /// @param _relayData Data specific to Relay
                  function startBridgeTokensViaRelay(
                      ILiFi.BridgeData calldata _bridgeData,
                      RelayData calldata _relayData
                  )
                      external
                      payable
                      nonReentrant
                      onlyValidQuote(_bridgeData, _relayData)
                      refundExcessNative(payable(msg.sender))
                      validateBridgeData(_bridgeData)
                      doesNotContainSourceSwaps(_bridgeData)
                      doesNotContainDestinationCalls(_bridgeData)
                  {
                      LibAsset.depositAsset(
                          _bridgeData.sendingAssetId,
                          _bridgeData.minAmount
                      );
                      _startBridge(_bridgeData, _relayData);
                  }
                  /// @notice Performs a swap before bridging via Relay
                  /// @param _bridgeData The core information needed for bridging
                  /// @param _swapData An array of swap related data for performing swaps before bridging
                  /// @param _relayData Data specific to Relay
                  function swapAndStartBridgeTokensViaRelay(
                      ILiFi.BridgeData memory _bridgeData,
                      LibSwap.SwapData[] calldata _swapData,
                      RelayData calldata _relayData
                  )
                      external
                      payable
                      nonReentrant
                      onlyValidQuote(_bridgeData, _relayData)
                      refundExcessNative(payable(msg.sender))
                      containsSourceSwaps(_bridgeData)
                      doesNotContainDestinationCalls(_bridgeData)
                      validateBridgeData(_bridgeData)
                  {
                      _bridgeData.minAmount = _depositAndSwap(
                          _bridgeData.transactionId,
                          _bridgeData.minAmount,
                          _swapData,
                          payable(msg.sender)
                      );
                      _startBridge(_bridgeData, _relayData);
                  }
                  /// Internal Methods ///
                  /// @dev Contains the business logic for the bridge via Relay
                  /// @param _bridgeData The core information needed for bridging
                  /// @param _relayData Data specific to Relay
                  function _startBridge(
                      ILiFi.BridgeData memory _bridgeData,
                      RelayData calldata _relayData
                  ) internal {
                      // check if sendingAsset is native or ERC20
                      if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
                          // Native
                          // Send Native to relayReceiver along with requestId as extra data
                          (bool success, bytes memory reason) = relayReceiver.call{
                              value: _bridgeData.minAmount
                          }(abi.encode(_relayData.requestId));
                          if (!success) {
                              revert(LibUtil.getRevertMsg(reason));
                          }
                      } else {
                          // ERC20
                          // We build the calldata from scratch to ensure that we can only
                          // send to the solver address
                          bytes memory transferCallData = bytes.concat(
                              abi.encodeWithSignature(
                                  "transfer(address,uint256)",
                                  relaySolver,
                                  _bridgeData.minAmount
                              ),
                              abi.encode(_relayData.requestId)
                          );
                          (bool success, bytes memory reason) = address(
                              _bridgeData.sendingAssetId
                          ).call(transferCallData);
                          if (!success) {
                              revert(LibUtil.getRevertMsg(reason));
                          }
                      }
                      consumedIds[_relayData.requestId] = true;
                      // Emit special event if bridging to non-EVM chain
                      if (_bridgeData.receiver == LibAsset.NON_EVM_ADDRESS) {
                          emit BridgeToNonEVMChain(
                              _bridgeData.transactionId,
                              _getMappedChainId(_bridgeData.destinationChainId),
                              _relayData.nonEVMReceiver
                          );
                      }
                      emit LiFiTransferStarted(_bridgeData);
                  }
                  /// @notice get Relay specific chain id for non-EVM chains
                  ///         IDs found here  https://li.quest/v1/chains?chainTypes=UTXO,SVM
                  /// @param chainId LIFI specific chain id
                  function _getMappedChainId(
                      uint256 chainId
                  ) internal pure returns (uint256) {
                      // Bitcoin
                      if (chainId == 20000000000001) {
                          return 8253038;
                      }
                      // Solana
                      if (chainId == 1151111081099710) {
                          return 792703809;
                      }
                      return chainId;
                  }
              }
              // SPDX-License-Identifier: MIT
              /// @custom:version 1.0.0
              pragma solidity ^0.8.17;
              interface ILiFi {
                  /// Structs ///
                  struct BridgeData {
                      bytes32 transactionId;
                      string bridge;
                      string integrator;
                      address referrer;
                      address sendingAssetId;
                      address receiver;
                      uint256 minAmount;
                      uint256 destinationChainId;
                      bool hasSourceSwaps;
                      bool hasDestinationCall;
                  }
                  /// Events ///
                  event LiFiTransferStarted(ILiFi.BridgeData bridgeData);
                  event LiFiTransferCompleted(
                      bytes32 indexed transactionId,
                      address receivingAssetId,
                      address receiver,
                      uint256 amount,
                      uint256 timestamp
                  );
                  event LiFiTransferRecovered(
                      bytes32 indexed transactionId,
                      address receivingAssetId,
                      address receiver,
                      uint256 amount,
                      uint256 timestamp
                  );
                  event LiFiGenericSwapCompleted(
                      bytes32 indexed transactionId,
                      string integrator,
                      string referrer,
                      address receiver,
                      address fromAssetId,
                      address toAssetId,
                      uint256 fromAmount,
                      uint256 toAmount
                  );
                  // Deprecated but kept here to include in ABI to parse historic events
                  event LiFiSwappedGeneric(
                      bytes32 indexed transactionId,
                      string integrator,
                      string referrer,
                      address fromAssetId,
                      address toAssetId,
                      uint256 fromAmount,
                      uint256 toAmount
                  );
              }
              // SPDX-License-Identifier: UNLICENSED
              pragma solidity ^0.8.17;
              import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
              import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
              import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              import { LibSwap } from "./LibSwap.sol";
              /// @title LibAsset
              /// @custom:version 1.0.1
              /// @notice This library contains helpers for dealing with onchain transfers
              ///         of assets, including accounting for the native asset `assetId`
              ///         conventions and any noncompliant ERC20 transfers
              library LibAsset {
                  uint256 private constant MAX_UINT = type(uint256).max;
                  address internal constant NULL_ADDRESS = address(0);
                  address internal constant NON_EVM_ADDRESS =
                      0x11f111f111f111F111f111f111F111f111f111F1;
                  /// @dev All native assets use the empty address for their asset id
                  ///      by convention
                  address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
                  /// @notice Gets the balance of the inheriting contract for the given asset
                  /// @param assetId The asset identifier to get the balance of
                  /// @return Balance held by contracts using this library
                  function getOwnBalance(address assetId) internal view returns (uint256) {
                      return
                          isNativeAsset(assetId)
                              ? address(this).balance
                              : IERC20(assetId).balanceOf(address(this));
                  }
                  /// @notice Transfers ether from the inheriting contract to a given
                  ///         recipient
                  /// @param recipient Address to send ether to
                  /// @param amount Amount to send to given recipient
                  function transferNativeAsset(
                      address payable recipient,
                      uint256 amount
                  ) private {
                      if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
                      if (amount > address(this).balance)
                          revert InsufficientBalance(amount, address(this).balance);
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, ) = recipient.call{ value: amount }("");
                      if (!success) revert NativeAssetTransferFailed();
                  }
                  /// @notice If the current allowance is insufficient, the allowance for a given spender
                  /// is set to MAX_UINT.
                  /// @param assetId Token address to transfer
                  /// @param spender Address to give spend approval to
                  /// @param amount Amount to approve for spending
                  function maxApproveERC20(
                      IERC20 assetId,
                      address spender,
                      uint256 amount
                  ) internal {
                      if (isNativeAsset(address(assetId))) {
                          return;
                      }
                      if (spender == NULL_ADDRESS) {
                          revert NullAddrIsNotAValidSpender();
                      }
                      if (assetId.allowance(address(this), spender) < amount) {
                          SafeERC20.safeApprove(IERC20(assetId), spender, 0);
                          SafeERC20.safeApprove(IERC20(assetId), spender, MAX_UINT);
                      }
                  }
                  /// @notice Transfers tokens from the inheriting contract to a given
                  ///         recipient
                  /// @param assetId Token address to transfer
                  /// @param recipient Address to send token to
                  /// @param amount Amount to send to given recipient
                  function transferERC20(
                      address assetId,
                      address recipient,
                      uint256 amount
                  ) private {
                      if (isNativeAsset(assetId)) {
                          revert NullAddrIsNotAnERC20Token();
                      }
                      if (recipient == NULL_ADDRESS) {
                          revert NoTransferToNullAddress();
                      }
                      uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
                      if (amount > assetBalance) {
                          revert InsufficientBalance(amount, assetBalance);
                      }
                      SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
                  }
                  /// @notice Transfers tokens from a sender to a given recipient
                  /// @param assetId Token address to transfer
                  /// @param from Address of sender/owner
                  /// @param to Address of recipient/spender
                  /// @param amount Amount to transfer from owner to spender
                  function transferFromERC20(
                      address assetId,
                      address from,
                      address to,
                      uint256 amount
                  ) internal {
                      if (isNativeAsset(assetId)) {
                          revert NullAddrIsNotAnERC20Token();
                      }
                      if (to == NULL_ADDRESS) {
                          revert NoTransferToNullAddress();
                      }
                      IERC20 asset = IERC20(assetId);
                      uint256 prevBalance = asset.balanceOf(to);
                      SafeERC20.safeTransferFrom(asset, from, to, amount);
                      if (asset.balanceOf(to) - prevBalance != amount) {
                          revert InvalidAmount();
                      }
                  }
                  function depositAsset(address assetId, uint256 amount) internal {
                      if (amount == 0) revert InvalidAmount();
                      if (isNativeAsset(assetId)) {
                          if (msg.value < amount) revert InvalidAmount();
                      } else {
                          uint256 balance = IERC20(assetId).balanceOf(msg.sender);
                          if (balance < amount) revert InsufficientBalance(amount, balance);
                          transferFromERC20(assetId, msg.sender, address(this), amount);
                      }
                  }
                  function depositAssets(LibSwap.SwapData[] calldata swaps) internal {
                      for (uint256 i = 0; i < swaps.length; ) {
                          LibSwap.SwapData calldata swap = swaps[i];
                          if (swap.requiresDeposit) {
                              depositAsset(swap.sendingAssetId, swap.fromAmount);
                          }
                          unchecked {
                              i++;
                          }
                      }
                  }
                  /// @notice Determines whether the given assetId is the native asset
                  /// @param assetId The asset identifier to evaluate
                  /// @return Boolean indicating if the asset is the native asset
                  function isNativeAsset(address assetId) internal pure returns (bool) {
                      return assetId == NATIVE_ASSETID;
                  }
                  /// @notice Wrapper function to transfer a given asset (native or erc20) to
                  ///         some recipient. Should handle all non-compliant return value
                  ///         tokens as well by using the SafeERC20 contract by open zeppelin.
                  /// @param assetId Asset id for transfer (address(0) for native asset,
                  ///                token address for erc20s)
                  /// @param recipient Address to send asset to
                  /// @param amount Amount to send to given recipient
                  function transferAsset(
                      address assetId,
                      address payable recipient,
                      uint256 amount
                  ) internal {
                      isNativeAsset(assetId)
                          ? transferNativeAsset(recipient, amount)
                          : transferERC20(assetId, recipient, amount);
                  }
                  /// @dev Checks whether the given address is a contract and contains code
                  function isContract(address _contractAddr) internal view returns (bool) {
                      uint256 size;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          size := extcodesize(_contractAddr)
                      }
                      return size > 0;
                  }
              }
              // SPDX-License-Identifier: MIT
              /// @custom:version 1.0.0
              pragma solidity ^0.8.17;
              import { LibAsset } from "./LibAsset.sol";
              import { LibUtil } from "./LibUtil.sol";
              import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance } from "../Errors/GenericErrors.sol";
              import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              library LibSwap {
                  struct SwapData {
                      address callTo;
                      address approveTo;
                      address sendingAssetId;
                      address receivingAssetId;
                      uint256 fromAmount;
                      bytes callData;
                      bool requiresDeposit;
                  }
                  event AssetSwapped(
                      bytes32 transactionId,
                      address dex,
                      address fromAssetId,
                      address toAssetId,
                      uint256 fromAmount,
                      uint256 toAmount,
                      uint256 timestamp
                  );
                  function swap(bytes32 transactionId, SwapData calldata _swap) internal {
                      if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
                      uint256 fromAmount = _swap.fromAmount;
                      if (fromAmount == 0) revert NoSwapFromZeroBalance();
                      uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
                          ? _swap.fromAmount
                          : 0;
                      uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(
                          _swap.sendingAssetId
                      );
                      uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
                          _swap.receivingAssetId
                      );
                      if (nativeValue == 0) {
                          LibAsset.maxApproveERC20(
                              IERC20(_swap.sendingAssetId),
                              _swap.approveTo,
                              _swap.fromAmount
                          );
                      }
                      if (initialSendingAssetBalance < _swap.fromAmount) {
                          revert InsufficientBalance(
                              _swap.fromAmount,
                              initialSendingAssetBalance
                          );
                      }
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory res) = _swap.callTo.call{
                          value: nativeValue
                      }(_swap.callData);
                      if (!success) {
                          LibUtil.revertWith(res);
                      }
                      uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                      emit AssetSwapped(
                          transactionId,
                          _swap.callTo,
                          _swap.sendingAssetId,
                          _swap.receivingAssetId,
                          _swap.fromAmount,
                          newBalance > initialReceivingAssetBalance
                              ? newBalance - initialReceivingAssetBalance
                              : newBalance,
                          block.timestamp
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              /// @custom:version 1.0.0
              pragma solidity ^0.8.17;
              import "./LibBytes.sol";
              library LibUtil {
                  using LibBytes for bytes;
                  function getRevertMsg(
                      bytes memory _res
                  ) internal pure returns (string memory) {
                      // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                      if (_res.length < 68) return "Transaction reverted silently";
                      bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                      return abi.decode(revertData, (string)); // All that remains is the revert string
                  }
                  /// @notice Determines whether the given address is the zero address
                  /// @param addr The address to verify
                  /// @return Boolean indicating if the address is the zero address
                  function isZeroAddress(address addr) internal pure returns (bool) {
                      return addr == address(0);
                  }
                  function revertWith(bytes memory data) internal pure {
                      assembly {
                          let dataSize := mload(data) // Load the size of the data
                          let dataPtr := add(data, 0x20) // Advance data pointer to the next word
                          revert(dataPtr, dataSize) // Revert with the given data
                      }
                  }
              }
              // SPDX-License-Identifier: UNLICENSED
              /// @custom:version 1.0.0
              pragma solidity ^0.8.17;
              /// @title Reentrancy Guard
              /// @author LI.FI (https://li.fi)
              /// @notice Abstract contract to provide protection against reentrancy
              abstract contract ReentrancyGuard {
                  /// Storage ///
                  bytes32 private constant NAMESPACE = keccak256("com.lifi.reentrancyguard");
                  /// Types ///
                  struct ReentrancyStorage {
                      uint256 status;
                  }
                  /// Errors ///
                  error ReentrancyError();
                  /// Constants ///
                  uint256 private constant _NOT_ENTERED = 0;
                  uint256 private constant _ENTERED = 1;
                  /// Modifiers ///
                  modifier nonReentrant() {
                      ReentrancyStorage storage s = reentrancyStorage();
                      if (s.status == _ENTERED) revert ReentrancyError();
                      s.status = _ENTERED;
                      _;
                      s.status = _NOT_ENTERED;
                  }
                  /// Private Methods ///
                  /// @dev fetch local storage
                  function reentrancyStorage()
                      private
                      pure
                      returns (ReentrancyStorage storage data)
                  {
                      bytes32 position = NAMESPACE;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          data.slot := position
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              /// @custom:version 1.0.0
              pragma solidity ^0.8.17;
              import { ILiFi } from "../Interfaces/ILiFi.sol";
              import { LibSwap } from "../Libraries/LibSwap.sol";
              import { LibAsset } from "../Libraries/LibAsset.sol";
              import { LibAllowList } from "../Libraries/LibAllowList.sol";
              import { ContractCallNotAllowed, NoSwapDataProvided, CumulativeSlippageTooHigh } from "../Errors/GenericErrors.sol";
              /// @title Swapper
              /// @author LI.FI (https://li.fi)
              /// @notice Abstract contract to provide swap functionality
              contract SwapperV2 is ILiFi {
                  /// Types ///
                  /// @dev only used to get around "Stack Too Deep" errors
                  struct ReserveData {
                      bytes32 transactionId;
                      address payable leftoverReceiver;
                      uint256 nativeReserve;
                  }
                  /// Modifiers ///
                  /// @dev Sends any leftover balances back to the user
                  /// @notice Sends any leftover balances to the user
                  /// @param _swaps Swap data array
                  /// @param _leftoverReceiver Address to send leftover tokens to
                  /// @param _initialBalances Array of initial token balances
                  modifier noLeftovers(
                      LibSwap.SwapData[] calldata _swaps,
                      address payable _leftoverReceiver,
                      uint256[] memory _initialBalances
                  ) {
                      uint256 numSwaps = _swaps.length;
                      if (numSwaps != 1) {
                          address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                          uint256 curBalance;
                          _;
                          for (uint256 i = 0; i < numSwaps - 1; ) {
                              address curAsset = _swaps[i].receivingAssetId;
                              // Handle multi-to-one swaps
                              if (curAsset != finalAsset) {
                                  curBalance =
                                      LibAsset.getOwnBalance(curAsset) -
                                      _initialBalances[i];
                                  if (curBalance > 0) {
                                      LibAsset.transferAsset(
                                          curAsset,
                                          _leftoverReceiver,
                                          curBalance
                                      );
                                  }
                              }
                              unchecked {
                                  ++i;
                              }
                          }
                      } else {
                          _;
                      }
                  }
                  /// @dev Sends any leftover balances back to the user reserving native tokens
                  /// @notice Sends any leftover balances to the user
                  /// @param _swaps Swap data array
                  /// @param _leftoverReceiver Address to send leftover tokens to
                  /// @param _initialBalances Array of initial token balances
                  modifier noLeftoversReserve(
                      LibSwap.SwapData[] calldata _swaps,
                      address payable _leftoverReceiver,
                      uint256[] memory _initialBalances,
                      uint256 _nativeReserve
                  ) {
                      uint256 numSwaps = _swaps.length;
                      if (numSwaps != 1) {
                          address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                          uint256 curBalance;
                          _;
                          for (uint256 i = 0; i < numSwaps - 1; ) {
                              address curAsset = _swaps[i].receivingAssetId;
                              // Handle multi-to-one swaps
                              if (curAsset != finalAsset) {
                                  curBalance =
                                      LibAsset.getOwnBalance(curAsset) -
                                      _initialBalances[i];
                                  uint256 reserve = LibAsset.isNativeAsset(curAsset)
                                      ? _nativeReserve
                                      : 0;
                                  if (curBalance > 0) {
                                      LibAsset.transferAsset(
                                          curAsset,
                                          _leftoverReceiver,
                                          curBalance - reserve
                                      );
                                  }
                              }
                              unchecked {
                                  ++i;
                              }
                          }
                      } else {
                          _;
                      }
                  }
                  /// @dev Refunds any excess native asset sent to the contract after the main function
                  /// @notice Refunds any excess native asset sent to the contract after the main function
                  /// @param _refundReceiver Address to send refunds to
                  modifier refundExcessNative(address payable _refundReceiver) {
                      uint256 initialBalance = address(this).balance - msg.value;
                      _;
                      uint256 finalBalance = address(this).balance;
                      if (finalBalance > initialBalance) {
                          LibAsset.transferAsset(
                              LibAsset.NATIVE_ASSETID,
                              _refundReceiver,
                              finalBalance - initialBalance
                          );
                      }
                  }
                  /// Internal Methods ///
                  /// @dev Deposits value, executes swaps, and performs minimum amount check
                  /// @param _transactionId the transaction id associated with the operation
                  /// @param _minAmount the minimum amount of the final asset to receive
                  /// @param _swaps Array of data used to execute swaps
                  /// @param _leftoverReceiver The address to send leftover funds to
                  /// @return uint256 result of the swap
                  function _depositAndSwap(
                      bytes32 _transactionId,
                      uint256 _minAmount,
                      LibSwap.SwapData[] calldata _swaps,
                      address payable _leftoverReceiver
                  ) internal returns (uint256) {
                      uint256 numSwaps = _swaps.length;
                      if (numSwaps == 0) {
                          revert NoSwapDataProvided();
                      }
                      address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                      uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                      if (LibAsset.isNativeAsset(finalTokenId)) {
                          initialBalance -= msg.value;
                      }
                      uint256[] memory initialBalances = _fetchBalances(_swaps);
                      LibAsset.depositAssets(_swaps);
                      _executeSwaps(
                          _transactionId,
                          _swaps,
                          _leftoverReceiver,
                          initialBalances
                      );
                      uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) -
                          initialBalance;
                      if (newBalance < _minAmount) {
                          revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                      }
                      return newBalance;
                  }
                  /// @dev Deposits value, executes swaps, and performs minimum amount check and reserves native token for fees
                  /// @param _transactionId the transaction id associated with the operation
                  /// @param _minAmount the minimum amount of the final asset to receive
                  /// @param _swaps Array of data used to execute swaps
                  /// @param _leftoverReceiver The address to send leftover funds to
                  /// @param _nativeReserve Amount of native token to prevent from being swept back to the caller
                  function _depositAndSwap(
                      bytes32 _transactionId,
                      uint256 _minAmount,
                      LibSwap.SwapData[] calldata _swaps,
                      address payable _leftoverReceiver,
                      uint256 _nativeReserve
                  ) internal returns (uint256) {
                      uint256 numSwaps = _swaps.length;
                      if (numSwaps == 0) {
                          revert NoSwapDataProvided();
                      }
                      address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                      uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                      if (LibAsset.isNativeAsset(finalTokenId)) {
                          initialBalance -= msg.value;
                      }
                      uint256[] memory initialBalances = _fetchBalances(_swaps);
                      LibAsset.depositAssets(_swaps);
                      ReserveData memory rd = ReserveData(
                          _transactionId,
                          _leftoverReceiver,
                          _nativeReserve
                      );
                      _executeSwaps(rd, _swaps, initialBalances);
                      uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) -
                          initialBalance;
                      if (LibAsset.isNativeAsset(finalTokenId)) {
                          newBalance -= _nativeReserve;
                      }
                      if (newBalance < _minAmount) {
                          revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                      }
                      return newBalance;
                  }
                  /// Private Methods ///
                  /// @dev Executes swaps and checks that DEXs used are in the allowList
                  /// @param _transactionId the transaction id associated with the operation
                  /// @param _swaps Array of data used to execute swaps
                  /// @param _leftoverReceiver Address to send leftover tokens to
                  /// @param _initialBalances Array of initial balances
                  function _executeSwaps(
                      bytes32 _transactionId,
                      LibSwap.SwapData[] calldata _swaps,
                      address payable _leftoverReceiver,
                      uint256[] memory _initialBalances
                  ) internal noLeftovers(_swaps, _leftoverReceiver, _initialBalances) {
                      uint256 numSwaps = _swaps.length;
                      for (uint256 i = 0; i < numSwaps; ) {
                          LibSwap.SwapData calldata currentSwap = _swaps[i];
                          if (
                              !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                                  LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                                  LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                                  LibAllowList.selectorIsAllowed(
                                      bytes4(currentSwap.callData[:4])
                                  ))
                          ) revert ContractCallNotAllowed();
                          LibSwap.swap(_transactionId, currentSwap);
                          unchecked {
                              ++i;
                          }
                      }
                  }
                  /// @dev Executes swaps and checks that DEXs used are in the allowList
                  /// @param _reserveData Data passed used to reserve native tokens
                  /// @param _swaps Array of data used to execute swaps
                  function _executeSwaps(
                      ReserveData memory _reserveData,
                      LibSwap.SwapData[] calldata _swaps,
                      uint256[] memory _initialBalances
                  )
                      internal
                      noLeftoversReserve(
                          _swaps,
                          _reserveData.leftoverReceiver,
                          _initialBalances,
                          _reserveData.nativeReserve
                      )
                  {
                      uint256 numSwaps = _swaps.length;
                      for (uint256 i = 0; i < numSwaps; ) {
                          LibSwap.SwapData calldata currentSwap = _swaps[i];
                          if (
                              !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                                  LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                                  LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                                  LibAllowList.selectorIsAllowed(
                                      bytes4(currentSwap.callData[:4])
                                  ))
                          ) revert ContractCallNotAllowed();
                          LibSwap.swap(_reserveData.transactionId, currentSwap);
                          unchecked {
                              ++i;
                          }
                      }
                  }
                  /// @dev Fetches balances of tokens to be swapped before swapping.
                  /// @param _swaps Array of data used to execute swaps
                  /// @return uint256[] Array of token balances.
                  function _fetchBalances(
                      LibSwap.SwapData[] calldata _swaps
                  ) private view returns (uint256[] memory) {
                      uint256 numSwaps = _swaps.length;
                      uint256[] memory balances = new uint256[](numSwaps);
                      address asset;
                      for (uint256 i = 0; i < numSwaps; ) {
                          asset = _swaps[i].receivingAssetId;
                          balances[i] = LibAsset.getOwnBalance(asset);
                          if (LibAsset.isNativeAsset(asset)) {
                              balances[i] -= msg.value;
                          }
                          unchecked {
                              ++i;
                          }
                      }
                      return balances;
                  }
              }
              // SPDX-License-Identifier: UNLICENSED
              /// @custom:version 1.0.0
              pragma solidity ^0.8.17;
              import { LibAsset } from "../Libraries/LibAsset.sol";
              import { LibUtil } from "../Libraries/LibUtil.sol";
              import { InvalidReceiver, InformationMismatch, InvalidSendingToken, InvalidAmount, NativeAssetNotSupported, InvalidDestinationChain, CannotBridgeToSameNetwork } from "../Errors/GenericErrors.sol";
              import { ILiFi } from "../Interfaces/ILiFi.sol";
              import { LibSwap } from "../Libraries/LibSwap.sol";
              contract Validatable {
                  modifier validateBridgeData(ILiFi.BridgeData memory _bridgeData) {
                      if (LibUtil.isZeroAddress(_bridgeData.receiver)) {
                          revert InvalidReceiver();
                      }
                      if (_bridgeData.minAmount == 0) {
                          revert InvalidAmount();
                      }
                      if (_bridgeData.destinationChainId == block.chainid) {
                          revert CannotBridgeToSameNetwork();
                      }
                      _;
                  }
                  modifier noNativeAsset(ILiFi.BridgeData memory _bridgeData) {
                      if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
                          revert NativeAssetNotSupported();
                      }
                      _;
                  }
                  modifier onlyAllowSourceToken(
                      ILiFi.BridgeData memory _bridgeData,
                      address _token
                  ) {
                      if (_bridgeData.sendingAssetId != _token) {
                          revert InvalidSendingToken();
                      }
                      _;
                  }
                  modifier onlyAllowDestinationChain(
                      ILiFi.BridgeData memory _bridgeData,
                      uint256 _chainId
                  ) {
                      if (_bridgeData.destinationChainId != _chainId) {
                          revert InvalidDestinationChain();
                      }
                      _;
                  }
                  modifier containsSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
                      if (!_bridgeData.hasSourceSwaps) {
                          revert InformationMismatch();
                      }
                      _;
                  }
                  modifier doesNotContainSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
                      if (_bridgeData.hasSourceSwaps) {
                          revert InformationMismatch();
                      }
                      _;
                  }
                  modifier doesNotContainDestinationCalls(
                      ILiFi.BridgeData memory _bridgeData
                  ) {
                      if (_bridgeData.hasDestinationCall) {
                          revert InformationMismatch();
                      }
                      _;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.4;
              /// @notice Gas optimized ECDSA wrapper.
              /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol)
              /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol)
              /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol)
              ///
              /// @dev Note:
              /// - The recovery functions use the ecrecover precompile (0x1).
              /// - As of Solady version 0.0.68, the `recover` variants will revert upon recovery failure.
              ///   This is for more safety by default.
              ///   Use the `tryRecover` variants if you need to get the zero address back
              ///   upon recovery failure instead.
              /// - As of Solady version 0.0.134, all `bytes signature` variants accept both
              ///   regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
              ///   See: https://eips.ethereum.org/EIPS/eip-2098
              ///   This is for calldata efficiency on smart accounts prevalent on L2s.
              ///
              /// WARNING! Do NOT use signatures as unique identifiers:
              /// - Use a nonce in the digest to prevent replay attacks on the same contract.
              /// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
              ///   EIP-712 also enables readable signing of typed data for better user safety.
              /// This implementation does NOT check if a signature is non-malleable.
              library ECDSA {
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                        CUSTOM ERRORS                       */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev The signature is invalid.
                  error InvalidSignature();
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                    RECOVERY OPERATIONS                     */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
                  function recover(bytes32 hash, bytes memory signature) internal view returns (address result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          result := 1
                          let m := mload(0x40) // Cache the free memory pointer.
                          for {} 1 {} {
                              mstore(0x00, hash)
                              mstore(0x40, mload(add(signature, 0x20))) // `r`.
                              if eq(mload(signature), 64) {
                                  let vs := mload(add(signature, 0x40))
                                  mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                  mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                  break
                              }
                              if eq(mload(signature), 65) {
                                  mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                                  mstore(0x60, mload(add(signature, 0x40))) // `s`.
                                  break
                              }
                              result := 0
                              break
                          }
                          result :=
                              mload(
                                  staticcall(
                                      gas(), // Amount of gas left for the transaction.
                                      result, // Address of `ecrecover`.
                                      0x00, // Start of input.
                                      0x80, // Size of input.
                                      0x01, // Start of output.
                                      0x20 // Size of output.
                                  )
                              )
                          // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                          if iszero(returndatasize()) {
                              mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                              revert(0x1c, 0x04)
                          }
                          mstore(0x60, 0) // Restore the zero slot.
                          mstore(0x40, m) // Restore the free memory pointer.
                      }
                  }
                  /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
                  function recoverCalldata(bytes32 hash, bytes calldata signature)
                      internal
                      view
                      returns (address result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          result := 1
                          let m := mload(0x40) // Cache the free memory pointer.
                          mstore(0x00, hash)
                          for {} 1 {} {
                              if eq(signature.length, 64) {
                                  let vs := calldataload(add(signature.offset, 0x20))
                                  mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                  mstore(0x40, calldataload(signature.offset)) // `r`.
                                  mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                  break
                              }
                              if eq(signature.length, 65) {
                                  mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                                  calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
                                  break
                              }
                              result := 0
                              break
                          }
                          result :=
                              mload(
                                  staticcall(
                                      gas(), // Amount of gas left for the transaction.
                                      result, // Address of `ecrecover`.
                                      0x00, // Start of input.
                                      0x80, // Size of input.
                                      0x01, // Start of output.
                                      0x20 // Size of output.
                                  )
                              )
                          // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                          if iszero(returndatasize()) {
                              mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                              revert(0x1c, 0x04)
                          }
                          mstore(0x60, 0) // Restore the zero slot.
                          mstore(0x40, m) // Restore the free memory pointer.
                      }
                  }
                  /// @dev Recovers the signer's address from a message digest `hash`,
                  /// and the EIP-2098 short form signature defined by `r` and `vs`.
                  function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let m := mload(0x40) // Cache the free memory pointer.
                          mstore(0x00, hash)
                          mstore(0x20, add(shr(255, vs), 27)) // `v`.
                          mstore(0x40, r)
                          mstore(0x60, shr(1, shl(1, vs))) // `s`.
                          result :=
                              mload(
                                  staticcall(
                                      gas(), // Amount of gas left for the transaction.
                                      1, // Address of `ecrecover`.
                                      0x00, // Start of input.
                                      0x80, // Size of input.
                                      0x01, // Start of output.
                                      0x20 // Size of output.
                                  )
                              )
                          // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                          if iszero(returndatasize()) {
                              mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                              revert(0x1c, 0x04)
                          }
                          mstore(0x60, 0) // Restore the zero slot.
                          mstore(0x40, m) // Restore the free memory pointer.
                      }
                  }
                  /// @dev Recovers the signer's address from a message digest `hash`,
                  /// and the signature defined by `v`, `r`, `s`.
                  function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                      internal
                      view
                      returns (address result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let m := mload(0x40) // Cache the free memory pointer.
                          mstore(0x00, hash)
                          mstore(0x20, and(v, 0xff))
                          mstore(0x40, r)
                          mstore(0x60, s)
                          result :=
                              mload(
                                  staticcall(
                                      gas(), // Amount of gas left for the transaction.
                                      1, // Address of `ecrecover`.
                                      0x00, // Start of input.
                                      0x80, // Size of input.
                                      0x01, // Start of output.
                                      0x20 // Size of output.
                                  )
                              )
                          // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                          if iszero(returndatasize()) {
                              mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                              revert(0x1c, 0x04)
                          }
                          mstore(0x60, 0) // Restore the zero slot.
                          mstore(0x40, m) // Restore the free memory pointer.
                      }
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                   TRY-RECOVER OPERATIONS                   */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  // WARNING!
                  // These functions will NOT revert upon recovery failure.
                  // Instead, they will return the zero address upon recovery failure.
                  // It is critical that the returned address is NEVER compared against
                  // a zero address (e.g. an uninitialized address variable).
                  /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
                  function tryRecover(bytes32 hash, bytes memory signature)
                      internal
                      view
                      returns (address result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          result := 1
                          let m := mload(0x40) // Cache the free memory pointer.
                          for {} 1 {} {
                              mstore(0x00, hash)
                              mstore(0x40, mload(add(signature, 0x20))) // `r`.
                              if eq(mload(signature), 64) {
                                  let vs := mload(add(signature, 0x40))
                                  mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                  mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                  break
                              }
                              if eq(mload(signature), 65) {
                                  mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                                  mstore(0x60, mload(add(signature, 0x40))) // `s`.
                                  break
                              }
                              result := 0
                              break
                          }
                          pop(
                              staticcall(
                                  gas(), // Amount of gas left for the transaction.
                                  result, // Address of `ecrecover`.
                                  0x00, // Start of input.
                                  0x80, // Size of input.
                                  0x40, // Start of output.
                                  0x20 // Size of output.
                              )
                          )
                          mstore(0x60, 0) // Restore the zero slot.
                          // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                          result := mload(xor(0x60, returndatasize()))
                          mstore(0x40, m) // Restore the free memory pointer.
                      }
                  }
                  /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
                  function tryRecoverCalldata(bytes32 hash, bytes calldata signature)
                      internal
                      view
                      returns (address result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          result := 1
                          let m := mload(0x40) // Cache the free memory pointer.
                          mstore(0x00, hash)
                          for {} 1 {} {
                              if eq(signature.length, 64) {
                                  let vs := calldataload(add(signature.offset, 0x20))
                                  mstore(0x20, add(shr(255, vs), 27)) // `v`.
                                  mstore(0x40, calldataload(signature.offset)) // `r`.
                                  mstore(0x60, shr(1, shl(1, vs))) // `s`.
                                  break
                              }
                              if eq(signature.length, 65) {
                                  mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                                  calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
                                  break
                              }
                              result := 0
                              break
                          }
                          pop(
                              staticcall(
                                  gas(), // Amount of gas left for the transaction.
                                  result, // Address of `ecrecover`.
                                  0x00, // Start of input.
                                  0x80, // Size of input.
                                  0x40, // Start of output.
                                  0x20 // Size of output.
                              )
                          )
                          mstore(0x60, 0) // Restore the zero slot.
                          // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                          result := mload(xor(0x60, returndatasize()))
                          mstore(0x40, m) // Restore the free memory pointer.
                      }
                  }
                  /// @dev Recovers the signer's address from a message digest `hash`,
                  /// and the EIP-2098 short form signature defined by `r` and `vs`.
                  function tryRecover(bytes32 hash, bytes32 r, bytes32 vs)
                      internal
                      view
                      returns (address result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let m := mload(0x40) // Cache the free memory pointer.
                          mstore(0x00, hash)
                          mstore(0x20, add(shr(255, vs), 27)) // `v`.
                          mstore(0x40, r)
                          mstore(0x60, shr(1, shl(1, vs))) // `s`.
                          pop(
                              staticcall(
                                  gas(), // Amount of gas left for the transaction.
                                  1, // Address of `ecrecover`.
                                  0x00, // Start of input.
                                  0x80, // Size of input.
                                  0x40, // Start of output.
                                  0x20 // Size of output.
                              )
                          )
                          mstore(0x60, 0) // Restore the zero slot.
                          // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                          result := mload(xor(0x60, returndatasize()))
                          mstore(0x40, m) // Restore the free memory pointer.
                      }
                  }
                  /// @dev Recovers the signer's address from a message digest `hash`,
                  /// and the signature defined by `v`, `r`, `s`.
                  function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                      internal
                      view
                      returns (address result)
                  {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let m := mload(0x40) // Cache the free memory pointer.
                          mstore(0x00, hash)
                          mstore(0x20, and(v, 0xff))
                          mstore(0x40, r)
                          mstore(0x60, s)
                          pop(
                              staticcall(
                                  gas(), // Amount of gas left for the transaction.
                                  1, // Address of `ecrecover`.
                                  0x00, // Start of input.
                                  0x80, // Size of input.
                                  0x40, // Start of output.
                                  0x20 // Size of output.
                              )
                          )
                          mstore(0x60, 0) // Restore the zero slot.
                          // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                          result := mload(xor(0x60, returndatasize()))
                          mstore(0x40, m) // Restore the free memory pointer.
                      }
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                     HASHING OPERATIONS                     */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Returns an Ethereum Signed Message, created from a `hash`.
                  /// This produces a hash corresponding to the one signed with the
                  /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
                  /// JSON-RPC method as part of EIP-191.
                  function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore(0x20, hash) // Store into scratch space for keccak256.
                          mstore(0x00, "\\x00\\x00\\x00\\x00\\x19Ethereum Signed Message:\
              32") // 28 bytes.
                          result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
                      }
                  }
                  /// @dev Returns an Ethereum Signed Message, created from `s`.
                  /// This produces a hash corresponding to the one signed with the
                  /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
                  /// JSON-RPC method as part of EIP-191.
                  /// Note: Supports lengths of `s` up to 999999 bytes.
                  function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          let sLength := mload(s)
                          let o := 0x20
                          mstore(o, "\\x19Ethereum Signed Message:\
              ") // 26 bytes, zero-right-padded.
                          mstore(0x00, 0x00)
                          // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
                          for { let temp := sLength } 1 {} {
                              o := sub(o, 1)
                              mstore8(o, add(48, mod(temp, 10)))
                              temp := div(temp, 10)
                              if iszero(temp) { break }
                          }
                          let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
                          // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
                          returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
                          mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
                          result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
                          mstore(s, sLength) // Restore the length.
                      }
                  }
                  /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                  /*                   EMPTY CALLDATA HELPERS                   */
                  /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                  /// @dev Returns an empty calldata bytes.
                  function emptySignature() internal pure returns (bytes calldata signature) {
                      /// @solidity memory-safe-assembly
                      assembly {
                          signature.length := 0
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              /// @custom:version 1.0.0
              pragma solidity ^0.8.17;
              error AlreadyInitialized();
              error CannotAuthoriseSelf();
              error CannotBridgeToSameNetwork();
              error ContractCallNotAllowed();
              error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
              error DiamondIsPaused();
              error ExternalCallFailed();
              error FunctionDoesNotExist();
              error InformationMismatch();
              error InsufficientBalance(uint256 required, uint256 balance);
              error InvalidAmount();
              error InvalidCallData();
              error InvalidConfig();
              error InvalidContract();
              error InvalidDestinationChain();
              error InvalidFallbackAddress();
              error InvalidReceiver();
              error InvalidSendingToken();
              error NativeAssetNotSupported();
              error NativeAssetTransferFailed();
              error NoSwapDataProvided();
              error NoSwapFromZeroBalance();
              error NotAContract();
              error NotInitialized();
              error NoTransferToNullAddress();
              error NullAddrIsNotAnERC20Token();
              error NullAddrIsNotAValidSpender();
              error OnlyContractOwner();
              error RecoveryAddressCannotBeZero();
              error ReentrancyError();
              error TokenNotSupported();
              error UnAuthorized();
              error UnsupportedChainId(uint256 chainId);
              error WithdrawFailed();
              error ZeroAmount();
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
              pragma solidity ^0.8.0;
              import "../IERC20.sol";
              import "../extensions/IERC20Permit.sol";
              import "../../../utils/Address.sol";
              /**
               * @title SafeERC20
               * @dev Wrappers around ERC20 operations that throw on failure (when the token
               * contract returns false). Tokens that return no value (and instead revert or
               * throw on failure) are also supported, non-reverting calls are assumed to be
               * successful.
               * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
               * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
               */
              library SafeERC20 {
                  using Address for address;
                  /**
                   * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
                   * non-reverting calls are assumed to be successful.
                   */
                  function safeTransfer(IERC20 token, address to, uint256 value) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                  }
                  /**
                   * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
                   * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
                   */
                  function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                  }
                  /**
                   * @dev Deprecated. This function has issues similar to the ones found in
                   * {IERC20-approve}, and its usage is discouraged.
                   *
                   * Whenever possible, use {safeIncreaseAllowance} and
                   * {safeDecreaseAllowance} instead.
                   */
                  function safeApprove(IERC20 token, address spender, uint256 value) internal {
                      // safeApprove should only be called when setting an initial allowance,
                      // or when resetting it to zero. To increase and decrease it, use
                      // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                      require(
                          (value == 0) || (token.allowance(address(this), spender) == 0),
                          "SafeERC20: approve from non-zero to non-zero allowance"
                      );
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                  }
                  /**
                   * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
                   * non-reverting calls are assumed to be successful.
                   */
                  function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                      uint256 oldAllowance = token.allowance(address(this), spender);
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
                  }
                  /**
                   * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
                   * non-reverting calls are assumed to be successful.
                   */
                  function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                      unchecked {
                          uint256 oldAllowance = token.allowance(address(this), spender);
                          require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
                      }
                  }
                  /**
                   * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
                   * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
                   * 0 before setting it to a non-zero value.
                   */
                  function forceApprove(IERC20 token, address spender, uint256 value) internal {
                      bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
                      if (!_callOptionalReturnBool(token, approvalCall)) {
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
                          _callOptionalReturn(token, approvalCall);
                      }
                  }
                  /**
                   * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
                   * Revert on invalid signature.
                   */
                  function safePermit(
                      IERC20Permit token,
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) internal {
                      uint256 nonceBefore = token.nonces(owner);
                      token.permit(owner, spender, value, deadline, v, r, s);
                      uint256 nonceAfter = token.nonces(owner);
                      require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                  }
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   */
                  function _callOptionalReturn(IERC20 token, bytes memory data) private {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                      // the target address contains contract code and also asserts for success in the low-level call.
                      bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                      require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                  }
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   *
                   * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
                   */
                  function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
                      // and not revert is the subcall reverts.
                      (bool success, bytes memory returndata) = address(token).call(data);
                      return
                          success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `to`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address to, uint256 amount) external returns (bool);
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
                  /**
                   * @dev Moves `amount` tokens from `from` to `to` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(address from, address to, uint256 amount) external returns (bool);
              }
              // SPDX-License-Identifier: MIT
              /// @custom:version 1.0.0
              pragma solidity ^0.8.17;
              library LibBytes {
                  // solhint-disable no-inline-assembly
                  // LibBytes specific errors
                  error SliceOverflow();
                  error SliceOutOfBounds();
                  error AddressOutOfBounds();
                  bytes16 private constant _SYMBOLS = "0123456789abcdef";
                  // -------------------------
                  function slice(
                      bytes memory _bytes,
                      uint256 _start,
                      uint256 _length
                  ) internal pure returns (bytes memory) {
                      if (_length + 31 < _length) revert SliceOverflow();
                      if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                      bytes memory tempBytes;
                      assembly {
                          switch iszero(_length)
                          case 0 {
                              // Get a location of some free memory and store it in tempBytes as
                              // Solidity does for memory variables.
                              tempBytes := mload(0x40)
                              // The first word of the slice result is potentially a partial
                              // word read from the original array. To read it, we calculate
                              // the length of that partial word and start copying that many
                              // bytes into the array. The first word we copy will start with
                              // data we don't care about, but the last `lengthmod` bytes will
                              // land at the beginning of the contents of the new array. When
                              // we're done copying, we overwrite the full first word with
                              // the actual length of the slice.
                              let lengthmod := and(_length, 31)
                              // The multiplication in the next line is necessary
                              // because when slicing multiples of 32 bytes (lengthmod == 0)
                              // the following copy loop was copying the origin's length
                              // and then ending prematurely not copying everything it should.
                              let mc := add(
                                  add(tempBytes, lengthmod),
                                  mul(0x20, iszero(lengthmod))
                              )
                              let end := add(mc, _length)
                              for {
                                  // The multiplication in the next line has the same exact purpose
                                  // as the one above.
                                  let cc := add(
                                      add(
                                          add(_bytes, lengthmod),
                                          mul(0x20, iszero(lengthmod))
                                      ),
                                      _start
                                  )
                              } lt(mc, end) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  mstore(mc, mload(cc))
                              }
                              mstore(tempBytes, _length)
                              //update free-memory pointer
                              //allocating the array padded to 32 bytes like the compiler does now
                              mstore(0x40, and(add(mc, 31), not(31)))
                          }
                          //if we want a zero-length slice let's just return a zero-length array
                          default {
                              tempBytes := mload(0x40)
                              //zero out the 32 bytes slice we are about to return
                              //we need to do it because Solidity does not garbage collect
                              mstore(tempBytes, 0)
                              mstore(0x40, add(tempBytes, 0x20))
                          }
                      }
                      return tempBytes;
                  }
                  function toAddress(
                      bytes memory _bytes,
                      uint256 _start
                  ) internal pure returns (address) {
                      if (_bytes.length < _start + 20) {
                          revert AddressOutOfBounds();
                      }
                      address tempAddress;
                      assembly {
                          tempAddress := div(
                              mload(add(add(_bytes, 0x20), _start)),
                              0x1000000000000000000000000
                          )
                      }
                      return tempAddress;
                  }
                  /// Copied from OpenZeppelin's `Strings.sol` utility library.
                  /// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8335676b0e99944eef6a742e16dcd9ff6e68e609/contracts/utils/Strings.sol
                  function toHexString(
                      uint256 value,
                      uint256 length
                  ) internal pure returns (string memory) {
                      bytes memory buffer = new bytes(2 * length + 2);
                      buffer[0] = "0";
                      buffer[1] = "x";
                      for (uint256 i = 2 * length + 1; i > 1; --i) {
                          buffer[i] = _SYMBOLS[value & 0xf];
                          value >>= 4;
                      }
                      require(value == 0, "Strings: hex length insufficient");
                      return string(buffer);
                  }
              }
              // SPDX-License-Identifier: MIT
              /// @custom:version 1.0.0
              pragma solidity ^0.8.17;
              import { InvalidContract } from "../Errors/GenericErrors.sol";
              /// @title Lib Allow List
              /// @author LI.FI (https://li.fi)
              /// @notice Library for managing and accessing the conract address allow list
              library LibAllowList {
                  /// Storage ///
                  bytes32 internal constant NAMESPACE =
                      keccak256("com.lifi.library.allow.list");
                  struct AllowListStorage {
                      mapping(address => bool) allowlist;
                      mapping(bytes4 => bool) selectorAllowList;
                      address[] contracts;
                  }
                  /// @dev Adds a contract address to the allow list
                  /// @param _contract the contract address to add
                  function addAllowedContract(address _contract) internal {
                      _checkAddress(_contract);
                      AllowListStorage storage als = _getStorage();
                      if (als.allowlist[_contract]) return;
                      als.allowlist[_contract] = true;
                      als.contracts.push(_contract);
                  }
                  /// @dev Checks whether a contract address has been added to the allow list
                  /// @param _contract the contract address to check
                  function contractIsAllowed(
                      address _contract
                  ) internal view returns (bool) {
                      return _getStorage().allowlist[_contract];
                  }
                  /// @dev Remove a contract address from the allow list
                  /// @param _contract the contract address to remove
                  function removeAllowedContract(address _contract) internal {
                      AllowListStorage storage als = _getStorage();
                      if (!als.allowlist[_contract]) {
                          return;
                      }
                      als.allowlist[_contract] = false;
                      uint256 length = als.contracts.length;
                      // Find the contract in the list
                      for (uint256 i = 0; i < length; i++) {
                          if (als.contracts[i] == _contract) {
                              // Move the last element into the place to delete
                              als.contracts[i] = als.contracts[length - 1];
                              // Remove the last element
                              als.contracts.pop();
                              break;
                          }
                      }
                  }
                  /// @dev Fetch contract addresses from the allow list
                  function getAllowedContracts() internal view returns (address[] memory) {
                      return _getStorage().contracts;
                  }
                  /// @dev Add a selector to the allow list
                  /// @param _selector the selector to add
                  function addAllowedSelector(bytes4 _selector) internal {
                      _getStorage().selectorAllowList[_selector] = true;
                  }
                  /// @dev Removes a selector from the allow list
                  /// @param _selector the selector to remove
                  function removeAllowedSelector(bytes4 _selector) internal {
                      _getStorage().selectorAllowList[_selector] = false;
                  }
                  /// @dev Returns if selector has been added to the allow list
                  /// @param _selector the selector to check
                  function selectorIsAllowed(bytes4 _selector) internal view returns (bool) {
                      return _getStorage().selectorAllowList[_selector];
                  }
                  /// @dev Fetch local storage struct
                  function _getStorage()
                      internal
                      pure
                      returns (AllowListStorage storage als)
                  {
                      bytes32 position = NAMESPACE;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          als.slot := position
                      }
                  }
                  /// @dev Contains business logic for validating a contract address.
                  /// @param _contract address of the dex to check
                  function _checkAddress(address _contract) private view {
                      if (_contract == address(0)) revert InvalidContract();
                      if (_contract.code.length == 0) revert InvalidContract();
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
               * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
               *
               * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
               * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
               * need to send a transaction, and thus is not required to hold Ether at all.
               */
              interface IERC20Permit {
                  /**
                   * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                   * given ``owner``'s signed approval.
                   *
                   * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                   * ordering also apply here.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `deadline` must be a timestamp in the future.
                   * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                   * over the EIP712-formatted function arguments.
                   * - the signature must use ``owner``'s current nonce (see {nonces}).
                   *
                   * For more information on the signature format, see the
                   * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                   * section].
                   */
                  function permit(
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) external;
                  /**
                   * @dev Returns the current nonce for `owner`. This value must be
                   * included whenever a signature is generated for {permit}.
                   *
                   * Every successful call to {permit} increases ``owner``'s nonce by one. This
                   * prevents a signature from being used multiple times.
                   */
                  function nonces(address owner) external view returns (uint256);
                  /**
                   * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                   */
                  // solhint-disable-next-line func-name-mixedcase
                  function DOMAIN_SEPARATOR() external view returns (bytes32);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   *
                   * Furthermore, `isContract` will also return true if the target contract within
                   * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
                   * which only has an effect at the end of a transaction.
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                   * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                   *
                   * _Available since v4.8._
                   */
                  function verifyCallResultFromTarget(
                      address target,
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      if (success) {
                          if (returndata.length == 0) {
                              // only check isContract if the call was successful and the return data is empty
                              // otherwise we already know that it was a contract
                              require(isContract(target), "Address: call to non-contract");
                          }
                          return returndata;
                      } else {
                          _revert(returndata, errorMessage);
                      }
                  }
                  /**
                   * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason or using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          _revert(returndata, errorMessage);
                      }
                  }
                  function _revert(bytes memory returndata, string memory errorMessage) private pure {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }