Transaction Hash:
Block:
10291797 at Jun-18-2020 08:16:19 PM +UTC
Transaction Fee:
0.00584946 ETH
$15.49
Gas Used:
194,982 Gas / 30 Gwei
Emitted Events:
100 |
HXY.Transfer( from=[Sender] 0x68b008f2c06fa83c8cb8bb170227ae35264d1b66, to=[Sender] 0x68b008f2c06fa83c8cb8bb170227ae35264d1b66, value=683675697033 )
|
101 |
HXY.Freezed( to=[Sender] 0x68b008f2c06fa83c8cb8bb170227ae35264d1b66, release=1592511379, amount=683675697033 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x0FFF95D5...54af104a8 | |||||
0x68B008f2...5264d1B66 |
0.012717728913590126 Eth
Nonce: 48
|
0.006868268913590126 Eth
Nonce: 49
| 0.00584946 | ||
0xEA674fdD...16B898ec8
Miner
| (Ethermine) | 1,477.495818992356842233 Eth | 1,477.501668452356842233 Eth | 0.00584946 |
Execution Trace
HXY.freezeHxy( lockAmount=683675697033 )
freezeHxy[HXY (ln:1838)]
freeze[HXY (ln:1839)]
_msgSender[HXY (ln:1839)]
add[HXY (ln:1840)]
pragma solidity ^0.6.2; // SPDX-License-Identifier: MIT /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ contract Context { // Empty internal constructor, to prevent people from mistakenly deploying // an instance of this contract, which should be used via inheritance. constructor () internal { } function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } } /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20MinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) internal _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 internal _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _cap; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol) public { _name = name; _symbol = symbol; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { require(recipient != address(this), "ERC20: Cannot transfer to self"); _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc.S * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } // SPDX-License-Identifier: MIT /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256` * (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(value))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(value))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(value))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint256(_at(set._inner, index))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } } // SPDX-License-Identifier: MIT /** * @dev Contract module that allows children to implement role-based access * control mechanisms. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. */ abstract contract AccessControl is Context { using EnumerableSet for EnumerableSet.AddressSet; using Address for address; struct RoleData { EnumerableSet.AddressSet members; bytes32 adminRole; } mapping (bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view returns (bool) { return _roles[role].members.contains(account); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view returns (uint256) { return _roles[role].members.length(); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view returns (address) { return _roles[role].members.at(index); } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant"); _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke"); _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) public virtual { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { _roles[role].adminRole = adminRole; } function _grantRole(bytes32 role, address account) private { if (_roles[role].members.add(account)) { emit RoleGranted(role, account, _msgSender()); } } function _revokeRole(bytes32 role, address account) private { if (_roles[role].members.remove(account)) { emit RoleRevoked(role, account, _msgSender()); } } } // SPDX-License-Identifier: MIT /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ contract ReentrancyGuard { bool private _notEntered; constructor () internal { // Storing an initial non-zero value makes deployment a bit more // expensive, but in exchange the refund on every call to nonReentrant // will be lower in amount. Since refunds are capped to a percetange of // the total transaction's gas, it is best to keep them low in cases // like this one, to increase the likelihood of the full refund coming // into effect. _notEntered = true; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_notEntered, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _notEntered = false; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _notEntered = true; } } library WhitelistLib { struct AllowedAddress { bool tradeable; uint256 lockPeriod; uint256 dailyLimit; uint256 dailyLimitToday; uint256 addedAt; uint256 recordTime; } } contract HexWhitelist is AccessControl, ReentrancyGuard { bytes32 public constant DEPLOYER_ROLE = keccak256("DEPLOYER_ROLE"); uint256 public constant SECONDS_IN_DAY = 86400; using WhitelistLib for WhitelistLib.AllowedAddress; mapping(address => WhitelistLib.AllowedAddress) internal exchanges; mapping(address => WhitelistLib.AllowedAddress) internal dapps; mapping(address => WhitelistLib.AllowedAddress) internal referrals; uint256 internal whitelistRecordTime; modifier onlyAdminOrDeployerRole() { bool hasAdminRole = hasRole(DEFAULT_ADMIN_ROLE, _msgSender()); bool hasDeployerRole = hasRole(DEPLOYER_ROLE, _msgSender()); require(hasAdminRole || hasDeployerRole, "Must have admin or deployer role"); _; } constructor (address _adminAddress) public { _setupRole(DEPLOYER_ROLE, _msgSender()); _setupRole(DEFAULT_ADMIN_ROLE, _adminAddress); whitelistRecordTime = SafeMath.add(block.timestamp, SafeMath.mul(1, SECONDS_IN_DAY)); } function registerExchangeTradeable(address _address, uint256 dailyLimit) public onlyAdminOrDeployerRole { _registerExchange(_address, true, 0, dailyLimit); } function registerDappTradeable(address _address, uint256 dailyLimit) public onlyAdminOrDeployerRole { _registerDapp(_address, true, 0, dailyLimit); } function registerReferralTradeable(address _address, uint256 dailyLimit) public onlyAdminOrDeployerRole { _registerReferral(_address, true, 0, dailyLimit); } function registerExchangeNonTradeable(address _address, uint256 dailyLimit, uint256 lockPeriod) public onlyAdminOrDeployerRole { _registerExchange(_address, false, lockPeriod, dailyLimit); } function registerDappNonTradeable(address _address, uint256 dailyLimit, uint256 lockPeriod) public onlyAdminOrDeployerRole { _registerDapp(_address, false, lockPeriod, dailyLimit); } function registerReferralNonTradeable(address _address, uint256 dailyLimit, uint256 lockPeriod) public onlyAdminOrDeployerRole { _registerReferral(_address, false, lockPeriod, dailyLimit); } function unregisterExchange(address _address) public onlyAdminOrDeployerRole { delete exchanges[_address]; } function unregisterDapp(address _address) public onlyAdminOrDeployerRole { delete dapps[_address]; } function unregisterReferral(address _address) public onlyAdminOrDeployerRole { delete referrals[_address]; } function setExchangepDailyLimit(address _address, uint256 _dailyLimit) public onlyAdminOrDeployerRole { exchanges[_address].dailyLimit = _dailyLimit; } function setDappDailyLimit(address _address, uint256 _dailyLimit) public onlyAdminOrDeployerRole { dapps[_address].dailyLimit = _dailyLimit; } function setReferralDailyLimit(address _address, uint256 _dailyLimit) public onlyAdminOrDeployerRole { referrals[_address].dailyLimit = _dailyLimit; } function setExchangeLockPeriod(address _address, uint256 _lockPeriod) public onlyAdminOrDeployerRole { require(!getExchangeTradeable(_address), "cannot set lock period to tradeable address"); exchanges[_address].lockPeriod = _lockPeriod; } function setDappLockPeriod(address _address, uint256 _lockPeriod) public onlyAdminOrDeployerRole { require(!getExchangeTradeable(_address), "cannot set lock period to tradeable address"); dapps[_address].lockPeriod = _lockPeriod; } function setReferralLockPeriod(address _address, uint256 _lockPeriod) public onlyAdminOrDeployerRole { require(!getExchangeTradeable(_address), "cannot set lock period to tradeable address"); dapps[_address].lockPeriod = _lockPeriod; } function addToExchangeDailyLimit(address _address, uint256 amount) public { if (exchanges[_address].dailyLimit > 0) { if (isNewDayStarted(exchanges[_address].recordTime)) { exchanges[_address].dailyLimitToday = 0; exchanges[_address].recordTime = getNewRecordTime(); } uint256 limitToday = dapps[_address].dailyLimitToday; require(SafeMath.add(limitToday, amount) < exchanges[_address].dailyLimit, "daily limit exceeded"); exchanges[_address].dailyLimitToday = SafeMath.add(limitToday, amount); } } function addToDappDailyLimit(address _address, uint256 amount) public { if (dapps[_address].dailyLimit > 0) { if (isNewDayStarted(dapps[_address].recordTime)) { dapps[_address].dailyLimitToday = 0; dapps[_address].recordTime = getNewRecordTime(); } uint256 limitToday = dapps[_address].dailyLimitToday; require(SafeMath.add(limitToday, amount) < dapps[_address].dailyLimit, "daily limit exceeded"); dapps[_address].dailyLimitToday = SafeMath.add(limitToday, amount); } } function addToReferralDailyLimit(address _address, uint256 amount) public { if (referrals[_address].dailyLimit > 0) { if (isNewDayStarted(referrals[_address].recordTime)) { referrals[_address].dailyLimitToday = 0; referrals[_address].recordTime = getNewRecordTime(); } uint256 limitToday = referrals[_address].dailyLimitToday; require(SafeMath.add(limitToday, amount) < referrals[_address].dailyLimit, "daily limit exceeded"); referrals[_address].dailyLimitToday = SafeMath.add(limitToday, amount); } } function isRegisteredDapp(address _address) public view returns (bool) { return (dapps[_address].addedAt != 0) ? true : false; } function isRegisteredReferral(address _address) public view returns (bool) { if (dapps[_address].addedAt != 0) { return true; } else { return false; } } function isRegisteredDappOrReferral(address executionAddress) public view returns (bool) { if (isRegisteredDapp(executionAddress) || isRegisteredReferral(executionAddress)) { return true; } else { return false; } } function isRegisteredExchange(address _address) public view returns (bool) { if (exchanges[_address].addedAt != 0) { return true; } else { return false; } } function getExchangeTradeable(address _address) public view returns (bool) { return exchanges[_address].tradeable; } function getDappTradeable(address _address) public view returns (bool) { return dapps[_address].tradeable; } function getReferralTradeable(address _address) public view returns (bool) { return referrals[_address].tradeable; } function getDappOrReferralTradeable(address _address) public view returns (bool) { if (isRegisteredDapp(_address)) { return dapps[_address].tradeable; } else { return referrals[_address].tradeable; } } function getExchangeLockPeriod(address _address) public view returns (uint256) { return exchanges[_address].lockPeriod; } function getDappLockPeriod(address _address) public view returns (uint256) { return dapps[_address].lockPeriod; } function getReferralLockPeriod(address _address) public view returns (uint256) { return referrals[_address].lockPeriod; } function getDappOrReferralLockPeriod(address _address) public view returns (uint256) { if (isRegisteredDapp(_address)) { return dapps[_address].lockPeriod; } else { return referrals[_address].lockPeriod; } } function getDappDailyLimit(address _address) public view returns (uint256) { return dapps[_address].dailyLimit; } function getReferralDailyLimit(address _address) public view returns (uint256) { return referrals[_address].dailyLimit; } function getDappOrReferralDailyLimit(address _address) public view returns (uint256) { if (isRegisteredDapp(_address)) { return dapps[_address].dailyLimit; } else { return referrals[_address].dailyLimit; } } function getExchangeTodayMinted(address _address) public view returns (uint256) { return exchanges[_address].dailyLimitToday; } function getDappTodayMinted(address _address) public view returns (uint256) { return dapps[_address].dailyLimitToday; } function getReferralTodayMinted(address _address) public view returns (uint256) { return referrals[_address].dailyLimitToday; } function getExchangeRecordTimed(address _address) public view returns (uint256) { return exchanges[_address].recordTime; } function getDappRecordTimed(address _address) public view returns (uint256) { return dapps[_address].recordTime; } function getReferralRecordTimed(address _address) public view returns (uint256) { return referrals[_address].recordTime; } function getNewRecordTime() internal view returns (uint256) { return SafeMath.add(block.timestamp, SafeMath.mul(1, SECONDS_IN_DAY)); } function isNewDayStarted(uint256 oldRecordTime) internal view returns (bool) { return block.timestamp > oldRecordTime ? true : false; } function _registerExchange(address _address, bool tradeable, uint256 lockPeriod, uint256 dailyLimit) internal { require(!isRegisteredDappOrReferral(_address), "address already registered as dapp or referral"); require(!isRegisteredExchange(_address), "exchange already registered"); exchanges[_address] = WhitelistLib.AllowedAddress({ tradeable: tradeable, lockPeriod: lockPeriod, dailyLimit: dailyLimit, dailyLimitToday: 0, addedAt: block.timestamp, recordTime: getNewRecordTime() }); } function _registerDapp(address _address, bool tradeable, uint256 lockPeriod, uint256 dailyLimit) internal { require(!isRegisteredExchange(_address) && !isRegisteredReferral(_address), "address already registered as exchange or referral"); require(!isRegisteredDapp(_address), "address already registered"); dapps[_address] = WhitelistLib.AllowedAddress({ tradeable: tradeable, lockPeriod: lockPeriod, dailyLimit: dailyLimit, dailyLimitToday: 0, addedAt: block.timestamp, recordTime: getNewRecordTime() }); } function _registerReferral(address _address, bool tradeable, uint256 lockPeriod, uint256 dailyLimit) internal { require(!isRegisteredExchange(_address) && !isRegisteredDapp(_address), "address already registered as exchange or referral"); require(!isRegisteredReferral(_address), "address already registered"); referrals[_address] = WhitelistLib.AllowedAddress({ tradeable: tradeable, lockPeriod: lockPeriod, dailyLimit: dailyLimit, dailyLimitToday: 0, addedAt: block.timestamp, recordTime: getNewRecordTime() }); } } contract HexMoneyInternal is AccessControl, ReentrancyGuard { bytes32 public constant DEPLOYER_ROLE = keccak256("DEPLOYER_ROLE"); // production uint256 public constant SECONDS_IN_DAY = 86400; HexWhitelist internal whitelist; modifier onlyAdminOrDeployerRole() { bool hasAdminRole = hasRole(DEFAULT_ADMIN_ROLE, _msgSender()); bool hasDeployerRole = hasRole(DEPLOYER_ROLE, _msgSender()); require(hasAdminRole || hasDeployerRole, "Must have admin or deployer role"); _; } function getWhitelistAddress() public view returns (address) { return address(whitelist); } } /** * @dev Extension of {ERC20} that adds a cap to the supply of tokens. */ abstract contract ERC20FreezableCapped is ERC20, HexMoneyInternal { uint256 public constant MINIMAL_FREEZE_PERIOD = 7; // 7 days // freezing chains mapping (bytes32 => uint256) internal chains; // freezing amounts for each chain //mapping (bytes32 => uint) internal freezings; mapping(bytes32 => Freezing) internal freezings; // total freezing balance per address mapping (address => uint) internal freezingBalance; mapping(address => bytes32[]) internal freezingsByUser; mapping (address => uint256) internal latestFreezingTime; struct Freezing { address user; uint256 startDate; uint256 freezeDays; uint256 freezeAmount; bool capitalized; } event Freezed(address indexed to, uint256 release, uint amount); event Released(address indexed owner, uint amount); uint256 private _cap; /** * @dev Sets the value of the `cap`. This value is immutable, it can only be * set once during construction. */ constructor (uint256 cap) public { require(cap > 0, "ERC20Capped: cap is 0"); _cap = cap; } /** * @dev Gets the balance of the specified address include freezing tokens. * @param account The address to query the the balance of. * @return balance An uint256 representing the amount owned by the passed address. */ function balanceOf(address account) public view virtual override returns (uint256) { return super.balanceOf(account) + freezingBalance[account]; } /** * @dev Gets the balance of the specified address without freezing tokens. * @param account The address to query the the balance of. * @return balance An uint256 representing the amount owned by the passed address. */ function actualBalanceOf(address account) public view returns (uint256 balance) { return super.balanceOf(account); } function freezingBalanceOf(address account) public view returns (uint256 balance) { return freezingBalance[account]; } function latestFreezeTimeOf(address account) public view returns (uint256) { return latestFreezingTime[account]; } /** * @dev Returns the cap on the token's total supply. */ function cap() public view returns (uint256) { return _cap; } function getUserFreezings(address _user) public view returns (bytes32[] memory userFreezings) { return freezingsByUser[_user]; } function getFreezingById(bytes32 freezingId) public view returns (address user, uint256 startDate, uint256 freezeDays, uint256 freezeAmount, bool capitalized) { Freezing memory userFreeze = freezings[freezingId]; user = userFreeze.user; startDate = userFreeze.startDate; freezeDays = userFreeze.freezeDays; freezeAmount = userFreeze.freezeAmount; capitalized = userFreeze.capitalized; } function freeze(address _to, uint256 _start, uint256 _freezeDays, uint256 _amount) internal { require(_to != address(0x0), "FreezeContract: address cannot be zero"); require(_start >= block.timestamp, "FreezeContract: start date cannot be in past"); require(_freezeDays >= 0, "FreezeContract: amount of freeze days cannot be zero"); require(_amount <= _balances[_msgSender()], "FreezeContract: freeze amount exceeds unfrozen balance"); Freezing memory userFreeze = Freezing({ user: _to, startDate: _start, freezeDays: _freezeDays, freezeAmount: _amount, capitalized: false }); bytes32 freezeId = _toFreezeKey(_to, _start); _balances[_msgSender()] = _balances[_msgSender()].sub(_amount); freezingBalance[_to] = freezingBalance[_to].add(_amount); freezings[freezeId] = userFreeze; freezingsByUser[_to].push(freezeId); latestFreezingTime[_to] = _start; emit Transfer(_msgSender(), _to, _amount); emit Freezed(_to, _start, _amount); } function mintAndFreeze(address _to, uint256 _start, uint256 _freezeDays, uint256 _amount) internal { require(_to != address(0x0), "FreezeContract: address cannot be zero"); require(_start >= block.timestamp, "FreezeContract: start date cannot be in past"); require(_freezeDays >= 0, "FreezeContract: amount of freeze days cannot be zero"); Freezing memory userFreeze = Freezing({ user: _to, startDate: _start, freezeDays: _freezeDays, freezeAmount: _amount, capitalized: false }); bytes32 freezeId = _toFreezeKey(_to, _start); freezingBalance[_to] = freezingBalance[_to].add(_amount); freezings[freezeId] = userFreeze; freezingsByUser[_to].push(freezeId); latestFreezingTime[_to] = _start; _totalSupply = _totalSupply.add(_amount); emit Transfer(_msgSender(), _to, _amount); emit Freezed(_to, _start, _amount); } function _toFreezeKey(address _user, uint256 _startDate) internal pure returns (bytes32) { return keccak256(abi.encodePacked(_user, _startDate)); } function release(uint256 _startTime) internal { bytes32 freezeId = _toFreezeKey(_msgSender(), _startTime); Freezing memory userFreeze = freezings[freezeId]; uint256 lockUntil = _daysToTimestampFrom(userFreeze.startDate, userFreeze.freezeDays); require(block.timestamp >= lockUntil, "cannot release before lock"); uint256 amount = userFreeze.freezeAmount; _balances[_msgSender()] = _balances[_msgSender()].add(amount); freezingBalance[_msgSender()] = freezingBalance[_msgSender()].sub(amount); _deleteFreezing(freezeId, freezingsByUser[_msgSender()]); emit Released(_msgSender(), amount); } function refreeze(uint256 _startTime, uint256 addAmount) internal { bytes32 freezeId = _toFreezeKey(_msgSender(), _startTime); Freezing storage userFreeze = freezings[freezeId]; uint256 lockUntil; if (!userFreeze.capitalized) { lockUntil = _daysToTimestampFrom(userFreeze.startDate, userFreeze.freezeDays); } else { lockUntil = _daysToTimestampFrom(userFreeze.startDate, 1); } require(block.timestamp >= lockUntil, "cannot refreeze before lock"); bytes32 newFreezeId = _toFreezeKey(userFreeze.user, block.timestamp); uint256 oldFreezeAmount = userFreeze.freezeAmount; uint256 newFreezeAmount = SafeMath.add(userFreeze.freezeAmount, addAmount); Freezing memory newFreeze = Freezing({ user: userFreeze.user, startDate: block.timestamp, freezeDays: userFreeze.freezeDays, freezeAmount: newFreezeAmount, capitalized: true }); freezingBalance[_msgSender()] = freezingBalance[_msgSender()].add(addAmount); freezings[newFreezeId] = newFreeze; freezingsByUser[userFreeze.user].push(newFreezeId); latestFreezingTime[userFreeze.user] = block.timestamp; _deleteFreezing(freezeId, freezingsByUser[_msgSender()]); delete freezings[freezeId]; emit Released(_msgSender(), oldFreezeAmount); emit Transfer(_msgSender(), _msgSender(), addAmount); emit Freezed(_msgSender(), block.timestamp, newFreezeAmount); } function _deleteFreezing(bytes32 freezingId, bytes32[] storage userFreezings) internal { uint256 freezingIndex; bool freezingFound; for (uint256 i; i < userFreezings.length; i++) { if (userFreezings[i] == freezingId) { freezingIndex = i; freezingFound = true; } } if (freezingFound) { userFreezings[freezingIndex] = userFreezings[userFreezings.length - 1]; delete userFreezings[userFreezings.length - 1]; userFreezings.pop(); } } function _daysToTimestampFrom(uint256 from, uint256 lockDays) internal pure returns(uint256) { return SafeMath.add(from, SafeMath.mul(lockDays, SECONDS_IN_DAY)); } function _daysToTimestamp(uint256 lockDays) internal view returns(uint256) { return _daysToTimestampFrom(block.timestamp, lockDays); } function _getBaseLockDays() internal view returns (uint256) { return _daysToTimestamp(MINIMAL_FREEZE_PERIOD); } function _getBaseLockDaysFrom(uint256 from) internal pure returns (uint256) { return _daysToTimestampFrom(from, MINIMAL_FREEZE_PERIOD); } /** * @dev See {ERC20-_beforeTokenTransfer}. * * Requirements: * * - minted tokens must not cause the total supply to go over the cap. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override { super._beforeTokenTransfer(from, to, amount); if (from == address(0)) { // When minting tokens require(totalSupply().add(amount) <= _cap, "ERC20Capped: cap exceeded"); } } } abstract contract HexMoneyTeam is AccessControl { bytes32 public constant TEAM_ROLE = keccak256("TEAM_ROLE"); address payable internal teamAddress; modifier onlyTeamRole() { require(hasRole(TEAM_ROLE, _msgSender()), "Must have admin role to setup"); _; } function getTeamAddress() public view returns (address) { return teamAddress; } } contract HXY is ERC20FreezableCapped, HexMoneyTeam { using WhitelistLib for WhitelistLib.AllowedAddress; uint256 internal liquidSupply = 694866350105876; uint256 internal lockedSupply = SafeMath.mul(6, 10 ** 14); uint256 internal lockedSupplyFreezingStarted; address internal lockedSupplyAddress; address internal liquidSupplyAddress; struct LockedSupplyAddresses { address firstAddress; address secondAddress; address thirdAddress; address fourthAddress; address fifthAddress; address sixthAddress; } LockedSupplyAddresses internal lockedSupplyAddresses; bool internal lockedSupplyPreminted; // total amounts variables uint256 internal totalMinted; uint256 internal totalFrozen; uint256 internal totalCirculating; uint256 internal totalPayedInterest; // round logic structures uint256 internal hxyMintedMultiplier = 10 ** 6; uint256[] internal hxyRoundMintAmount = [3, 6, 9, 12, 15, 18, 21, 24, 27]; uint256 internal baseHexToHxyRate = 10 ** 3; uint256[] internal hxyRoundBaseRate = [2, 3, 4, 5, 6, 7, 8, 9, 10]; uint256 internal maxHxyRounds = 9; // initial round uint256 internal currentHxyRound; uint256 internal currentHxyRoundRate = SafeMath.mul(hxyRoundBaseRate[0], baseHexToHxyRate); //constructor(address payable _teamAddress, address _liqSupAddress, address _lockSupAddress, address _migratedSupplyAddress) constructor(address _whitelistAddress, address _liqSupAddress, uint256 _liqSupAmount) public ERC20FreezableCapped(SafeMath.mul(60, 10 ** 14)) // cap = 60,000,000 ERC20("HEX Money", "HXY") { require(address(_whitelistAddress) != address(0x0), "whitelist address should not be empty"); require(address(_liqSupAddress) != address(0x0), "liquid supply address should not be empty"); _setupDecimals(8); _setupRole(DEPLOYER_ROLE, _msgSender()); whitelist = HexWhitelist(_whitelistAddress); _premintLiquidSupply(_liqSupAddress, _liqSupAmount); } function getRemainingHxyInRound() public view returns (uint256) { return _getRemainingHxyInRound(currentHxyRound); } function getTotalHxyInRound() public view returns (uint256) { return _getTotalHxyInRound(currentHxyRound); } function getTotalHxyMinted() public view returns (uint256) { return totalMinted; } function getCirculatingSupply() public view returns (uint256) { return totalCirculating; } function getCurrentHxyRound() public view returns (uint256) { return currentHxyRound; } function getCurrentHxyRate() public view returns (uint256) { return currentHxyRoundRate; } function getTotalFrozen() public view returns (uint256) { return totalFrozen; } function getTotalPayedInterest() public view returns (uint256) { return totalPayedInterest; } function getCurrentInterestAmount(address _addr, uint256 _freezeStartDate) public view returns (uint256) { bytes32 freezeId = _toFreezeKey(_addr, _freezeStartDate); Freezing memory userFreeze = freezings[freezeId]; uint256 frozenTokens = userFreeze.freezeAmount; if (frozenTokens != 0) { uint256 startFreezeDate = userFreeze.startDate; uint256 interestDays = SafeMath.div(SafeMath.sub(block.timestamp, startFreezeDate), SECONDS_IN_DAY); return SafeMath.mul(SafeMath.div(frozenTokens, 1000), interestDays); } else { return 0; } } function mintFromExchange(address account, uint256 amount) public { address executionAddress = _msgSender(); require(whitelist.isRegisteredExchange(executionAddress), "must be executed from whitelisted dapp"); whitelist.addToExchangeDailyLimit(executionAddress, amount); if (whitelist.getExchangeTradeable(executionAddress)) { mint(account, amount); } else { uint256 lockPeriod = whitelist.getExchangeLockPeriod(executionAddress); mintAndFreezeTo(account, amount, lockPeriod); } } function mintFromDappOrReferral(address account, uint256 amount) public { address executionAddress = _msgSender(); require(whitelist.isRegisteredDappOrReferral(executionAddress), "must be executed from whitelisted address"); if (whitelist.isRegisteredDapp(executionAddress)) { whitelist.addToDappDailyLimit(executionAddress, amount); } else { whitelist.addToReferralDailyLimit(executionAddress, amount); } if (whitelist.getDappTradeable(executionAddress)) { _mintDirectly(account, amount); } else { uint256 lockPeriod = whitelist.getDappOrReferralLockPeriod(executionAddress); _mintAndFreezeDirectly(account, amount, lockPeriod); } } function freezeHxy(uint256 lockAmount) public { freeze(_msgSender(), block.timestamp, MINIMAL_FREEZE_PERIOD, lockAmount); totalFrozen = SafeMath.add(totalFrozen, lockAmount); totalCirculating = SafeMath.sub(totalCirculating, lockAmount); } function refreezeHxy(uint256 startDate) public { bytes32 freezeId = _toFreezeKey(_msgSender(), startDate); Freezing memory userFreezing = freezings[freezeId]; uint256 frozenTokens = userFreezing.freezeAmount; uint256 interestDays = SafeMath.div(SafeMath.sub(block.timestamp, userFreezing.startDate), SECONDS_IN_DAY); uint256 interestAmount = SafeMath.mul(SafeMath.div(frozenTokens, 1000), interestDays); refreeze(startDate, interestAmount); totalFrozen = SafeMath.add(totalFrozen, interestAmount); } function releaseFrozen(uint256 _startDate) public { bytes32 freezeId = _toFreezeKey(_msgSender(), _startDate); Freezing memory userFreezing = freezings[freezeId]; uint256 frozenTokens = userFreezing.freezeAmount; release(_startDate); if (!_isLockedAddress()) { uint256 interestDays = SafeMath.div(SafeMath.sub(block.timestamp, userFreezing.startDate), SECONDS_IN_DAY); uint256 interestAmount = SafeMath.mul(SafeMath.div(frozenTokens, 1000), interestDays); _mint(_msgSender(), interestAmount); totalFrozen = SafeMath.sub(totalFrozen, frozenTokens); totalCirculating = SafeMath.add(totalCirculating, frozenTokens); totalPayedInterest = SafeMath.add(totalPayedInterest, interestAmount); } } function mint(address _to, uint256 _amount) internal { _preprocessMint(_to, _amount); } function mintAndFreezeTo(address _to, uint _amount, uint256 _lockDays) internal { _preprocessMintWithFreeze(_to, _amount, _lockDays); } function _premintLiquidSupply(address _liqSupAddress, uint256 _liqSupAmount) internal { require(_liqSupAddress != address(0x0), "liquid supply address cannot be zero"); require(_liqSupAmount != 0, "liquid supply amount cannot be zero"); liquidSupplyAddress = _liqSupAddress; liquidSupply = _liqSupAmount; _mint(_liqSupAddress, _liqSupAmount); } function premintLocked(address[6] memory _lockSupAddresses, uint256[10] memory _unlockDates) public { require(hasRole(DEPLOYER_ROLE, _msgSender()), "Must have deployer role"); require(!lockedSupplyPreminted, "cannot premint locked twice"); _premintLockedSupply(_lockSupAddresses, _unlockDates); } function _premintLockedSupply(address[6] memory _lockSupAddresses, uint256[10] memory _unlockDates) internal { lockedSupplyAddresses.firstAddress = _lockSupAddresses[0]; lockedSupplyAddresses.secondAddress = _lockSupAddresses[1]; lockedSupplyAddresses.thirdAddress = _lockSupAddresses[2]; lockedSupplyAddresses.fourthAddress = _lockSupAddresses[3]; lockedSupplyAddresses.fifthAddress = _lockSupAddresses[4]; lockedSupplyAddresses.sixthAddress = _lockSupAddresses[4]; for (uint256 i = 0; i < 10; i++) { uint256 startDate = SafeMath.add(block.timestamp, SafeMath.add(i, 5)); uint256 endFreezeDate = _unlockDates[i]; uint256 lockSeconds = SafeMath.sub(endFreezeDate, startDate); uint256 lockDays = SafeMath.div(lockSeconds, SECONDS_IN_DAY); uint256 firstSecondAmount = SafeMath.mul(180000, 10 ** uint256(decimals())); uint256 thirdAmount = SafeMath.mul(120000, 10 ** uint256(decimals())); uint256 fourthAmount = SafeMath.mul(90000, 10 ** uint256(decimals())); uint256 fifthSixthAmount = SafeMath.mul(15000, 10 ** uint256(decimals())); mintAndFreeze(lockedSupplyAddresses.firstAddress, startDate, lockDays, firstSecondAmount); mintAndFreeze(lockedSupplyAddresses.secondAddress, startDate, lockDays, firstSecondAmount); mintAndFreeze(lockedSupplyAddresses.thirdAddress, startDate, lockDays, thirdAmount); mintAndFreeze(lockedSupplyAddresses.fourthAddress, startDate, lockDays, fourthAmount); mintAndFreeze(lockedSupplyAddresses.fifthAddress, startDate, lockDays, fifthSixthAmount); mintAndFreeze(lockedSupplyAddresses.sixthAddress, startDate, lockDays, fifthSixthAmount); } lockedSupplyPreminted = true; } function _preprocessMint(address _account, uint256 _hexAmount) internal { uint256 currentRoundHxyAmount = SafeMath.div(_hexAmount, currentHxyRoundRate); if (currentRoundHxyAmount < getRemainingHxyInRound()) { uint256 hxyAmount = currentRoundHxyAmount; _mint(_account, hxyAmount); totalMinted = SafeMath.add(totalMinted, hxyAmount); totalCirculating = SafeMath.add(totalCirculating, hxyAmount); } else if (currentRoundHxyAmount == getRemainingHxyInRound()) { uint256 hxyAmount = currentRoundHxyAmount; _mint(_account, hxyAmount); _incrementHxyRateRound(); totalMinted = SafeMath.add(totalMinted, hxyAmount); totalCirculating = SafeMath.add(totalCirculating, hxyAmount); } else { uint256 hxyAmount; uint256 hexPaymentAmount; while (hexPaymentAmount < _hexAmount) { uint256 hxyRoundTotal = SafeMath.mul(_toDecimals(hxyRoundMintAmount[currentHxyRound]), hxyMintedMultiplier); uint256 hxyInCurrentRoundMax = SafeMath.sub(hxyRoundTotal, totalMinted); uint256 hexInCurrentRoundMax = SafeMath.mul(hxyInCurrentRoundMax, currentHxyRoundRate); uint256 hexInCurrentRound; uint256 hxyInCurrentRound; if (SafeMath.sub(_hexAmount, hexPaymentAmount) < hexInCurrentRoundMax) { hexInCurrentRound = SafeMath.sub(_hexAmount, hexPaymentAmount); hxyInCurrentRound = SafeMath.div(hexInCurrentRound, currentHxyRoundRate); } else { hexInCurrentRound = hexInCurrentRoundMax; hxyInCurrentRound = hxyInCurrentRoundMax; _incrementHxyRateRound(); } hxyAmount = SafeMath.add(hxyAmount, hxyInCurrentRound); hexPaymentAmount = SafeMath.add(hexPaymentAmount, hexInCurrentRound); totalMinted = SafeMath.add(totalMinted, hxyInCurrentRound); totalCirculating = SafeMath.add(totalCirculating, hxyAmount); } _mint(_account, hxyAmount); } } function _preprocessMintWithFreeze(address _account, uint256 _hexAmount, uint256 _freezeDays) internal { uint256 currentRoundHxyAmount = SafeMath.div(_hexAmount, currentHxyRoundRate); if (currentRoundHxyAmount < getRemainingHxyInRound()) { uint256 hxyAmount = currentRoundHxyAmount; totalMinted = SafeMath.add(totalMinted, hxyAmount); mintAndFreeze(_account, block.timestamp, _freezeDays, hxyAmount); } else if (currentRoundHxyAmount == getRemainingHxyInRound()) { uint256 hxyAmount = currentRoundHxyAmount; mintAndFreeze(_account, block.timestamp, _freezeDays, hxyAmount); totalMinted = SafeMath.add(totalMinted, hxyAmount); _incrementHxyRateRound(); } else { uint256 hxyAmount; uint256 hexPaymentAmount; while (hexPaymentAmount < _hexAmount) { uint256 hxyRoundTotal = SafeMath.mul(_toDecimals(hxyRoundMintAmount[currentHxyRound]), hxyMintedMultiplier); uint256 hxyInCurrentRoundMax = SafeMath.sub(hxyRoundTotal, totalMinted); uint256 hexInCurrentRoundMax = SafeMath.mul(hxyInCurrentRoundMax, currentHxyRoundRate); uint256 hexInCurrentRound; uint256 hxyInCurrentRound; if (SafeMath.sub(_hexAmount, hexPaymentAmount) < hexInCurrentRoundMax) { hexInCurrentRound = SafeMath.sub(_hexAmount, hexPaymentAmount); hxyInCurrentRound = SafeMath.div(hexInCurrentRound, currentHxyRoundRate); } else { hexInCurrentRound = hexInCurrentRoundMax; hxyInCurrentRound = hxyInCurrentRoundMax; _incrementHxyRateRound(); } hxyAmount = SafeMath.add(hxyAmount, hxyInCurrentRound); hexPaymentAmount = SafeMath.add(hexPaymentAmount, hexInCurrentRound); totalMinted = SafeMath.add(totalMinted, hxyInCurrentRound); } mintAndFreeze(_account, block.timestamp, _freezeDays, hxyAmount); } } function _mintDirectly(address _account, uint256 _hxyAmount) internal { _mint(_account, _hxyAmount); } function _mintAndFreezeDirectly(address _account, uint256 _hxyAmount, uint256 _freezeDays) internal { mintAndFreeze(_account, block.timestamp, _freezeDays, _hxyAmount); } function _isLockedAddress() internal view returns (bool) { if (_msgSender() == lockedSupplyAddresses.firstAddress) { return true; } else if (_msgSender() == lockedSupplyAddresses.secondAddress) { return true; } else if (_msgSender() == lockedSupplyAddresses.thirdAddress) { return true; } else if (_msgSender() == lockedSupplyAddresses.fourthAddress) { return true; } else if (_msgSender() == lockedSupplyAddresses.fifthAddress) { return true; } else if (_msgSender() == lockedSupplyAddresses.sixthAddress) { return true; } else { return false; } } function _getTotalHxyInRound(uint256 _round) public view returns (uint256) { return SafeMath.mul(_toDecimals(hxyRoundMintAmount[_round]),hxyMintedMultiplier); } function _getRemainingHxyInRound(uint256 _round) public view returns (uint256) { return SafeMath.sub(SafeMath.mul(_toDecimals(hxyRoundMintAmount[_round]), hxyMintedMultiplier), totalMinted); } function _incrementHxyRateRound() internal { currentHxyRound = SafeMath.add(currentHxyRound, 1); currentHxyRoundRate = SafeMath.mul(hxyRoundBaseRate[currentHxyRound], baseHexToHxyRate); } function _toDecimals(uint256 amount) internal view returns (uint256) { return SafeMath.mul(amount, 10 ** uint256(decimals())); } }