ETH Price: $2,630.59 (-3.71%)

Transaction Decoder

Block:
22061758 at Mar-16-2025 08:13:59 PM +UTC
Transaction Fee:
0.00013165579116783 ETH $0.35
Gas Used:
125,910 Gas / 1.045634113 Gwei

Emitted Events:

101 Renzo.Transfer( from=[Receiver] 0x2e1a7ef12d0adeebf6009f0aa964cf686364b01f, to=[Sender] 0x8474baf7ccdf39d99349d729632bf2abf694ad0b, value=170100000000000000000 )
102 0x2e1a7ef12d0adeebf6009f0aa964cf686364b01f.0x9c91da9f102663943dfb86d851c76de06c2fe178d18a58e45dd7a9cbeea0bb35( 0x9c91da9f102663943dfb86d851c76de06c2fe178d18a58e45dd7a9cbeea0bb35, 0x0000000000000000000000008474baf7ccdf39d99349d729632bf2abf694ad0b, 000000000000000000000000000000000000000000000009389c98c585f20000, 0000000000000000000000000000000000000000000000000000000067605c90, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 000000000000000000000000000000000000000000000009389c98c585f20000 )

Account State Difference:

  Address   Before After State Difference Code
0x2e1a7EF1...86364B01f
(Liquifi: Renzo Airdrop)
0x3B508054...0b23FA6F9
0x8474bAf7...bf694Ad0B
0.001081275743836 Eth
Nonce: 7
0.00094961995266817 Eth
Nonce: 8
0.00013165579116783
(beaverbuild)
7.469938806150771897 Eth7.470001761150771897 Eth0.000062955

Execution Trace

Liquifi: Renzo Airdrop.8132b321( )
  • 0xb7486b5bd2d14714950b082eafebe9822a1d96ee.8132b321( )
    • Renzo.balanceOf( account=0x2e1a7EF12d0aDeEbF6009F0Aa964cf686364B01f ) => ( 52718911010000000000000000 )
    • 0xc76b81d835a6ef88fb9b841c22ed492473577ac3.ad9c499b( )
    • Renzo.transfer( to=0x8474bAf7ccDF39D99349d729632Bf2Abf694Ad0B, value=170100000000000000000 ) => ( True )
      // SPDX-License-Identifier: MIT
      // Compatible with OpenZeppelin Contracts ^5.0.0
      pragma solidity ^0.8.20;
      import "@openzeppelin/[email protected]/token/ERC20/ERC20.sol";
      import "@openzeppelin/[email protected]/token/ERC20/extensions/ERC20Permit.sol";
      import "@openzeppelin/[email protected]/token/ERC20/extensions/ERC20Votes.sol";
      contract Renzo is ERC20, ERC20Permit, ERC20Votes {
          constructor() ERC20("Renzo", "REZ") ERC20Permit("Renzo") {
              _mint(0xc1d9178C600B15151Ec366C008993a87C1216C38, 10_000_000_000 * 10 ** decimals());
          }
          // The following functions are overrides required by Solidity.
          function _update(address from, address to, uint256 value)
              internal
              override(ERC20, ERC20Votes)
          {
              super._update(from, to, value);
          }
          function nonces(address owner)
              public
              view
              override(ERC20Permit, Nonces)
              returns (uint256)
          {
              return super.nonces(owner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Votes.sol)
      pragma solidity ^0.8.20;
      import {ERC20} from "../ERC20.sol";
      import {Votes} from "../../../governance/utils/Votes.sol";
      import {Checkpoints} from "../../../utils/structs/Checkpoints.sol";
      /**
       * @dev Extension of ERC20 to support Compound-like voting and delegation. This version is more generic than Compound's,
       * and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1.
       *
       * NOTE: This contract does not provide interface compatibility with Compound's COMP token.
       *
       * This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either
       * by calling the {delegate} function directly, or by providing a signature to be used with {delegateBySig}. Voting
       * power can be queried through the public accessors {getVotes} and {getPastVotes}.
       *
       * By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it
       * requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked.
       */
      abstract contract ERC20Votes is ERC20, Votes {
          /**
           * @dev Total supply cap has been exceeded, introducing a risk of votes overflowing.
           */
          error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap);
          /**
           * @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1).
           *
           * This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256,
           * so that checkpoints can be stored in the Trace208 structure used by {{Votes}}. Increasing this value will not
           * remove the underlying limitation, and will cause {_update} to fail because of a math overflow in
           * {_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value) if
           * additional logic requires it. When resolving override conflicts on this function, the minimum should be
           * returned.
           */
          function _maxSupply() internal view virtual returns (uint256) {
              return type(uint208).max;
          }
          /**
           * @dev Move voting power when tokens are transferred.
           *
           * Emits a {IVotes-DelegateVotesChanged} event.
           */
          function _update(address from, address to, uint256 value) internal virtual override {
              super._update(from, to, value);
              if (from == address(0)) {
                  uint256 supply = totalSupply();
                  uint256 cap = _maxSupply();
                  if (supply > cap) {
                      revert ERC20ExceededSafeSupply(supply, cap);
                  }
              }
              _transferVotingUnits(from, to, value);
          }
          /**
           * @dev Returns the voting units of an `account`.
           *
           * WARNING: Overriding this function may compromise the internal vote accounting.
           * `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change.
           */
          function _getVotingUnits(address account) internal view virtual override returns (uint256) {
              return balanceOf(account);
          }
          /**
           * @dev Get number of checkpoints for `account`.
           */
          function numCheckpoints(address account) public view virtual returns (uint32) {
              return _numCheckpoints(account);
          }
          /**
           * @dev Get the `pos`-th checkpoint for `account`.
           */
          function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) {
              return _checkpoints(account, pos);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol)
      pragma solidity ^0.8.20;
      import {IERC20Permit} from "./IERC20Permit.sol";
      import {ERC20} from "../ERC20.sol";
      import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
      import {EIP712} from "../../../utils/cryptography/EIP712.sol";
      import {Nonces} from "../../../utils/Nonces.sol";
      /**
       * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
          bytes32 private constant PERMIT_TYPEHASH =
              keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
          /**
           * @dev Permit deadline has expired.
           */
          error ERC2612ExpiredSignature(uint256 deadline);
          /**
           * @dev Mismatched signature.
           */
          error ERC2612InvalidSigner(address signer, address owner);
          /**
           * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
           *
           * It's a good idea to use the same `name` that is defined as the ERC20 token name.
           */
          constructor(string memory name) EIP712(name, "1") {}
          /**
           * @inheritdoc IERC20Permit
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) public virtual {
              if (block.timestamp > deadline) {
                  revert ERC2612ExpiredSignature(deadline);
              }
              bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
              bytes32 hash = _hashTypedDataV4(structHash);
              address signer = ECDSA.recover(hash, v, r, s);
              if (signer != owner) {
                  revert ERC2612InvalidSigner(signer, owner);
              }
              _approve(owner, spender, value);
          }
          /**
           * @inheritdoc IERC20Permit
           */
          function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
              return super.nonces(owner);
          }
          /**
           * @inheritdoc IERC20Permit
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
              return _domainSeparatorV4();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
      pragma solidity ^0.8.20;
      import {IERC20} from "./IERC20.sol";
      import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
      import {Context} from "../../utils/Context.sol";
      import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * The default value of {decimals} is 18. To change this, you should override
       * this function so it returns a different value.
       *
       * We have followed general OpenZeppelin Contracts guidelines: functions revert
       * instead returning `false` on failure. This behavior is nonetheless
       * conventional and does not conflict with the expectations of ERC20
       * applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       */
      abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
          mapping(address account => uint256) private _balances;
          mapping(address account => mapping(address spender => uint256)) private _allowances;
          uint256 private _totalSupply;
          string private _name;
          string private _symbol;
          /**
           * @dev Sets the values for {name} and {symbol}.
           *
           * All two of these values are immutable: they can only be set once during
           * construction.
           */
          constructor(string memory name_, string memory symbol_) {
              _name = name_;
              _symbol = symbol_;
          }
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual returns (string memory) {
              return _name;
          }
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual returns (string memory) {
              return _symbol;
          }
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5.05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the default value returned by this function, unless
           * it's overridden.
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual returns (uint8) {
              return 18;
          }
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual returns (uint256) {
              return _totalSupply;
          }
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view virtual returns (uint256) {
              return _balances[account];
          }
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - the caller must have a balance of at least `value`.
           */
          function transfer(address to, uint256 value) public virtual returns (bool) {
              address owner = _msgSender();
              _transfer(owner, to, value);
              return true;
          }
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual returns (uint256) {
              return _allowances[owner][spender];
          }
          /**
           * @dev See {IERC20-approve}.
           *
           * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
           * `transferFrom`. This is semantically equivalent to an infinite approval.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 value) public virtual returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, value);
              return true;
          }
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20}.
           *
           * NOTE: Does not update the allowance if the current allowance
           * is the maximum `uint256`.
           *
           * Requirements:
           *
           * - `from` and `to` cannot be the zero address.
           * - `from` must have a balance of at least `value`.
           * - the caller must have allowance for ``from``'s tokens of at least
           * `value`.
           */
          function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
              address spender = _msgSender();
              _spendAllowance(from, spender, value);
              _transfer(from, to, value);
              return true;
          }
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to`.
           *
           * This internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * NOTE: This function is not virtual, {_update} should be overridden instead.
           */
          function _transfer(address from, address to, uint256 value) internal {
              if (from == address(0)) {
                  revert ERC20InvalidSender(address(0));
              }
              if (to == address(0)) {
                  revert ERC20InvalidReceiver(address(0));
              }
              _update(from, to, value);
          }
          /**
           * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
           * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
           * this function.
           *
           * Emits a {Transfer} event.
           */
          function _update(address from, address to, uint256 value) internal virtual {
              if (from == address(0)) {
                  // Overflow check required: The rest of the code assumes that totalSupply never overflows
                  _totalSupply += value;
              } else {
                  uint256 fromBalance = _balances[from];
                  if (fromBalance < value) {
                      revert ERC20InsufficientBalance(from, fromBalance, value);
                  }
                  unchecked {
                      // Overflow not possible: value <= fromBalance <= totalSupply.
                      _balances[from] = fromBalance - value;
                  }
              }
              if (to == address(0)) {
                  unchecked {
                      // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                      _totalSupply -= value;
                  }
              } else {
                  unchecked {
                      // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                      _balances[to] += value;
                  }
              }
              emit Transfer(from, to, value);
          }
          /**
           * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
           * Relies on the `_update` mechanism
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * NOTE: This function is not virtual, {_update} should be overridden instead.
           */
          function _mint(address account, uint256 value) internal {
              if (account == address(0)) {
                  revert ERC20InvalidReceiver(address(0));
              }
              _update(address(0), account, value);
          }
          /**
           * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
           * Relies on the `_update` mechanism.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * NOTE: This function is not virtual, {_update} should be overridden instead
           */
          function _burn(address account, uint256 value) internal {
              if (account == address(0)) {
                  revert ERC20InvalidSender(address(0));
              }
              _update(account, address(0), value);
          }
          /**
           * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           *
           * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
           */
          function _approve(address owner, address spender, uint256 value) internal {
              _approve(owner, spender, value, true);
          }
          /**
           * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
           *
           * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
           * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
           * `Approval` event during `transferFrom` operations.
           *
           * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
           * true using the following override:
           * ```
           * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
           *     super._approve(owner, spender, value, true);
           * }
           * ```
           *
           * Requirements are the same as {_approve}.
           */
          function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
              if (owner == address(0)) {
                  revert ERC20InvalidApprover(address(0));
              }
              if (spender == address(0)) {
                  revert ERC20InvalidSpender(address(0));
              }
              _allowances[owner][spender] = value;
              if (emitEvent) {
                  emit Approval(owner, spender, value);
              }
          }
          /**
           * @dev Updates `owner` s allowance for `spender` based on spent `value`.
           *
           * Does not update the allowance value in case of infinite allowance.
           * Revert if not enough allowance is available.
           *
           * Does not emit an {Approval} event.
           */
          function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
              uint256 currentAllowance = allowance(owner, spender);
              if (currentAllowance != type(uint256).max) {
                  if (currentAllowance < value) {
                      revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                  }
                  unchecked {
                      _approve(owner, spender, currentAllowance - value, false);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol)
      // This file was procedurally generated from scripts/generate/templates/Checkpoints.js.
      pragma solidity ^0.8.20;
      import {Math} from "../math/Math.sol";
      /**
       * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
       * time, and later looking up past values by block number. See {Votes} as an example.
       *
       * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
       * checkpoint for the current transaction block using the {push} function.
       */
      library Checkpoints {
          /**
           * @dev A value was attempted to be inserted on a past checkpoint.
           */
          error CheckpointUnorderedInsertion();
          struct Trace224 {
              Checkpoint224[] _checkpoints;
          }
          struct Checkpoint224 {
              uint32 _key;
              uint224 _value;
          }
          /**
           * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
           *
           * Returns previous value and new value.
           *
           * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
           * library.
           */
          function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) {
              return _insert(self._checkpoints, key, value);
          }
          /**
           * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
           * there is none.
           */
          function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
              uint256 len = self._checkpoints.length;
              uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
              return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
          }
          /**
           * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
           * if there is none.
           */
          function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
              uint256 len = self._checkpoints.length;
              uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
           * if there is none.
           *
           * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
           * keys).
           */
          function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
              uint256 len = self._checkpoints.length;
              uint256 low = 0;
              uint256 high = len;
              if (len > 5) {
                  uint256 mid = len - Math.sqrt(len);
                  if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                      high = mid;
                  } else {
                      low = mid + 1;
                  }
              }
              uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
           */
          function latest(Trace224 storage self) internal view returns (uint224) {
              uint256 pos = self._checkpoints.length;
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
           * in the most recent checkpoint.
           */
          function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
              uint256 pos = self._checkpoints.length;
              if (pos == 0) {
                  return (false, 0, 0);
              } else {
                  Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
                  return (true, ckpt._key, ckpt._value);
              }
          }
          /**
           * @dev Returns the number of checkpoint.
           */
          function length(Trace224 storage self) internal view returns (uint256) {
              return self._checkpoints.length;
          }
          /**
           * @dev Returns checkpoint at given position.
           */
          function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
              return self._checkpoints[pos];
          }
          /**
           * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
           * or by updating the last one.
           */
          function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) {
              uint256 pos = self.length;
              if (pos > 0) {
                  // Copying to memory is important here.
                  Checkpoint224 memory last = _unsafeAccess(self, pos - 1);
                  // Checkpoint keys must be non-decreasing.
                  if (last._key > key) {
                      revert CheckpointUnorderedInsertion();
                  }
                  // Update or push new checkpoint
                  if (last._key == key) {
                      _unsafeAccess(self, pos - 1)._value = value;
                  } else {
                      self.push(Checkpoint224({_key: key, _value: value}));
                  }
                  return (last._value, value);
              } else {
                  self.push(Checkpoint224({_key: key, _value: value}));
                  return (0, value);
              }
          }
          /**
           * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
           * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
           * `high`.
           *
           * WARNING: `high` should not be greater than the array's length.
           */
          function _upperBinaryLookup(
              Checkpoint224[] storage self,
              uint32 key,
              uint256 low,
              uint256 high
          ) private view returns (uint256) {
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  if (_unsafeAccess(self, mid)._key > key) {
                      high = mid;
                  } else {
                      low = mid + 1;
                  }
              }
              return high;
          }
          /**
           * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
           * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
           * exclusive `high`.
           *
           * WARNING: `high` should not be greater than the array's length.
           */
          function _lowerBinaryLookup(
              Checkpoint224[] storage self,
              uint32 key,
              uint256 low,
              uint256 high
          ) private view returns (uint256) {
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  if (_unsafeAccess(self, mid)._key < key) {
                      low = mid + 1;
                  } else {
                      high = mid;
                  }
              }
              return high;
          }
          /**
           * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
           */
          function _unsafeAccess(
              Checkpoint224[] storage self,
              uint256 pos
          ) private pure returns (Checkpoint224 storage result) {
              assembly {
                  mstore(0, self.slot)
                  result.slot := add(keccak256(0, 0x20), pos)
              }
          }
          struct Trace208 {
              Checkpoint208[] _checkpoints;
          }
          struct Checkpoint208 {
              uint48 _key;
              uint208 _value;
          }
          /**
           * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
           *
           * Returns previous value and new value.
           *
           * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
           * library.
           */
          function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) {
              return _insert(self._checkpoints, key, value);
          }
          /**
           * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
           * there is none.
           */
          function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
              uint256 len = self._checkpoints.length;
              uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
              return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
          }
          /**
           * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
           * if there is none.
           */
          function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
              uint256 len = self._checkpoints.length;
              uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
           * if there is none.
           *
           * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
           * keys).
           */
          function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
              uint256 len = self._checkpoints.length;
              uint256 low = 0;
              uint256 high = len;
              if (len > 5) {
                  uint256 mid = len - Math.sqrt(len);
                  if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                      high = mid;
                  } else {
                      low = mid + 1;
                  }
              }
              uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
           */
          function latest(Trace208 storage self) internal view returns (uint208) {
              uint256 pos = self._checkpoints.length;
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
           * in the most recent checkpoint.
           */
          function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
              uint256 pos = self._checkpoints.length;
              if (pos == 0) {
                  return (false, 0, 0);
              } else {
                  Checkpoint208 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
                  return (true, ckpt._key, ckpt._value);
              }
          }
          /**
           * @dev Returns the number of checkpoint.
           */
          function length(Trace208 storage self) internal view returns (uint256) {
              return self._checkpoints.length;
          }
          /**
           * @dev Returns checkpoint at given position.
           */
          function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
              return self._checkpoints[pos];
          }
          /**
           * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
           * or by updating the last one.
           */
          function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) {
              uint256 pos = self.length;
              if (pos > 0) {
                  // Copying to memory is important here.
                  Checkpoint208 memory last = _unsafeAccess(self, pos - 1);
                  // Checkpoint keys must be non-decreasing.
                  if (last._key > key) {
                      revert CheckpointUnorderedInsertion();
                  }
                  // Update or push new checkpoint
                  if (last._key == key) {
                      _unsafeAccess(self, pos - 1)._value = value;
                  } else {
                      self.push(Checkpoint208({_key: key, _value: value}));
                  }
                  return (last._value, value);
              } else {
                  self.push(Checkpoint208({_key: key, _value: value}));
                  return (0, value);
              }
          }
          /**
           * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
           * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
           * `high`.
           *
           * WARNING: `high` should not be greater than the array's length.
           */
          function _upperBinaryLookup(
              Checkpoint208[] storage self,
              uint48 key,
              uint256 low,
              uint256 high
          ) private view returns (uint256) {
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  if (_unsafeAccess(self, mid)._key > key) {
                      high = mid;
                  } else {
                      low = mid + 1;
                  }
              }
              return high;
          }
          /**
           * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
           * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
           * exclusive `high`.
           *
           * WARNING: `high` should not be greater than the array's length.
           */
          function _lowerBinaryLookup(
              Checkpoint208[] storage self,
              uint48 key,
              uint256 low,
              uint256 high
          ) private view returns (uint256) {
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  if (_unsafeAccess(self, mid)._key < key) {
                      low = mid + 1;
                  } else {
                      high = mid;
                  }
              }
              return high;
          }
          /**
           * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
           */
          function _unsafeAccess(
              Checkpoint208[] storage self,
              uint256 pos
          ) private pure returns (Checkpoint208 storage result) {
              assembly {
                  mstore(0, self.slot)
                  result.slot := add(keccak256(0, 0x20), pos)
              }
          }
          struct Trace160 {
              Checkpoint160[] _checkpoints;
          }
          struct Checkpoint160 {
              uint96 _key;
              uint160 _value;
          }
          /**
           * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
           *
           * Returns previous value and new value.
           *
           * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
           * library.
           */
          function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) {
              return _insert(self._checkpoints, key, value);
          }
          /**
           * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
           * there is none.
           */
          function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
              uint256 len = self._checkpoints.length;
              uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
              return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
          }
          /**
           * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
           * if there is none.
           */
          function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
              uint256 len = self._checkpoints.length;
              uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
           * if there is none.
           *
           * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
           * keys).
           */
          function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
              uint256 len = self._checkpoints.length;
              uint256 low = 0;
              uint256 high = len;
              if (len > 5) {
                  uint256 mid = len - Math.sqrt(len);
                  if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                      high = mid;
                  } else {
                      low = mid + 1;
                  }
              }
              uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
           */
          function latest(Trace160 storage self) internal view returns (uint160) {
              uint256 pos = self._checkpoints.length;
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
           * in the most recent checkpoint.
           */
          function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
              uint256 pos = self._checkpoints.length;
              if (pos == 0) {
                  return (false, 0, 0);
              } else {
                  Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
                  return (true, ckpt._key, ckpt._value);
              }
          }
          /**
           * @dev Returns the number of checkpoint.
           */
          function length(Trace160 storage self) internal view returns (uint256) {
              return self._checkpoints.length;
          }
          /**
           * @dev Returns checkpoint at given position.
           */
          function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
              return self._checkpoints[pos];
          }
          /**
           * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
           * or by updating the last one.
           */
          function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) {
              uint256 pos = self.length;
              if (pos > 0) {
                  // Copying to memory is important here.
                  Checkpoint160 memory last = _unsafeAccess(self, pos - 1);
                  // Checkpoint keys must be non-decreasing.
                  if (last._key > key) {
                      revert CheckpointUnorderedInsertion();
                  }
                  // Update or push new checkpoint
                  if (last._key == key) {
                      _unsafeAccess(self, pos - 1)._value = value;
                  } else {
                      self.push(Checkpoint160({_key: key, _value: value}));
                  }
                  return (last._value, value);
              } else {
                  self.push(Checkpoint160({_key: key, _value: value}));
                  return (0, value);
              }
          }
          /**
           * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
           * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
           * `high`.
           *
           * WARNING: `high` should not be greater than the array's length.
           */
          function _upperBinaryLookup(
              Checkpoint160[] storage self,
              uint96 key,
              uint256 low,
              uint256 high
          ) private view returns (uint256) {
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  if (_unsafeAccess(self, mid)._key > key) {
                      high = mid;
                  } else {
                      low = mid + 1;
                  }
              }
              return high;
          }
          /**
           * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
           * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
           * exclusive `high`.
           *
           * WARNING: `high` should not be greater than the array's length.
           */
          function _lowerBinaryLookup(
              Checkpoint160[] storage self,
              uint96 key,
              uint256 low,
              uint256 high
          ) private view returns (uint256) {
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  if (_unsafeAccess(self, mid)._key < key) {
                      low = mid + 1;
                  } else {
                      high = mid;
                  }
              }
              return high;
          }
          /**
           * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
           */
          function _unsafeAccess(
              Checkpoint160[] storage self,
              uint256 pos
          ) private pure returns (Checkpoint160 storage result) {
              assembly {
                  mstore(0, self.slot)
                  result.slot := add(keccak256(0, 0x20), pos)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/Votes.sol)
      pragma solidity ^0.8.20;
      import {IERC5805} from "../../interfaces/IERC5805.sol";
      import {Context} from "../../utils/Context.sol";
      import {Nonces} from "../../utils/Nonces.sol";
      import {EIP712} from "../../utils/cryptography/EIP712.sol";
      import {Checkpoints} from "../../utils/structs/Checkpoints.sol";
      import {SafeCast} from "../../utils/math/SafeCast.sol";
      import {ECDSA} from "../../utils/cryptography/ECDSA.sol";
      import {Time} from "../../utils/types/Time.sol";
      /**
       * @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be
       * transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of
       * "representative" that will pool delegated voting units from different accounts and can then use it to vote in
       * decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to
       * delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative.
       *
       * This contract is often combined with a token contract such that voting units correspond to token units. For an
       * example, see {ERC721Votes}.
       *
       * The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed
       * at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the
       * cost of this history tracking optional.
       *
       * When using this module the derived contract must implement {_getVotingUnits} (for example, make it return
       * {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the
       * previous example, it would be included in {ERC721-_update}).
       */
      abstract contract Votes is Context, EIP712, Nonces, IERC5805 {
          using Checkpoints for Checkpoints.Trace208;
          bytes32 private constant DELEGATION_TYPEHASH =
              keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
          mapping(address account => address) private _delegatee;
          mapping(address delegatee => Checkpoints.Trace208) private _delegateCheckpoints;
          Checkpoints.Trace208 private _totalCheckpoints;
          /**
           * @dev The clock was incorrectly modified.
           */
          error ERC6372InconsistentClock();
          /**
           * @dev Lookup to future votes is not available.
           */
          error ERC5805FutureLookup(uint256 timepoint, uint48 clock);
          /**
           * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based
           * checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match.
           */
          function clock() public view virtual returns (uint48) {
              return Time.blockNumber();
          }
          /**
           * @dev Machine-readable description of the clock as specified in EIP-6372.
           */
          // solhint-disable-next-line func-name-mixedcase
          function CLOCK_MODE() public view virtual returns (string memory) {
              // Check that the clock was not modified
              if (clock() != Time.blockNumber()) {
                  revert ERC6372InconsistentClock();
              }
              return "mode=blocknumber&from=default";
          }
          /**
           * @dev Returns the current amount of votes that `account` has.
           */
          function getVotes(address account) public view virtual returns (uint256) {
              return _delegateCheckpoints[account].latest();
          }
          /**
           * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
           * configured to use block numbers, this will return the value at the end of the corresponding block.
           *
           * Requirements:
           *
           * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
           */
          function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) {
              uint48 currentTimepoint = clock();
              if (timepoint >= currentTimepoint) {
                  revert ERC5805FutureLookup(timepoint, currentTimepoint);
              }
              return _delegateCheckpoints[account].upperLookupRecent(SafeCast.toUint48(timepoint));
          }
          /**
           * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
           * configured to use block numbers, this will return the value at the end of the corresponding block.
           *
           * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
           * Votes that have not been delegated are still part of total supply, even though they would not participate in a
           * vote.
           *
           * Requirements:
           *
           * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
           */
          function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) {
              uint48 currentTimepoint = clock();
              if (timepoint >= currentTimepoint) {
                  revert ERC5805FutureLookup(timepoint, currentTimepoint);
              }
              return _totalCheckpoints.upperLookupRecent(SafeCast.toUint48(timepoint));
          }
          /**
           * @dev Returns the current total supply of votes.
           */
          function _getTotalSupply() internal view virtual returns (uint256) {
              return _totalCheckpoints.latest();
          }
          /**
           * @dev Returns the delegate that `account` has chosen.
           */
          function delegates(address account) public view virtual returns (address) {
              return _delegatee[account];
          }
          /**
           * @dev Delegates votes from the sender to `delegatee`.
           */
          function delegate(address delegatee) public virtual {
              address account = _msgSender();
              _delegate(account, delegatee);
          }
          /**
           * @dev Delegates votes from signer to `delegatee`.
           */
          function delegateBySig(
              address delegatee,
              uint256 nonce,
              uint256 expiry,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) public virtual {
              if (block.timestamp > expiry) {
                  revert VotesExpiredSignature(expiry);
              }
              address signer = ECDSA.recover(
                  _hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))),
                  v,
                  r,
                  s
              );
              _useCheckedNonce(signer, nonce);
              _delegate(signer, delegatee);
          }
          /**
           * @dev Delegate all of `account`'s voting units to `delegatee`.
           *
           * Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}.
           */
          function _delegate(address account, address delegatee) internal virtual {
              address oldDelegate = delegates(account);
              _delegatee[account] = delegatee;
              emit DelegateChanged(account, oldDelegate, delegatee);
              _moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account));
          }
          /**
           * @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to`
           * should be zero. Total supply of voting units will be adjusted with mints and burns.
           */
          function _transferVotingUnits(address from, address to, uint256 amount) internal virtual {
              if (from == address(0)) {
                  _push(_totalCheckpoints, _add, SafeCast.toUint208(amount));
              }
              if (to == address(0)) {
                  _push(_totalCheckpoints, _subtract, SafeCast.toUint208(amount));
              }
              _moveDelegateVotes(delegates(from), delegates(to), amount);
          }
          /**
           * @dev Moves delegated votes from one delegate to another.
           */
          function _moveDelegateVotes(address from, address to, uint256 amount) private {
              if (from != to && amount > 0) {
                  if (from != address(0)) {
                      (uint256 oldValue, uint256 newValue) = _push(
                          _delegateCheckpoints[from],
                          _subtract,
                          SafeCast.toUint208(amount)
                      );
                      emit DelegateVotesChanged(from, oldValue, newValue);
                  }
                  if (to != address(0)) {
                      (uint256 oldValue, uint256 newValue) = _push(
                          _delegateCheckpoints[to],
                          _add,
                          SafeCast.toUint208(amount)
                      );
                      emit DelegateVotesChanged(to, oldValue, newValue);
                  }
              }
          }
          /**
           * @dev Get number of checkpoints for `account`.
           */
          function _numCheckpoints(address account) internal view virtual returns (uint32) {
              return SafeCast.toUint32(_delegateCheckpoints[account].length());
          }
          /**
           * @dev Get the `pos`-th checkpoint for `account`.
           */
          function _checkpoints(
              address account,
              uint32 pos
          ) internal view virtual returns (Checkpoints.Checkpoint208 memory) {
              return _delegateCheckpoints[account].at(pos);
          }
          function _push(
              Checkpoints.Trace208 storage store,
              function(uint208, uint208) view returns (uint208) op,
              uint208 delta
          ) private returns (uint208, uint208) {
              return store.push(clock(), op(store.latest(), delta));
          }
          function _add(uint208 a, uint208 b) private pure returns (uint208) {
              return a + b;
          }
          function _subtract(uint208 a, uint208 b) private pure returns (uint208) {
              return a - b;
          }
          /**
           * @dev Must return the voting units held by an account.
           */
          function _getVotingUnits(address) internal view virtual returns (uint256);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Provides tracking nonces for addresses. Nonces will only increment.
       */
      abstract contract Nonces {
          /**
           * @dev The nonce used for an `account` is not the expected current nonce.
           */
          error InvalidAccountNonce(address account, uint256 currentNonce);
          mapping(address account => uint256) private _nonces;
          /**
           * @dev Returns the next unused nonce for an address.
           */
          function nonces(address owner) public view virtual returns (uint256) {
              return _nonces[owner];
          }
          /**
           * @dev Consumes a nonce.
           *
           * Returns the current value and increments nonce.
           */
          function _useNonce(address owner) internal virtual returns (uint256) {
              // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
              // decremented or reset. This guarantees that the nonce never overflows.
              unchecked {
                  // It is important to do x++ and not ++x here.
                  return _nonces[owner]++;
              }
          }
          /**
           * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
           */
          function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
              uint256 current = _useNonce(owner);
              if (nonce != current) {
                  revert InvalidAccountNonce(owner, current);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
      pragma solidity ^0.8.20;
      import {MessageHashUtils} from "./MessageHashUtils.sol";
      import {ShortStrings, ShortString} from "../ShortStrings.sol";
      import {IERC5267} from "../../interfaces/IERC5267.sol";
      /**
       * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
       *
       * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
       * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
       * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
       * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
       *
       * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
       * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
       * ({_hashTypedDataV4}).
       *
       * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
       * the chain id to protect against replay attacks on an eventual fork of the chain.
       *
       * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
       * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
       *
       * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
       * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
       * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
       *
       * @custom:oz-upgrades-unsafe-allow state-variable-immutable
       */
      abstract contract EIP712 is IERC5267 {
          using ShortStrings for *;
          bytes32 private constant TYPE_HASH =
              keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
          // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
          // invalidate the cached domain separator if the chain id changes.
          bytes32 private immutable _cachedDomainSeparator;
          uint256 private immutable _cachedChainId;
          address private immutable _cachedThis;
          bytes32 private immutable _hashedName;
          bytes32 private immutable _hashedVersion;
          ShortString private immutable _name;
          ShortString private immutable _version;
          string private _nameFallback;
          string private _versionFallback;
          /**
           * @dev Initializes the domain separator and parameter caches.
           *
           * The meaning of `name` and `version` is specified in
           * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
           *
           * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
           * - `version`: the current major version of the signing domain.
           *
           * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
           * contract upgrade].
           */
          constructor(string memory name, string memory version) {
              _name = name.toShortStringWithFallback(_nameFallback);
              _version = version.toShortStringWithFallback(_versionFallback);
              _hashedName = keccak256(bytes(name));
              _hashedVersion = keccak256(bytes(version));
              _cachedChainId = block.chainid;
              _cachedDomainSeparator = _buildDomainSeparator();
              _cachedThis = address(this);
          }
          /**
           * @dev Returns the domain separator for the current chain.
           */
          function _domainSeparatorV4() internal view returns (bytes32) {
              if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
                  return _cachedDomainSeparator;
              } else {
                  return _buildDomainSeparator();
              }
          }
          function _buildDomainSeparator() private view returns (bytes32) {
              return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
          }
          /**
           * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
           * function returns the hash of the fully encoded EIP712 message for this domain.
           *
           * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
           *
           * ```solidity
           * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
           *     keccak256("Mail(address to,string contents)"),
           *     mailTo,
           *     keccak256(bytes(mailContents))
           * )));
           * address signer = ECDSA.recover(digest, signature);
           * ```
           */
          function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
              return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
          }
          /**
           * @dev See {IERC-5267}.
           */
          function eip712Domain()
              public
              view
              virtual
              returns (
                  bytes1 fields,
                  string memory name,
                  string memory version,
                  uint256 chainId,
                  address verifyingContract,
                  bytes32 salt,
                  uint256[] memory extensions
              )
          {
              return (
                  hex"0f", // 01111
                  _EIP712Name(),
                  _EIP712Version(),
                  block.chainid,
                  address(this),
                  bytes32(0),
                  new uint256[](0)
              );
          }
          /**
           * @dev The name parameter for the EIP712 domain.
           *
           * NOTE: By default this function reads _name which is an immutable value.
           * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
           */
          // solhint-disable-next-line func-name-mixedcase
          function _EIP712Name() internal view returns (string memory) {
              return _name.toStringWithFallback(_nameFallback);
          }
          /**
           * @dev The version parameter for the EIP712 domain.
           *
           * NOTE: By default this function reads _version which is an immutable value.
           * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
           */
          // solhint-disable-next-line func-name-mixedcase
          function _EIP712Version() internal view returns (string memory) {
              return _version.toStringWithFallback(_versionFallback);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
       *
       * These functions can be used to verify that a message was signed by the holder
       * of the private keys of a given address.
       */
      library ECDSA {
          enum RecoverError {
              NoError,
              InvalidSignature,
              InvalidSignatureLength,
              InvalidSignatureS
          }
          /**
           * @dev The signature derives the `address(0)`.
           */
          error ECDSAInvalidSignature();
          /**
           * @dev The signature has an invalid length.
           */
          error ECDSAInvalidSignatureLength(uint256 length);
          /**
           * @dev The signature has an S value that is in the upper half order.
           */
          error ECDSAInvalidSignatureS(bytes32 s);
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
           * return address(0) without also returning an error description. Errors are documented using an enum (error type)
           * and a bytes32 providing additional information about the error.
           *
           * If no error is returned, then the address can be used for verification purposes.
           *
           * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
           *
           * Documentation for signature generation:
           * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
           * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
           */
          function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
              if (signature.length == 65) {
                  bytes32 r;
                  bytes32 s;
                  uint8 v;
                  // ecrecover takes the signature parameters, and the only way to get them
                  // currently is to use assembly.
                  /// @solidity memory-safe-assembly
                  assembly {
                      r := mload(add(signature, 0x20))
                      s := mload(add(signature, 0x40))
                      v := byte(0, mload(add(signature, 0x60)))
                  }
                  return tryRecover(hash, v, r, s);
              } else {
                  return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
              }
          }
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with
           * `signature`. This address can then be used for verification purposes.
           *
           * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
           */
          function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
              (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
              _throwError(error, errorArg);
              return recovered;
          }
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
           *
           * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
           */
          function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
              unchecked {
                  bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                  // We do not check for an overflow here since the shift operation results in 0 or 1.
                  uint8 v = uint8((uint256(vs) >> 255) + 27);
                  return tryRecover(hash, v, r, s);
              }
          }
          /**
           * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
           */
          function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
              (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
              _throwError(error, errorArg);
              return recovered;
          }
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
           * `r` and `s` signature fields separately.
           */
          function tryRecover(
              bytes32 hash,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal pure returns (address, RecoverError, bytes32) {
              // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
              // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
              // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
              // signatures from current libraries generate a unique signature with an s-value in the lower half order.
              //
              // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
              // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
              // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
              // these malleable signatures as well.
              if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                  return (address(0), RecoverError.InvalidSignatureS, s);
              }
              // If the signature is valid (and not malleable), return the signer address
              address signer = ecrecover(hash, v, r, s);
              if (signer == address(0)) {
                  return (address(0), RecoverError.InvalidSignature, bytes32(0));
              }
              return (signer, RecoverError.NoError, bytes32(0));
          }
          /**
           * @dev Overload of {ECDSA-recover} that receives the `v`,
           * `r` and `s` signature fields separately.
           */
          function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
              (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
              _throwError(error, errorArg);
              return recovered;
          }
          /**
           * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
           */
          function _throwError(RecoverError error, bytes32 errorArg) private pure {
              if (error == RecoverError.NoError) {
                  return; // no error: do nothing
              } else if (error == RecoverError.InvalidSignature) {
                  revert ECDSAInvalidSignature();
              } else if (error == RecoverError.InvalidSignatureLength) {
                  revert ECDSAInvalidSignatureLength(uint256(errorArg));
              } else if (error == RecoverError.InvalidSignatureS) {
                  revert ECDSAInvalidSignatureS(errorArg);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       *
       * ==== Security Considerations
       *
       * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
       * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
       * considered as an intention to spend the allowance in any specific way. The second is that because permits have
       * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
       * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
       * generally recommended is:
       *
       * ```solidity
       * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
       *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
       *     doThing(..., value);
       * }
       *
       * function doThing(..., uint256 value) public {
       *     token.safeTransferFrom(msg.sender, address(this), value);
       *     ...
       * }
       * ```
       *
       * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
       * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
       * {SafeERC20-safeTransferFrom}).
       *
       * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
       * contracts should have entry points that don't rely on permit.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           *
           * CAUTION: See Security Considerations above.
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Standard ERC20 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
       */
      interface IERC20Errors {
          /**
           * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param balance Current balance for the interacting account.
           * @param needed Minimum amount required to perform a transfer.
           */
          error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC20InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC20InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
           * @param spender Address that may be allowed to operate on tokens without being their owner.
           * @param allowance Amount of tokens a `spender` is allowed to operate with.
           * @param needed Minimum amount required to perform a transfer.
           */
          error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC20InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
           * @param spender Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC20InvalidSpender(address spender);
      }
      /**
       * @dev Standard ERC721 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
       */
      interface IERC721Errors {
          /**
           * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
           * Used in balance queries.
           * @param owner Address of the current owner of a token.
           */
          error ERC721InvalidOwner(address owner);
          /**
           * @dev Indicates a `tokenId` whose `owner` is the zero address.
           * @param tokenId Identifier number of a token.
           */
          error ERC721NonexistentToken(uint256 tokenId);
          /**
           * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param tokenId Identifier number of a token.
           * @param owner Address of the current owner of a token.
           */
          error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC721InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC721InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           * @param tokenId Identifier number of a token.
           */
          error ERC721InsufficientApproval(address operator, uint256 tokenId);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC721InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC721InvalidOperator(address operator);
      }
      /**
       * @dev Standard ERC1155 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
       */
      interface IERC1155Errors {
          /**
           * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param balance Current balance for the interacting account.
           * @param needed Minimum amount required to perform a transfer.
           * @param tokenId Identifier number of a token.
           */
          error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC1155InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC1155InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           * @param owner Address of the current owner of a token.
           */
          error ERC1155MissingApprovalForAll(address operator, address owner);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC1155InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC1155InvalidOperator(address operator);
          /**
           * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
           * Used in batch transfers.
           * @param idsLength Length of the array of token identifiers
           * @param valuesLength Length of the array of token amounts
           */
          error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          function _contextSuffixLength() internal view virtual returns (uint256) {
              return 0;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
      pragma solidity ^0.8.20;
      import {IERC20} from "../IERC20.sol";
      /**
       * @dev Interface for the optional metadata functions from the ERC20 standard.
       */
      interface IERC20Metadata is IERC20 {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the value of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the value of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves a `value` amount of tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 value) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
           * caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 value) external returns (bool);
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to` using the
           * allowance mechanism. `value` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 value) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          /**
           * @dev Muldiv operation overflow.
           */
          error MathOverflowedMulDiv();
          enum Rounding {
              Floor, // Toward negative infinity
              Ceil, // Toward positive infinity
              Trunc, // Toward zero
              Expand // Away from zero
          }
          /**
           * @dev Returns the addition of two unsigned integers, with an overflow flag.
           */
          function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  uint256 c = a + b;
                  if (c < a) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
           */
          function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  if (b > a) return (false, 0);
                  return (true, a - b);
              }
          }
          /**
           * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
           */
          function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                  // benefit is lost if 'b' is also tested.
                  // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                  if (a == 0) return (true, 0);
                  uint256 c = a * b;
                  if (c / a != b) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the division of two unsigned integers, with a division by zero flag.
           */
          function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a / b);
              }
          }
          /**
           * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
           */
          function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a % b);
              }
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds towards infinity instead
           * of rounding towards zero.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              if (b == 0) {
                  // Guarantee the same behavior as in a regular Solidity division.
                  return a / b;
              }
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
           * denominator == 0.
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
           * Uniswap Labs also under MIT license.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0 = x * y; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                      // The surrounding unchecked block does not change this fact.
                      // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  if (denominator <= prod1) {
                      revert MathOverflowedMulDiv();
                  }
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                  // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                  uint256 twos = denominator & (0 - denominator);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                  // works in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
           * towards zero.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              //
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
              //
              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
              //
              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1 << (log2(a) >> 1);
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 2 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 128;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 64;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 32;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 16;
                  }
                  if (value >> 8 > 0) {
                      value >>= 8;
                      result += 8;
                  }
                  if (value >> 4 > 0) {
                      value >>= 4;
                      result += 4;
                  }
                  if (value >> 2 > 0) {
                      value >>= 2;
                      result += 2;
                  }
                  if (value >> 1 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 10 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10 ** 64) {
                      value /= 10 ** 64;
                      result += 64;
                  }
                  if (value >= 10 ** 32) {
                      value /= 10 ** 32;
                      result += 32;
                  }
                  if (value >= 10 ** 16) {
                      value /= 10 ** 16;
                      result += 16;
                  }
                  if (value >= 10 ** 8) {
                      value /= 10 ** 8;
                      result += 8;
                  }
                  if (value >= 10 ** 4) {
                      value /= 10 ** 4;
                      result += 4;
                  }
                  if (value >= 10 ** 2) {
                      value /= 10 ** 2;
                      result += 2;
                  }
                  if (value >= 10 ** 1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 256 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 16;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 8;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 4;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 2;
                  }
                  if (value >> 8 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
              }
          }
          /**
           * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
           */
          function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
              return uint8(rounding) % 2 == 1;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
      pragma solidity ^0.8.20;
      interface IERC5267 {
          /**
           * @dev MAY be emitted to signal that the domain could have changed.
           */
          event EIP712DomainChanged();
          /**
           * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
           * signature.
           */
          function eip712Domain()
              external
              view
              returns (
                  bytes1 fields,
                  string memory name,
                  string memory version,
                  uint256 chainId,
                  address verifyingContract,
                  bytes32 salt,
                  uint256[] memory extensions
              );
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
      pragma solidity ^0.8.20;
      import {StorageSlot} from "./StorageSlot.sol";
      // | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
      // | length  | 0x                                                              BB |
      type ShortString is bytes32;
      /**
       * @dev This library provides functions to convert short memory strings
       * into a `ShortString` type that can be used as an immutable variable.
       *
       * Strings of arbitrary length can be optimized using this library if
       * they are short enough (up to 31 bytes) by packing them with their
       * length (1 byte) in a single EVM word (32 bytes). Additionally, a
       * fallback mechanism can be used for every other case.
       *
       * Usage example:
       *
       * ```solidity
       * contract Named {
       *     using ShortStrings for *;
       *
       *     ShortString private immutable _name;
       *     string private _nameFallback;
       *
       *     constructor(string memory contractName) {
       *         _name = contractName.toShortStringWithFallback(_nameFallback);
       *     }
       *
       *     function name() external view returns (string memory) {
       *         return _name.toStringWithFallback(_nameFallback);
       *     }
       * }
       * ```
       */
      library ShortStrings {
          // Used as an identifier for strings longer than 31 bytes.
          bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
          error StringTooLong(string str);
          error InvalidShortString();
          /**
           * @dev Encode a string of at most 31 chars into a `ShortString`.
           *
           * This will trigger a `StringTooLong` error is the input string is too long.
           */
          function toShortString(string memory str) internal pure returns (ShortString) {
              bytes memory bstr = bytes(str);
              if (bstr.length > 31) {
                  revert StringTooLong(str);
              }
              return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
          }
          /**
           * @dev Decode a `ShortString` back to a "normal" string.
           */
          function toString(ShortString sstr) internal pure returns (string memory) {
              uint256 len = byteLength(sstr);
              // using `new string(len)` would work locally but is not memory safe.
              string memory str = new string(32);
              /// @solidity memory-safe-assembly
              assembly {
                  mstore(str, len)
                  mstore(add(str, 0x20), sstr)
              }
              return str;
          }
          /**
           * @dev Return the length of a `ShortString`.
           */
          function byteLength(ShortString sstr) internal pure returns (uint256) {
              uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
              if (result > 31) {
                  revert InvalidShortString();
              }
              return result;
          }
          /**
           * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
           */
          function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
              if (bytes(value).length < 32) {
                  return toShortString(value);
              } else {
                  StorageSlot.getStringSlot(store).value = value;
                  return ShortString.wrap(FALLBACK_SENTINEL);
              }
          }
          /**
           * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
           */
          function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
              if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                  return toString(value);
              } else {
                  return store;
              }
          }
          /**
           * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
           * {setWithFallback}.
           *
           * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
           * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
           */
          function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
              if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                  return byteLength(value);
              } else {
                  return bytes(store).length;
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
      pragma solidity ^0.8.20;
      import {Strings} from "../Strings.sol";
      /**
       * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
       *
       * The library provides methods for generating a hash of a message that conforms to the
       * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
       * specifications.
       */
      library MessageHashUtils {
          /**
           * @dev Returns the keccak256 digest of an EIP-191 signed data with version
           * `0x45` (`personal_sign` messages).
           *
           * The digest is calculated by prefixing a bytes32 `messageHash` with
           * `"\\x19Ethereum Signed Message:\
      32"` and hashing the result. It corresponds with the
           * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
           *
           * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
           * keccak256, although any bytes32 value can be safely used because the final digest will
           * be re-hashed.
           *
           * See {ECDSA-recover}.
           */
          function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
              /// @solidity memory-safe-assembly
              assembly {
                  mstore(0x00, "\\x19Ethereum Signed Message:\
      32") // 32 is the bytes-length of messageHash
                  mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                  digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
              }
          }
          /**
           * @dev Returns the keccak256 digest of an EIP-191 signed data with version
           * `0x45` (`personal_sign` messages).
           *
           * The digest is calculated by prefixing an arbitrary `message` with
           * `"\\x19Ethereum Signed Message:\
      " + len(message)` and hashing the result. It corresponds with the
           * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
           *
           * See {ECDSA-recover}.
           */
          function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
              return
                  keccak256(bytes.concat("\\x19Ethereum Signed Message:\
      ", bytes(Strings.toString(message.length)), message));
          }
          /**
           * @dev Returns the keccak256 digest of an EIP-191 signed data with version
           * `0x00` (data with intended validator).
           *
           * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended
           * `validator` address. Then hashing the result.
           *
           * See {ECDSA-recover}.
           */
          function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
              return keccak256(abi.encodePacked(hex"19_00", validator, data));
          }
          /**
           * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
           *
           * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
           * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
           * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
           *
           * See {ECDSA-recover}.
           */
          function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
              /// @solidity memory-safe-assembly
              assembly {
                  let ptr := mload(0x40)
                  mstore(ptr, hex"19_01")
                  mstore(add(ptr, 0x02), domainSeparator)
                  mstore(add(ptr, 0x22), structHash)
                  digest := keccak256(ptr, 0x42)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)
      pragma solidity ^0.8.20;
      import {Math} from "../math/Math.sol";
      import {SafeCast} from "../math/SafeCast.sol";
      /**
       * @dev This library provides helpers for manipulating time-related objects.
       *
       * It uses the following types:
       * - `uint48` for timepoints
       * - `uint32` for durations
       *
       * While the library doesn't provide specific types for timepoints and duration, it does provide:
       * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
       * - additional helper functions
       */
      library Time {
          using Time for *;
          /**
           * @dev Get the block timestamp as a Timepoint.
           */
          function timestamp() internal view returns (uint48) {
              return SafeCast.toUint48(block.timestamp);
          }
          /**
           * @dev Get the block number as a Timepoint.
           */
          function blockNumber() internal view returns (uint48) {
              return SafeCast.toUint48(block.number);
          }
          // ==================================================== Delay =====================================================
          /**
           * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
           * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
           * This allows updating the delay applied to some operation while keeping some guarantees.
           *
           * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
           * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
           * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
           * still apply for some time.
           *
           *
           * The `Delay` type is 112 bits long, and packs the following:
           *
           * ```
           *   | [uint48]: effect date (timepoint)
           *   |           | [uint32]: value before (duration)
           *   ↓           ↓       ↓ [uint32]: value after (duration)
           * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
           * ```
           *
           * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
           * supported.
           */
          type Delay is uint112;
          /**
           * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
           */
          function toDelay(uint32 duration) internal pure returns (Delay) {
              return Delay.wrap(duration);
          }
          /**
           * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
           * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
           */
          function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
              (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
              return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
          }
          /**
           * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
           * effect timepoint is 0, then the pending value should not be considered.
           */
          function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
              return _getFullAt(self, timestamp());
          }
          /**
           * @dev Get the current value.
           */
          function get(Delay self) internal view returns (uint32) {
              (uint32 delay, , ) = self.getFull();
              return delay;
          }
          /**
           * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
           * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
           * new delay becomes effective.
           */
          function withUpdate(
              Delay self,
              uint32 newValue,
              uint32 minSetback
          ) internal view returns (Delay updatedDelay, uint48 effect) {
              uint32 value = self.get();
              uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
              effect = timestamp() + setback;
              return (pack(value, newValue, effect), effect);
          }
          /**
           * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
           */
          function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
              uint112 raw = Delay.unwrap(self);
              valueAfter = uint32(raw);
              valueBefore = uint32(raw >> 32);
              effect = uint48(raw >> 64);
              return (valueBefore, valueAfter, effect);
          }
          /**
           * @dev pack the components into a Delay object.
           */
          function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
              return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
      // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
      pragma solidity ^0.8.20;
      /**
       * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
       * checks.
       *
       * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
       * easily result in undesired exploitation or bugs, since developers usually
       * assume that overflows raise errors. `SafeCast` restores this intuition by
       * reverting the transaction when such an operation overflows.
       *
       * Using this library instead of the unchecked operations eliminates an entire
       * class of bugs, so it's recommended to use it always.
       */
      library SafeCast {
          /**
           * @dev Value doesn't fit in an uint of `bits` size.
           */
          error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
          /**
           * @dev An int value doesn't fit in an uint of `bits` size.
           */
          error SafeCastOverflowedIntToUint(int256 value);
          /**
           * @dev Value doesn't fit in an int of `bits` size.
           */
          error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
          /**
           * @dev An uint value doesn't fit in an int of `bits` size.
           */
          error SafeCastOverflowedUintToInt(uint256 value);
          /**
           * @dev Returns the downcasted uint248 from uint256, reverting on
           * overflow (when the input is greater than largest uint248).
           *
           * Counterpart to Solidity's `uint248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           */
          function toUint248(uint256 value) internal pure returns (uint248) {
              if (value > type(uint248).max) {
                  revert SafeCastOverflowedUintDowncast(248, value);
              }
              return uint248(value);
          }
          /**
           * @dev Returns the downcasted uint240 from uint256, reverting on
           * overflow (when the input is greater than largest uint240).
           *
           * Counterpart to Solidity's `uint240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           */
          function toUint240(uint256 value) internal pure returns (uint240) {
              if (value > type(uint240).max) {
                  revert SafeCastOverflowedUintDowncast(240, value);
              }
              return uint240(value);
          }
          /**
           * @dev Returns the downcasted uint232 from uint256, reverting on
           * overflow (when the input is greater than largest uint232).
           *
           * Counterpart to Solidity's `uint232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           */
          function toUint232(uint256 value) internal pure returns (uint232) {
              if (value > type(uint232).max) {
                  revert SafeCastOverflowedUintDowncast(232, value);
              }
              return uint232(value);
          }
          /**
           * @dev Returns the downcasted uint224 from uint256, reverting on
           * overflow (when the input is greater than largest uint224).
           *
           * Counterpart to Solidity's `uint224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           */
          function toUint224(uint256 value) internal pure returns (uint224) {
              if (value > type(uint224).max) {
                  revert SafeCastOverflowedUintDowncast(224, value);
              }
              return uint224(value);
          }
          /**
           * @dev Returns the downcasted uint216 from uint256, reverting on
           * overflow (when the input is greater than largest uint216).
           *
           * Counterpart to Solidity's `uint216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           */
          function toUint216(uint256 value) internal pure returns (uint216) {
              if (value > type(uint216).max) {
                  revert SafeCastOverflowedUintDowncast(216, value);
              }
              return uint216(value);
          }
          /**
           * @dev Returns the downcasted uint208 from uint256, reverting on
           * overflow (when the input is greater than largest uint208).
           *
           * Counterpart to Solidity's `uint208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           */
          function toUint208(uint256 value) internal pure returns (uint208) {
              if (value > type(uint208).max) {
                  revert SafeCastOverflowedUintDowncast(208, value);
              }
              return uint208(value);
          }
          /**
           * @dev Returns the downcasted uint200 from uint256, reverting on
           * overflow (when the input is greater than largest uint200).
           *
           * Counterpart to Solidity's `uint200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           */
          function toUint200(uint256 value) internal pure returns (uint200) {
              if (value > type(uint200).max) {
                  revert SafeCastOverflowedUintDowncast(200, value);
              }
              return uint200(value);
          }
          /**
           * @dev Returns the downcasted uint192 from uint256, reverting on
           * overflow (when the input is greater than largest uint192).
           *
           * Counterpart to Solidity's `uint192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           */
          function toUint192(uint256 value) internal pure returns (uint192) {
              if (value > type(uint192).max) {
                  revert SafeCastOverflowedUintDowncast(192, value);
              }
              return uint192(value);
          }
          /**
           * @dev Returns the downcasted uint184 from uint256, reverting on
           * overflow (when the input is greater than largest uint184).
           *
           * Counterpart to Solidity's `uint184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           */
          function toUint184(uint256 value) internal pure returns (uint184) {
              if (value > type(uint184).max) {
                  revert SafeCastOverflowedUintDowncast(184, value);
              }
              return uint184(value);
          }
          /**
           * @dev Returns the downcasted uint176 from uint256, reverting on
           * overflow (when the input is greater than largest uint176).
           *
           * Counterpart to Solidity's `uint176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           */
          function toUint176(uint256 value) internal pure returns (uint176) {
              if (value > type(uint176).max) {
                  revert SafeCastOverflowedUintDowncast(176, value);
              }
              return uint176(value);
          }
          /**
           * @dev Returns the downcasted uint168 from uint256, reverting on
           * overflow (when the input is greater than largest uint168).
           *
           * Counterpart to Solidity's `uint168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           */
          function toUint168(uint256 value) internal pure returns (uint168) {
              if (value > type(uint168).max) {
                  revert SafeCastOverflowedUintDowncast(168, value);
              }
              return uint168(value);
          }
          /**
           * @dev Returns the downcasted uint160 from uint256, reverting on
           * overflow (when the input is greater than largest uint160).
           *
           * Counterpart to Solidity's `uint160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           */
          function toUint160(uint256 value) internal pure returns (uint160) {
              if (value > type(uint160).max) {
                  revert SafeCastOverflowedUintDowncast(160, value);
              }
              return uint160(value);
          }
          /**
           * @dev Returns the downcasted uint152 from uint256, reverting on
           * overflow (when the input is greater than largest uint152).
           *
           * Counterpart to Solidity's `uint152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           */
          function toUint152(uint256 value) internal pure returns (uint152) {
              if (value > type(uint152).max) {
                  revert SafeCastOverflowedUintDowncast(152, value);
              }
              return uint152(value);
          }
          /**
           * @dev Returns the downcasted uint144 from uint256, reverting on
           * overflow (when the input is greater than largest uint144).
           *
           * Counterpart to Solidity's `uint144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           */
          function toUint144(uint256 value) internal pure returns (uint144) {
              if (value > type(uint144).max) {
                  revert SafeCastOverflowedUintDowncast(144, value);
              }
              return uint144(value);
          }
          /**
           * @dev Returns the downcasted uint136 from uint256, reverting on
           * overflow (when the input is greater than largest uint136).
           *
           * Counterpart to Solidity's `uint136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           */
          function toUint136(uint256 value) internal pure returns (uint136) {
              if (value > type(uint136).max) {
                  revert SafeCastOverflowedUintDowncast(136, value);
              }
              return uint136(value);
          }
          /**
           * @dev Returns the downcasted uint128 from uint256, reverting on
           * overflow (when the input is greater than largest uint128).
           *
           * Counterpart to Solidity's `uint128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           */
          function toUint128(uint256 value) internal pure returns (uint128) {
              if (value > type(uint128).max) {
                  revert SafeCastOverflowedUintDowncast(128, value);
              }
              return uint128(value);
          }
          /**
           * @dev Returns the downcasted uint120 from uint256, reverting on
           * overflow (when the input is greater than largest uint120).
           *
           * Counterpart to Solidity's `uint120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           */
          function toUint120(uint256 value) internal pure returns (uint120) {
              if (value > type(uint120).max) {
                  revert SafeCastOverflowedUintDowncast(120, value);
              }
              return uint120(value);
          }
          /**
           * @dev Returns the downcasted uint112 from uint256, reverting on
           * overflow (when the input is greater than largest uint112).
           *
           * Counterpart to Solidity's `uint112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           */
          function toUint112(uint256 value) internal pure returns (uint112) {
              if (value > type(uint112).max) {
                  revert SafeCastOverflowedUintDowncast(112, value);
              }
              return uint112(value);
          }
          /**
           * @dev Returns the downcasted uint104 from uint256, reverting on
           * overflow (when the input is greater than largest uint104).
           *
           * Counterpart to Solidity's `uint104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           */
          function toUint104(uint256 value) internal pure returns (uint104) {
              if (value > type(uint104).max) {
                  revert SafeCastOverflowedUintDowncast(104, value);
              }
              return uint104(value);
          }
          /**
           * @dev Returns the downcasted uint96 from uint256, reverting on
           * overflow (when the input is greater than largest uint96).
           *
           * Counterpart to Solidity's `uint96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           */
          function toUint96(uint256 value) internal pure returns (uint96) {
              if (value > type(uint96).max) {
                  revert SafeCastOverflowedUintDowncast(96, value);
              }
              return uint96(value);
          }
          /**
           * @dev Returns the downcasted uint88 from uint256, reverting on
           * overflow (when the input is greater than largest uint88).
           *
           * Counterpart to Solidity's `uint88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           */
          function toUint88(uint256 value) internal pure returns (uint88) {
              if (value > type(uint88).max) {
                  revert SafeCastOverflowedUintDowncast(88, value);
              }
              return uint88(value);
          }
          /**
           * @dev Returns the downcasted uint80 from uint256, reverting on
           * overflow (when the input is greater than largest uint80).
           *
           * Counterpart to Solidity's `uint80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           */
          function toUint80(uint256 value) internal pure returns (uint80) {
              if (value > type(uint80).max) {
                  revert SafeCastOverflowedUintDowncast(80, value);
              }
              return uint80(value);
          }
          /**
           * @dev Returns the downcasted uint72 from uint256, reverting on
           * overflow (when the input is greater than largest uint72).
           *
           * Counterpart to Solidity's `uint72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           */
          function toUint72(uint256 value) internal pure returns (uint72) {
              if (value > type(uint72).max) {
                  revert SafeCastOverflowedUintDowncast(72, value);
              }
              return uint72(value);
          }
          /**
           * @dev Returns the downcasted uint64 from uint256, reverting on
           * overflow (when the input is greater than largest uint64).
           *
           * Counterpart to Solidity's `uint64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           */
          function toUint64(uint256 value) internal pure returns (uint64) {
              if (value > type(uint64).max) {
                  revert SafeCastOverflowedUintDowncast(64, value);
              }
              return uint64(value);
          }
          /**
           * @dev Returns the downcasted uint56 from uint256, reverting on
           * overflow (when the input is greater than largest uint56).
           *
           * Counterpart to Solidity's `uint56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           */
          function toUint56(uint256 value) internal pure returns (uint56) {
              if (value > type(uint56).max) {
                  revert SafeCastOverflowedUintDowncast(56, value);
              }
              return uint56(value);
          }
          /**
           * @dev Returns the downcasted uint48 from uint256, reverting on
           * overflow (when the input is greater than largest uint48).
           *
           * Counterpart to Solidity's `uint48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           */
          function toUint48(uint256 value) internal pure returns (uint48) {
              if (value > type(uint48).max) {
                  revert SafeCastOverflowedUintDowncast(48, value);
              }
              return uint48(value);
          }
          /**
           * @dev Returns the downcasted uint40 from uint256, reverting on
           * overflow (when the input is greater than largest uint40).
           *
           * Counterpart to Solidity's `uint40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           */
          function toUint40(uint256 value) internal pure returns (uint40) {
              if (value > type(uint40).max) {
                  revert SafeCastOverflowedUintDowncast(40, value);
              }
              return uint40(value);
          }
          /**
           * @dev Returns the downcasted uint32 from uint256, reverting on
           * overflow (when the input is greater than largest uint32).
           *
           * Counterpart to Solidity's `uint32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           */
          function toUint32(uint256 value) internal pure returns (uint32) {
              if (value > type(uint32).max) {
                  revert SafeCastOverflowedUintDowncast(32, value);
              }
              return uint32(value);
          }
          /**
           * @dev Returns the downcasted uint24 from uint256, reverting on
           * overflow (when the input is greater than largest uint24).
           *
           * Counterpart to Solidity's `uint24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           */
          function toUint24(uint256 value) internal pure returns (uint24) {
              if (value > type(uint24).max) {
                  revert SafeCastOverflowedUintDowncast(24, value);
              }
              return uint24(value);
          }
          /**
           * @dev Returns the downcasted uint16 from uint256, reverting on
           * overflow (when the input is greater than largest uint16).
           *
           * Counterpart to Solidity's `uint16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           */
          function toUint16(uint256 value) internal pure returns (uint16) {
              if (value > type(uint16).max) {
                  revert SafeCastOverflowedUintDowncast(16, value);
              }
              return uint16(value);
          }
          /**
           * @dev Returns the downcasted uint8 from uint256, reverting on
           * overflow (when the input is greater than largest uint8).
           *
           * Counterpart to Solidity's `uint8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           */
          function toUint8(uint256 value) internal pure returns (uint8) {
              if (value > type(uint8).max) {
                  revert SafeCastOverflowedUintDowncast(8, value);
              }
              return uint8(value);
          }
          /**
           * @dev Converts a signed int256 into an unsigned uint256.
           *
           * Requirements:
           *
           * - input must be greater than or equal to 0.
           */
          function toUint256(int256 value) internal pure returns (uint256) {
              if (value < 0) {
                  revert SafeCastOverflowedIntToUint(value);
              }
              return uint256(value);
          }
          /**
           * @dev Returns the downcasted int248 from int256, reverting on
           * overflow (when the input is less than smallest int248 or
           * greater than largest int248).
           *
           * Counterpart to Solidity's `int248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           */
          function toInt248(int256 value) internal pure returns (int248 downcasted) {
              downcasted = int248(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(248, value);
              }
          }
          /**
           * @dev Returns the downcasted int240 from int256, reverting on
           * overflow (when the input is less than smallest int240 or
           * greater than largest int240).
           *
           * Counterpart to Solidity's `int240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           */
          function toInt240(int256 value) internal pure returns (int240 downcasted) {
              downcasted = int240(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(240, value);
              }
          }
          /**
           * @dev Returns the downcasted int232 from int256, reverting on
           * overflow (when the input is less than smallest int232 or
           * greater than largest int232).
           *
           * Counterpart to Solidity's `int232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           */
          function toInt232(int256 value) internal pure returns (int232 downcasted) {
              downcasted = int232(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(232, value);
              }
          }
          /**
           * @dev Returns the downcasted int224 from int256, reverting on
           * overflow (when the input is less than smallest int224 or
           * greater than largest int224).
           *
           * Counterpart to Solidity's `int224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           */
          function toInt224(int256 value) internal pure returns (int224 downcasted) {
              downcasted = int224(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(224, value);
              }
          }
          /**
           * @dev Returns the downcasted int216 from int256, reverting on
           * overflow (when the input is less than smallest int216 or
           * greater than largest int216).
           *
           * Counterpart to Solidity's `int216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           */
          function toInt216(int256 value) internal pure returns (int216 downcasted) {
              downcasted = int216(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(216, value);
              }
          }
          /**
           * @dev Returns the downcasted int208 from int256, reverting on
           * overflow (when the input is less than smallest int208 or
           * greater than largest int208).
           *
           * Counterpart to Solidity's `int208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           */
          function toInt208(int256 value) internal pure returns (int208 downcasted) {
              downcasted = int208(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(208, value);
              }
          }
          /**
           * @dev Returns the downcasted int200 from int256, reverting on
           * overflow (when the input is less than smallest int200 or
           * greater than largest int200).
           *
           * Counterpart to Solidity's `int200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           */
          function toInt200(int256 value) internal pure returns (int200 downcasted) {
              downcasted = int200(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(200, value);
              }
          }
          /**
           * @dev Returns the downcasted int192 from int256, reverting on
           * overflow (when the input is less than smallest int192 or
           * greater than largest int192).
           *
           * Counterpart to Solidity's `int192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           */
          function toInt192(int256 value) internal pure returns (int192 downcasted) {
              downcasted = int192(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(192, value);
              }
          }
          /**
           * @dev Returns the downcasted int184 from int256, reverting on
           * overflow (when the input is less than smallest int184 or
           * greater than largest int184).
           *
           * Counterpart to Solidity's `int184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           */
          function toInt184(int256 value) internal pure returns (int184 downcasted) {
              downcasted = int184(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(184, value);
              }
          }
          /**
           * @dev Returns the downcasted int176 from int256, reverting on
           * overflow (when the input is less than smallest int176 or
           * greater than largest int176).
           *
           * Counterpart to Solidity's `int176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           */
          function toInt176(int256 value) internal pure returns (int176 downcasted) {
              downcasted = int176(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(176, value);
              }
          }
          /**
           * @dev Returns the downcasted int168 from int256, reverting on
           * overflow (when the input is less than smallest int168 or
           * greater than largest int168).
           *
           * Counterpart to Solidity's `int168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           */
          function toInt168(int256 value) internal pure returns (int168 downcasted) {
              downcasted = int168(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(168, value);
              }
          }
          /**
           * @dev Returns the downcasted int160 from int256, reverting on
           * overflow (when the input is less than smallest int160 or
           * greater than largest int160).
           *
           * Counterpart to Solidity's `int160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           */
          function toInt160(int256 value) internal pure returns (int160 downcasted) {
              downcasted = int160(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(160, value);
              }
          }
          /**
           * @dev Returns the downcasted int152 from int256, reverting on
           * overflow (when the input is less than smallest int152 or
           * greater than largest int152).
           *
           * Counterpart to Solidity's `int152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           */
          function toInt152(int256 value) internal pure returns (int152 downcasted) {
              downcasted = int152(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(152, value);
              }
          }
          /**
           * @dev Returns the downcasted int144 from int256, reverting on
           * overflow (when the input is less than smallest int144 or
           * greater than largest int144).
           *
           * Counterpart to Solidity's `int144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           */
          function toInt144(int256 value) internal pure returns (int144 downcasted) {
              downcasted = int144(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(144, value);
              }
          }
          /**
           * @dev Returns the downcasted int136 from int256, reverting on
           * overflow (when the input is less than smallest int136 or
           * greater than largest int136).
           *
           * Counterpart to Solidity's `int136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           */
          function toInt136(int256 value) internal pure returns (int136 downcasted) {
              downcasted = int136(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(136, value);
              }
          }
          /**
           * @dev Returns the downcasted int128 from int256, reverting on
           * overflow (when the input is less than smallest int128 or
           * greater than largest int128).
           *
           * Counterpart to Solidity's `int128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           */
          function toInt128(int256 value) internal pure returns (int128 downcasted) {
              downcasted = int128(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(128, value);
              }
          }
          /**
           * @dev Returns the downcasted int120 from int256, reverting on
           * overflow (when the input is less than smallest int120 or
           * greater than largest int120).
           *
           * Counterpart to Solidity's `int120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           */
          function toInt120(int256 value) internal pure returns (int120 downcasted) {
              downcasted = int120(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(120, value);
              }
          }
          /**
           * @dev Returns the downcasted int112 from int256, reverting on
           * overflow (when the input is less than smallest int112 or
           * greater than largest int112).
           *
           * Counterpart to Solidity's `int112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           */
          function toInt112(int256 value) internal pure returns (int112 downcasted) {
              downcasted = int112(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(112, value);
              }
          }
          /**
           * @dev Returns the downcasted int104 from int256, reverting on
           * overflow (when the input is less than smallest int104 or
           * greater than largest int104).
           *
           * Counterpart to Solidity's `int104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           */
          function toInt104(int256 value) internal pure returns (int104 downcasted) {
              downcasted = int104(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(104, value);
              }
          }
          /**
           * @dev Returns the downcasted int96 from int256, reverting on
           * overflow (when the input is less than smallest int96 or
           * greater than largest int96).
           *
           * Counterpart to Solidity's `int96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           */
          function toInt96(int256 value) internal pure returns (int96 downcasted) {
              downcasted = int96(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(96, value);
              }
          }
          /**
           * @dev Returns the downcasted int88 from int256, reverting on
           * overflow (when the input is less than smallest int88 or
           * greater than largest int88).
           *
           * Counterpart to Solidity's `int88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           */
          function toInt88(int256 value) internal pure returns (int88 downcasted) {
              downcasted = int88(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(88, value);
              }
          }
          /**
           * @dev Returns the downcasted int80 from int256, reverting on
           * overflow (when the input is less than smallest int80 or
           * greater than largest int80).
           *
           * Counterpart to Solidity's `int80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           */
          function toInt80(int256 value) internal pure returns (int80 downcasted) {
              downcasted = int80(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(80, value);
              }
          }
          /**
           * @dev Returns the downcasted int72 from int256, reverting on
           * overflow (when the input is less than smallest int72 or
           * greater than largest int72).
           *
           * Counterpart to Solidity's `int72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           */
          function toInt72(int256 value) internal pure returns (int72 downcasted) {
              downcasted = int72(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(72, value);
              }
          }
          /**
           * @dev Returns the downcasted int64 from int256, reverting on
           * overflow (when the input is less than smallest int64 or
           * greater than largest int64).
           *
           * Counterpart to Solidity's `int64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           */
          function toInt64(int256 value) internal pure returns (int64 downcasted) {
              downcasted = int64(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(64, value);
              }
          }
          /**
           * @dev Returns the downcasted int56 from int256, reverting on
           * overflow (when the input is less than smallest int56 or
           * greater than largest int56).
           *
           * Counterpart to Solidity's `int56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           */
          function toInt56(int256 value) internal pure returns (int56 downcasted) {
              downcasted = int56(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(56, value);
              }
          }
          /**
           * @dev Returns the downcasted int48 from int256, reverting on
           * overflow (when the input is less than smallest int48 or
           * greater than largest int48).
           *
           * Counterpart to Solidity's `int48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           */
          function toInt48(int256 value) internal pure returns (int48 downcasted) {
              downcasted = int48(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(48, value);
              }
          }
          /**
           * @dev Returns the downcasted int40 from int256, reverting on
           * overflow (when the input is less than smallest int40 or
           * greater than largest int40).
           *
           * Counterpart to Solidity's `int40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           */
          function toInt40(int256 value) internal pure returns (int40 downcasted) {
              downcasted = int40(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(40, value);
              }
          }
          /**
           * @dev Returns the downcasted int32 from int256, reverting on
           * overflow (when the input is less than smallest int32 or
           * greater than largest int32).
           *
           * Counterpart to Solidity's `int32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           */
          function toInt32(int256 value) internal pure returns (int32 downcasted) {
              downcasted = int32(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(32, value);
              }
          }
          /**
           * @dev Returns the downcasted int24 from int256, reverting on
           * overflow (when the input is less than smallest int24 or
           * greater than largest int24).
           *
           * Counterpart to Solidity's `int24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           */
          function toInt24(int256 value) internal pure returns (int24 downcasted) {
              downcasted = int24(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(24, value);
              }
          }
          /**
           * @dev Returns the downcasted int16 from int256, reverting on
           * overflow (when the input is less than smallest int16 or
           * greater than largest int16).
           *
           * Counterpart to Solidity's `int16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           */
          function toInt16(int256 value) internal pure returns (int16 downcasted) {
              downcasted = int16(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(16, value);
              }
          }
          /**
           * @dev Returns the downcasted int8 from int256, reverting on
           * overflow (when the input is less than smallest int8 or
           * greater than largest int8).
           *
           * Counterpart to Solidity's `int8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           */
          function toInt8(int256 value) internal pure returns (int8 downcasted) {
              downcasted = int8(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(8, value);
              }
          }
          /**
           * @dev Converts an unsigned uint256 into a signed int256.
           *
           * Requirements:
           *
           * - input must be less than or equal to maxInt256.
           */
          function toInt256(uint256 value) internal pure returns (int256) {
              // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
              if (value > uint256(type(int256).max)) {
                  revert SafeCastOverflowedUintToInt(value);
              }
              return int256(value);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol)
      pragma solidity ^0.8.20;
      import {IVotes} from "../governance/utils/IVotes.sol";
      import {IERC6372} from "./IERC6372.sol";
      interface IERC5805 is IERC6372, IVotes {}
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
      pragma solidity ^0.8.20;
      import {Math} from "./math/Math.sol";
      import {SignedMath} from "./math/SignedMath.sol";
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant HEX_DIGITS = "0123456789abcdef";
          uint8 private constant ADDRESS_LENGTH = 20;
          /**
           * @dev The `value` string doesn't fit in the specified `length`.
           */
          error StringsInsufficientHexLength(uint256 value, uint256 length);
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  uint256 length = Math.log10(value) + 1;
                  string memory buffer = new string(length);
                  uint256 ptr;
                  /// @solidity memory-safe-assembly
                  assembly {
                      ptr := add(buffer, add(32, length))
                  }
                  while (true) {
                      ptr--;
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                      }
                      value /= 10;
                      if (value == 0) break;
                  }
                  return buffer;
              }
          }
          /**
           * @dev Converts a `int256` to its ASCII `string` decimal representation.
           */
          function toStringSigned(int256 value) internal pure returns (string memory) {
              return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  return toHexString(value, Math.log256(value) + 1);
              }
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              uint256 localValue = value;
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = HEX_DIGITS[localValue & 0xf];
                  localValue >>= 4;
              }
              if (localValue != 0) {
                  revert StringsInsufficientHexLength(value, length);
              }
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
           * representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
          }
          /**
           * @dev Returns true if the two strings are equal.
           */
          function equal(string memory a, string memory b) internal pure returns (bool) {
              return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
      pragma solidity ^0.8.20;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```solidity
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(newImplementation.code.length > 0);
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          struct StringSlot {
              string value;
          }
          struct BytesSlot {
              bytes value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` with member `value` located at `slot`.
           */
          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
           */
          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` with member `value` located at `slot`.
           */
          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
           */
          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol)
      pragma solidity ^0.8.20;
      interface IERC6372 {
          /**
           * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
           */
          function clock() external view returns (uint48);
          /**
           * @dev Description of the clock
           */
          // solhint-disable-next-line func-name-mixedcase
          function CLOCK_MODE() external view returns (string memory);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
       */
      interface IVotes {
          /**
           * @dev The signature used has expired.
           */
          error VotesExpiredSignature(uint256 expiry);
          /**
           * @dev Emitted when an account changes their delegate.
           */
          event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
          /**
           * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units.
           */
          event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes);
          /**
           * @dev Returns the current amount of votes that `account` has.
           */
          function getVotes(address account) external view returns (uint256);
          /**
           * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
           * configured to use block numbers, this will return the value at the end of the corresponding block.
           */
          function getPastVotes(address account, uint256 timepoint) external view returns (uint256);
          /**
           * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
           * configured to use block numbers, this will return the value at the end of the corresponding block.
           *
           * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
           * Votes that have not been delegated are still part of total supply, even though they would not participate in a
           * vote.
           */
          function getPastTotalSupply(uint256 timepoint) external view returns (uint256);
          /**
           * @dev Returns the delegate that `account` has chosen.
           */
          function delegates(address account) external view returns (address);
          /**
           * @dev Delegates votes from the sender to `delegatee`.
           */
          function delegate(address delegatee) external;
          /**
           * @dev Delegates votes from signer to `delegatee`.
           */
          function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // must be unchecked in order to support `n = type(int256).min`
                  return uint256(n >= 0 ? n : -n);
              }
          }
      }