ETH Price: $2,513.13 (-1.81%)

Transaction Decoder

Block:
17890531 at Aug-11-2023 08:43:59 AM +UTC
Transaction Fee:
0.007637460523047784 ETH $19.19
Gas Used:
444,664 Gas / 17.175801331 Gwei

Emitted Events:

145 TWCloneFactory.ProxyDeployed( implementation=Split, proxy=Split, deployer=[Sender] 0xd4ef86950720ba43923bb80b5efd6bf612c721fa )
146 Split.PayeeAdded( account=[Sender] 0xd4ef86950720ba43923bb80b5efd6bf612c721fa, shares=3000 )
147 Split.PayeeAdded( account=0x8DFD4f30...686523938, shares=7000 )
148 Split.RoleGranted( role=0000000000000000000000000000000000000000000000000000000000000000, account=[Sender] 0xd4ef86950720ba43923bb80b5efd6bf612c721fa, sender=[Receiver] TWCloneFactory )

Account State Difference:

  Address   Before After State Difference Code
0x5a4af0DA...b695ADbA7
0 Eth
Nonce: 0
0 Eth
Nonce: 1
From: 0 To: 497590261154554171967156691780418119697999977810712126430916551394826980118167155789044978599495409965292531
(Fee Recipient: 0x75...F42)
17.708033936712473954 Eth17.708078403112473954 Eth0.0000444664
0x76F948E5...Bf524805E
0xd4Ef8695...612c721fA
0.143169697413290855 Eth
Nonce: 4
0.135532236890243071 Eth
Nonce: 5
0.007637460523047784

Execution Trace

TWCloneFactory.deployProxyByImplementation( _implementation=0x50C921e598bdcB2A81aE2Fad357798dFAb322BB0, _data=0xB1A14437000000000000000000000000D4EF86950720BA43923BB80B5EFD6BF612C721FA00000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000016000000000000000000000000000000000000000000000000000000000000001C00000000000000000000000000000000000000000000000000000000000000037697066733A2F2F516D53474B325347336A704A58377937736931794D48337243717A79724E515777574C6648424B5841644A4B35342F300000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000C82BBE41F2CF04E3A8EFA18F7032BDD7F6D98A8100000000000000000000000084A0856B038EAAD1CC7E297CF34A7E72685A86930000000000000000000000000000000000000000000000000000000000000002000000000000000000000000D4EF86950720BA43923BB80B5EFD6BF612C721FA0000000000000000000000008DFD4F307B6011D4CB21007FD5658F068652393800000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000BB80000000000000000000000000000000000000000000000000000000000001B58, _salt=3137383930353239000000000000000000000000000000000000000000000000 ) => ( deployedProxy=0x5a4af0DA2D31A4a0558f574B0820401b695ADbA7 )
  • Split.3d602d80( )
  • Split.initialize( _defaultAdmin=0xd4Ef86950720ba43923bB80B5eFD6bf612c721fA, _contractURI=ipfs://QmSGK2SG3jpJX7y7si1yMH3rCqzyrNQWwWLfHBKXAdJK54/0, _trustedForwarders=[0xc82BbE41f2cF04e3a8efA18F7032BDD7f6d98a81, 0x84a0856b038eaAd1cC7E297cF34A7e72685A8693], _payees=[0xd4Ef86950720ba43923bB80B5eFD6bf612c721fA, 0x8DFD4f307B6011D4CB21007FD5658f0686523938], _shares=[3000, 7000] )
    • Split.initialize( _defaultAdmin=0xd4Ef86950720ba43923bB80B5eFD6bf612c721fA, _contractURI=ipfs://QmSGK2SG3jpJX7y7si1yMH3rCqzyrNQWwWLfHBKXAdJK54/0, _trustedForwarders=[0xc82BbE41f2cF04e3a8efA18F7032BDD7f6d98a81, 0x84a0856b038eaAd1cC7E297cF34A7e72685A8693], _payees=[0xd4Ef86950720ba43923bB80B5eFD6bf612c721fA, 0x8DFD4f307B6011D4CB21007FD5658f0686523938], _shares=[3000, 7000] )
      File 1 of 3: TWCloneFactory
      // SPDX-License-Identifier: Apache-2.0
      pragma solidity ^0.8.11;
      /// @author thirdweb
      //   $$\\     $$\\       $$\\                 $$\\                         $$\\
      //   $$ |    $$ |      \\__|                $$ |                        $$ |
      // $$$$$$\\   $$$$$$$\\  $$\\  $$$$$$\\   $$$$$$$ |$$\\  $$\\  $$\\  $$$$$$\\  $$$$$$$\\
      // \\_$$  _|  $$  __$$\\ $$ |$$  __$$\\ $$  __$$ |$$ | $$ | $$ |$$  __$$\\ $$  __$$\\
      //   $$ |    $$ |  $$ |$$ |$$ |  \\__|$$ /  $$ |$$ | $$ | $$ |$$$$$$$$ |$$ |  $$ |
      //   $$ |$$\\ $$ |  $$ |$$ |$$ |      $$ |  $$ |$$ | $$ | $$ |$$   ____|$$ |  $$ |
      //   \\$$$$  |$$ |  $$ |$$ |$$ |      \\$$$$$$$ |\\$$$$$\\$$$$  |\\$$$$$$$\\ $$$$$$$  |
      //    \\____/ \\__|  \\__|\\__|\\__|       \\_______| \\_____\\____/  \\_______|\\_______/
      import "./extension/interface/IContractFactory.sol";
      import "@openzeppelin/contracts/metatx/ERC2771Context.sol";
      import "@openzeppelin/contracts/utils/Multicall.sol";
      import "@openzeppelin/contracts/proxy/Clones.sol";
      contract TWCloneFactory is Multicall, ERC2771Context, IContractFactory {
          /// @dev Emitted when a proxy is deployed.
          event ProxyDeployed(address indexed implementation, address proxy, address indexed deployer);
          constructor(address _trustedForwarder) ERC2771Context(_trustedForwarder) {}
          /// @dev Deploys a proxy that points to the given implementation.
          function deployProxyByImplementation(
              address _implementation,
              bytes memory _data,
              bytes32 _salt
          ) public override returns (address deployedProxy) {
              bytes32 salthash = keccak256(abi.encodePacked(_msgSender(), _salt));
              deployedProxy = Clones.cloneDeterministic(_implementation, salthash);
              emit ProxyDeployed(_implementation, deployedProxy, _msgSender());
              if (_data.length > 0) {
                  // slither-disable-next-line unused-return
                  Address.functionCall(deployedProxy, _data);
              }
          }
          function _msgSender() internal view virtual override returns (address sender) {
              return ERC2771Context._msgSender();
          }
          function _msgData() internal view virtual override returns (bytes calldata) {
              return ERC2771Context._msgData();
          }
      }
      // SPDX-License-Identifier: Apache-2.0
      pragma solidity ^0.8.0;
      /// @author thirdweb
      interface IContractFactory {
          /**
           *  @notice Deploys a proxy that points to that points to the given implementation.
           *
           *  @param implementation           Address of the implementation to point to.
           *
           *  @param data                     Additional data to pass to the proxy constructor or any other data useful during deployement.
           *  @param salt                     Salt to use for the deterministic address generation.
           */
          function deployProxyByImplementation(
              address implementation,
              bytes memory data,
              bytes32 salt
          ) external returns (address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (metatx/ERC2771Context.sol)
      pragma solidity ^0.8.9;
      import "../utils/Context.sol";
      /**
       * @dev Context variant with ERC2771 support.
       */
      abstract contract ERC2771Context is Context {
          /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
          address private immutable _trustedForwarder;
          /// @custom:oz-upgrades-unsafe-allow constructor
          constructor(address trustedForwarder) {
              _trustedForwarder = trustedForwarder;
          }
          function isTrustedForwarder(address forwarder) public view virtual returns (bool) {
              return forwarder == _trustedForwarder;
          }
          function _msgSender() internal view virtual override returns (address sender) {
              if (isTrustedForwarder(msg.sender)) {
                  // The assembly code is more direct than the Solidity version using `abi.decode`.
                  /// @solidity memory-safe-assembly
                  assembly {
                      sender := shr(96, calldataload(sub(calldatasize(), 20)))
                  }
              } else {
                  return super._msgSender();
              }
          }
          function _msgData() internal view virtual override returns (bytes calldata) {
              if (isTrustedForwarder(msg.sender)) {
                  return msg.data[:msg.data.length - 20];
              } else {
                  return super._msgData();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/Clones.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
       * deploying minimal proxy contracts, also known as "clones".
       *
       * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
       * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
       *
       * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
       * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
       * deterministic method.
       *
       * _Available since v3.4._
       */
      library Clones {
          /**
           * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
           *
           * This function uses the create opcode, which should never revert.
           */
          function clone(address implementation) internal returns (address instance) {
              /// @solidity memory-safe-assembly
              assembly {
                  let ptr := mload(0x40)
                  mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
                  mstore(add(ptr, 0x14), shl(0x60, implementation))
                  mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
                  instance := create(0, ptr, 0x37)
              }
              require(instance != address(0), "ERC1167: create failed");
          }
          /**
           * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
           *
           * This function uses the create2 opcode and a `salt` to deterministically deploy
           * the clone. Using the same `implementation` and `salt` multiple time will revert, since
           * the clones cannot be deployed twice at the same address.
           */
          function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
              /// @solidity memory-safe-assembly
              assembly {
                  let ptr := mload(0x40)
                  mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
                  mstore(add(ptr, 0x14), shl(0x60, implementation))
                  mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
                  instance := create2(0, ptr, 0x37, salt)
              }
              require(instance != address(0), "ERC1167: create2 failed");
          }
          /**
           * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
           */
          function predictDeterministicAddress(
              address implementation,
              bytes32 salt,
              address deployer
          ) internal pure returns (address predicted) {
              /// @solidity memory-safe-assembly
              assembly {
                  let ptr := mload(0x40)
                  mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
                  mstore(add(ptr, 0x14), shl(0x60, implementation))
                  mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf3ff00000000000000000000000000000000)
                  mstore(add(ptr, 0x38), shl(0x60, deployer))
                  mstore(add(ptr, 0x4c), salt)
                  mstore(add(ptr, 0x6c), keccak256(ptr, 0x37))
                  predicted := keccak256(add(ptr, 0x37), 0x55)
              }
          }
          /**
           * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
           */
          function predictDeterministicAddress(address implementation, bytes32 salt)
              internal
              view
              returns (address predicted)
          {
              return predictDeterministicAddress(implementation, salt, address(this));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(isContract(target), "Address: delegate call to non-contract");
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (utils/Multicall.sol)
      pragma solidity ^0.8.0;
      import "./Address.sol";
      /**
       * @dev Provides a function to batch together multiple calls in a single external call.
       *
       * _Available since v4.1._
       */
      abstract contract Multicall {
          /**
           * @dev Receives and executes a batch of function calls on this contract.
           */
          function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) {
              results = new bytes[](data.length);
              for (uint256 i = 0; i < data.length; i++) {
                  results[i] = Address.functionDelegateCall(address(this), data[i]);
              }
              return results;
          }
      }
      

      File 2 of 3: Split
      // SPDX-License-Identifier: Apache-2.0
      pragma solidity ^0.8.11;
      // Base
      import "./openzeppelin-presets/finance/PaymentSplitterUpgradeable.sol";
      import "./interfaces/IThirdwebContract.sol";
      // Meta-tx
      import "./openzeppelin-presets/metatx/ERC2771ContextUpgradeable.sol";
      // Access
      import "@openzeppelin/contracts-upgradeable/access/AccessControlEnumerableUpgradeable.sol";
      // Utils
      import "@openzeppelin/contracts-upgradeable/utils/MulticallUpgradeable.sol";
      import "./lib/FeeType.sol";
      contract Split is
          IThirdwebContract,
          Initializable,
          MulticallUpgradeable,
          ERC2771ContextUpgradeable,
          AccessControlEnumerableUpgradeable,
          PaymentSplitterUpgradeable
      {
          bytes32 private constant MODULE_TYPE = bytes32("Split");
          uint128 private constant VERSION = 1;
          /// @dev Max bps in the thirdweb system
          uint128 private constant MAX_BPS = 10_000;
          /// @dev Contract level metadata.
          string public contractURI;
          constructor() initializer {}
          /// @dev Performs the job of the constructor.
          /// @dev shares_ are scaled by 10,000 to prevent precision loss when including fees
          function initialize(
              address _defaultAdmin,
              string memory _contractURI,
              address[] memory _trustedForwarders,
              address[] memory _payees,
              uint256[] memory _shares
          ) external initializer {
              // Initialize inherited contracts: most base -> most derived
              __ERC2771Context_init(_trustedForwarders);
              __PaymentSplitter_init(_payees, _shares);
              contractURI = _contractURI;
              _setupRole(DEFAULT_ADMIN_ROLE, _defaultAdmin);
          }
          /// @dev Returns the module type of the contract.
          function contractType() external pure returns (bytes32) {
              return MODULE_TYPE;
          }
          /// @dev Returns the version of the contract.
          function contractVersion() external pure returns (uint8) {
              return uint8(VERSION);
          }
          /**
           * @dev Triggers a transfer to `account` of the amount of Ether they are owed, according to their percentage of the
           * total shares and their previous withdrawals.
           */
          function release(address payable account) public virtual override {
              uint256 payment = _release(account);
              require(payment != 0, "PaymentSplitter: account is not due payment");
          }
          /**
           * @dev Triggers a transfer to `account` of the amount of `token` tokens they are owed, according to their
           * percentage of the total shares and their previous withdrawals. `token` must be the address of an IERC20
           * contract.
           */
          function release(IERC20Upgradeable token, address account) public virtual override {
              uint256 payment = _release(token, account);
              require(payment != 0, "PaymentSplitter: account is not due payment");
          }
          /// @dev Returns the amount of Ether that `account` is owed, according to their percentage of the total shares and returns the payment
          function _release(address payable account) internal returns (uint256) {
              require(shares(account) > 0, "PaymentSplitter: account has no shares");
              uint256 totalReceived = address(this).balance + totalReleased();
              uint256 payment = _pendingPayment(account, totalReceived, released(account));
              if (payment == 0) {
                  return 0;
              }
              _released[account] += payment;
              _totalReleased += payment;
              AddressUpgradeable.sendValue(account, payment);
              emit PaymentReleased(account, payment);
              return payment;
          }
          /// @dev Returns the amount of `token` that `account` is owed, according to their percentage of the total shares and returns the payment
          function _release(IERC20Upgradeable token, address account) internal returns (uint256) {
              require(shares(account) > 0, "PaymentSplitter: account has no shares");
              uint256 totalReceived = token.balanceOf(address(this)) + totalReleased(token);
              uint256 payment = _pendingPayment(account, totalReceived, released(token, account));
              if (payment == 0) {
                  return 0;
              }
              _erc20Released[token][account] += payment;
              _erc20TotalReleased[token] += payment;
              SafeERC20Upgradeable.safeTransfer(token, account, payment);
              emit ERC20PaymentReleased(token, account, payment);
              return payment;
          }
          /**
           * @dev Release the owed amount of token to all of the payees.
           */
          function distribute() public virtual {
              uint256 count = payeeCount();
              for (uint256 i = 0; i < count; i++) {
                  // note: `_release` should not fail because payee always has shares, protected by `_appPay`
                  _release(payable(payee(i)));
              }
          }
          /**
           * @dev Release owed amount of the `token` to all of the payees.
           */
          function distribute(IERC20Upgradeable token) public virtual {
              uint256 count = payeeCount();
              for (uint256 i = 0; i < count; i++) {
                  // note: `_release` should not fail because payee always has shares, protected by `_appPay`
                  _release(token, payee(i));
              }
          }
          /// @dev See ERC2771
          function _msgSender()
              internal
              view
              virtual
              override(ContextUpgradeable, ERC2771ContextUpgradeable)
              returns (address sender)
          {
              return ERC2771ContextUpgradeable._msgSender();
          }
          /// @dev See ERC2771
          function _msgData()
              internal
              view
              virtual
              override(ContextUpgradeable, ERC2771ContextUpgradeable)
              returns (bytes calldata)
          {
              return ERC2771ContextUpgradeable._msgData();
          }
          /// @dev Sets contract URI for the contract-level metadata of the contract.
          function setContractURI(string calldata _uri) external onlyRole(DEFAULT_ADMIN_ROLE) {
              contractURI = _uri;
          }
      }
      // SPDX-License-Identifier: Apache-2.0
      pragma solidity ^0.8.11;
      interface IThirdwebContract {
          /// @dev Returns the module type of the contract.
          function contractType() external pure returns (bytes32);
          /// @dev Returns the version of the contract.
          function contractVersion() external pure returns (uint8);
          /// @dev Returns the metadata URI of the contract.
          function contractURI() external view returns (string memory);
          /**
           *  @dev Sets contract URI for the storefront-level metadata of the contract.
           *       Only module admin can call this function.
           */
          function setContractURI(string calldata _uri) external;
      }
      // SPDX-License-Identifier: Apache-2.0
      pragma solidity ^0.8.11;
      library FeeType {
          uint256 internal constant PRIMARY_SALE = 0;
          uint256 internal constant MARKET_SALE = 1;
          uint256 internal constant SPLIT = 2;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (finance/PaymentSplitter.sol)
      pragma solidity ^0.8.11;
      import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      /**
       *  Changelog:
       *      - Change state variable visibility to internal:
       *          - `_totalReleased`, `_released`, `_erc20TotalReleased`, `_erc20Released`, `_pendingPayment`
       *
       *      - Add `payeeCount`: returns the length of `_payees`
       */
      /**
       * @title PaymentSplitter
       * @dev This contract allows to split Ether payments among a group of accounts. The sender does not need to be aware
       * that the Ether will be split in this way, since it is handled transparently by the contract.
       *
       * The split can be in equal parts or in any other arbitrary proportion. The way this is specified is by assigning each
       * account to a number of shares. Of all the Ether that this contract receives, each account will then be able to claim
       * an amount proportional to the percentage of total shares they were assigned.
       *
       * `PaymentSplitter` follows a _pull payment_ model. This means that payments are not automatically forwarded to the
       * accounts but kept in this contract, and the actual transfer is triggered as a separate step by calling the {release}
       * function.
       *
       * NOTE: This contract assumes that ERC20 tokens will behave similarly to native tokens (Ether). Rebasing tokens, and
       * tokens that apply fees during transfers, are likely to not be supported as expected. If in doubt, we encourage you
       * to run tests before sending real value to this contract.
       */
      contract PaymentSplitterUpgradeable is Initializable, ContextUpgradeable {
          event PayeeAdded(address account, uint256 shares);
          event PaymentReleased(address to, uint256 amount);
          event ERC20PaymentReleased(IERC20Upgradeable indexed token, address to, uint256 amount);
          event PaymentReceived(address from, uint256 amount);
          uint256 private _totalShares;
          uint256 internal _totalReleased;
          mapping(address => uint256) internal _shares;
          mapping(address => uint256) internal _released;
          address[] private _payees;
          mapping(IERC20Upgradeable => uint256) internal _erc20TotalReleased;
          mapping(IERC20Upgradeable => mapping(address => uint256)) internal _erc20Released;
          /**
           * @dev Creates an instance of `PaymentSplitter` where each account in `payees` is assigned the number of shares at
           * the matching position in the `shares` array.
           *
           * All addresses in `payees` must be non-zero. Both arrays must have the same non-zero length, and there must be no
           * duplicates in `payees`.
           */
          function __PaymentSplitter_init(address[] memory payees, uint256[] memory shares_) internal onlyInitializing {
              __Context_init_unchained();
              __PaymentSplitter_init_unchained(payees, shares_);
          }
          function __PaymentSplitter_init_unchained(address[] memory payees, uint256[] memory shares_)
              internal
              onlyInitializing
          {
              require(payees.length == shares_.length, "PaymentSplitter: payees and shares length mismatch");
              require(payees.length > 0, "PaymentSplitter: no payees");
              for (uint256 i = 0; i < payees.length; i++) {
                  _addPayee(payees[i], shares_[i]);
              }
          }
          /**
           * @dev The Ether received will be logged with {PaymentReceived} events. Note that these events are not fully
           * reliable: it's possible for a contract to receive Ether without triggering this function. This only affects the
           * reliability of the events, and not the actual splitting of Ether.
           *
           * To learn more about this see the Solidity documentation for
           * https://solidity.readthedocs.io/en/latest/contracts.html#fallback-function[fallback
           * functions].
           */
          receive() external payable virtual {
              emit PaymentReceived(_msgSender(), msg.value);
          }
          /**
           * @dev Getter for the total shares held by payees.
           */
          function totalShares() public view returns (uint256) {
              return _totalShares;
          }
          /**
           * @dev Getter for the total amount of Ether already released.
           */
          function totalReleased() public view returns (uint256) {
              return _totalReleased;
          }
          /**
           * @dev Getter for the total amount of `token` already released. `token` should be the address of an IERC20
           * contract.
           */
          function totalReleased(IERC20Upgradeable token) public view returns (uint256) {
              return _erc20TotalReleased[token];
          }
          /**
           * @dev Getter for the amount of shares held by an account.
           */
          function shares(address account) public view returns (uint256) {
              return _shares[account];
          }
          /**
           * @dev Getter for the amount of Ether already released to a payee.
           */
          function released(address account) public view returns (uint256) {
              return _released[account];
          }
          /**
           * @dev Getter for the amount of `token` tokens already released to a payee. `token` should be the address of an
           * IERC20 contract.
           */
          function released(IERC20Upgradeable token, address account) public view returns (uint256) {
              return _erc20Released[token][account];
          }
          /**
           * @dev Getter for the address of the payee number `index`.
           */
          function payee(uint256 index) public view returns (address) {
              return _payees[index];
          }
          /**
           * @dev Get the number of payees
           */
          function payeeCount() public view returns (uint256) {
              return _payees.length;
          }
          /**
           * @dev Triggers a transfer to `account` of the amount of Ether they are owed, according to their percentage of the
           * total shares and their previous withdrawals.
           */
          function release(address payable account) public virtual {
              require(_shares[account] > 0, "PaymentSplitter: account has no shares");
              uint256 totalReceived = address(this).balance + totalReleased();
              uint256 payment = _pendingPayment(account, totalReceived, released(account));
              require(payment != 0, "PaymentSplitter: account is not due payment");
              _released[account] += payment;
              _totalReleased += payment;
              AddressUpgradeable.sendValue(account, payment);
              emit PaymentReleased(account, payment);
          }
          /**
           * @dev Triggers a transfer to `account` of the amount of `token` tokens they are owed, according to their
           * percentage of the total shares and their previous withdrawals. `token` must be the address of an IERC20
           * contract.
           */
          function release(IERC20Upgradeable token, address account) public virtual {
              require(_shares[account] > 0, "PaymentSplitter: account has no shares");
              uint256 totalReceived = token.balanceOf(address(this)) + totalReleased(token);
              uint256 payment = _pendingPayment(account, totalReceived, released(token, account));
              require(payment != 0, "PaymentSplitter: account is not due payment");
              _erc20Released[token][account] += payment;
              _erc20TotalReleased[token] += payment;
              SafeERC20Upgradeable.safeTransfer(token, account, payment);
              emit ERC20PaymentReleased(token, account, payment);
          }
          /**
           * @dev internal logic for computing the pending payment of an `account` given the token historical balances and
           * already released amounts.
           */
          function _pendingPayment(
              address account,
              uint256 totalReceived,
              uint256 alreadyReleased
          ) internal view returns (uint256) {
              return (totalReceived * _shares[account]) / _totalShares - alreadyReleased;
          }
          /**
           * @dev Add a new payee to the contract.
           * @param account The address of the payee to add.
           * @param shares_ The number of shares owned by the payee.
           */
          function _addPayee(address account, uint256 shares_) private {
              require(account != address(0), "PaymentSplitter: account is the zero address");
              require(shares_ > 0, "PaymentSplitter: shares are 0");
              require(_shares[account] == 0, "PaymentSplitter: account already has shares");
              _payees.push(account);
              _shares[account] = shares_;
              _totalShares = _totalShares + shares_;
              emit PayeeAdded(account, shares_);
          }
          uint256[43] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (metatx/ERC2771Context.sol)
      pragma solidity ^0.8.11;
      import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      /**
       * @dev Context variant with ERC2771 support.
       */
      abstract contract ERC2771ContextUpgradeable is Initializable, ContextUpgradeable {
          mapping(address => bool) private _trustedForwarder;
          function __ERC2771Context_init(address[] memory trustedForwarder) internal onlyInitializing {
              __Context_init_unchained();
              __ERC2771Context_init_unchained(trustedForwarder);
          }
          function __ERC2771Context_init_unchained(address[] memory trustedForwarder) internal onlyInitializing {
              for (uint256 i = 0; i < trustedForwarder.length; i++) {
                  _trustedForwarder[trustedForwarder[i]] = true;
              }
          }
          function isTrustedForwarder(address forwarder) public view virtual returns (bool) {
              return _trustedForwarder[forwarder];
          }
          function _msgSender() internal view virtual override returns (address sender) {
              if (isTrustedForwarder(msg.sender)) {
                  // The assembly code is more direct than the Solidity version using `abi.decode`.
                  assembly {
                      sender := shr(96, calldataload(sub(calldatasize(), 20)))
                  }
              } else {
                  return super._msgSender();
              }
          }
          function _msgData() internal view virtual override returns (bytes calldata) {
              if (isTrustedForwarder(msg.sender)) {
                  return msg.data[:msg.data.length - 20];
              } else {
                  return super._msgData();
              }
          }
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol)
      pragma solidity ^0.8.0;
      import "./IAccessControlEnumerableUpgradeable.sol";
      import "./AccessControlUpgradeable.sol";
      import "../utils/structs/EnumerableSetUpgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Extension of {AccessControl} that allows enumerating the members of each role.
       */
      abstract contract AccessControlEnumerableUpgradeable is Initializable, IAccessControlEnumerableUpgradeable, AccessControlUpgradeable {
          function __AccessControlEnumerable_init() internal onlyInitializing {
          }
          function __AccessControlEnumerable_init_unchained() internal onlyInitializing {
          }
          using EnumerableSetUpgradeable for EnumerableSetUpgradeable.AddressSet;
          mapping(bytes32 => EnumerableSetUpgradeable.AddressSet) private _roleMembers;
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IAccessControlEnumerableUpgradeable).interfaceId || super.supportsInterface(interfaceId);
          }
          /**
           * @dev Returns one of the accounts that have `role`. `index` must be a
           * value between 0 and {getRoleMemberCount}, non-inclusive.
           *
           * Role bearers are not sorted in any particular way, and their ordering may
           * change at any point.
           *
           * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
           * you perform all queries on the same block. See the following
           * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
           * for more information.
           */
          function getRoleMember(bytes32 role, uint256 index) public view virtual override returns (address) {
              return _roleMembers[role].at(index);
          }
          /**
           * @dev Returns the number of accounts that have `role`. Can be used
           * together with {getRoleMember} to enumerate all bearers of a role.
           */
          function getRoleMemberCount(bytes32 role) public view virtual override returns (uint256) {
              return _roleMembers[role].length();
          }
          /**
           * @dev Overload {_grantRole} to track enumerable memberships
           */
          function _grantRole(bytes32 role, address account) internal virtual override {
              super._grantRole(role, account);
              _roleMembers[role].add(account);
          }
          /**
           * @dev Overload {_revokeRole} to track enumerable memberships
           */
          function _revokeRole(bytes32 role, address account) internal virtual override {
              super._revokeRole(role, account);
              _roleMembers[role].remove(account);
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControl.sol)
      pragma solidity ^0.8.0;
      import "./IAccessControlUpgradeable.sol";
      import "../utils/ContextUpgradeable.sol";
      import "../utils/StringsUpgradeable.sol";
      import "../utils/introspection/ERC165Upgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module that allows children to implement role-based access
       * control mechanisms. This is a lightweight version that doesn't allow enumerating role
       * members except through off-chain means by accessing the contract event logs. Some
       * applications may benefit from on-chain enumerability, for those cases see
       * {AccessControlEnumerable}.
       *
       * Roles are referred to by their `bytes32` identifier. These should be exposed
       * in the external API and be unique. The best way to achieve this is by
       * using `public constant` hash digests:
       *
       * ```
       * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
       * ```
       *
       * Roles can be used to represent a set of permissions. To restrict access to a
       * function call, use {hasRole}:
       *
       * ```
       * function foo() public {
       *     require(hasRole(MY_ROLE, msg.sender));
       *     ...
       * }
       * ```
       *
       * Roles can be granted and revoked dynamically via the {grantRole} and
       * {revokeRole} functions. Each role has an associated admin role, and only
       * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
       *
       * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
       * that only accounts with this role will be able to grant or revoke other
       * roles. More complex role relationships can be created by using
       * {_setRoleAdmin}.
       *
       * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
       * grant and revoke this role. Extra precautions should be taken to secure
       * accounts that have been granted it.
       */
      abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
          function __AccessControl_init() internal onlyInitializing {
          }
          function __AccessControl_init_unchained() internal onlyInitializing {
          }
          struct RoleData {
              mapping(address => bool) members;
              bytes32 adminRole;
          }
          mapping(bytes32 => RoleData) private _roles;
          bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
          /**
           * @dev Modifier that checks that an account has a specific role. Reverts
           * with a standardized message including the required role.
           *
           * The format of the revert reason is given by the following regular expression:
           *
           *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
           *
           * _Available since v4.1._
           */
          modifier onlyRole(bytes32 role) {
              _checkRole(role, _msgSender());
              _;
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
          }
          /**
           * @dev Returns `true` if `account` has been granted `role`.
           */
          function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
              return _roles[role].members[account];
          }
          /**
           * @dev Revert with a standard message if `account` is missing `role`.
           *
           * The format of the revert reason is given by the following regular expression:
           *
           *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
           */
          function _checkRole(bytes32 role, address account) internal view virtual {
              if (!hasRole(role, account)) {
                  revert(
                      string(
                          abi.encodePacked(
                              "AccessControl: account ",
                              StringsUpgradeable.toHexString(uint160(account), 20),
                              " is missing role ",
                              StringsUpgradeable.toHexString(uint256(role), 32)
                          )
                      )
                  );
              }
          }
          /**
           * @dev Returns the admin role that controls `role`. See {grantRole} and
           * {revokeRole}.
           *
           * To change a role's admin, use {_setRoleAdmin}.
           */
          function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
              return _roles[role].adminRole;
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
              _grantRole(role, account);
          }
          /**
           * @dev Revokes `role` from `account`.
           *
           * If `account` had been granted `role`, emits a {RoleRevoked} event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
              _revokeRole(role, account);
          }
          /**
           * @dev Revokes `role` from the calling account.
           *
           * Roles are often managed via {grantRole} and {revokeRole}: this function's
           * purpose is to provide a mechanism for accounts to lose their privileges
           * if they are compromised (such as when a trusted device is misplaced).
           *
           * If the calling account had been revoked `role`, emits a {RoleRevoked}
           * event.
           *
           * Requirements:
           *
           * - the caller must be `account`.
           */
          function renounceRole(bytes32 role, address account) public virtual override {
              require(account == _msgSender(), "AccessControl: can only renounce roles for self");
              _revokeRole(role, account);
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event. Note that unlike {grantRole}, this function doesn't perform any
           * checks on the calling account.
           *
           * [WARNING]
           * ====
           * This function should only be called from the constructor when setting
           * up the initial roles for the system.
           *
           * Using this function in any other way is effectively circumventing the admin
           * system imposed by {AccessControl}.
           * ====
           *
           * NOTE: This function is deprecated in favor of {_grantRole}.
           */
          function _setupRole(bytes32 role, address account) internal virtual {
              _grantRole(role, account);
          }
          /**
           * @dev Sets `adminRole` as ``role``'s admin role.
           *
           * Emits a {RoleAdminChanged} event.
           */
          function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
              bytes32 previousAdminRole = getRoleAdmin(role);
              _roles[role].adminRole = adminRole;
              emit RoleAdminChanged(role, previousAdminRole, adminRole);
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * Internal function without access restriction.
           */
          function _grantRole(bytes32 role, address account) internal virtual {
              if (!hasRole(role, account)) {
                  _roles[role].members[account] = true;
                  emit RoleGranted(role, account, _msgSender());
              }
          }
          /**
           * @dev Revokes `role` from `account`.
           *
           * Internal function without access restriction.
           */
          function _revokeRole(bytes32 role, address account) internal virtual {
              if (hasRole(role, account)) {
                  _roles[role].members[account] = false;
                  emit RoleRevoked(role, account, _msgSender());
              }
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol)
      pragma solidity ^0.8.0;
      import "./IAccessControlUpgradeable.sol";
      /**
       * @dev External interface of AccessControlEnumerable declared to support ERC165 detection.
       */
      interface IAccessControlEnumerableUpgradeable is IAccessControlUpgradeable {
          /**
           * @dev Returns one of the accounts that have `role`. `index` must be a
           * value between 0 and {getRoleMemberCount}, non-inclusive.
           *
           * Role bearers are not sorted in any particular way, and their ordering may
           * change at any point.
           *
           * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
           * you perform all queries on the same block. See the following
           * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
           * for more information.
           */
          function getRoleMember(bytes32 role, uint256 index) external view returns (address);
          /**
           * @dev Returns the number of accounts that have `role`. Can be used
           * together with {getRoleMember} to enumerate all bearers of a role.
           */
          function getRoleMemberCount(bytes32 role) external view returns (uint256);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev External interface of AccessControl declared to support ERC165 detection.
       */
      interface IAccessControlUpgradeable {
          /**
           * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
           *
           * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
           * {RoleAdminChanged} not being emitted signaling this.
           *
           * _Available since v3.1._
           */
          event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
          /**
           * @dev Emitted when `account` is granted `role`.
           *
           * `sender` is the account that originated the contract call, an admin role
           * bearer except when using {AccessControl-_setupRole}.
           */
          event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
          /**
           * @dev Emitted when `account` is revoked `role`.
           *
           * `sender` is the account that originated the contract call:
           *   - if using `revokeRole`, it is the admin role bearer
           *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
           */
          event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
          /**
           * @dev Returns `true` if `account` has been granted `role`.
           */
          function hasRole(bytes32 role, address account) external view returns (bool);
          /**
           * @dev Returns the admin role that controls `role`. See {grantRole} and
           * {revokeRole}.
           *
           * To change a role's admin, use {AccessControl-_setRoleAdmin}.
           */
          function getRoleAdmin(bytes32 role) external view returns (bytes32);
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function grantRole(bytes32 role, address account) external;
          /**
           * @dev Revokes `role` from `account`.
           *
           * If `account` had been granted `role`, emits a {RoleRevoked} event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function revokeRole(bytes32 role, address account) external;
          /**
           * @dev Revokes `role` from the calling account.
           *
           * Roles are often managed via {grantRole} and {revokeRole}: this function's
           * purpose is to provide a mechanism for accounts to lose their privileges
           * if they are compromised (such as when a trusted device is misplaced).
           *
           * If the calling account had been granted `role`, emits a {RoleRevoked}
           * event.
           *
           * Requirements:
           *
           * - the caller must be `account`.
           */
          function renounceRole(bytes32 role, address account) external;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.0;
      import "../../utils/AddressUpgradeable.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the
       * initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() initializer {}
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           */
          bool private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Modifier to protect an initializer function from being invoked twice.
           */
          modifier initializer() {
              // If the contract is initializing we ignore whether _initialized is set in order to support multiple
              // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the
              // contract may have been reentered.
              require(_initializing ? _isConstructor() : !_initialized, "Initializable: contract is already initialized");
              bool isTopLevelCall = !_initializing;
              if (isTopLevelCall) {
                  _initializing = true;
                  _initialized = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
              }
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} modifier, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          function _isConstructor() private view returns (bool) {
              return !AddressUpgradeable.isContract(address(this));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20Upgradeable {
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) external returns (bool);
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)
      pragma solidity ^0.8.0;
      import "../IERC20Upgradeable.sol";
      import "../../../utils/AddressUpgradeable.sol";
      /**
       * @title SafeERC20
       * @dev Wrappers around ERC20 operations that throw on failure (when the token
       * contract returns false). Tokens that return no value (and instead revert or
       * throw on failure) are also supported, non-reverting calls are assumed to be
       * successful.
       * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
       * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
       */
      library SafeERC20Upgradeable {
          using AddressUpgradeable for address;
          function safeTransfer(
              IERC20Upgradeable token,
              address to,
              uint256 value
          ) internal {
              _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
          }
          function safeTransferFrom(
              IERC20Upgradeable token,
              address from,
              address to,
              uint256 value
          ) internal {
              _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
          }
          /**
           * @dev Deprecated. This function has issues similar to the ones found in
           * {IERC20-approve}, and its usage is discouraged.
           *
           * Whenever possible, use {safeIncreaseAllowance} and
           * {safeDecreaseAllowance} instead.
           */
          function safeApprove(
              IERC20Upgradeable token,
              address spender,
              uint256 value
          ) internal {
              // safeApprove should only be called when setting an initial allowance,
              // or when resetting it to zero. To increase and decrease it, use
              // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
              require(
                  (value == 0) || (token.allowance(address(this), spender) == 0),
                  "SafeERC20: approve from non-zero to non-zero allowance"
              );
              _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
          }
          function safeIncreaseAllowance(
              IERC20Upgradeable token,
              address spender,
              uint256 value
          ) internal {
              uint256 newAllowance = token.allowance(address(this), spender) + value;
              _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
          }
          function safeDecreaseAllowance(
              IERC20Upgradeable token,
              address spender,
              uint256 value
          ) internal {
              unchecked {
                  uint256 oldAllowance = token.allowance(address(this), spender);
                  require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                  uint256 newAllowance = oldAllowance - value;
                  _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
              }
          }
          /**
           * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
           * on the return value: the return value is optional (but if data is returned, it must not be false).
           * @param token The token targeted by the call.
           * @param data The call data (encoded using abi.encode or one of its variants).
           */
          function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
              // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
              // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
              // the target address contains contract code and also asserts for success in the low-level call.
              bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
              if (returndata.length > 0) {
                  // Return data is optional
                  require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library AddressUpgradeable {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal onlyInitializing {
          }
          function __Context_init_unchained() internal onlyInitializing {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (utils/Multicall.sol)
      pragma solidity ^0.8.0;
      import "./AddressUpgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides a function to batch together multiple calls in a single external call.
       *
       * _Available since v4.1._
       */
      abstract contract MulticallUpgradeable is Initializable {
          function __Multicall_init() internal onlyInitializing {
          }
          function __Multicall_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev Receives and executes a batch of function calls on this contract.
           */
          function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) {
              results = new bytes[](data.length);
              for (uint256 i = 0; i < data.length; i++) {
                  results[i] = _functionDelegateCall(address(this), data[i]);
              }
              return results;
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) {
              require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract");
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed");
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev String operations.
       */
      library StringsUpgradeable {
          bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              // Inspired by OraclizeAPI's implementation - MIT licence
              // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
              if (value == 0) {
                  return "0";
              }
              uint256 temp = value;
              uint256 digits;
              while (temp != 0) {
                  digits++;
                  temp /= 10;
              }
              bytes memory buffer = new bytes(digits);
              while (value != 0) {
                  digits -= 1;
                  buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                  value /= 10;
              }
              return string(buffer);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              if (value == 0) {
                  return "0x00";
              }
              uint256 temp = value;
              uint256 length = 0;
              while (temp != 0) {
                  length++;
                  temp >>= 8;
              }
              return toHexString(value, length);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = _HEX_SYMBOLS[value & 0xf];
                  value >>= 4;
              }
              require(value == 0, "Strings: hex length insufficient");
              return string(buffer);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
      pragma solidity ^0.8.0;
      import "./IERC165Upgradeable.sol";
      import "../../proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of the {IERC165} interface.
       *
       * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
       * for the additional interface id that will be supported. For example:
       *
       * ```solidity
       * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
       *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
       * }
       * ```
       *
       * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
       */
      abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
          function __ERC165_init() internal onlyInitializing {
          }
          function __ERC165_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IERC165Upgradeable).interfaceId;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[EIP].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165Upgradeable {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/structs/EnumerableSet.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Library for managing
       * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
       * types.
       *
       * Sets have the following properties:
       *
       * - Elements are added, removed, and checked for existence in constant time
       * (O(1)).
       * - Elements are enumerated in O(n). No guarantees are made on the ordering.
       *
       * ```
       * contract Example {
       *     // Add the library methods
       *     using EnumerableSet for EnumerableSet.AddressSet;
       *
       *     // Declare a set state variable
       *     EnumerableSet.AddressSet private mySet;
       * }
       * ```
       *
       * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
       * and `uint256` (`UintSet`) are supported.
       */
      library EnumerableSetUpgradeable {
          // To implement this library for multiple types with as little code
          // repetition as possible, we write it in terms of a generic Set type with
          // bytes32 values.
          // The Set implementation uses private functions, and user-facing
          // implementations (such as AddressSet) are just wrappers around the
          // underlying Set.
          // This means that we can only create new EnumerableSets for types that fit
          // in bytes32.
          struct Set {
              // Storage of set values
              bytes32[] _values;
              // Position of the value in the `values` array, plus 1 because index 0
              // means a value is not in the set.
              mapping(bytes32 => uint256) _indexes;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function _add(Set storage set, bytes32 value) private returns (bool) {
              if (!_contains(set, value)) {
                  set._values.push(value);
                  // The value is stored at length-1, but we add 1 to all indexes
                  // and use 0 as a sentinel value
                  set._indexes[value] = set._values.length;
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function _remove(Set storage set, bytes32 value) private returns (bool) {
              // We read and store the value's index to prevent multiple reads from the same storage slot
              uint256 valueIndex = set._indexes[value];
              if (valueIndex != 0) {
                  // Equivalent to contains(set, value)
                  // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                  // the array, and then remove the last element (sometimes called as 'swap and pop').
                  // This modifies the order of the array, as noted in {at}.
                  uint256 toDeleteIndex = valueIndex - 1;
                  uint256 lastIndex = set._values.length - 1;
                  if (lastIndex != toDeleteIndex) {
                      bytes32 lastvalue = set._values[lastIndex];
                      // Move the last value to the index where the value to delete is
                      set._values[toDeleteIndex] = lastvalue;
                      // Update the index for the moved value
                      set._indexes[lastvalue] = valueIndex; // Replace lastvalue's index to valueIndex
                  }
                  // Delete the slot where the moved value was stored
                  set._values.pop();
                  // Delete the index for the deleted slot
                  delete set._indexes[value];
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function _contains(Set storage set, bytes32 value) private view returns (bool) {
              return set._indexes[value] != 0;
          }
          /**
           * @dev Returns the number of values on the set. O(1).
           */
          function _length(Set storage set) private view returns (uint256) {
              return set._values.length;
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function _at(Set storage set, uint256 index) private view returns (bytes32) {
              return set._values[index];
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function _values(Set storage set) private view returns (bytes32[] memory) {
              return set._values;
          }
          // Bytes32Set
          struct Bytes32Set {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _add(set._inner, value);
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _remove(set._inner, value);
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
              return _contains(set._inner, value);
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(Bytes32Set storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
              return _at(set._inner, index);
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
              return _values(set._inner);
          }
          // AddressSet
          struct AddressSet {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(AddressSet storage set, address value) internal returns (bool) {
              return _add(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(AddressSet storage set, address value) internal returns (bool) {
              return _remove(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(AddressSet storage set, address value) internal view returns (bool) {
              return _contains(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(AddressSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(AddressSet storage set, uint256 index) internal view returns (address) {
              return address(uint160(uint256(_at(set._inner, index))));
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(AddressSet storage set) internal view returns (address[] memory) {
              bytes32[] memory store = _values(set._inner);
              address[] memory result;
              assembly {
                  result := store
              }
              return result;
          }
          // UintSet
          struct UintSet {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(UintSet storage set, uint256 value) internal returns (bool) {
              return _add(set._inner, bytes32(value));
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(UintSet storage set, uint256 value) internal returns (bool) {
              return _remove(set._inner, bytes32(value));
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(UintSet storage set, uint256 value) internal view returns (bool) {
              return _contains(set._inner, bytes32(value));
          }
          /**
           * @dev Returns the number of values on the set. O(1).
           */
          function length(UintSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(UintSet storage set, uint256 index) internal view returns (uint256) {
              return uint256(_at(set._inner, index));
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(UintSet storage set) internal view returns (uint256[] memory) {
              bytes32[] memory store = _values(set._inner);
              uint256[] memory result;
              assembly {
                  result := store
              }
              return result;
          }
      }
      

      File 3 of 3: Split
      // SPDX-License-Identifier: Apache-2.0
      pragma solidity ^0.8.11;
      // Base
      import "./openzeppelin-presets/finance/PaymentSplitterUpgradeable.sol";
      import "./interfaces/IThirdwebContract.sol";
      // Meta-tx
      import "./openzeppelin-presets/metatx/ERC2771ContextUpgradeable.sol";
      // Access
      import "@openzeppelin/contracts-upgradeable/access/AccessControlEnumerableUpgradeable.sol";
      // Utils
      import "@openzeppelin/contracts-upgradeable/utils/MulticallUpgradeable.sol";
      import "./lib/FeeType.sol";
      contract Split is
          IThirdwebContract,
          Initializable,
          MulticallUpgradeable,
          ERC2771ContextUpgradeable,
          AccessControlEnumerableUpgradeable,
          PaymentSplitterUpgradeable
      {
          bytes32 private constant MODULE_TYPE = bytes32("Split");
          uint128 private constant VERSION = 1;
          /// @dev Max bps in the thirdweb system
          uint128 private constant MAX_BPS = 10_000;
          /// @dev Contract level metadata.
          string public contractURI;
          constructor() initializer {}
          /// @dev Performs the job of the constructor.
          /// @dev shares_ are scaled by 10,000 to prevent precision loss when including fees
          function initialize(
              address _defaultAdmin,
              string memory _contractURI,
              address[] memory _trustedForwarders,
              address[] memory _payees,
              uint256[] memory _shares
          ) external initializer {
              // Initialize inherited contracts: most base -> most derived
              __ERC2771Context_init(_trustedForwarders);
              __PaymentSplitter_init(_payees, _shares);
              contractURI = _contractURI;
              _setupRole(DEFAULT_ADMIN_ROLE, _defaultAdmin);
          }
          /// @dev Returns the module type of the contract.
          function contractType() external pure returns (bytes32) {
              return MODULE_TYPE;
          }
          /// @dev Returns the version of the contract.
          function contractVersion() external pure returns (uint8) {
              return uint8(VERSION);
          }
          /**
           * @dev Triggers a transfer to `account` of the amount of Ether they are owed, according to their percentage of the
           * total shares and their previous withdrawals.
           */
          function release(address payable account) public virtual override {
              uint256 payment = _release(account);
              require(payment != 0, "PaymentSplitter: account is not due payment");
          }
          /**
           * @dev Triggers a transfer to `account` of the amount of `token` tokens they are owed, according to their
           * percentage of the total shares and their previous withdrawals. `token` must be the address of an IERC20
           * contract.
           */
          function release(IERC20Upgradeable token, address account) public virtual override {
              uint256 payment = _release(token, account);
              require(payment != 0, "PaymentSplitter: account is not due payment");
          }
          /// @dev Returns the amount of Ether that `account` is owed, according to their percentage of the total shares and returns the payment
          function _release(address payable account) internal returns (uint256) {
              require(shares(account) > 0, "PaymentSplitter: account has no shares");
              uint256 totalReceived = address(this).balance + totalReleased();
              uint256 payment = _pendingPayment(account, totalReceived, released(account));
              if (payment == 0) {
                  return 0;
              }
              _released[account] += payment;
              _totalReleased += payment;
              AddressUpgradeable.sendValue(account, payment);
              emit PaymentReleased(account, payment);
              return payment;
          }
          /// @dev Returns the amount of `token` that `account` is owed, according to their percentage of the total shares and returns the payment
          function _release(IERC20Upgradeable token, address account) internal returns (uint256) {
              require(shares(account) > 0, "PaymentSplitter: account has no shares");
              uint256 totalReceived = token.balanceOf(address(this)) + totalReleased(token);
              uint256 payment = _pendingPayment(account, totalReceived, released(token, account));
              if (payment == 0) {
                  return 0;
              }
              _erc20Released[token][account] += payment;
              _erc20TotalReleased[token] += payment;
              SafeERC20Upgradeable.safeTransfer(token, account, payment);
              emit ERC20PaymentReleased(token, account, payment);
              return payment;
          }
          /**
           * @dev Release the owed amount of token to all of the payees.
           */
          function distribute() public virtual {
              uint256 count = payeeCount();
              for (uint256 i = 0; i < count; i++) {
                  // note: `_release` should not fail because payee always has shares, protected by `_appPay`
                  _release(payable(payee(i)));
              }
          }
          /**
           * @dev Release owed amount of the `token` to all of the payees.
           */
          function distribute(IERC20Upgradeable token) public virtual {
              uint256 count = payeeCount();
              for (uint256 i = 0; i < count; i++) {
                  // note: `_release` should not fail because payee always has shares, protected by `_appPay`
                  _release(token, payee(i));
              }
          }
          /// @dev See ERC2771
          function _msgSender()
              internal
              view
              virtual
              override(ContextUpgradeable, ERC2771ContextUpgradeable)
              returns (address sender)
          {
              return ERC2771ContextUpgradeable._msgSender();
          }
          /// @dev See ERC2771
          function _msgData()
              internal
              view
              virtual
              override(ContextUpgradeable, ERC2771ContextUpgradeable)
              returns (bytes calldata)
          {
              return ERC2771ContextUpgradeable._msgData();
          }
          /// @dev Sets contract URI for the contract-level metadata of the contract.
          function setContractURI(string calldata _uri) external onlyRole(DEFAULT_ADMIN_ROLE) {
              contractURI = _uri;
          }
      }
      // SPDX-License-Identifier: Apache-2.0
      pragma solidity ^0.8.11;
      interface IThirdwebContract {
          /// @dev Returns the module type of the contract.
          function contractType() external pure returns (bytes32);
          /// @dev Returns the version of the contract.
          function contractVersion() external pure returns (uint8);
          /// @dev Returns the metadata URI of the contract.
          function contractURI() external view returns (string memory);
          /**
           *  @dev Sets contract URI for the storefront-level metadata of the contract.
           *       Only module admin can call this function.
           */
          function setContractURI(string calldata _uri) external;
      }
      // SPDX-License-Identifier: Apache-2.0
      pragma solidity ^0.8.11;
      library FeeType {
          uint256 internal constant PRIMARY_SALE = 0;
          uint256 internal constant MARKET_SALE = 1;
          uint256 internal constant SPLIT = 2;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (finance/PaymentSplitter.sol)
      pragma solidity ^0.8.11;
      import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      /**
       *  Changelog:
       *      - Change state variable visibility to internal:
       *          - `_totalReleased`, `_released`, `_erc20TotalReleased`, `_erc20Released`, `_pendingPayment`
       *
       *      - Add `payeeCount`: returns the length of `_payees`
       */
      /**
       * @title PaymentSplitter
       * @dev This contract allows to split Ether payments among a group of accounts. The sender does not need to be aware
       * that the Ether will be split in this way, since it is handled transparently by the contract.
       *
       * The split can be in equal parts or in any other arbitrary proportion. The way this is specified is by assigning each
       * account to a number of shares. Of all the Ether that this contract receives, each account will then be able to claim
       * an amount proportional to the percentage of total shares they were assigned.
       *
       * `PaymentSplitter` follows a _pull payment_ model. This means that payments are not automatically forwarded to the
       * accounts but kept in this contract, and the actual transfer is triggered as a separate step by calling the {release}
       * function.
       *
       * NOTE: This contract assumes that ERC20 tokens will behave similarly to native tokens (Ether). Rebasing tokens, and
       * tokens that apply fees during transfers, are likely to not be supported as expected. If in doubt, we encourage you
       * to run tests before sending real value to this contract.
       */
      contract PaymentSplitterUpgradeable is Initializable, ContextUpgradeable {
          event PayeeAdded(address account, uint256 shares);
          event PaymentReleased(address to, uint256 amount);
          event ERC20PaymentReleased(IERC20Upgradeable indexed token, address to, uint256 amount);
          event PaymentReceived(address from, uint256 amount);
          uint256 private _totalShares;
          uint256 internal _totalReleased;
          mapping(address => uint256) internal _shares;
          mapping(address => uint256) internal _released;
          address[] private _payees;
          mapping(IERC20Upgradeable => uint256) internal _erc20TotalReleased;
          mapping(IERC20Upgradeable => mapping(address => uint256)) internal _erc20Released;
          /**
           * @dev Creates an instance of `PaymentSplitter` where each account in `payees` is assigned the number of shares at
           * the matching position in the `shares` array.
           *
           * All addresses in `payees` must be non-zero. Both arrays must have the same non-zero length, and there must be no
           * duplicates in `payees`.
           */
          function __PaymentSplitter_init(address[] memory payees, uint256[] memory shares_) internal onlyInitializing {
              __Context_init_unchained();
              __PaymentSplitter_init_unchained(payees, shares_);
          }
          function __PaymentSplitter_init_unchained(address[] memory payees, uint256[] memory shares_)
              internal
              onlyInitializing
          {
              require(payees.length == shares_.length, "PaymentSplitter: payees and shares length mismatch");
              require(payees.length > 0, "PaymentSplitter: no payees");
              for (uint256 i = 0; i < payees.length; i++) {
                  _addPayee(payees[i], shares_[i]);
              }
          }
          /**
           * @dev The Ether received will be logged with {PaymentReceived} events. Note that these events are not fully
           * reliable: it's possible for a contract to receive Ether without triggering this function. This only affects the
           * reliability of the events, and not the actual splitting of Ether.
           *
           * To learn more about this see the Solidity documentation for
           * https://solidity.readthedocs.io/en/latest/contracts.html#fallback-function[fallback
           * functions].
           */
          receive() external payable virtual {
              emit PaymentReceived(_msgSender(), msg.value);
          }
          /**
           * @dev Getter for the total shares held by payees.
           */
          function totalShares() public view returns (uint256) {
              return _totalShares;
          }
          /**
           * @dev Getter for the total amount of Ether already released.
           */
          function totalReleased() public view returns (uint256) {
              return _totalReleased;
          }
          /**
           * @dev Getter for the total amount of `token` already released. `token` should be the address of an IERC20
           * contract.
           */
          function totalReleased(IERC20Upgradeable token) public view returns (uint256) {
              return _erc20TotalReleased[token];
          }
          /**
           * @dev Getter for the amount of shares held by an account.
           */
          function shares(address account) public view returns (uint256) {
              return _shares[account];
          }
          /**
           * @dev Getter for the amount of Ether already released to a payee.
           */
          function released(address account) public view returns (uint256) {
              return _released[account];
          }
          /**
           * @dev Getter for the amount of `token` tokens already released to a payee. `token` should be the address of an
           * IERC20 contract.
           */
          function released(IERC20Upgradeable token, address account) public view returns (uint256) {
              return _erc20Released[token][account];
          }
          /**
           * @dev Getter for the address of the payee number `index`.
           */
          function payee(uint256 index) public view returns (address) {
              return _payees[index];
          }
          /**
           * @dev Get the number of payees
           */
          function payeeCount() public view returns (uint256) {
              return _payees.length;
          }
          /**
           * @dev Triggers a transfer to `account` of the amount of Ether they are owed, according to their percentage of the
           * total shares and their previous withdrawals.
           */
          function release(address payable account) public virtual {
              require(_shares[account] > 0, "PaymentSplitter: account has no shares");
              uint256 totalReceived = address(this).balance + totalReleased();
              uint256 payment = _pendingPayment(account, totalReceived, released(account));
              require(payment != 0, "PaymentSplitter: account is not due payment");
              _released[account] += payment;
              _totalReleased += payment;
              AddressUpgradeable.sendValue(account, payment);
              emit PaymentReleased(account, payment);
          }
          /**
           * @dev Triggers a transfer to `account` of the amount of `token` tokens they are owed, according to their
           * percentage of the total shares and their previous withdrawals. `token` must be the address of an IERC20
           * contract.
           */
          function release(IERC20Upgradeable token, address account) public virtual {
              require(_shares[account] > 0, "PaymentSplitter: account has no shares");
              uint256 totalReceived = token.balanceOf(address(this)) + totalReleased(token);
              uint256 payment = _pendingPayment(account, totalReceived, released(token, account));
              require(payment != 0, "PaymentSplitter: account is not due payment");
              _erc20Released[token][account] += payment;
              _erc20TotalReleased[token] += payment;
              SafeERC20Upgradeable.safeTransfer(token, account, payment);
              emit ERC20PaymentReleased(token, account, payment);
          }
          /**
           * @dev internal logic for computing the pending payment of an `account` given the token historical balances and
           * already released amounts.
           */
          function _pendingPayment(
              address account,
              uint256 totalReceived,
              uint256 alreadyReleased
          ) internal view returns (uint256) {
              return (totalReceived * _shares[account]) / _totalShares - alreadyReleased;
          }
          /**
           * @dev Add a new payee to the contract.
           * @param account The address of the payee to add.
           * @param shares_ The number of shares owned by the payee.
           */
          function _addPayee(address account, uint256 shares_) private {
              require(account != address(0), "PaymentSplitter: account is the zero address");
              require(shares_ > 0, "PaymentSplitter: shares are 0");
              require(_shares[account] == 0, "PaymentSplitter: account already has shares");
              _payees.push(account);
              _shares[account] = shares_;
              _totalShares = _totalShares + shares_;
              emit PayeeAdded(account, shares_);
          }
          uint256[43] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (metatx/ERC2771Context.sol)
      pragma solidity ^0.8.11;
      import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
      /**
       * @dev Context variant with ERC2771 support.
       */
      abstract contract ERC2771ContextUpgradeable is Initializable, ContextUpgradeable {
          mapping(address => bool) private _trustedForwarder;
          function __ERC2771Context_init(address[] memory trustedForwarder) internal onlyInitializing {
              __Context_init_unchained();
              __ERC2771Context_init_unchained(trustedForwarder);
          }
          function __ERC2771Context_init_unchained(address[] memory trustedForwarder) internal onlyInitializing {
              for (uint256 i = 0; i < trustedForwarder.length; i++) {
                  _trustedForwarder[trustedForwarder[i]] = true;
              }
          }
          function isTrustedForwarder(address forwarder) public view virtual returns (bool) {
              return _trustedForwarder[forwarder];
          }
          function _msgSender() internal view virtual override returns (address sender) {
              if (isTrustedForwarder(msg.sender)) {
                  // The assembly code is more direct than the Solidity version using `abi.decode`.
                  assembly {
                      sender := shr(96, calldataload(sub(calldatasize(), 20)))
                  }
              } else {
                  return super._msgSender();
              }
          }
          function _msgData() internal view virtual override returns (bytes calldata) {
              if (isTrustedForwarder(msg.sender)) {
                  return msg.data[:msg.data.length - 20];
              } else {
                  return super._msgData();
              }
          }
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol)
      pragma solidity ^0.8.0;
      import "./IAccessControlEnumerableUpgradeable.sol";
      import "./AccessControlUpgradeable.sol";
      import "../utils/structs/EnumerableSetUpgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Extension of {AccessControl} that allows enumerating the members of each role.
       */
      abstract contract AccessControlEnumerableUpgradeable is Initializable, IAccessControlEnumerableUpgradeable, AccessControlUpgradeable {
          function __AccessControlEnumerable_init() internal onlyInitializing {
          }
          function __AccessControlEnumerable_init_unchained() internal onlyInitializing {
          }
          using EnumerableSetUpgradeable for EnumerableSetUpgradeable.AddressSet;
          mapping(bytes32 => EnumerableSetUpgradeable.AddressSet) private _roleMembers;
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IAccessControlEnumerableUpgradeable).interfaceId || super.supportsInterface(interfaceId);
          }
          /**
           * @dev Returns one of the accounts that have `role`. `index` must be a
           * value between 0 and {getRoleMemberCount}, non-inclusive.
           *
           * Role bearers are not sorted in any particular way, and their ordering may
           * change at any point.
           *
           * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
           * you perform all queries on the same block. See the following
           * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
           * for more information.
           */
          function getRoleMember(bytes32 role, uint256 index) public view virtual override returns (address) {
              return _roleMembers[role].at(index);
          }
          /**
           * @dev Returns the number of accounts that have `role`. Can be used
           * together with {getRoleMember} to enumerate all bearers of a role.
           */
          function getRoleMemberCount(bytes32 role) public view virtual override returns (uint256) {
              return _roleMembers[role].length();
          }
          /**
           * @dev Overload {_grantRole} to track enumerable memberships
           */
          function _grantRole(bytes32 role, address account) internal virtual override {
              super._grantRole(role, account);
              _roleMembers[role].add(account);
          }
          /**
           * @dev Overload {_revokeRole} to track enumerable memberships
           */
          function _revokeRole(bytes32 role, address account) internal virtual override {
              super._revokeRole(role, account);
              _roleMembers[role].remove(account);
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControl.sol)
      pragma solidity ^0.8.0;
      import "./IAccessControlUpgradeable.sol";
      import "../utils/ContextUpgradeable.sol";
      import "../utils/StringsUpgradeable.sol";
      import "../utils/introspection/ERC165Upgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module that allows children to implement role-based access
       * control mechanisms. This is a lightweight version that doesn't allow enumerating role
       * members except through off-chain means by accessing the contract event logs. Some
       * applications may benefit from on-chain enumerability, for those cases see
       * {AccessControlEnumerable}.
       *
       * Roles are referred to by their `bytes32` identifier. These should be exposed
       * in the external API and be unique. The best way to achieve this is by
       * using `public constant` hash digests:
       *
       * ```
       * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
       * ```
       *
       * Roles can be used to represent a set of permissions. To restrict access to a
       * function call, use {hasRole}:
       *
       * ```
       * function foo() public {
       *     require(hasRole(MY_ROLE, msg.sender));
       *     ...
       * }
       * ```
       *
       * Roles can be granted and revoked dynamically via the {grantRole} and
       * {revokeRole} functions. Each role has an associated admin role, and only
       * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
       *
       * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
       * that only accounts with this role will be able to grant or revoke other
       * roles. More complex role relationships can be created by using
       * {_setRoleAdmin}.
       *
       * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
       * grant and revoke this role. Extra precautions should be taken to secure
       * accounts that have been granted it.
       */
      abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
          function __AccessControl_init() internal onlyInitializing {
          }
          function __AccessControl_init_unchained() internal onlyInitializing {
          }
          struct RoleData {
              mapping(address => bool) members;
              bytes32 adminRole;
          }
          mapping(bytes32 => RoleData) private _roles;
          bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
          /**
           * @dev Modifier that checks that an account has a specific role. Reverts
           * with a standardized message including the required role.
           *
           * The format of the revert reason is given by the following regular expression:
           *
           *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
           *
           * _Available since v4.1._
           */
          modifier onlyRole(bytes32 role) {
              _checkRole(role, _msgSender());
              _;
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
          }
          /**
           * @dev Returns `true` if `account` has been granted `role`.
           */
          function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
              return _roles[role].members[account];
          }
          /**
           * @dev Revert with a standard message if `account` is missing `role`.
           *
           * The format of the revert reason is given by the following regular expression:
           *
           *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
           */
          function _checkRole(bytes32 role, address account) internal view virtual {
              if (!hasRole(role, account)) {
                  revert(
                      string(
                          abi.encodePacked(
                              "AccessControl: account ",
                              StringsUpgradeable.toHexString(uint160(account), 20),
                              " is missing role ",
                              StringsUpgradeable.toHexString(uint256(role), 32)
                          )
                      )
                  );
              }
          }
          /**
           * @dev Returns the admin role that controls `role`. See {grantRole} and
           * {revokeRole}.
           *
           * To change a role's admin, use {_setRoleAdmin}.
           */
          function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
              return _roles[role].adminRole;
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
              _grantRole(role, account);
          }
          /**
           * @dev Revokes `role` from `account`.
           *
           * If `account` had been granted `role`, emits a {RoleRevoked} event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
              _revokeRole(role, account);
          }
          /**
           * @dev Revokes `role` from the calling account.
           *
           * Roles are often managed via {grantRole} and {revokeRole}: this function's
           * purpose is to provide a mechanism for accounts to lose their privileges
           * if they are compromised (such as when a trusted device is misplaced).
           *
           * If the calling account had been revoked `role`, emits a {RoleRevoked}
           * event.
           *
           * Requirements:
           *
           * - the caller must be `account`.
           */
          function renounceRole(bytes32 role, address account) public virtual override {
              require(account == _msgSender(), "AccessControl: can only renounce roles for self");
              _revokeRole(role, account);
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event. Note that unlike {grantRole}, this function doesn't perform any
           * checks on the calling account.
           *
           * [WARNING]
           * ====
           * This function should only be called from the constructor when setting
           * up the initial roles for the system.
           *
           * Using this function in any other way is effectively circumventing the admin
           * system imposed by {AccessControl}.
           * ====
           *
           * NOTE: This function is deprecated in favor of {_grantRole}.
           */
          function _setupRole(bytes32 role, address account) internal virtual {
              _grantRole(role, account);
          }
          /**
           * @dev Sets `adminRole` as ``role``'s admin role.
           *
           * Emits a {RoleAdminChanged} event.
           */
          function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
              bytes32 previousAdminRole = getRoleAdmin(role);
              _roles[role].adminRole = adminRole;
              emit RoleAdminChanged(role, previousAdminRole, adminRole);
          }
          /**
           * @dev Grants `role` to `account`.
           *
           * Internal function without access restriction.
           */
          function _grantRole(bytes32 role, address account) internal virtual {
              if (!hasRole(role, account)) {
                  _roles[role].members[account] = true;
                  emit RoleGranted(role, account, _msgSender());
              }
          }
          /**
           * @dev Revokes `role` from `account`.
           *
           * Internal function without access restriction.
           */
          function _revokeRole(bytes32 role, address account) internal virtual {
              if (hasRole(role, account)) {
                  _roles[role].members[account] = false;
                  emit RoleRevoked(role, account, _msgSender());
              }
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol)
      pragma solidity ^0.8.0;
      import "./IAccessControlUpgradeable.sol";
      /**
       * @dev External interface of AccessControlEnumerable declared to support ERC165 detection.
       */
      interface IAccessControlEnumerableUpgradeable is IAccessControlUpgradeable {
          /**
           * @dev Returns one of the accounts that have `role`. `index` must be a
           * value between 0 and {getRoleMemberCount}, non-inclusive.
           *
           * Role bearers are not sorted in any particular way, and their ordering may
           * change at any point.
           *
           * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
           * you perform all queries on the same block. See the following
           * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
           * for more information.
           */
          function getRoleMember(bytes32 role, uint256 index) external view returns (address);
          /**
           * @dev Returns the number of accounts that have `role`. Can be used
           * together with {getRoleMember} to enumerate all bearers of a role.
           */
          function getRoleMemberCount(bytes32 role) external view returns (uint256);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev External interface of AccessControl declared to support ERC165 detection.
       */
      interface IAccessControlUpgradeable {
          /**
           * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
           *
           * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
           * {RoleAdminChanged} not being emitted signaling this.
           *
           * _Available since v3.1._
           */
          event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
          /**
           * @dev Emitted when `account` is granted `role`.
           *
           * `sender` is the account that originated the contract call, an admin role
           * bearer except when using {AccessControl-_setupRole}.
           */
          event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
          /**
           * @dev Emitted when `account` is revoked `role`.
           *
           * `sender` is the account that originated the contract call:
           *   - if using `revokeRole`, it is the admin role bearer
           *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
           */
          event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
          /**
           * @dev Returns `true` if `account` has been granted `role`.
           */
          function hasRole(bytes32 role, address account) external view returns (bool);
          /**
           * @dev Returns the admin role that controls `role`. See {grantRole} and
           * {revokeRole}.
           *
           * To change a role's admin, use {AccessControl-_setRoleAdmin}.
           */
          function getRoleAdmin(bytes32 role) external view returns (bytes32);
          /**
           * @dev Grants `role` to `account`.
           *
           * If `account` had not been already granted `role`, emits a {RoleGranted}
           * event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function grantRole(bytes32 role, address account) external;
          /**
           * @dev Revokes `role` from `account`.
           *
           * If `account` had been granted `role`, emits a {RoleRevoked} event.
           *
           * Requirements:
           *
           * - the caller must have ``role``'s admin role.
           */
          function revokeRole(bytes32 role, address account) external;
          /**
           * @dev Revokes `role` from the calling account.
           *
           * Roles are often managed via {grantRole} and {revokeRole}: this function's
           * purpose is to provide a mechanism for accounts to lose their privileges
           * if they are compromised (such as when a trusted device is misplaced).
           *
           * If the calling account had been granted `role`, emits a {RoleRevoked}
           * event.
           *
           * Requirements:
           *
           * - the caller must be `account`.
           */
          function renounceRole(bytes32 role, address account) external;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.0;
      import "../../utils/AddressUpgradeable.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the
       * initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() initializer {}
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           */
          bool private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Modifier to protect an initializer function from being invoked twice.
           */
          modifier initializer() {
              // If the contract is initializing we ignore whether _initialized is set in order to support multiple
              // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the
              // contract may have been reentered.
              require(_initializing ? _isConstructor() : !_initialized, "Initializable: contract is already initialized");
              bool isTopLevelCall = !_initializing;
              if (isTopLevelCall) {
                  _initializing = true;
                  _initialized = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
              }
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} modifier, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          function _isConstructor() private view returns (bool) {
              return !AddressUpgradeable.isContract(address(this));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20Upgradeable {
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) external returns (bool);
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)
      pragma solidity ^0.8.0;
      import "../IERC20Upgradeable.sol";
      import "../../../utils/AddressUpgradeable.sol";
      /**
       * @title SafeERC20
       * @dev Wrappers around ERC20 operations that throw on failure (when the token
       * contract returns false). Tokens that return no value (and instead revert or
       * throw on failure) are also supported, non-reverting calls are assumed to be
       * successful.
       * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
       * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
       */
      library SafeERC20Upgradeable {
          using AddressUpgradeable for address;
          function safeTransfer(
              IERC20Upgradeable token,
              address to,
              uint256 value
          ) internal {
              _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
          }
          function safeTransferFrom(
              IERC20Upgradeable token,
              address from,
              address to,
              uint256 value
          ) internal {
              _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
          }
          /**
           * @dev Deprecated. This function has issues similar to the ones found in
           * {IERC20-approve}, and its usage is discouraged.
           *
           * Whenever possible, use {safeIncreaseAllowance} and
           * {safeDecreaseAllowance} instead.
           */
          function safeApprove(
              IERC20Upgradeable token,
              address spender,
              uint256 value
          ) internal {
              // safeApprove should only be called when setting an initial allowance,
              // or when resetting it to zero. To increase and decrease it, use
              // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
              require(
                  (value == 0) || (token.allowance(address(this), spender) == 0),
                  "SafeERC20: approve from non-zero to non-zero allowance"
              );
              _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
          }
          function safeIncreaseAllowance(
              IERC20Upgradeable token,
              address spender,
              uint256 value
          ) internal {
              uint256 newAllowance = token.allowance(address(this), spender) + value;
              _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
          }
          function safeDecreaseAllowance(
              IERC20Upgradeable token,
              address spender,
              uint256 value
          ) internal {
              unchecked {
                  uint256 oldAllowance = token.allowance(address(this), spender);
                  require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                  uint256 newAllowance = oldAllowance - value;
                  _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
              }
          }
          /**
           * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
           * on the return value: the return value is optional (but if data is returned, it must not be false).
           * @param token The token targeted by the call.
           * @param data The call data (encoded using abi.encode or one of its variants).
           */
          function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
              // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
              // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
              // the target address contains contract code and also asserts for success in the low-level call.
              bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
              if (returndata.length > 0) {
                  // Return data is optional
                  require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library AddressUpgradeable {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal onlyInitializing {
          }
          function __Context_init_unchained() internal onlyInitializing {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (utils/Multicall.sol)
      pragma solidity ^0.8.0;
      import "./AddressUpgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides a function to batch together multiple calls in a single external call.
       *
       * _Available since v4.1._
       */
      abstract contract MulticallUpgradeable is Initializable {
          function __Multicall_init() internal onlyInitializing {
          }
          function __Multicall_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev Receives and executes a batch of function calls on this contract.
           */
          function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) {
              results = new bytes[](data.length);
              for (uint256 i = 0; i < data.length; i++) {
                  results[i] = _functionDelegateCall(address(this), data[i]);
              }
              return results;
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) {
              require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract");
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed");
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev String operations.
       */
      library StringsUpgradeable {
          bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              // Inspired by OraclizeAPI's implementation - MIT licence
              // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
              if (value == 0) {
                  return "0";
              }
              uint256 temp = value;
              uint256 digits;
              while (temp != 0) {
                  digits++;
                  temp /= 10;
              }
              bytes memory buffer = new bytes(digits);
              while (value != 0) {
                  digits -= 1;
                  buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                  value /= 10;
              }
              return string(buffer);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              if (value == 0) {
                  return "0x00";
              }
              uint256 temp = value;
              uint256 length = 0;
              while (temp != 0) {
                  length++;
                  temp >>= 8;
              }
              return toHexString(value, length);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = _HEX_SYMBOLS[value & 0xf];
                  value >>= 4;
              }
              require(value == 0, "Strings: hex length insufficient");
              return string(buffer);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
      pragma solidity ^0.8.0;
      import "./IERC165Upgradeable.sol";
      import "../../proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of the {IERC165} interface.
       *
       * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
       * for the additional interface id that will be supported. For example:
       *
       * ```solidity
       * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
       *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
       * }
       * ```
       *
       * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
       */
      abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
          function __ERC165_init() internal onlyInitializing {
          }
          function __ERC165_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IERC165Upgradeable).interfaceId;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[EIP].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165Upgradeable {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/structs/EnumerableSet.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Library for managing
       * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
       * types.
       *
       * Sets have the following properties:
       *
       * - Elements are added, removed, and checked for existence in constant time
       * (O(1)).
       * - Elements are enumerated in O(n). No guarantees are made on the ordering.
       *
       * ```
       * contract Example {
       *     // Add the library methods
       *     using EnumerableSet for EnumerableSet.AddressSet;
       *
       *     // Declare a set state variable
       *     EnumerableSet.AddressSet private mySet;
       * }
       * ```
       *
       * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
       * and `uint256` (`UintSet`) are supported.
       */
      library EnumerableSetUpgradeable {
          // To implement this library for multiple types with as little code
          // repetition as possible, we write it in terms of a generic Set type with
          // bytes32 values.
          // The Set implementation uses private functions, and user-facing
          // implementations (such as AddressSet) are just wrappers around the
          // underlying Set.
          // This means that we can only create new EnumerableSets for types that fit
          // in bytes32.
          struct Set {
              // Storage of set values
              bytes32[] _values;
              // Position of the value in the `values` array, plus 1 because index 0
              // means a value is not in the set.
              mapping(bytes32 => uint256) _indexes;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function _add(Set storage set, bytes32 value) private returns (bool) {
              if (!_contains(set, value)) {
                  set._values.push(value);
                  // The value is stored at length-1, but we add 1 to all indexes
                  // and use 0 as a sentinel value
                  set._indexes[value] = set._values.length;
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function _remove(Set storage set, bytes32 value) private returns (bool) {
              // We read and store the value's index to prevent multiple reads from the same storage slot
              uint256 valueIndex = set._indexes[value];
              if (valueIndex != 0) {
                  // Equivalent to contains(set, value)
                  // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                  // the array, and then remove the last element (sometimes called as 'swap and pop').
                  // This modifies the order of the array, as noted in {at}.
                  uint256 toDeleteIndex = valueIndex - 1;
                  uint256 lastIndex = set._values.length - 1;
                  if (lastIndex != toDeleteIndex) {
                      bytes32 lastvalue = set._values[lastIndex];
                      // Move the last value to the index where the value to delete is
                      set._values[toDeleteIndex] = lastvalue;
                      // Update the index for the moved value
                      set._indexes[lastvalue] = valueIndex; // Replace lastvalue's index to valueIndex
                  }
                  // Delete the slot where the moved value was stored
                  set._values.pop();
                  // Delete the index for the deleted slot
                  delete set._indexes[value];
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function _contains(Set storage set, bytes32 value) private view returns (bool) {
              return set._indexes[value] != 0;
          }
          /**
           * @dev Returns the number of values on the set. O(1).
           */
          function _length(Set storage set) private view returns (uint256) {
              return set._values.length;
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function _at(Set storage set, uint256 index) private view returns (bytes32) {
              return set._values[index];
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function _values(Set storage set) private view returns (bytes32[] memory) {
              return set._values;
          }
          // Bytes32Set
          struct Bytes32Set {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _add(set._inner, value);
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _remove(set._inner, value);
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
              return _contains(set._inner, value);
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(Bytes32Set storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
              return _at(set._inner, index);
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
              return _values(set._inner);
          }
          // AddressSet
          struct AddressSet {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(AddressSet storage set, address value) internal returns (bool) {
              return _add(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(AddressSet storage set, address value) internal returns (bool) {
              return _remove(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(AddressSet storage set, address value) internal view returns (bool) {
              return _contains(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(AddressSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(AddressSet storage set, uint256 index) internal view returns (address) {
              return address(uint160(uint256(_at(set._inner, index))));
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(AddressSet storage set) internal view returns (address[] memory) {
              bytes32[] memory store = _values(set._inner);
              address[] memory result;
              assembly {
                  result := store
              }
              return result;
          }
          // UintSet
          struct UintSet {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(UintSet storage set, uint256 value) internal returns (bool) {
              return _add(set._inner, bytes32(value));
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(UintSet storage set, uint256 value) internal returns (bool) {
              return _remove(set._inner, bytes32(value));
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(UintSet storage set, uint256 value) internal view returns (bool) {
              return _contains(set._inner, bytes32(value));
          }
          /**
           * @dev Returns the number of values on the set. O(1).
           */
          function length(UintSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(UintSet storage set, uint256 index) internal view returns (uint256) {
              return uint256(_at(set._inner, index));
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(UintSet storage set) internal view returns (uint256[] memory) {
              bytes32[] memory store = _values(set._inner);
              uint256[] memory result;
              assembly {
                  result := store
              }
              return result;
          }
      }