Transaction Hash:
Block:
22788437 at Jun-26-2025 11:51:59 AM +UTC
Transaction Fee:
0.000146144818816396 ETH
$0.36
Gas Used:
87,151 Gas / 1.676914996 Gwei
Emitted Events:
166 |
0x1495e8d61e69bac81126f086b4778e2a2b32a546.0x6c9d76c1677b0909ce573fabdda9f1bbbc891f981a7efa98415bdcd0ff9f5411( 0x6c9d76c1677b0909ce573fabdda9f1bbbc891f981a7efa98415bdcd0ff9f5411, 0000000000000000000000003870a0449beb48e07618ece5d57326e55a05501c )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x1495E8D6...A2B32a546 |
0.029431527357755066 Eth
Nonce: 86
|
0.02928538253893867 Eth
Nonce: 89
| 0.000146144818816396 | ||
0x3870A044...55a05501c |
0 Eth
Nonce: 0
|
0 Eth
Nonce: 1
| |||
0xdadB0d80...24f783711
Miner
| (BuilderNet) | 81.673643553715706184 Eth | 81.673687129215706184 Eth | 0.0000435755 |
Execution Trace
0x1495e8d61e69bac81126f086b4778e2a2b32a546.CALL( )
-
Storage.61004d3d( )
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.23; import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol"; import {IStorage} from "./interfaces/IStorage.sol"; import {WalletCoreLib} from "./lib/WalletCoreLib.sol"; import {Errors} from "./lib/Errors.sol"; contract Storage is IStorage { //mutable storage uint256 private _nonce; mapping(address => bool) private _validValidator; mapping(uint256 => bool) private _invalidSessionId; /** * @notice Restricts function access to the wallet owner only * @dev Reverts with INVALID_OWNER if caller is not the owner */ modifier onlyOwner() { if (msg.sender != getOwner()) { revert Errors.InvalidOwner(); } _; } /** * @notice Reads the current nonce and increments it for the next transaction * @dev Only callable by wallet owner. Uses unchecked math for gas optimization * @param validator The address of the validator contract * @return uint256 The current nonce before increment */ function readAndUpdateNonce( address validator ) external onlyOwner returns (uint256) { validateValidator(validator); unchecked { uint256 currentNonce = _nonce++; emit NonceConsumed(currentNonce); return currentNonce; } } /** * @notice Sets a validator's whitelist status * @dev Only callable by wallet owner * @param validator Address of the validator * @param isValid True to whitelist, false to remove */ function setValidatorStatus( address validator, bool isValid ) external onlyOwner { _validValidator[validator] = isValid; emit ValidatorStatusUpdated(validator, isValid); } /** * @notice Revokes the specified session ID, marking it as invalid. * @dev Only callable by wallet owner * @param id The session ID to be revoked */ function revokeSession(uint256 id) external onlyOwner { _invalidSessionId[id] = true; emit SessionRevoked(id); } /** * @notice Returns the owner address of the wallet * @dev Decodes the owner address from the proxy contract's initialization data * @return address The owner address of the wallet */ function getOwner() public view returns (address) { return abi.decode(Clones.fetchCloneArgs(address(this)), (address)); } /** * @notice Returns the current nonce value * @dev Can be called by anyone * @return uint256 The current nonce value */ function getNonce() external view returns (uint256) { return _nonce; } /** * @notice Checks if a validator is whitelisted * @dev Reverts if validator is not whitelisted * @param validator Address of the validator to check */ function validateValidator(address validator) public view { if ( validator != WalletCoreLib.SELF_VALIDATION_ADDRESS && !_validValidator[validator] ) revert Errors.InvalidValidator(validator); } /** * @notice Validates a session and its associated validator * @dev Reverts if: * - Session is invalid (blacklisted) * - Validator is not activated * @param id The ID of the session to validate * @param validator The validator address (0x0 to skip validator check) */ function validateSession(uint256 id, address validator) external view { if (_invalidSessionId[id]) revert Errors.InvalidSessionId(); validateValidator(validator); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (proxy/Clones.sol) pragma solidity ^0.8.20; import {Create2} from "../utils/Create2.sol"; import {Errors} from "../utils/Errors.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. */ library Clones { error CloneArgumentsTooLong(); /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { return clone(implementation, 0); } /** * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency * to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function clone(address implementation, uint256 value) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } assembly ("memory-safe") { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create(value, 0x09, 0x37) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple times will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { return cloneDeterministic(implementation, salt, 0); } /** * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with * a `value` parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneDeterministic( address implementation, bytes32 salt, uint256 value ) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } assembly ("memory-safe") { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create2(value, 0x09, 0x37, salt) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(add(ptr, 0x38), deployer) mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff) mstore(add(ptr, 0x14), implementation) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73) mstore(add(ptr, 0x58), salt) mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37)) predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } /** * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom * immutable arguments. These are provided through `args` and cannot be changed after deployment. To * access the arguments within the implementation, use {fetchCloneArgs}. * * This function uses the create opcode, which should never revert. */ function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) { return cloneWithImmutableArgs(implementation, args, 0); } /** * @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value` * parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneWithImmutableArgs( address implementation, bytes memory args, uint256 value ) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args); assembly ("memory-safe") { instance := create(value, add(bytecode, 0x20), mload(bytecode)) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation` with custom * immutable arguments. These are provided through `args` and cannot be changed after deployment. To * access the arguments within the implementation, use {fetchCloneArgs}. * * This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same * `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice * at the same address. */ function cloneDeterministicWithImmutableArgs( address implementation, bytes memory args, bytes32 salt ) internal returns (address instance) { return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0); } /** * @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs], * but with a `value` parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneDeterministicWithImmutableArgs( address implementation, bytes memory args, bytes32 salt, uint256 value ) internal returns (address instance) { bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args); return Create2.deploy(value, salt, bytecode); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}. */ function predictDeterministicAddressWithImmutableArgs( address implementation, bytes memory args, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args); return Create2.computeAddress(salt, keccak256(bytecode), deployer); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}. */ function predictDeterministicAddressWithImmutableArgs( address implementation, bytes memory args, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this)); } /** * @dev Get the immutable args attached to a clone. * * - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this * function will return an empty array. * - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or * `cloneDeterministicWithImmutableArgs`, this function will return the args array used at * creation. * - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This * function should only be used to check addresses that are known to be clones. */ function fetchCloneArgs(address instance) internal view returns (bytes memory) { bytes memory result = new bytes(instance.code.length - 45); // revert if length is too short assembly ("memory-safe") { extcodecopy(instance, add(result, 32), 45, mload(result)) } return result; } /** * @dev Helper that prepares the initcode of the proxy with immutable args. * * An assembly variant of this function requires copying the `args` array, which can be efficiently done using * `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using * abi.encodePacked is more expensive but also more portable and easier to review. * * NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes. * With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes. */ function _cloneCodeWithImmutableArgs( address implementation, bytes memory args ) private pure returns (bytes memory) { if (args.length > 24531) revert CloneArgumentsTooLong(); return abi.encodePacked( hex"61", uint16(args.length + 45), hex"3d81600a3d39f3363d3d373d3d3d363d73", implementation, hex"5af43d82803e903d91602b57fd5bf3", args ); } } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; interface IStorage { // EVENTS event NonceConsumed(uint256 utilisedNonce); event ValidatorStatusUpdated(address validator, bool status); event SessionRevoked(uint256 id); // FUNCTIONS function readAndUpdateNonce(address validator) external returns (uint256); function setValidatorStatus(address validator, bool isValid) external; function revokeSession(uint256 id) external; function getOwner() external view returns (address); function getNonce() external view returns (uint256); function validateValidator(address validator) external view; function validateSession(uint256 id, address validator) external view; } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol"; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import {IValidator} from "../interfaces/IValidator.sol"; library WalletCoreLib { using ECDSA for bytes32; using Clones for address; /** * @notice new storage should have a different salt */ bytes32 public constant STORAGE_SALT = keccak256(abi.encodePacked("storage")); bytes32 public constant VALIDATOR_SALT = keccak256(abi.encodePacked("validator")); address public constant SELF_VALIDATION_ADDRESS = address(1); /** * @notice Computes the deterministic address of the wallet's storage contract * @dev Uses OpenZeppelin's Clones library to predict the address before deployment * @param storageImpl The implementation address of the storage contract * @return address The deterministic address where the storage clone will be deployed * @custom:args The immutable arguments encoded are: * - address(this): The wallet address that owns this storage * @custom:salt A unique salt derived from STORAGE_SALT */ function _getStorage(address storageImpl) internal view returns (address) { return storageImpl.predictDeterministicAddressWithImmutableArgs( abi.encode(address(this)), STORAGE_SALT, address(this) ); } /** * @notice Validates a transaction or operation using either ECDSA signatures or an external validator contract * @dev Two validation methods are supported: * 1. ECDSA validation (when validator == address(1)): Recovers signer from signature and verifies it matches the wallet address * 2. External validator (any other address): Calls the validator contract and checks if it's authorized to validate * @param validator Address of the validator to use (address(1) for ECDSA signature validation) * @param typedDataHash EIP-712 typed data hash of the data to be validated * @param validationData For ECDSA: the 65-byte signature; For external validators: custom validation data * @return bool True if validation succeeds, false otherwise * @custom:security Ensure validator contracts are properly verified and authorized before use */ function validate( address validator, bytes32 typedDataHash, bytes calldata validationData ) internal view returns (bool) { if (validator == SELF_VALIDATION_ADDRESS) { return _validateSelf(typedDataHash, validationData); } else { try IValidator(validator).validate(typedDataHash, validationData) { return true; } catch { return false; } } } /** * @notice Validates that a signature was signed by this contract * @param typedDataHash The hash of the data that was signed * @param signature The ECDSA signature to verify * @return bool True if the validation passes, false otherwise * @dev Reverts with INVALID_SIGNATURE if the signer is not account itself */ function _validateSelf( bytes32 typedDataHash, bytes calldata signature ) internal view returns (bool) { (address recoveredSigner, , ) = typedDataHash.tryRecover(signature); return recoveredSigner == address(this); } /** * @notice Creates a unique deployment salt by combining validator implementation and init code * @param validatorImpl The validator implementation address * @param initHash Hash of the validator's initialization code * @return bytes32 The computed salt for deterministic deployment */ function _computeCreationSalt( address validatorImpl, bytes32 initHash ) internal pure returns (bytes32) { return keccak256(abi.encode(validatorImpl, initHash)); } /** * @notice Computes the deterministic address of a validator contract before deployment * @param validatorImpl The implementation address of the validator * @param immutableArgs The initialization data for the validator * @param creationSalt A unique salt for deterministic deployment * @param deployer The address that will deploy the validator * @return The predicted address where the validator will be deployed */ function _computeValidatorAddress( address validatorImpl, bytes calldata immutableArgs, bytes32 creationSalt, address deployer ) internal pure returns (address) { return validatorImpl.predictDeterministicAddressWithImmutableArgs( immutableArgs, creationSalt, deployer ); } } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; library Errors { // Storage related error InvalidExecutor(); error InvalidSession(); error InvalidSessionId(); error InvalidOwner(); // Account related error NotFromSelf(); // Call related error CallFailed(uint256 index, bytes returnData); // ValidationLogic related error InvalidValidator(address validator); error InvalidValidatorImpl(address validatorImpl); // ECDSAValidator related error InvalidSignature(); // WalletCoreBase related error NameTooLong(); error VersionTooLong(); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer. * `CREATE2` can be used to compute in advance the address where a smart * contract will be deployed, which allows for interesting new mechanisms known * as 'counterfactual interactions'. * * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more * information. */ library Create2 { /** * @dev There's no code to deploy. */ error Create2EmptyBytecode(); /** * @dev Deploys a contract using `CREATE2`. The address where the contract * will be deployed can be known in advance via {computeAddress}. * * The bytecode for a contract can be obtained from Solidity with * `type(contractName).creationCode`. * * Requirements: * * - `bytecode` must not be empty. * - `salt` must have not been used for `bytecode` already. * - the factory must have a balance of at least `amount`. * - if `amount` is non-zero, `bytecode` must have a `payable` constructor. */ function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } if (bytecode.length == 0) { revert Create2EmptyBytecode(); } assembly ("memory-safe") { addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt) // if no address was created, and returndata is not empty, bubble revert if and(iszero(addr), not(iszero(returndatasize()))) { let p := mload(0x40) returndatacopy(p, 0, returndatasize()) revert(p, returndatasize()) } } if (addr == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the * `bytecodeHash` or `salt` will result in a new destination address. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) { return computeAddress(salt, bytecodeHash, address(this)); } /** * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) { assembly ("memory-safe") { let ptr := mload(0x40) // Get free memory pointer // | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... | // |-------------------|---------------------------------------------------------------------------| // | bytecodeHash | CCCCCCCCCCCCC...CC | // | salt | BBBBBBBBBBBBB...BB | // | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA | // | 0xFF | FF | // |-------------------|---------------------------------------------------------------------------| // | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC | // | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ | mstore(add(ptr, 0x40), bytecodeHash) mstore(add(ptr, 0x20), salt) mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff mstore8(start, 0xff) addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; interface IValidator { function validate( bytes32 msgHash, bytes calldata validationData ) external view; }