ETH Price: $2,552.84 (+0.37%)

Transaction Decoder

Block:
22508509 at May-18-2025 07:52:23 AM +UTC
Transaction Fee:
0.000021083891199319 ETH $0.05
Gas Used:
56,251 Gas / 0.374818069 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x4EcdD09b...eEC55f27a
0.009413932185630341 Eth
Nonce: 14
0.009392848294431022 Eth
Nonce: 15
0.000021083891199319
0x59f0F9B1...c578e4D46
(BuilderNet)
197.660622935241387233 Eth197.660623058105046437 Eth0.000000122863659204

Execution Trace

0x337e7903a1e23ff3ee7f3eb739b03cbd92ae67e0.81ec0500( )
  • HyakkiToken1155.mint( to=0x4EcdD09bf1005849eEFbcCbC59A62f5eEC55f27a, id=3, amount=1 )
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC1155/ERC1155.sol)
    pragma solidity ^0.8.0;
    import "./IERC1155.sol";
    import "./IERC1155Receiver.sol";
    import "./extensions/IERC1155MetadataURI.sol";
    import "../../utils/Address.sol";
    import "../../utils/Context.sol";
    import "../../utils/introspection/ERC165.sol";
    /**
     * @dev Implementation of the basic standard multi-token.
     * See https://eips.ethereum.org/EIPS/eip-1155
     * Originally based on code by Enjin: https://github.com/enjin/erc-1155
     *
     * _Available since v3.1._
     */
    contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI {
        using Address for address;
        // Mapping from token ID to account balances
        mapping(uint256 => mapping(address => uint256)) private _balances;
        // Mapping from account to operator approvals
        mapping(address => mapping(address => bool)) private _operatorApprovals;
        // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
        string private _uri;
        /**
         * @dev See {_setURI}.
         */
        constructor(string memory uri_) {
            _setURI(uri_);
        }
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
            return
                interfaceId == type(IERC1155).interfaceId ||
                interfaceId == type(IERC1155MetadataURI).interfaceId ||
                super.supportsInterface(interfaceId);
        }
        /**
         * @dev See {IERC1155MetadataURI-uri}.
         *
         * This implementation returns the same URI for *all* token types. It relies
         * on the token type ID substitution mechanism
         * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
         *
         * Clients calling this function must replace the `\\{id\\}` substring with the
         * actual token type ID.
         */
        function uri(uint256) public view virtual override returns (string memory) {
            return _uri;
        }
        /**
         * @dev See {IERC1155-balanceOf}.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function balanceOf(address account, uint256 id) public view virtual override returns (uint256) {
            require(account != address(0), "ERC1155: address zero is not a valid owner");
            return _balances[id][account];
        }
        /**
         * @dev See {IERC1155-balanceOfBatch}.
         *
         * Requirements:
         *
         * - `accounts` and `ids` must have the same length.
         */
        function balanceOfBatch(
            address[] memory accounts,
            uint256[] memory ids
        ) public view virtual override returns (uint256[] memory) {
            require(accounts.length == ids.length, "ERC1155: accounts and ids length mismatch");
            uint256[] memory batchBalances = new uint256[](accounts.length);
            for (uint256 i = 0; i < accounts.length; ++i) {
                batchBalances[i] = balanceOf(accounts[i], ids[i]);
            }
            return batchBalances;
        }
        /**
         * @dev See {IERC1155-setApprovalForAll}.
         */
        function setApprovalForAll(address operator, bool approved) public virtual override {
            _setApprovalForAll(_msgSender(), operator, approved);
        }
        /**
         * @dev See {IERC1155-isApprovedForAll}.
         */
        function isApprovedForAll(address account, address operator) public view virtual override returns (bool) {
            return _operatorApprovals[account][operator];
        }
        /**
         * @dev See {IERC1155-safeTransferFrom}.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 id,
            uint256 amount,
            bytes memory data
        ) public virtual override {
            require(
                from == _msgSender() || isApprovedForAll(from, _msgSender()),
                "ERC1155: caller is not token owner or approved"
            );
            _safeTransferFrom(from, to, id, amount, data);
        }
        /**
         * @dev See {IERC1155-safeBatchTransferFrom}.
         */
        function safeBatchTransferFrom(
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) public virtual override {
            require(
                from == _msgSender() || isApprovedForAll(from, _msgSender()),
                "ERC1155: caller is not token owner or approved"
            );
            _safeBatchTransferFrom(from, to, ids, amounts, data);
        }
        /**
         * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
         *
         * Emits a {TransferSingle} event.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `from` must have a balance of tokens of type `id` of at least `amount`.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
         * acceptance magic value.
         */
        function _safeTransferFrom(
            address from,
            address to,
            uint256 id,
            uint256 amount,
            bytes memory data
        ) internal virtual {
            require(to != address(0), "ERC1155: transfer to the zero address");
            address operator = _msgSender();
            uint256[] memory ids = _asSingletonArray(id);
            uint256[] memory amounts = _asSingletonArray(amount);
            _beforeTokenTransfer(operator, from, to, ids, amounts, data);
            uint256 fromBalance = _balances[id][from];
            require(fromBalance >= amount, "ERC1155: insufficient balance for transfer");
            unchecked {
                _balances[id][from] = fromBalance - amount;
            }
            _balances[id][to] += amount;
            emit TransferSingle(operator, from, to, id, amount);
            _afterTokenTransfer(operator, from, to, ids, amounts, data);
            _doSafeTransferAcceptanceCheck(operator, from, to, id, amount, data);
        }
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
         *
         * Emits a {TransferBatch} event.
         *
         * Requirements:
         *
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
         * acceptance magic value.
         */
        function _safeBatchTransferFrom(
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) internal virtual {
            require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
            require(to != address(0), "ERC1155: transfer to the zero address");
            address operator = _msgSender();
            _beforeTokenTransfer(operator, from, to, ids, amounts, data);
            for (uint256 i = 0; i < ids.length; ++i) {
                uint256 id = ids[i];
                uint256 amount = amounts[i];
                uint256 fromBalance = _balances[id][from];
                require(fromBalance >= amount, "ERC1155: insufficient balance for transfer");
                unchecked {
                    _balances[id][from] = fromBalance - amount;
                }
                _balances[id][to] += amount;
            }
            emit TransferBatch(operator, from, to, ids, amounts);
            _afterTokenTransfer(operator, from, to, ids, amounts, data);
            _doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, amounts, data);
        }
        /**
         * @dev Sets a new URI for all token types, by relying on the token type ID
         * substitution mechanism
         * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
         *
         * By this mechanism, any occurrence of the `\\{id\\}` substring in either the
         * URI or any of the amounts in the JSON file at said URI will be replaced by
         * clients with the token type ID.
         *
         * For example, the `https://token-cdn-domain/\\{id\\}.json` URI would be
         * interpreted by clients as
         * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
         * for token type ID 0x4cce0.
         *
         * See {uri}.
         *
         * Because these URIs cannot be meaningfully represented by the {URI} event,
         * this function emits no events.
         */
        function _setURI(string memory newuri) internal virtual {
            _uri = newuri;
        }
        /**
         * @dev Creates `amount` tokens of token type `id`, and assigns them to `to`.
         *
         * Emits a {TransferSingle} event.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
         * acceptance magic value.
         */
        function _mint(address to, uint256 id, uint256 amount, bytes memory data) internal virtual {
            require(to != address(0), "ERC1155: mint to the zero address");
            address operator = _msgSender();
            uint256[] memory ids = _asSingletonArray(id);
            uint256[] memory amounts = _asSingletonArray(amount);
            _beforeTokenTransfer(operator, address(0), to, ids, amounts, data);
            _balances[id][to] += amount;
            emit TransferSingle(operator, address(0), to, id, amount);
            _afterTokenTransfer(operator, address(0), to, ids, amounts, data);
            _doSafeTransferAcceptanceCheck(operator, address(0), to, id, amount, data);
        }
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
         *
         * Emits a {TransferBatch} event.
         *
         * Requirements:
         *
         * - `ids` and `amounts` must have the same length.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
         * acceptance magic value.
         */
        function _mintBatch(
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) internal virtual {
            require(to != address(0), "ERC1155: mint to the zero address");
            require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
            address operator = _msgSender();
            _beforeTokenTransfer(operator, address(0), to, ids, amounts, data);
            for (uint256 i = 0; i < ids.length; i++) {
                _balances[ids[i]][to] += amounts[i];
            }
            emit TransferBatch(operator, address(0), to, ids, amounts);
            _afterTokenTransfer(operator, address(0), to, ids, amounts, data);
            _doSafeBatchTransferAcceptanceCheck(operator, address(0), to, ids, amounts, data);
        }
        /**
         * @dev Destroys `amount` tokens of token type `id` from `from`
         *
         * Emits a {TransferSingle} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `from` must have at least `amount` tokens of token type `id`.
         */
        function _burn(address from, uint256 id, uint256 amount) internal virtual {
            require(from != address(0), "ERC1155: burn from the zero address");
            address operator = _msgSender();
            uint256[] memory ids = _asSingletonArray(id);
            uint256[] memory amounts = _asSingletonArray(amount);
            _beforeTokenTransfer(operator, from, address(0), ids, amounts, "");
            uint256 fromBalance = _balances[id][from];
            require(fromBalance >= amount, "ERC1155: burn amount exceeds balance");
            unchecked {
                _balances[id][from] = fromBalance - amount;
            }
            emit TransferSingle(operator, from, address(0), id, amount);
            _afterTokenTransfer(operator, from, address(0), ids, amounts, "");
        }
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
         *
         * Emits a {TransferBatch} event.
         *
         * Requirements:
         *
         * - `ids` and `amounts` must have the same length.
         */
        function _burnBatch(address from, uint256[] memory ids, uint256[] memory amounts) internal virtual {
            require(from != address(0), "ERC1155: burn from the zero address");
            require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
            address operator = _msgSender();
            _beforeTokenTransfer(operator, from, address(0), ids, amounts, "");
            for (uint256 i = 0; i < ids.length; i++) {
                uint256 id = ids[i];
                uint256 amount = amounts[i];
                uint256 fromBalance = _balances[id][from];
                require(fromBalance >= amount, "ERC1155: burn amount exceeds balance");
                unchecked {
                    _balances[id][from] = fromBalance - amount;
                }
            }
            emit TransferBatch(operator, from, address(0), ids, amounts);
            _afterTokenTransfer(operator, from, address(0), ids, amounts, "");
        }
        /**
         * @dev Approve `operator` to operate on all of `owner` tokens
         *
         * Emits an {ApprovalForAll} event.
         */
        function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
            require(owner != operator, "ERC1155: setting approval status for self");
            _operatorApprovals[owner][operator] = approved;
            emit ApprovalForAll(owner, operator, approved);
        }
        /**
         * @dev Hook that is called before any token transfer. This includes minting
         * and burning, as well as batched variants.
         *
         * The same hook is called on both single and batched variants. For single
         * transfers, the length of the `ids` and `amounts` arrays will be 1.
         *
         * Calling conditions (for each `id` and `amount` pair):
         *
         * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * of token type `id` will be  transferred to `to`.
         * - When `from` is zero, `amount` tokens of token type `id` will be minted
         * for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
         * will be burned.
         * - `from` and `to` are never both zero.
         * - `ids` and `amounts` have the same, non-zero length.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address operator,
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) internal virtual {}
        /**
         * @dev Hook that is called after any token transfer. This includes minting
         * and burning, as well as batched variants.
         *
         * The same hook is called on both single and batched variants. For single
         * transfers, the length of the `id` and `amount` arrays will be 1.
         *
         * Calling conditions (for each `id` and `amount` pair):
         *
         * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * of token type `id` will be  transferred to `to`.
         * - When `from` is zero, `amount` tokens of token type `id` will be minted
         * for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
         * will be burned.
         * - `from` and `to` are never both zero.
         * - `ids` and `amounts` have the same, non-zero length.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address operator,
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) internal virtual {}
        function _doSafeTransferAcceptanceCheck(
            address operator,
            address from,
            address to,
            uint256 id,
            uint256 amount,
            bytes memory data
        ) private {
            if (to.isContract()) {
                try IERC1155Receiver(to).onERC1155Received(operator, from, id, amount, data) returns (bytes4 response) {
                    if (response != IERC1155Receiver.onERC1155Received.selector) {
                        revert("ERC1155: ERC1155Receiver rejected tokens");
                    }
                } catch Error(string memory reason) {
                    revert(reason);
                } catch {
                    revert("ERC1155: transfer to non-ERC1155Receiver implementer");
                }
            }
        }
        function _doSafeBatchTransferAcceptanceCheck(
            address operator,
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory amounts,
            bytes memory data
        ) private {
            if (to.isContract()) {
                try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, amounts, data) returns (
                    bytes4 response
                ) {
                    if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
                        revert("ERC1155: ERC1155Receiver rejected tokens");
                    }
                } catch Error(string memory reason) {
                    revert(reason);
                } catch {
                    revert("ERC1155: transfer to non-ERC1155Receiver implementer");
                }
            }
        }
        function _asSingletonArray(uint256 element) private pure returns (uint256[] memory) {
            uint256[] memory array = new uint256[](1);
            array[0] = element;
            return array;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC1155/extensions/IERC1155MetadataURI.sol)
    pragma solidity ^0.8.0;
    import "../IERC1155.sol";
    /**
     * @dev Interface of the optional ERC1155MetadataExtension interface, as defined
     * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP].
     *
     * _Available since v3.1._
     */
    interface IERC1155MetadataURI is IERC1155 {
        /**
         * @dev Returns the URI for token type `id`.
         *
         * If the `\\{id\\}` substring is present in the URI, it must be replaced by
         * clients with the actual token type ID.
         */
        function uri(uint256 id) external view returns (string memory);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC1155/IERC1155.sol)
    pragma solidity ^0.8.0;
    import "../../utils/introspection/IERC165.sol";
    /**
     * @dev Required interface of an ERC1155 compliant contract, as defined in the
     * https://eips.ethereum.org/EIPS/eip-1155[EIP].
     *
     * _Available since v3.1._
     */
    interface IERC1155 is IERC165 {
        /**
         * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
         */
        event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
        /**
         * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
         * transfers.
         */
        event TransferBatch(
            address indexed operator,
            address indexed from,
            address indexed to,
            uint256[] ids,
            uint256[] values
        );
        /**
         * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
         * `approved`.
         */
        event ApprovalForAll(address indexed account, address indexed operator, bool approved);
        /**
         * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
         *
         * If an {URI} event was emitted for `id`, the standard
         * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
         * returned by {IERC1155MetadataURI-uri}.
         */
        event URI(string value, uint256 indexed id);
        /**
         * @dev Returns the amount of tokens of token type `id` owned by `account`.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function balanceOf(address account, uint256 id) external view returns (uint256);
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
         *
         * Requirements:
         *
         * - `accounts` and `ids` must have the same length.
         */
        function balanceOfBatch(
            address[] calldata accounts,
            uint256[] calldata ids
        ) external view returns (uint256[] memory);
        /**
         * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
         *
         * Emits an {ApprovalForAll} event.
         *
         * Requirements:
         *
         * - `operator` cannot be the caller.
         */
        function setApprovalForAll(address operator, bool approved) external;
        /**
         * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
         *
         * See {setApprovalForAll}.
         */
        function isApprovedForAll(address account, address operator) external view returns (bool);
        /**
         * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
         *
         * Emits a {TransferSingle} event.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
         * - `from` must have a balance of tokens of type `id` of at least `amount`.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
         * acceptance magic value.
         */
        function safeTransferFrom(address from, address to, uint256 id, uint256 amount, bytes calldata data) external;
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
         *
         * Emits a {TransferBatch} event.
         *
         * Requirements:
         *
         * - `ids` and `amounts` must have the same length.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
         * acceptance magic value.
         */
        function safeBatchTransferFrom(
            address from,
            address to,
            uint256[] calldata ids,
            uint256[] calldata amounts,
            bytes calldata data
        ) external;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol)
    pragma solidity ^0.8.0;
    import "../../utils/introspection/IERC165.sol";
    /**
     * @dev _Available since v3.1._
     */
    interface IERC1155Receiver is IERC165 {
        /**
         * @dev Handles the receipt of a single ERC1155 token type. This function is
         * called at the end of a `safeTransferFrom` after the balance has been updated.
         *
         * NOTE: To accept the transfer, this must return
         * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
         * (i.e. 0xf23a6e61, or its own function selector).
         *
         * @param operator The address which initiated the transfer (i.e. msg.sender)
         * @param from The address which previously owned the token
         * @param id The ID of the token being transferred
         * @param value The amount of tokens being transferred
         * @param data Additional data with no specified format
         * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
         */
        function onERC1155Received(
            address operator,
            address from,
            uint256 id,
            uint256 value,
            bytes calldata data
        ) external returns (bytes4);
        /**
         * @dev Handles the receipt of a multiple ERC1155 token types. This function
         * is called at the end of a `safeBatchTransferFrom` after the balances have
         * been updated.
         *
         * NOTE: To accept the transfer(s), this must return
         * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
         * (i.e. 0xbc197c81, or its own function selector).
         *
         * @param operator The address which initiated the batch transfer (i.e. msg.sender)
         * @param from The address which previously owned the token
         * @param ids An array containing ids of each token being transferred (order and length must match values array)
         * @param values An array containing amounts of each token being transferred (order and length must match ids array)
         * @param data Additional data with no specified format
         * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
         */
        function onERC1155BatchReceived(
            address operator,
            address from,
            uint256[] calldata ids,
            uint256[] calldata values,
            bytes calldata data
        ) external returns (bytes4);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         *
         * Furthermore, `isContract` will also return true if the target contract within
         * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
         * which only has an effect at the end of a transaction.
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
        function _contextSuffixLength() internal view virtual returns (uint256) {
            return 0;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
    pragma solidity ^0.8.0;
    import "./IERC165.sol";
    /**
     * @dev Implementation of the {IERC165} interface.
     *
     * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
     * for the additional interface id that will be supported. For example:
     *
     * ```solidity
     * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
     *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
     * }
     * ```
     *
     * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
     */
    abstract contract ERC165 is IERC165 {
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            return interfaceId == type(IERC165).interfaceId;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.9;
    import "@openzeppelin/contracts/token/ERC1155/ERC1155.sol";
    import "@openzeppelin/contracts/access/Ownable.sol";
    contract HyakkiToken1155 is ERC1155, Ownable {
        bool public metadataLocked = false;
        address public mintvial;
        string public name;
        string public symbol;
        constructor(
            string memory name_,
            string memory symbol_,
            string memory uri,
            address mintvial_
        ) ERC1155(uri) {
            name = name_;
            symbol = symbol_;
            mintvial = mintvial_;
        }
        function mint(address to, uint256 id, uint256 amount) public {
            require(msg.sender == mintvial, "Not authorized to mint");
            _mint(to, id, amount, "");
        }
        function burn(address account, uint256 id, uint256 value) public virtual {
            require(
                account == _msgSender() || owner() == _msgSender(),
                "ERC1155: caller is not token owner or approved"
            );
            _burn(account, id, value);
        }
        function setMintvial(address mintvial_) public onlyOwner {
            mintvial = mintvial_;
        }
        function setURI(string memory newuri) public onlyOwner {
            require(!metadataLocked, "Metadata locked");
            _setURI(newuri);
        }
        function lockMetadata() public onlyOwner {
            metadataLocked = true;
        }
        function supportsInterface(bytes4 interfaceId)
            public
            view
            override(ERC1155)
            returns (bool)
        {
            return super.supportsInterface(interfaceId);
        }
    }