ETH Price: $2,535.54 (+0.34%)

Transaction Decoder

Block:
22584399 at May-28-2025 11:00:59 PM +UTC
Transaction Fee:
0.000176512564406606 ETH $0.45
Gas Used:
121,958 Gas / 1.447322557 Gwei

Emitted Events:

269 TrinityToken.Transfer( from=UniswapV3Pool, to=[Sender] 0xc1638cb8f49f4042c0d529b4c839f1adfa1a2a4c, value=11310000000000000000000 )
270 TetherToken.Transfer( from=[Sender] 0xc1638cb8f49f4042c0d529b4c839f1adfa1a2a4c, to=UniswapV3Pool, value=13495907 )
271 UniswapV3Pool.Swap( sender=[Receiver] SwapRouter02, recipient=[Sender] 0xc1638cb8f49f4042c0d529b4c839f1adfa1a2a4c, amount0=-11310000000000000000000, amount1=13495907, sqrtPriceX96=2735371818377942520800, liquidity=201942814041278551, tick=-343649 )

Account State Difference:

  Address   Before After State Difference Code
0x0fC036CF...9D2DAbbAE
0x5866173F...109Fac7A7
(Uniswap V3: TNT-USDT)
(beaverbuild)
11.29417866087283264 Eth11.29423963987283264 Eth0.000060979
0xc1638cb8...DFA1a2A4C
0.026026913745031903 Eth
Nonce: 420
0.025850401180625297 Eth
Nonce: 421
0.000176512564406606
0xdAC17F95...13D831ec7

Execution Trace

SwapRouter02.exactOutputSingle( params=[{name:tokenIn, type:address, order:1, indexed:false, value:0xdAC17F958D2ee523a2206206994597C13D831ec7, valueString:0xdAC17F958D2ee523a2206206994597C13D831ec7}, {name:tokenOut, type:address, order:2, indexed:false, value:0x0fC036CFD300519170F90b21b92A4349D2DAbbAE, valueString:0x0fC036CFD300519170F90b21b92A4349D2DAbbAE}, {name:fee, type:uint24, order:3, indexed:false, value:3000, valueString:3000}, {name:recipient, type:address, order:4, indexed:false, value:0xc1638cb8f49F4042c0d529b4c839f1ADFA1a2A4C, valueString:0xc1638cb8f49F4042c0d529b4c839f1ADFA1a2A4C}, {name:amountOut, type:uint256, order:5, indexed:false, value:11310000000000000000000, valueString:11310000000000000000000}, {name:amountInMaximum, type:uint256, order:6, indexed:false, value:14100924, valueString:14100924}, {name:sqrtPriceLimitX96, type:uint160, order:7, indexed:false, value:99999999999999997748809823456034029568, valueString:99999999999999997748809823456034029568}] ) => ( amountIn=13495907 )
  • UniswapV3Pool.swap( recipient=0xc1638cb8f49F4042c0d529b4c839f1ADFA1a2A4C, zeroForOne=False, amountSpecified=-11310000000000000000000, sqrtPriceLimitX96=99999999999999997748809823456034029568, data=0x00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000040000000000000000000000000C1638CB8F49F4042C0D529B4C839F1ADFA1A2A4C000000000000000000000000000000000000000000000000000000000000002B0FC036CFD300519170F90B21B92A4349D2DABBAE000BB8DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000000000000000000000 ) => ( amount0=-11310000000000000000000, amount1=13495907 )
    • TrinityToken.transfer( to=0xc1638cb8f49F4042c0d529b4c839f1ADFA1a2A4C, value=11310000000000000000000 ) => ( True )
    • TetherToken.balanceOf( who=0x5866173F35794740B2619812Ed09179109Fac7A7 ) => ( 6484638601 )
    • SwapRouter02.uniswapV3SwapCallback( amount0Delta=-11310000000000000000000, amount1Delta=13495907, _data=0x00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000040000000000000000000000000C1638CB8F49F4042C0D529B4C839F1ADFA1A2A4C000000000000000000000000000000000000000000000000000000000000002B0FC036CFD300519170F90B21B92A4349D2DABBAE000BB8DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000000000000000000000 )
      • TetherToken.transferFrom( _from=0xc1638cb8f49F4042c0d529b4c839f1ADFA1a2A4C, _to=0x5866173F35794740B2619812Ed09179109Fac7A7, _value=13495907 )
      • TetherToken.balanceOf( who=0x5866173F35794740B2619812Ed09179109Fac7A7 ) => ( 6498134508 )
        File 1 of 4: SwapRouter02
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        pragma abicoder v2;
        import '@uniswap/v3-periphery/contracts/base/SelfPermit.sol';
        import '@uniswap/v3-periphery/contracts/base/PeripheryImmutableState.sol';
        import './interfaces/ISwapRouter02.sol';
        import './V2SwapRouter.sol';
        import './V3SwapRouter.sol';
        import './base/ApproveAndCall.sol';
        import './base/MulticallExtended.sol';
        /// @title Uniswap V2 and V3 Swap Router
        contract SwapRouter02 is ISwapRouter02, V2SwapRouter, V3SwapRouter, ApproveAndCall, MulticallExtended, SelfPermit {
            constructor(
                address _factoryV2,
                address factoryV3,
                address _positionManager,
                address _WETH9
            ) ImmutableState(_factoryV2, _positionManager) PeripheryImmutableState(factoryV3, _WETH9) {}
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
        import '@openzeppelin/contracts/drafts/IERC20Permit.sol';
        import '../interfaces/ISelfPermit.sol';
        import '../interfaces/external/IERC20PermitAllowed.sol';
        /// @title Self Permit
        /// @notice Functionality to call permit on any EIP-2612-compliant token for use in the route
        /// @dev These functions are expected to be embedded in multicalls to allow EOAs to approve a contract and call a function
        /// that requires an approval in a single transaction.
        abstract contract SelfPermit is ISelfPermit {
            /// @inheritdoc ISelfPermit
            function selfPermit(
                address token,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) public payable override {
                IERC20Permit(token).permit(msg.sender, address(this), value, deadline, v, r, s);
            }
            /// @inheritdoc ISelfPermit
            function selfPermitIfNecessary(
                address token,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external payable override {
                if (IERC20(token).allowance(msg.sender, address(this)) < value) selfPermit(token, value, deadline, v, r, s);
            }
            /// @inheritdoc ISelfPermit
            function selfPermitAllowed(
                address token,
                uint256 nonce,
                uint256 expiry,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) public payable override {
                IERC20PermitAllowed(token).permit(msg.sender, address(this), nonce, expiry, true, v, r, s);
            }
            /// @inheritdoc ISelfPermit
            function selfPermitAllowedIfNecessary(
                address token,
                uint256 nonce,
                uint256 expiry,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external payable override {
                if (IERC20(token).allowance(msg.sender, address(this)) < type(uint256).max)
                    selfPermitAllowed(token, nonce, expiry, v, r, s);
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        import '../interfaces/IPeripheryImmutableState.sol';
        /// @title Immutable state
        /// @notice Immutable state used by periphery contracts
        abstract contract PeripheryImmutableState is IPeripheryImmutableState {
            /// @inheritdoc IPeripheryImmutableState
            address public immutable override factory;
            /// @inheritdoc IPeripheryImmutableState
            address public immutable override WETH9;
            constructor(address _factory, address _WETH9) {
                factory = _factory;
                WETH9 = _WETH9;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        pragma abicoder v2;
        import '@uniswap/v3-periphery/contracts/interfaces/ISelfPermit.sol';
        import './IV2SwapRouter.sol';
        import './IV3SwapRouter.sol';
        import './IApproveAndCall.sol';
        import './IMulticallExtended.sol';
        /// @title Router token swapping functionality
        interface ISwapRouter02 is IV2SwapRouter, IV3SwapRouter, IApproveAndCall, IMulticallExtended, ISelfPermit {
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        pragma abicoder v2;
        import '@uniswap/v3-core/contracts/libraries/LowGasSafeMath.sol';
        import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
        import './interfaces/IV2SwapRouter.sol';
        import './base/ImmutableState.sol';
        import './base/PeripheryPaymentsWithFeeExtended.sol';
        import './libraries/Constants.sol';
        import './libraries/UniswapV2Library.sol';
        /// @title Uniswap V2 Swap Router
        /// @notice Router for stateless execution of swaps against Uniswap V2
        abstract contract V2SwapRouter is IV2SwapRouter, ImmutableState, PeripheryPaymentsWithFeeExtended {
            using LowGasSafeMath for uint256;
            // supports fee-on-transfer tokens
            // requires the initial amount to have already been sent to the first pair
            function _swap(address[] memory path, address _to) private {
                for (uint256 i; i < path.length - 1; i++) {
                    (address input, address output) = (path[i], path[i + 1]);
                    (address token0, ) = UniswapV2Library.sortTokens(input, output);
                    IUniswapV2Pair pair = IUniswapV2Pair(UniswapV2Library.pairFor(factoryV2, input, output));
                    uint256 amountInput;
                    uint256 amountOutput;
                    // scope to avoid stack too deep errors
                    {
                        (uint256 reserve0, uint256 reserve1, ) = pair.getReserves();
                        (uint256 reserveInput, uint256 reserveOutput) =
                            input == token0 ? (reserve0, reserve1) : (reserve1, reserve0);
                        amountInput = IERC20(input).balanceOf(address(pair)).sub(reserveInput);
                        amountOutput = UniswapV2Library.getAmountOut(amountInput, reserveInput, reserveOutput);
                    }
                    (uint256 amount0Out, uint256 amount1Out) =
                        input == token0 ? (uint256(0), amountOutput) : (amountOutput, uint256(0));
                    address to = i < path.length - 2 ? UniswapV2Library.pairFor(factoryV2, output, path[i + 2]) : _to;
                    pair.swap(amount0Out, amount1Out, to, new bytes(0));
                }
            }
            /// @inheritdoc IV2SwapRouter
            function swapExactTokensForTokens(
                uint256 amountIn,
                uint256 amountOutMin,
                address[] calldata path,
                address to
            ) external payable override returns (uint256 amountOut) {
                // use amountIn == Constants.CONTRACT_BALANCE as a flag to swap the entire balance of the contract
                bool hasAlreadyPaid;
                if (amountIn == Constants.CONTRACT_BALANCE) {
                    hasAlreadyPaid = true;
                    amountIn = IERC20(path[0]).balanceOf(address(this));
                }
                pay(
                    path[0],
                    hasAlreadyPaid ? address(this) : msg.sender,
                    UniswapV2Library.pairFor(factoryV2, path[0], path[1]),
                    amountIn
                );
                // find and replace to addresses
                if (to == Constants.MSG_SENDER) to = msg.sender;
                else if (to == Constants.ADDRESS_THIS) to = address(this);
                uint256 balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);
                _swap(path, to);
                amountOut = IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore);
                require(amountOut >= amountOutMin, 'Too little received');
            }
            /// @inheritdoc IV2SwapRouter
            function swapTokensForExactTokens(
                uint256 amountOut,
                uint256 amountInMax,
                address[] calldata path,
                address to
            ) external payable override returns (uint256 amountIn) {
                amountIn = UniswapV2Library.getAmountsIn(factoryV2, amountOut, path)[0];
                require(amountIn <= amountInMax, 'Too much requested');
                pay(path[0], msg.sender, UniswapV2Library.pairFor(factoryV2, path[0], path[1]), amountIn);
                // find and replace to addresses
                if (to == Constants.MSG_SENDER) to = msg.sender;
                else if (to == Constants.ADDRESS_THIS) to = address(this);
                _swap(path, to);
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        pragma abicoder v2;
        import '@uniswap/v3-core/contracts/libraries/SafeCast.sol';
        import '@uniswap/v3-core/contracts/libraries/TickMath.sol';
        import '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol';
        import '@uniswap/v3-periphery/contracts/libraries/Path.sol';
        import '@uniswap/v3-periphery/contracts/libraries/PoolAddress.sol';
        import '@uniswap/v3-periphery/contracts/libraries/CallbackValidation.sol';
        import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
        import './interfaces/IV3SwapRouter.sol';
        import './base/PeripheryPaymentsWithFeeExtended.sol';
        import './base/OracleSlippage.sol';
        import './libraries/Constants.sol';
        /// @title Uniswap V3 Swap Router
        /// @notice Router for stateless execution of swaps against Uniswap V3
        abstract contract V3SwapRouter is IV3SwapRouter, PeripheryPaymentsWithFeeExtended, OracleSlippage {
            using Path for bytes;
            using SafeCast for uint256;
            /// @dev Used as the placeholder value for amountInCached, because the computed amount in for an exact output swap
            /// can never actually be this value
            uint256 private constant DEFAULT_AMOUNT_IN_CACHED = type(uint256).max;
            /// @dev Transient storage variable used for returning the computed amount in for an exact output swap.
            uint256 private amountInCached = DEFAULT_AMOUNT_IN_CACHED;
            /// @dev Returns the pool for the given token pair and fee. The pool contract may or may not exist.
            function getPool(
                address tokenA,
                address tokenB,
                uint24 fee
            ) private view returns (IUniswapV3Pool) {
                return IUniswapV3Pool(PoolAddress.computeAddress(factory, PoolAddress.getPoolKey(tokenA, tokenB, fee)));
            }
            struct SwapCallbackData {
                bytes path;
                address payer;
            }
            /// @inheritdoc IUniswapV3SwapCallback
            function uniswapV3SwapCallback(
                int256 amount0Delta,
                int256 amount1Delta,
                bytes calldata _data
            ) external override {
                require(amount0Delta > 0 || amount1Delta > 0); // swaps entirely within 0-liquidity regions are not supported
                SwapCallbackData memory data = abi.decode(_data, (SwapCallbackData));
                (address tokenIn, address tokenOut, uint24 fee) = data.path.decodeFirstPool();
                CallbackValidation.verifyCallback(factory, tokenIn, tokenOut, fee);
                (bool isExactInput, uint256 amountToPay) =
                    amount0Delta > 0
                        ? (tokenIn < tokenOut, uint256(amount0Delta))
                        : (tokenOut < tokenIn, uint256(amount1Delta));
                if (isExactInput) {
                    pay(tokenIn, data.payer, msg.sender, amountToPay);
                } else {
                    // either initiate the next swap or pay
                    if (data.path.hasMultiplePools()) {
                        data.path = data.path.skipToken();
                        exactOutputInternal(amountToPay, msg.sender, 0, data);
                    } else {
                        amountInCached = amountToPay;
                        // note that because exact output swaps are executed in reverse order, tokenOut is actually tokenIn
                        pay(tokenOut, data.payer, msg.sender, amountToPay);
                    }
                }
            }
            /// @dev Performs a single exact input swap
            function exactInputInternal(
                uint256 amountIn,
                address recipient,
                uint160 sqrtPriceLimitX96,
                SwapCallbackData memory data
            ) private returns (uint256 amountOut) {
                // find and replace recipient addresses
                if (recipient == Constants.MSG_SENDER) recipient = msg.sender;
                else if (recipient == Constants.ADDRESS_THIS) recipient = address(this);
                (address tokenIn, address tokenOut, uint24 fee) = data.path.decodeFirstPool();
                bool zeroForOne = tokenIn < tokenOut;
                (int256 amount0, int256 amount1) =
                    getPool(tokenIn, tokenOut, fee).swap(
                        recipient,
                        zeroForOne,
                        amountIn.toInt256(),
                        sqrtPriceLimitX96 == 0
                            ? (zeroForOne ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1)
                            : sqrtPriceLimitX96,
                        abi.encode(data)
                    );
                return uint256(-(zeroForOne ? amount1 : amount0));
            }
            /// @inheritdoc IV3SwapRouter
            function exactInputSingle(ExactInputSingleParams memory params)
                external
                payable
                override
                returns (uint256 amountOut)
            {
                // use amountIn == Constants.CONTRACT_BALANCE as a flag to swap the entire balance of the contract
                bool hasAlreadyPaid;
                if (params.amountIn == Constants.CONTRACT_BALANCE) {
                    hasAlreadyPaid = true;
                    params.amountIn = IERC20(params.tokenIn).balanceOf(address(this));
                }
                amountOut = exactInputInternal(
                    params.amountIn,
                    params.recipient,
                    params.sqrtPriceLimitX96,
                    SwapCallbackData({
                        path: abi.encodePacked(params.tokenIn, params.fee, params.tokenOut),
                        payer: hasAlreadyPaid ? address(this) : msg.sender
                    })
                );
                require(amountOut >= params.amountOutMinimum, 'Too little received');
            }
            /// @inheritdoc IV3SwapRouter
            function exactInput(ExactInputParams memory params) external payable override returns (uint256 amountOut) {
                // use amountIn == Constants.CONTRACT_BALANCE as a flag to swap the entire balance of the contract
                bool hasAlreadyPaid;
                if (params.amountIn == Constants.CONTRACT_BALANCE) {
                    hasAlreadyPaid = true;
                    (address tokenIn, , ) = params.path.decodeFirstPool();
                    params.amountIn = IERC20(tokenIn).balanceOf(address(this));
                }
                address payer = hasAlreadyPaid ? address(this) : msg.sender;
                while (true) {
                    bool hasMultiplePools = params.path.hasMultiplePools();
                    // the outputs of prior swaps become the inputs to subsequent ones
                    params.amountIn = exactInputInternal(
                        params.amountIn,
                        hasMultiplePools ? address(this) : params.recipient, // for intermediate swaps, this contract custodies
                        0,
                        SwapCallbackData({
                            path: params.path.getFirstPool(), // only the first pool in the path is necessary
                            payer: payer
                        })
                    );
                    // decide whether to continue or terminate
                    if (hasMultiplePools) {
                        payer = address(this);
                        params.path = params.path.skipToken();
                    } else {
                        amountOut = params.amountIn;
                        break;
                    }
                }
                require(amountOut >= params.amountOutMinimum, 'Too little received');
            }
            /// @dev Performs a single exact output swap
            function exactOutputInternal(
                uint256 amountOut,
                address recipient,
                uint160 sqrtPriceLimitX96,
                SwapCallbackData memory data
            ) private returns (uint256 amountIn) {
                // find and replace recipient addresses
                if (recipient == Constants.MSG_SENDER) recipient = msg.sender;
                else if (recipient == Constants.ADDRESS_THIS) recipient = address(this);
                (address tokenOut, address tokenIn, uint24 fee) = data.path.decodeFirstPool();
                bool zeroForOne = tokenIn < tokenOut;
                (int256 amount0Delta, int256 amount1Delta) =
                    getPool(tokenIn, tokenOut, fee).swap(
                        recipient,
                        zeroForOne,
                        -amountOut.toInt256(),
                        sqrtPriceLimitX96 == 0
                            ? (zeroForOne ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1)
                            : sqrtPriceLimitX96,
                        abi.encode(data)
                    );
                uint256 amountOutReceived;
                (amountIn, amountOutReceived) = zeroForOne
                    ? (uint256(amount0Delta), uint256(-amount1Delta))
                    : (uint256(amount1Delta), uint256(-amount0Delta));
                // it's technically possible to not receive the full output amount,
                // so if no price limit has been specified, require this possibility away
                if (sqrtPriceLimitX96 == 0) require(amountOutReceived == amountOut);
            }
            /// @inheritdoc IV3SwapRouter
            function exactOutputSingle(ExactOutputSingleParams calldata params)
                external
                payable
                override
                returns (uint256 amountIn)
            {
                // avoid an SLOAD by using the swap return data
                amountIn = exactOutputInternal(
                    params.amountOut,
                    params.recipient,
                    params.sqrtPriceLimitX96,
                    SwapCallbackData({path: abi.encodePacked(params.tokenOut, params.fee, params.tokenIn), payer: msg.sender})
                );
                require(amountIn <= params.amountInMaximum, 'Too much requested');
                // has to be reset even though we don't use it in the single hop case
                amountInCached = DEFAULT_AMOUNT_IN_CACHED;
            }
            /// @inheritdoc IV3SwapRouter
            function exactOutput(ExactOutputParams calldata params) external payable override returns (uint256 amountIn) {
                exactOutputInternal(
                    params.amountOut,
                    params.recipient,
                    0,
                    SwapCallbackData({path: params.path, payer: msg.sender})
                );
                amountIn = amountInCached;
                require(amountIn <= params.amountInMaximum, 'Too much requested');
                amountInCached = DEFAULT_AMOUNT_IN_CACHED;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        pragma abicoder v2;
        import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
        import '@uniswap/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol';
        import '../interfaces/IApproveAndCall.sol';
        import './ImmutableState.sol';
        /// @title Approve and Call
        /// @notice Allows callers to approve the Uniswap V3 position manager from this contract,
        /// for any token, and then make calls into the position manager
        abstract contract ApproveAndCall is IApproveAndCall, ImmutableState {
            function tryApprove(address token, uint256 amount) private returns (bool) {
                (bool success, bytes memory data) =
                    token.call(abi.encodeWithSelector(IERC20.approve.selector, positionManager, amount));
                return success && (data.length == 0 || abi.decode(data, (bool)));
            }
            /// @inheritdoc IApproveAndCall
            function getApprovalType(address token, uint256 amount) external override returns (ApprovalType) {
                // check existing approval
                if (IERC20(token).allowance(address(this), positionManager) >= amount) return ApprovalType.NOT_REQUIRED;
                // try type(uint256).max / type(uint256).max - 1
                if (tryApprove(token, type(uint256).max)) return ApprovalType.MAX;
                if (tryApprove(token, type(uint256).max - 1)) return ApprovalType.MAX_MINUS_ONE;
                // set approval to 0 (must succeed)
                require(tryApprove(token, 0));
                // try type(uint256).max / type(uint256).max - 1
                if (tryApprove(token, type(uint256).max)) return ApprovalType.ZERO_THEN_MAX;
                if (tryApprove(token, type(uint256).max - 1)) return ApprovalType.ZERO_THEN_MAX_MINUS_ONE;
                revert();
            }
            /// @inheritdoc IApproveAndCall
            function approveMax(address token) external payable override {
                require(tryApprove(token, type(uint256).max));
            }
            /// @inheritdoc IApproveAndCall
            function approveMaxMinusOne(address token) external payable override {
                require(tryApprove(token, type(uint256).max - 1));
            }
            /// @inheritdoc IApproveAndCall
            function approveZeroThenMax(address token) external payable override {
                require(tryApprove(token, 0));
                require(tryApprove(token, type(uint256).max));
            }
            /// @inheritdoc IApproveAndCall
            function approveZeroThenMaxMinusOne(address token) external payable override {
                require(tryApprove(token, 0));
                require(tryApprove(token, type(uint256).max - 1));
            }
            /// @inheritdoc IApproveAndCall
            function callPositionManager(bytes memory data) public payable override returns (bytes memory result) {
                bool success;
                (success, result) = positionManager.call(data);
                if (!success) {
                    // Next 5 lines from https://ethereum.stackexchange.com/a/83577
                    if (result.length < 68) revert();
                    assembly {
                        result := add(result, 0x04)
                    }
                    revert(abi.decode(result, (string)));
                }
            }
            function balanceOf(address token) private view returns (uint256) {
                return IERC20(token).balanceOf(address(this));
            }
            /// @inheritdoc IApproveAndCall
            function mint(MintParams calldata params) external payable override returns (bytes memory result) {
                return
                    callPositionManager(
                        abi.encodeWithSelector(
                            INonfungiblePositionManager.mint.selector,
                            INonfungiblePositionManager.MintParams({
                                token0: params.token0,
                                token1: params.token1,
                                fee: params.fee,
                                tickLower: params.tickLower,
                                tickUpper: params.tickUpper,
                                amount0Desired: balanceOf(params.token0),
                                amount1Desired: balanceOf(params.token1),
                                amount0Min: params.amount0Min,
                                amount1Min: params.amount1Min,
                                recipient: params.recipient,
                                deadline: type(uint256).max // deadline should be checked via multicall
                            })
                        )
                    );
            }
            /// @inheritdoc IApproveAndCall
            function increaseLiquidity(IncreaseLiquidityParams calldata params)
                external
                payable
                override
                returns (bytes memory result)
            {
                return
                    callPositionManager(
                        abi.encodeWithSelector(
                            INonfungiblePositionManager.increaseLiquidity.selector,
                            INonfungiblePositionManager.IncreaseLiquidityParams({
                                tokenId: params.tokenId,
                                amount0Desired: balanceOf(params.token0),
                                amount1Desired: balanceOf(params.token1),
                                amount0Min: params.amount0Min,
                                amount1Min: params.amount1Min,
                                deadline: type(uint256).max // deadline should be checked via multicall
                            })
                        )
                    );
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        pragma abicoder v2;
        import '@uniswap/v3-periphery/contracts/base/Multicall.sol';
        import '../interfaces/IMulticallExtended.sol';
        import '../base/PeripheryValidationExtended.sol';
        /// @title Multicall
        /// @notice Enables calling multiple methods in a single call to the contract
        abstract contract MulticallExtended is IMulticallExtended, Multicall, PeripheryValidationExtended {
            /// @inheritdoc IMulticallExtended
            function multicall(uint256 deadline, bytes[] calldata data)
                external
                payable
                override
                checkDeadline(deadline)
                returns (bytes[] memory)
            {
                return multicall(data);
            }
            /// @inheritdoc IMulticallExtended
            function multicall(bytes32 previousBlockhash, bytes[] calldata data)
                external
                payable
                override
                checkPreviousBlockhash(previousBlockhash)
                returns (bytes[] memory)
            {
                return multicall(data);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.7.0;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves `amount` tokens from the caller's account to `recipient`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address recipient, uint256 amount) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
            /**
             * @dev Moves `amount` tokens from `sender` to `recipient` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /**
         * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
         * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
         *
         * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
         * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
         * need to send a transaction, and thus is not required to hold Ether at all.
         */
        interface IERC20Permit {
            /**
             * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
             * given `owner`'s signed approval.
             *
             * IMPORTANT: The same issues {IERC20-approve} has related to transaction
             * ordering also apply here.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `deadline` must be a timestamp in the future.
             * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
             * over the EIP712-formatted function arguments.
             * - the signature must use ``owner``'s current nonce (see {nonces}).
             *
             * For more information on the signature format, see the
             * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
             * section].
             */
            function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external;
            /**
             * @dev Returns the current nonce for `owner`. This value must be
             * included whenever a signature is generated for {permit}.
             *
             * Every successful call to {permit} increases ``owner``'s nonce by one. This
             * prevents a signature from being used multiple times.
             */
            function nonces(address owner) external view returns (uint256);
            /**
             * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
             */
            // solhint-disable-next-line func-name-mixedcase
            function DOMAIN_SEPARATOR() external view returns (bytes32);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        /// @title Self Permit
        /// @notice Functionality to call permit on any EIP-2612-compliant token for use in the route
        interface ISelfPermit {
            /// @notice Permits this contract to spend a given token from `msg.sender`
            /// @dev The `owner` is always msg.sender and the `spender` is always address(this).
            /// @param token The address of the token spent
            /// @param value The amount that can be spent of token
            /// @param deadline A timestamp, the current blocktime must be less than or equal to this timestamp
            /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
            /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
            /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
            function selfPermit(
                address token,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external payable;
            /// @notice Permits this contract to spend a given token from `msg.sender`
            /// @dev The `owner` is always msg.sender and the `spender` is always address(this).
            /// Can be used instead of #selfPermit to prevent calls from failing due to a frontrun of a call to #selfPermit
            /// @param token The address of the token spent
            /// @param value The amount that can be spent of token
            /// @param deadline A timestamp, the current blocktime must be less than or equal to this timestamp
            /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
            /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
            /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
            function selfPermitIfNecessary(
                address token,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external payable;
            /// @notice Permits this contract to spend the sender's tokens for permit signatures that have the `allowed` parameter
            /// @dev The `owner` is always msg.sender and the `spender` is always address(this)
            /// @param token The address of the token spent
            /// @param nonce The current nonce of the owner
            /// @param expiry The timestamp at which the permit is no longer valid
            /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
            /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
            /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
            function selfPermitAllowed(
                address token,
                uint256 nonce,
                uint256 expiry,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external payable;
            /// @notice Permits this contract to spend the sender's tokens for permit signatures that have the `allowed` parameter
            /// @dev The `owner` is always msg.sender and the `spender` is always address(this)
            /// Can be used instead of #selfPermitAllowed to prevent calls from failing due to a frontrun of a call to #selfPermitAllowed.
            /// @param token The address of the token spent
            /// @param nonce The current nonce of the owner
            /// @param expiry The timestamp at which the permit is no longer valid
            /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
            /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
            /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
            function selfPermitAllowedIfNecessary(
                address token,
                uint256 nonce,
                uint256 expiry,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external payable;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Interface for permit
        /// @notice Interface used by DAI/CHAI for permit
        interface IERC20PermitAllowed {
            /// @notice Approve the spender to spend some tokens via the holder signature
            /// @dev This is the permit interface used by DAI and CHAI
            /// @param holder The address of the token holder, the token owner
            /// @param spender The address of the token spender
            /// @param nonce The holder's nonce, increases at each call to permit
            /// @param expiry The timestamp at which the permit is no longer valid
            /// @param allowed Boolean that sets approval amount, true for type(uint256).max and false for 0
            /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
            /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
            /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
            function permit(
                address holder,
                address spender,
                uint256 nonce,
                uint256 expiry,
                bool allowed,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Immutable state
        /// @notice Functions that return immutable state of the router
        interface IPeripheryImmutableState {
            /// @return Returns the address of the Uniswap V3 factory
            function factory() external view returns (address);
            /// @return Returns the address of WETH9
            function WETH9() external view returns (address);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        pragma abicoder v2;
        /// @title Router token swapping functionality
        /// @notice Functions for swapping tokens via Uniswap V2
        interface IV2SwapRouter {
            /// @notice Swaps `amountIn` of one token for as much as possible of another token
            /// @dev Setting `amountIn` to 0 will cause the contract to look up its own balance,
            /// and swap the entire amount, enabling contracts to send tokens before calling this function.
            /// @param amountIn The amount of token to swap
            /// @param amountOutMin The minimum amount of output that must be received
            /// @param path The ordered list of tokens to swap through
            /// @param to The recipient address
            /// @return amountOut The amount of the received token
            function swapExactTokensForTokens(
                uint256 amountIn,
                uint256 amountOutMin,
                address[] calldata path,
                address to
            ) external payable returns (uint256 amountOut);
            /// @notice Swaps as little as possible of one token for an exact amount of another token
            /// @param amountOut The amount of token to swap for
            /// @param amountInMax The maximum amount of input that the caller will pay
            /// @param path The ordered list of tokens to swap through
            /// @param to The recipient address
            /// @return amountIn The amount of token to pay
            function swapTokensForExactTokens(
                uint256 amountOut,
                uint256 amountInMax,
                address[] calldata path,
                address to
            ) external payable returns (uint256 amountIn);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        pragma abicoder v2;
        import '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol';
        /// @title Router token swapping functionality
        /// @notice Functions for swapping tokens via Uniswap V3
        interface IV3SwapRouter is IUniswapV3SwapCallback {
            struct ExactInputSingleParams {
                address tokenIn;
                address tokenOut;
                uint24 fee;
                address recipient;
                uint256 amountIn;
                uint256 amountOutMinimum;
                uint160 sqrtPriceLimitX96;
            }
            /// @notice Swaps `amountIn` of one token for as much as possible of another token
            /// @dev Setting `amountIn` to 0 will cause the contract to look up its own balance,
            /// and swap the entire amount, enabling contracts to send tokens before calling this function.
            /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
            /// @return amountOut The amount of the received token
            function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);
            struct ExactInputParams {
                bytes path;
                address recipient;
                uint256 amountIn;
                uint256 amountOutMinimum;
            }
            /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path
            /// @dev Setting `amountIn` to 0 will cause the contract to look up its own balance,
            /// and swap the entire amount, enabling contracts to send tokens before calling this function.
            /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata
            /// @return amountOut The amount of the received token
            function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut);
            struct ExactOutputSingleParams {
                address tokenIn;
                address tokenOut;
                uint24 fee;
                address recipient;
                uint256 amountOut;
                uint256 amountInMaximum;
                uint160 sqrtPriceLimitX96;
            }
            /// @notice Swaps as little as possible of one token for `amountOut` of another token
            /// that may remain in the router after the swap.
            /// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata
            /// @return amountIn The amount of the input token
            function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn);
            struct ExactOutputParams {
                bytes path;
                address recipient;
                uint256 amountOut;
                uint256 amountInMaximum;
            }
            /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed)
            /// that may remain in the router after the swap.
            /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata
            /// @return amountIn The amount of the input token
            function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        pragma abicoder v2;
        interface IApproveAndCall {
            enum ApprovalType {NOT_REQUIRED, MAX, MAX_MINUS_ONE, ZERO_THEN_MAX, ZERO_THEN_MAX_MINUS_ONE}
            /// @dev Lens to be called off-chain to determine which (if any) of the relevant approval functions should be called
            /// @param token The token to approve
            /// @param amount The amount to approve
            /// @return The required approval type
            function getApprovalType(address token, uint256 amount) external returns (ApprovalType);
            /// @notice Approves a token for the maximum possible amount
            /// @param token The token to approve
            function approveMax(address token) external payable;
            /// @notice Approves a token for the maximum possible amount minus one
            /// @param token The token to approve
            function approveMaxMinusOne(address token) external payable;
            /// @notice Approves a token for zero, then the maximum possible amount
            /// @param token The token to approve
            function approveZeroThenMax(address token) external payable;
            /// @notice Approves a token for zero, then the maximum possible amount minus one
            /// @param token The token to approve
            function approveZeroThenMaxMinusOne(address token) external payable;
            /// @notice Calls the position manager with arbitrary calldata
            /// @param data Calldata to pass along to the position manager
            /// @return result The result from the call
            function callPositionManager(bytes memory data) external payable returns (bytes memory result);
            struct MintParams {
                address token0;
                address token1;
                uint24 fee;
                int24 tickLower;
                int24 tickUpper;
                uint256 amount0Min;
                uint256 amount1Min;
                address recipient;
            }
            /// @notice Calls the position manager's mint function
            /// @param params Calldata to pass along to the position manager
            /// @return result The result from the call
            function mint(MintParams calldata params) external payable returns (bytes memory result);
            struct IncreaseLiquidityParams {
                address token0;
                address token1;
                uint256 tokenId;
                uint256 amount0Min;
                uint256 amount1Min;
            }
            /// @notice Calls the position manager's increaseLiquidity function
            /// @param params Calldata to pass along to the position manager
            /// @return result The result from the call
            function increaseLiquidity(IncreaseLiquidityParams calldata params) external payable returns (bytes memory result);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        pragma abicoder v2;
        import '@uniswap/v3-periphery/contracts/interfaces/IMulticall.sol';
        /// @title MulticallExtended interface
        /// @notice Enables calling multiple methods in a single call to the contract with optional validation
        interface IMulticallExtended is IMulticall {
            /// @notice Call multiple functions in the current contract and return the data from all of them if they all succeed
            /// @dev The `msg.value` should not be trusted for any method callable from multicall.
            /// @param deadline The time by which this function must be called before failing
            /// @param data The encoded function data for each of the calls to make to this contract
            /// @return results The results from each of the calls passed in via data
            function multicall(uint256 deadline, bytes[] calldata data) external payable returns (bytes[] memory results);
            /// @notice Call multiple functions in the current contract and return the data from all of them if they all succeed
            /// @dev The `msg.value` should not be trusted for any method callable from multicall.
            /// @param previousBlockhash The expected parent blockHash
            /// @param data The encoded function data for each of the calls to make to this contract
            /// @return results The results from each of the calls passed in via data
            function multicall(bytes32 previousBlockhash, bytes[] calldata data)
                external
                payable
                returns (bytes[] memory results);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Callback for IUniswapV3PoolActions#swap
        /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
        interface IUniswapV3SwapCallback {
            /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
            /// @dev In the implementation you must pay the pool tokens owed for the swap.
            /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
            /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
            /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
            /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
            /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
            /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
            /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
            function uniswapV3SwapCallback(
                int256 amount0Delta,
                int256 amount1Delta,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        pragma abicoder v2;
        /// @title Multicall interface
        /// @notice Enables calling multiple methods in a single call to the contract
        interface IMulticall {
            /// @notice Call multiple functions in the current contract and return the data from all of them if they all succeed
            /// @dev The `msg.value` should not be trusted for any method callable from multicall.
            /// @param data The encoded function data for each of the calls to make to this contract
            /// @return results The results from each of the calls passed in via data
            function multicall(bytes[] calldata data) external payable returns (bytes[] memory results);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.0;
        /// @title Optimized overflow and underflow safe math operations
        /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
        library LowGasSafeMath {
            /// @notice Returns x + y, reverts if sum overflows uint256
            /// @param x The augend
            /// @param y The addend
            /// @return z The sum of x and y
            function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
                require((z = x + y) >= x);
            }
            /// @notice Returns x - y, reverts if underflows
            /// @param x The minuend
            /// @param y The subtrahend
            /// @return z The difference of x and y
            function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                require((z = x - y) <= x);
            }
            /// @notice Returns x * y, reverts if overflows
            /// @param x The multiplicand
            /// @param y The multiplier
            /// @return z The product of x and y
            function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                require(x == 0 || (z = x * y) / x == y);
            }
            /// @notice Returns x + y, reverts if overflows or underflows
            /// @param x The augend
            /// @param y The addend
            /// @return z The sum of x and y
            function add(int256 x, int256 y) internal pure returns (int256 z) {
                require((z = x + y) >= x == (y >= 0));
            }
            /// @notice Returns x - y, reverts if overflows or underflows
            /// @param x The minuend
            /// @param y The subtrahend
            /// @return z The difference of x and y
            function sub(int256 x, int256 y) internal pure returns (int256 z) {
                require((z = x - y) <= x == (y >= 0));
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        import '../interfaces/IImmutableState.sol';
        /// @title Immutable state
        /// @notice Immutable state used by the swap router
        abstract contract ImmutableState is IImmutableState {
            /// @inheritdoc IImmutableState
            address public immutable override factoryV2;
            /// @inheritdoc IImmutableState
            address public immutable override positionManager;
            constructor(address _factoryV2, address _positionManager) {
                factoryV2 = _factoryV2;
                positionManager = _positionManager;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        import '@uniswap/v3-periphery/contracts/base/PeripheryPaymentsWithFee.sol';
        import '../interfaces/IPeripheryPaymentsWithFeeExtended.sol';
        import './PeripheryPaymentsExtended.sol';
        abstract contract PeripheryPaymentsWithFeeExtended is
            IPeripheryPaymentsWithFeeExtended,
            PeripheryPaymentsExtended,
            PeripheryPaymentsWithFee
        {
            /// @inheritdoc IPeripheryPaymentsWithFeeExtended
            function unwrapWETH9WithFee(
                uint256 amountMinimum,
                uint256 feeBips,
                address feeRecipient
            ) external payable override {
                unwrapWETH9WithFee(amountMinimum, msg.sender, feeBips, feeRecipient);
            }
            /// @inheritdoc IPeripheryPaymentsWithFeeExtended
            function sweepTokenWithFee(
                address token,
                uint256 amountMinimum,
                uint256 feeBips,
                address feeRecipient
            ) external payable override {
                sweepTokenWithFee(token, amountMinimum, msg.sender, feeBips, feeRecipient);
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        /// @title Constant state
        /// @notice Constant state used by the swap router
        library Constants {
            /// @dev Used for identifying cases when this contract's balance of a token is to be used
            uint256 internal constant CONTRACT_BALANCE = 0;
            /// @dev Used as a flag for identifying msg.sender, saves gas by sending more 0 bytes
            address internal constant MSG_SENDER = address(1);
            /// @dev Used as a flag for identifying address(this), saves gas by sending more 0 bytes
            address internal constant ADDRESS_THIS = address(2);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        import '@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol';
        import '@uniswap/v3-core/contracts/libraries/LowGasSafeMath.sol';
        library UniswapV2Library {
            using LowGasSafeMath for uint256;
            // returns sorted token addresses, used to handle return values from pairs sorted in this order
            function sortTokens(address tokenA, address tokenB) internal pure returns (address token0, address token1) {
                require(tokenA != tokenB);
                (token0, token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
                require(token0 != address(0));
            }
            // calculates the CREATE2 address for a pair without making any external calls
            function pairFor(
                address factory,
                address tokenA,
                address tokenB
            ) internal pure returns (address pair) {
                (address token0, address token1) = sortTokens(tokenA, tokenB);
                pair = address(
                    uint256(
                        keccak256(
                            abi.encodePacked(
                                hex'ff',
                                factory,
                                keccak256(abi.encodePacked(token0, token1)),
                                hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' // init code hash
                            )
                        )
                    )
                );
            }
            // fetches and sorts the reserves for a pair
            function getReserves(
                address factory,
                address tokenA,
                address tokenB
            ) internal view returns (uint256 reserveA, uint256 reserveB) {
                (address token0, ) = sortTokens(tokenA, tokenB);
                (uint256 reserve0, uint256 reserve1, ) = IUniswapV2Pair(pairFor(factory, tokenA, tokenB)).getReserves();
                (reserveA, reserveB) = tokenA == token0 ? (reserve0, reserve1) : (reserve1, reserve0);
            }
            // given an input amount of an asset and pair reserves, returns the maximum output amount of the other asset
            function getAmountOut(
                uint256 amountIn,
                uint256 reserveIn,
                uint256 reserveOut
            ) internal pure returns (uint256 amountOut) {
                require(amountIn > 0, 'INSUFFICIENT_INPUT_AMOUNT');
                require(reserveIn > 0 && reserveOut > 0);
                uint256 amountInWithFee = amountIn.mul(997);
                uint256 numerator = amountInWithFee.mul(reserveOut);
                uint256 denominator = reserveIn.mul(1000).add(amountInWithFee);
                amountOut = numerator / denominator;
            }
            // given an output amount of an asset and pair reserves, returns a required input amount of the other asset
            function getAmountIn(
                uint256 amountOut,
                uint256 reserveIn,
                uint256 reserveOut
            ) internal pure returns (uint256 amountIn) {
                require(amountOut > 0, 'INSUFFICIENT_OUTPUT_AMOUNT');
                require(reserveIn > 0 && reserveOut > 0);
                uint256 numerator = reserveIn.mul(amountOut).mul(1000);
                uint256 denominator = reserveOut.sub(amountOut).mul(997);
                amountIn = (numerator / denominator).add(1);
            }
            // performs chained getAmountIn calculations on any number of pairs
            function getAmountsIn(
                address factory,
                uint256 amountOut,
                address[] memory path
            ) internal view returns (uint256[] memory amounts) {
                require(path.length >= 2);
                amounts = new uint256[](path.length);
                amounts[amounts.length - 1] = amountOut;
                for (uint256 i = path.length - 1; i > 0; i--) {
                    (uint256 reserveIn, uint256 reserveOut) = getReserves(factory, path[i - 1], path[i]);
                    amounts[i - 1] = getAmountIn(amounts[i], reserveIn, reserveOut);
                }
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Immutable state
        /// @notice Functions that return immutable state of the router
        interface IImmutableState {
            /// @return Returns the address of the Uniswap V2 factory
            function factoryV2() external view returns (address);
            /// @return Returns the address of Uniswap V3 NFT position manager
            function positionManager() external view returns (address);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
        import '@uniswap/v3-core/contracts/libraries/LowGasSafeMath.sol';
        import './PeripheryPayments.sol';
        import '../interfaces/IPeripheryPaymentsWithFee.sol';
        import '../interfaces/external/IWETH9.sol';
        import '../libraries/TransferHelper.sol';
        abstract contract PeripheryPaymentsWithFee is PeripheryPayments, IPeripheryPaymentsWithFee {
            using LowGasSafeMath for uint256;
            /// @inheritdoc IPeripheryPaymentsWithFee
            function unwrapWETH9WithFee(
                uint256 amountMinimum,
                address recipient,
                uint256 feeBips,
                address feeRecipient
            ) public payable override {
                require(feeBips > 0 && feeBips <= 100);
                uint256 balanceWETH9 = IWETH9(WETH9).balanceOf(address(this));
                require(balanceWETH9 >= amountMinimum, 'Insufficient WETH9');
                if (balanceWETH9 > 0) {
                    IWETH9(WETH9).withdraw(balanceWETH9);
                    uint256 feeAmount = balanceWETH9.mul(feeBips) / 10_000;
                    if (feeAmount > 0) TransferHelper.safeTransferETH(feeRecipient, feeAmount);
                    TransferHelper.safeTransferETH(recipient, balanceWETH9 - feeAmount);
                }
            }
            /// @inheritdoc IPeripheryPaymentsWithFee
            function sweepTokenWithFee(
                address token,
                uint256 amountMinimum,
                address recipient,
                uint256 feeBips,
                address feeRecipient
            ) public payable override {
                require(feeBips > 0 && feeBips <= 100);
                uint256 balanceToken = IERC20(token).balanceOf(address(this));
                require(balanceToken >= amountMinimum, 'Insufficient token');
                if (balanceToken > 0) {
                    uint256 feeAmount = balanceToken.mul(feeBips) / 10_000;
                    if (feeAmount > 0) TransferHelper.safeTransfer(token, feeRecipient, feeAmount);
                    TransferHelper.safeTransfer(token, recipient, balanceToken - feeAmount);
                }
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        import '@uniswap/v3-periphery/contracts/interfaces/IPeripheryPaymentsWithFee.sol';
        import './IPeripheryPaymentsExtended.sol';
        /// @title Periphery Payments With Fee Extended
        /// @notice Functions to ease deposits and withdrawals of ETH
        interface IPeripheryPaymentsWithFeeExtended is IPeripheryPaymentsExtended, IPeripheryPaymentsWithFee {
            /// @notice Unwraps the contract's WETH9 balance and sends it to msg.sender as ETH, with a percentage between
            /// 0 (exclusive), and 1 (inclusive) going to feeRecipient
            /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
            function unwrapWETH9WithFee(
                uint256 amountMinimum,
                uint256 feeBips,
                address feeRecipient
            ) external payable;
            /// @notice Transfers the full amount of a token held by this contract to msg.sender, with a percentage between
            /// 0 (exclusive) and 1 (inclusive) going to feeRecipient
            /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
            function sweepTokenWithFee(
                address token,
                uint256 amountMinimum,
                uint256 feeBips,
                address feeRecipient
            ) external payable;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        import '@uniswap/v3-periphery/contracts/base/PeripheryPayments.sol';
        import '@uniswap/v3-periphery/contracts/libraries/TransferHelper.sol';
        import '../interfaces/IPeripheryPaymentsExtended.sol';
        abstract contract PeripheryPaymentsExtended is IPeripheryPaymentsExtended, PeripheryPayments {
            /// @inheritdoc IPeripheryPaymentsExtended
            function unwrapWETH9(uint256 amountMinimum) external payable override {
                unwrapWETH9(amountMinimum, msg.sender);
            }
            /// @inheritdoc IPeripheryPaymentsExtended
            function wrapETH(uint256 value) external payable override {
                IWETH9(WETH9).deposit{value: value}();
            }
            /// @inheritdoc IPeripheryPaymentsExtended
            function sweepToken(address token, uint256 amountMinimum) external payable override {
                sweepToken(token, amountMinimum, msg.sender);
            }
            /// @inheritdoc IPeripheryPaymentsExtended
            function pull(address token, uint256 value) external payable override {
                TransferHelper.safeTransferFrom(token, msg.sender, address(this), value);
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
        import '../interfaces/IPeripheryPayments.sol';
        import '../interfaces/external/IWETH9.sol';
        import '../libraries/TransferHelper.sol';
        import './PeripheryImmutableState.sol';
        abstract contract PeripheryPayments is IPeripheryPayments, PeripheryImmutableState {
            receive() external payable {
                require(msg.sender == WETH9, 'Not WETH9');
            }
            /// @inheritdoc IPeripheryPayments
            function unwrapWETH9(uint256 amountMinimum, address recipient) public payable override {
                uint256 balanceWETH9 = IWETH9(WETH9).balanceOf(address(this));
                require(balanceWETH9 >= amountMinimum, 'Insufficient WETH9');
                if (balanceWETH9 > 0) {
                    IWETH9(WETH9).withdraw(balanceWETH9);
                    TransferHelper.safeTransferETH(recipient, balanceWETH9);
                }
            }
            /// @inheritdoc IPeripheryPayments
            function sweepToken(
                address token,
                uint256 amountMinimum,
                address recipient
            ) public payable override {
                uint256 balanceToken = IERC20(token).balanceOf(address(this));
                require(balanceToken >= amountMinimum, 'Insufficient token');
                if (balanceToken > 0) {
                    TransferHelper.safeTransfer(token, recipient, balanceToken);
                }
            }
            /// @inheritdoc IPeripheryPayments
            function refundETH() external payable override {
                if (address(this).balance > 0) TransferHelper.safeTransferETH(msg.sender, address(this).balance);
            }
            /// @param token The token to pay
            /// @param payer The entity that must pay
            /// @param recipient The entity that will receive payment
            /// @param value The amount to pay
            function pay(
                address token,
                address payer,
                address recipient,
                uint256 value
            ) internal {
                if (token == WETH9 && address(this).balance >= value) {
                    // pay with WETH9
                    IWETH9(WETH9).deposit{value: value}(); // wrap only what is needed to pay
                    IWETH9(WETH9).transfer(recipient, value);
                } else if (payer == address(this)) {
                    // pay with tokens already in the contract (for the exact input multihop case)
                    TransferHelper.safeTransfer(token, recipient, value);
                } else {
                    // pull payment
                    TransferHelper.safeTransferFrom(token, payer, recipient, value);
                }
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        import './IPeripheryPayments.sol';
        /// @title Periphery Payments
        /// @notice Functions to ease deposits and withdrawals of ETH
        interface IPeripheryPaymentsWithFee is IPeripheryPayments {
            /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH, with a percentage between
            /// 0 (exclusive), and 1 (inclusive) going to feeRecipient
            /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
            function unwrapWETH9WithFee(
                uint256 amountMinimum,
                address recipient,
                uint256 feeBips,
                address feeRecipient
            ) external payable;
            /// @notice Transfers the full amount of a token held by this contract to recipient, with a percentage between
            /// 0 (exclusive) and 1 (inclusive) going to feeRecipient
            /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
            function sweepTokenWithFee(
                address token,
                uint256 amountMinimum,
                address recipient,
                uint256 feeBips,
                address feeRecipient
            ) external payable;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
        /// @title Interface for WETH9
        interface IWETH9 is IERC20 {
            /// @notice Deposit ether to get wrapped ether
            function deposit() external payable;
            /// @notice Withdraw wrapped ether to get ether
            function withdraw(uint256) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.6.0;
        import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
        library TransferHelper {
            /// @notice Transfers tokens from the targeted address to the given destination
            /// @notice Errors with 'STF' if transfer fails
            /// @param token The contract address of the token to be transferred
            /// @param from The originating address from which the tokens will be transferred
            /// @param to The destination address of the transfer
            /// @param value The amount to be transferred
            function safeTransferFrom(
                address token,
                address from,
                address to,
                uint256 value
            ) internal {
                (bool success, bytes memory data) =
                    token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value));
                require(success && (data.length == 0 || abi.decode(data, (bool))), 'STF');
            }
            /// @notice Transfers tokens from msg.sender to a recipient
            /// @dev Errors with ST if transfer fails
            /// @param token The contract address of the token which will be transferred
            /// @param to The recipient of the transfer
            /// @param value The value of the transfer
            function safeTransfer(
                address token,
                address to,
                uint256 value
            ) internal {
                (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
                require(success && (data.length == 0 || abi.decode(data, (bool))), 'ST');
            }
            /// @notice Approves the stipulated contract to spend the given allowance in the given token
            /// @dev Errors with 'SA' if transfer fails
            /// @param token The contract address of the token to be approved
            /// @param to The target of the approval
            /// @param value The amount of the given token the target will be allowed to spend
            function safeApprove(
                address token,
                address to,
                uint256 value
            ) internal {
                (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value));
                require(success && (data.length == 0 || abi.decode(data, (bool))), 'SA');
            }
            /// @notice Transfers ETH to the recipient address
            /// @dev Fails with `STE`
            /// @param to The destination of the transfer
            /// @param value The value to be transferred
            function safeTransferETH(address to, uint256 value) internal {
                (bool success, ) = to.call{value: value}(new bytes(0));
                require(success, 'STE');
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        /// @title Periphery Payments
        /// @notice Functions to ease deposits and withdrawals of ETH
        interface IPeripheryPayments {
            /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH.
            /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
            /// @param amountMinimum The minimum amount of WETH9 to unwrap
            /// @param recipient The address receiving ETH
            function unwrapWETH9(uint256 amountMinimum, address recipient) external payable;
            /// @notice Refunds any ETH balance held by this contract to the `msg.sender`
            /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps
            /// that use ether for the input amount
            function refundETH() external payable;
            /// @notice Transfers the full amount of a token held by this contract to recipient
            /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
            /// @param token The contract address of the token which will be transferred to `recipient`
            /// @param amountMinimum The minimum amount of token required for a transfer
            /// @param recipient The destination address of the token
            function sweepToken(
                address token,
                uint256 amountMinimum,
                address recipient
            ) external payable;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        import '@uniswap/v3-periphery/contracts/interfaces/IPeripheryPayments.sol';
        /// @title Periphery Payments Extended
        /// @notice Functions to ease deposits and withdrawals of ETH and tokens
        interface IPeripheryPaymentsExtended is IPeripheryPayments {
            /// @notice Unwraps the contract's WETH9 balance and sends it to msg.sender as ETH.
            /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
            /// @param amountMinimum The minimum amount of WETH9 to unwrap
            function unwrapWETH9(uint256 amountMinimum) external payable;
            /// @notice Wraps the contract's ETH balance into WETH9
            /// @dev The resulting WETH9 is custodied by the router, thus will require further distribution
            /// @param value The amount of ETH to wrap
            function wrapETH(uint256 value) external payable;
            /// @notice Transfers the full amount of a token held by this contract to msg.sender
            /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
            /// @param token The contract address of the token which will be transferred to msg.sender
            /// @param amountMinimum The minimum amount of token required for a transfer
            function sweepToken(address token, uint256 amountMinimum) external payable;
            /// @notice Transfers the specified amount of a token from the msg.sender to address(this)
            /// @param token The token to pull
            /// @param value The amount to pay
            function pull(address token, uint256 value) external payable;
        }
        pragma solidity >=0.5.0;
        interface IUniswapV2Pair {
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
            function name() external pure returns (string memory);
            function symbol() external pure returns (string memory);
            function decimals() external pure returns (uint8);
            function totalSupply() external view returns (uint);
            function balanceOf(address owner) external view returns (uint);
            function allowance(address owner, address spender) external view returns (uint);
            function approve(address spender, uint value) external returns (bool);
            function transfer(address to, uint value) external returns (bool);
            function transferFrom(address from, address to, uint value) external returns (bool);
            function DOMAIN_SEPARATOR() external view returns (bytes32);
            function PERMIT_TYPEHASH() external pure returns (bytes32);
            function nonces(address owner) external view returns (uint);
            function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
            event Mint(address indexed sender, uint amount0, uint amount1);
            event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
            event Swap(
                address indexed sender,
                uint amount0In,
                uint amount1In,
                uint amount0Out,
                uint amount1Out,
                address indexed to
            );
            event Sync(uint112 reserve0, uint112 reserve1);
            function MINIMUM_LIQUIDITY() external pure returns (uint);
            function factory() external view returns (address);
            function token0() external view returns (address);
            function token1() external view returns (address);
            function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
            function price0CumulativeLast() external view returns (uint);
            function price1CumulativeLast() external view returns (uint);
            function kLast() external view returns (uint);
            function mint(address to) external returns (uint liquidity);
            function burn(address to) external returns (uint amount0, uint amount1);
            function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
            function skim(address to) external;
            function sync() external;
            function initialize(address, address) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Safe casting methods
        /// @notice Contains methods for safely casting between types
        library SafeCast {
            /// @notice Cast a uint256 to a uint160, revert on overflow
            /// @param y The uint256 to be downcasted
            /// @return z The downcasted integer, now type uint160
            function toUint160(uint256 y) internal pure returns (uint160 z) {
                require((z = uint160(y)) == y);
            }
            /// @notice Cast a int256 to a int128, revert on overflow or underflow
            /// @param y The int256 to be downcasted
            /// @return z The downcasted integer, now type int128
            function toInt128(int256 y) internal pure returns (int128 z) {
                require((z = int128(y)) == y);
            }
            /// @notice Cast a uint256 to a int256, revert on overflow
            /// @param y The uint256 to be casted
            /// @return z The casted integer, now type int256
            function toInt256(uint256 y) internal pure returns (int256 z) {
                require(y < 2**255);
                z = int256(y);
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Math library for computing sqrt prices from ticks and vice versa
        /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
        /// prices between 2**-128 and 2**128
        library TickMath {
            /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
            int24 internal constant MIN_TICK = -887272;
            /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
            int24 internal constant MAX_TICK = -MIN_TICK;
            /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
            uint160 internal constant MIN_SQRT_RATIO = 4295128739;
            /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
            uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
            /// @notice Calculates sqrt(1.0001^tick) * 2^96
            /// @dev Throws if |tick| > max tick
            /// @param tick The input tick for the above formula
            /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
            /// at the given tick
            function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
                require(absTick <= uint256(MAX_TICK), 'T');
                uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
                if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
                if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
                if (tick > 0) ratio = type(uint256).max / ratio;
                // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
                sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
            }
            /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
            /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
            /// ever return.
            /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
            /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
            function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                // second inequality must be < because the price can never reach the price at the max tick
                require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
                uint256 ratio = uint256(sqrtPriceX96) << 32;
                uint256 r = ratio;
                uint256 msb = 0;
                assembly {
                    let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(5, gt(r, 0xFFFFFFFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(4, gt(r, 0xFFFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(3, gt(r, 0xFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(2, gt(r, 0xF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(1, gt(r, 0x3))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := gt(r, 0x1)
                    msb := or(msb, f)
                }
                if (msb >= 128) r = ratio >> (msb - 127);
                else r = ratio << (127 - msb);
                int256 log_2 = (int256(msb) - 128) << 64;
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(63, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(62, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(61, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(60, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(59, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(58, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(57, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(56, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(55, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(54, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(53, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(52, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(51, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(50, f))
                }
                int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
                int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        import './pool/IUniswapV3PoolImmutables.sol';
        import './pool/IUniswapV3PoolState.sol';
        import './pool/IUniswapV3PoolDerivedState.sol';
        import './pool/IUniswapV3PoolActions.sol';
        import './pool/IUniswapV3PoolOwnerActions.sol';
        import './pool/IUniswapV3PoolEvents.sol';
        /// @title The interface for a Uniswap V3 Pool
        /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
        /// to the ERC20 specification
        /// @dev The pool interface is broken up into many smaller pieces
        interface IUniswapV3Pool is
            IUniswapV3PoolImmutables,
            IUniswapV3PoolState,
            IUniswapV3PoolDerivedState,
            IUniswapV3PoolActions,
            IUniswapV3PoolOwnerActions,
            IUniswapV3PoolEvents
        {
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.6.0;
        import './BytesLib.sol';
        /// @title Functions for manipulating path data for multihop swaps
        library Path {
            using BytesLib for bytes;
            /// @dev The length of the bytes encoded address
            uint256 private constant ADDR_SIZE = 20;
            /// @dev The length of the bytes encoded fee
            uint256 private constant FEE_SIZE = 3;
            /// @dev The offset of a single token address and pool fee
            uint256 private constant NEXT_OFFSET = ADDR_SIZE + FEE_SIZE;
            /// @dev The offset of an encoded pool key
            uint256 private constant POP_OFFSET = NEXT_OFFSET + ADDR_SIZE;
            /// @dev The minimum length of an encoding that contains 2 or more pools
            uint256 private constant MULTIPLE_POOLS_MIN_LENGTH = POP_OFFSET + NEXT_OFFSET;
            /// @notice Returns true iff the path contains two or more pools
            /// @param path The encoded swap path
            /// @return True if path contains two or more pools, otherwise false
            function hasMultiplePools(bytes memory path) internal pure returns (bool) {
                return path.length >= MULTIPLE_POOLS_MIN_LENGTH;
            }
            /// @notice Returns the number of pools in the path
            /// @param path The encoded swap path
            /// @return The number of pools in the path
            function numPools(bytes memory path) internal pure returns (uint256) {
                // Ignore the first token address. From then on every fee and token offset indicates a pool.
                return ((path.length - ADDR_SIZE) / NEXT_OFFSET);
            }
            /// @notice Decodes the first pool in path
            /// @param path The bytes encoded swap path
            /// @return tokenA The first token of the given pool
            /// @return tokenB The second token of the given pool
            /// @return fee The fee level of the pool
            function decodeFirstPool(bytes memory path)
                internal
                pure
                returns (
                    address tokenA,
                    address tokenB,
                    uint24 fee
                )
            {
                tokenA = path.toAddress(0);
                fee = path.toUint24(ADDR_SIZE);
                tokenB = path.toAddress(NEXT_OFFSET);
            }
            /// @notice Gets the segment corresponding to the first pool in the path
            /// @param path The bytes encoded swap path
            /// @return The segment containing all data necessary to target the first pool in the path
            function getFirstPool(bytes memory path) internal pure returns (bytes memory) {
                return path.slice(0, POP_OFFSET);
            }
            /// @notice Skips a token + fee element from the buffer and returns the remainder
            /// @param path The swap path
            /// @return The remaining token + fee elements in the path
            function skipToken(bytes memory path) internal pure returns (bytes memory) {
                return path.slice(NEXT_OFFSET, path.length - NEXT_OFFSET);
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
        library PoolAddress {
            bytes32 internal constant POOL_INIT_CODE_HASH = 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;
            /// @notice The identifying key of the pool
            struct PoolKey {
                address token0;
                address token1;
                uint24 fee;
            }
            /// @notice Returns PoolKey: the ordered tokens with the matched fee levels
            /// @param tokenA The first token of a pool, unsorted
            /// @param tokenB The second token of a pool, unsorted
            /// @param fee The fee level of the pool
            /// @return Poolkey The pool details with ordered token0 and token1 assignments
            function getPoolKey(
                address tokenA,
                address tokenB,
                uint24 fee
            ) internal pure returns (PoolKey memory) {
                if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
                return PoolKey({token0: tokenA, token1: tokenB, fee: fee});
            }
            /// @notice Deterministically computes the pool address given the factory and PoolKey
            /// @param factory The Uniswap V3 factory contract address
            /// @param key The PoolKey
            /// @return pool The contract address of the V3 pool
            function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) {
                require(key.token0 < key.token1);
                pool = address(
                    uint256(
                        keccak256(
                            abi.encodePacked(
                                hex'ff',
                                factory,
                                keccak256(abi.encode(key.token0, key.token1, key.fee)),
                                POOL_INIT_CODE_HASH
                            )
                        )
                    )
                );
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        import '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol';
        import './PoolAddress.sol';
        /// @notice Provides validation for callbacks from Uniswap V3 Pools
        library CallbackValidation {
            /// @notice Returns the address of a valid Uniswap V3 Pool
            /// @param factory The contract address of the Uniswap V3 factory
            /// @param tokenA The contract address of either token0 or token1
            /// @param tokenB The contract address of the other token
            /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
            /// @return pool The V3 pool contract address
            function verifyCallback(
                address factory,
                address tokenA,
                address tokenB,
                uint24 fee
            ) internal view returns (IUniswapV3Pool pool) {
                return verifyCallback(factory, PoolAddress.getPoolKey(tokenA, tokenB, fee));
            }
            /// @notice Returns the address of a valid Uniswap V3 Pool
            /// @param factory The contract address of the Uniswap V3 factory
            /// @param poolKey The identifying key of the V3 pool
            /// @return pool The V3 pool contract address
            function verifyCallback(address factory, PoolAddress.PoolKey memory poolKey)
                internal
                view
                returns (IUniswapV3Pool pool)
            {
                pool = IUniswapV3Pool(PoolAddress.computeAddress(factory, poolKey));
                require(msg.sender == address(pool));
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        pragma abicoder v2;
        import '../interfaces/IOracleSlippage.sol';
        import '@uniswap/v3-periphery/contracts/base/PeripheryImmutableState.sol';
        import '@uniswap/v3-periphery/contracts/base/BlockTimestamp.sol';
        import '@uniswap/v3-periphery/contracts/libraries/Path.sol';
        import '@uniswap/v3-periphery/contracts/libraries/PoolAddress.sol';
        import '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol';
        import '@uniswap/v3-periphery/contracts/libraries/OracleLibrary.sol';
        abstract contract OracleSlippage is IOracleSlippage, PeripheryImmutableState, BlockTimestamp {
            using Path for bytes;
            /// @dev Returns the tick as of the beginning of the current block, and as of right now, for the given pool.
            function getBlockStartingAndCurrentTick(IUniswapV3Pool pool)
                internal
                view
                returns (int24 blockStartingTick, int24 currentTick)
            {
                uint16 observationIndex;
                uint16 observationCardinality;
                (, currentTick, observationIndex, observationCardinality, , , ) = pool.slot0();
                // 2 observations are needed to reliably calculate the block starting tick
                require(observationCardinality > 1, 'NEO');
                // If the latest observation occurred in the past, then no tick-changing trades have happened in this block
                // therefore the tick in `slot0` is the same as at the beginning of the current block.
                // We don't need to check if this observation is initialized - it is guaranteed to be.
                (uint32 observationTimestamp, int56 tickCumulative, , ) = pool.observations(observationIndex);
                if (observationTimestamp != uint32(_blockTimestamp())) {
                    blockStartingTick = currentTick;
                } else {
                    uint256 prevIndex = (uint256(observationIndex) + observationCardinality - 1) % observationCardinality;
                    (uint32 prevObservationTimestamp, int56 prevTickCumulative, , bool prevInitialized) =
                        pool.observations(prevIndex);
                    require(prevInitialized, 'ONI');
                    uint32 delta = observationTimestamp - prevObservationTimestamp;
                    blockStartingTick = int24((tickCumulative - prevTickCumulative) / delta);
                }
            }
            /// @dev Virtual function to get pool addresses that can be overridden in tests.
            function getPoolAddress(
                address tokenA,
                address tokenB,
                uint24 fee
            ) internal view virtual returns (IUniswapV3Pool pool) {
                pool = IUniswapV3Pool(PoolAddress.computeAddress(factory, PoolAddress.getPoolKey(tokenA, tokenB, fee)));
            }
            /// @dev Returns the synthetic time-weighted average tick as of secondsAgo, as well as the current tick,
            /// for the given path. Returned synthetic ticks always represent tokenOut/tokenIn prices,
            /// meaning lower ticks are worse.
            function getSyntheticTicks(bytes memory path, uint32 secondsAgo)
                internal
                view
                returns (int256 syntheticAverageTick, int256 syntheticCurrentTick)
            {
                bool lowerTicksAreWorse;
                uint256 numPools = path.numPools();
                address previousTokenIn;
                for (uint256 i = 0; i < numPools; i++) {
                    // this assumes the path is sorted in swap order
                    (address tokenIn, address tokenOut, uint24 fee) = path.decodeFirstPool();
                    IUniswapV3Pool pool = getPoolAddress(tokenIn, tokenOut, fee);
                    // get the average and current ticks for the current pool
                    int256 averageTick;
                    int256 currentTick;
                    if (secondsAgo == 0) {
                        // we optimize for the secondsAgo == 0 case, i.e. since the beginning of the block
                        (averageTick, currentTick) = getBlockStartingAndCurrentTick(pool);
                    } else {
                        (averageTick, ) = OracleLibrary.consult(address(pool), secondsAgo);
                        (, currentTick, , , , , ) = IUniswapV3Pool(pool).slot0();
                    }
                    if (i == numPools - 1) {
                        // if we're here, this is the last pool in the path, meaning tokenOut represents the
                        // destination token. so, if tokenIn < tokenOut, then tokenIn is token0 of the last pool,
                        // meaning the current running ticks are going to represent tokenOut/tokenIn prices.
                        // so, the lower these prices get, the worse of a price the swap will get
                        lowerTicksAreWorse = tokenIn < tokenOut;
                    } else {
                        // if we're here, we need to iterate over the next pool in the path
                        path = path.skipToken();
                        previousTokenIn = tokenIn;
                    }
                    // accumulate the ticks derived from the current pool into the running synthetic ticks,
                    // ensuring that intermediate tokens "cancel out"
                    bool add = (i == 0) || (previousTokenIn < tokenIn ? tokenIn < tokenOut : tokenOut < tokenIn);
                    if (add) {
                        syntheticAverageTick += averageTick;
                        syntheticCurrentTick += currentTick;
                    } else {
                        syntheticAverageTick -= averageTick;
                        syntheticCurrentTick -= currentTick;
                    }
                }
                // flip the sign of the ticks if necessary, to ensure that the lower ticks are always worse
                if (!lowerTicksAreWorse) {
                    syntheticAverageTick *= -1;
                    syntheticCurrentTick *= -1;
                }
            }
            /// @dev Cast a int256 to a int24, revert on overflow or underflow
            function toInt24(int256 y) private pure returns (int24 z) {
                require((z = int24(y)) == y);
            }
            /// @dev For each passed path, fetches the synthetic time-weighted average tick as of secondsAgo,
            /// as well as the current tick. Then, synthetic ticks from all paths are subjected to a weighted
            /// average, where the weights are the fraction of the total input amount allocated to each path.
            /// Returned synthetic ticks always represent tokenOut/tokenIn prices, meaning lower ticks are worse.
            /// Paths must all start and end in the same token.
            function getSyntheticTicks(
                bytes[] memory paths,
                uint128[] memory amounts,
                uint32 secondsAgo
            ) internal view returns (int256 averageSyntheticAverageTick, int256 averageSyntheticCurrentTick) {
                require(paths.length == amounts.length);
                OracleLibrary.WeightedTickData[] memory weightedSyntheticAverageTicks =
                    new OracleLibrary.WeightedTickData[](paths.length);
                OracleLibrary.WeightedTickData[] memory weightedSyntheticCurrentTicks =
                    new OracleLibrary.WeightedTickData[](paths.length);
                for (uint256 i = 0; i < paths.length; i++) {
                    (int256 syntheticAverageTick, int256 syntheticCurrentTick) = getSyntheticTicks(paths[i], secondsAgo);
                    weightedSyntheticAverageTicks[i].tick = toInt24(syntheticAverageTick);
                    weightedSyntheticCurrentTicks[i].tick = toInt24(syntheticCurrentTick);
                    weightedSyntheticAverageTicks[i].weight = amounts[i];
                    weightedSyntheticCurrentTicks[i].weight = amounts[i];
                }
                averageSyntheticAverageTick = OracleLibrary.getWeightedArithmeticMeanTick(weightedSyntheticAverageTicks);
                averageSyntheticCurrentTick = OracleLibrary.getWeightedArithmeticMeanTick(weightedSyntheticCurrentTicks);
            }
            /// @inheritdoc IOracleSlippage
            function checkOracleSlippage(
                bytes memory path,
                uint24 maximumTickDivergence,
                uint32 secondsAgo
            ) external view override {
                (int256 syntheticAverageTick, int256 syntheticCurrentTick) = getSyntheticTicks(path, secondsAgo);
                require(syntheticAverageTick - syntheticCurrentTick < maximumTickDivergence, 'TD');
            }
            /// @inheritdoc IOracleSlippage
            function checkOracleSlippage(
                bytes[] memory paths,
                uint128[] memory amounts,
                uint24 maximumTickDivergence,
                uint32 secondsAgo
            ) external view override {
                (int256 averageSyntheticAverageTick, int256 averageSyntheticCurrentTick) =
                    getSyntheticTicks(paths, amounts, secondsAgo);
                require(averageSyntheticAverageTick - averageSyntheticCurrentTick < maximumTickDivergence, 'TD');
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Pool state that never changes
        /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
        interface IUniswapV3PoolImmutables {
            /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
            /// @return The contract address
            function factory() external view returns (address);
            /// @notice The first of the two tokens of the pool, sorted by address
            /// @return The token contract address
            function token0() external view returns (address);
            /// @notice The second of the two tokens of the pool, sorted by address
            /// @return The token contract address
            function token1() external view returns (address);
            /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
            /// @return The fee
            function fee() external view returns (uint24);
            /// @notice The pool tick spacing
            /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
            /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
            /// This value is an int24 to avoid casting even though it is always positive.
            /// @return The tick spacing
            function tickSpacing() external view returns (int24);
            /// @notice The maximum amount of position liquidity that can use any tick in the range
            /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
            /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
            /// @return The max amount of liquidity per tick
            function maxLiquidityPerTick() external view returns (uint128);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Pool state that can change
        /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
        /// per transaction
        interface IUniswapV3PoolState {
            /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
            /// when accessed externally.
            /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
            /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
            /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
            /// boundary.
            /// observationIndex The index of the last oracle observation that was written,
            /// observationCardinality The current maximum number of observations stored in the pool,
            /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
            /// feeProtocol The protocol fee for both tokens of the pool.
            /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
            /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
            /// unlocked Whether the pool is currently locked to reentrancy
            function slot0()
                external
                view
                returns (
                    uint160 sqrtPriceX96,
                    int24 tick,
                    uint16 observationIndex,
                    uint16 observationCardinality,
                    uint16 observationCardinalityNext,
                    uint8 feeProtocol,
                    bool unlocked
                );
            /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
            /// @dev This value can overflow the uint256
            function feeGrowthGlobal0X128() external view returns (uint256);
            /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
            /// @dev This value can overflow the uint256
            function feeGrowthGlobal1X128() external view returns (uint256);
            /// @notice The amounts of token0 and token1 that are owed to the protocol
            /// @dev Protocol fees will never exceed uint128 max in either token
            function protocolFees() external view returns (uint128 token0, uint128 token1);
            /// @notice The currently in range liquidity available to the pool
            /// @dev This value has no relationship to the total liquidity across all ticks
            function liquidity() external view returns (uint128);
            /// @notice Look up information about a specific tick in the pool
            /// @param tick The tick to look up
            /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
            /// tick upper,
            /// liquidityNet how much liquidity changes when the pool price crosses the tick,
            /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
            /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
            /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
            /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
            /// secondsOutside the seconds spent on the other side of the tick from the current tick,
            /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
            /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
            /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
            /// a specific position.
            function ticks(int24 tick)
                external
                view
                returns (
                    uint128 liquidityGross,
                    int128 liquidityNet,
                    uint256 feeGrowthOutside0X128,
                    uint256 feeGrowthOutside1X128,
                    int56 tickCumulativeOutside,
                    uint160 secondsPerLiquidityOutsideX128,
                    uint32 secondsOutside,
                    bool initialized
                );
            /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
            function tickBitmap(int16 wordPosition) external view returns (uint256);
            /// @notice Returns the information about a position by the position's key
            /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
            /// @return _liquidity The amount of liquidity in the position,
            /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
            /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
            /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
            /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
            function positions(bytes32 key)
                external
                view
                returns (
                    uint128 _liquidity,
                    uint256 feeGrowthInside0LastX128,
                    uint256 feeGrowthInside1LastX128,
                    uint128 tokensOwed0,
                    uint128 tokensOwed1
                );
            /// @notice Returns data about a specific observation index
            /// @param index The element of the observations array to fetch
            /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
            /// ago, rather than at a specific index in the array.
            /// @return blockTimestamp The timestamp of the observation,
            /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
            /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
            /// Returns initialized whether the observation has been initialized and the values are safe to use
            function observations(uint256 index)
                external
                view
                returns (
                    uint32 blockTimestamp,
                    int56 tickCumulative,
                    uint160 secondsPerLiquidityCumulativeX128,
                    bool initialized
                );
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Pool state that is not stored
        /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
        /// blockchain. The functions here may have variable gas costs.
        interface IUniswapV3PoolDerivedState {
            /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
            /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
            /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
            /// you must call it with secondsAgos = [3600, 0].
            /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
            /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
            /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
            /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
            /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
            /// timestamp
            function observe(uint32[] calldata secondsAgos)
                external
                view
                returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
            /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
            /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
            /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
            /// snapshot is taken and the second snapshot is taken.
            /// @param tickLower The lower tick of the range
            /// @param tickUpper The upper tick of the range
            /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
            /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
            /// @return secondsInside The snapshot of seconds per liquidity for the range
            function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                external
                view
                returns (
                    int56 tickCumulativeInside,
                    uint160 secondsPerLiquidityInsideX128,
                    uint32 secondsInside
                );
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Permissionless pool actions
        /// @notice Contains pool methods that can be called by anyone
        interface IUniswapV3PoolActions {
            /// @notice Sets the initial price for the pool
            /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
            /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
            function initialize(uint160 sqrtPriceX96) external;
            /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
            /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
            /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
            /// on tickLower, tickUpper, the amount of liquidity, and the current price.
            /// @param recipient The address for which the liquidity will be created
            /// @param tickLower The lower tick of the position in which to add liquidity
            /// @param tickUpper The upper tick of the position in which to add liquidity
            /// @param amount The amount of liquidity to mint
            /// @param data Any data that should be passed through to the callback
            /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
            /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
            function mint(
                address recipient,
                int24 tickLower,
                int24 tickUpper,
                uint128 amount,
                bytes calldata data
            ) external returns (uint256 amount0, uint256 amount1);
            /// @notice Collects tokens owed to a position
            /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
            /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
            /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
            /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
            /// @param recipient The address which should receive the fees collected
            /// @param tickLower The lower tick of the position for which to collect fees
            /// @param tickUpper The upper tick of the position for which to collect fees
            /// @param amount0Requested How much token0 should be withdrawn from the fees owed
            /// @param amount1Requested How much token1 should be withdrawn from the fees owed
            /// @return amount0 The amount of fees collected in token0
            /// @return amount1 The amount of fees collected in token1
            function collect(
                address recipient,
                int24 tickLower,
                int24 tickUpper,
                uint128 amount0Requested,
                uint128 amount1Requested
            ) external returns (uint128 amount0, uint128 amount1);
            /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
            /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
            /// @dev Fees must be collected separately via a call to #collect
            /// @param tickLower The lower tick of the position for which to burn liquidity
            /// @param tickUpper The upper tick of the position for which to burn liquidity
            /// @param amount How much liquidity to burn
            /// @return amount0 The amount of token0 sent to the recipient
            /// @return amount1 The amount of token1 sent to the recipient
            function burn(
                int24 tickLower,
                int24 tickUpper,
                uint128 amount
            ) external returns (uint256 amount0, uint256 amount1);
            /// @notice Swap token0 for token1, or token1 for token0
            /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
            /// @param recipient The address to receive the output of the swap
            /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
            /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
            /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
            /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
            /// @param data Any data to be passed through to the callback
            /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
            /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
            function swap(
                address recipient,
                bool zeroForOne,
                int256 amountSpecified,
                uint160 sqrtPriceLimitX96,
                bytes calldata data
            ) external returns (int256 amount0, int256 amount1);
            /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
            /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
            /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
            /// with 0 amount{0,1} and sending the donation amount(s) from the callback
            /// @param recipient The address which will receive the token0 and token1 amounts
            /// @param amount0 The amount of token0 to send
            /// @param amount1 The amount of token1 to send
            /// @param data Any data to be passed through to the callback
            function flash(
                address recipient,
                uint256 amount0,
                uint256 amount1,
                bytes calldata data
            ) external;
            /// @notice Increase the maximum number of price and liquidity observations that this pool will store
            /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
            /// the input observationCardinalityNext.
            /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
            function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Permissioned pool actions
        /// @notice Contains pool methods that may only be called by the factory owner
        interface IUniswapV3PoolOwnerActions {
            /// @notice Set the denominator of the protocol's % share of the fees
            /// @param feeProtocol0 new protocol fee for token0 of the pool
            /// @param feeProtocol1 new protocol fee for token1 of the pool
            function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
            /// @notice Collect the protocol fee accrued to the pool
            /// @param recipient The address to which collected protocol fees should be sent
            /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
            /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
            /// @return amount0 The protocol fee collected in token0
            /// @return amount1 The protocol fee collected in token1
            function collectProtocol(
                address recipient,
                uint128 amount0Requested,
                uint128 amount1Requested
            ) external returns (uint128 amount0, uint128 amount1);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Events emitted by a pool
        /// @notice Contains all events emitted by the pool
        interface IUniswapV3PoolEvents {
            /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
            /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
            /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
            /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
            event Initialize(uint160 sqrtPriceX96, int24 tick);
            /// @notice Emitted when liquidity is minted for a given position
            /// @param sender The address that minted the liquidity
            /// @param owner The owner of the position and recipient of any minted liquidity
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param amount The amount of liquidity minted to the position range
            /// @param amount0 How much token0 was required for the minted liquidity
            /// @param amount1 How much token1 was required for the minted liquidity
            event Mint(
                address sender,
                address indexed owner,
                int24 indexed tickLower,
                int24 indexed tickUpper,
                uint128 amount,
                uint256 amount0,
                uint256 amount1
            );
            /// @notice Emitted when fees are collected by the owner of a position
            /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
            /// @param owner The owner of the position for which fees are collected
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param amount0 The amount of token0 fees collected
            /// @param amount1 The amount of token1 fees collected
            event Collect(
                address indexed owner,
                address recipient,
                int24 indexed tickLower,
                int24 indexed tickUpper,
                uint128 amount0,
                uint128 amount1
            );
            /// @notice Emitted when a position's liquidity is removed
            /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
            /// @param owner The owner of the position for which liquidity is removed
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param amount The amount of liquidity to remove
            /// @param amount0 The amount of token0 withdrawn
            /// @param amount1 The amount of token1 withdrawn
            event Burn(
                address indexed owner,
                int24 indexed tickLower,
                int24 indexed tickUpper,
                uint128 amount,
                uint256 amount0,
                uint256 amount1
            );
            /// @notice Emitted by the pool for any swaps between token0 and token1
            /// @param sender The address that initiated the swap call, and that received the callback
            /// @param recipient The address that received the output of the swap
            /// @param amount0 The delta of the token0 balance of the pool
            /// @param amount1 The delta of the token1 balance of the pool
            /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
            /// @param liquidity The liquidity of the pool after the swap
            /// @param tick The log base 1.0001 of price of the pool after the swap
            event Swap(
                address indexed sender,
                address indexed recipient,
                int256 amount0,
                int256 amount1,
                uint160 sqrtPriceX96,
                uint128 liquidity,
                int24 tick
            );
            /// @notice Emitted by the pool for any flashes of token0/token1
            /// @param sender The address that initiated the swap call, and that received the callback
            /// @param recipient The address that received the tokens from flash
            /// @param amount0 The amount of token0 that was flashed
            /// @param amount1 The amount of token1 that was flashed
            /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
            /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
            event Flash(
                address indexed sender,
                address indexed recipient,
                uint256 amount0,
                uint256 amount1,
                uint256 paid0,
                uint256 paid1
            );
            /// @notice Emitted by the pool for increases to the number of observations that can be stored
            /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
            /// just before a mint/swap/burn.
            /// @param observationCardinalityNextOld The previous value of the next observation cardinality
            /// @param observationCardinalityNextNew The updated value of the next observation cardinality
            event IncreaseObservationCardinalityNext(
                uint16 observationCardinalityNextOld,
                uint16 observationCardinalityNextNew
            );
            /// @notice Emitted when the protocol fee is changed by the pool
            /// @param feeProtocol0Old The previous value of the token0 protocol fee
            /// @param feeProtocol1Old The previous value of the token1 protocol fee
            /// @param feeProtocol0New The updated value of the token0 protocol fee
            /// @param feeProtocol1New The updated value of the token1 protocol fee
            event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
            /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
            /// @param sender The address that collects the protocol fees
            /// @param recipient The address that receives the collected protocol fees
            /// @param amount0 The amount of token0 protocol fees that is withdrawn
            /// @param amount0 The amount of token1 protocol fees that is withdrawn
            event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        /*
         * @title Solidity Bytes Arrays Utils
         * @author Gonçalo Sá <[email protected]>
         *
         * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
         *      The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
         */
        pragma solidity >=0.5.0 <0.8.0;
        library BytesLib {
            function slice(
                bytes memory _bytes,
                uint256 _start,
                uint256 _length
            ) internal pure returns (bytes memory) {
                require(_length + 31 >= _length, 'slice_overflow');
                require(_start + _length >= _start, 'slice_overflow');
                require(_bytes.length >= _start + _length, 'slice_outOfBounds');
                bytes memory tempBytes;
                assembly {
                    switch iszero(_length)
                        case 0 {
                            // Get a location of some free memory and store it in tempBytes as
                            // Solidity does for memory variables.
                            tempBytes := mload(0x40)
                            // The first word of the slice result is potentially a partial
                            // word read from the original array. To read it, we calculate
                            // the length of that partial word and start copying that many
                            // bytes into the array. The first word we copy will start with
                            // data we don't care about, but the last `lengthmod` bytes will
                            // land at the beginning of the contents of the new array. When
                            // we're done copying, we overwrite the full first word with
                            // the actual length of the slice.
                            let lengthmod := and(_length, 31)
                            // The multiplication in the next line is necessary
                            // because when slicing multiples of 32 bytes (lengthmod == 0)
                            // the following copy loop was copying the origin's length
                            // and then ending prematurely not copying everything it should.
                            let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                            let end := add(mc, _length)
                            for {
                                // The multiplication in the next line has the same exact purpose
                                // as the one above.
                                let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                            } lt(mc, end) {
                                mc := add(mc, 0x20)
                                cc := add(cc, 0x20)
                            } {
                                mstore(mc, mload(cc))
                            }
                            mstore(tempBytes, _length)
                            //update free-memory pointer
                            //allocating the array padded to 32 bytes like the compiler does now
                            mstore(0x40, and(add(mc, 31), not(31)))
                        }
                        //if we want a zero-length slice let's just return a zero-length array
                        default {
                            tempBytes := mload(0x40)
                            //zero out the 32 bytes slice we are about to return
                            //we need to do it because Solidity does not garbage collect
                            mstore(tempBytes, 0)
                            mstore(0x40, add(tempBytes, 0x20))
                        }
                }
                return tempBytes;
            }
            function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
                require(_start + 20 >= _start, 'toAddress_overflow');
                require(_bytes.length >= _start + 20, 'toAddress_outOfBounds');
                address tempAddress;
                assembly {
                    tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
                }
                return tempAddress;
            }
            function toUint24(bytes memory _bytes, uint256 _start) internal pure returns (uint24) {
                require(_start + 3 >= _start, 'toUint24_overflow');
                require(_bytes.length >= _start + 3, 'toUint24_outOfBounds');
                uint24 tempUint;
                assembly {
                    tempUint := mload(add(add(_bytes, 0x3), _start))
                }
                return tempUint;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        pragma abicoder v2;
        /// @title OracleSlippage interface
        /// @notice Enables slippage checks against oracle prices
        interface IOracleSlippage {
            /// @notice Ensures that the current (synthetic) tick over the path is no worse than
            /// `maximumTickDivergence` ticks away from the average as of `secondsAgo`
            /// @param path The path to fetch prices over
            /// @param maximumTickDivergence The maximum number of ticks that the price can degrade by
            /// @param secondsAgo The number of seconds ago to compute oracle prices against
            function checkOracleSlippage(
                bytes memory path,
                uint24 maximumTickDivergence,
                uint32 secondsAgo
            ) external view;
            /// @notice Ensures that the weighted average current (synthetic) tick over the path is no
            /// worse than `maximumTickDivergence` ticks away from the average as of `secondsAgo`
            /// @param paths The paths to fetch prices over
            /// @param amounts The weights for each entry in `paths`
            /// @param maximumTickDivergence The maximum number of ticks that the price can degrade by
            /// @param secondsAgo The number of seconds ago to compute oracle prices against
            function checkOracleSlippage(
                bytes[] memory paths,
                uint128[] memory amounts,
                uint24 maximumTickDivergence,
                uint32 secondsAgo
            ) external view;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        /// @title Function for getting block timestamp
        /// @dev Base contract that is overridden for tests
        abstract contract BlockTimestamp {
            /// @dev Method that exists purely to be overridden for tests
            /// @return The current block timestamp
            function _blockTimestamp() internal view virtual returns (uint256) {
                return block.timestamp;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0 <0.8.0;
        import '@uniswap/v3-core/contracts/libraries/FullMath.sol';
        import '@uniswap/v3-core/contracts/libraries/TickMath.sol';
        import '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol';
        /// @title Oracle library
        /// @notice Provides functions to integrate with V3 pool oracle
        library OracleLibrary {
            /// @notice Calculates time-weighted means of tick and liquidity for a given Uniswap V3 pool
            /// @param pool Address of the pool that we want to observe
            /// @param secondsAgo Number of seconds in the past from which to calculate the time-weighted means
            /// @return arithmeticMeanTick The arithmetic mean tick from (block.timestamp - secondsAgo) to block.timestamp
            /// @return harmonicMeanLiquidity The harmonic mean liquidity from (block.timestamp - secondsAgo) to block.timestamp
            function consult(address pool, uint32 secondsAgo)
                internal
                view
                returns (int24 arithmeticMeanTick, uint128 harmonicMeanLiquidity)
            {
                require(secondsAgo != 0, 'BP');
                uint32[] memory secondsAgos = new uint32[](2);
                secondsAgos[0] = secondsAgo;
                secondsAgos[1] = 0;
                (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) =
                    IUniswapV3Pool(pool).observe(secondsAgos);
                int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0];
                uint160 secondsPerLiquidityCumulativesDelta =
                    secondsPerLiquidityCumulativeX128s[1] - secondsPerLiquidityCumulativeX128s[0];
                arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgo);
                // Always round to negative infinity
                if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgo != 0)) arithmeticMeanTick--;
                // We are multiplying here instead of shifting to ensure that harmonicMeanLiquidity doesn't overflow uint128
                uint192 secondsAgoX160 = uint192(secondsAgo) * type(uint160).max;
                harmonicMeanLiquidity = uint128(secondsAgoX160 / (uint192(secondsPerLiquidityCumulativesDelta) << 32));
            }
            /// @notice Given a tick and a token amount, calculates the amount of token received in exchange
            /// @param tick Tick value used to calculate the quote
            /// @param baseAmount Amount of token to be converted
            /// @param baseToken Address of an ERC20 token contract used as the baseAmount denomination
            /// @param quoteToken Address of an ERC20 token contract used as the quoteAmount denomination
            /// @return quoteAmount Amount of quoteToken received for baseAmount of baseToken
            function getQuoteAtTick(
                int24 tick,
                uint128 baseAmount,
                address baseToken,
                address quoteToken
            ) internal pure returns (uint256 quoteAmount) {
                uint160 sqrtRatioX96 = TickMath.getSqrtRatioAtTick(tick);
                // Calculate quoteAmount with better precision if it doesn't overflow when multiplied by itself
                if (sqrtRatioX96 <= type(uint128).max) {
                    uint256 ratioX192 = uint256(sqrtRatioX96) * sqrtRatioX96;
                    quoteAmount = baseToken < quoteToken
                        ? FullMath.mulDiv(ratioX192, baseAmount, 1 << 192)
                        : FullMath.mulDiv(1 << 192, baseAmount, ratioX192);
                } else {
                    uint256 ratioX128 = FullMath.mulDiv(sqrtRatioX96, sqrtRatioX96, 1 << 64);
                    quoteAmount = baseToken < quoteToken
                        ? FullMath.mulDiv(ratioX128, baseAmount, 1 << 128)
                        : FullMath.mulDiv(1 << 128, baseAmount, ratioX128);
                }
            }
            /// @notice Given a pool, it returns the number of seconds ago of the oldest stored observation
            /// @param pool Address of Uniswap V3 pool that we want to observe
            /// @return secondsAgo The number of seconds ago of the oldest observation stored for the pool
            function getOldestObservationSecondsAgo(address pool) internal view returns (uint32 secondsAgo) {
                (, , uint16 observationIndex, uint16 observationCardinality, , , ) = IUniswapV3Pool(pool).slot0();
                require(observationCardinality > 0, 'NI');
                (uint32 observationTimestamp, , , bool initialized) =
                    IUniswapV3Pool(pool).observations((observationIndex + 1) % observationCardinality);
                // The next index might not be initialized if the cardinality is in the process of increasing
                // In this case the oldest observation is always in index 0
                if (!initialized) {
                    (observationTimestamp, , , ) = IUniswapV3Pool(pool).observations(0);
                }
                secondsAgo = uint32(block.timestamp) - observationTimestamp;
            }
            /// @notice Given a pool, it returns the tick value as of the start of the current block
            /// @param pool Address of Uniswap V3 pool
            /// @return The tick that the pool was in at the start of the current block
            function getBlockStartingTickAndLiquidity(address pool) internal view returns (int24, uint128) {
                (, int24 tick, uint16 observationIndex, uint16 observationCardinality, , , ) = IUniswapV3Pool(pool).slot0();
                // 2 observations are needed to reliably calculate the block starting tick
                require(observationCardinality > 1, 'NEO');
                // If the latest observation occurred in the past, then no tick-changing trades have happened in this block
                // therefore the tick in `slot0` is the same as at the beginning of the current block.
                // We don't need to check if this observation is initialized - it is guaranteed to be.
                (uint32 observationTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128, ) =
                    IUniswapV3Pool(pool).observations(observationIndex);
                if (observationTimestamp != uint32(block.timestamp)) {
                    return (tick, IUniswapV3Pool(pool).liquidity());
                }
                uint256 prevIndex = (uint256(observationIndex) + observationCardinality - 1) % observationCardinality;
                (
                    uint32 prevObservationTimestamp,
                    int56 prevTickCumulative,
                    uint160 prevSecondsPerLiquidityCumulativeX128,
                    bool prevInitialized
                ) = IUniswapV3Pool(pool).observations(prevIndex);
                require(prevInitialized, 'ONI');
                uint32 delta = observationTimestamp - prevObservationTimestamp;
                tick = int24((tickCumulative - prevTickCumulative) / delta);
                uint128 liquidity =
                    uint128(
                        (uint192(delta) * type(uint160).max) /
                            (uint192(secondsPerLiquidityCumulativeX128 - prevSecondsPerLiquidityCumulativeX128) << 32)
                    );
                return (tick, liquidity);
            }
            /// @notice Information for calculating a weighted arithmetic mean tick
            struct WeightedTickData {
                int24 tick;
                uint128 weight;
            }
            /// @notice Given an array of ticks and weights, calculates the weighted arithmetic mean tick
            /// @param weightedTickData An array of ticks and weights
            /// @return weightedArithmeticMeanTick The weighted arithmetic mean tick
            /// @dev Each entry of `weightedTickData` should represents ticks from pools with the same underlying pool tokens. If they do not,
            /// extreme care must be taken to ensure that ticks are comparable (including decimal differences).
            /// @dev Note that the weighted arithmetic mean tick corresponds to the weighted geometric mean price.
            function getWeightedArithmeticMeanTick(WeightedTickData[] memory weightedTickData)
                internal
                pure
                returns (int24 weightedArithmeticMeanTick)
            {
                // Accumulates the sum of products between each tick and its weight
                int256 numerator;
                // Accumulates the sum of the weights
                uint256 denominator;
                // Products fit in 152 bits, so it would take an array of length ~2**104 to overflow this logic
                for (uint256 i; i < weightedTickData.length; i++) {
                    numerator += weightedTickData[i].tick * int256(weightedTickData[i].weight);
                    denominator += weightedTickData[i].weight;
                }
                weightedArithmeticMeanTick = int24(numerator / int256(denominator));
                // Always round to negative infinity
                if (numerator < 0 && (numerator % int256(denominator) != 0)) weightedArithmeticMeanTick--;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.4.0;
        /// @title Contains 512-bit math functions
        /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
        /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
        library FullMath {
            /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
            /// @param a The multiplicand
            /// @param b The multiplier
            /// @param denominator The divisor
            /// @return result The 256-bit result
            /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
            function mulDiv(
                uint256 a,
                uint256 b,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                // 512-bit multiply [prod1 prod0] = a * b
                // Compute the product mod 2**256 and mod 2**256 - 1
                // then use the Chinese Remainder Theorem to reconstruct
                // the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2**256 + prod0
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(a, b, not(0))
                    prod0 := mul(a, b)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division
                if (prod1 == 0) {
                    require(denominator > 0);
                    assembly {
                        result := div(prod0, denominator)
                    }
                    return result;
                }
                // Make sure the result is less than 2**256.
                // Also prevents denominator == 0
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0]
                // Compute remainder using mulmod
                uint256 remainder;
                assembly {
                    remainder := mulmod(a, b, denominator)
                }
                // Subtract 256 bit number from 512 bit number
                assembly {
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator
                // Compute largest power of two divisor of denominator.
                // Always >= 1.
                uint256 twos = -denominator & denominator;
                // Divide denominator by power of two
                assembly {
                    denominator := div(denominator, twos)
                }
                // Divide [prod1 prod0] by the factors of two
                assembly {
                    prod0 := div(prod0, twos)
                }
                // Shift in bits from prod1 into prod0. For this we need
                // to flip `twos` such that it is 2**256 / twos.
                // If twos is zero, then it becomes one
                assembly {
                    twos := add(div(sub(0, twos), twos), 1)
                }
                prod0 |= prod1 * twos;
                // Invert denominator mod 2**256
                // Now that denominator is an odd number, it has an inverse
                // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                // Compute the inverse by starting with a seed that is correct
                // correct for four bits. That is, denominator * inv = 1 mod 2**4
                uint256 inv = (3 * denominator) ^ 2;
                // Now use Newton-Raphson iteration to improve the precision.
                // Thanks to Hensel's lifting lemma, this also works in modular
                // arithmetic, doubling the correct bits in each step.
                inv *= 2 - denominator * inv; // inverse mod 2**8
                inv *= 2 - denominator * inv; // inverse mod 2**16
                inv *= 2 - denominator * inv; // inverse mod 2**32
                inv *= 2 - denominator * inv; // inverse mod 2**64
                inv *= 2 - denominator * inv; // inverse mod 2**128
                inv *= 2 - denominator * inv; // inverse mod 2**256
                // Because the division is now exact we can divide by multiplying
                // with the modular inverse of denominator. This will give us the
                // correct result modulo 2**256. Since the precoditions guarantee
                // that the outcome is less than 2**256, this is the final result.
                // We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inv;
                return result;
            }
            /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
            /// @param a The multiplicand
            /// @param b The multiplier
            /// @param denominator The divisor
            /// @return result The 256-bit result
            function mulDivRoundingUp(
                uint256 a,
                uint256 b,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                result = mulDiv(a, b, denominator);
                if (mulmod(a, b, denominator) > 0) {
                    require(result < type(uint256).max);
                    result++;
                }
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        pragma abicoder v2;
        import '@openzeppelin/contracts/token/ERC721/IERC721Metadata.sol';
        import '@openzeppelin/contracts/token/ERC721/IERC721Enumerable.sol';
        import './IPoolInitializer.sol';
        import './IERC721Permit.sol';
        import './IPeripheryPayments.sol';
        import './IPeripheryImmutableState.sol';
        import '../libraries/PoolAddress.sol';
        /// @title Non-fungible token for positions
        /// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred
        /// and authorized.
        interface INonfungiblePositionManager is
            IPoolInitializer,
            IPeripheryPayments,
            IPeripheryImmutableState,
            IERC721Metadata,
            IERC721Enumerable,
            IERC721Permit
        {
            /// @notice Emitted when liquidity is increased for a position NFT
            /// @dev Also emitted when a token is minted
            /// @param tokenId The ID of the token for which liquidity was increased
            /// @param liquidity The amount by which liquidity for the NFT position was increased
            /// @param amount0 The amount of token0 that was paid for the increase in liquidity
            /// @param amount1 The amount of token1 that was paid for the increase in liquidity
            event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
            /// @notice Emitted when liquidity is decreased for a position NFT
            /// @param tokenId The ID of the token for which liquidity was decreased
            /// @param liquidity The amount by which liquidity for the NFT position was decreased
            /// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
            /// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
            event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
            /// @notice Emitted when tokens are collected for a position NFT
            /// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior
            /// @param tokenId The ID of the token for which underlying tokens were collected
            /// @param recipient The address of the account that received the collected tokens
            /// @param amount0 The amount of token0 owed to the position that was collected
            /// @param amount1 The amount of token1 owed to the position that was collected
            event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1);
            /// @notice Returns the position information associated with a given token ID.
            /// @dev Throws if the token ID is not valid.
            /// @param tokenId The ID of the token that represents the position
            /// @return nonce The nonce for permits
            /// @return operator The address that is approved for spending
            /// @return token0 The address of the token0 for a specific pool
            /// @return token1 The address of the token1 for a specific pool
            /// @return fee The fee associated with the pool
            /// @return tickLower The lower end of the tick range for the position
            /// @return tickUpper The higher end of the tick range for the position
            /// @return liquidity The liquidity of the position
            /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
            /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
            /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
            /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
            function positions(uint256 tokenId)
                external
                view
                returns (
                    uint96 nonce,
                    address operator,
                    address token0,
                    address token1,
                    uint24 fee,
                    int24 tickLower,
                    int24 tickUpper,
                    uint128 liquidity,
                    uint256 feeGrowthInside0LastX128,
                    uint256 feeGrowthInside1LastX128,
                    uint128 tokensOwed0,
                    uint128 tokensOwed1
                );
            struct MintParams {
                address token0;
                address token1;
                uint24 fee;
                int24 tickLower;
                int24 tickUpper;
                uint256 amount0Desired;
                uint256 amount1Desired;
                uint256 amount0Min;
                uint256 amount1Min;
                address recipient;
                uint256 deadline;
            }
            /// @notice Creates a new position wrapped in a NFT
            /// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized
            /// a method does not exist, i.e. the pool is assumed to be initialized.
            /// @param params The params necessary to mint a position, encoded as `MintParams` in calldata
            /// @return tokenId The ID of the token that represents the minted position
            /// @return liquidity The amount of liquidity for this position
            /// @return amount0 The amount of token0
            /// @return amount1 The amount of token1
            function mint(MintParams calldata params)
                external
                payable
                returns (
                    uint256 tokenId,
                    uint128 liquidity,
                    uint256 amount0,
                    uint256 amount1
                );
            struct IncreaseLiquidityParams {
                uint256 tokenId;
                uint256 amount0Desired;
                uint256 amount1Desired;
                uint256 amount0Min;
                uint256 amount1Min;
                uint256 deadline;
            }
            /// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
            /// @param params tokenId The ID of the token for which liquidity is being increased,
            /// amount0Desired The desired amount of token0 to be spent,
            /// amount1Desired The desired amount of token1 to be spent,
            /// amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
            /// amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
            /// deadline The time by which the transaction must be included to effect the change
            /// @return liquidity The new liquidity amount as a result of the increase
            /// @return amount0 The amount of token0 to acheive resulting liquidity
            /// @return amount1 The amount of token1 to acheive resulting liquidity
            function increaseLiquidity(IncreaseLiquidityParams calldata params)
                external
                payable
                returns (
                    uint128 liquidity,
                    uint256 amount0,
                    uint256 amount1
                );
            struct DecreaseLiquidityParams {
                uint256 tokenId;
                uint128 liquidity;
                uint256 amount0Min;
                uint256 amount1Min;
                uint256 deadline;
            }
            /// @notice Decreases the amount of liquidity in a position and accounts it to the position
            /// @param params tokenId The ID of the token for which liquidity is being decreased,
            /// amount The amount by which liquidity will be decreased,
            /// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
            /// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
            /// deadline The time by which the transaction must be included to effect the change
            /// @return amount0 The amount of token0 accounted to the position's tokens owed
            /// @return amount1 The amount of token1 accounted to the position's tokens owed
            function decreaseLiquidity(DecreaseLiquidityParams calldata params)
                external
                payable
                returns (uint256 amount0, uint256 amount1);
            struct CollectParams {
                uint256 tokenId;
                address recipient;
                uint128 amount0Max;
                uint128 amount1Max;
            }
            /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
            /// @param params tokenId The ID of the NFT for which tokens are being collected,
            /// recipient The account that should receive the tokens,
            /// amount0Max The maximum amount of token0 to collect,
            /// amount1Max The maximum amount of token1 to collect
            /// @return amount0 The amount of fees collected in token0
            /// @return amount1 The amount of fees collected in token1
            function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1);
            /// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens
            /// must be collected first.
            /// @param tokenId The ID of the token that is being burned
            function burn(uint256 tokenId) external payable;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.7.0;
        import "./IERC721.sol";
        /**
         * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
         * @dev See https://eips.ethereum.org/EIPS/eip-721
         */
        interface IERC721Metadata is IERC721 {
            /**
             * @dev Returns the token collection name.
             */
            function name() external view returns (string memory);
            /**
             * @dev Returns the token collection symbol.
             */
            function symbol() external view returns (string memory);
            /**
             * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
             */
            function tokenURI(uint256 tokenId) external view returns (string memory);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.7.0;
        import "./IERC721.sol";
        /**
         * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
         * @dev See https://eips.ethereum.org/EIPS/eip-721
         */
        interface IERC721Enumerable is IERC721 {
            /**
             * @dev Returns the total amount of tokens stored by the contract.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
             * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
             */
            function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId);
            /**
             * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
             * Use along with {totalSupply} to enumerate all tokens.
             */
            function tokenByIndex(uint256 index) external view returns (uint256);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        pragma abicoder v2;
        /// @title Creates and initializes V3 Pools
        /// @notice Provides a method for creating and initializing a pool, if necessary, for bundling with other methods that
        /// require the pool to exist.
        interface IPoolInitializer {
            /// @notice Creates a new pool if it does not exist, then initializes if not initialized
            /// @dev This method can be bundled with others via IMulticall for the first action (e.g. mint) performed against a pool
            /// @param token0 The contract address of token0 of the pool
            /// @param token1 The contract address of token1 of the pool
            /// @param fee The fee amount of the v3 pool for the specified token pair
            /// @param sqrtPriceX96 The initial square root price of the pool as a Q64.96 value
            /// @return pool Returns the pool address based on the pair of tokens and fee, will return the newly created pool address if necessary
            function createAndInitializePoolIfNecessary(
                address token0,
                address token1,
                uint24 fee,
                uint160 sqrtPriceX96
            ) external payable returns (address pool);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        import '@openzeppelin/contracts/token/ERC721/IERC721.sol';
        /// @title ERC721 with permit
        /// @notice Extension to ERC721 that includes a permit function for signature based approvals
        interface IERC721Permit is IERC721 {
            /// @notice The permit typehash used in the permit signature
            /// @return The typehash for the permit
            function PERMIT_TYPEHASH() external pure returns (bytes32);
            /// @notice The domain separator used in the permit signature
            /// @return The domain seperator used in encoding of permit signature
            function DOMAIN_SEPARATOR() external view returns (bytes32);
            /// @notice Approve of a specific token ID for spending by spender via signature
            /// @param spender The account that is being approved
            /// @param tokenId The ID of the token that is being approved for spending
            /// @param deadline The deadline timestamp by which the call must be mined for the approve to work
            /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
            /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
            /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
            function permit(
                address spender,
                uint256 tokenId,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external payable;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.7.0;
        import "../../introspection/IERC165.sol";
        /**
         * @dev Required interface of an ERC721 compliant contract.
         */
        interface IERC721 is IERC165 {
            /**
             * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
             */
            event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
            /**
             * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
             */
            event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
            /**
             * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
             */
            event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
            /**
             * @dev Returns the number of tokens in ``owner``'s account.
             */
            function balanceOf(address owner) external view returns (uint256 balance);
            /**
             * @dev Returns the owner of the `tokenId` token.
             *
             * Requirements:
             *
             * - `tokenId` must exist.
             */
            function ownerOf(uint256 tokenId) external view returns (address owner);
            /**
             * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
             * are aware of the ERC721 protocol to prevent tokens from being forever locked.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `tokenId` token must exist and be owned by `from`.
             * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
             * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
             *
             * Emits a {Transfer} event.
             */
            function safeTransferFrom(address from, address to, uint256 tokenId) external;
            /**
             * @dev Transfers `tokenId` token from `from` to `to`.
             *
             * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `tokenId` token must be owned by `from`.
             * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 tokenId) external;
            /**
             * @dev Gives permission to `to` to transfer `tokenId` token to another account.
             * The approval is cleared when the token is transferred.
             *
             * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
             *
             * Requirements:
             *
             * - The caller must own the token or be an approved operator.
             * - `tokenId` must exist.
             *
             * Emits an {Approval} event.
             */
            function approve(address to, uint256 tokenId) external;
            /**
             * @dev Returns the account approved for `tokenId` token.
             *
             * Requirements:
             *
             * - `tokenId` must exist.
             */
            function getApproved(uint256 tokenId) external view returns (address operator);
            /**
             * @dev Approve or remove `operator` as an operator for the caller.
             * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
             *
             * Requirements:
             *
             * - The `operator` cannot be the caller.
             *
             * Emits an {ApprovalForAll} event.
             */
            function setApprovalForAll(address operator, bool _approved) external;
            /**
             * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
             *
             * See {setApprovalForAll}
             */
            function isApprovedForAll(address owner, address operator) external view returns (bool);
            /**
              * @dev Safely transfers `tokenId` token from `from` to `to`.
              *
              * Requirements:
              *
              * - `from` cannot be the zero address.
              * - `to` cannot be the zero address.
              * - `tokenId` token must exist and be owned by `from`.
              * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
              * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
              *
              * Emits a {Transfer} event.
              */
            function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.7.0;
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165 {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        pragma abicoder v2;
        import '../interfaces/IMulticall.sol';
        /// @title Multicall
        /// @notice Enables calling multiple methods in a single call to the contract
        abstract contract Multicall is IMulticall {
            /// @inheritdoc IMulticall
            function multicall(bytes[] calldata data) public payable override returns (bytes[] memory results) {
                results = new bytes[](data.length);
                for (uint256 i = 0; i < data.length; i++) {
                    (bool success, bytes memory result) = address(this).delegatecall(data[i]);
                    if (!success) {
                        // Next 5 lines from https://ethereum.stackexchange.com/a/83577
                        if (result.length < 68) revert();
                        assembly {
                            result := add(result, 0x04)
                        }
                        revert(abi.decode(result, (string)));
                    }
                    results[i] = result;
                }
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        import '@uniswap/v3-periphery/contracts/base/PeripheryValidation.sol';
        abstract contract PeripheryValidationExtended is PeripheryValidation {
            modifier checkPreviousBlockhash(bytes32 previousBlockhash) {
                require(blockhash(block.number - 1) == previousBlockhash, 'Blockhash');
                _;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity =0.7.6;
        import './BlockTimestamp.sol';
        abstract contract PeripheryValidation is BlockTimestamp {
            modifier checkDeadline(uint256 deadline) {
                require(_blockTimestamp() <= deadline, 'Transaction too old');
                _;
            }
        }
        

        File 2 of 4: UniswapV3Pool
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity =0.7.6;
        import './interfaces/IUniswapV3Pool.sol';
        import './NoDelegateCall.sol';
        import './libraries/LowGasSafeMath.sol';
        import './libraries/SafeCast.sol';
        import './libraries/Tick.sol';
        import './libraries/TickBitmap.sol';
        import './libraries/Position.sol';
        import './libraries/Oracle.sol';
        import './libraries/FullMath.sol';
        import './libraries/FixedPoint128.sol';
        import './libraries/TransferHelper.sol';
        import './libraries/TickMath.sol';
        import './libraries/LiquidityMath.sol';
        import './libraries/SqrtPriceMath.sol';
        import './libraries/SwapMath.sol';
        import './interfaces/IUniswapV3PoolDeployer.sol';
        import './interfaces/IUniswapV3Factory.sol';
        import './interfaces/IERC20Minimal.sol';
        import './interfaces/callback/IUniswapV3MintCallback.sol';
        import './interfaces/callback/IUniswapV3SwapCallback.sol';
        import './interfaces/callback/IUniswapV3FlashCallback.sol';
        contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall {
            using LowGasSafeMath for uint256;
            using LowGasSafeMath for int256;
            using SafeCast for uint256;
            using SafeCast for int256;
            using Tick for mapping(int24 => Tick.Info);
            using TickBitmap for mapping(int16 => uint256);
            using Position for mapping(bytes32 => Position.Info);
            using Position for Position.Info;
            using Oracle for Oracle.Observation[65535];
            /// @inheritdoc IUniswapV3PoolImmutables
            address public immutable override factory;
            /// @inheritdoc IUniswapV3PoolImmutables
            address public immutable override token0;
            /// @inheritdoc IUniswapV3PoolImmutables
            address public immutable override token1;
            /// @inheritdoc IUniswapV3PoolImmutables
            uint24 public immutable override fee;
            /// @inheritdoc IUniswapV3PoolImmutables
            int24 public immutable override tickSpacing;
            /// @inheritdoc IUniswapV3PoolImmutables
            uint128 public immutable override maxLiquidityPerTick;
            struct Slot0 {
                // the current price
                uint160 sqrtPriceX96;
                // the current tick
                int24 tick;
                // the most-recently updated index of the observations array
                uint16 observationIndex;
                // the current maximum number of observations that are being stored
                uint16 observationCardinality;
                // the next maximum number of observations to store, triggered in observations.write
                uint16 observationCardinalityNext;
                // the current protocol fee as a percentage of the swap fee taken on withdrawal
                // represented as an integer denominator (1/x)%
                uint8 feeProtocol;
                // whether the pool is locked
                bool unlocked;
            }
            /// @inheritdoc IUniswapV3PoolState
            Slot0 public override slot0;
            /// @inheritdoc IUniswapV3PoolState
            uint256 public override feeGrowthGlobal0X128;
            /// @inheritdoc IUniswapV3PoolState
            uint256 public override feeGrowthGlobal1X128;
            // accumulated protocol fees in token0/token1 units
            struct ProtocolFees {
                uint128 token0;
                uint128 token1;
            }
            /// @inheritdoc IUniswapV3PoolState
            ProtocolFees public override protocolFees;
            /// @inheritdoc IUniswapV3PoolState
            uint128 public override liquidity;
            /// @inheritdoc IUniswapV3PoolState
            mapping(int24 => Tick.Info) public override ticks;
            /// @inheritdoc IUniswapV3PoolState
            mapping(int16 => uint256) public override tickBitmap;
            /// @inheritdoc IUniswapV3PoolState
            mapping(bytes32 => Position.Info) public override positions;
            /// @inheritdoc IUniswapV3PoolState
            Oracle.Observation[65535] public override observations;
            /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
            /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because
            /// we use balance checks to determine the payment status of interactions such as mint, swap and flash.
            modifier lock() {
                require(slot0.unlocked, 'LOK');
                slot0.unlocked = false;
                _;
                slot0.unlocked = true;
            }
            /// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner()
            modifier onlyFactoryOwner() {
                require(msg.sender == IUniswapV3Factory(factory).owner());
                _;
            }
            constructor() {
                int24 _tickSpacing;
                (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters();
                tickSpacing = _tickSpacing;
                maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
            }
            /// @dev Common checks for valid tick inputs.
            function checkTicks(int24 tickLower, int24 tickUpper) private pure {
                require(tickLower < tickUpper, 'TLU');
                require(tickLower >= TickMath.MIN_TICK, 'TLM');
                require(tickUpper <= TickMath.MAX_TICK, 'TUM');
            }
            /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
            function _blockTimestamp() internal view virtual returns (uint32) {
                return uint32(block.timestamp); // truncation is desired
            }
            /// @dev Get the pool's balance of token0
            /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
            /// check
            function balance0() private view returns (uint256) {
                (bool success, bytes memory data) =
                    token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                require(success && data.length >= 32);
                return abi.decode(data, (uint256));
            }
            /// @dev Get the pool's balance of token1
            /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
            /// check
            function balance1() private view returns (uint256) {
                (bool success, bytes memory data) =
                    token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                require(success && data.length >= 32);
                return abi.decode(data, (uint256));
            }
            /// @inheritdoc IUniswapV3PoolDerivedState
            function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                external
                view
                override
                noDelegateCall
                returns (
                    int56 tickCumulativeInside,
                    uint160 secondsPerLiquidityInsideX128,
                    uint32 secondsInside
                )
            {
                checkTicks(tickLower, tickUpper);
                int56 tickCumulativeLower;
                int56 tickCumulativeUpper;
                uint160 secondsPerLiquidityOutsideLowerX128;
                uint160 secondsPerLiquidityOutsideUpperX128;
                uint32 secondsOutsideLower;
                uint32 secondsOutsideUpper;
                {
                    Tick.Info storage lower = ticks[tickLower];
                    Tick.Info storage upper = ticks[tickUpper];
                    bool initializedLower;
                    (tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = (
                        lower.tickCumulativeOutside,
                        lower.secondsPerLiquidityOutsideX128,
                        lower.secondsOutside,
                        lower.initialized
                    );
                    require(initializedLower);
                    bool initializedUpper;
                    (tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = (
                        upper.tickCumulativeOutside,
                        upper.secondsPerLiquidityOutsideX128,
                        upper.secondsOutside,
                        upper.initialized
                    );
                    require(initializedUpper);
                }
                Slot0 memory _slot0 = slot0;
                if (_slot0.tick < tickLower) {
                    return (
                        tickCumulativeLower - tickCumulativeUpper,
                        secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128,
                        secondsOutsideLower - secondsOutsideUpper
                    );
                } else if (_slot0.tick < tickUpper) {
                    uint32 time = _blockTimestamp();
                    (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                        observations.observeSingle(
                            time,
                            0,
                            _slot0.tick,
                            _slot0.observationIndex,
                            liquidity,
                            _slot0.observationCardinality
                        );
                    return (
                        tickCumulative - tickCumulativeLower - tickCumulativeUpper,
                        secondsPerLiquidityCumulativeX128 -
                            secondsPerLiquidityOutsideLowerX128 -
                            secondsPerLiquidityOutsideUpperX128,
                        time - secondsOutsideLower - secondsOutsideUpper
                    );
                } else {
                    return (
                        tickCumulativeUpper - tickCumulativeLower,
                        secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128,
                        secondsOutsideUpper - secondsOutsideLower
                    );
                }
            }
            /// @inheritdoc IUniswapV3PoolDerivedState
            function observe(uint32[] calldata secondsAgos)
                external
                view
                override
                noDelegateCall
                returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
            {
                return
                    observations.observe(
                        _blockTimestamp(),
                        secondsAgos,
                        slot0.tick,
                        slot0.observationIndex,
                        liquidity,
                        slot0.observationCardinality
                    );
            }
            /// @inheritdoc IUniswapV3PoolActions
            function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
                external
                override
                lock
                noDelegateCall
            {
                uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
                uint16 observationCardinalityNextNew =
                    observations.grow(observationCardinalityNextOld, observationCardinalityNext);
                slot0.observationCardinalityNext = observationCardinalityNextNew;
                if (observationCardinalityNextOld != observationCardinalityNextNew)
                    emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
            }
            /// @inheritdoc IUniswapV3PoolActions
            /// @dev not locked because it initializes unlocked
            function initialize(uint160 sqrtPriceX96) external override {
                require(slot0.sqrtPriceX96 == 0, 'AI');
                int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
                (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
                slot0 = Slot0({
                    sqrtPriceX96: sqrtPriceX96,
                    tick: tick,
                    observationIndex: 0,
                    observationCardinality: cardinality,
                    observationCardinalityNext: cardinalityNext,
                    feeProtocol: 0,
                    unlocked: true
                });
                emit Initialize(sqrtPriceX96, tick);
            }
            struct ModifyPositionParams {
                // the address that owns the position
                address owner;
                // the lower and upper tick of the position
                int24 tickLower;
                int24 tickUpper;
                // any change in liquidity
                int128 liquidityDelta;
            }
            /// @dev Effect some changes to a position
            /// @param params the position details and the change to the position's liquidity to effect
            /// @return position a storage pointer referencing the position with the given owner and tick range
            /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
            /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
            function _modifyPosition(ModifyPositionParams memory params)
                private
                noDelegateCall
                returns (
                    Position.Info storage position,
                    int256 amount0,
                    int256 amount1
                )
            {
                checkTicks(params.tickLower, params.tickUpper);
                Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
                position = _updatePosition(
                    params.owner,
                    params.tickLower,
                    params.tickUpper,
                    params.liquidityDelta,
                    _slot0.tick
                );
                if (params.liquidityDelta != 0) {
                    if (_slot0.tick < params.tickLower) {
                        // current tick is below the passed range; liquidity can only become in range by crossing from left to
                        // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
                        amount0 = SqrtPriceMath.getAmount0Delta(
                            TickMath.getSqrtRatioAtTick(params.tickLower),
                            TickMath.getSqrtRatioAtTick(params.tickUpper),
                            params.liquidityDelta
                        );
                    } else if (_slot0.tick < params.tickUpper) {
                        // current tick is inside the passed range
                        uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
                        // write an oracle entry
                        (slot0.observationIndex, slot0.observationCardinality) = observations.write(
                            _slot0.observationIndex,
                            _blockTimestamp(),
                            _slot0.tick,
                            liquidityBefore,
                            _slot0.observationCardinality,
                            _slot0.observationCardinalityNext
                        );
                        amount0 = SqrtPriceMath.getAmount0Delta(
                            _slot0.sqrtPriceX96,
                            TickMath.getSqrtRatioAtTick(params.tickUpper),
                            params.liquidityDelta
                        );
                        amount1 = SqrtPriceMath.getAmount1Delta(
                            TickMath.getSqrtRatioAtTick(params.tickLower),
                            _slot0.sqrtPriceX96,
                            params.liquidityDelta
                        );
                        liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
                    } else {
                        // current tick is above the passed range; liquidity can only become in range by crossing from right to
                        // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
                        amount1 = SqrtPriceMath.getAmount1Delta(
                            TickMath.getSqrtRatioAtTick(params.tickLower),
                            TickMath.getSqrtRatioAtTick(params.tickUpper),
                            params.liquidityDelta
                        );
                    }
                }
            }
            /// @dev Gets and updates a position with the given liquidity delta
            /// @param owner the owner of the position
            /// @param tickLower the lower tick of the position's tick range
            /// @param tickUpper the upper tick of the position's tick range
            /// @param tick the current tick, passed to avoid sloads
            function _updatePosition(
                address owner,
                int24 tickLower,
                int24 tickUpper,
                int128 liquidityDelta,
                int24 tick
            ) private returns (Position.Info storage position) {
                position = positions.get(owner, tickLower, tickUpper);
                uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
                uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
                // if we need to update the ticks, do it
                bool flippedLower;
                bool flippedUpper;
                if (liquidityDelta != 0) {
                    uint32 time = _blockTimestamp();
                    (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                        observations.observeSingle(
                            time,
                            0,
                            slot0.tick,
                            slot0.observationIndex,
                            liquidity,
                            slot0.observationCardinality
                        );
                    flippedLower = ticks.update(
                        tickLower,
                        tick,
                        liquidityDelta,
                        _feeGrowthGlobal0X128,
                        _feeGrowthGlobal1X128,
                        secondsPerLiquidityCumulativeX128,
                        tickCumulative,
                        time,
                        false,
                        maxLiquidityPerTick
                    );
                    flippedUpper = ticks.update(
                        tickUpper,
                        tick,
                        liquidityDelta,
                        _feeGrowthGlobal0X128,
                        _feeGrowthGlobal1X128,
                        secondsPerLiquidityCumulativeX128,
                        tickCumulative,
                        time,
                        true,
                        maxLiquidityPerTick
                    );
                    if (flippedLower) {
                        tickBitmap.flipTick(tickLower, tickSpacing);
                    }
                    if (flippedUpper) {
                        tickBitmap.flipTick(tickUpper, tickSpacing);
                    }
                }
                (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
                    ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
                position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
                // clear any tick data that is no longer needed
                if (liquidityDelta < 0) {
                    if (flippedLower) {
                        ticks.clear(tickLower);
                    }
                    if (flippedUpper) {
                        ticks.clear(tickUpper);
                    }
                }
            }
            /// @inheritdoc IUniswapV3PoolActions
            /// @dev noDelegateCall is applied indirectly via _modifyPosition
            function mint(
                address recipient,
                int24 tickLower,
                int24 tickUpper,
                uint128 amount,
                bytes calldata data
            ) external override lock returns (uint256 amount0, uint256 amount1) {
                require(amount > 0);
                (, int256 amount0Int, int256 amount1Int) =
                    _modifyPosition(
                        ModifyPositionParams({
                            owner: recipient,
                            tickLower: tickLower,
                            tickUpper: tickUpper,
                            liquidityDelta: int256(amount).toInt128()
                        })
                    );
                amount0 = uint256(amount0Int);
                amount1 = uint256(amount1Int);
                uint256 balance0Before;
                uint256 balance1Before;
                if (amount0 > 0) balance0Before = balance0();
                if (amount1 > 0) balance1Before = balance1();
                IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
                if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
                if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
                emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
            }
            /// @inheritdoc IUniswapV3PoolActions
            function collect(
                address recipient,
                int24 tickLower,
                int24 tickUpper,
                uint128 amount0Requested,
                uint128 amount1Requested
            ) external override lock returns (uint128 amount0, uint128 amount1) {
                // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
                Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
                amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
                amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
                if (amount0 > 0) {
                    position.tokensOwed0 -= amount0;
                    TransferHelper.safeTransfer(token0, recipient, amount0);
                }
                if (amount1 > 0) {
                    position.tokensOwed1 -= amount1;
                    TransferHelper.safeTransfer(token1, recipient, amount1);
                }
                emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
            }
            /// @inheritdoc IUniswapV3PoolActions
            /// @dev noDelegateCall is applied indirectly via _modifyPosition
            function burn(
                int24 tickLower,
                int24 tickUpper,
                uint128 amount
            ) external override lock returns (uint256 amount0, uint256 amount1) {
                (Position.Info storage position, int256 amount0Int, int256 amount1Int) =
                    _modifyPosition(
                        ModifyPositionParams({
                            owner: msg.sender,
                            tickLower: tickLower,
                            tickUpper: tickUpper,
                            liquidityDelta: -int256(amount).toInt128()
                        })
                    );
                amount0 = uint256(-amount0Int);
                amount1 = uint256(-amount1Int);
                if (amount0 > 0 || amount1 > 0) {
                    (position.tokensOwed0, position.tokensOwed1) = (
                        position.tokensOwed0 + uint128(amount0),
                        position.tokensOwed1 + uint128(amount1)
                    );
                }
                emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
            }
            struct SwapCache {
                // the protocol fee for the input token
                uint8 feeProtocol;
                // liquidity at the beginning of the swap
                uint128 liquidityStart;
                // the timestamp of the current block
                uint32 blockTimestamp;
                // the current value of the tick accumulator, computed only if we cross an initialized tick
                int56 tickCumulative;
                // the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick
                uint160 secondsPerLiquidityCumulativeX128;
                // whether we've computed and cached the above two accumulators
                bool computedLatestObservation;
            }
            // the top level state of the swap, the results of which are recorded in storage at the end
            struct SwapState {
                // the amount remaining to be swapped in/out of the input/output asset
                int256 amountSpecifiedRemaining;
                // the amount already swapped out/in of the output/input asset
                int256 amountCalculated;
                // current sqrt(price)
                uint160 sqrtPriceX96;
                // the tick associated with the current price
                int24 tick;
                // the global fee growth of the input token
                uint256 feeGrowthGlobalX128;
                // amount of input token paid as protocol fee
                uint128 protocolFee;
                // the current liquidity in range
                uint128 liquidity;
            }
            struct StepComputations {
                // the price at the beginning of the step
                uint160 sqrtPriceStartX96;
                // the next tick to swap to from the current tick in the swap direction
                int24 tickNext;
                // whether tickNext is initialized or not
                bool initialized;
                // sqrt(price) for the next tick (1/0)
                uint160 sqrtPriceNextX96;
                // how much is being swapped in in this step
                uint256 amountIn;
                // how much is being swapped out
                uint256 amountOut;
                // how much fee is being paid in
                uint256 feeAmount;
            }
            /// @inheritdoc IUniswapV3PoolActions
            function swap(
                address recipient,
                bool zeroForOne,
                int256 amountSpecified,
                uint160 sqrtPriceLimitX96,
                bytes calldata data
            ) external override noDelegateCall returns (int256 amount0, int256 amount1) {
                require(amountSpecified != 0, 'AS');
                Slot0 memory slot0Start = slot0;
                require(slot0Start.unlocked, 'LOK');
                require(
                    zeroForOne
                        ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
                        : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
                    'SPL'
                );
                slot0.unlocked = false;
                SwapCache memory cache =
                    SwapCache({
                        liquidityStart: liquidity,
                        blockTimestamp: _blockTimestamp(),
                        feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
                        secondsPerLiquidityCumulativeX128: 0,
                        tickCumulative: 0,
                        computedLatestObservation: false
                    });
                bool exactInput = amountSpecified > 0;
                SwapState memory state =
                    SwapState({
                        amountSpecifiedRemaining: amountSpecified,
                        amountCalculated: 0,
                        sqrtPriceX96: slot0Start.sqrtPriceX96,
                        tick: slot0Start.tick,
                        feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
                        protocolFee: 0,
                        liquidity: cache.liquidityStart
                    });
                // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
                while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
                    StepComputations memory step;
                    step.sqrtPriceStartX96 = state.sqrtPriceX96;
                    (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
                        state.tick,
                        tickSpacing,
                        zeroForOne
                    );
                    // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
                    if (step.tickNext < TickMath.MIN_TICK) {
                        step.tickNext = TickMath.MIN_TICK;
                    } else if (step.tickNext > TickMath.MAX_TICK) {
                        step.tickNext = TickMath.MAX_TICK;
                    }
                    // get the price for the next tick
                    step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
                    // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
                    (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
                        state.sqrtPriceX96,
                        (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
                            ? sqrtPriceLimitX96
                            : step.sqrtPriceNextX96,
                        state.liquidity,
                        state.amountSpecifiedRemaining,
                        fee
                    );
                    if (exactInput) {
                        state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
                        state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
                    } else {
                        state.amountSpecifiedRemaining += step.amountOut.toInt256();
                        state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
                    }
                    // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
                    if (cache.feeProtocol > 0) {
                        uint256 delta = step.feeAmount / cache.feeProtocol;
                        step.feeAmount -= delta;
                        state.protocolFee += uint128(delta);
                    }
                    // update global fee tracker
                    if (state.liquidity > 0)
                        state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
                    // shift tick if we reached the next price
                    if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
                        // if the tick is initialized, run the tick transition
                        if (step.initialized) {
                            // check for the placeholder value, which we replace with the actual value the first time the swap
                            // crosses an initialized tick
                            if (!cache.computedLatestObservation) {
                                (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
                                    cache.blockTimestamp,
                                    0,
                                    slot0Start.tick,
                                    slot0Start.observationIndex,
                                    cache.liquidityStart,
                                    slot0Start.observationCardinality
                                );
                                cache.computedLatestObservation = true;
                            }
                            int128 liquidityNet =
                                ticks.cross(
                                    step.tickNext,
                                    (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
                                    (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
                                    cache.secondsPerLiquidityCumulativeX128,
                                    cache.tickCumulative,
                                    cache.blockTimestamp
                                );
                            // if we're moving leftward, we interpret liquidityNet as the opposite sign
                            // safe because liquidityNet cannot be type(int128).min
                            if (zeroForOne) liquidityNet = -liquidityNet;
                            state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
                        }
                        state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
                    } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
                        // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
                        state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
                    }
                }
                // update tick and write an oracle entry if the tick change
                if (state.tick != slot0Start.tick) {
                    (uint16 observationIndex, uint16 observationCardinality) =
                        observations.write(
                            slot0Start.observationIndex,
                            cache.blockTimestamp,
                            slot0Start.tick,
                            cache.liquidityStart,
                            slot0Start.observationCardinality,
                            slot0Start.observationCardinalityNext
                        );
                    (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
                        state.sqrtPriceX96,
                        state.tick,
                        observationIndex,
                        observationCardinality
                    );
                } else {
                    // otherwise just update the price
                    slot0.sqrtPriceX96 = state.sqrtPriceX96;
                }
                // update liquidity if it changed
                if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
                // update fee growth global and, if necessary, protocol fees
                // overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
                if (zeroForOne) {
                    feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
                    if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
                } else {
                    feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
                    if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
                }
                (amount0, amount1) = zeroForOne == exactInput
                    ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
                    : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
                // do the transfers and collect payment
                if (zeroForOne) {
                    if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
                    uint256 balance0Before = balance0();
                    IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                    require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
                } else {
                    if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
                    uint256 balance1Before = balance1();
                    IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                    require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
                }
                emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
                slot0.unlocked = true;
            }
            /// @inheritdoc IUniswapV3PoolActions
            function flash(
                address recipient,
                uint256 amount0,
                uint256 amount1,
                bytes calldata data
            ) external override lock noDelegateCall {
                uint128 _liquidity = liquidity;
                require(_liquidity > 0, 'L');
                uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
                uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
                uint256 balance0Before = balance0();
                uint256 balance1Before = balance1();
                if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
                if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
                IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);
                uint256 balance0After = balance0();
                uint256 balance1After = balance1();
                require(balance0Before.add(fee0) <= balance0After, 'F0');
                require(balance1Before.add(fee1) <= balance1After, 'F1');
                // sub is safe because we know balanceAfter is gt balanceBefore by at least fee
                uint256 paid0 = balance0After - balance0Before;
                uint256 paid1 = balance1After - balance1Before;
                if (paid0 > 0) {
                    uint8 feeProtocol0 = slot0.feeProtocol % 16;
                    uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
                    if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
                    feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
                }
                if (paid1 > 0) {
                    uint8 feeProtocol1 = slot0.feeProtocol >> 4;
                    uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
                    if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
                    feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
                }
                emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
            }
            /// @inheritdoc IUniswapV3PoolOwnerActions
            function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
                require(
                    (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
                        (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
                );
                uint8 feeProtocolOld = slot0.feeProtocol;
                slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
                emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
            }
            /// @inheritdoc IUniswapV3PoolOwnerActions
            function collectProtocol(
                address recipient,
                uint128 amount0Requested,
                uint128 amount1Requested
            ) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
                amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
                amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
                if (amount0 > 0) {
                    if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
                    protocolFees.token0 -= amount0;
                    TransferHelper.safeTransfer(token0, recipient, amount0);
                }
                if (amount1 > 0) {
                    if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
                    protocolFees.token1 -= amount1;
                    TransferHelper.safeTransfer(token1, recipient, amount1);
                }
                emit CollectProtocol(msg.sender, recipient, amount0, amount1);
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        import './pool/IUniswapV3PoolImmutables.sol';
        import './pool/IUniswapV3PoolState.sol';
        import './pool/IUniswapV3PoolDerivedState.sol';
        import './pool/IUniswapV3PoolActions.sol';
        import './pool/IUniswapV3PoolOwnerActions.sol';
        import './pool/IUniswapV3PoolEvents.sol';
        /// @title The interface for a Uniswap V3 Pool
        /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
        /// to the ERC20 specification
        /// @dev The pool interface is broken up into many smaller pieces
        interface IUniswapV3Pool is
            IUniswapV3PoolImmutables,
            IUniswapV3PoolState,
            IUniswapV3PoolDerivedState,
            IUniswapV3PoolActions,
            IUniswapV3PoolOwnerActions,
            IUniswapV3PoolEvents
        {
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity =0.7.6;
        /// @title Prevents delegatecall to a contract
        /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
        abstract contract NoDelegateCall {
            /// @dev The original address of this contract
            address private immutable original;
            constructor() {
                // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
                // In other words, this variable won't change when it's checked at runtime.
                original = address(this);
            }
            /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
            ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
            function checkNotDelegateCall() private view {
                require(address(this) == original);
            }
            /// @notice Prevents delegatecall into the modified method
            modifier noDelegateCall() {
                checkNotDelegateCall();
                _;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.0;
        /// @title Optimized overflow and underflow safe math operations
        /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
        library LowGasSafeMath {
            /// @notice Returns x + y, reverts if sum overflows uint256
            /// @param x The augend
            /// @param y The addend
            /// @return z The sum of x and y
            function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
                require((z = x + y) >= x);
            }
            /// @notice Returns x - y, reverts if underflows
            /// @param x The minuend
            /// @param y The subtrahend
            /// @return z The difference of x and y
            function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                require((z = x - y) <= x);
            }
            /// @notice Returns x * y, reverts if overflows
            /// @param x The multiplicand
            /// @param y The multiplier
            /// @return z The product of x and y
            function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                require(x == 0 || (z = x * y) / x == y);
            }
            /// @notice Returns x + y, reverts if overflows or underflows
            /// @param x The augend
            /// @param y The addend
            /// @return z The sum of x and y
            function add(int256 x, int256 y) internal pure returns (int256 z) {
                require((z = x + y) >= x == (y >= 0));
            }
            /// @notice Returns x - y, reverts if overflows or underflows
            /// @param x The minuend
            /// @param y The subtrahend
            /// @return z The difference of x and y
            function sub(int256 x, int256 y) internal pure returns (int256 z) {
                require((z = x - y) <= x == (y >= 0));
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Safe casting methods
        /// @notice Contains methods for safely casting between types
        library SafeCast {
            /// @notice Cast a uint256 to a uint160, revert on overflow
            /// @param y The uint256 to be downcasted
            /// @return z The downcasted integer, now type uint160
            function toUint160(uint256 y) internal pure returns (uint160 z) {
                require((z = uint160(y)) == y);
            }
            /// @notice Cast a int256 to a int128, revert on overflow or underflow
            /// @param y The int256 to be downcasted
            /// @return z The downcasted integer, now type int128
            function toInt128(int256 y) internal pure returns (int128 z) {
                require((z = int128(y)) == y);
            }
            /// @notice Cast a uint256 to a int256, revert on overflow
            /// @param y The uint256 to be casted
            /// @return z The casted integer, now type int256
            function toInt256(uint256 y) internal pure returns (int256 z) {
                require(y < 2**255);
                z = int256(y);
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity >=0.5.0;
        import './LowGasSafeMath.sol';
        import './SafeCast.sol';
        import './TickMath.sol';
        import './LiquidityMath.sol';
        /// @title Tick
        /// @notice Contains functions for managing tick processes and relevant calculations
        library Tick {
            using LowGasSafeMath for int256;
            using SafeCast for int256;
            // info stored for each initialized individual tick
            struct Info {
                // the total position liquidity that references this tick
                uint128 liquidityGross;
                // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
                int128 liquidityNet;
                // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                // only has relative meaning, not absolute — the value depends on when the tick is initialized
                uint256 feeGrowthOutside0X128;
                uint256 feeGrowthOutside1X128;
                // the cumulative tick value on the other side of the tick
                int56 tickCumulativeOutside;
                // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                // only has relative meaning, not absolute — the value depends on when the tick is initialized
                uint160 secondsPerLiquidityOutsideX128;
                // the seconds spent on the other side of the tick (relative to the current tick)
                // only has relative meaning, not absolute — the value depends on when the tick is initialized
                uint32 secondsOutside;
                // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
                // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
                bool initialized;
            }
            /// @notice Derives max liquidity per tick from given tick spacing
            /// @dev Executed within the pool constructor
            /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
            ///     e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
            /// @return The max liquidity per tick
            function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
                int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
                int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
                uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
                return type(uint128).max / numTicks;
            }
            /// @notice Retrieves fee growth data
            /// @param self The mapping containing all tick information for initialized ticks
            /// @param tickLower The lower tick boundary of the position
            /// @param tickUpper The upper tick boundary of the position
            /// @param tickCurrent The current tick
            /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
            /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
            /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
            /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
            function getFeeGrowthInside(
                mapping(int24 => Tick.Info) storage self,
                int24 tickLower,
                int24 tickUpper,
                int24 tickCurrent,
                uint256 feeGrowthGlobal0X128,
                uint256 feeGrowthGlobal1X128
            ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
                Info storage lower = self[tickLower];
                Info storage upper = self[tickUpper];
                // calculate fee growth below
                uint256 feeGrowthBelow0X128;
                uint256 feeGrowthBelow1X128;
                if (tickCurrent >= tickLower) {
                    feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
                    feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
                } else {
                    feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
                    feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
                }
                // calculate fee growth above
                uint256 feeGrowthAbove0X128;
                uint256 feeGrowthAbove1X128;
                if (tickCurrent < tickUpper) {
                    feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
                    feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
                } else {
                    feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
                    feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
                }
                feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
                feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
            }
            /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
            /// @param self The mapping containing all tick information for initialized ticks
            /// @param tick The tick that will be updated
            /// @param tickCurrent The current tick
            /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
            /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
            /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
            /// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
            /// @param time The current block timestamp cast to a uint32
            /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
            /// @param maxLiquidity The maximum liquidity allocation for a single tick
            /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
            function update(
                mapping(int24 => Tick.Info) storage self,
                int24 tick,
                int24 tickCurrent,
                int128 liquidityDelta,
                uint256 feeGrowthGlobal0X128,
                uint256 feeGrowthGlobal1X128,
                uint160 secondsPerLiquidityCumulativeX128,
                int56 tickCumulative,
                uint32 time,
                bool upper,
                uint128 maxLiquidity
            ) internal returns (bool flipped) {
                Tick.Info storage info = self[tick];
                uint128 liquidityGrossBefore = info.liquidityGross;
                uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
                require(liquidityGrossAfter <= maxLiquidity, 'LO');
                flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
                if (liquidityGrossBefore == 0) {
                    // by convention, we assume that all growth before a tick was initialized happened _below_ the tick
                    if (tick <= tickCurrent) {
                        info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
                        info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
                        info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
                        info.tickCumulativeOutside = tickCumulative;
                        info.secondsOutside = time;
                    }
                    info.initialized = true;
                }
                info.liquidityGross = liquidityGrossAfter;
                // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
                info.liquidityNet = upper
                    ? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
                    : int256(info.liquidityNet).add(liquidityDelta).toInt128();
            }
            /// @notice Clears tick data
            /// @param self The mapping containing all initialized tick information for initialized ticks
            /// @param tick The tick that will be cleared
            function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
                delete self[tick];
            }
            /// @notice Transitions to next tick as needed by price movement
            /// @param self The mapping containing all tick information for initialized ticks
            /// @param tick The destination tick of the transition
            /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
            /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
            /// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
            /// @param time The current block.timestamp
            /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
            function cross(
                mapping(int24 => Tick.Info) storage self,
                int24 tick,
                uint256 feeGrowthGlobal0X128,
                uint256 feeGrowthGlobal1X128,
                uint160 secondsPerLiquidityCumulativeX128,
                int56 tickCumulative,
                uint32 time
            ) internal returns (int128 liquidityNet) {
                Tick.Info storage info = self[tick];
                info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
                info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
                info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
                info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
                info.secondsOutside = time - info.secondsOutside;
                liquidityNet = info.liquidityNet;
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity >=0.5.0;
        import './BitMath.sol';
        /// @title Packed tick initialized state library
        /// @notice Stores a packed mapping of tick index to its initialized state
        /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
        library TickBitmap {
            /// @notice Computes the position in the mapping where the initialized bit for a tick lives
            /// @param tick The tick for which to compute the position
            /// @return wordPos The key in the mapping containing the word in which the bit is stored
            /// @return bitPos The bit position in the word where the flag is stored
            function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
                wordPos = int16(tick >> 8);
                bitPos = uint8(tick % 256);
            }
            /// @notice Flips the initialized state for a given tick from false to true, or vice versa
            /// @param self The mapping in which to flip the tick
            /// @param tick The tick to flip
            /// @param tickSpacing The spacing between usable ticks
            function flipTick(
                mapping(int16 => uint256) storage self,
                int24 tick,
                int24 tickSpacing
            ) internal {
                require(tick % tickSpacing == 0); // ensure that the tick is spaced
                (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
                uint256 mask = 1 << bitPos;
                self[wordPos] ^= mask;
            }
            /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
            /// to the left (less than or equal to) or right (greater than) of the given tick
            /// @param self The mapping in which to compute the next initialized tick
            /// @param tick The starting tick
            /// @param tickSpacing The spacing between usable ticks
            /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
            /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
            /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
            function nextInitializedTickWithinOneWord(
                mapping(int16 => uint256) storage self,
                int24 tick,
                int24 tickSpacing,
                bool lte
            ) internal view returns (int24 next, bool initialized) {
                int24 compressed = tick / tickSpacing;
                if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
                if (lte) {
                    (int16 wordPos, uint8 bitPos) = position(compressed);
                    // all the 1s at or to the right of the current bitPos
                    uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
                    uint256 masked = self[wordPos] & mask;
                    // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
                    initialized = masked != 0;
                    // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                    next = initialized
                        ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
                        : (compressed - int24(bitPos)) * tickSpacing;
                } else {
                    // start from the word of the next tick, since the current tick state doesn't matter
                    (int16 wordPos, uint8 bitPos) = position(compressed + 1);
                    // all the 1s at or to the left of the bitPos
                    uint256 mask = ~((1 << bitPos) - 1);
                    uint256 masked = self[wordPos] & mask;
                    // if there are no initialized ticks to the left of the current tick, return leftmost in the word
                    initialized = masked != 0;
                    // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                    next = initialized
                        ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
                        : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
                }
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity >=0.5.0;
        import './FullMath.sol';
        import './FixedPoint128.sol';
        import './LiquidityMath.sol';
        /// @title Position
        /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
        /// @dev Positions store additional state for tracking fees owed to the position
        library Position {
            // info stored for each user's position
            struct Info {
                // the amount of liquidity owned by this position
                uint128 liquidity;
                // fee growth per unit of liquidity as of the last update to liquidity or fees owed
                uint256 feeGrowthInside0LastX128;
                uint256 feeGrowthInside1LastX128;
                // the fees owed to the position owner in token0/token1
                uint128 tokensOwed0;
                uint128 tokensOwed1;
            }
            /// @notice Returns the Info struct of a position, given an owner and position boundaries
            /// @param self The mapping containing all user positions
            /// @param owner The address of the position owner
            /// @param tickLower The lower tick boundary of the position
            /// @param tickUpper The upper tick boundary of the position
            /// @return position The position info struct of the given owners' position
            function get(
                mapping(bytes32 => Info) storage self,
                address owner,
                int24 tickLower,
                int24 tickUpper
            ) internal view returns (Position.Info storage position) {
                position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
            }
            /// @notice Credits accumulated fees to a user's position
            /// @param self The individual position to update
            /// @param liquidityDelta The change in pool liquidity as a result of the position update
            /// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
            /// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
            function update(
                Info storage self,
                int128 liquidityDelta,
                uint256 feeGrowthInside0X128,
                uint256 feeGrowthInside1X128
            ) internal {
                Info memory _self = self;
                uint128 liquidityNext;
                if (liquidityDelta == 0) {
                    require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
                    liquidityNext = _self.liquidity;
                } else {
                    liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
                }
                // calculate accumulated fees
                uint128 tokensOwed0 =
                    uint128(
                        FullMath.mulDiv(
                            feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
                            _self.liquidity,
                            FixedPoint128.Q128
                        )
                    );
                uint128 tokensOwed1 =
                    uint128(
                        FullMath.mulDiv(
                            feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
                            _self.liquidity,
                            FixedPoint128.Q128
                        )
                    );
                // update the position
                if (liquidityDelta != 0) self.liquidity = liquidityNext;
                self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
                self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
                if (tokensOwed0 > 0 || tokensOwed1 > 0) {
                    // overflow is acceptable, have to withdraw before you hit type(uint128).max fees
                    self.tokensOwed0 += tokensOwed0;
                    self.tokensOwed1 += tokensOwed1;
                }
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity >=0.5.0;
        /// @title Oracle
        /// @notice Provides price and liquidity data useful for a wide variety of system designs
        /// @dev Instances of stored oracle data, "observations", are collected in the oracle array
        /// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
        /// maximum length of the oracle array. New slots will be added when the array is fully populated.
        /// Observations are overwritten when the full length of the oracle array is populated.
        /// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
        library Oracle {
            struct Observation {
                // the block timestamp of the observation
                uint32 blockTimestamp;
                // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
                int56 tickCumulative;
                // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
                uint160 secondsPerLiquidityCumulativeX128;
                // whether or not the observation is initialized
                bool initialized;
            }
            /// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values
            /// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows
            /// @param last The specified observation to be transformed
            /// @param blockTimestamp The timestamp of the new observation
            /// @param tick The active tick at the time of the new observation
            /// @param liquidity The total in-range liquidity at the time of the new observation
            /// @return Observation The newly populated observation
            function transform(
                Observation memory last,
                uint32 blockTimestamp,
                int24 tick,
                uint128 liquidity
            ) private pure returns (Observation memory) {
                uint32 delta = blockTimestamp - last.blockTimestamp;
                return
                    Observation({
                        blockTimestamp: blockTimestamp,
                        tickCumulative: last.tickCumulative + int56(tick) * delta,
                        secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
                            ((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
                        initialized: true
                    });
            }
            /// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
            /// @param self The stored oracle array
            /// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
            /// @return cardinality The number of populated elements in the oracle array
            /// @return cardinalityNext The new length of the oracle array, independent of population
            function initialize(Observation[65535] storage self, uint32 time)
                internal
                returns (uint16 cardinality, uint16 cardinalityNext)
            {
                self[0] = Observation({
                    blockTimestamp: time,
                    tickCumulative: 0,
                    secondsPerLiquidityCumulativeX128: 0,
                    initialized: true
                });
                return (1, 1);
            }
            /// @notice Writes an oracle observation to the array
            /// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally.
            /// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality
            /// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering.
            /// @param self The stored oracle array
            /// @param index The index of the observation that was most recently written to the observations array
            /// @param blockTimestamp The timestamp of the new observation
            /// @param tick The active tick at the time of the new observation
            /// @param liquidity The total in-range liquidity at the time of the new observation
            /// @param cardinality The number of populated elements in the oracle array
            /// @param cardinalityNext The new length of the oracle array, independent of population
            /// @return indexUpdated The new index of the most recently written element in the oracle array
            /// @return cardinalityUpdated The new cardinality of the oracle array
            function write(
                Observation[65535] storage self,
                uint16 index,
                uint32 blockTimestamp,
                int24 tick,
                uint128 liquidity,
                uint16 cardinality,
                uint16 cardinalityNext
            ) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
                Observation memory last = self[index];
                // early return if we've already written an observation this block
                if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
                // if the conditions are right, we can bump the cardinality
                if (cardinalityNext > cardinality && index == (cardinality - 1)) {
                    cardinalityUpdated = cardinalityNext;
                } else {
                    cardinalityUpdated = cardinality;
                }
                indexUpdated = (index + 1) % cardinalityUpdated;
                self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
            }
            /// @notice Prepares the oracle array to store up to `next` observations
            /// @param self The stored oracle array
            /// @param current The current next cardinality of the oracle array
            /// @param next The proposed next cardinality which will be populated in the oracle array
            /// @return next The next cardinality which will be populated in the oracle array
            function grow(
                Observation[65535] storage self,
                uint16 current,
                uint16 next
            ) internal returns (uint16) {
                require(current > 0, 'I');
                // no-op if the passed next value isn't greater than the current next value
                if (next <= current) return current;
                // store in each slot to prevent fresh SSTOREs in swaps
                // this data will not be used because the initialized boolean is still false
                for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
                return next;
            }
            /// @notice comparator for 32-bit timestamps
            /// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
            /// @param time A timestamp truncated to 32 bits
            /// @param a A comparison timestamp from which to determine the relative position of `time`
            /// @param b From which to determine the relative position of `time`
            /// @return bool Whether `a` is chronologically <= `b`
            function lte(
                uint32 time,
                uint32 a,
                uint32 b
            ) private pure returns (bool) {
                // if there hasn't been overflow, no need to adjust
                if (a <= time && b <= time) return a <= b;
                uint256 aAdjusted = a > time ? a : a + 2**32;
                uint256 bAdjusted = b > time ? b : b + 2**32;
                return aAdjusted <= bAdjusted;
            }
            /// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
            /// The result may be the same observation, or adjacent observations.
            /// @dev The answer must be contained in the array, used when the target is located within the stored observation
            /// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
            /// @param self The stored oracle array
            /// @param time The current block.timestamp
            /// @param target The timestamp at which the reserved observation should be for
            /// @param index The index of the observation that was most recently written to the observations array
            /// @param cardinality The number of populated elements in the oracle array
            /// @return beforeOrAt The observation recorded before, or at, the target
            /// @return atOrAfter The observation recorded at, or after, the target
            function binarySearch(
                Observation[65535] storage self,
                uint32 time,
                uint32 target,
                uint16 index,
                uint16 cardinality
            ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                uint256 l = (index + 1) % cardinality; // oldest observation
                uint256 r = l + cardinality - 1; // newest observation
                uint256 i;
                while (true) {
                    i = (l + r) / 2;
                    beforeOrAt = self[i % cardinality];
                    // we've landed on an uninitialized tick, keep searching higher (more recently)
                    if (!beforeOrAt.initialized) {
                        l = i + 1;
                        continue;
                    }
                    atOrAfter = self[(i + 1) % cardinality];
                    bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
                    // check if we've found the answer!
                    if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
                    if (!targetAtOrAfter) r = i - 1;
                    else l = i + 1;
                }
            }
            /// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
            /// @dev Assumes there is at least 1 initialized observation.
            /// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
            /// @param self The stored oracle array
            /// @param time The current block.timestamp
            /// @param target The timestamp at which the reserved observation should be for
            /// @param tick The active tick at the time of the returned or simulated observation
            /// @param index The index of the observation that was most recently written to the observations array
            /// @param liquidity The total pool liquidity at the time of the call
            /// @param cardinality The number of populated elements in the oracle array
            /// @return beforeOrAt The observation which occurred at, or before, the given timestamp
            /// @return atOrAfter The observation which occurred at, or after, the given timestamp
            function getSurroundingObservations(
                Observation[65535] storage self,
                uint32 time,
                uint32 target,
                int24 tick,
                uint16 index,
                uint128 liquidity,
                uint16 cardinality
            ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                // optimistically set before to the newest observation
                beforeOrAt = self[index];
                // if the target is chronologically at or after the newest observation, we can early return
                if (lte(time, beforeOrAt.blockTimestamp, target)) {
                    if (beforeOrAt.blockTimestamp == target) {
                        // if newest observation equals target, we're in the same block, so we can ignore atOrAfter
                        return (beforeOrAt, atOrAfter);
                    } else {
                        // otherwise, we need to transform
                        return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
                    }
                }
                // now, set before to the oldest observation
                beforeOrAt = self[(index + 1) % cardinality];
                if (!beforeOrAt.initialized) beforeOrAt = self[0];
                // ensure that the target is chronologically at or after the oldest observation
                require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
                // if we've reached this point, we have to binary search
                return binarySearch(self, time, target, index, cardinality);
            }
            /// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
            /// 0 may be passed as `secondsAgo' to return the current cumulative values.
            /// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
            /// at exactly the timestamp between the two observations.
            /// @param self The stored oracle array
            /// @param time The current block timestamp
            /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
            /// @param tick The current tick
            /// @param index The index of the observation that was most recently written to the observations array
            /// @param liquidity The current in-range pool liquidity
            /// @param cardinality The number of populated elements in the oracle array
            /// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
            /// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
            function observeSingle(
                Observation[65535] storage self,
                uint32 time,
                uint32 secondsAgo,
                int24 tick,
                uint16 index,
                uint128 liquidity,
                uint16 cardinality
            ) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
                if (secondsAgo == 0) {
                    Observation memory last = self[index];
                    if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
                    return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
                }
                uint32 target = time - secondsAgo;
                (Observation memory beforeOrAt, Observation memory atOrAfter) =
                    getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
                if (target == beforeOrAt.blockTimestamp) {
                    // we're at the left boundary
                    return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
                } else if (target == atOrAfter.blockTimestamp) {
                    // we're at the right boundary
                    return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
                } else {
                    // we're in the middle
                    uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
                    uint32 targetDelta = target - beforeOrAt.blockTimestamp;
                    return (
                        beforeOrAt.tickCumulative +
                            ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
                            targetDelta,
                        beforeOrAt.secondsPerLiquidityCumulativeX128 +
                            uint160(
                                (uint256(
                                    atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
                                ) * targetDelta) / observationTimeDelta
                            )
                    );
                }
            }
            /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
            /// @dev Reverts if `secondsAgos` > oldest observation
            /// @param self The stored oracle array
            /// @param time The current block.timestamp
            /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
            /// @param tick The current tick
            /// @param index The index of the observation that was most recently written to the observations array
            /// @param liquidity The current in-range pool liquidity
            /// @param cardinality The number of populated elements in the oracle array
            /// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
            /// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
            function observe(
                Observation[65535] storage self,
                uint32 time,
                uint32[] memory secondsAgos,
                int24 tick,
                uint16 index,
                uint128 liquidity,
                uint16 cardinality
            ) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
                require(cardinality > 0, 'I');
                tickCumulatives = new int56[](secondsAgos.length);
                secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
                for (uint256 i = 0; i < secondsAgos.length; i++) {
                    (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
                        self,
                        time,
                        secondsAgos[i],
                        tick,
                        index,
                        liquidity,
                        cardinality
                    );
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.4.0;
        /// @title Contains 512-bit math functions
        /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
        /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
        library FullMath {
            /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
            /// @param a The multiplicand
            /// @param b The multiplier
            /// @param denominator The divisor
            /// @return result The 256-bit result
            /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
            function mulDiv(
                uint256 a,
                uint256 b,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                // 512-bit multiply [prod1 prod0] = a * b
                // Compute the product mod 2**256 and mod 2**256 - 1
                // then use the Chinese Remainder Theorem to reconstruct
                // the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2**256 + prod0
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(a, b, not(0))
                    prod0 := mul(a, b)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division
                if (prod1 == 0) {
                    require(denominator > 0);
                    assembly {
                        result := div(prod0, denominator)
                    }
                    return result;
                }
                // Make sure the result is less than 2**256.
                // Also prevents denominator == 0
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0]
                // Compute remainder using mulmod
                uint256 remainder;
                assembly {
                    remainder := mulmod(a, b, denominator)
                }
                // Subtract 256 bit number from 512 bit number
                assembly {
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator
                // Compute largest power of two divisor of denominator.
                // Always >= 1.
                uint256 twos = -denominator & denominator;
                // Divide denominator by power of two
                assembly {
                    denominator := div(denominator, twos)
                }
                // Divide [prod1 prod0] by the factors of two
                assembly {
                    prod0 := div(prod0, twos)
                }
                // Shift in bits from prod1 into prod0. For this we need
                // to flip `twos` such that it is 2**256 / twos.
                // If twos is zero, then it becomes one
                assembly {
                    twos := add(div(sub(0, twos), twos), 1)
                }
                prod0 |= prod1 * twos;
                // Invert denominator mod 2**256
                // Now that denominator is an odd number, it has an inverse
                // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                // Compute the inverse by starting with a seed that is correct
                // correct for four bits. That is, denominator * inv = 1 mod 2**4
                uint256 inv = (3 * denominator) ^ 2;
                // Now use Newton-Raphson iteration to improve the precision.
                // Thanks to Hensel's lifting lemma, this also works in modular
                // arithmetic, doubling the correct bits in each step.
                inv *= 2 - denominator * inv; // inverse mod 2**8
                inv *= 2 - denominator * inv; // inverse mod 2**16
                inv *= 2 - denominator * inv; // inverse mod 2**32
                inv *= 2 - denominator * inv; // inverse mod 2**64
                inv *= 2 - denominator * inv; // inverse mod 2**128
                inv *= 2 - denominator * inv; // inverse mod 2**256
                // Because the division is now exact we can divide by multiplying
                // with the modular inverse of denominator. This will give us the
                // correct result modulo 2**256. Since the precoditions guarantee
                // that the outcome is less than 2**256, this is the final result.
                // We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inv;
                return result;
            }
            /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
            /// @param a The multiplicand
            /// @param b The multiplier
            /// @param denominator The divisor
            /// @return result The 256-bit result
            function mulDivRoundingUp(
                uint256 a,
                uint256 b,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                result = mulDiv(a, b, denominator);
                if (mulmod(a, b, denominator) > 0) {
                    require(result < type(uint256).max);
                    result++;
                }
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.4.0;
        /// @title FixedPoint128
        /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
        library FixedPoint128 {
            uint256 internal constant Q128 = 0x100000000000000000000000000000000;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.6.0;
        import '../interfaces/IERC20Minimal.sol';
        /// @title TransferHelper
        /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false
        library TransferHelper {
            /// @notice Transfers tokens from msg.sender to a recipient
            /// @dev Calls transfer on token contract, errors with TF if transfer fails
            /// @param token The contract address of the token which will be transferred
            /// @param to The recipient of the transfer
            /// @param value The value of the transfer
            function safeTransfer(
                address token,
                address to,
                uint256 value
            ) internal {
                (bool success, bytes memory data) =
                    token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value));
                require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF');
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Math library for computing sqrt prices from ticks and vice versa
        /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
        /// prices between 2**-128 and 2**128
        library TickMath {
            /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
            int24 internal constant MIN_TICK = -887272;
            /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
            int24 internal constant MAX_TICK = -MIN_TICK;
            /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
            uint160 internal constant MIN_SQRT_RATIO = 4295128739;
            /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
            uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
            /// @notice Calculates sqrt(1.0001^tick) * 2^96
            /// @dev Throws if |tick| > max tick
            /// @param tick The input tick for the above formula
            /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
            /// at the given tick
            function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
                require(absTick <= uint256(MAX_TICK), 'T');
                uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
                if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
                if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
                if (tick > 0) ratio = type(uint256).max / ratio;
                // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
                sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
            }
            /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
            /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
            /// ever return.
            /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
            /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
            function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                // second inequality must be < because the price can never reach the price at the max tick
                require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
                uint256 ratio = uint256(sqrtPriceX96) << 32;
                uint256 r = ratio;
                uint256 msb = 0;
                assembly {
                    let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(5, gt(r, 0xFFFFFFFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(4, gt(r, 0xFFFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(3, gt(r, 0xFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(2, gt(r, 0xF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(1, gt(r, 0x3))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := gt(r, 0x1)
                    msb := or(msb, f)
                }
                if (msb >= 128) r = ratio >> (msb - 127);
                else r = ratio << (127 - msb);
                int256 log_2 = (int256(msb) - 128) << 64;
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(63, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(62, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(61, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(60, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(59, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(58, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(57, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(56, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(55, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(54, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(53, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(52, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(51, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(50, f))
                }
                int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
                int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Math library for liquidity
        library LiquidityMath {
            /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
            /// @param x The liquidity before change
            /// @param y The delta by which liquidity should be changed
            /// @return z The liquidity delta
            function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
                if (y < 0) {
                    require((z = x - uint128(-y)) < x, 'LS');
                } else {
                    require((z = x + uint128(y)) >= x, 'LA');
                }
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity >=0.5.0;
        import './LowGasSafeMath.sol';
        import './SafeCast.sol';
        import './FullMath.sol';
        import './UnsafeMath.sol';
        import './FixedPoint96.sol';
        /// @title Functions based on Q64.96 sqrt price and liquidity
        /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
        library SqrtPriceMath {
            using LowGasSafeMath for uint256;
            using SafeCast for uint256;
            /// @notice Gets the next sqrt price given a delta of token0
            /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
            /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
            /// price less in order to not send too much output.
            /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
            /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
            /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
            /// @param liquidity The amount of usable liquidity
            /// @param amount How much of token0 to add or remove from virtual reserves
            /// @param add Whether to add or remove the amount of token0
            /// @return The price after adding or removing amount, depending on add
            function getNextSqrtPriceFromAmount0RoundingUp(
                uint160 sqrtPX96,
                uint128 liquidity,
                uint256 amount,
                bool add
            ) internal pure returns (uint160) {
                // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
                if (amount == 0) return sqrtPX96;
                uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                if (add) {
                    uint256 product;
                    if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
                        uint256 denominator = numerator1 + product;
                        if (denominator >= numerator1)
                            // always fits in 160 bits
                            return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
                    }
                    return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
                } else {
                    uint256 product;
                    // if the product overflows, we know the denominator underflows
                    // in addition, we must check that the denominator does not underflow
                    require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
                    uint256 denominator = numerator1 - product;
                    return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
                }
            }
            /// @notice Gets the next sqrt price given a delta of token1
            /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
            /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
            /// price less in order to not send too much output.
            /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
            /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
            /// @param liquidity The amount of usable liquidity
            /// @param amount How much of token1 to add, or remove, from virtual reserves
            /// @param add Whether to add, or remove, the amount of token1
            /// @return The price after adding or removing `amount`
            function getNextSqrtPriceFromAmount1RoundingDown(
                uint160 sqrtPX96,
                uint128 liquidity,
                uint256 amount,
                bool add
            ) internal pure returns (uint160) {
                // if we're adding (subtracting), rounding down requires rounding the quotient down (up)
                // in both cases, avoid a mulDiv for most inputs
                if (add) {
                    uint256 quotient =
                        (
                            amount <= type(uint160).max
                                ? (amount << FixedPoint96.RESOLUTION) / liquidity
                                : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
                        );
                    return uint256(sqrtPX96).add(quotient).toUint160();
                } else {
                    uint256 quotient =
                        (
                            amount <= type(uint160).max
                                ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
                                : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
                        );
                    require(sqrtPX96 > quotient);
                    // always fits 160 bits
                    return uint160(sqrtPX96 - quotient);
                }
            }
            /// @notice Gets the next sqrt price given an input amount of token0 or token1
            /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
            /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
            /// @param liquidity The amount of usable liquidity
            /// @param amountIn How much of token0, or token1, is being swapped in
            /// @param zeroForOne Whether the amount in is token0 or token1
            /// @return sqrtQX96 The price after adding the input amount to token0 or token1
            function getNextSqrtPriceFromInput(
                uint160 sqrtPX96,
                uint128 liquidity,
                uint256 amountIn,
                bool zeroForOne
            ) internal pure returns (uint160 sqrtQX96) {
                require(sqrtPX96 > 0);
                require(liquidity > 0);
                // round to make sure that we don't pass the target price
                return
                    zeroForOne
                        ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
                        : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
            }
            /// @notice Gets the next sqrt price given an output amount of token0 or token1
            /// @dev Throws if price or liquidity are 0 or the next price is out of bounds
            /// @param sqrtPX96 The starting price before accounting for the output amount
            /// @param liquidity The amount of usable liquidity
            /// @param amountOut How much of token0, or token1, is being swapped out
            /// @param zeroForOne Whether the amount out is token0 or token1
            /// @return sqrtQX96 The price after removing the output amount of token0 or token1
            function getNextSqrtPriceFromOutput(
                uint160 sqrtPX96,
                uint128 liquidity,
                uint256 amountOut,
                bool zeroForOne
            ) internal pure returns (uint160 sqrtQX96) {
                require(sqrtPX96 > 0);
                require(liquidity > 0);
                // round to make sure that we pass the target price
                return
                    zeroForOne
                        ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
                        : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
            }
            /// @notice Gets the amount0 delta between two prices
            /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
            /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
            /// @param sqrtRatioAX96 A sqrt price
            /// @param sqrtRatioBX96 Another sqrt price
            /// @param liquidity The amount of usable liquidity
            /// @param roundUp Whether to round the amount up or down
            /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
            function getAmount0Delta(
                uint160 sqrtRatioAX96,
                uint160 sqrtRatioBX96,
                uint128 liquidity,
                bool roundUp
            ) internal pure returns (uint256 amount0) {
                if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
                require(sqrtRatioAX96 > 0);
                return
                    roundUp
                        ? UnsafeMath.divRoundingUp(
                            FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
                            sqrtRatioAX96
                        )
                        : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
            }
            /// @notice Gets the amount1 delta between two prices
            /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
            /// @param sqrtRatioAX96 A sqrt price
            /// @param sqrtRatioBX96 Another sqrt price
            /// @param liquidity The amount of usable liquidity
            /// @param roundUp Whether to round the amount up, or down
            /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
            function getAmount1Delta(
                uint160 sqrtRatioAX96,
                uint160 sqrtRatioBX96,
                uint128 liquidity,
                bool roundUp
            ) internal pure returns (uint256 amount1) {
                if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                return
                    roundUp
                        ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
                        : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
            }
            /// @notice Helper that gets signed token0 delta
            /// @param sqrtRatioAX96 A sqrt price
            /// @param sqrtRatioBX96 Another sqrt price
            /// @param liquidity The change in liquidity for which to compute the amount0 delta
            /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
            function getAmount0Delta(
                uint160 sqrtRatioAX96,
                uint160 sqrtRatioBX96,
                int128 liquidity
            ) internal pure returns (int256 amount0) {
                return
                    liquidity < 0
                        ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                        : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
            }
            /// @notice Helper that gets signed token1 delta
            /// @param sqrtRatioAX96 A sqrt price
            /// @param sqrtRatioBX96 Another sqrt price
            /// @param liquidity The change in liquidity for which to compute the amount1 delta
            /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
            function getAmount1Delta(
                uint160 sqrtRatioAX96,
                uint160 sqrtRatioBX96,
                int128 liquidity
            ) internal pure returns (int256 amount1) {
                return
                    liquidity < 0
                        ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                        : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity >=0.5.0;
        import './FullMath.sol';
        import './SqrtPriceMath.sol';
        /// @title Computes the result of a swap within ticks
        /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
        library SwapMath {
            /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
            /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive
            /// @param sqrtRatioCurrentX96 The current sqrt price of the pool
            /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
            /// @param liquidity The usable liquidity
            /// @param amountRemaining How much input or output amount is remaining to be swapped in/out
            /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
            /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target
            /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap
            /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap
            /// @return feeAmount The amount of input that will be taken as a fee
            function computeSwapStep(
                uint160 sqrtRatioCurrentX96,
                uint160 sqrtRatioTargetX96,
                uint128 liquidity,
                int256 amountRemaining,
                uint24 feePips
            )
                internal
                pure
                returns (
                    uint160 sqrtRatioNextX96,
                    uint256 amountIn,
                    uint256 amountOut,
                    uint256 feeAmount
                )
            {
                bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
                bool exactIn = amountRemaining >= 0;
                if (exactIn) {
                    uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
                    amountIn = zeroForOne
                        ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
                        : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
                    if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
                    else
                        sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
                            sqrtRatioCurrentX96,
                            liquidity,
                            amountRemainingLessFee,
                            zeroForOne
                        );
                } else {
                    amountOut = zeroForOne
                        ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
                        : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
                    if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
                    else
                        sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
                            sqrtRatioCurrentX96,
                            liquidity,
                            uint256(-amountRemaining),
                            zeroForOne
                        );
                }
                bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
                // get the input/output amounts
                if (zeroForOne) {
                    amountIn = max && exactIn
                        ? amountIn
                        : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
                    amountOut = max && !exactIn
                        ? amountOut
                        : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
                } else {
                    amountIn = max && exactIn
                        ? amountIn
                        : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
                    amountOut = max && !exactIn
                        ? amountOut
                        : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
                }
                // cap the output amount to not exceed the remaining output amount
                if (!exactIn && amountOut > uint256(-amountRemaining)) {
                    amountOut = uint256(-amountRemaining);
                }
                if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
                    // we didn't reach the target, so take the remainder of the maximum input as fee
                    feeAmount = uint256(amountRemaining) - amountIn;
                } else {
                    feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
                }
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title An interface for a contract that is capable of deploying Uniswap V3 Pools
        /// @notice A contract that constructs a pool must implement this to pass arguments to the pool
        /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
        /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain
        interface IUniswapV3PoolDeployer {
            /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
            /// @dev Called by the pool constructor to fetch the parameters of the pool
            /// Returns factory The factory address
            /// Returns token0 The first token of the pool by address sort order
            /// Returns token1 The second token of the pool by address sort order
            /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
            /// Returns tickSpacing The minimum number of ticks between initialized ticks
            function parameters()
                external
                view
                returns (
                    address factory,
                    address token0,
                    address token1,
                    uint24 fee,
                    int24 tickSpacing
                );
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title The interface for the Uniswap V3 Factory
        /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
        interface IUniswapV3Factory {
            /// @notice Emitted when the owner of the factory is changed
            /// @param oldOwner The owner before the owner was changed
            /// @param newOwner The owner after the owner was changed
            event OwnerChanged(address indexed oldOwner, address indexed newOwner);
            /// @notice Emitted when a pool is created
            /// @param token0 The first token of the pool by address sort order
            /// @param token1 The second token of the pool by address sort order
            /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
            /// @param tickSpacing The minimum number of ticks between initialized ticks
            /// @param pool The address of the created pool
            event PoolCreated(
                address indexed token0,
                address indexed token1,
                uint24 indexed fee,
                int24 tickSpacing,
                address pool
            );
            /// @notice Emitted when a new fee amount is enabled for pool creation via the factory
            /// @param fee The enabled fee, denominated in hundredths of a bip
            /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
            event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
            /// @notice Returns the current owner of the factory
            /// @dev Can be changed by the current owner via setOwner
            /// @return The address of the factory owner
            function owner() external view returns (address);
            /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
            /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
            /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
            /// @return The tick spacing
            function feeAmountTickSpacing(uint24 fee) external view returns (int24);
            /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
            /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
            /// @param tokenA The contract address of either token0 or token1
            /// @param tokenB The contract address of the other token
            /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
            /// @return pool The pool address
            function getPool(
                address tokenA,
                address tokenB,
                uint24 fee
            ) external view returns (address pool);
            /// @notice Creates a pool for the given two tokens and fee
            /// @param tokenA One of the two tokens in the desired pool
            /// @param tokenB The other of the two tokens in the desired pool
            /// @param fee The desired fee for the pool
            /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
            /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
            /// are invalid.
            /// @return pool The address of the newly created pool
            function createPool(
                address tokenA,
                address tokenB,
                uint24 fee
            ) external returns (address pool);
            /// @notice Updates the owner of the factory
            /// @dev Must be called by the current owner
            /// @param _owner The new owner of the factory
            function setOwner(address _owner) external;
            /// @notice Enables a fee amount with the given tickSpacing
            /// @dev Fee amounts may never be removed once enabled
            /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
            /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
            function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Minimal ERC20 interface for Uniswap
        /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
        interface IERC20Minimal {
            /// @notice Returns the balance of a token
            /// @param account The account for which to look up the number of tokens it has, i.e. its balance
            /// @return The number of tokens held by the account
            function balanceOf(address account) external view returns (uint256);
            /// @notice Transfers the amount of token from the `msg.sender` to the recipient
            /// @param recipient The account that will receive the amount transferred
            /// @param amount The number of tokens to send from the sender to the recipient
            /// @return Returns true for a successful transfer, false for an unsuccessful transfer
            function transfer(address recipient, uint256 amount) external returns (bool);
            /// @notice Returns the current allowance given to a spender by an owner
            /// @param owner The account of the token owner
            /// @param spender The account of the token spender
            /// @return The current allowance granted by `owner` to `spender`
            function allowance(address owner, address spender) external view returns (uint256);
            /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
            /// @param spender The account which will be allowed to spend a given amount of the owners tokens
            /// @param amount The amount of tokens allowed to be used by `spender`
            /// @return Returns true for a successful approval, false for unsuccessful
            function approve(address spender, uint256 amount) external returns (bool);
            /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
            /// @param sender The account from which the transfer will be initiated
            /// @param recipient The recipient of the transfer
            /// @param amount The amount of the transfer
            /// @return Returns true for a successful transfer, false for unsuccessful
            function transferFrom(
                address sender,
                address recipient,
                uint256 amount
            ) external returns (bool);
            /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
            /// @param from The account from which the tokens were sent, i.e. the balance decreased
            /// @param to The account to which the tokens were sent, i.e. the balance increased
            /// @param value The amount of tokens that were transferred
            event Transfer(address indexed from, address indexed to, uint256 value);
            /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
            /// @param owner The account that approved spending of its tokens
            /// @param spender The account for which the spending allowance was modified
            /// @param value The new allowance from the owner to the spender
            event Approval(address indexed owner, address indexed spender, uint256 value);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Callback for IUniswapV3PoolActions#mint
        /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
        interface IUniswapV3MintCallback {
            /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
            /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
            /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
            /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
            /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
            /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
            function uniswapV3MintCallback(
                uint256 amount0Owed,
                uint256 amount1Owed,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Callback for IUniswapV3PoolActions#swap
        /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
        interface IUniswapV3SwapCallback {
            /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
            /// @dev In the implementation you must pay the pool tokens owed for the swap.
            /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
            /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
            /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
            /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
            /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
            /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
            /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
            function uniswapV3SwapCallback(
                int256 amount0Delta,
                int256 amount1Delta,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Callback for IUniswapV3PoolActions#flash
        /// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface
        interface IUniswapV3FlashCallback {
            /// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash.
            /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts.
            /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
            /// @param fee0 The fee amount in token0 due to the pool by the end of the flash
            /// @param fee1 The fee amount in token1 due to the pool by the end of the flash
            /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call
            function uniswapV3FlashCallback(
                uint256 fee0,
                uint256 fee1,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Pool state that never changes
        /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
        interface IUniswapV3PoolImmutables {
            /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
            /// @return The contract address
            function factory() external view returns (address);
            /// @notice The first of the two tokens of the pool, sorted by address
            /// @return The token contract address
            function token0() external view returns (address);
            /// @notice The second of the two tokens of the pool, sorted by address
            /// @return The token contract address
            function token1() external view returns (address);
            /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
            /// @return The fee
            function fee() external view returns (uint24);
            /// @notice The pool tick spacing
            /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
            /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
            /// This value is an int24 to avoid casting even though it is always positive.
            /// @return The tick spacing
            function tickSpacing() external view returns (int24);
            /// @notice The maximum amount of position liquidity that can use any tick in the range
            /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
            /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
            /// @return The max amount of liquidity per tick
            function maxLiquidityPerTick() external view returns (uint128);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Pool state that can change
        /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
        /// per transaction
        interface IUniswapV3PoolState {
            /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
            /// when accessed externally.
            /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
            /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
            /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
            /// boundary.
            /// observationIndex The index of the last oracle observation that was written,
            /// observationCardinality The current maximum number of observations stored in the pool,
            /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
            /// feeProtocol The protocol fee for both tokens of the pool.
            /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
            /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
            /// unlocked Whether the pool is currently locked to reentrancy
            function slot0()
                external
                view
                returns (
                    uint160 sqrtPriceX96,
                    int24 tick,
                    uint16 observationIndex,
                    uint16 observationCardinality,
                    uint16 observationCardinalityNext,
                    uint8 feeProtocol,
                    bool unlocked
                );
            /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
            /// @dev This value can overflow the uint256
            function feeGrowthGlobal0X128() external view returns (uint256);
            /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
            /// @dev This value can overflow the uint256
            function feeGrowthGlobal1X128() external view returns (uint256);
            /// @notice The amounts of token0 and token1 that are owed to the protocol
            /// @dev Protocol fees will never exceed uint128 max in either token
            function protocolFees() external view returns (uint128 token0, uint128 token1);
            /// @notice The currently in range liquidity available to the pool
            /// @dev This value has no relationship to the total liquidity across all ticks
            function liquidity() external view returns (uint128);
            /// @notice Look up information about a specific tick in the pool
            /// @param tick The tick to look up
            /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
            /// tick upper,
            /// liquidityNet how much liquidity changes when the pool price crosses the tick,
            /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
            /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
            /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
            /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
            /// secondsOutside the seconds spent on the other side of the tick from the current tick,
            /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
            /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
            /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
            /// a specific position.
            function ticks(int24 tick)
                external
                view
                returns (
                    uint128 liquidityGross,
                    int128 liquidityNet,
                    uint256 feeGrowthOutside0X128,
                    uint256 feeGrowthOutside1X128,
                    int56 tickCumulativeOutside,
                    uint160 secondsPerLiquidityOutsideX128,
                    uint32 secondsOutside,
                    bool initialized
                );
            /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
            function tickBitmap(int16 wordPosition) external view returns (uint256);
            /// @notice Returns the information about a position by the position's key
            /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
            /// @return _liquidity The amount of liquidity in the position,
            /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
            /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
            /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
            /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
            function positions(bytes32 key)
                external
                view
                returns (
                    uint128 _liquidity,
                    uint256 feeGrowthInside0LastX128,
                    uint256 feeGrowthInside1LastX128,
                    uint128 tokensOwed0,
                    uint128 tokensOwed1
                );
            /// @notice Returns data about a specific observation index
            /// @param index The element of the observations array to fetch
            /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
            /// ago, rather than at a specific index in the array.
            /// @return blockTimestamp The timestamp of the observation,
            /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
            /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
            /// Returns initialized whether the observation has been initialized and the values are safe to use
            function observations(uint256 index)
                external
                view
                returns (
                    uint32 blockTimestamp,
                    int56 tickCumulative,
                    uint160 secondsPerLiquidityCumulativeX128,
                    bool initialized
                );
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Pool state that is not stored
        /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
        /// blockchain. The functions here may have variable gas costs.
        interface IUniswapV3PoolDerivedState {
            /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
            /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
            /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
            /// you must call it with secondsAgos = [3600, 0].
            /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
            /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
            /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
            /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
            /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
            /// timestamp
            function observe(uint32[] calldata secondsAgos)
                external
                view
                returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
            /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
            /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
            /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
            /// snapshot is taken and the second snapshot is taken.
            /// @param tickLower The lower tick of the range
            /// @param tickUpper The upper tick of the range
            /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
            /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
            /// @return secondsInside The snapshot of seconds per liquidity for the range
            function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                external
                view
                returns (
                    int56 tickCumulativeInside,
                    uint160 secondsPerLiquidityInsideX128,
                    uint32 secondsInside
                );
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Permissionless pool actions
        /// @notice Contains pool methods that can be called by anyone
        interface IUniswapV3PoolActions {
            /// @notice Sets the initial price for the pool
            /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
            /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
            function initialize(uint160 sqrtPriceX96) external;
            /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
            /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
            /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
            /// on tickLower, tickUpper, the amount of liquidity, and the current price.
            /// @param recipient The address for which the liquidity will be created
            /// @param tickLower The lower tick of the position in which to add liquidity
            /// @param tickUpper The upper tick of the position in which to add liquidity
            /// @param amount The amount of liquidity to mint
            /// @param data Any data that should be passed through to the callback
            /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
            /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
            function mint(
                address recipient,
                int24 tickLower,
                int24 tickUpper,
                uint128 amount,
                bytes calldata data
            ) external returns (uint256 amount0, uint256 amount1);
            /// @notice Collects tokens owed to a position
            /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
            /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
            /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
            /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
            /// @param recipient The address which should receive the fees collected
            /// @param tickLower The lower tick of the position for which to collect fees
            /// @param tickUpper The upper tick of the position for which to collect fees
            /// @param amount0Requested How much token0 should be withdrawn from the fees owed
            /// @param amount1Requested How much token1 should be withdrawn from the fees owed
            /// @return amount0 The amount of fees collected in token0
            /// @return amount1 The amount of fees collected in token1
            function collect(
                address recipient,
                int24 tickLower,
                int24 tickUpper,
                uint128 amount0Requested,
                uint128 amount1Requested
            ) external returns (uint128 amount0, uint128 amount1);
            /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
            /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
            /// @dev Fees must be collected separately via a call to #collect
            /// @param tickLower The lower tick of the position for which to burn liquidity
            /// @param tickUpper The upper tick of the position for which to burn liquidity
            /// @param amount How much liquidity to burn
            /// @return amount0 The amount of token0 sent to the recipient
            /// @return amount1 The amount of token1 sent to the recipient
            function burn(
                int24 tickLower,
                int24 tickUpper,
                uint128 amount
            ) external returns (uint256 amount0, uint256 amount1);
            /// @notice Swap token0 for token1, or token1 for token0
            /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
            /// @param recipient The address to receive the output of the swap
            /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
            /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
            /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
            /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
            /// @param data Any data to be passed through to the callback
            /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
            /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
            function swap(
                address recipient,
                bool zeroForOne,
                int256 amountSpecified,
                uint160 sqrtPriceLimitX96,
                bytes calldata data
            ) external returns (int256 amount0, int256 amount1);
            /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
            /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
            /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
            /// with 0 amount{0,1} and sending the donation amount(s) from the callback
            /// @param recipient The address which will receive the token0 and token1 amounts
            /// @param amount0 The amount of token0 to send
            /// @param amount1 The amount of token1 to send
            /// @param data Any data to be passed through to the callback
            function flash(
                address recipient,
                uint256 amount0,
                uint256 amount1,
                bytes calldata data
            ) external;
            /// @notice Increase the maximum number of price and liquidity observations that this pool will store
            /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
            /// the input observationCardinalityNext.
            /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
            function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Permissioned pool actions
        /// @notice Contains pool methods that may only be called by the factory owner
        interface IUniswapV3PoolOwnerActions {
            /// @notice Set the denominator of the protocol's % share of the fees
            /// @param feeProtocol0 new protocol fee for token0 of the pool
            /// @param feeProtocol1 new protocol fee for token1 of the pool
            function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
            /// @notice Collect the protocol fee accrued to the pool
            /// @param recipient The address to which collected protocol fees should be sent
            /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
            /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
            /// @return amount0 The protocol fee collected in token0
            /// @return amount1 The protocol fee collected in token1
            function collectProtocol(
                address recipient,
                uint128 amount0Requested,
                uint128 amount1Requested
            ) external returns (uint128 amount0, uint128 amount1);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Events emitted by a pool
        /// @notice Contains all events emitted by the pool
        interface IUniswapV3PoolEvents {
            /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
            /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
            /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
            /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
            event Initialize(uint160 sqrtPriceX96, int24 tick);
            /// @notice Emitted when liquidity is minted for a given position
            /// @param sender The address that minted the liquidity
            /// @param owner The owner of the position and recipient of any minted liquidity
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param amount The amount of liquidity minted to the position range
            /// @param amount0 How much token0 was required for the minted liquidity
            /// @param amount1 How much token1 was required for the minted liquidity
            event Mint(
                address sender,
                address indexed owner,
                int24 indexed tickLower,
                int24 indexed tickUpper,
                uint128 amount,
                uint256 amount0,
                uint256 amount1
            );
            /// @notice Emitted when fees are collected by the owner of a position
            /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
            /// @param owner The owner of the position for which fees are collected
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param amount0 The amount of token0 fees collected
            /// @param amount1 The amount of token1 fees collected
            event Collect(
                address indexed owner,
                address recipient,
                int24 indexed tickLower,
                int24 indexed tickUpper,
                uint128 amount0,
                uint128 amount1
            );
            /// @notice Emitted when a position's liquidity is removed
            /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
            /// @param owner The owner of the position for which liquidity is removed
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param amount The amount of liquidity to remove
            /// @param amount0 The amount of token0 withdrawn
            /// @param amount1 The amount of token1 withdrawn
            event Burn(
                address indexed owner,
                int24 indexed tickLower,
                int24 indexed tickUpper,
                uint128 amount,
                uint256 amount0,
                uint256 amount1
            );
            /// @notice Emitted by the pool for any swaps between token0 and token1
            /// @param sender The address that initiated the swap call, and that received the callback
            /// @param recipient The address that received the output of the swap
            /// @param amount0 The delta of the token0 balance of the pool
            /// @param amount1 The delta of the token1 balance of the pool
            /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
            /// @param liquidity The liquidity of the pool after the swap
            /// @param tick The log base 1.0001 of price of the pool after the swap
            event Swap(
                address indexed sender,
                address indexed recipient,
                int256 amount0,
                int256 amount1,
                uint160 sqrtPriceX96,
                uint128 liquidity,
                int24 tick
            );
            /// @notice Emitted by the pool for any flashes of token0/token1
            /// @param sender The address that initiated the swap call, and that received the callback
            /// @param recipient The address that received the tokens from flash
            /// @param amount0 The amount of token0 that was flashed
            /// @param amount1 The amount of token1 that was flashed
            /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
            /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
            event Flash(
                address indexed sender,
                address indexed recipient,
                uint256 amount0,
                uint256 amount1,
                uint256 paid0,
                uint256 paid1
            );
            /// @notice Emitted by the pool for increases to the number of observations that can be stored
            /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
            /// just before a mint/swap/burn.
            /// @param observationCardinalityNextOld The previous value of the next observation cardinality
            /// @param observationCardinalityNextNew The updated value of the next observation cardinality
            event IncreaseObservationCardinalityNext(
                uint16 observationCardinalityNextOld,
                uint16 observationCardinalityNextNew
            );
            /// @notice Emitted when the protocol fee is changed by the pool
            /// @param feeProtocol0Old The previous value of the token0 protocol fee
            /// @param feeProtocol1Old The previous value of the token1 protocol fee
            /// @param feeProtocol0New The updated value of the token0 protocol fee
            /// @param feeProtocol1New The updated value of the token1 protocol fee
            event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
            /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
            /// @param sender The address that collects the protocol fees
            /// @param recipient The address that receives the collected protocol fees
            /// @param amount0 The amount of token0 protocol fees that is withdrawn
            /// @param amount0 The amount of token1 protocol fees that is withdrawn
            event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title BitMath
        /// @dev This library provides functionality for computing bit properties of an unsigned integer
        library BitMath {
            /// @notice Returns the index of the most significant bit of the number,
            ///     where the least significant bit is at index 0 and the most significant bit is at index 255
            /// @dev The function satisfies the property:
            ///     x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1)
            /// @param x the value for which to compute the most significant bit, must be greater than 0
            /// @return r the index of the most significant bit
            function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
                require(x > 0);
                if (x >= 0x100000000000000000000000000000000) {
                    x >>= 128;
                    r += 128;
                }
                if (x >= 0x10000000000000000) {
                    x >>= 64;
                    r += 64;
                }
                if (x >= 0x100000000) {
                    x >>= 32;
                    r += 32;
                }
                if (x >= 0x10000) {
                    x >>= 16;
                    r += 16;
                }
                if (x >= 0x100) {
                    x >>= 8;
                    r += 8;
                }
                if (x >= 0x10) {
                    x >>= 4;
                    r += 4;
                }
                if (x >= 0x4) {
                    x >>= 2;
                    r += 2;
                }
                if (x >= 0x2) r += 1;
            }
            /// @notice Returns the index of the least significant bit of the number,
            ///     where the least significant bit is at index 0 and the most significant bit is at index 255
            /// @dev The function satisfies the property:
            ///     (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0)
            /// @param x the value for which to compute the least significant bit, must be greater than 0
            /// @return r the index of the least significant bit
            function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
                require(x > 0);
                r = 255;
                if (x & type(uint128).max > 0) {
                    r -= 128;
                } else {
                    x >>= 128;
                }
                if (x & type(uint64).max > 0) {
                    r -= 64;
                } else {
                    x >>= 64;
                }
                if (x & type(uint32).max > 0) {
                    r -= 32;
                } else {
                    x >>= 32;
                }
                if (x & type(uint16).max > 0) {
                    r -= 16;
                } else {
                    x >>= 16;
                }
                if (x & type(uint8).max > 0) {
                    r -= 8;
                } else {
                    x >>= 8;
                }
                if (x & 0xf > 0) {
                    r -= 4;
                } else {
                    x >>= 4;
                }
                if (x & 0x3 > 0) {
                    r -= 2;
                } else {
                    x >>= 2;
                }
                if (x & 0x1 > 0) r -= 1;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Math functions that do not check inputs or outputs
        /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
        library UnsafeMath {
            /// @notice Returns ceil(x / y)
            /// @dev division by 0 has unspecified behavior, and must be checked externally
            /// @param x The dividend
            /// @param y The divisor
            /// @return z The quotient, ceil(x / y)
            function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                assembly {
                    z := add(div(x, y), gt(mod(x, y), 0))
                }
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.4.0;
        /// @title FixedPoint96
        /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
        /// @dev Used in SqrtPriceMath.sol
        library FixedPoint96 {
            uint8 internal constant RESOLUTION = 96;
            uint256 internal constant Q96 = 0x1000000000000000000000000;
        }
        

        File 3 of 4: TrinityToken
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        import { IMessageLibManager } from "./IMessageLibManager.sol";
        import { IMessagingComposer } from "./IMessagingComposer.sol";
        import { IMessagingChannel } from "./IMessagingChannel.sol";
        import { IMessagingContext } from "./IMessagingContext.sol";
        struct MessagingParams {
            uint32 dstEid;
            bytes32 receiver;
            bytes message;
            bytes options;
            bool payInLzToken;
        }
        struct MessagingReceipt {
            bytes32 guid;
            uint64 nonce;
            MessagingFee fee;
        }
        struct MessagingFee {
            uint256 nativeFee;
            uint256 lzTokenFee;
        }
        struct Origin {
            uint32 srcEid;
            bytes32 sender;
            uint64 nonce;
        }
        interface ILayerZeroEndpointV2 is IMessageLibManager, IMessagingComposer, IMessagingChannel, IMessagingContext {
            event PacketSent(bytes encodedPayload, bytes options, address sendLibrary);
            event PacketVerified(Origin origin, address receiver, bytes32 payloadHash);
            event PacketDelivered(Origin origin, address receiver);
            event LzReceiveAlert(
                address indexed receiver,
                address indexed executor,
                Origin origin,
                bytes32 guid,
                uint256 gas,
                uint256 value,
                bytes message,
                bytes extraData,
                bytes reason
            );
            event LzTokenSet(address token);
            event DelegateSet(address sender, address delegate);
            function quote(MessagingParams calldata _params, address _sender) external view returns (MessagingFee memory);
            function send(
                MessagingParams calldata _params,
                address _refundAddress
            ) external payable returns (MessagingReceipt memory);
            function verify(Origin calldata _origin, address _receiver, bytes32 _payloadHash) external;
            function verifiable(Origin calldata _origin, address _receiver) external view returns (bool);
            function initializable(Origin calldata _origin, address _receiver) external view returns (bool);
            function lzReceive(
                Origin calldata _origin,
                address _receiver,
                bytes32 _guid,
                bytes calldata _message,
                bytes calldata _extraData
            ) external payable;
            // oapp can burn messages partially by calling this function with its own business logic if messages are verified in order
            function clear(address _oapp, Origin calldata _origin, bytes32 _guid, bytes calldata _message) external;
            function setLzToken(address _lzToken) external;
            function lzToken() external view returns (address);
            function nativeToken() external view returns (address);
            function setDelegate(address _delegate) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        import { Origin } from "./ILayerZeroEndpointV2.sol";
        interface ILayerZeroReceiver {
            function allowInitializePath(Origin calldata _origin) external view returns (bool);
            function nextNonce(uint32 _eid, bytes32 _sender) external view returns (uint64);
            function lzReceive(
                Origin calldata _origin,
                bytes32 _guid,
                bytes calldata _message,
                address _executor,
                bytes calldata _extraData
            ) external payable;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
        import { SetConfigParam } from "./IMessageLibManager.sol";
        enum MessageLibType {
            Send,
            Receive,
            SendAndReceive
        }
        interface IMessageLib is IERC165 {
            function setConfig(address _oapp, SetConfigParam[] calldata _config) external;
            function getConfig(uint32 _eid, address _oapp, uint32 _configType) external view returns (bytes memory config);
            function isSupportedEid(uint32 _eid) external view returns (bool);
            // message libs of same major version are compatible
            function version() external view returns (uint64 major, uint8 minor, uint8 endpointVersion);
            function messageLibType() external view returns (MessageLibType);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        struct SetConfigParam {
            uint32 eid;
            uint32 configType;
            bytes config;
        }
        interface IMessageLibManager {
            struct Timeout {
                address lib;
                uint256 expiry;
            }
            event LibraryRegistered(address newLib);
            event DefaultSendLibrarySet(uint32 eid, address newLib);
            event DefaultReceiveLibrarySet(uint32 eid, address newLib);
            event DefaultReceiveLibraryTimeoutSet(uint32 eid, address oldLib, uint256 expiry);
            event SendLibrarySet(address sender, uint32 eid, address newLib);
            event ReceiveLibrarySet(address receiver, uint32 eid, address newLib);
            event ReceiveLibraryTimeoutSet(address receiver, uint32 eid, address oldLib, uint256 timeout);
            function registerLibrary(address _lib) external;
            function isRegisteredLibrary(address _lib) external view returns (bool);
            function getRegisteredLibraries() external view returns (address[] memory);
            function setDefaultSendLibrary(uint32 _eid, address _newLib) external;
            function defaultSendLibrary(uint32 _eid) external view returns (address);
            function setDefaultReceiveLibrary(uint32 _eid, address _newLib, uint256 _gracePeriod) external;
            function defaultReceiveLibrary(uint32 _eid) external view returns (address);
            function setDefaultReceiveLibraryTimeout(uint32 _eid, address _lib, uint256 _expiry) external;
            function defaultReceiveLibraryTimeout(uint32 _eid) external view returns (address lib, uint256 expiry);
            function isSupportedEid(uint32 _eid) external view returns (bool);
            function isValidReceiveLibrary(address _receiver, uint32 _eid, address _lib) external view returns (bool);
            /// ------------------- OApp interfaces -------------------
            function setSendLibrary(address _oapp, uint32 _eid, address _newLib) external;
            function getSendLibrary(address _sender, uint32 _eid) external view returns (address lib);
            function isDefaultSendLibrary(address _sender, uint32 _eid) external view returns (bool);
            function setReceiveLibrary(address _oapp, uint32 _eid, address _newLib, uint256 _gracePeriod) external;
            function getReceiveLibrary(address _receiver, uint32 _eid) external view returns (address lib, bool isDefault);
            function setReceiveLibraryTimeout(address _oapp, uint32 _eid, address _lib, uint256 _expiry) external;
            function receiveLibraryTimeout(address _receiver, uint32 _eid) external view returns (address lib, uint256 expiry);
            function setConfig(address _oapp, address _lib, SetConfigParam[] calldata _params) external;
            function getConfig(
                address _oapp,
                address _lib,
                uint32 _eid,
                uint32 _configType
            ) external view returns (bytes memory config);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        interface IMessagingChannel {
            event InboundNonceSkipped(uint32 srcEid, bytes32 sender, address receiver, uint64 nonce);
            event PacketNilified(uint32 srcEid, bytes32 sender, address receiver, uint64 nonce, bytes32 payloadHash);
            event PacketBurnt(uint32 srcEid, bytes32 sender, address receiver, uint64 nonce, bytes32 payloadHash);
            function eid() external view returns (uint32);
            // this is an emergency function if a message cannot be verified for some reasons
            // required to provide _nextNonce to avoid race condition
            function skip(address _oapp, uint32 _srcEid, bytes32 _sender, uint64 _nonce) external;
            function nilify(address _oapp, uint32 _srcEid, bytes32 _sender, uint64 _nonce, bytes32 _payloadHash) external;
            function burn(address _oapp, uint32 _srcEid, bytes32 _sender, uint64 _nonce, bytes32 _payloadHash) external;
            function nextGuid(address _sender, uint32 _dstEid, bytes32 _receiver) external view returns (bytes32);
            function inboundNonce(address _receiver, uint32 _srcEid, bytes32 _sender) external view returns (uint64);
            function outboundNonce(address _sender, uint32 _dstEid, bytes32 _receiver) external view returns (uint64);
            function inboundPayloadHash(
                address _receiver,
                uint32 _srcEid,
                bytes32 _sender,
                uint64 _nonce
            ) external view returns (bytes32);
            function lazyInboundNonce(address _receiver, uint32 _srcEid, bytes32 _sender) external view returns (uint64);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        interface IMessagingComposer {
            event ComposeSent(address from, address to, bytes32 guid, uint16 index, bytes message);
            event ComposeDelivered(address from, address to, bytes32 guid, uint16 index);
            event LzComposeAlert(
                address indexed from,
                address indexed to,
                address indexed executor,
                bytes32 guid,
                uint16 index,
                uint256 gas,
                uint256 value,
                bytes message,
                bytes extraData,
                bytes reason
            );
            function composeQueue(
                address _from,
                address _to,
                bytes32 _guid,
                uint16 _index
            ) external view returns (bytes32 messageHash);
            function sendCompose(address _to, bytes32 _guid, uint16 _index, bytes calldata _message) external;
            function lzCompose(
                address _from,
                address _to,
                bytes32 _guid,
                uint16 _index,
                bytes calldata _message,
                bytes calldata _extraData
            ) external payable;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        interface IMessagingContext {
            function isSendingMessage() external view returns (bool);
            function getSendContext() external view returns (uint32 dstEid, address sender);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        import { MessagingFee } from "./ILayerZeroEndpointV2.sol";
        import { IMessageLib } from "./IMessageLib.sol";
        struct Packet {
            uint64 nonce;
            uint32 srcEid;
            address sender;
            uint32 dstEid;
            bytes32 receiver;
            bytes32 guid;
            bytes message;
        }
        interface ISendLib is IMessageLib {
            function send(
                Packet calldata _packet,
                bytes calldata _options,
                bool _payInLzToken
            ) external returns (MessagingFee memory, bytes memory encodedPacket);
            function quote(
                Packet calldata _packet,
                bytes calldata _options,
                bool _payInLzToken
            ) external view returns (MessagingFee memory);
            function setTreasury(address _treasury) external;
            function withdrawFee(address _to, uint256 _amount) external;
            function withdrawLzTokenFee(address _lzToken, address _to, uint256 _amount) external;
        }
        // SPDX-License-Identifier: LZBL-1.2
        pragma solidity ^0.8.20;
        library AddressCast {
            error AddressCast_InvalidSizeForAddress();
            error AddressCast_InvalidAddress();
            function toBytes32(bytes calldata _addressBytes) internal pure returns (bytes32 result) {
                if (_addressBytes.length > 32) revert AddressCast_InvalidAddress();
                result = bytes32(_addressBytes);
                unchecked {
                    uint256 offset = 32 - _addressBytes.length;
                    result = result >> (offset * 8);
                }
            }
            function toBytes32(address _address) internal pure returns (bytes32 result) {
                result = bytes32(uint256(uint160(_address)));
            }
            function toBytes(bytes32 _addressBytes32, uint256 _size) internal pure returns (bytes memory result) {
                if (_size == 0 || _size > 32) revert AddressCast_InvalidSizeForAddress();
                result = new bytes(_size);
                unchecked {
                    uint256 offset = 256 - _size * 8;
                    assembly {
                        mstore(add(result, 32), shl(offset, _addressBytes32))
                    }
                }
            }
            function toAddress(bytes32 _addressBytes32) internal pure returns (address result) {
                result = address(uint160(uint256(_addressBytes32)));
            }
            function toAddress(bytes calldata _addressBytes) internal pure returns (address result) {
                if (_addressBytes.length != 20) revert AddressCast_InvalidAddress();
                result = address(bytes20(_addressBytes));
            }
        }
        // SPDX-License-Identifier: LZBL-1.2
        pragma solidity ^0.8.20;
        import { Packet } from "../../interfaces/ISendLib.sol";
        import { AddressCast } from "../../libs/AddressCast.sol";
        library PacketV1Codec {
            using AddressCast for address;
            using AddressCast for bytes32;
            uint8 internal constant PACKET_VERSION = 1;
            // header (version + nonce + path)
            // version
            uint256 private constant PACKET_VERSION_OFFSET = 0;
            //    nonce
            uint256 private constant NONCE_OFFSET = 1;
            //    path
            uint256 private constant SRC_EID_OFFSET = 9;
            uint256 private constant SENDER_OFFSET = 13;
            uint256 private constant DST_EID_OFFSET = 45;
            uint256 private constant RECEIVER_OFFSET = 49;
            // payload (guid + message)
            uint256 private constant GUID_OFFSET = 81; // keccak256(nonce + path)
            uint256 private constant MESSAGE_OFFSET = 113;
            function encode(Packet memory _packet) internal pure returns (bytes memory encodedPacket) {
                encodedPacket = abi.encodePacked(
                    PACKET_VERSION,
                    _packet.nonce,
                    _packet.srcEid,
                    _packet.sender.toBytes32(),
                    _packet.dstEid,
                    _packet.receiver,
                    _packet.guid,
                    _packet.message
                );
            }
            function encodePacketHeader(Packet memory _packet) internal pure returns (bytes memory) {
                return
                    abi.encodePacked(
                        PACKET_VERSION,
                        _packet.nonce,
                        _packet.srcEid,
                        _packet.sender.toBytes32(),
                        _packet.dstEid,
                        _packet.receiver
                    );
            }
            function encodePayload(Packet memory _packet) internal pure returns (bytes memory) {
                return abi.encodePacked(_packet.guid, _packet.message);
            }
            function header(bytes calldata _packet) internal pure returns (bytes calldata) {
                return _packet[0:GUID_OFFSET];
            }
            function version(bytes calldata _packet) internal pure returns (uint8) {
                return uint8(bytes1(_packet[PACKET_VERSION_OFFSET:NONCE_OFFSET]));
            }
            function nonce(bytes calldata _packet) internal pure returns (uint64) {
                return uint64(bytes8(_packet[NONCE_OFFSET:SRC_EID_OFFSET]));
            }
            function srcEid(bytes calldata _packet) internal pure returns (uint32) {
                return uint32(bytes4(_packet[SRC_EID_OFFSET:SENDER_OFFSET]));
            }
            function sender(bytes calldata _packet) internal pure returns (bytes32) {
                return bytes32(_packet[SENDER_OFFSET:DST_EID_OFFSET]);
            }
            function senderAddressB20(bytes calldata _packet) internal pure returns (address) {
                return sender(_packet).toAddress();
            }
            function dstEid(bytes calldata _packet) internal pure returns (uint32) {
                return uint32(bytes4(_packet[DST_EID_OFFSET:RECEIVER_OFFSET]));
            }
            function receiver(bytes calldata _packet) internal pure returns (bytes32) {
                return bytes32(_packet[RECEIVER_OFFSET:GUID_OFFSET]);
            }
            function receiverB20(bytes calldata _packet) internal pure returns (address) {
                return receiver(_packet).toAddress();
            }
            function guid(bytes calldata _packet) internal pure returns (bytes32) {
                return bytes32(_packet[GUID_OFFSET:MESSAGE_OFFSET]);
            }
            function message(bytes calldata _packet) internal pure returns (bytes calldata) {
                return bytes(_packet[MESSAGE_OFFSET:]);
            }
            function payload(bytes calldata _packet) internal pure returns (bytes calldata) {
                return bytes(_packet[GUID_OFFSET:]);
            }
            function payloadHash(bytes calldata _packet) internal pure returns (bytes32) {
                return keccak256(payload(_packet));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import { ILayerZeroEndpointV2 } from "@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroEndpointV2.sol";
        /**
         * @title IOAppCore
         */
        interface IOAppCore {
            // Custom error messages
            error OnlyPeer(uint32 eid, bytes32 sender);
            error NoPeer(uint32 eid);
            error InvalidEndpointCall();
            error InvalidDelegate();
            // Event emitted when a peer (OApp) is set for a corresponding endpoint
            event PeerSet(uint32 eid, bytes32 peer);
            /**
             * @notice Retrieves the OApp version information.
             * @return senderVersion The version of the OAppSender.sol contract.
             * @return receiverVersion The version of the OAppReceiver.sol contract.
             */
            function oAppVersion() external view returns (uint64 senderVersion, uint64 receiverVersion);
            /**
             * @notice Retrieves the LayerZero endpoint associated with the OApp.
             * @return iEndpoint The LayerZero endpoint as an interface.
             */
            function endpoint() external view returns (ILayerZeroEndpointV2 iEndpoint);
            /**
             * @notice Retrieves the peer (OApp) associated with a corresponding endpoint.
             * @param _eid The endpoint ID.
             * @return peer The peer address (OApp instance) associated with the corresponding endpoint.
             */
            function peers(uint32 _eid) external view returns (bytes32 peer);
            /**
             * @notice Sets the peer address (OApp instance) for a corresponding endpoint.
             * @param _eid The endpoint ID.
             * @param _peer The address of the peer to be associated with the corresponding endpoint.
             */
            function setPeer(uint32 _eid, bytes32 _peer) external;
            /**
             * @notice Sets the delegate address for the OApp Core.
             * @param _delegate The address of the delegate to be set.
             */
            function setDelegate(address _delegate) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        /**
         * @title IOAppMsgInspector
         * @dev Interface for the OApp Message Inspector, allowing examination of message and options contents.
         */
        interface IOAppMsgInspector {
            // Custom error message for inspection failure
            error InspectionFailed(bytes message, bytes options);
            /**
             * @notice Allows the inspector to examine LayerZero message contents and optionally throw a revert if invalid.
             * @param _message The message payload to be inspected.
             * @param _options Additional options or parameters for inspection.
             * @return valid A boolean indicating whether the inspection passed (true) or failed (false).
             *
             * @dev Optionally done as a revert, OR use the boolean provided to handle the failure.
             */
            function inspect(bytes calldata _message, bytes calldata _options) external view returns (bool valid);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        /**
         * @dev Struct representing enforced option parameters.
         */
        struct EnforcedOptionParam {
            uint32 eid; // Endpoint ID
            uint16 msgType; // Message Type
            bytes options; // Additional options
        }
        /**
         * @title IOAppOptionsType3
         * @dev Interface for the OApp with Type 3 Options, allowing the setting and combining of enforced options.
         */
        interface IOAppOptionsType3 {
            // Custom error message for invalid options
            error InvalidOptions(bytes options);
            // Event emitted when enforced options are set
            event EnforcedOptionSet(EnforcedOptionParam[] _enforcedOptions);
            /**
             * @notice Sets enforced options for specific endpoint and message type combinations.
             * @param _enforcedOptions An array of EnforcedOptionParam structures specifying enforced options.
             */
            function setEnforcedOptions(EnforcedOptionParam[] calldata _enforcedOptions) external;
            /**
             * @notice Combines options for a given endpoint and message type.
             * @param _eid The endpoint ID.
             * @param _msgType The OApp message type.
             * @param _extraOptions Additional options passed by the caller.
             * @return options The combination of caller specified options AND enforced options.
             */
            function combineOptions(
                uint32 _eid,
                uint16 _msgType,
                bytes calldata _extraOptions
            ) external view returns (bytes memory options);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import { ILayerZeroReceiver, Origin } from "@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroReceiver.sol";
        interface IOAppReceiver is ILayerZeroReceiver {
            /**
             * @notice Indicates whether an address is an approved composeMsg sender to the Endpoint.
             * @param _origin The origin information containing the source endpoint and sender address.
             *  - srcEid: The source chain endpoint ID.
             *  - sender: The sender address on the src chain.
             *  - nonce: The nonce of the message.
             * @param _message The lzReceive payload.
             * @param _sender The sender address.
             * @return isSender Is a valid sender.
             *
             * @dev Applications can optionally choose to implement a separate composeMsg sender that is NOT the bridging layer.
             * @dev The default sender IS the OAppReceiver implementer.
             */
            function isComposeMsgSender(
                Origin calldata _origin,
                bytes calldata _message,
                address _sender
            ) external view returns (bool isSender);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
        import { IOAppOptionsType3, EnforcedOptionParam } from "../interfaces/IOAppOptionsType3.sol";
        /**
         * @title OAppOptionsType3
         * @dev Abstract contract implementing the IOAppOptionsType3 interface with type 3 options.
         */
        abstract contract OAppOptionsType3 is IOAppOptionsType3, Ownable {
            uint16 internal constant OPTION_TYPE_3 = 3;
            // @dev The "msgType" should be defined in the child contract.
            mapping(uint32 eid => mapping(uint16 msgType => bytes enforcedOption)) public enforcedOptions;
            /**
             * @dev Sets the enforced options for specific endpoint and message type combinations.
             * @param _enforcedOptions An array of EnforcedOptionParam structures specifying enforced options.
             *
             * @dev Only the owner/admin of the OApp can call this function.
             * @dev Provides a way for the OApp to enforce things like paying for PreCrime, AND/OR minimum dst lzReceive gas amounts etc.
             * @dev These enforced options can vary as the potential options/execution on the remote may differ as per the msgType.
             * eg. Amount of lzReceive() gas necessary to deliver a lzCompose() message adds overhead you dont want to pay
             * if you are only making a standard LayerZero message ie. lzReceive() WITHOUT sendCompose().
             */
            function setEnforcedOptions(EnforcedOptionParam[] calldata _enforcedOptions) public virtual onlyOwner {
                _setEnforcedOptions(_enforcedOptions);
            }
            /**
             * @dev Sets the enforced options for specific endpoint and message type combinations.
             * @param _enforcedOptions An array of EnforcedOptionParam structures specifying enforced options.
             *
             * @dev Provides a way for the OApp to enforce things like paying for PreCrime, AND/OR minimum dst lzReceive gas amounts etc.
             * @dev These enforced options can vary as the potential options/execution on the remote may differ as per the msgType.
             * eg. Amount of lzReceive() gas necessary to deliver a lzCompose() message adds overhead you dont want to pay
             * if you are only making a standard LayerZero message ie. lzReceive() WITHOUT sendCompose().
             */
            function _setEnforcedOptions(EnforcedOptionParam[] memory _enforcedOptions) internal virtual {
                for (uint256 i = 0; i < _enforcedOptions.length; i++) {
                    // @dev Enforced options are only available for optionType 3, as type 1 and 2 dont support combining.
                    _assertOptionsType3(_enforcedOptions[i].options);
                    enforcedOptions[_enforcedOptions[i].eid][_enforcedOptions[i].msgType] = _enforcedOptions[i].options;
                }
                emit EnforcedOptionSet(_enforcedOptions);
            }
            /**
             * @notice Combines options for a given endpoint and message type.
             * @param _eid The endpoint ID.
             * @param _msgType The OAPP message type.
             * @param _extraOptions Additional options passed by the caller.
             * @return options The combination of caller specified options AND enforced options.
             *
             * @dev If there is an enforced lzReceive option:
             * - {gasLimit: 200k, msg.value: 1 ether} AND a caller supplies a lzReceive option: {gasLimit: 100k, msg.value: 0.5 ether}
             * - The resulting options will be {gasLimit: 300k, msg.value: 1.5 ether} when the message is executed on the remote lzReceive() function.
             * @dev This presence of duplicated options is handled off-chain in the verifier/executor.
             */
            function combineOptions(
                uint32 _eid,
                uint16 _msgType,
                bytes calldata _extraOptions
            ) public view virtual returns (bytes memory) {
                bytes memory enforced = enforcedOptions[_eid][_msgType];
                // No enforced options, pass whatever the caller supplied, even if it's empty or legacy type 1/2 options.
                if (enforced.length == 0) return _extraOptions;
                // No caller options, return enforced
                if (_extraOptions.length == 0) return enforced;
                // @dev If caller provided _extraOptions, must be type 3 as its the ONLY type that can be combined.
                if (_extraOptions.length >= 2) {
                    _assertOptionsType3(_extraOptions);
                    // @dev Remove the first 2 bytes containing the type from the _extraOptions and combine with enforced.
                    return bytes.concat(enforced, _extraOptions[2:]);
                }
                // No valid set of options was found.
                revert InvalidOptions(_extraOptions);
            }
            /**
             * @dev Internal function to assert that options are of type 3.
             * @param _options The options to be checked.
             */
            function _assertOptionsType3(bytes memory _options) internal pure virtual {
                uint16 optionsType;
                assembly {
                    optionsType := mload(add(_options, 2))
                }
                if (optionsType != OPTION_TYPE_3) revert InvalidOptions(_options);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        // @dev Import the 'MessagingFee' and 'MessagingReceipt' so it's exposed to OApp implementers
        // solhint-disable-next-line no-unused-import
        import { OAppSender, MessagingFee, MessagingReceipt } from "./OAppSender.sol";
        // @dev Import the 'Origin' so it's exposed to OApp implementers
        // solhint-disable-next-line no-unused-import
        import { OAppReceiver, Origin } from "./OAppReceiver.sol";
        import { OAppCore } from "./OAppCore.sol";
        /**
         * @title OApp
         * @dev Abstract contract serving as the base for OApp implementation, combining OAppSender and OAppReceiver functionality.
         */
        abstract contract OApp is OAppSender, OAppReceiver {
            /**
             * @dev Constructor to initialize the OApp with the provided endpoint and owner.
             * @param _endpoint The address of the LOCAL LayerZero endpoint.
             * @param _delegate The delegate capable of making OApp configurations inside of the endpoint.
             */
            constructor(address _endpoint, address _delegate) OAppCore(_endpoint, _delegate) {}
            /**
             * @notice Retrieves the OApp version information.
             * @return senderVersion The version of the OAppSender.sol implementation.
             * @return receiverVersion The version of the OAppReceiver.sol implementation.
             */
            function oAppVersion()
                public
                pure
                virtual
                override(OAppSender, OAppReceiver)
                returns (uint64 senderVersion, uint64 receiverVersion)
            {
                return (SENDER_VERSION, RECEIVER_VERSION);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
        import { IOAppCore, ILayerZeroEndpointV2 } from "./interfaces/IOAppCore.sol";
        /**
         * @title OAppCore
         * @dev Abstract contract implementing the IOAppCore interface with basic OApp configurations.
         */
        abstract contract OAppCore is IOAppCore, Ownable {
            // The LayerZero endpoint associated with the given OApp
            ILayerZeroEndpointV2 public immutable endpoint;
            // Mapping to store peers associated with corresponding endpoints
            mapping(uint32 eid => bytes32 peer) public peers;
            /**
             * @dev Constructor to initialize the OAppCore with the provided endpoint and delegate.
             * @param _endpoint The address of the LOCAL Layer Zero endpoint.
             * @param _delegate The delegate capable of making OApp configurations inside of the endpoint.
             *
             * @dev The delegate typically should be set as the owner of the contract.
             */
            constructor(address _endpoint, address _delegate) {
                endpoint = ILayerZeroEndpointV2(_endpoint);
                if (_delegate == address(0)) revert InvalidDelegate();
                endpoint.setDelegate(_delegate);
            }
            /**
             * @notice Sets the peer address (OApp instance) for a corresponding endpoint.
             * @param _eid The endpoint ID.
             * @param _peer The address of the peer to be associated with the corresponding endpoint.
             *
             * @dev Only the owner/admin of the OApp can call this function.
             * @dev Indicates that the peer is trusted to send LayerZero messages to this OApp.
             * @dev Set this to bytes32(0) to remove the peer address.
             * @dev Peer is a bytes32 to accommodate non-evm chains.
             */
            function setPeer(uint32 _eid, bytes32 _peer) public virtual onlyOwner {
                _setPeer(_eid, _peer);
            }
            /**
             * @notice Sets the peer address (OApp instance) for a corresponding endpoint.
             * @param _eid The endpoint ID.
             * @param _peer The address of the peer to be associated with the corresponding endpoint.
             *
             * @dev Indicates that the peer is trusted to send LayerZero messages to this OApp.
             * @dev Set this to bytes32(0) to remove the peer address.
             * @dev Peer is a bytes32 to accommodate non-evm chains.
             */
            function _setPeer(uint32 _eid, bytes32 _peer) internal virtual {
                peers[_eid] = _peer;
                emit PeerSet(_eid, _peer);
            }
            /**
             * @notice Internal function to get the peer address associated with a specific endpoint; reverts if NOT set.
             * ie. the peer is set to bytes32(0).
             * @param _eid The endpoint ID.
             * @return peer The address of the peer associated with the specified endpoint.
             */
            function _getPeerOrRevert(uint32 _eid) internal view virtual returns (bytes32) {
                bytes32 peer = peers[_eid];
                if (peer == bytes32(0)) revert NoPeer(_eid);
                return peer;
            }
            /**
             * @notice Sets the delegate address for the OApp.
             * @param _delegate The address of the delegate to be set.
             *
             * @dev Only the owner/admin of the OApp can call this function.
             * @dev Provides the ability for a delegate to set configs, on behalf of the OApp, directly on the Endpoint contract.
             */
            function setDelegate(address _delegate) public onlyOwner {
                endpoint.setDelegate(_delegate);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import { IOAppReceiver, Origin } from "./interfaces/IOAppReceiver.sol";
        import { OAppCore } from "./OAppCore.sol";
        /**
         * @title OAppReceiver
         * @dev Abstract contract implementing the ILayerZeroReceiver interface and extending OAppCore for OApp receivers.
         */
        abstract contract OAppReceiver is IOAppReceiver, OAppCore {
            // Custom error message for when the caller is not the registered endpoint/
            error OnlyEndpoint(address addr);
            // @dev The version of the OAppReceiver implementation.
            // @dev Version is bumped when changes are made to this contract.
            uint64 internal constant RECEIVER_VERSION = 2;
            /**
             * @notice Retrieves the OApp version information.
             * @return senderVersion The version of the OAppSender.sol contract.
             * @return receiverVersion The version of the OAppReceiver.sol contract.
             *
             * @dev Providing 0 as the default for OAppSender version. Indicates that the OAppSender is not implemented.
             * ie. this is a RECEIVE only OApp.
             * @dev If the OApp uses both OAppSender and OAppReceiver, then this needs to be override returning the correct versions.
             */
            function oAppVersion() public view virtual returns (uint64 senderVersion, uint64 receiverVersion) {
                return (0, RECEIVER_VERSION);
            }
            /**
             * @notice Indicates whether an address is an approved composeMsg sender to the Endpoint.
             * @dev _origin The origin information containing the source endpoint and sender address.
             *  - srcEid: The source chain endpoint ID.
             *  - sender: The sender address on the src chain.
             *  - nonce: The nonce of the message.
             * @dev _message The lzReceive payload.
             * @param _sender The sender address.
             * @return isSender Is a valid sender.
             *
             * @dev Applications can optionally choose to implement separate composeMsg senders that are NOT the bridging layer.
             * @dev The default sender IS the OAppReceiver implementer.
             */
            function isComposeMsgSender(
                Origin calldata /*_origin*/,
                bytes calldata /*_message*/,
                address _sender
            ) public view virtual returns (bool) {
                return _sender == address(this);
            }
            /**
             * @notice Checks if the path initialization is allowed based on the provided origin.
             * @param origin The origin information containing the source endpoint and sender address.
             * @return Whether the path has been initialized.
             *
             * @dev This indicates to the endpoint that the OApp has enabled msgs for this particular path to be received.
             * @dev This defaults to assuming if a peer has been set, its initialized.
             * Can be overridden by the OApp if there is other logic to determine this.
             */
            function allowInitializePath(Origin calldata origin) public view virtual returns (bool) {
                return peers[origin.srcEid] == origin.sender;
            }
            /**
             * @notice Retrieves the next nonce for a given source endpoint and sender address.
             * @dev _srcEid The source endpoint ID.
             * @dev _sender The sender address.
             * @return nonce The next nonce.
             *
             * @dev The path nonce starts from 1. If 0 is returned it means that there is NO nonce ordered enforcement.
             * @dev Is required by the off-chain executor to determine the OApp expects msg execution is ordered.
             * @dev This is also enforced by the OApp.
             * @dev By default this is NOT enabled. ie. nextNonce is hardcoded to return 0.
             */
            function nextNonce(uint32 /*_srcEid*/, bytes32 /*_sender*/) public view virtual returns (uint64 nonce) {
                return 0;
            }
            /**
             * @dev Entry point for receiving messages or packets from the endpoint.
             * @param _origin The origin information containing the source endpoint and sender address.
             *  - srcEid: The source chain endpoint ID.
             *  - sender: The sender address on the src chain.
             *  - nonce: The nonce of the message.
             * @param _guid The unique identifier for the received LayerZero message.
             * @param _message The payload of the received message.
             * @param _executor The address of the executor for the received message.
             * @param _extraData Additional arbitrary data provided by the corresponding executor.
             *
             * @dev Entry point for receiving msg/packet from the LayerZero endpoint.
             */
            function lzReceive(
                Origin calldata _origin,
                bytes32 _guid,
                bytes calldata _message,
                address _executor,
                bytes calldata _extraData
            ) public payable virtual {
                // Ensures that only the endpoint can attempt to lzReceive() messages to this OApp.
                if (address(endpoint) != msg.sender) revert OnlyEndpoint(msg.sender);
                // Ensure that the sender matches the expected peer for the source endpoint.
                if (_getPeerOrRevert(_origin.srcEid) != _origin.sender) revert OnlyPeer(_origin.srcEid, _origin.sender);
                // Call the internal OApp implementation of lzReceive.
                _lzReceive(_origin, _guid, _message, _executor, _extraData);
            }
            /**
             * @dev Internal function to implement lzReceive logic without needing to copy the basic parameter validation.
             */
            function _lzReceive(
                Origin calldata _origin,
                bytes32 _guid,
                bytes calldata _message,
                address _executor,
                bytes calldata _extraData
            ) internal virtual;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import { SafeERC20, IERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
        import { MessagingParams, MessagingFee, MessagingReceipt } from "@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroEndpointV2.sol";
        import { OAppCore } from "./OAppCore.sol";
        /**
         * @title OAppSender
         * @dev Abstract contract implementing the OAppSender functionality for sending messages to a LayerZero endpoint.
         */
        abstract contract OAppSender is OAppCore {
            using SafeERC20 for IERC20;
            // Custom error messages
            error NotEnoughNative(uint256 msgValue);
            error LzTokenUnavailable();
            // @dev The version of the OAppSender implementation.
            // @dev Version is bumped when changes are made to this contract.
            uint64 internal constant SENDER_VERSION = 1;
            /**
             * @notice Retrieves the OApp version information.
             * @return senderVersion The version of the OAppSender.sol contract.
             * @return receiverVersion The version of the OAppReceiver.sol contract.
             *
             * @dev Providing 0 as the default for OAppReceiver version. Indicates that the OAppReceiver is not implemented.
             * ie. this is a SEND only OApp.
             * @dev If the OApp uses both OAppSender and OAppReceiver, then this needs to be override returning the correct versions
             */
            function oAppVersion() public view virtual returns (uint64 senderVersion, uint64 receiverVersion) {
                return (SENDER_VERSION, 0);
            }
            /**
             * @dev Internal function to interact with the LayerZero EndpointV2.quote() for fee calculation.
             * @param _dstEid The destination endpoint ID.
             * @param _message The message payload.
             * @param _options Additional options for the message.
             * @param _payInLzToken Flag indicating whether to pay the fee in LZ tokens.
             * @return fee The calculated MessagingFee for the message.
             *      - nativeFee: The native fee for the message.
             *      - lzTokenFee: The LZ token fee for the message.
             */
            function _quote(
                uint32 _dstEid,
                bytes memory _message,
                bytes memory _options,
                bool _payInLzToken
            ) internal view virtual returns (MessagingFee memory fee) {
                return
                    endpoint.quote(
                        MessagingParams(_dstEid, _getPeerOrRevert(_dstEid), _message, _options, _payInLzToken),
                        address(this)
                    );
            }
            /**
             * @dev Internal function to interact with the LayerZero EndpointV2.send() for sending a message.
             * @param _dstEid The destination endpoint ID.
             * @param _message The message payload.
             * @param _options Additional options for the message.
             * @param _fee The calculated LayerZero fee for the message.
             *      - nativeFee: The native fee.
             *      - lzTokenFee: The lzToken fee.
             * @param _refundAddress The address to receive any excess fee values sent to the endpoint.
             * @return receipt The receipt for the sent message.
             *      - guid: The unique identifier for the sent message.
             *      - nonce: The nonce of the sent message.
             *      - fee: The LayerZero fee incurred for the message.
             */
            function _lzSend(
                uint32 _dstEid,
                bytes memory _message,
                bytes memory _options,
                MessagingFee memory _fee,
                address _refundAddress
            ) internal virtual returns (MessagingReceipt memory receipt) {
                // @dev Push corresponding fees to the endpoint, any excess is sent back to the _refundAddress from the endpoint.
                uint256 messageValue = _payNative(_fee.nativeFee);
                if (_fee.lzTokenFee > 0) _payLzToken(_fee.lzTokenFee);
                return
                    // solhint-disable-next-line check-send-result
                    endpoint.send{ value: messageValue }(
                        MessagingParams(_dstEid, _getPeerOrRevert(_dstEid), _message, _options, _fee.lzTokenFee > 0),
                        _refundAddress
                    );
            }
            /**
             * @dev Internal function to pay the native fee associated with the message.
             * @param _nativeFee The native fee to be paid.
             * @return nativeFee The amount of native currency paid.
             *
             * @dev If the OApp needs to initiate MULTIPLE LayerZero messages in a single transaction,
             * this will need to be overridden because msg.value would contain multiple lzFees.
             * @dev Should be overridden in the event the LayerZero endpoint requires a different native currency.
             * @dev Some EVMs use an ERC20 as a method for paying transactions/gasFees.
             * @dev The endpoint is EITHER/OR, ie. it will NOT support both types of native payment at a time.
             */
            function _payNative(uint256 _nativeFee) internal virtual returns (uint256 nativeFee) {
                if (msg.value != _nativeFee) revert NotEnoughNative(msg.value);
                return _nativeFee;
            }
            /**
             * @dev Internal function to pay the LZ token fee associated with the message.
             * @param _lzTokenFee The LZ token fee to be paid.
             *
             * @dev If the caller is trying to pay in the specified lzToken, then the lzTokenFee is passed to the endpoint.
             * @dev Any excess sent, is passed back to the specified _refundAddress in the _lzSend().
             */
            function _payLzToken(uint256 _lzTokenFee) internal virtual {
                // @dev Cannot cache the token because it is not immutable in the endpoint.
                address lzToken = endpoint.lzToken();
                if (lzToken == address(0)) revert LzTokenUnavailable();
                // Pay LZ token fee by sending tokens to the endpoint.
                IERC20(lzToken).safeTransferFrom(msg.sender, address(endpoint), _lzTokenFee);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        // @dev Import the Origin so it's exposed to OAppPreCrimeSimulator implementers.
        // solhint-disable-next-line no-unused-import
        import { InboundPacket, Origin } from "../libs/Packet.sol";
        /**
         * @title IOAppPreCrimeSimulator Interface
         * @dev Interface for the preCrime simulation functionality in an OApp.
         */
        interface IOAppPreCrimeSimulator {
            // @dev simulation result used in PreCrime implementation
            error SimulationResult(bytes result);
            error OnlySelf();
            /**
             * @dev Emitted when the preCrime contract address is set.
             * @param preCrimeAddress The address of the preCrime contract.
             */
            event PreCrimeSet(address preCrimeAddress);
            /**
             * @dev Retrieves the address of the preCrime contract implementation.
             * @return The address of the preCrime contract.
             */
            function preCrime() external view returns (address);
            /**
             * @dev Retrieves the address of the OApp contract.
             * @return The address of the OApp contract.
             */
            function oApp() external view returns (address);
            /**
             * @dev Sets the preCrime contract address.
             * @param _preCrime The address of the preCrime contract.
             */
            function setPreCrime(address _preCrime) external;
            /**
             * @dev Mocks receiving a packet, then reverts with a series of data to infer the state/result.
             * @param _packets An array of LayerZero InboundPacket objects representing received packets.
             */
            function lzReceiveAndRevert(InboundPacket[] calldata _packets) external payable;
            /**
             * @dev checks if the specified peer is considered 'trusted' by the OApp.
             * @param _eid The endpoint Id to check.
             * @param _peer The peer to check.
             * @return Whether the peer passed is considered 'trusted' by the OApp.
             */
            function isPeer(uint32 _eid, bytes32 _peer) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        struct PreCrimePeer {
            uint32 eid;
            bytes32 preCrime;
            bytes32 oApp;
        }
        // TODO not done yet
        interface IPreCrime {
            error OnlyOffChain();
            // for simulate()
            error PacketOversize(uint256 max, uint256 actual);
            error PacketUnsorted();
            error SimulationFailed(bytes reason);
            // for preCrime()
            error SimulationResultNotFound(uint32 eid);
            error InvalidSimulationResult(uint32 eid, bytes reason);
            error CrimeFound(bytes crime);
            function getConfig(bytes[] calldata _packets, uint256[] calldata _packetMsgValues) external returns (bytes memory);
            function simulate(
                bytes[] calldata _packets,
                uint256[] calldata _packetMsgValues
            ) external payable returns (bytes memory);
            function buildSimulationResult() external view returns (bytes memory);
            function preCrime(
                bytes[] calldata _packets,
                uint256[] calldata _packetMsgValues,
                bytes[] calldata _simulations
            ) external;
            function version() external view returns (uint64 major, uint8 minor);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import { Origin } from "@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroEndpointV2.sol";
        import { PacketV1Codec } from "@layerzerolabs/lz-evm-protocol-v2/contracts/messagelib/libs/PacketV1Codec.sol";
        /**
         * @title InboundPacket
         * @dev Structure representing an inbound packet received by the contract.
         */
        struct InboundPacket {
            Origin origin; // Origin information of the packet.
            uint32 dstEid; // Destination endpointId of the packet.
            address receiver; // Receiver address for the packet.
            bytes32 guid; // Unique identifier of the packet.
            uint256 value; // msg.value of the packet.
            address executor; // Executor address for the packet.
            bytes message; // Message payload of the packet.
            bytes extraData; // Additional arbitrary data for the packet.
        }
        /**
         * @title PacketDecoder
         * @dev Library for decoding LayerZero packets.
         */
        library PacketDecoder {
            using PacketV1Codec for bytes;
            /**
             * @dev Decode an inbound packet from the given packet data.
             * @param _packet The packet data to decode.
             * @return packet An InboundPacket struct representing the decoded packet.
             */
            function decode(bytes calldata _packet) internal pure returns (InboundPacket memory packet) {
                packet.origin = Origin(_packet.srcEid(), _packet.sender(), _packet.nonce());
                packet.dstEid = _packet.dstEid();
                packet.receiver = _packet.receiverB20();
                packet.guid = _packet.guid();
                packet.message = _packet.message();
            }
            /**
             * @dev Decode multiple inbound packets from the given packet data and associated message values.
             * @param _packets An array of packet data to decode.
             * @param _packetMsgValues An array of associated message values for each packet.
             * @return packets An array of InboundPacket structs representing the decoded packets.
             */
            function decode(
                bytes[] calldata _packets,
                uint256[] memory _packetMsgValues
            ) internal pure returns (InboundPacket[] memory packets) {
                packets = new InboundPacket[](_packets.length);
                for (uint256 i = 0; i < _packets.length; i++) {
                    bytes calldata packet = _packets[i];
                    packets[i] = PacketDecoder.decode(packet);
                    // @dev Allows the verifier to specify the msg.value that gets passed in lzReceive.
                    packets[i].value = _packetMsgValues[i];
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
        import { IPreCrime } from "./interfaces/IPreCrime.sol";
        import { IOAppPreCrimeSimulator, InboundPacket, Origin } from "./interfaces/IOAppPreCrimeSimulator.sol";
        /**
         * @title OAppPreCrimeSimulator
         * @dev Abstract contract serving as the base for preCrime simulation functionality in an OApp.
         */
        abstract contract OAppPreCrimeSimulator is IOAppPreCrimeSimulator, Ownable {
            // The address of the preCrime implementation.
            address public preCrime;
            /**
             * @dev Retrieves the address of the OApp contract.
             * @return The address of the OApp contract.
             *
             * @dev The simulator contract is the base contract for the OApp by default.
             * @dev If the simulator is a separate contract, override this function.
             */
            function oApp() external view virtual returns (address) {
                return address(this);
            }
            /**
             * @dev Sets the preCrime contract address.
             * @param _preCrime The address of the preCrime contract.
             */
            function setPreCrime(address _preCrime) public virtual onlyOwner {
                preCrime = _preCrime;
                emit PreCrimeSet(_preCrime);
            }
            /**
             * @dev Interface for pre-crime simulations. Always reverts at the end with the simulation results.
             * @param _packets An array of InboundPacket objects representing received packets to be delivered.
             *
             * @dev WARNING: MUST revert at the end with the simulation results.
             * @dev Gives the preCrime implementation the ability to mock sending packets to the lzReceive function,
             * WITHOUT actually executing them.
             */
            function lzReceiveAndRevert(InboundPacket[] calldata _packets) public payable virtual {
                for (uint256 i = 0; i < _packets.length; i++) {
                    InboundPacket calldata packet = _packets[i];
                    // Ignore packets that are not from trusted peers.
                    if (!isPeer(packet.origin.srcEid, packet.origin.sender)) continue;
                    // @dev Because a verifier is calling this function, it doesnt have access to executor params:
                    //  - address _executor
                    //  - bytes calldata _extraData
                    // preCrime will NOT work for OApps that rely on these two parameters inside of their _lzReceive().
                    // They are instead stubbed to default values, address(0) and bytes("")
                    // @dev Calling this.lzReceiveSimulate removes ability for assembly return 0 callstack exit,
                    // which would cause the revert to be ignored.
                    this.lzReceiveSimulate{ value: packet.value }(
                        packet.origin,
                        packet.guid,
                        packet.message,
                        packet.executor,
                        packet.extraData
                    );
                }
                // @dev Revert with the simulation results. msg.sender must implement IPreCrime.buildSimulationResult().
                revert SimulationResult(IPreCrime(msg.sender).buildSimulationResult());
            }
            /**
             * @dev Is effectively an internal function because msg.sender must be address(this).
             * Allows resetting the call stack for 'internal' calls.
             * @param _origin The origin information containing the source endpoint and sender address.
             *  - srcEid: The source chain endpoint ID.
             *  - sender: The sender address on the src chain.
             *  - nonce: The nonce of the message.
             * @param _guid The unique identifier of the packet.
             * @param _message The message payload of the packet.
             * @param _executor The executor address for the packet.
             * @param _extraData Additional data for the packet.
             */
            function lzReceiveSimulate(
                Origin calldata _origin,
                bytes32 _guid,
                bytes calldata _message,
                address _executor,
                bytes calldata _extraData
            ) external payable virtual {
                // @dev Ensure ONLY can be called 'internally'.
                if (msg.sender != address(this)) revert OnlySelf();
                _lzReceiveSimulate(_origin, _guid, _message, _executor, _extraData);
            }
            /**
             * @dev Internal function to handle the OAppPreCrimeSimulator simulated receive.
             * @param _origin The origin information.
             *  - srcEid: The source chain endpoint ID.
             *  - sender: The sender address from the src chain.
             *  - nonce: The nonce of the LayerZero message.
             * @param _guid The GUID of the LayerZero message.
             * @param _message The LayerZero message.
             * @param _executor The address of the off-chain executor.
             * @param _extraData Arbitrary data passed by the msg executor.
             *
             * @dev Enables the preCrime simulator to mock sending lzReceive() messages,
             * routes the msg down from the OAppPreCrimeSimulator, and back up to the OAppReceiver.
             */
            function _lzReceiveSimulate(
                Origin calldata _origin,
                bytes32 _guid,
                bytes calldata _message,
                address _executor,
                bytes calldata _extraData
            ) internal virtual;
            /**
             * @dev checks if the specified peer is considered 'trusted' by the OApp.
             * @param _eid The endpoint Id to check.
             * @param _peer The peer to check.
             * @return Whether the peer passed is considered 'trusted' by the OApp.
             */
            function isPeer(uint32 _eid, bytes32 _peer) public view virtual returns (bool);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import { MessagingReceipt, MessagingFee } from "@layerzerolabs/oapp-evm/contracts/oapp/OAppSender.sol";
        /**
         * @dev Struct representing token parameters for the OFT send() operation.
         */
        struct SendParam {
            uint32 dstEid; // Destination endpoint ID.
            bytes32 to; // Recipient address.
            uint256 amountLD; // Amount to send in local decimals.
            uint256 minAmountLD; // Minimum amount to send in local decimals.
            bytes extraOptions; // Additional options supplied by the caller to be used in the LayerZero message.
            bytes composeMsg; // The composed message for the send() operation.
            bytes oftCmd; // The OFT command to be executed, unused in default OFT implementations.
        }
        /**
         * @dev Struct representing OFT limit information.
         * @dev These amounts can change dynamically and are up the specific oft implementation.
         */
        struct OFTLimit {
            uint256 minAmountLD; // Minimum amount in local decimals that can be sent to the recipient.
            uint256 maxAmountLD; // Maximum amount in local decimals that can be sent to the recipient.
        }
        /**
         * @dev Struct representing OFT receipt information.
         */
        struct OFTReceipt {
            uint256 amountSentLD; // Amount of tokens ACTUALLY debited from the sender in local decimals.
            // @dev In non-default implementations, the amountReceivedLD COULD differ from this value.
            uint256 amountReceivedLD; // Amount of tokens to be received on the remote side.
        }
        /**
         * @dev Struct representing OFT fee details.
         * @dev Future proof mechanism to provide a standardized way to communicate fees to things like a UI.
         */
        struct OFTFeeDetail {
            int256 feeAmountLD; // Amount of the fee in local decimals.
            string description; // Description of the fee.
        }
        /**
         * @title IOFT
         * @dev Interface for the OftChain (OFT) token.
         * @dev Does not inherit ERC20 to accommodate usage by OFTAdapter as well.
         * @dev This specific interface ID is '0x02e49c2c'.
         */
        interface IOFT {
            // Custom error messages
            error InvalidLocalDecimals();
            error SlippageExceeded(uint256 amountLD, uint256 minAmountLD);
            // Events
            event OFTSent(
                bytes32 indexed guid, // GUID of the OFT message.
                uint32 dstEid, // Destination Endpoint ID.
                address indexed fromAddress, // Address of the sender on the src chain.
                uint256 amountSentLD, // Amount of tokens sent in local decimals.
                uint256 amountReceivedLD // Amount of tokens received in local decimals.
            );
            event OFTReceived(
                bytes32 indexed guid, // GUID of the OFT message.
                uint32 srcEid, // Source Endpoint ID.
                address indexed toAddress, // Address of the recipient on the dst chain.
                uint256 amountReceivedLD // Amount of tokens received in local decimals.
            );
            /**
             * @notice Retrieves interfaceID and the version of the OFT.
             * @return interfaceId The interface ID.
             * @return version The version.
             *
             * @dev interfaceId: This specific interface ID is '0x02e49c2c'.
             * @dev version: Indicates a cross-chain compatible msg encoding with other OFTs.
             * @dev If a new feature is added to the OFT cross-chain msg encoding, the version will be incremented.
             * ie. localOFT version(x,1) CAN send messages to remoteOFT version(x,1)
             */
            function oftVersion() external view returns (bytes4 interfaceId, uint64 version);
            /**
             * @notice Retrieves the address of the token associated with the OFT.
             * @return token The address of the ERC20 token implementation.
             */
            function token() external view returns (address);
            /**
             * @notice Indicates whether the OFT contract requires approval of the 'token()' to send.
             * @return requiresApproval Needs approval of the underlying token implementation.
             *
             * @dev Allows things like wallet implementers to determine integration requirements,
             * without understanding the underlying token implementation.
             */
            function approvalRequired() external view returns (bool);
            /**
             * @notice Retrieves the shared decimals of the OFT.
             * @return sharedDecimals The shared decimals of the OFT.
             */
            function sharedDecimals() external view returns (uint8);
            /**
             * @notice Provides the fee breakdown and settings data for an OFT. Unused in the default implementation.
             * @param _sendParam The parameters for the send operation.
             * @return limit The OFT limit information.
             * @return oftFeeDetails The details of OFT fees.
             * @return receipt The OFT receipt information.
             */
            function quoteOFT(
                SendParam calldata _sendParam
            ) external view returns (OFTLimit memory, OFTFeeDetail[] memory oftFeeDetails, OFTReceipt memory);
            /**
             * @notice Provides a quote for the send() operation.
             * @param _sendParam The parameters for the send() operation.
             * @param _payInLzToken Flag indicating whether the caller is paying in the LZ token.
             * @return fee The calculated LayerZero messaging fee from the send() operation.
             *
             * @dev MessagingFee: LayerZero msg fee
             *  - nativeFee: The native fee.
             *  - lzTokenFee: The lzToken fee.
             */
            function quoteSend(SendParam calldata _sendParam, bool _payInLzToken) external view returns (MessagingFee memory);
            /**
             * @notice Executes the send() operation.
             * @param _sendParam The parameters for the send operation.
             * @param _fee The fee information supplied by the caller.
             *      - nativeFee: The native fee.
             *      - lzTokenFee: The lzToken fee.
             * @param _refundAddress The address to receive any excess funds from fees etc. on the src.
             * @return receipt The LayerZero messaging receipt from the send() operation.
             * @return oftReceipt The OFT receipt information.
             *
             * @dev MessagingReceipt: LayerZero msg receipt
             *  - guid: The unique identifier for the sent message.
             *  - nonce: The nonce of the sent message.
             *  - fee: The LayerZero fee incurred for the message.
             */
            function send(
                SendParam calldata _sendParam,
                MessagingFee calldata _fee,
                address _refundAddress
            ) external payable returns (MessagingReceipt memory, OFTReceipt memory);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        library OFTComposeMsgCodec {
            // Offset constants for decoding composed messages
            uint8 private constant NONCE_OFFSET = 8;
            uint8 private constant SRC_EID_OFFSET = 12;
            uint8 private constant AMOUNT_LD_OFFSET = 44;
            uint8 private constant COMPOSE_FROM_OFFSET = 76;
            /**
             * @dev Encodes a OFT composed message.
             * @param _nonce The nonce value.
             * @param _srcEid The source endpoint ID.
             * @param _amountLD The amount in local decimals.
             * @param _composeMsg The composed message.
             * @return _msg The encoded Composed message.
             */
            function encode(
                uint64 _nonce,
                uint32 _srcEid,
                uint256 _amountLD,
                bytes memory _composeMsg // 0x[composeFrom][composeMsg]
            ) internal pure returns (bytes memory _msg) {
                _msg = abi.encodePacked(_nonce, _srcEid, _amountLD, _composeMsg);
            }
            /**
             * @dev Retrieves the nonce for the composed message.
             * @param _msg The message.
             * @return The nonce value.
             */
            function nonce(bytes calldata _msg) internal pure returns (uint64) {
                return uint64(bytes8(_msg[:NONCE_OFFSET]));
            }
            /**
             * @dev Retrieves the source endpoint ID for the composed message.
             * @param _msg The message.
             * @return The source endpoint ID.
             */
            function srcEid(bytes calldata _msg) internal pure returns (uint32) {
                return uint32(bytes4(_msg[NONCE_OFFSET:SRC_EID_OFFSET]));
            }
            /**
             * @dev Retrieves the amount in local decimals from the composed message.
             * @param _msg The message.
             * @return The amount in local decimals.
             */
            function amountLD(bytes calldata _msg) internal pure returns (uint256) {
                return uint256(bytes32(_msg[SRC_EID_OFFSET:AMOUNT_LD_OFFSET]));
            }
            /**
             * @dev Retrieves the composeFrom value from the composed message.
             * @param _msg The message.
             * @return The composeFrom value.
             */
            function composeFrom(bytes calldata _msg) internal pure returns (bytes32) {
                return bytes32(_msg[AMOUNT_LD_OFFSET:COMPOSE_FROM_OFFSET]);
            }
            /**
             * @dev Retrieves the composed message.
             * @param _msg The message.
             * @return The composed message.
             */
            function composeMsg(bytes calldata _msg) internal pure returns (bytes memory) {
                return _msg[COMPOSE_FROM_OFFSET:];
            }
            /**
             * @dev Converts an address to bytes32.
             * @param _addr The address to convert.
             * @return The bytes32 representation of the address.
             */
            function addressToBytes32(address _addr) internal pure returns (bytes32) {
                return bytes32(uint256(uint160(_addr)));
            }
            /**
             * @dev Converts bytes32 to an address.
             * @param _b The bytes32 value to convert.
             * @return The address representation of bytes32.
             */
            function bytes32ToAddress(bytes32 _b) internal pure returns (address) {
                return address(uint160(uint256(_b)));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        library OFTMsgCodec {
            // Offset constants for encoding and decoding OFT messages
            uint8 private constant SEND_TO_OFFSET = 32;
            uint8 private constant SEND_AMOUNT_SD_OFFSET = 40;
            /**
             * @dev Encodes an OFT LayerZero message.
             * @param _sendTo The recipient address.
             * @param _amountShared The amount in shared decimals.
             * @param _composeMsg The composed message.
             * @return _msg The encoded message.
             * @return hasCompose A boolean indicating whether the message has a composed payload.
             */
            function encode(
                bytes32 _sendTo,
                uint64 _amountShared,
                bytes memory _composeMsg
            ) internal view returns (bytes memory _msg, bool hasCompose) {
                hasCompose = _composeMsg.length > 0;
                // @dev Remote chains will want to know the composed function caller ie. msg.sender on the src.
                _msg = hasCompose
                    ? abi.encodePacked(_sendTo, _amountShared, addressToBytes32(msg.sender), _composeMsg)
                    : abi.encodePacked(_sendTo, _amountShared);
            }
            /**
             * @dev Checks if the OFT message is composed.
             * @param _msg The OFT message.
             * @return A boolean indicating whether the message is composed.
             */
            function isComposed(bytes calldata _msg) internal pure returns (bool) {
                return _msg.length > SEND_AMOUNT_SD_OFFSET;
            }
            /**
             * @dev Retrieves the recipient address from the OFT message.
             * @param _msg The OFT message.
             * @return The recipient address.
             */
            function sendTo(bytes calldata _msg) internal pure returns (bytes32) {
                return bytes32(_msg[:SEND_TO_OFFSET]);
            }
            /**
             * @dev Retrieves the amount in shared decimals from the OFT message.
             * @param _msg The OFT message.
             * @return The amount in shared decimals.
             */
            function amountSD(bytes calldata _msg) internal pure returns (uint64) {
                return uint64(bytes8(_msg[SEND_TO_OFFSET:SEND_AMOUNT_SD_OFFSET]));
            }
            /**
             * @dev Retrieves the composed message from the OFT message.
             * @param _msg The OFT message.
             * @return The composed message.
             */
            function composeMsg(bytes calldata _msg) internal pure returns (bytes memory) {
                return _msg[SEND_AMOUNT_SD_OFFSET:];
            }
            /**
             * @dev Converts an address to bytes32.
             * @param _addr The address to convert.
             * @return The bytes32 representation of the address.
             */
            function addressToBytes32(address _addr) internal pure returns (bytes32) {
                return bytes32(uint256(uint160(_addr)));
            }
            /**
             * @dev Converts bytes32 to an address.
             * @param _b The bytes32 value to convert.
             * @return The address representation of bytes32.
             */
            function bytes32ToAddress(bytes32 _b) internal pure returns (address) {
                return address(uint160(uint256(_b)));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
        import { IOFT, OFTCore } from "./OFTCore.sol";
        /**
         * @title OFT Contract
         * @dev OFT is an ERC-20 token that extends the functionality of the OFTCore contract.
         */
        abstract contract OFT is OFTCore, ERC20 {
            /**
             * @dev Constructor for the OFT contract.
             * @param _name The name of the OFT.
             * @param _symbol The symbol of the OFT.
             * @param _lzEndpoint The LayerZero endpoint address.
             * @param _delegate The delegate capable of making OApp configurations inside of the endpoint.
             */
            constructor(
                string memory _name,
                string memory _symbol,
                address _lzEndpoint,
                address _delegate
            ) ERC20(_name, _symbol) OFTCore(decimals(), _lzEndpoint, _delegate) {}
            /**
             * @dev Retrieves the address of the underlying ERC20 implementation.
             * @return The address of the OFT token.
             *
             * @dev In the case of OFT, address(this) and erc20 are the same contract.
             */
            function token() public view returns (address) {
                return address(this);
            }
            /**
             * @notice Indicates whether the OFT contract requires approval of the 'token()' to send.
             * @return requiresApproval Needs approval of the underlying token implementation.
             *
             * @dev In the case of OFT where the contract IS the token, approval is NOT required.
             */
            function approvalRequired() external pure virtual returns (bool) {
                return false;
            }
            /**
             * @dev Burns tokens from the sender's specified balance.
             * @param _from The address to debit the tokens from.
             * @param _amountLD The amount of tokens to send in local decimals.
             * @param _minAmountLD The minimum amount to send in local decimals.
             * @param _dstEid The destination chain ID.
             * @return amountSentLD The amount sent in local decimals.
             * @return amountReceivedLD The amount received in local decimals on the remote.
             */
            function _debit(
                address _from,
                uint256 _amountLD,
                uint256 _minAmountLD,
                uint32 _dstEid
            ) internal virtual override returns (uint256 amountSentLD, uint256 amountReceivedLD) {
                (amountSentLD, amountReceivedLD) = _debitView(_amountLD, _minAmountLD, _dstEid);
                // @dev In NON-default OFT, amountSentLD could be 100, with a 10% fee, the amountReceivedLD amount is 90,
                // therefore amountSentLD CAN differ from amountReceivedLD.
                // @dev Default OFT burns on src.
                _burn(_from, amountSentLD);
            }
            /**
             * @dev Credits tokens to the specified address.
             * @param _to The address to credit the tokens to.
             * @param _amountLD The amount of tokens to credit in local decimals.
             * @dev _srcEid The source chain ID.
             * @return amountReceivedLD The amount of tokens ACTUALLY received in local decimals.
             */
            function _credit(
                address _to,
                uint256 _amountLD,
                uint32 /*_srcEid*/
            ) internal virtual override returns (uint256 amountReceivedLD) {
                if (_to == address(0x0)) _to = address(0xdead); // _mint(...) does not support address(0x0)
                // @dev Default OFT mints on dst.
                _mint(_to, _amountLD);
                // @dev In the case of NON-default OFT, the _amountLD MIGHT not be == amountReceivedLD.
                return _amountLD;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.20;
        import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import { OApp, Origin } from "@layerzerolabs/oapp-evm/contracts/oapp/OApp.sol";
        import { OAppOptionsType3 } from "@layerzerolabs/oapp-evm/contracts/oapp/libs/OAppOptionsType3.sol";
        import { IOAppMsgInspector } from "@layerzerolabs/oapp-evm/contracts/oapp/interfaces/IOAppMsgInspector.sol";
        import { OAppPreCrimeSimulator } from "@layerzerolabs/oapp-evm/contracts/precrime/OAppPreCrimeSimulator.sol";
        import { IOFT, SendParam, OFTLimit, OFTReceipt, OFTFeeDetail, MessagingReceipt, MessagingFee } from "./interfaces/IOFT.sol";
        import { OFTMsgCodec } from "./libs/OFTMsgCodec.sol";
        import { OFTComposeMsgCodec } from "./libs/OFTComposeMsgCodec.sol";
        /**
         * @title OFTCore
         * @dev Abstract contract for the OftChain (OFT) token.
         */
        abstract contract OFTCore is IOFT, OApp, OAppPreCrimeSimulator, OAppOptionsType3 {
            using OFTMsgCodec for bytes;
            using OFTMsgCodec for bytes32;
            // @notice Provides a conversion rate when swapping between denominations of SD and LD
            //      - shareDecimals == SD == shared Decimals
            //      - localDecimals == LD == local decimals
            // @dev Considers that tokens have different decimal amounts on various chains.
            // @dev eg.
            //  For a token
            //      - locally with 4 decimals --> 1.2345 => uint(12345)
            //      - remotely with 2 decimals --> 1.23 => uint(123)
            //      - The conversion rate would be 10 ** (4 - 2) = 100
            //  @dev If you want to send 1.2345 -> (uint 12345), you CANNOT represent that value on the remote,
            //  you can only display 1.23 -> uint(123).
            //  @dev To preserve the dust that would otherwise be lost on that conversion,
            //  we need to unify a denomination that can be represented on ALL chains inside of the OFT mesh
            uint256 public immutable decimalConversionRate;
            // @notice Msg types that are used to identify the various OFT operations.
            // @dev This can be extended in child contracts for non-default oft operations
            // @dev These values are used in things like combineOptions() in OAppOptionsType3.sol.
            uint16 public constant SEND = 1;
            uint16 public constant SEND_AND_CALL = 2;
            // Address of an optional contract to inspect both 'message' and 'options'
            address public msgInspector;
            event MsgInspectorSet(address inspector);
            /**
             * @dev Constructor.
             * @param _localDecimals The decimals of the token on the local chain (this chain).
             * @param _endpoint The address of the LayerZero endpoint.
             * @param _delegate The delegate capable of making OApp configurations inside of the endpoint.
             */
            constructor(uint8 _localDecimals, address _endpoint, address _delegate) OApp(_endpoint, _delegate) {
                if (_localDecimals < sharedDecimals()) revert InvalidLocalDecimals();
                decimalConversionRate = 10 ** (_localDecimals - sharedDecimals());
            }
            /**
             * @notice Retrieves interfaceID and the version of the OFT.
             * @return interfaceId The interface ID.
             * @return version The version.
             *
             * @dev interfaceId: This specific interface ID is '0x02e49c2c'.
             * @dev version: Indicates a cross-chain compatible msg encoding with other OFTs.
             * @dev If a new feature is added to the OFT cross-chain msg encoding, the version will be incremented.
             * ie. localOFT version(x,1) CAN send messages to remoteOFT version(x,1)
             */
            function oftVersion() external pure virtual returns (bytes4 interfaceId, uint64 version) {
                return (type(IOFT).interfaceId, 1);
            }
            /**
             * @dev Retrieves the shared decimals of the OFT.
             * @return The shared decimals of the OFT.
             *
             * @dev Sets an implicit cap on the amount of tokens, over uint64.max() will need some sort of outbound cap / totalSupply cap
             * Lowest common decimal denominator between chains.
             * Defaults to 6 decimal places to provide up to 18,446,744,073,709.551615 units (max uint64).
             * For tokens exceeding this totalSupply(), they will need to override the sharedDecimals function with something smaller.
             * ie. 4 sharedDecimals would be 1,844,674,407,370,955.1615
             */
            function sharedDecimals() public view virtual returns (uint8) {
                return 6;
            }
            /**
             * @dev Sets the message inspector address for the OFT.
             * @param _msgInspector The address of the message inspector.
             *
             * @dev This is an optional contract that can be used to inspect both 'message' and 'options'.
             * @dev Set it to address(0) to disable it, or set it to a contract address to enable it.
             */
            function setMsgInspector(address _msgInspector) public virtual onlyOwner {
                msgInspector = _msgInspector;
                emit MsgInspectorSet(_msgInspector);
            }
            /**
             * @notice Provides the fee breakdown and settings data for an OFT. Unused in the default implementation.
             * @param _sendParam The parameters for the send operation.
             * @return oftLimit The OFT limit information.
             * @return oftFeeDetails The details of OFT fees.
             * @return oftReceipt The OFT receipt information.
             */
            function quoteOFT(
                SendParam calldata _sendParam
            )
                external
                view
                virtual
                returns (OFTLimit memory oftLimit, OFTFeeDetail[] memory oftFeeDetails, OFTReceipt memory oftReceipt)
            {
                uint256 minAmountLD = 0; // Unused in the default implementation.
                uint256 maxAmountLD = IERC20(this.token()).totalSupply(); // Unused in the default implementation.
                oftLimit = OFTLimit(minAmountLD, maxAmountLD);
                // Unused in the default implementation; reserved for future complex fee details.
                oftFeeDetails = new OFTFeeDetail[](0);
                // @dev This is the same as the send() operation, but without the actual send.
                // - amountSentLD is the amount in local decimals that would be sent from the sender.
                // - amountReceivedLD is the amount in local decimals that will be credited to the recipient on the remote OFT instance.
                // @dev The amountSentLD MIGHT not equal the amount the user actually receives. HOWEVER, the default does.
                (uint256 amountSentLD, uint256 amountReceivedLD) = _debitView(
                    _sendParam.amountLD,
                    _sendParam.minAmountLD,
                    _sendParam.dstEid
                );
                oftReceipt = OFTReceipt(amountSentLD, amountReceivedLD);
            }
            /**
             * @notice Provides a quote for the send() operation.
             * @param _sendParam The parameters for the send() operation.
             * @param _payInLzToken Flag indicating whether the caller is paying in the LZ token.
             * @return msgFee The calculated LayerZero messaging fee from the send() operation.
             *
             * @dev MessagingFee: LayerZero msg fee
             *  - nativeFee: The native fee.
             *  - lzTokenFee: The lzToken fee.
             */
            function quoteSend(
                SendParam calldata _sendParam,
                bool _payInLzToken
            ) external view virtual returns (MessagingFee memory msgFee) {
                // @dev mock the amount to receive, this is the same operation used in the send().
                // The quote is as similar as possible to the actual send() operation.
                (, uint256 amountReceivedLD) = _debitView(_sendParam.amountLD, _sendParam.minAmountLD, _sendParam.dstEid);
                // @dev Builds the options and OFT message to quote in the endpoint.
                (bytes memory message, bytes memory options) = _buildMsgAndOptions(_sendParam, amountReceivedLD);
                // @dev Calculates the LayerZero fee for the send() operation.
                return _quote(_sendParam.dstEid, message, options, _payInLzToken);
            }
            /**
             * @dev Executes the send operation.
             * @param _sendParam The parameters for the send operation.
             * @param _fee The calculated fee for the send() operation.
             *      - nativeFee: The native fee.
             *      - lzTokenFee: The lzToken fee.
             * @param _refundAddress The address to receive any excess funds.
             * @return msgReceipt The receipt for the send operation.
             * @return oftReceipt The OFT receipt information.
             *
             * @dev MessagingReceipt: LayerZero msg receipt
             *  - guid: The unique identifier for the sent message.
             *  - nonce: The nonce of the sent message.
             *  - fee: The LayerZero fee incurred for the message.
             */
            function send(
                SendParam calldata _sendParam,
                MessagingFee calldata _fee,
                address _refundAddress
            ) external payable virtual returns (MessagingReceipt memory msgReceipt, OFTReceipt memory oftReceipt) {
                return _send(_sendParam, _fee, _refundAddress);
            }
            /**
             * @dev Internal function to execute the send operation.
             * @param _sendParam The parameters for the send operation.
             * @param _fee The calculated fee for the send() operation.
             *      - nativeFee: The native fee.
             *      - lzTokenFee: The lzToken fee.
             * @param _refundAddress The address to receive any excess funds.
             * @return msgReceipt The receipt for the send operation.
             * @return oftReceipt The OFT receipt information.
             *
             * @dev MessagingReceipt: LayerZero msg receipt
             *  - guid: The unique identifier for the sent message.
             *  - nonce: The nonce of the sent message.
             *  - fee: The LayerZero fee incurred for the message.
             */
            function _send(
                SendParam calldata _sendParam,
                MessagingFee calldata _fee,
                address _refundAddress
            ) internal virtual returns (MessagingReceipt memory msgReceipt, OFTReceipt memory oftReceipt) {
                // @dev Applies the token transfers regarding this send() operation.
                // - amountSentLD is the amount in local decimals that was ACTUALLY sent/debited from the sender.
                // - amountReceivedLD is the amount in local decimals that will be received/credited to the recipient on the remote OFT instance.
                (uint256 amountSentLD, uint256 amountReceivedLD) = _debit(
                    msg.sender,
                    _sendParam.amountLD,
                    _sendParam.minAmountLD,
                    _sendParam.dstEid
                );
                // @dev Builds the options and OFT message to quote in the endpoint.
                (bytes memory message, bytes memory options) = _buildMsgAndOptions(_sendParam, amountReceivedLD);
                // @dev Sends the message to the LayerZero endpoint and returns the LayerZero msg receipt.
                msgReceipt = _lzSend(_sendParam.dstEid, message, options, _fee, _refundAddress);
                // @dev Formulate the OFT receipt.
                oftReceipt = OFTReceipt(amountSentLD, amountReceivedLD);
                emit OFTSent(msgReceipt.guid, _sendParam.dstEid, msg.sender, amountSentLD, amountReceivedLD);
            }
            /**
             * @dev Internal function to build the message and options.
             * @param _sendParam The parameters for the send() operation.
             * @param _amountLD The amount in local decimals.
             * @return message The encoded message.
             * @return options The encoded options.
             */
            function _buildMsgAndOptions(
                SendParam calldata _sendParam,
                uint256 _amountLD
            ) internal view virtual returns (bytes memory message, bytes memory options) {
                bool hasCompose;
                // @dev This generated message has the msg.sender encoded into the payload so the remote knows who the caller is.
                (message, hasCompose) = OFTMsgCodec.encode(
                    _sendParam.to,
                    _toSD(_amountLD),
                    // @dev Must be include a non empty bytes if you want to compose, EVEN if you dont need it on the remote.
                    // EVEN if you dont require an arbitrary payload to be sent... eg. '0x01'
                    _sendParam.composeMsg
                );
                // @dev Change the msg type depending if its composed or not.
                uint16 msgType = hasCompose ? SEND_AND_CALL : SEND;
                // @dev Combine the callers _extraOptions with the enforced options via the OAppOptionsType3.
                options = combineOptions(_sendParam.dstEid, msgType, _sendParam.extraOptions);
                // @dev Optionally inspect the message and options depending if the OApp owner has set a msg inspector.
                // @dev If it fails inspection, needs to revert in the implementation. ie. does not rely on return boolean
                address inspector = msgInspector; // caches the msgInspector to avoid potential double storage read
                if (inspector != address(0)) IOAppMsgInspector(inspector).inspect(message, options);
            }
            /**
             * @dev Internal function to handle the receive on the LayerZero endpoint.
             * @param _origin The origin information.
             *  - srcEid: The source chain endpoint ID.
             *  - sender: The sender address from the src chain.
             *  - nonce: The nonce of the LayerZero message.
             * @param _guid The unique identifier for the received LayerZero message.
             * @param _message The encoded message.
             * @dev _executor The address of the executor.
             * @dev _extraData Additional data.
             */
            function _lzReceive(
                Origin calldata _origin,
                bytes32 _guid,
                bytes calldata _message,
                address /*_executor*/, // @dev unused in the default implementation.
                bytes calldata /*_extraData*/ // @dev unused in the default implementation.
            ) internal virtual override {
                // @dev The src sending chain doesnt know the address length on this chain (potentially non-evm)
                // Thus everything is bytes32() encoded in flight.
                address toAddress = _message.sendTo().bytes32ToAddress();
                // @dev Credit the amountLD to the recipient and return the ACTUAL amount the recipient received in local decimals
                uint256 amountReceivedLD = _credit(toAddress, _toLD(_message.amountSD()), _origin.srcEid);
                if (_message.isComposed()) {
                    // @dev Proprietary composeMsg format for the OFT.
                    bytes memory composeMsg = OFTComposeMsgCodec.encode(
                        _origin.nonce,
                        _origin.srcEid,
                        amountReceivedLD,
                        _message.composeMsg()
                    );
                    // @dev Stores the lzCompose payload that will be executed in a separate tx.
                    // Standardizes functionality for executing arbitrary contract invocation on some non-evm chains.
                    // @dev The off-chain executor will listen and process the msg based on the src-chain-callers compose options passed.
                    // @dev The index is used when a OApp needs to compose multiple msgs on lzReceive.
                    // For default OFT implementation there is only 1 compose msg per lzReceive, thus its always 0.
                    endpoint.sendCompose(toAddress, _guid, 0 /* the index of the composed message*/, composeMsg);
                }
                emit OFTReceived(_guid, _origin.srcEid, toAddress, amountReceivedLD);
            }
            /**
             * @dev Internal function to handle the OAppPreCrimeSimulator simulated receive.
             * @param _origin The origin information.
             *  - srcEid: The source chain endpoint ID.
             *  - sender: The sender address from the src chain.
             *  - nonce: The nonce of the LayerZero message.
             * @param _guid The unique identifier for the received LayerZero message.
             * @param _message The LayerZero message.
             * @param _executor The address of the off-chain executor.
             * @param _extraData Arbitrary data passed by the msg executor.
             *
             * @dev Enables the preCrime simulator to mock sending lzReceive() messages,
             * routes the msg down from the OAppPreCrimeSimulator, and back up to the OAppReceiver.
             */
            function _lzReceiveSimulate(
                Origin calldata _origin,
                bytes32 _guid,
                bytes calldata _message,
                address _executor,
                bytes calldata _extraData
            ) internal virtual override {
                _lzReceive(_origin, _guid, _message, _executor, _extraData);
            }
            /**
             * @dev Check if the peer is considered 'trusted' by the OApp.
             * @param _eid The endpoint ID to check.
             * @param _peer The peer to check.
             * @return Whether the peer passed is considered 'trusted' by the OApp.
             *
             * @dev Enables OAppPreCrimeSimulator to check whether a potential Inbound Packet is from a trusted source.
             */
            function isPeer(uint32 _eid, bytes32 _peer) public view virtual override returns (bool) {
                return peers[_eid] == _peer;
            }
            /**
             * @dev Internal function to remove dust from the given local decimal amount.
             * @param _amountLD The amount in local decimals.
             * @return amountLD The amount after removing dust.
             *
             * @dev Prevents the loss of dust when moving amounts between chains with different decimals.
             * @dev eg. uint(123) with a conversion rate of 100 becomes uint(100).
             */
            function _removeDust(uint256 _amountLD) internal view virtual returns (uint256 amountLD) {
                return (_amountLD / decimalConversionRate) * decimalConversionRate;
            }
            /**
             * @dev Internal function to convert an amount from shared decimals into local decimals.
             * @param _amountSD The amount in shared decimals.
             * @return amountLD The amount in local decimals.
             */
            function _toLD(uint64 _amountSD) internal view virtual returns (uint256 amountLD) {
                return _amountSD * decimalConversionRate;
            }
            /**
             * @dev Internal function to convert an amount from local decimals into shared decimals.
             * @param _amountLD The amount in local decimals.
             * @return amountSD The amount in shared decimals.
             */
            function _toSD(uint256 _amountLD) internal view virtual returns (uint64 amountSD) {
                return uint64(_amountLD / decimalConversionRate);
            }
            /**
             * @dev Internal function to mock the amount mutation from a OFT debit() operation.
             * @param _amountLD The amount to send in local decimals.
             * @param _minAmountLD The minimum amount to send in local decimals.
             * @dev _dstEid The destination endpoint ID.
             * @return amountSentLD The amount sent, in local decimals.
             * @return amountReceivedLD The amount to be received on the remote chain, in local decimals.
             *
             * @dev This is where things like fees would be calculated and deducted from the amount to be received on the remote.
             */
            function _debitView(
                uint256 _amountLD,
                uint256 _minAmountLD,
                uint32 /*_dstEid*/
            ) internal view virtual returns (uint256 amountSentLD, uint256 amountReceivedLD) {
                // @dev Remove the dust so nothing is lost on the conversion between chains with different decimals for the token.
                amountSentLD = _removeDust(_amountLD);
                // @dev The amount to send is the same as amount received in the default implementation.
                amountReceivedLD = amountSentLD;
                // @dev Check for slippage.
                if (amountReceivedLD < _minAmountLD) {
                    revert SlippageExceeded(amountReceivedLD, _minAmountLD);
                }
            }
            /**
             * @dev Internal function to perform a debit operation.
             * @param _from The address to debit.
             * @param _amountLD The amount to send in local decimals.
             * @param _minAmountLD The minimum amount to send in local decimals.
             * @param _dstEid The destination endpoint ID.
             * @return amountSentLD The amount sent in local decimals.
             * @return amountReceivedLD The amount received in local decimals on the remote.
             *
             * @dev Defined here but are intended to be overriden depending on the OFT implementation.
             * @dev Depending on OFT implementation the _amountLD could differ from the amountReceivedLD.
             */
            function _debit(
                address _from,
                uint256 _amountLD,
                uint256 _minAmountLD,
                uint32 _dstEid
            ) internal virtual returns (uint256 amountSentLD, uint256 amountReceivedLD);
            /**
             * @dev Internal function to perform a credit operation.
             * @param _to The address to credit.
             * @param _amountLD The amount to credit in local decimals.
             * @param _srcEid The source endpoint ID.
             * @return amountReceivedLD The amount ACTUALLY received in local decimals.
             *
             * @dev Defined here but are intended to be overriden depending on the OFT implementation.
             * @dev Depending on OFT implementation the _amountLD could differ from the amountReceivedLD.
             */
            function _credit(
                address _to,
                uint256 _amountLD,
                uint32 _srcEid
            ) internal virtual returns (uint256 amountReceivedLD);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
        pragma solidity ^0.8.20;
        import {Context} from "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * The initial owner is set to the address provided by the deployer. This can
         * later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            /**
             * @dev The caller account is not authorized to perform an operation.
             */
            error OwnableUnauthorizedAccount(address account);
            /**
             * @dev The owner is not a valid owner account. (eg. `address(0)`)
             */
            error OwnableInvalidOwner(address owner);
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
             */
            constructor(address initialOwner) {
                if (initialOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(initialOwner);
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                if (owner() != _msgSender()) {
                    revert OwnableUnauthorizedAccount(_msgSender());
                }
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby disabling any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                if (newOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Standard ERC-20 Errors
         * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
         */
        interface IERC20Errors {
            /**
             * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             * @param balance Current balance for the interacting account.
             * @param needed Minimum amount required to perform a transfer.
             */
            error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
            /**
             * @dev Indicates a failure with the token `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             */
            error ERC20InvalidSender(address sender);
            /**
             * @dev Indicates a failure with the token `receiver`. Used in transfers.
             * @param receiver Address to which tokens are being transferred.
             */
            error ERC20InvalidReceiver(address receiver);
            /**
             * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
             * @param spender Address that may be allowed to operate on tokens without being their owner.
             * @param allowance Amount of tokens a `spender` is allowed to operate with.
             * @param needed Minimum amount required to perform a transfer.
             */
            error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
            /**
             * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
             * @param approver Address initiating an approval operation.
             */
            error ERC20InvalidApprover(address approver);
            /**
             * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
             * @param spender Address that may be allowed to operate on tokens without being their owner.
             */
            error ERC20InvalidSpender(address spender);
        }
        /**
         * @dev Standard ERC-721 Errors
         * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
         */
        interface IERC721Errors {
            /**
             * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
             * Used in balance queries.
             * @param owner Address of the current owner of a token.
             */
            error ERC721InvalidOwner(address owner);
            /**
             * @dev Indicates a `tokenId` whose `owner` is the zero address.
             * @param tokenId Identifier number of a token.
             */
            error ERC721NonexistentToken(uint256 tokenId);
            /**
             * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             * @param tokenId Identifier number of a token.
             * @param owner Address of the current owner of a token.
             */
            error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
            /**
             * @dev Indicates a failure with the token `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             */
            error ERC721InvalidSender(address sender);
            /**
             * @dev Indicates a failure with the token `receiver`. Used in transfers.
             * @param receiver Address to which tokens are being transferred.
             */
            error ERC721InvalidReceiver(address receiver);
            /**
             * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
             * @param operator Address that may be allowed to operate on tokens without being their owner.
             * @param tokenId Identifier number of a token.
             */
            error ERC721InsufficientApproval(address operator, uint256 tokenId);
            /**
             * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
             * @param approver Address initiating an approval operation.
             */
            error ERC721InvalidApprover(address approver);
            /**
             * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
             * @param operator Address that may be allowed to operate on tokens without being their owner.
             */
            error ERC721InvalidOperator(address operator);
        }
        /**
         * @dev Standard ERC-1155 Errors
         * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
         */
        interface IERC1155Errors {
            /**
             * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             * @param balance Current balance for the interacting account.
             * @param needed Minimum amount required to perform a transfer.
             * @param tokenId Identifier number of a token.
             */
            error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
            /**
             * @dev Indicates a failure with the token `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             */
            error ERC1155InvalidSender(address sender);
            /**
             * @dev Indicates a failure with the token `receiver`. Used in transfers.
             * @param receiver Address to which tokens are being transferred.
             */
            error ERC1155InvalidReceiver(address receiver);
            /**
             * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
             * @param operator Address that may be allowed to operate on tokens without being their owner.
             * @param owner Address of the current owner of a token.
             */
            error ERC1155MissingApprovalForAll(address operator, address owner);
            /**
             * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
             * @param approver Address initiating an approval operation.
             */
            error ERC1155InvalidApprover(address approver);
            /**
             * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
             * @param operator Address that may be allowed to operate on tokens without being their owner.
             */
            error ERC1155InvalidOperator(address operator);
            /**
             * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
             * Used in batch transfers.
             * @param idsLength Length of the array of token identifiers
             * @param valuesLength Length of the array of token amounts
             */
            error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "./IERC20.sol";
        import {IERC165} from "./IERC165.sol";
        /**
         * @title IERC1363
         * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
         *
         * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
         * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
         */
        interface IERC1363 is IERC20, IERC165 {
            /*
             * Note: the ERC-165 identifier for this interface is 0xb0202a11.
             * 0xb0202a11 ===
             *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
             *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
             *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
             *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
             *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
             *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
             */
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`
             * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
             * @param to The address which you want to transfer to.
             * @param value The amount of tokens to be transferred.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function transferAndCall(address to, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`
             * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
             * @param to The address which you want to transfer to.
             * @param value The amount of tokens to be transferred.
             * @param data Additional data with no specified format, sent in call to `to`.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
             * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
             * @param from The address which you want to send tokens from.
             * @param to The address which you want to transfer to.
             * @param value The amount of tokens to be transferred.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
             * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
             * @param from The address which you want to send tokens from.
             * @param to The address which you want to transfer to.
             * @param value The amount of tokens to be transferred.
             * @param data Additional data with no specified format, sent in call to `to`.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
             * @param spender The address which will spend the funds.
             * @param value The amount of tokens to be spent.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function approveAndCall(address spender, uint256 value) external returns (bool);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
             * @param spender The address which will spend the funds.
             * @param value The amount of tokens to be spent.
             * @param data Additional data with no specified format, sent in call to `spender`.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
        pragma solidity ^0.8.20;
        import {IERC165} from "../utils/introspection/IERC165.sol";
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "../token/ERC20/IERC20.sol";
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "./IERC20.sol";
        import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
        import {Context} from "../../utils/Context.sol";
        import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
        /**
         * @dev Implementation of the {IERC20} interface.
         *
         * This implementation is agnostic to the way tokens are created. This means
         * that a supply mechanism has to be added in a derived contract using {_mint}.
         *
         * TIP: For a detailed writeup see our guide
         * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
         * to implement supply mechanisms].
         *
         * The default value of {decimals} is 18. To change this, you should override
         * this function so it returns a different value.
         *
         * We have followed general OpenZeppelin Contracts guidelines: functions revert
         * instead returning `false` on failure. This behavior is nonetheless
         * conventional and does not conflict with the expectations of ERC-20
         * applications.
         */
        abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
            mapping(address account => uint256) private _balances;
            mapping(address account => mapping(address spender => uint256)) private _allowances;
            uint256 private _totalSupply;
            string private _name;
            string private _symbol;
            /**
             * @dev Sets the values for {name} and {symbol}.
             *
             * All two of these values are immutable: they can only be set once during
             * construction.
             */
            constructor(string memory name_, string memory symbol_) {
                _name = name_;
                _symbol = symbol_;
            }
            /**
             * @dev Returns the name of the token.
             */
            function name() public view virtual returns (string memory) {
                return _name;
            }
            /**
             * @dev Returns the symbol of the token, usually a shorter version of the
             * name.
             */
            function symbol() public view virtual returns (string memory) {
                return _symbol;
            }
            /**
             * @dev Returns the number of decimals used to get its user representation.
             * For example, if `decimals` equals `2`, a balance of `505` tokens should
             * be displayed to a user as `5.05` (`505 / 10 ** 2`).
             *
             * Tokens usually opt for a value of 18, imitating the relationship between
             * Ether and Wei. This is the default value returned by this function, unless
             * it's overridden.
             *
             * NOTE: This information is only used for _display_ purposes: it in
             * no way affects any of the arithmetic of the contract, including
             * {IERC20-balanceOf} and {IERC20-transfer}.
             */
            function decimals() public view virtual returns (uint8) {
                return 18;
            }
            /**
             * @dev See {IERC20-totalSupply}.
             */
            function totalSupply() public view virtual returns (uint256) {
                return _totalSupply;
            }
            /**
             * @dev See {IERC20-balanceOf}.
             */
            function balanceOf(address account) public view virtual returns (uint256) {
                return _balances[account];
            }
            /**
             * @dev See {IERC20-transfer}.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - the caller must have a balance of at least `value`.
             */
            function transfer(address to, uint256 value) public virtual returns (bool) {
                address owner = _msgSender();
                _transfer(owner, to, value);
                return true;
            }
            /**
             * @dev See {IERC20-allowance}.
             */
            function allowance(address owner, address spender) public view virtual returns (uint256) {
                return _allowances[owner][spender];
            }
            /**
             * @dev See {IERC20-approve}.
             *
             * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
             * `transferFrom`. This is semantically equivalent to an infinite approval.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function approve(address spender, uint256 value) public virtual returns (bool) {
                address owner = _msgSender();
                _approve(owner, spender, value);
                return true;
            }
            /**
             * @dev See {IERC20-transferFrom}.
             *
             * Skips emitting an {Approval} event indicating an allowance update. This is not
             * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
             *
             * NOTE: Does not update the allowance if the current allowance
             * is the maximum `uint256`.
             *
             * Requirements:
             *
             * - `from` and `to` cannot be the zero address.
             * - `from` must have a balance of at least `value`.
             * - the caller must have allowance for ``from``'s tokens of at least
             * `value`.
             */
            function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
                address spender = _msgSender();
                _spendAllowance(from, spender, value);
                _transfer(from, to, value);
                return true;
            }
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to`.
             *
             * This internal function is equivalent to {transfer}, and can be used to
             * e.g. implement automatic token fees, slashing mechanisms, etc.
             *
             * Emits a {Transfer} event.
             *
             * NOTE: This function is not virtual, {_update} should be overridden instead.
             */
            function _transfer(address from, address to, uint256 value) internal {
                if (from == address(0)) {
                    revert ERC20InvalidSender(address(0));
                }
                if (to == address(0)) {
                    revert ERC20InvalidReceiver(address(0));
                }
                _update(from, to, value);
            }
            /**
             * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
             * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
             * this function.
             *
             * Emits a {Transfer} event.
             */
            function _update(address from, address to, uint256 value) internal virtual {
                if (from == address(0)) {
                    // Overflow check required: The rest of the code assumes that totalSupply never overflows
                    _totalSupply += value;
                } else {
                    uint256 fromBalance = _balances[from];
                    if (fromBalance < value) {
                        revert ERC20InsufficientBalance(from, fromBalance, value);
                    }
                    unchecked {
                        // Overflow not possible: value <= fromBalance <= totalSupply.
                        _balances[from] = fromBalance - value;
                    }
                }
                if (to == address(0)) {
                    unchecked {
                        // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                        _totalSupply -= value;
                    }
                } else {
                    unchecked {
                        // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                        _balances[to] += value;
                    }
                }
                emit Transfer(from, to, value);
            }
            /**
             * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
             * Relies on the `_update` mechanism
             *
             * Emits a {Transfer} event with `from` set to the zero address.
             *
             * NOTE: This function is not virtual, {_update} should be overridden instead.
             */
            function _mint(address account, uint256 value) internal {
                if (account == address(0)) {
                    revert ERC20InvalidReceiver(address(0));
                }
                _update(address(0), account, value);
            }
            /**
             * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
             * Relies on the `_update` mechanism.
             *
             * Emits a {Transfer} event with `to` set to the zero address.
             *
             * NOTE: This function is not virtual, {_update} should be overridden instead
             */
            function _burn(address account, uint256 value) internal {
                if (account == address(0)) {
                    revert ERC20InvalidSender(address(0));
                }
                _update(account, address(0), value);
            }
            /**
             * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
             *
             * This internal function is equivalent to `approve`, and can be used to
             * e.g. set automatic allowances for certain subsystems, etc.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `owner` cannot be the zero address.
             * - `spender` cannot be the zero address.
             *
             * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
             */
            function _approve(address owner, address spender, uint256 value) internal {
                _approve(owner, spender, value, true);
            }
            /**
             * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
             *
             * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
             * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
             * `Approval` event during `transferFrom` operations.
             *
             * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
             * true using the following override:
             *
             * ```solidity
             * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
             *     super._approve(owner, spender, value, true);
             * }
             * ```
             *
             * Requirements are the same as {_approve}.
             */
            function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
                if (owner == address(0)) {
                    revert ERC20InvalidApprover(address(0));
                }
                if (spender == address(0)) {
                    revert ERC20InvalidSpender(address(0));
                }
                _allowances[owner][spender] = value;
                if (emitEvent) {
                    emit Approval(owner, spender, value);
                }
            }
            /**
             * @dev Updates `owner` s allowance for `spender` based on spent `value`.
             *
             * Does not update the allowance value in case of infinite allowance.
             * Revert if not enough allowance is available.
             *
             * Does not emit an {Approval} event.
             */
            function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
                uint256 currentAllowance = allowance(owner, spender);
                if (currentAllowance < type(uint256).max) {
                    if (currentAllowance < value) {
                        revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                    }
                    unchecked {
                        _approve(owner, spender, currentAllowance - value, false);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "../IERC20.sol";
        /**
         * @dev Interface for the optional metadata functions from the ERC-20 standard.
         */
        interface IERC20Metadata is IERC20 {
            /**
             * @dev Returns the name of the token.
             */
            function name() external view returns (string memory);
            /**
             * @dev Returns the symbol of the token.
             */
            function symbol() external view returns (string memory);
            /**
             * @dev Returns the decimals places of the token.
             */
            function decimals() external view returns (uint8);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC-20 standard as defined in the ERC.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the value of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the value of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 value) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the
             * allowance mechanism. `value` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 value) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "../IERC20.sol";
        import {IERC1363} from "../../../interfaces/IERC1363.sol";
        /**
         * @title SafeERC20
         * @dev Wrappers around ERC-20 operations that throw on failure (when the token
         * contract returns false). Tokens that return no value (and instead revert or
         * throw on failure) are also supported, non-reverting calls are assumed to be
         * successful.
         * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
         * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
         */
        library SafeERC20 {
            /**
             * @dev An operation with an ERC-20 token failed.
             */
            error SafeERC20FailedOperation(address token);
            /**
             * @dev Indicates a failed `decreaseAllowance` request.
             */
            error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
            /**
             * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
             * non-reverting calls are assumed to be successful.
             */
            function safeTransfer(IERC20 token, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
            }
            /**
             * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
             * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
             */
            function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
            }
            /**
             * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
             * non-reverting calls are assumed to be successful.
             *
             * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
             * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
             * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
             * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
             */
            function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                uint256 oldAllowance = token.allowance(address(this), spender);
                forceApprove(token, spender, oldAllowance + value);
            }
            /**
             * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
             * value, non-reverting calls are assumed to be successful.
             *
             * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
             * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
             * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
             * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
             */
            function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
                unchecked {
                    uint256 currentAllowance = token.allowance(address(this), spender);
                    if (currentAllowance < requestedDecrease) {
                        revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
                    }
                    forceApprove(token, spender, currentAllowance - requestedDecrease);
                }
            }
            /**
             * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
             * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
             * to be set to zero before setting it to a non-zero value, such as USDT.
             *
             * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
             * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
             * set here.
             */
            function forceApprove(IERC20 token, address spender, uint256 value) internal {
                bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
                if (!_callOptionalReturnBool(token, approvalCall)) {
                    _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
                    _callOptionalReturn(token, approvalCall);
                }
            }
            /**
             * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
             * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
             * targeting contracts.
             *
             * Reverts if the returned value is other than `true`.
             */
            function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
                if (to.code.length == 0) {
                    safeTransfer(token, to, value);
                } else if (!token.transferAndCall(to, value, data)) {
                    revert SafeERC20FailedOperation(address(token));
                }
            }
            /**
             * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
             * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
             * targeting contracts.
             *
             * Reverts if the returned value is other than `true`.
             */
            function transferFromAndCallRelaxed(
                IERC1363 token,
                address from,
                address to,
                uint256 value,
                bytes memory data
            ) internal {
                if (to.code.length == 0) {
                    safeTransferFrom(token, from, to, value);
                } else if (!token.transferFromAndCall(from, to, value, data)) {
                    revert SafeERC20FailedOperation(address(token));
                }
            }
            /**
             * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
             * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
             * targeting contracts.
             *
             * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
             * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
             * once without retrying, and relies on the returned value to be true.
             *
             * Reverts if the returned value is other than `true`.
             */
            function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
                if (to.code.length == 0) {
                    forceApprove(token, to, value);
                } else if (!token.approveAndCall(to, value, data)) {
                    revert SafeERC20FailedOperation(address(token));
                }
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             *
             * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
             */
            function _callOptionalReturn(IERC20 token, bytes memory data) private {
                uint256 returnSize;
                uint256 returnValue;
                assembly ("memory-safe") {
                    let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                    // bubble errors
                    if iszero(success) {
                        let ptr := mload(0x40)
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                    returnSize := returndatasize()
                    returnValue := mload(0)
                }
                if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
                    revert SafeERC20FailedOperation(address(token));
                }
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             *
             * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
             */
            function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
                bool success;
                uint256 returnSize;
                uint256 returnValue;
                assembly ("memory-safe") {
                    success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                    returnSize := returndatasize()
                    returnValue := mload(0)
                }
                return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            function _contextSuffixLength() internal view virtual returns (uint256) {
                return 0;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC-165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[ERC].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165 {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.22;
        import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
        import { OFT } from "@layerzerolabs/oft-evm/contracts/OFT.sol";
        contract TrinityToken is OFT {
            address CORE_TREASURY = 0x244F7C225364a3F42E4266331c126b2363c176b5;
            constructor(
                address _lzEndpoint,
                address _delegate
            ) OFT("Trinity Token", "TNT", _lzEndpoint, _delegate) Ownable(_delegate) {
                if (block.chainid == 56) {
                    _mint(CORE_TREASURY, 8_000_000_000 * 10 ** decimals());
                } else if (block.chainid == 1) {
                    _mint(CORE_TREASURY, 2_000_000_000 * 10 ** decimals());
                }
            }
            receive() external payable {
                revert("DIRECT_DEPOSIT_REVERTED");
            }
            fallback() external payable {
                revert("DIRECT_DEPOSIT_REVERTED");
            }
            function salvageERC20(address tokenAddress) external onlyOwner {
                uint256 amount = IERC20(tokenAddress).balanceOf(address(this));
                IERC20(tokenAddress).transfer(owner(), amount);
            }
        }
        

        File 4 of 4: TetherToken
        pragma solidity ^0.4.17;
        
        /**
         * @title SafeMath
         * @dev Math operations with safety checks that throw on error
         */
        library SafeMath {
            function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                uint256 c = a * b;
                assert(c / a == b);
                return c;
            }
        
            function div(uint256 a, uint256 b) internal pure returns (uint256) {
                // assert(b > 0); // Solidity automatically throws when dividing by 0
                uint256 c = a / b;
                // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                return c;
            }
        
            function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                assert(b <= a);
                return a - b;
            }
        
            function add(uint256 a, uint256 b) internal pure returns (uint256) {
                uint256 c = a + b;
                assert(c >= a);
                return c;
            }
        }
        
        /**
         * @title Ownable
         * @dev The Ownable contract has an owner address, and provides basic authorization control
         * functions, this simplifies the implementation of "user permissions".
         */
        contract Ownable {
            address public owner;
        
            /**
              * @dev The Ownable constructor sets the original `owner` of the contract to the sender
              * account.
              */
            function Ownable() public {
                owner = msg.sender;
            }
        
            /**
              * @dev Throws if called by any account other than the owner.
              */
            modifier onlyOwner() {
                require(msg.sender == owner);
                _;
            }
        
            /**
            * @dev Allows the current owner to transfer control of the contract to a newOwner.
            * @param newOwner The address to transfer ownership to.
            */
            function transferOwnership(address newOwner) public onlyOwner {
                if (newOwner != address(0)) {
                    owner = newOwner;
                }
            }
        
        }
        
        /**
         * @title ERC20Basic
         * @dev Simpler version of ERC20 interface
         * @dev see https://github.com/ethereum/EIPs/issues/20
         */
        contract ERC20Basic {
            uint public _totalSupply;
            function totalSupply() public constant returns (uint);
            function balanceOf(address who) public constant returns (uint);
            function transfer(address to, uint value) public;
            event Transfer(address indexed from, address indexed to, uint value);
        }
        
        /**
         * @title ERC20 interface
         * @dev see https://github.com/ethereum/EIPs/issues/20
         */
        contract ERC20 is ERC20Basic {
            function allowance(address owner, address spender) public constant returns (uint);
            function transferFrom(address from, address to, uint value) public;
            function approve(address spender, uint value) public;
            event Approval(address indexed owner, address indexed spender, uint value);
        }
        
        /**
         * @title Basic token
         * @dev Basic version of StandardToken, with no allowances.
         */
        contract BasicToken is Ownable, ERC20Basic {
            using SafeMath for uint;
        
            mapping(address => uint) public balances;
        
            // additional variables for use if transaction fees ever became necessary
            uint public basisPointsRate = 0;
            uint public maximumFee = 0;
        
            /**
            * @dev Fix for the ERC20 short address attack.
            */
            modifier onlyPayloadSize(uint size) {
                require(!(msg.data.length < size + 4));
                _;
            }
        
            /**
            * @dev transfer token for a specified address
            * @param _to The address to transfer to.
            * @param _value The amount to be transferred.
            */
            function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
                uint fee = (_value.mul(basisPointsRate)).div(10000);
                if (fee > maximumFee) {
                    fee = maximumFee;
                }
                uint sendAmount = _value.sub(fee);
                balances[msg.sender] = balances[msg.sender].sub(_value);
                balances[_to] = balances[_to].add(sendAmount);
                if (fee > 0) {
                    balances[owner] = balances[owner].add(fee);
                    Transfer(msg.sender, owner, fee);
                }
                Transfer(msg.sender, _to, sendAmount);
            }
        
            /**
            * @dev Gets the balance of the specified address.
            * @param _owner The address to query the the balance of.
            * @return An uint representing the amount owned by the passed address.
            */
            function balanceOf(address _owner) public constant returns (uint balance) {
                return balances[_owner];
            }
        
        }
        
        /**
         * @title Standard ERC20 token
         *
         * @dev Implementation of the basic standard token.
         * @dev https://github.com/ethereum/EIPs/issues/20
         * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
         */
        contract StandardToken is BasicToken, ERC20 {
        
            mapping (address => mapping (address => uint)) public allowed;
        
            uint public constant MAX_UINT = 2**256 - 1;
        
            /**
            * @dev Transfer tokens from one address to another
            * @param _from address The address which you want to send tokens from
            * @param _to address The address which you want to transfer to
            * @param _value uint the amount of tokens to be transferred
            */
            function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) {
                var _allowance = allowed[_from][msg.sender];
        
                // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
                // if (_value > _allowance) throw;
        
                uint fee = (_value.mul(basisPointsRate)).div(10000);
                if (fee > maximumFee) {
                    fee = maximumFee;
                }
                if (_allowance < MAX_UINT) {
                    allowed[_from][msg.sender] = _allowance.sub(_value);
                }
                uint sendAmount = _value.sub(fee);
                balances[_from] = balances[_from].sub(_value);
                balances[_to] = balances[_to].add(sendAmount);
                if (fee > 0) {
                    balances[owner] = balances[owner].add(fee);
                    Transfer(_from, owner, fee);
                }
                Transfer(_from, _to, sendAmount);
            }
        
            /**
            * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
            * @param _spender The address which will spend the funds.
            * @param _value The amount of tokens to be spent.
            */
            function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
        
                // To change the approve amount you first have to reduce the addresses`
                //  allowance to zero by calling `approve(_spender, 0)` if it is not
                //  already 0 to mitigate the race condition described here:
                //  https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
        
                allowed[msg.sender][_spender] = _value;
                Approval(msg.sender, _spender, _value);
            }
        
            /**
            * @dev Function to check the amount of tokens than an owner allowed to a spender.
            * @param _owner address The address which owns the funds.
            * @param _spender address The address which will spend the funds.
            * @return A uint specifying the amount of tokens still available for the spender.
            */
            function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                return allowed[_owner][_spender];
            }
        
        }
        
        
        /**
         * @title Pausable
         * @dev Base contract which allows children to implement an emergency stop mechanism.
         */
        contract Pausable is Ownable {
          event Pause();
          event Unpause();
        
          bool public paused = false;
        
        
          /**
           * @dev Modifier to make a function callable only when the contract is not paused.
           */
          modifier whenNotPaused() {
            require(!paused);
            _;
          }
        
          /**
           * @dev Modifier to make a function callable only when the contract is paused.
           */
          modifier whenPaused() {
            require(paused);
            _;
          }
        
          /**
           * @dev called by the owner to pause, triggers stopped state
           */
          function pause() onlyOwner whenNotPaused public {
            paused = true;
            Pause();
          }
        
          /**
           * @dev called by the owner to unpause, returns to normal state
           */
          function unpause() onlyOwner whenPaused public {
            paused = false;
            Unpause();
          }
        }
        
        contract BlackList is Ownable, BasicToken {
        
            /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
            function getBlackListStatus(address _maker) external constant returns (bool) {
                return isBlackListed[_maker];
            }
        
            function getOwner() external constant returns (address) {
                return owner;
            }
        
            mapping (address => bool) public isBlackListed;
            
            function addBlackList (address _evilUser) public onlyOwner {
                isBlackListed[_evilUser] = true;
                AddedBlackList(_evilUser);
            }
        
            function removeBlackList (address _clearedUser) public onlyOwner {
                isBlackListed[_clearedUser] = false;
                RemovedBlackList(_clearedUser);
            }
        
            function destroyBlackFunds (address _blackListedUser) public onlyOwner {
                require(isBlackListed[_blackListedUser]);
                uint dirtyFunds = balanceOf(_blackListedUser);
                balances[_blackListedUser] = 0;
                _totalSupply -= dirtyFunds;
                DestroyedBlackFunds(_blackListedUser, dirtyFunds);
            }
        
            event DestroyedBlackFunds(address _blackListedUser, uint _balance);
        
            event AddedBlackList(address _user);
        
            event RemovedBlackList(address _user);
        
        }
        
        contract UpgradedStandardToken is StandardToken{
            // those methods are called by the legacy contract
            // and they must ensure msg.sender to be the contract address
            function transferByLegacy(address from, address to, uint value) public;
            function transferFromByLegacy(address sender, address from, address spender, uint value) public;
            function approveByLegacy(address from, address spender, uint value) public;
        }
        
        contract TetherToken is Pausable, StandardToken, BlackList {
        
            string public name;
            string public symbol;
            uint public decimals;
            address public upgradedAddress;
            bool public deprecated;
        
            //  The contract can be initialized with a number of tokens
            //  All the tokens are deposited to the owner address
            //
            // @param _balance Initial supply of the contract
            // @param _name Token Name
            // @param _symbol Token symbol
            // @param _decimals Token decimals
            function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public {
                _totalSupply = _initialSupply;
                name = _name;
                symbol = _symbol;
                decimals = _decimals;
                balances[owner] = _initialSupply;
                deprecated = false;
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function transfer(address _to, uint _value) public whenNotPaused {
                require(!isBlackListed[msg.sender]);
                if (deprecated) {
                    return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value);
                } else {
                    return super.transfer(_to, _value);
                }
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function transferFrom(address _from, address _to, uint _value) public whenNotPaused {
                require(!isBlackListed[_from]);
                if (deprecated) {
                    return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value);
                } else {
                    return super.transferFrom(_from, _to, _value);
                }
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function balanceOf(address who) public constant returns (uint) {
                if (deprecated) {
                    return UpgradedStandardToken(upgradedAddress).balanceOf(who);
                } else {
                    return super.balanceOf(who);
                }
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                if (deprecated) {
                    return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value);
                } else {
                    return super.approve(_spender, _value);
                }
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                if (deprecated) {
                    return StandardToken(upgradedAddress).allowance(_owner, _spender);
                } else {
                    return super.allowance(_owner, _spender);
                }
            }
        
            // deprecate current contract in favour of a new one
            function deprecate(address _upgradedAddress) public onlyOwner {
                deprecated = true;
                upgradedAddress = _upgradedAddress;
                Deprecate(_upgradedAddress);
            }
        
            // deprecate current contract if favour of a new one
            function totalSupply() public constant returns (uint) {
                if (deprecated) {
                    return StandardToken(upgradedAddress).totalSupply();
                } else {
                    return _totalSupply;
                }
            }
        
            // Issue a new amount of tokens
            // these tokens are deposited into the owner address
            //
            // @param _amount Number of tokens to be issued
            function issue(uint amount) public onlyOwner {
                require(_totalSupply + amount > _totalSupply);
                require(balances[owner] + amount > balances[owner]);
        
                balances[owner] += amount;
                _totalSupply += amount;
                Issue(amount);
            }
        
            // Redeem tokens.
            // These tokens are withdrawn from the owner address
            // if the balance must be enough to cover the redeem
            // or the call will fail.
            // @param _amount Number of tokens to be issued
            function redeem(uint amount) public onlyOwner {
                require(_totalSupply >= amount);
                require(balances[owner] >= amount);
        
                _totalSupply -= amount;
                balances[owner] -= amount;
                Redeem(amount);
            }
        
            function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner {
                // Ensure transparency by hardcoding limit beyond which fees can never be added
                require(newBasisPoints < 20);
                require(newMaxFee < 50);
        
                basisPointsRate = newBasisPoints;
                maximumFee = newMaxFee.mul(10**decimals);
        
                Params(basisPointsRate, maximumFee);
            }
        
            // Called when new token are issued
            event Issue(uint amount);
        
            // Called when tokens are redeemed
            event Redeem(uint amount);
        
            // Called when contract is deprecated
            event Deprecate(address newAddress);
        
            // Called if contract ever adds fees
            event Params(uint feeBasisPoints, uint maxFee);
        }