ETH Price: $2,487.10 (-3.35%)

Transaction Decoder

Block:
22815012 at Jun-30-2025 05:02:11 AM +UTC
Transaction Fee:
0.000965202139226083 ETH $2.40
Gas Used:
406,897 Gas / 2.372104339 Gwei

Emitted Events:

0 TetherToken.Approval( owner=[Receiver] 0xc0bbb9dba6a0d5ad3ecd6018617c7bce2f7a89ee, spender=LiFiDiamond, value=250580373 )
1 TetherToken.Transfer( from=[Receiver] 0xc0bbb9dba6a0d5ad3ecd6018617c7bce2f7a89ee, to=LiFiDiamond, value=250580373 )
2 TetherToken.Transfer( from=LiFiDiamond, to=0x6E4141d33021b52C91c28608403db4A0FFB50Ec6, value=250580373 )
3 WETH9.Transfer( src=UniswapV3Pool, dst=0x6E4141d33021b52C91c28608403db4A0FFB50Ec6, wad=100421593748178732 )
4 TetherToken.Transfer( from=0x6E4141d33021b52C91c28608403db4A0FFB50Ec6, to=UniswapV3Pool, value=250580373 )
5 UniswapV3Pool.Swap( sender=0x6E4141d33021b52C91c28608403db4A0FFB50Ec6, recipient=0x6E4141d33021b52C91c28608403db4A0FFB50Ec6, amount0=-100421593748178732, amount1=250580373, sqrtPriceX96=3957487306116904494330324, liquidity=643553077347882836, tick=-198100 )
6 0x6e4141d33021b52c91c28608403db4a0ffb50ec6.0xddac40937f35385a34f721af292e5a83fc5b840f722bff57c2fc71adba708c48( 0xddac40937f35385a34f721af292e5a83fc5b840f722bff57c2fc71adba708c48, 000000000000000000000000c7bbec68d12a0d1830360f8ec58fa599ba1b0e9b, 0000000000000000000000000000000000000000000000000164c4e84f23872c, 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2 )
7 Core.( 614e2ba87050c938ccff35e3260b7ea9c6f5303365b8ee172ebd07e916015046, 00000000000000000164c4e84f23872cfffffffffffffffffffffffff110d769, 0000000000000000005f65a933a72bab4000d18203da70611dbb4db2fed1bd3c )
8 FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000e0e0e08a6a4b9dc7bd67bcb7aade5cf48157d444, 0x0000000000000000000000006e4141d33021b52c91c28608403db4a0ffb50ec6, 000000000000000000000000000000000000000000000000000000000eef2897 )
9 WETH9.Withdrawal( src=0x6E4141d33021b52C91c28608403db4A0FFB50Ec6, wad=100421593748178732 )
10 0x6e4141d33021b52c91c28608403db4a0ffb50ec6.0xddac40937f35385a34f721af292e5a83fc5b840f722bff57c2fc71adba708c48( 0xddac40937f35385a34f721af292e5a83fc5b840f722bff57c2fc71adba708c48, 000000000000000000000000e0e0e08a6a4b9dc7bd67bcb7aade5cf48157d444, 000000000000000000000000000000000000000000000000000000000eef2897, 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48 )
11 FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000006e4141d33021b52c91c28608403db4a0ffb50ec6, 0x0000000000000000000000001231deb6f5749ef6ce6943a275a1d3e7486f4eae, 000000000000000000000000000000000000000000000000000000000eef2897 )
12 MetaAggregationRouterV2.Swapped( sender=LiFiDiamond, srcToken=TetherToken, dstToken=FiatTokenProxy, dstReceiver=LiFiDiamond, spentAmount=250580373, returnAmount=250554519 )
13 MetaAggregationRouterV2.Exchange( pair=0x6E4141d33021b52C91c28608403db4A0FFB50Ec6, amountOut=250554519, output=FiatTokenProxy )
14 MetaAggregationRouterV2.ClientData( clientData=0x7B22536F75726365223A226C692E6669222C22416D6F756E74496E555344223A223235302E3639363830323131303232393637222C22416D6F756E744F7574555344223A223235302E3930363031383332373930343937222C22526566657272616C223A22222C22466C616773223A302C22416D6F756E744F7574223A22323530373939313730222C2254696D657374616D70223A313735313235393730382C22526F7574654944223A2235313333633232322D633231362D346464352D613661372D3363326232353563343265373A66666239363736622D376539382D346434342D616239662D343966343464346433393266222C22496E74656772697479496E666F223A7B224B65794944223A2231222C225369676E6174757265223A22443272433672525553536E6271516959557042576C74364B6D38346E6266474B33515A774935703147544F2F785A56746F42486373674975627466796174774E33677646456A4A516F4763426B744659517A4E61425034593732776A454C447146472B514A32526B4D59413659373036347463524A6F726C4F397A33645659326F686D6C30446F7A314A7A6A46477153726B76796642514A4D3374656F4B784C68307435355771312F47684679734251356D76473271625244706735494B79684463463771516C6B72383950533464427A35416372515A5550413438426262344A6F7844736D5A73516139634377396B6F47364662506A7964503664474B7075776B44636139754C36674E6E49652F767268653068613833774E654A587471736C7371644B366E744C4637566F5352594D47553643337A4158596D396B51512B6D38627A3471386C6D484D55386B576449675A5A77773D3D227D7D )
15 FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000001231deb6f5749ef6ce6943a275a1d3e7486f4eae, 0x000000000000000000000000c0bbb9dba6a0d5ad3ecd6018617c7bce2f7a89ee, 000000000000000000000000000000000000000000000000000000000eef2897 )
16 LiFiDiamond.0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38( 0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38, 10dd02f7251d8b6e9d1e239538099f655ed6b52682765ee7bddb3a3030b05f33, 0000000000000000000000006131b5fae19ea4f9d964eac0408e4408b66337b5, 000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7, 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48, 000000000000000000000000000000000000000000000000000000000eef8d95, 000000000000000000000000000000000000000000000000000000000eef2897, 0000000000000000000000000000000000000000000000000000000068621a53 )
17 LiFiDiamond.0x38eee76fd911eabac79da7af16053e809be0e12c8637f156e77e1af309b99537( 0x38eee76fd911eabac79da7af16053e809be0e12c8637f156e77e1af309b99537, 0x10dd02f7251d8b6e9d1e239538099f655ed6b52682765ee7bddb3a3030b05f33, 00000000000000000000000000000000000000000000000000000000000000e0, 0000000000000000000000000000000000000000000000000000000000000120, 000000000000000000000000c0bbb9dba6a0d5ad3ecd6018617c7bce2f7a89ee, 000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7, 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48, 000000000000000000000000000000000000000000000000000000000eef8d95, 000000000000000000000000000000000000000000000000000000000eef2897, 000000000000000000000000000000000000000000000000000000000000000f, 6a756d7065722e65786368616e67650000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000000002a, 3078303030303030303030303030303030303030303030303030303030303030, 3030303030303030303000000000000000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
(beaverbuild)
42.204803881678491713 Eth42.205617675678491713 Eth0.000813794
0xA0b86991...E3606eB48
0xC02aaA39...83C756Cc2 2,708,983.691988294285663756 Eth2,708,983.591566700537485024 Eth0.100421593748178732
0xc0Bbb9db...e2F7a89eE
0.021607924121630895 Eth
Nonce: 359
0.020642721982404812 Eth
Nonce: 361
0.000965202139226083From: 0 To: 22892026855592066050609947431602401211538835161166308139
0xc7bBeC68...9bA1b0e9b
(Uniswap V3: USDT 9)
0xdAC17F95...13D831ec7
0xe0e0e08A...48157d444
(Ekubo: Core)
272.062595106108844399 Eth272.163016699857023131 Eth0.100421593748178732

Execution Trace

0xc0bbb9dba6a0d5ad3ecd6018617c7bce2f7a89ee.e9ae5c53( )
  • TetherToken.approve( _spender=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, _value=250580373 )
  • LiFiDiamond.4666fc80( )
    • GenericSwapFacetV3.swapTokensSingleV3ERC20ToERC20( _transactionId=10DD02F7251D8B6E9D1E239538099F655ED6B52682765EE7BDDB3A3030B05F33, _integrator=jumper.exchange, _referrer=0x0000000000000000000000000000000000000000, _receiver=0xc0Bbb9dbA6a0D5AD3eCd6018617c7bce2F7a89eE, _minAmountOut=249545174, _swapData=[{name:callTo, type:address, order:1, indexed:false, value:0x6131B5fae19EA4f9D964eAc0408E4408b66337b5, valueString:0x6131B5fae19EA4f9D964eAc0408E4408b66337b5}, {name:approveTo, type:address, order:2, indexed:false, value:0x6131B5fae19EA4f9D964eAc0408E4408b66337b5, valueString:0x6131B5fae19EA4f9D964eAc0408E4408b66337b5}, {name:sendingAssetId, type:address, order:3, indexed:false, value:0xdAC17F958D2ee523a2206206994597C13D831ec7, valueString:0xdAC17F958D2ee523a2206206994597C13D831ec7}, {name:receivingAssetId, type:address, order:4, indexed:false, value:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, valueString:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48}, {name:fromAmount, type:uint256, order:5, indexed:false, value:250580373, valueString:250580373}, {name:callData, type:bytes, order:6, indexed:false, value:0xE21FD0E900000000000000000000000000000000000000000000000000000000000000200000000000000000000000006E4141D33021B52C91C28608403DB4A0FFB50EC6000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000A0000000000000000000000000000000000000000000000000000000000000050000000000000000000000000000000000000000000000000000000000000007400000000000000000000000000000000000000000000000000000000000000440000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB480000000000000000000000001231DEB6F5749EF6CE6943A275A1D3E7486F4EAE0000000000000000000000000000000000000000000000000000000068621EEC00000000000000000000000000000000000000000000000000000000000003E000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000180000000000000000000000000000000000000000000000000000000000000004063407A490000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000E00000000000000000000000006E4141D33021B52C91C28608403DB4A0FFB50EC6000000000000000000000000C7BBEC68D12A0D1830360F8EC58FA599BA1B0E9B000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000000000000000000000000000000000000EEF8D95000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D25000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000404C134A970000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000E0000000000000000000000000E0E0E08A6A4B9DC7BD67BCB7AADE5CF48157D4440000000000000000000000000000000000000000000000000164DDBA2177FD650000000000000000000000000000000000000000000000000000000000000000000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB480000000000000000000000000000000000000000000D1B71758E21960000137E000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000FA0000000000000000000000000EF2E442000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB48000000000000000000000000000000000000000000000000000000000000016000000000000000000000000000000000000000000000000000000000000001A000000000000000000000000000000000000000000000000000000000000001E000000000000000000000000000000000000000000000000000000000000002000000000000000000000000001231DEB6F5749EF6CE6943A275A1D3E7486F4EAE000000000000000000000000000000000000000000000000000000000EEF8D95000000000000000000000000000000000000000000000000000000000EDFC1D60000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000022000000000000000000000000000000000000000000000000000000000000000010000000000000000000000006E4141D33021B52C91C28608403DB4A0FFB50EC60000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000EEF8D95000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000027B7B22536F75726365223A226C692E6669222C22416D6F756E74496E555344223A223235302E3639363830323131303232393637222C22416D6F756E744F7574555344223A223235302E3930363031383332373930343937222C22526566657272616C223A22222C22466C616773223A302C22416D6F756E744F7574223A22323530373939313730222C2254696D657374616D70223A313735313235393730382C22526F7574654944223A2235313333633232322D633231362D346464352D613661372D3363326232353563343265373A66666239363736622D376539382D346434342D616239662D343966343464346433393266222C22496E74656772697479496E666F223A7B224B65794944223A2231222C225369676E6174757265223A22443272433672525553536E6271516959557042576C74364B6D38346E6266474B33515A774935703147544F2F785A56746F42486373674975627466796174774E33677646456A4A516F4763426B744659517A4E61425034593732776A454C447146472B514A32526B4D59413659373036347463524A6F726C4F397A33645659326F686D6C30446F7A314A7A6A46477153726B76796642514A4D3374656F4B784C68307435355771312F47684679734251356D76473271625244706735494B79684463463771516C6B72383950533464427A35416372515A5550413438426262344A6F7844736D5A73516139634377396B6F47364662506A7964503664474B7075776B44636139754C36674E6E49652F767268653068613833774E654A587471736C7371644B366E744C4637566F5352594D47553643337A4158596D396B51512B6D38627A3471386C6D484D55386B576449675A5A77773D3D227D7D0000000000, valueString:0xE21FD0E900000000000000000000000000000000000000000000000000000000000000200000000000000000000000006E4141D33021B52C91C28608403DB4A0FFB50EC6000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000A0000000000000000000000000000000000000000000000000000000000000050000000000000000000000000000000000000000000000000000000000000007400000000000000000000000000000000000000000000000000000000000000440000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB480000000000000000000000001231DEB6F5749EF6CE6943A275A1D3E7486F4EAE0000000000000000000000000000000000000000000000000000000068621EEC00000000000000000000000000000000000000000000000000000000000003E000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000180000000000000000000000000000000000000000000000000000000000000004063407A490000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000E00000000000000000000000006E4141D33021B52C91C28608403DB4A0FFB50EC6000000000000000000000000C7BBEC68D12A0D1830360F8EC58FA599BA1B0E9B000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000000000000000000000000000000000000EEF8D95000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D25000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000404C134A970000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000E0000000000000000000000000E0E0E08A6A4B9DC7BD67BCB7AADE5CF48157D4440000000000000000000000000000000000000000000000000164DDBA2177FD650000000000000000000000000000000000000000000000000000000000000000000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB480000000000000000000000000000000000000000000D1B71758E21960000137E000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000FA0000000000000000000000000EF2E442000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB48000000000000000000000000000000000000000000000000000000000000016000000000000000000000000000000000000000000000000000000000000001A000000000000000000000000000000000000000000000000000000000000001E000000000000000000000000000000000000000000000000000000000000002000000000000000000000000001231DEB6F5749EF6CE6943A275A1D3E7486F4EAE000000000000000000000000000000000000000000000000000000000EEF8D95000000000000000000000000000000000000000000000000000000000EDFC1D60000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000022000000000000000000000000000000000000000000000000000000000000000010000000000000000000000006E4141D33021B52C91C28608403DB4A0FFB50EC60000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000EEF8D95000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000027B7B22536F75726365223A226C692E6669222C22416D6F756E74496E555344223A223235302E3639363830323131303232393637222C22416D6F756E744F7574555344223A223235302E3930363031383332373930343937222C22526566657272616C223A22222C22466C616773223A302C22416D6F756E744F7574223A22323530373939313730222C2254696D657374616D70223A313735313235393730382C22526F7574654944223A2235313333633232322D633231362D346464352D613661372D3363326232353563343265373A66666239363736622D376539382D346434342D616239662D343966343464346433393266222C22496E74656772697479496E666F223A7B224B65794944223A2231222C225369676E6174757265223A22443272433672525553536E6271516959557042576C74364B6D38346E6266474B33515A774935703147544F2F785A56746F42486373674975627466796174774E33677646456A4A516F4763426B744659517A4E61425034593732776A454C447146472B514A32526B4D59413659373036347463524A6F726C4F397A33645659326F686D6C30446F7A314A7A6A46477153726B76796642514A4D3374656F4B784C68307435355771312F47684679734251356D76473271625244706735494B79684463463771516C6B72383950533464427A35416372515A5550413438426262344A6F7844736D5A73516139634377396B6F47364662506A7964503664474B7075776B44636139754C36674E6E49652F767268653068613833774E654A587471736C7371644B366E744C4637566F5352594D47553643337A4158596D396B51512B6D38627A3471386C6D484D55386B576449675A5A77773D3D227D7D0000000000}, {name:requiresDeposit, type:bool, order:7, indexed:false, value:true, valueString:True}] )
      • TetherToken.transferFrom( _from=0xc0Bbb9dbA6a0D5AD3eCd6018617c7bce2F7a89eE, _to=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, _value=250580373 )
      • TetherToken.allowance( _owner=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, _spender=0x6131B5fae19EA4f9D964eAc0408E4408b66337b5 ) => ( remaining=115792089237316195423570985008687907853269984665640564039457584007913129639935 )
      • MetaAggregationRouterV2.swap( execution=[{name:callTarget, type:address, order:1, indexed:false, value:0x6E4141d33021b52C91c28608403db4A0FFB50Ec6, valueString:0x6E4141d33021b52C91c28608403db4A0FFB50Ec6}, {name:approveTarget, type:address, order:2, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:targetData, type:bytes, order:3, indexed:false, value:0x000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB480000000000000000000000001231DEB6F5749EF6CE6943A275A1D3E7486F4EAE0000000000000000000000000000000000000000000000000000000068621EEC00000000000000000000000000000000000000000000000000000000000003E000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000180000000000000000000000000000000000000000000000000000000000000004063407A490000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000E00000000000000000000000006E4141D33021B52C91C28608403DB4A0FFB50EC6000000000000000000000000C7BBEC68D12A0D1830360F8EC58FA599BA1B0E9B000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000000000000000000000000000000000000EEF8D95000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D25000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000404C134A970000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000E0000000000000000000000000E0E0E08A6A4B9DC7BD67BCB7AADE5CF48157D4440000000000000000000000000000000000000000000000000164DDBA2177FD650000000000000000000000000000000000000000000000000000000000000000000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB480000000000000000000000000000000000000000000D1B71758E21960000137E000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000FA0000000000000000000000000EF2E442, valueString:0x000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB480000000000000000000000001231DEB6F5749EF6CE6943A275A1D3E7486F4EAE0000000000000000000000000000000000000000000000000000000068621EEC00000000000000000000000000000000000000000000000000000000000003E000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000180000000000000000000000000000000000000000000000000000000000000004063407A490000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000E00000000000000000000000006E4141D33021B52C91C28608403DB4A0FFB50EC6000000000000000000000000C7BBEC68D12A0D1830360F8EC58FA599BA1B0E9B000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000000000000000000000000000000000000EEF8D95000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D25000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000404C134A970000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000E0000000000000000000000000E0E0E08A6A4B9DC7BD67BCB7AADE5CF48157D4440000000000000000000000000000000000000000000000000164DDBA2177FD650000000000000000000000000000000000000000000000000000000000000000000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB480000000000000000000000000000000000000000000D1B71758E21960000137E000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000FA0000000000000000000000000EF2E442}, {name:desc, type:tuple, order:4, indexed:false, value:[{name:srcToken, type:address, order:1, indexed:false, value:0xdAC17F958D2ee523a2206206994597C13D831ec7, valueString:0xdAC17F958D2ee523a2206206994597C13D831ec7}, {name:dstToken, type:address, order:2, indexed:false, value:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, valueString:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48}, {name:srcReceivers, type:address[], order:3, indexed:false, value:[0x6E4141d33021b52C91c28608403db4A0FFB50Ec6], valueString:[0x6E4141d33021b52C91c28608403db4A0FFB50Ec6]}, {name:srcAmounts, type:uint256[], order:4, indexed:false, value:[250580373], valueString:[250580373]}, {name:feeReceivers, type:address[], order:5, indexed:false, value:[], valueString:[]}, {name:feeAmounts, type:uint256[], order:6, indexed:false, value:[], valueString:[]}, {name:dstReceiver, type:address, order:7, indexed:false, value:0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, valueString:0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE}, {name:amount, type:uint256, order:8, indexed:false, value:250580373, valueString:250580373}, {name:minReturnAmount, type:uint256, order:9, indexed:false, value:249545174, valueString:249545174}, {name:flags, type:uint256, order:10, indexed:false, value:0, valueString:0}, {name:permit, type:bytes, order:11, indexed:false, value:0x, valueString:0x}], valueString:[{name:srcToken, type:address, order:1, indexed:false, value:0xdAC17F958D2ee523a2206206994597C13D831ec7, valueString:0xdAC17F958D2ee523a2206206994597C13D831ec7}, {name:dstToken, type:address, order:2, indexed:false, value:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, valueString:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48}, {name:srcReceivers, type:address[], order:3, indexed:false, value:[0x6E4141d33021b52C91c28608403db4A0FFB50Ec6], valueString:[0x6E4141d33021b52C91c28608403db4A0FFB50Ec6]}, {name:srcAmounts, type:uint256[], order:4, indexed:false, value:[250580373], valueString:[250580373]}, {name:feeReceivers, type:address[], order:5, indexed:false, value:[], valueString:[]}, {name:feeAmounts, type:uint256[], order:6, indexed:false, value:[], valueString:[]}, {name:dstReceiver, type:address, order:7, indexed:false, value:0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, valueString:0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE}, {name:amount, type:uint256, order:8, indexed:false, value:250580373, valueString:250580373}, {name:minReturnAmount, type:uint256, order:9, indexed:false, value:249545174, valueString:249545174}, {name:flags, type:uint256, order:10, indexed:false, value:0, valueString:0}, {name:permit, type:bytes, order:11, indexed:false, value:0x, valueString:0x}]}, {name:clientData, type:bytes, order:5, indexed:false, value:0x7B22536F75726365223A226C692E6669222C22416D6F756E74496E555344223A223235302E3639363830323131303232393637222C22416D6F756E744F7574555344223A223235302E3930363031383332373930343937222C22526566657272616C223A22222C22466C616773223A302C22416D6F756E744F7574223A22323530373939313730222C2254696D657374616D70223A313735313235393730382C22526F7574654944223A2235313333633232322D633231362D346464352D613661372D3363326232353563343265373A66666239363736622D376539382D346434342D616239662D343966343464346433393266222C22496E74656772697479496E666F223A7B224B65794944223A2231222C225369676E6174757265223A22443272433672525553536E6271516959557042576C74364B6D38346E6266474B33515A774935703147544F2F785A56746F42486373674975627466796174774E33677646456A4A516F4763426B744659517A4E61425034593732776A454C447146472B514A32526B4D59413659373036347463524A6F726C4F397A33645659326F686D6C30446F7A314A7A6A46477153726B76796642514A4D3374656F4B784C68307435355771312F47684679734251356D76473271625244706735494B79684463463771516C6B72383950533464427A35416372515A5550413438426262344A6F7844736D5A73516139634377396B6F47364662506A7964503664474B7075776B44636139754C36674E6E49652F767268653068613833774E654A587471736C7371644B366E744C4637566F5352594D47553643337A4158596D396B51512B6D38627A3471386C6D484D55386B576449675A5A77773D3D227D7D, valueString:0x7B22536F75726365223A226C692E6669222C22416D6F756E74496E555344223A223235302E3639363830323131303232393637222C22416D6F756E744F7574555344223A223235302E3930363031383332373930343937222C22526566657272616C223A22222C22466C616773223A302C22416D6F756E744F7574223A22323530373939313730222C2254696D657374616D70223A313735313235393730382C22526F7574654944223A2235313333633232322D633231362D346464352D613661372D3363326232353563343265373A66666239363736622D376539382D346434342D616239662D343966343464346433393266222C22496E74656772697479496E666F223A7B224B65794944223A2231222C225369676E6174757265223A22443272433672525553536E6271516959557042576C74364B6D38346E6266474B33515A774935703147544F2F785A56746F42486373674975627466796174774E33677646456A4A516F4763426B744659517A4E61425034593732776A454C447146472B514A32526B4D59413659373036347463524A6F726C4F397A33645659326F686D6C30446F7A314A7A6A46477153726B76796642514A4D3374656F4B784C68307435355771312F47684679734251356D76473271625244706735494B79684463463771516C6B72383950533464427A35416372515A5550413438426262344A6F7844736D5A73516139634377396B6F47364662506A7964503664474B7075776B44636139754C36674E6E49652F767268653068613833774E654A587471736C7371644B366E744C4637566F5352594D47553643337A4158596D396B51512B6D38627A3471386C6D484D55386B576449675A5A77773D3D227D7D}] ) => ( returnAmount=250554519, gasUsed=297743 )
        • TetherToken.transferFrom( _from=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, _to=0x6E4141d33021b52C91c28608403db4A0FFB50Ec6, _value=250580373 )
        • FiatTokenProxy.70a08231( )
          • FiatTokenV2_2.balanceOf( account=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 0 )
          • TetherToken.balanceOf( who=0x6131B5fae19EA4f9D964eAc0408E4408b66337b5 ) => ( 3186413068 )
          • FiatTokenProxy.70a08231( )
            • FiatTokenV2_2.balanceOf( account=0x6131B5fae19EA4f9D964eAc0408E4408b66337b5 ) => ( 560861019 )
            • KyberSwap: Aggregator Executor.d9c45357( )
              • 0xb20a278de0f0ebf7794a8c212c0f3bca67768722.63407a49( )
                • TetherToken.balanceOf( who=0x6E4141d33021b52C91c28608403db4A0FFB50Ec6 ) => ( 250580374 )
                • UniswapV3Pool.swap( recipient=0x6E4141d33021b52C91c28608403db4A0FFB50Ec6, zeroForOne=False, amountSpecified=250580373, sqrtPriceLimitX96=1461446703485210103287273052203988822378723970341, data=0x000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000400000000000000000000000006E4141D33021B52C91C28608403DB4A0FFB50EC60000000000000000000000000000000000000000000000000000000000000060000000000000000000000000C7BBEC68D12A0D1830360F8EC58FA599BA1B0E9B000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2 ) => ( amount0=-100421593748178732, amount1=250580373 )
                • 0x1ff27a38c2df7d1669c793d6df7354e0e697dc0e.4c134a97( )
                  • WETH9.balanceOf( 0x6E4141d33021b52C91c28608403db4A0FFB50Ec6 ) => ( 100421593748178733 )
                  • FiatTokenProxy.70a08231( )
                  • Core.lock( )
                  • FiatTokenProxy.70a08231( )
                  • FiatTokenProxy.70a08231( )
                    • FiatTokenV2_2.balanceOf( account=0x6E4141d33021b52C91c28608403db4A0FFB50Ec6 ) => ( 250554520 )
                    • TetherToken.balanceOf( who=0x6E4141d33021b52C91c28608403db4A0FFB50Ec6 ) => ( 1 )
                    • FiatTokenProxy.a9059cbb( )
                      • FiatTokenV2_2.transfer( to=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, value=250554519 ) => ( True )
                      • FiatTokenProxy.70a08231( )
                        • FiatTokenV2_2.balanceOf( account=0x6131B5fae19EA4f9D964eAc0408E4408b66337b5 ) => ( 560861019 )
                        • FiatTokenProxy.70a08231( )
                          • FiatTokenV2_2.balanceOf( account=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 250554519 )
                          • TetherToken.balanceOf( who=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 0 )
                          • FiatTokenProxy.70a08231( )
                            • FiatTokenV2_2.balanceOf( account=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 250554519 )
                            • FiatTokenProxy.a9059cbb( )
                              • FiatTokenV2_2.transfer( to=0xc0Bbb9dbA6a0D5AD3eCd6018617c7bce2F7a89eE, value=250554519 ) => ( True )
                                File 1 of 9: TetherToken
                                pragma solidity ^0.4.17;
                                
                                /**
                                 * @title SafeMath
                                 * @dev Math operations with safety checks that throw on error
                                 */
                                library SafeMath {
                                    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                                        if (a == 0) {
                                            return 0;
                                        }
                                        uint256 c = a * b;
                                        assert(c / a == b);
                                        return c;
                                    }
                                
                                    function div(uint256 a, uint256 b) internal pure returns (uint256) {
                                        // assert(b > 0); // Solidity automatically throws when dividing by 0
                                        uint256 c = a / b;
                                        // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                                        return c;
                                    }
                                
                                    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                                        assert(b <= a);
                                        return a - b;
                                    }
                                
                                    function add(uint256 a, uint256 b) internal pure returns (uint256) {
                                        uint256 c = a + b;
                                        assert(c >= a);
                                        return c;
                                    }
                                }
                                
                                /**
                                 * @title Ownable
                                 * @dev The Ownable contract has an owner address, and provides basic authorization control
                                 * functions, this simplifies the implementation of "user permissions".
                                 */
                                contract Ownable {
                                    address public owner;
                                
                                    /**
                                      * @dev The Ownable constructor sets the original `owner` of the contract to the sender
                                      * account.
                                      */
                                    function Ownable() public {
                                        owner = msg.sender;
                                    }
                                
                                    /**
                                      * @dev Throws if called by any account other than the owner.
                                      */
                                    modifier onlyOwner() {
                                        require(msg.sender == owner);
                                        _;
                                    }
                                
                                    /**
                                    * @dev Allows the current owner to transfer control of the contract to a newOwner.
                                    * @param newOwner The address to transfer ownership to.
                                    */
                                    function transferOwnership(address newOwner) public onlyOwner {
                                        if (newOwner != address(0)) {
                                            owner = newOwner;
                                        }
                                    }
                                
                                }
                                
                                /**
                                 * @title ERC20Basic
                                 * @dev Simpler version of ERC20 interface
                                 * @dev see https://github.com/ethereum/EIPs/issues/20
                                 */
                                contract ERC20Basic {
                                    uint public _totalSupply;
                                    function totalSupply() public constant returns (uint);
                                    function balanceOf(address who) public constant returns (uint);
                                    function transfer(address to, uint value) public;
                                    event Transfer(address indexed from, address indexed to, uint value);
                                }
                                
                                /**
                                 * @title ERC20 interface
                                 * @dev see https://github.com/ethereum/EIPs/issues/20
                                 */
                                contract ERC20 is ERC20Basic {
                                    function allowance(address owner, address spender) public constant returns (uint);
                                    function transferFrom(address from, address to, uint value) public;
                                    function approve(address spender, uint value) public;
                                    event Approval(address indexed owner, address indexed spender, uint value);
                                }
                                
                                /**
                                 * @title Basic token
                                 * @dev Basic version of StandardToken, with no allowances.
                                 */
                                contract BasicToken is Ownable, ERC20Basic {
                                    using SafeMath for uint;
                                
                                    mapping(address => uint) public balances;
                                
                                    // additional variables for use if transaction fees ever became necessary
                                    uint public basisPointsRate = 0;
                                    uint public maximumFee = 0;
                                
                                    /**
                                    * @dev Fix for the ERC20 short address attack.
                                    */
                                    modifier onlyPayloadSize(uint size) {
                                        require(!(msg.data.length < size + 4));
                                        _;
                                    }
                                
                                    /**
                                    * @dev transfer token for a specified address
                                    * @param _to The address to transfer to.
                                    * @param _value The amount to be transferred.
                                    */
                                    function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
                                        uint fee = (_value.mul(basisPointsRate)).div(10000);
                                        if (fee > maximumFee) {
                                            fee = maximumFee;
                                        }
                                        uint sendAmount = _value.sub(fee);
                                        balances[msg.sender] = balances[msg.sender].sub(_value);
                                        balances[_to] = balances[_to].add(sendAmount);
                                        if (fee > 0) {
                                            balances[owner] = balances[owner].add(fee);
                                            Transfer(msg.sender, owner, fee);
                                        }
                                        Transfer(msg.sender, _to, sendAmount);
                                    }
                                
                                    /**
                                    * @dev Gets the balance of the specified address.
                                    * @param _owner The address to query the the balance of.
                                    * @return An uint representing the amount owned by the passed address.
                                    */
                                    function balanceOf(address _owner) public constant returns (uint balance) {
                                        return balances[_owner];
                                    }
                                
                                }
                                
                                /**
                                 * @title Standard ERC20 token
                                 *
                                 * @dev Implementation of the basic standard token.
                                 * @dev https://github.com/ethereum/EIPs/issues/20
                                 * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
                                 */
                                contract StandardToken is BasicToken, ERC20 {
                                
                                    mapping (address => mapping (address => uint)) public allowed;
                                
                                    uint public constant MAX_UINT = 2**256 - 1;
                                
                                    /**
                                    * @dev Transfer tokens from one address to another
                                    * @param _from address The address which you want to send tokens from
                                    * @param _to address The address which you want to transfer to
                                    * @param _value uint the amount of tokens to be transferred
                                    */
                                    function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) {
                                        var _allowance = allowed[_from][msg.sender];
                                
                                        // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
                                        // if (_value > _allowance) throw;
                                
                                        uint fee = (_value.mul(basisPointsRate)).div(10000);
                                        if (fee > maximumFee) {
                                            fee = maximumFee;
                                        }
                                        if (_allowance < MAX_UINT) {
                                            allowed[_from][msg.sender] = _allowance.sub(_value);
                                        }
                                        uint sendAmount = _value.sub(fee);
                                        balances[_from] = balances[_from].sub(_value);
                                        balances[_to] = balances[_to].add(sendAmount);
                                        if (fee > 0) {
                                            balances[owner] = balances[owner].add(fee);
                                            Transfer(_from, owner, fee);
                                        }
                                        Transfer(_from, _to, sendAmount);
                                    }
                                
                                    /**
                                    * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
                                    * @param _spender The address which will spend the funds.
                                    * @param _value The amount of tokens to be spent.
                                    */
                                    function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                                
                                        // To change the approve amount you first have to reduce the addresses`
                                        //  allowance to zero by calling `approve(_spender, 0)` if it is not
                                        //  already 0 to mitigate the race condition described here:
                                        //  https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                                        require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
                                
                                        allowed[msg.sender][_spender] = _value;
                                        Approval(msg.sender, _spender, _value);
                                    }
                                
                                    /**
                                    * @dev Function to check the amount of tokens than an owner allowed to a spender.
                                    * @param _owner address The address which owns the funds.
                                    * @param _spender address The address which will spend the funds.
                                    * @return A uint specifying the amount of tokens still available for the spender.
                                    */
                                    function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                                        return allowed[_owner][_spender];
                                    }
                                
                                }
                                
                                
                                /**
                                 * @title Pausable
                                 * @dev Base contract which allows children to implement an emergency stop mechanism.
                                 */
                                contract Pausable is Ownable {
                                  event Pause();
                                  event Unpause();
                                
                                  bool public paused = false;
                                
                                
                                  /**
                                   * @dev Modifier to make a function callable only when the contract is not paused.
                                   */
                                  modifier whenNotPaused() {
                                    require(!paused);
                                    _;
                                  }
                                
                                  /**
                                   * @dev Modifier to make a function callable only when the contract is paused.
                                   */
                                  modifier whenPaused() {
                                    require(paused);
                                    _;
                                  }
                                
                                  /**
                                   * @dev called by the owner to pause, triggers stopped state
                                   */
                                  function pause() onlyOwner whenNotPaused public {
                                    paused = true;
                                    Pause();
                                  }
                                
                                  /**
                                   * @dev called by the owner to unpause, returns to normal state
                                   */
                                  function unpause() onlyOwner whenPaused public {
                                    paused = false;
                                    Unpause();
                                  }
                                }
                                
                                contract BlackList is Ownable, BasicToken {
                                
                                    /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
                                    function getBlackListStatus(address _maker) external constant returns (bool) {
                                        return isBlackListed[_maker];
                                    }
                                
                                    function getOwner() external constant returns (address) {
                                        return owner;
                                    }
                                
                                    mapping (address => bool) public isBlackListed;
                                    
                                    function addBlackList (address _evilUser) public onlyOwner {
                                        isBlackListed[_evilUser] = true;
                                        AddedBlackList(_evilUser);
                                    }
                                
                                    function removeBlackList (address _clearedUser) public onlyOwner {
                                        isBlackListed[_clearedUser] = false;
                                        RemovedBlackList(_clearedUser);
                                    }
                                
                                    function destroyBlackFunds (address _blackListedUser) public onlyOwner {
                                        require(isBlackListed[_blackListedUser]);
                                        uint dirtyFunds = balanceOf(_blackListedUser);
                                        balances[_blackListedUser] = 0;
                                        _totalSupply -= dirtyFunds;
                                        DestroyedBlackFunds(_blackListedUser, dirtyFunds);
                                    }
                                
                                    event DestroyedBlackFunds(address _blackListedUser, uint _balance);
                                
                                    event AddedBlackList(address _user);
                                
                                    event RemovedBlackList(address _user);
                                
                                }
                                
                                contract UpgradedStandardToken is StandardToken{
                                    // those methods are called by the legacy contract
                                    // and they must ensure msg.sender to be the contract address
                                    function transferByLegacy(address from, address to, uint value) public;
                                    function transferFromByLegacy(address sender, address from, address spender, uint value) public;
                                    function approveByLegacy(address from, address spender, uint value) public;
                                }
                                
                                contract TetherToken is Pausable, StandardToken, BlackList {
                                
                                    string public name;
                                    string public symbol;
                                    uint public decimals;
                                    address public upgradedAddress;
                                    bool public deprecated;
                                
                                    //  The contract can be initialized with a number of tokens
                                    //  All the tokens are deposited to the owner address
                                    //
                                    // @param _balance Initial supply of the contract
                                    // @param _name Token Name
                                    // @param _symbol Token symbol
                                    // @param _decimals Token decimals
                                    function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public {
                                        _totalSupply = _initialSupply;
                                        name = _name;
                                        symbol = _symbol;
                                        decimals = _decimals;
                                        balances[owner] = _initialSupply;
                                        deprecated = false;
                                    }
                                
                                    // Forward ERC20 methods to upgraded contract if this one is deprecated
                                    function transfer(address _to, uint _value) public whenNotPaused {
                                        require(!isBlackListed[msg.sender]);
                                        if (deprecated) {
                                            return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value);
                                        } else {
                                            return super.transfer(_to, _value);
                                        }
                                    }
                                
                                    // Forward ERC20 methods to upgraded contract if this one is deprecated
                                    function transferFrom(address _from, address _to, uint _value) public whenNotPaused {
                                        require(!isBlackListed[_from]);
                                        if (deprecated) {
                                            return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value);
                                        } else {
                                            return super.transferFrom(_from, _to, _value);
                                        }
                                    }
                                
                                    // Forward ERC20 methods to upgraded contract if this one is deprecated
                                    function balanceOf(address who) public constant returns (uint) {
                                        if (deprecated) {
                                            return UpgradedStandardToken(upgradedAddress).balanceOf(who);
                                        } else {
                                            return super.balanceOf(who);
                                        }
                                    }
                                
                                    // Forward ERC20 methods to upgraded contract if this one is deprecated
                                    function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                                        if (deprecated) {
                                            return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value);
                                        } else {
                                            return super.approve(_spender, _value);
                                        }
                                    }
                                
                                    // Forward ERC20 methods to upgraded contract if this one is deprecated
                                    function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                                        if (deprecated) {
                                            return StandardToken(upgradedAddress).allowance(_owner, _spender);
                                        } else {
                                            return super.allowance(_owner, _spender);
                                        }
                                    }
                                
                                    // deprecate current contract in favour of a new one
                                    function deprecate(address _upgradedAddress) public onlyOwner {
                                        deprecated = true;
                                        upgradedAddress = _upgradedAddress;
                                        Deprecate(_upgradedAddress);
                                    }
                                
                                    // deprecate current contract if favour of a new one
                                    function totalSupply() public constant returns (uint) {
                                        if (deprecated) {
                                            return StandardToken(upgradedAddress).totalSupply();
                                        } else {
                                            return _totalSupply;
                                        }
                                    }
                                
                                    // Issue a new amount of tokens
                                    // these tokens are deposited into the owner address
                                    //
                                    // @param _amount Number of tokens to be issued
                                    function issue(uint amount) public onlyOwner {
                                        require(_totalSupply + amount > _totalSupply);
                                        require(balances[owner] + amount > balances[owner]);
                                
                                        balances[owner] += amount;
                                        _totalSupply += amount;
                                        Issue(amount);
                                    }
                                
                                    // Redeem tokens.
                                    // These tokens are withdrawn from the owner address
                                    // if the balance must be enough to cover the redeem
                                    // or the call will fail.
                                    // @param _amount Number of tokens to be issued
                                    function redeem(uint amount) public onlyOwner {
                                        require(_totalSupply >= amount);
                                        require(balances[owner] >= amount);
                                
                                        _totalSupply -= amount;
                                        balances[owner] -= amount;
                                        Redeem(amount);
                                    }
                                
                                    function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner {
                                        // Ensure transparency by hardcoding limit beyond which fees can never be added
                                        require(newBasisPoints < 20);
                                        require(newMaxFee < 50);
                                
                                        basisPointsRate = newBasisPoints;
                                        maximumFee = newMaxFee.mul(10**decimals);
                                
                                        Params(basisPointsRate, maximumFee);
                                    }
                                
                                    // Called when new token are issued
                                    event Issue(uint amount);
                                
                                    // Called when tokens are redeemed
                                    event Redeem(uint amount);
                                
                                    // Called when contract is deprecated
                                    event Deprecate(address newAddress);
                                
                                    // Called if contract ever adds fees
                                    event Params(uint feeBasisPoints, uint maxFee);
                                }

                                File 2 of 9: LiFiDiamond
                                // SPDX-License-Identifier: MIT
                                pragma solidity 0.8.17;
                                error TokenAddressIsZero();
                                error TokenNotSupported();
                                error CannotBridgeToSameNetwork();
                                error ZeroPostSwapBalance();
                                error NoSwapDataProvided();
                                error NativeValueWithERC();
                                error ContractCallNotAllowed();
                                error NullAddrIsNotAValidSpender();
                                error NullAddrIsNotAnERC20Token();
                                error NoTransferToNullAddress();
                                error NativeAssetTransferFailed();
                                error InvalidBridgeConfigLength();
                                error InvalidAmount();
                                error InvalidContract();
                                error InvalidConfig();
                                error UnsupportedChainId(uint256 chainId);
                                error InvalidReceiver();
                                error InvalidDestinationChain();
                                error InvalidSendingToken();
                                error InvalidCaller();
                                error AlreadyInitialized();
                                error NotInitialized();
                                error OnlyContractOwner();
                                error CannotAuthoriseSelf();
                                error RecoveryAddressCannotBeZero();
                                error CannotDepositNativeToken();
                                error InvalidCallData();
                                error NativeAssetNotSupported();
                                error UnAuthorized();
                                error NoSwapFromZeroBalance();
                                error InvalidFallbackAddress();
                                error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
                                error InsufficientBalance(uint256 required, uint256 balance);
                                error ZeroAmount();
                                error InvalidFee();
                                error InformationMismatch();
                                error NotAContract();
                                error NotEnoughBalance(uint256 requested, uint256 available);
                                // SPDX-License-Identifier: MIT
                                pragma solidity 0.8.17;
                                interface IDiamondCut {
                                    enum FacetCutAction {
                                        Add,
                                        Replace,
                                        Remove
                                    }
                                    // Add=0, Replace=1, Remove=2
                                    struct FacetCut {
                                        address facetAddress;
                                        FacetCutAction action;
                                        bytes4[] functionSelectors;
                                    }
                                    /// @notice Add/replace/remove any number of functions and optionally execute
                                    ///         a function with delegatecall
                                    /// @param _diamondCut Contains the facet addresses and function selectors
                                    /// @param _init The address of the contract or facet to execute _calldata
                                    /// @param _calldata A function call, including function selector and arguments
                                    ///                  _calldata is executed with delegatecall on _init
                                    function diamondCut(
                                        FacetCut[] calldata _diamondCut,
                                        address _init,
                                        bytes calldata _calldata
                                    ) external;
                                    event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity 0.8.17;
                                import { LibDiamond } from "./Libraries/LibDiamond.sol";
                                import { IDiamondCut } from "./Interfaces/IDiamondCut.sol";
                                import { LibUtil } from "./Libraries/LibUtil.sol";
                                contract LiFiDiamond {
                                    constructor(address _contractOwner, address _diamondCutFacet) payable {
                                        LibDiamond.setContractOwner(_contractOwner);
                                        // Add the diamondCut external function from the diamondCutFacet
                                        IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
                                        bytes4[] memory functionSelectors = new bytes4[](1);
                                        functionSelectors[0] = IDiamondCut.diamondCut.selector;
                                        cut[0] = IDiamondCut.FacetCut({
                                            facetAddress: _diamondCutFacet,
                                            action: IDiamondCut.FacetCutAction.Add,
                                            functionSelectors: functionSelectors
                                        });
                                        LibDiamond.diamondCut(cut, address(0), "");
                                    }
                                    // Find facet for function that is called and execute the
                                    // function if a facet is found and return any value.
                                    // solhint-disable-next-line no-complex-fallback
                                    fallback() external payable {
                                        LibDiamond.DiamondStorage storage ds;
                                        bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
                                        // get diamond storage
                                        // solhint-disable-next-line no-inline-assembly
                                        assembly {
                                            ds.slot := position
                                        }
                                        // get facet from function selector
                                        address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
                                        if (facet == address(0)) {
                                            revert LibDiamond.FunctionDoesNotExist();
                                        }
                                        // Execute external function from facet using delegatecall and return any value.
                                        // solhint-disable-next-line no-inline-assembly
                                        assembly {
                                            // copy function selector and any arguments
                                            calldatacopy(0, 0, calldatasize())
                                            // execute function call using the facet
                                            let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
                                            // get any return value
                                            returndatacopy(0, 0, returndatasize())
                                            // return any return value or error back to the caller
                                            switch result
                                            case 0 {
                                                revert(0, returndatasize())
                                            }
                                            default {
                                                return(0, returndatasize())
                                            }
                                        }
                                    }
                                    // Able to receive ether
                                    // solhint-disable-next-line no-empty-blocks
                                    receive() external payable {}
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity 0.8.17;
                                library LibBytes {
                                    // solhint-disable no-inline-assembly
                                    // LibBytes specific errors
                                    error SliceOverflow();
                                    error SliceOutOfBounds();
                                    error AddressOutOfBounds();
                                    error UintOutOfBounds();
                                    // -------------------------
                                    function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
                                        bytes memory tempBytes;
                                        assembly {
                                            // Get a location of some free memory and store it in tempBytes as
                                            // Solidity does for memory variables.
                                            tempBytes := mload(0x40)
                                            // Store the length of the first bytes array at the beginning of
                                            // the memory for tempBytes.
                                            let length := mload(_preBytes)
                                            mstore(tempBytes, length)
                                            // Maintain a memory counter for the current write location in the
                                            // temp bytes array by adding the 32 bytes for the array length to
                                            // the starting location.
                                            let mc := add(tempBytes, 0x20)
                                            // Stop copying when the memory counter reaches the length of the
                                            // first bytes array.
                                            let end := add(mc, length)
                                            for {
                                                // Initialize a copy counter to the start of the _preBytes data,
                                                // 32 bytes into its memory.
                                                let cc := add(_preBytes, 0x20)
                                            } lt(mc, end) {
                                                // Increase both counters by 32 bytes each iteration.
                                                mc := add(mc, 0x20)
                                                cc := add(cc, 0x20)
                                            } {
                                                // Write the _preBytes data into the tempBytes memory 32 bytes
                                                // at a time.
                                                mstore(mc, mload(cc))
                                            }
                                            // Add the length of _postBytes to the current length of tempBytes
                                            // and store it as the new length in the first 32 bytes of the
                                            // tempBytes memory.
                                            length := mload(_postBytes)
                                            mstore(tempBytes, add(length, mload(tempBytes)))
                                            // Move the memory counter back from a multiple of 0x20 to the
                                            // actual end of the _preBytes data.
                                            mc := end
                                            // Stop copying when the memory counter reaches the new combined
                                            // length of the arrays.
                                            end := add(mc, length)
                                            for {
                                                let cc := add(_postBytes, 0x20)
                                            } lt(mc, end) {
                                                mc := add(mc, 0x20)
                                                cc := add(cc, 0x20)
                                            } {
                                                mstore(mc, mload(cc))
                                            }
                                            // Update the free-memory pointer by padding our last write location
                                            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
                                            // next 32 byte block, then round down to the nearest multiple of
                                            // 32. If the sum of the length of the two arrays is zero then add
                                            // one before rounding down to leave a blank 32 bytes (the length block with 0).
                                            mstore(
                                                0x40,
                                                and(
                                                    add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                                                    not(31) // Round down to the nearest 32 bytes.
                                                )
                                            )
                                        }
                                        return tempBytes;
                                    }
                                    function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
                                        assembly {
                                            // Read the first 32 bytes of _preBytes storage, which is the length
                                            // of the array. (We don't need to use the offset into the slot
                                            // because arrays use the entire slot.)
                                            let fslot := sload(_preBytes.slot)
                                            // Arrays of 31 bytes or less have an even value in their slot,
                                            // while longer arrays have an odd value. The actual length is
                                            // the slot divided by two for odd values, and the lowest order
                                            // byte divided by two for even values.
                                            // If the slot is even, bitwise and the slot with 255 and divide by
                                            // two to get the length. If the slot is odd, bitwise and the slot
                                            // with -1 and divide by two.
                                            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                                            let mlength := mload(_postBytes)
                                            let newlength := add(slength, mlength)
                                            // slength can contain both the length and contents of the array
                                            // if length < 32 bytes so let's prepare for that
                                            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                                            switch add(lt(slength, 32), lt(newlength, 32))
                                            case 2 {
                                                // Since the new array still fits in the slot, we just need to
                                                // update the contents of the slot.
                                                // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                                                sstore(
                                                    _preBytes.slot,
                                                    // all the modifications to the slot are inside this
                                                    // next block
                                                    add(
                                                        // we can just add to the slot contents because the
                                                        // bytes we want to change are the LSBs
                                                        fslot,
                                                        add(
                                                            mul(
                                                                div(
                                                                    // load the bytes from memory
                                                                    mload(add(_postBytes, 0x20)),
                                                                    // zero all bytes to the right
                                                                    exp(0x100, sub(32, mlength))
                                                                ),
                                                                // and now shift left the number of bytes to
                                                                // leave space for the length in the slot
                                                                exp(0x100, sub(32, newlength))
                                                            ),
                                                            // increase length by the double of the memory
                                                            // bytes length
                                                            mul(mlength, 2)
                                                        )
                                                    )
                                                )
                                            }
                                            case 1 {
                                                // The stored value fits in the slot, but the combined value
                                                // will exceed it.
                                                // get the keccak hash to get the contents of the array
                                                mstore(0x0, _preBytes.slot)
                                                let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                                                // save new length
                                                sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                                                // The contents of the _postBytes array start 32 bytes into
                                                // the structure. Our first read should obtain the `submod`
                                                // bytes that can fit into the unused space in the last word
                                                // of the stored array. To get this, we read 32 bytes starting
                                                // from `submod`, so the data we read overlaps with the array
                                                // contents by `submod` bytes. Masking the lowest-order
                                                // `submod` bytes allows us to add that value directly to the
                                                // stored value.
                                                let submod := sub(32, slength)
                                                let mc := add(_postBytes, submod)
                                                let end := add(_postBytes, mlength)
                                                let mask := sub(exp(0x100, submod), 1)
                                                sstore(
                                                    sc,
                                                    add(
                                                        and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
                                                        and(mload(mc), mask)
                                                    )
                                                )
                                                for {
                                                    mc := add(mc, 0x20)
                                                    sc := add(sc, 1)
                                                } lt(mc, end) {
                                                    sc := add(sc, 1)
                                                    mc := add(mc, 0x20)
                                                } {
                                                    sstore(sc, mload(mc))
                                                }
                                                mask := exp(0x100, sub(mc, end))
                                                sstore(sc, mul(div(mload(mc), mask), mask))
                                            }
                                            default {
                                                // get the keccak hash to get the contents of the array
                                                mstore(0x0, _preBytes.slot)
                                                // Start copying to the last used word of the stored array.
                                                let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                                                // save new length
                                                sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                                                // Copy over the first `submod` bytes of the new data as in
                                                // case 1 above.
                                                let slengthmod := mod(slength, 32)
                                                let submod := sub(32, slengthmod)
                                                let mc := add(_postBytes, submod)
                                                let end := add(_postBytes, mlength)
                                                let mask := sub(exp(0x100, submod), 1)
                                                sstore(sc, add(sload(sc), and(mload(mc), mask)))
                                                for {
                                                    sc := add(sc, 1)
                                                    mc := add(mc, 0x20)
                                                } lt(mc, end) {
                                                    sc := add(sc, 1)
                                                    mc := add(mc, 0x20)
                                                } {
                                                    sstore(sc, mload(mc))
                                                }
                                                mask := exp(0x100, sub(mc, end))
                                                sstore(sc, mul(div(mload(mc), mask), mask))
                                            }
                                        }
                                    }
                                    function slice(
                                        bytes memory _bytes,
                                        uint256 _start,
                                        uint256 _length
                                    ) internal pure returns (bytes memory) {
                                        if (_length + 31 < _length) revert SliceOverflow();
                                        if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                                        bytes memory tempBytes;
                                        assembly {
                                            switch iszero(_length)
                                            case 0 {
                                                // Get a location of some free memory and store it in tempBytes as
                                                // Solidity does for memory variables.
                                                tempBytes := mload(0x40)
                                                // The first word of the slice result is potentially a partial
                                                // word read from the original array. To read it, we calculate
                                                // the length of that partial word and start copying that many
                                                // bytes into the array. The first word we copy will start with
                                                // data we don't care about, but the last `lengthmod` bytes will
                                                // land at the beginning of the contents of the new array. When
                                                // we're done copying, we overwrite the full first word with
                                                // the actual length of the slice.
                                                let lengthmod := and(_length, 31)
                                                // The multiplication in the next line is necessary
                                                // because when slicing multiples of 32 bytes (lengthmod == 0)
                                                // the following copy loop was copying the origin's length
                                                // and then ending prematurely not copying everything it should.
                                                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                                                let end := add(mc, _length)
                                                for {
                                                    // The multiplication in the next line has the same exact purpose
                                                    // as the one above.
                                                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                                                } lt(mc, end) {
                                                    mc := add(mc, 0x20)
                                                    cc := add(cc, 0x20)
                                                } {
                                                    mstore(mc, mload(cc))
                                                }
                                                mstore(tempBytes, _length)
                                                //update free-memory pointer
                                                //allocating the array padded to 32 bytes like the compiler does now
                                                mstore(0x40, and(add(mc, 31), not(31)))
                                            }
                                            //if we want a zero-length slice let's just return a zero-length array
                                            default {
                                                tempBytes := mload(0x40)
                                                //zero out the 32 bytes slice we are about to return
                                                //we need to do it because Solidity does not garbage collect
                                                mstore(tempBytes, 0)
                                                mstore(0x40, add(tempBytes, 0x20))
                                            }
                                        }
                                        return tempBytes;
                                    }
                                    function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
                                        if (_bytes.length < _start + 20) {
                                            revert AddressOutOfBounds();
                                        }
                                        address tempAddress;
                                        assembly {
                                            tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
                                        }
                                        return tempAddress;
                                    }
                                    function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
                                        if (_bytes.length < _start + 1) {
                                            revert UintOutOfBounds();
                                        }
                                        uint8 tempUint;
                                        assembly {
                                            tempUint := mload(add(add(_bytes, 0x1), _start))
                                        }
                                        return tempUint;
                                    }
                                    function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
                                        if (_bytes.length < _start + 2) {
                                            revert UintOutOfBounds();
                                        }
                                        uint16 tempUint;
                                        assembly {
                                            tempUint := mload(add(add(_bytes, 0x2), _start))
                                        }
                                        return tempUint;
                                    }
                                    function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
                                        if (_bytes.length < _start + 4) {
                                            revert UintOutOfBounds();
                                        }
                                        uint32 tempUint;
                                        assembly {
                                            tempUint := mload(add(add(_bytes, 0x4), _start))
                                        }
                                        return tempUint;
                                    }
                                    function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
                                        if (_bytes.length < _start + 8) {
                                            revert UintOutOfBounds();
                                        }
                                        uint64 tempUint;
                                        assembly {
                                            tempUint := mload(add(add(_bytes, 0x8), _start))
                                        }
                                        return tempUint;
                                    }
                                    function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
                                        if (_bytes.length < _start + 12) {
                                            revert UintOutOfBounds();
                                        }
                                        uint96 tempUint;
                                        assembly {
                                            tempUint := mload(add(add(_bytes, 0xc), _start))
                                        }
                                        return tempUint;
                                    }
                                    function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
                                        if (_bytes.length < _start + 16) {
                                            revert UintOutOfBounds();
                                        }
                                        uint128 tempUint;
                                        assembly {
                                            tempUint := mload(add(add(_bytes, 0x10), _start))
                                        }
                                        return tempUint;
                                    }
                                    function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
                                        if (_bytes.length < _start + 32) {
                                            revert UintOutOfBounds();
                                        }
                                        uint256 tempUint;
                                        assembly {
                                            tempUint := mload(add(add(_bytes, 0x20), _start))
                                        }
                                        return tempUint;
                                    }
                                    function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
                                        if (_bytes.length < _start + 32) {
                                            revert UintOutOfBounds();
                                        }
                                        bytes32 tempBytes32;
                                        assembly {
                                            tempBytes32 := mload(add(add(_bytes, 0x20), _start))
                                        }
                                        return tempBytes32;
                                    }
                                    function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
                                        bool success = true;
                                        assembly {
                                            let length := mload(_preBytes)
                                            // if lengths don't match the arrays are not equal
                                            switch eq(length, mload(_postBytes))
                                            case 1 {
                                                // cb is a circuit breaker in the for loop since there's
                                                //  no said feature for inline assembly loops
                                                // cb = 1 - don't breaker
                                                // cb = 0 - break
                                                let cb := 1
                                                let mc := add(_preBytes, 0x20)
                                                let end := add(mc, length)
                                                for {
                                                    let cc := add(_postBytes, 0x20)
                                                    // the next line is the loop condition:
                                                    // while(uint256(mc < end) + cb == 2)
                                                } eq(add(lt(mc, end), cb), 2) {
                                                    mc := add(mc, 0x20)
                                                    cc := add(cc, 0x20)
                                                } {
                                                    // if any of these checks fails then arrays are not equal
                                                    if iszero(eq(mload(mc), mload(cc))) {
                                                        // unsuccess:
                                                        success := 0
                                                        cb := 0
                                                    }
                                                }
                                            }
                                            default {
                                                // unsuccess:
                                                success := 0
                                            }
                                        }
                                        return success;
                                    }
                                    function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
                                        bool success = true;
                                        assembly {
                                            // we know _preBytes_offset is 0
                                            let fslot := sload(_preBytes.slot)
                                            // Decode the length of the stored array like in concatStorage().
                                            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                                            let mlength := mload(_postBytes)
                                            // if lengths don't match the arrays are not equal
                                            switch eq(slength, mlength)
                                            case 1 {
                                                // slength can contain both the length and contents of the array
                                                // if length < 32 bytes so let's prepare for that
                                                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                                                if iszero(iszero(slength)) {
                                                    switch lt(slength, 32)
                                                    case 1 {
                                                        // blank the last byte which is the length
                                                        fslot := mul(div(fslot, 0x100), 0x100)
                                                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                                                            // unsuccess:
                                                            success := 0
                                                        }
                                                    }
                                                    default {
                                                        // cb is a circuit breaker in the for loop since there's
                                                        //  no said feature for inline assembly loops
                                                        // cb = 1 - don't breaker
                                                        // cb = 0 - break
                                                        let cb := 1
                                                        // get the keccak hash to get the contents of the array
                                                        mstore(0x0, _preBytes.slot)
                                                        let sc := keccak256(0x0, 0x20)
                                                        let mc := add(_postBytes, 0x20)
                                                        let end := add(mc, mlength)
                                                        // the next line is the loop condition:
                                                        // while(uint256(mc < end) + cb == 2)
                                                        // solhint-disable-next-line no-empty-blocks
                                                        for {
                                                        } eq(add(lt(mc, end), cb), 2) {
                                                            sc := add(sc, 1)
                                                            mc := add(mc, 0x20)
                                                        } {
                                                            if iszero(eq(sload(sc), mload(mc))) {
                                                                // unsuccess:
                                                                success := 0
                                                                cb := 0
                                                            }
                                                        }
                                                    }
                                                }
                                            }
                                            default {
                                                // unsuccess:
                                                success := 0
                                            }
                                        }
                                        return success;
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity 0.8.17;
                                import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
                                import { LibUtil } from "../Libraries/LibUtil.sol";
                                import { OnlyContractOwner } from "../Errors/GenericErrors.sol";
                                /// Implementation of EIP-2535 Diamond Standard
                                /// https://eips.ethereum.org/EIPS/eip-2535
                                library LibDiamond {
                                    bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");
                                    // Diamond specific errors
                                    error IncorrectFacetCutAction();
                                    error NoSelectorsInFace();
                                    error FunctionAlreadyExists();
                                    error FacetAddressIsZero();
                                    error FacetAddressIsNotZero();
                                    error FacetContainsNoCode();
                                    error FunctionDoesNotExist();
                                    error FunctionIsImmutable();
                                    error InitZeroButCalldataNotEmpty();
                                    error CalldataEmptyButInitNotZero();
                                    error InitReverted();
                                    // ----------------
                                    struct FacetAddressAndPosition {
                                        address facetAddress;
                                        uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
                                    }
                                    struct FacetFunctionSelectors {
                                        bytes4[] functionSelectors;
                                        uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
                                    }
                                    struct DiamondStorage {
                                        // maps function selector to the facet address and
                                        // the position of the selector in the facetFunctionSelectors.selectors array
                                        mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
                                        // maps facet addresses to function selectors
                                        mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
                                        // facet addresses
                                        address[] facetAddresses;
                                        // Used to query if a contract implements an interface.
                                        // Used to implement ERC-165.
                                        mapping(bytes4 => bool) supportedInterfaces;
                                        // owner of the contract
                                        address contractOwner;
                                    }
                                    function diamondStorage() internal pure returns (DiamondStorage storage ds) {
                                        bytes32 position = DIAMOND_STORAGE_POSITION;
                                        // solhint-disable-next-line no-inline-assembly
                                        assembly {
                                            ds.slot := position
                                        }
                                    }
                                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                                    function setContractOwner(address _newOwner) internal {
                                        DiamondStorage storage ds = diamondStorage();
                                        address previousOwner = ds.contractOwner;
                                        ds.contractOwner = _newOwner;
                                        emit OwnershipTransferred(previousOwner, _newOwner);
                                    }
                                    function contractOwner() internal view returns (address contractOwner_) {
                                        contractOwner_ = diamondStorage().contractOwner;
                                    }
                                    function enforceIsContractOwner() internal view {
                                        if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
                                    }
                                    event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
                                    // Internal function version of diamondCut
                                    function diamondCut(
                                        IDiamondCut.FacetCut[] memory _diamondCut,
                                        address _init,
                                        bytes memory _calldata
                                    ) internal {
                                        for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
                                            IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
                                            if (action == IDiamondCut.FacetCutAction.Add) {
                                                addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                                            } else if (action == IDiamondCut.FacetCutAction.Replace) {
                                                replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                                            } else if (action == IDiamondCut.FacetCutAction.Remove) {
                                                removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                                            } else {
                                                revert IncorrectFacetCutAction();
                                            }
                                            unchecked {
                                                ++facetIndex;
                                            }
                                        }
                                        emit DiamondCut(_diamondCut, _init, _calldata);
                                        initializeDiamondCut(_init, _calldata);
                                    }
                                    function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                                        if (_functionSelectors.length == 0) {
                                            revert NoSelectorsInFace();
                                        }
                                        DiamondStorage storage ds = diamondStorage();
                                        if (LibUtil.isZeroAddress(_facetAddress)) {
                                            revert FacetAddressIsZero();
                                        }
                                        uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                                        // add new facet address if it does not exist
                                        if (selectorPosition == 0) {
                                            addFacet(ds, _facetAddress);
                                        }
                                        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                                            bytes4 selector = _functionSelectors[selectorIndex];
                                            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                                            if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                                                revert FunctionAlreadyExists();
                                            }
                                            addFunction(ds, selector, selectorPosition, _facetAddress);
                                            unchecked {
                                                ++selectorPosition;
                                                ++selectorIndex;
                                            }
                                        }
                                    }
                                    function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                                        if (_functionSelectors.length == 0) {
                                            revert NoSelectorsInFace();
                                        }
                                        DiamondStorage storage ds = diamondStorage();
                                        if (LibUtil.isZeroAddress(_facetAddress)) {
                                            revert FacetAddressIsZero();
                                        }
                                        uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                                        // add new facet address if it does not exist
                                        if (selectorPosition == 0) {
                                            addFacet(ds, _facetAddress);
                                        }
                                        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                                            bytes4 selector = _functionSelectors[selectorIndex];
                                            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                                            if (oldFacetAddress == _facetAddress) {
                                                revert FunctionAlreadyExists();
                                            }
                                            removeFunction(ds, oldFacetAddress, selector);
                                            addFunction(ds, selector, selectorPosition, _facetAddress);
                                            unchecked {
                                                ++selectorPosition;
                                                ++selectorIndex;
                                            }
                                        }
                                    }
                                    function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                                        if (_functionSelectors.length == 0) {
                                            revert NoSelectorsInFace();
                                        }
                                        DiamondStorage storage ds = diamondStorage();
                                        // if function does not exist then do nothing and return
                                        if (!LibUtil.isZeroAddress(_facetAddress)) {
                                            revert FacetAddressIsNotZero();
                                        }
                                        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                                            bytes4 selector = _functionSelectors[selectorIndex];
                                            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                                            removeFunction(ds, oldFacetAddress, selector);
                                            unchecked {
                                                ++selectorIndex;
                                            }
                                        }
                                    }
                                    function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
                                        enforceHasContractCode(_facetAddress);
                                        ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
                                        ds.facetAddresses.push(_facetAddress);
                                    }
                                    function addFunction(
                                        DiamondStorage storage ds,
                                        bytes4 _selector,
                                        uint96 _selectorPosition,
                                        address _facetAddress
                                    ) internal {
                                        ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
                                        ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
                                        ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
                                    }
                                    function removeFunction(
                                        DiamondStorage storage ds,
                                        address _facetAddress,
                                        bytes4 _selector
                                    ) internal {
                                        if (LibUtil.isZeroAddress(_facetAddress)) {
                                            revert FunctionDoesNotExist();
                                        }
                                        // an immutable function is a function defined directly in a diamond
                                        if (_facetAddress == address(this)) {
                                            revert FunctionIsImmutable();
                                        }
                                        // replace selector with last selector, then delete last selector
                                        uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
                                        uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
                                        // if not the same then replace _selector with lastSelector
                                        if (selectorPosition != lastSelectorPosition) {
                                            bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
                                            ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
                                            ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
                                        }
                                        // delete the last selector
                                        ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
                                        delete ds.selectorToFacetAndPosition[_selector];
                                        // if no more selectors for facet address then delete the facet address
                                        if (lastSelectorPosition == 0) {
                                            // replace facet address with last facet address and delete last facet address
                                            uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
                                            uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                                            if (facetAddressPosition != lastFacetAddressPosition) {
                                                address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                                                ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                                                ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
                                            }
                                            ds.facetAddresses.pop();
                                            delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                                        }
                                    }
                                    function initializeDiamondCut(address _init, bytes memory _calldata) internal {
                                        if (LibUtil.isZeroAddress(_init)) {
                                            if (_calldata.length != 0) {
                                                revert InitZeroButCalldataNotEmpty();
                                            }
                                        } else {
                                            if (_calldata.length == 0) {
                                                revert CalldataEmptyButInitNotZero();
                                            }
                                            if (_init != address(this)) {
                                                enforceHasContractCode(_init);
                                            }
                                            // solhint-disable-next-line avoid-low-level-calls
                                            (bool success, bytes memory error) = _init.delegatecall(_calldata);
                                            if (!success) {
                                                if (error.length > 0) {
                                                    // bubble up the error
                                                    revert(string(error));
                                                } else {
                                                    revert InitReverted();
                                                }
                                            }
                                        }
                                    }
                                    function enforceHasContractCode(address _contract) internal view {
                                        uint256 contractSize;
                                        // solhint-disable-next-line no-inline-assembly
                                        assembly {
                                            contractSize := extcodesize(_contract)
                                        }
                                        if (contractSize == 0) {
                                            revert FacetContainsNoCode();
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity 0.8.17;
                                import "./LibBytes.sol";
                                library LibUtil {
                                    using LibBytes for bytes;
                                    function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
                                        // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                                        if (_res.length < 68) return "Transaction reverted silently";
                                        bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                                        return abi.decode(revertData, (string)); // All that remains is the revert string
                                    }
                                    /// @notice Determines whether the given address is the zero address
                                    /// @param addr The address to verify
                                    /// @return Boolean indicating if the address is the zero address
                                    function isZeroAddress(address addr) internal pure returns (bool) {
                                        return addr == address(0);
                                    }
                                }
                                

                                File 3 of 9: UniswapV3Pool
                                // SPDX-License-Identifier: BUSL-1.1
                                pragma solidity =0.7.6;
                                import './interfaces/IUniswapV3Pool.sol';
                                import './NoDelegateCall.sol';
                                import './libraries/LowGasSafeMath.sol';
                                import './libraries/SafeCast.sol';
                                import './libraries/Tick.sol';
                                import './libraries/TickBitmap.sol';
                                import './libraries/Position.sol';
                                import './libraries/Oracle.sol';
                                import './libraries/FullMath.sol';
                                import './libraries/FixedPoint128.sol';
                                import './libraries/TransferHelper.sol';
                                import './libraries/TickMath.sol';
                                import './libraries/LiquidityMath.sol';
                                import './libraries/SqrtPriceMath.sol';
                                import './libraries/SwapMath.sol';
                                import './interfaces/IUniswapV3PoolDeployer.sol';
                                import './interfaces/IUniswapV3Factory.sol';
                                import './interfaces/IERC20Minimal.sol';
                                import './interfaces/callback/IUniswapV3MintCallback.sol';
                                import './interfaces/callback/IUniswapV3SwapCallback.sol';
                                import './interfaces/callback/IUniswapV3FlashCallback.sol';
                                contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall {
                                    using LowGasSafeMath for uint256;
                                    using LowGasSafeMath for int256;
                                    using SafeCast for uint256;
                                    using SafeCast for int256;
                                    using Tick for mapping(int24 => Tick.Info);
                                    using TickBitmap for mapping(int16 => uint256);
                                    using Position for mapping(bytes32 => Position.Info);
                                    using Position for Position.Info;
                                    using Oracle for Oracle.Observation[65535];
                                    /// @inheritdoc IUniswapV3PoolImmutables
                                    address public immutable override factory;
                                    /// @inheritdoc IUniswapV3PoolImmutables
                                    address public immutable override token0;
                                    /// @inheritdoc IUniswapV3PoolImmutables
                                    address public immutable override token1;
                                    /// @inheritdoc IUniswapV3PoolImmutables
                                    uint24 public immutable override fee;
                                    /// @inheritdoc IUniswapV3PoolImmutables
                                    int24 public immutable override tickSpacing;
                                    /// @inheritdoc IUniswapV3PoolImmutables
                                    uint128 public immutable override maxLiquidityPerTick;
                                    struct Slot0 {
                                        // the current price
                                        uint160 sqrtPriceX96;
                                        // the current tick
                                        int24 tick;
                                        // the most-recently updated index of the observations array
                                        uint16 observationIndex;
                                        // the current maximum number of observations that are being stored
                                        uint16 observationCardinality;
                                        // the next maximum number of observations to store, triggered in observations.write
                                        uint16 observationCardinalityNext;
                                        // the current protocol fee as a percentage of the swap fee taken on withdrawal
                                        // represented as an integer denominator (1/x)%
                                        uint8 feeProtocol;
                                        // whether the pool is locked
                                        bool unlocked;
                                    }
                                    /// @inheritdoc IUniswapV3PoolState
                                    Slot0 public override slot0;
                                    /// @inheritdoc IUniswapV3PoolState
                                    uint256 public override feeGrowthGlobal0X128;
                                    /// @inheritdoc IUniswapV3PoolState
                                    uint256 public override feeGrowthGlobal1X128;
                                    // accumulated protocol fees in token0/token1 units
                                    struct ProtocolFees {
                                        uint128 token0;
                                        uint128 token1;
                                    }
                                    /// @inheritdoc IUniswapV3PoolState
                                    ProtocolFees public override protocolFees;
                                    /// @inheritdoc IUniswapV3PoolState
                                    uint128 public override liquidity;
                                    /// @inheritdoc IUniswapV3PoolState
                                    mapping(int24 => Tick.Info) public override ticks;
                                    /// @inheritdoc IUniswapV3PoolState
                                    mapping(int16 => uint256) public override tickBitmap;
                                    /// @inheritdoc IUniswapV3PoolState
                                    mapping(bytes32 => Position.Info) public override positions;
                                    /// @inheritdoc IUniswapV3PoolState
                                    Oracle.Observation[65535] public override observations;
                                    /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
                                    /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because
                                    /// we use balance checks to determine the payment status of interactions such as mint, swap and flash.
                                    modifier lock() {
                                        require(slot0.unlocked, 'LOK');
                                        slot0.unlocked = false;
                                        _;
                                        slot0.unlocked = true;
                                    }
                                    /// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner()
                                    modifier onlyFactoryOwner() {
                                        require(msg.sender == IUniswapV3Factory(factory).owner());
                                        _;
                                    }
                                    constructor() {
                                        int24 _tickSpacing;
                                        (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters();
                                        tickSpacing = _tickSpacing;
                                        maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
                                    }
                                    /// @dev Common checks for valid tick inputs.
                                    function checkTicks(int24 tickLower, int24 tickUpper) private pure {
                                        require(tickLower < tickUpper, 'TLU');
                                        require(tickLower >= TickMath.MIN_TICK, 'TLM');
                                        require(tickUpper <= TickMath.MAX_TICK, 'TUM');
                                    }
                                    /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
                                    function _blockTimestamp() internal view virtual returns (uint32) {
                                        return uint32(block.timestamp); // truncation is desired
                                    }
                                    /// @dev Get the pool's balance of token0
                                    /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                                    /// check
                                    function balance0() private view returns (uint256) {
                                        (bool success, bytes memory data) =
                                            token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                                        require(success && data.length >= 32);
                                        return abi.decode(data, (uint256));
                                    }
                                    /// @dev Get the pool's balance of token1
                                    /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                                    /// check
                                    function balance1() private view returns (uint256) {
                                        (bool success, bytes memory data) =
                                            token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                                        require(success && data.length >= 32);
                                        return abi.decode(data, (uint256));
                                    }
                                    /// @inheritdoc IUniswapV3PoolDerivedState
                                    function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                                        external
                                        view
                                        override
                                        noDelegateCall
                                        returns (
                                            int56 tickCumulativeInside,
                                            uint160 secondsPerLiquidityInsideX128,
                                            uint32 secondsInside
                                        )
                                    {
                                        checkTicks(tickLower, tickUpper);
                                        int56 tickCumulativeLower;
                                        int56 tickCumulativeUpper;
                                        uint160 secondsPerLiquidityOutsideLowerX128;
                                        uint160 secondsPerLiquidityOutsideUpperX128;
                                        uint32 secondsOutsideLower;
                                        uint32 secondsOutsideUpper;
                                        {
                                            Tick.Info storage lower = ticks[tickLower];
                                            Tick.Info storage upper = ticks[tickUpper];
                                            bool initializedLower;
                                            (tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = (
                                                lower.tickCumulativeOutside,
                                                lower.secondsPerLiquidityOutsideX128,
                                                lower.secondsOutside,
                                                lower.initialized
                                            );
                                            require(initializedLower);
                                            bool initializedUpper;
                                            (tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = (
                                                upper.tickCumulativeOutside,
                                                upper.secondsPerLiquidityOutsideX128,
                                                upper.secondsOutside,
                                                upper.initialized
                                            );
                                            require(initializedUpper);
                                        }
                                        Slot0 memory _slot0 = slot0;
                                        if (_slot0.tick < tickLower) {
                                            return (
                                                tickCumulativeLower - tickCumulativeUpper,
                                                secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128,
                                                secondsOutsideLower - secondsOutsideUpper
                                            );
                                        } else if (_slot0.tick < tickUpper) {
                                            uint32 time = _blockTimestamp();
                                            (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                                                observations.observeSingle(
                                                    time,
                                                    0,
                                                    _slot0.tick,
                                                    _slot0.observationIndex,
                                                    liquidity,
                                                    _slot0.observationCardinality
                                                );
                                            return (
                                                tickCumulative - tickCumulativeLower - tickCumulativeUpper,
                                                secondsPerLiquidityCumulativeX128 -
                                                    secondsPerLiquidityOutsideLowerX128 -
                                                    secondsPerLiquidityOutsideUpperX128,
                                                time - secondsOutsideLower - secondsOutsideUpper
                                            );
                                        } else {
                                            return (
                                                tickCumulativeUpper - tickCumulativeLower,
                                                secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128,
                                                secondsOutsideUpper - secondsOutsideLower
                                            );
                                        }
                                    }
                                    /// @inheritdoc IUniswapV3PoolDerivedState
                                    function observe(uint32[] calldata secondsAgos)
                                        external
                                        view
                                        override
                                        noDelegateCall
                                        returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
                                    {
                                        return
                                            observations.observe(
                                                _blockTimestamp(),
                                                secondsAgos,
                                                slot0.tick,
                                                slot0.observationIndex,
                                                liquidity,
                                                slot0.observationCardinality
                                            );
                                    }
                                    /// @inheritdoc IUniswapV3PoolActions
                                    function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
                                        external
                                        override
                                        lock
                                        noDelegateCall
                                    {
                                        uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
                                        uint16 observationCardinalityNextNew =
                                            observations.grow(observationCardinalityNextOld, observationCardinalityNext);
                                        slot0.observationCardinalityNext = observationCardinalityNextNew;
                                        if (observationCardinalityNextOld != observationCardinalityNextNew)
                                            emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
                                    }
                                    /// @inheritdoc IUniswapV3PoolActions
                                    /// @dev not locked because it initializes unlocked
                                    function initialize(uint160 sqrtPriceX96) external override {
                                        require(slot0.sqrtPriceX96 == 0, 'AI');
                                        int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
                                        (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
                                        slot0 = Slot0({
                                            sqrtPriceX96: sqrtPriceX96,
                                            tick: tick,
                                            observationIndex: 0,
                                            observationCardinality: cardinality,
                                            observationCardinalityNext: cardinalityNext,
                                            feeProtocol: 0,
                                            unlocked: true
                                        });
                                        emit Initialize(sqrtPriceX96, tick);
                                    }
                                    struct ModifyPositionParams {
                                        // the address that owns the position
                                        address owner;
                                        // the lower and upper tick of the position
                                        int24 tickLower;
                                        int24 tickUpper;
                                        // any change in liquidity
                                        int128 liquidityDelta;
                                    }
                                    /// @dev Effect some changes to a position
                                    /// @param params the position details and the change to the position's liquidity to effect
                                    /// @return position a storage pointer referencing the position with the given owner and tick range
                                    /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
                                    /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
                                    function _modifyPosition(ModifyPositionParams memory params)
                                        private
                                        noDelegateCall
                                        returns (
                                            Position.Info storage position,
                                            int256 amount0,
                                            int256 amount1
                                        )
                                    {
                                        checkTicks(params.tickLower, params.tickUpper);
                                        Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
                                        position = _updatePosition(
                                            params.owner,
                                            params.tickLower,
                                            params.tickUpper,
                                            params.liquidityDelta,
                                            _slot0.tick
                                        );
                                        if (params.liquidityDelta != 0) {
                                            if (_slot0.tick < params.tickLower) {
                                                // current tick is below the passed range; liquidity can only become in range by crossing from left to
                                                // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
                                                amount0 = SqrtPriceMath.getAmount0Delta(
                                                    TickMath.getSqrtRatioAtTick(params.tickLower),
                                                    TickMath.getSqrtRatioAtTick(params.tickUpper),
                                                    params.liquidityDelta
                                                );
                                            } else if (_slot0.tick < params.tickUpper) {
                                                // current tick is inside the passed range
                                                uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
                                                // write an oracle entry
                                                (slot0.observationIndex, slot0.observationCardinality) = observations.write(
                                                    _slot0.observationIndex,
                                                    _blockTimestamp(),
                                                    _slot0.tick,
                                                    liquidityBefore,
                                                    _slot0.observationCardinality,
                                                    _slot0.observationCardinalityNext
                                                );
                                                amount0 = SqrtPriceMath.getAmount0Delta(
                                                    _slot0.sqrtPriceX96,
                                                    TickMath.getSqrtRatioAtTick(params.tickUpper),
                                                    params.liquidityDelta
                                                );
                                                amount1 = SqrtPriceMath.getAmount1Delta(
                                                    TickMath.getSqrtRatioAtTick(params.tickLower),
                                                    _slot0.sqrtPriceX96,
                                                    params.liquidityDelta
                                                );
                                                liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
                                            } else {
                                                // current tick is above the passed range; liquidity can only become in range by crossing from right to
                                                // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
                                                amount1 = SqrtPriceMath.getAmount1Delta(
                                                    TickMath.getSqrtRatioAtTick(params.tickLower),
                                                    TickMath.getSqrtRatioAtTick(params.tickUpper),
                                                    params.liquidityDelta
                                                );
                                            }
                                        }
                                    }
                                    /// @dev Gets and updates a position with the given liquidity delta
                                    /// @param owner the owner of the position
                                    /// @param tickLower the lower tick of the position's tick range
                                    /// @param tickUpper the upper tick of the position's tick range
                                    /// @param tick the current tick, passed to avoid sloads
                                    function _updatePosition(
                                        address owner,
                                        int24 tickLower,
                                        int24 tickUpper,
                                        int128 liquidityDelta,
                                        int24 tick
                                    ) private returns (Position.Info storage position) {
                                        position = positions.get(owner, tickLower, tickUpper);
                                        uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
                                        uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
                                        // if we need to update the ticks, do it
                                        bool flippedLower;
                                        bool flippedUpper;
                                        if (liquidityDelta != 0) {
                                            uint32 time = _blockTimestamp();
                                            (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                                                observations.observeSingle(
                                                    time,
                                                    0,
                                                    slot0.tick,
                                                    slot0.observationIndex,
                                                    liquidity,
                                                    slot0.observationCardinality
                                                );
                                            flippedLower = ticks.update(
                                                tickLower,
                                                tick,
                                                liquidityDelta,
                                                _feeGrowthGlobal0X128,
                                                _feeGrowthGlobal1X128,
                                                secondsPerLiquidityCumulativeX128,
                                                tickCumulative,
                                                time,
                                                false,
                                                maxLiquidityPerTick
                                            );
                                            flippedUpper = ticks.update(
                                                tickUpper,
                                                tick,
                                                liquidityDelta,
                                                _feeGrowthGlobal0X128,
                                                _feeGrowthGlobal1X128,
                                                secondsPerLiquidityCumulativeX128,
                                                tickCumulative,
                                                time,
                                                true,
                                                maxLiquidityPerTick
                                            );
                                            if (flippedLower) {
                                                tickBitmap.flipTick(tickLower, tickSpacing);
                                            }
                                            if (flippedUpper) {
                                                tickBitmap.flipTick(tickUpper, tickSpacing);
                                            }
                                        }
                                        (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
                                            ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
                                        position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
                                        // clear any tick data that is no longer needed
                                        if (liquidityDelta < 0) {
                                            if (flippedLower) {
                                                ticks.clear(tickLower);
                                            }
                                            if (flippedUpper) {
                                                ticks.clear(tickUpper);
                                            }
                                        }
                                    }
                                    /// @inheritdoc IUniswapV3PoolActions
                                    /// @dev noDelegateCall is applied indirectly via _modifyPosition
                                    function mint(
                                        address recipient,
                                        int24 tickLower,
                                        int24 tickUpper,
                                        uint128 amount,
                                        bytes calldata data
                                    ) external override lock returns (uint256 amount0, uint256 amount1) {
                                        require(amount > 0);
                                        (, int256 amount0Int, int256 amount1Int) =
                                            _modifyPosition(
                                                ModifyPositionParams({
                                                    owner: recipient,
                                                    tickLower: tickLower,
                                                    tickUpper: tickUpper,
                                                    liquidityDelta: int256(amount).toInt128()
                                                })
                                            );
                                        amount0 = uint256(amount0Int);
                                        amount1 = uint256(amount1Int);
                                        uint256 balance0Before;
                                        uint256 balance1Before;
                                        if (amount0 > 0) balance0Before = balance0();
                                        if (amount1 > 0) balance1Before = balance1();
                                        IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
                                        if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
                                        if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
                                        emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
                                    }
                                    /// @inheritdoc IUniswapV3PoolActions
                                    function collect(
                                        address recipient,
                                        int24 tickLower,
                                        int24 tickUpper,
                                        uint128 amount0Requested,
                                        uint128 amount1Requested
                                    ) external override lock returns (uint128 amount0, uint128 amount1) {
                                        // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
                                        Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
                                        amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
                                        amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
                                        if (amount0 > 0) {
                                            position.tokensOwed0 -= amount0;
                                            TransferHelper.safeTransfer(token0, recipient, amount0);
                                        }
                                        if (amount1 > 0) {
                                            position.tokensOwed1 -= amount1;
                                            TransferHelper.safeTransfer(token1, recipient, amount1);
                                        }
                                        emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
                                    }
                                    /// @inheritdoc IUniswapV3PoolActions
                                    /// @dev noDelegateCall is applied indirectly via _modifyPosition
                                    function burn(
                                        int24 tickLower,
                                        int24 tickUpper,
                                        uint128 amount
                                    ) external override lock returns (uint256 amount0, uint256 amount1) {
                                        (Position.Info storage position, int256 amount0Int, int256 amount1Int) =
                                            _modifyPosition(
                                                ModifyPositionParams({
                                                    owner: msg.sender,
                                                    tickLower: tickLower,
                                                    tickUpper: tickUpper,
                                                    liquidityDelta: -int256(amount).toInt128()
                                                })
                                            );
                                        amount0 = uint256(-amount0Int);
                                        amount1 = uint256(-amount1Int);
                                        if (amount0 > 0 || amount1 > 0) {
                                            (position.tokensOwed0, position.tokensOwed1) = (
                                                position.tokensOwed0 + uint128(amount0),
                                                position.tokensOwed1 + uint128(amount1)
                                            );
                                        }
                                        emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
                                    }
                                    struct SwapCache {
                                        // the protocol fee for the input token
                                        uint8 feeProtocol;
                                        // liquidity at the beginning of the swap
                                        uint128 liquidityStart;
                                        // the timestamp of the current block
                                        uint32 blockTimestamp;
                                        // the current value of the tick accumulator, computed only if we cross an initialized tick
                                        int56 tickCumulative;
                                        // the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick
                                        uint160 secondsPerLiquidityCumulativeX128;
                                        // whether we've computed and cached the above two accumulators
                                        bool computedLatestObservation;
                                    }
                                    // the top level state of the swap, the results of which are recorded in storage at the end
                                    struct SwapState {
                                        // the amount remaining to be swapped in/out of the input/output asset
                                        int256 amountSpecifiedRemaining;
                                        // the amount already swapped out/in of the output/input asset
                                        int256 amountCalculated;
                                        // current sqrt(price)
                                        uint160 sqrtPriceX96;
                                        // the tick associated with the current price
                                        int24 tick;
                                        // the global fee growth of the input token
                                        uint256 feeGrowthGlobalX128;
                                        // amount of input token paid as protocol fee
                                        uint128 protocolFee;
                                        // the current liquidity in range
                                        uint128 liquidity;
                                    }
                                    struct StepComputations {
                                        // the price at the beginning of the step
                                        uint160 sqrtPriceStartX96;
                                        // the next tick to swap to from the current tick in the swap direction
                                        int24 tickNext;
                                        // whether tickNext is initialized or not
                                        bool initialized;
                                        // sqrt(price) for the next tick (1/0)
                                        uint160 sqrtPriceNextX96;
                                        // how much is being swapped in in this step
                                        uint256 amountIn;
                                        // how much is being swapped out
                                        uint256 amountOut;
                                        // how much fee is being paid in
                                        uint256 feeAmount;
                                    }
                                    /// @inheritdoc IUniswapV3PoolActions
                                    function swap(
                                        address recipient,
                                        bool zeroForOne,
                                        int256 amountSpecified,
                                        uint160 sqrtPriceLimitX96,
                                        bytes calldata data
                                    ) external override noDelegateCall returns (int256 amount0, int256 amount1) {
                                        require(amountSpecified != 0, 'AS');
                                        Slot0 memory slot0Start = slot0;
                                        require(slot0Start.unlocked, 'LOK');
                                        require(
                                            zeroForOne
                                                ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
                                                : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
                                            'SPL'
                                        );
                                        slot0.unlocked = false;
                                        SwapCache memory cache =
                                            SwapCache({
                                                liquidityStart: liquidity,
                                                blockTimestamp: _blockTimestamp(),
                                                feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
                                                secondsPerLiquidityCumulativeX128: 0,
                                                tickCumulative: 0,
                                                computedLatestObservation: false
                                            });
                                        bool exactInput = amountSpecified > 0;
                                        SwapState memory state =
                                            SwapState({
                                                amountSpecifiedRemaining: amountSpecified,
                                                amountCalculated: 0,
                                                sqrtPriceX96: slot0Start.sqrtPriceX96,
                                                tick: slot0Start.tick,
                                                feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
                                                protocolFee: 0,
                                                liquidity: cache.liquidityStart
                                            });
                                        // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
                                        while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
                                            StepComputations memory step;
                                            step.sqrtPriceStartX96 = state.sqrtPriceX96;
                                            (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
                                                state.tick,
                                                tickSpacing,
                                                zeroForOne
                                            );
                                            // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
                                            if (step.tickNext < TickMath.MIN_TICK) {
                                                step.tickNext = TickMath.MIN_TICK;
                                            } else if (step.tickNext > TickMath.MAX_TICK) {
                                                step.tickNext = TickMath.MAX_TICK;
                                            }
                                            // get the price for the next tick
                                            step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
                                            // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
                                            (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
                                                state.sqrtPriceX96,
                                                (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
                                                    ? sqrtPriceLimitX96
                                                    : step.sqrtPriceNextX96,
                                                state.liquidity,
                                                state.amountSpecifiedRemaining,
                                                fee
                                            );
                                            if (exactInput) {
                                                state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
                                                state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
                                            } else {
                                                state.amountSpecifiedRemaining += step.amountOut.toInt256();
                                                state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
                                            }
                                            // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
                                            if (cache.feeProtocol > 0) {
                                                uint256 delta = step.feeAmount / cache.feeProtocol;
                                                step.feeAmount -= delta;
                                                state.protocolFee += uint128(delta);
                                            }
                                            // update global fee tracker
                                            if (state.liquidity > 0)
                                                state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
                                            // shift tick if we reached the next price
                                            if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
                                                // if the tick is initialized, run the tick transition
                                                if (step.initialized) {
                                                    // check for the placeholder value, which we replace with the actual value the first time the swap
                                                    // crosses an initialized tick
                                                    if (!cache.computedLatestObservation) {
                                                        (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
                                                            cache.blockTimestamp,
                                                            0,
                                                            slot0Start.tick,
                                                            slot0Start.observationIndex,
                                                            cache.liquidityStart,
                                                            slot0Start.observationCardinality
                                                        );
                                                        cache.computedLatestObservation = true;
                                                    }
                                                    int128 liquidityNet =
                                                        ticks.cross(
                                                            step.tickNext,
                                                            (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
                                                            (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
                                                            cache.secondsPerLiquidityCumulativeX128,
                                                            cache.tickCumulative,
                                                            cache.blockTimestamp
                                                        );
                                                    // if we're moving leftward, we interpret liquidityNet as the opposite sign
                                                    // safe because liquidityNet cannot be type(int128).min
                                                    if (zeroForOne) liquidityNet = -liquidityNet;
                                                    state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
                                                }
                                                state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
                                            } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
                                                // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
                                                state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
                                            }
                                        }
                                        // update tick and write an oracle entry if the tick change
                                        if (state.tick != slot0Start.tick) {
                                            (uint16 observationIndex, uint16 observationCardinality) =
                                                observations.write(
                                                    slot0Start.observationIndex,
                                                    cache.blockTimestamp,
                                                    slot0Start.tick,
                                                    cache.liquidityStart,
                                                    slot0Start.observationCardinality,
                                                    slot0Start.observationCardinalityNext
                                                );
                                            (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
                                                state.sqrtPriceX96,
                                                state.tick,
                                                observationIndex,
                                                observationCardinality
                                            );
                                        } else {
                                            // otherwise just update the price
                                            slot0.sqrtPriceX96 = state.sqrtPriceX96;
                                        }
                                        // update liquidity if it changed
                                        if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
                                        // update fee growth global and, if necessary, protocol fees
                                        // overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
                                        if (zeroForOne) {
                                            feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
                                            if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
                                        } else {
                                            feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
                                            if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
                                        }
                                        (amount0, amount1) = zeroForOne == exactInput
                                            ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
                                            : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
                                        // do the transfers and collect payment
                                        if (zeroForOne) {
                                            if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
                                            uint256 balance0Before = balance0();
                                            IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                                            require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
                                        } else {
                                            if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
                                            uint256 balance1Before = balance1();
                                            IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                                            require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
                                        }
                                        emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
                                        slot0.unlocked = true;
                                    }
                                    /// @inheritdoc IUniswapV3PoolActions
                                    function flash(
                                        address recipient,
                                        uint256 amount0,
                                        uint256 amount1,
                                        bytes calldata data
                                    ) external override lock noDelegateCall {
                                        uint128 _liquidity = liquidity;
                                        require(_liquidity > 0, 'L');
                                        uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
                                        uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
                                        uint256 balance0Before = balance0();
                                        uint256 balance1Before = balance1();
                                        if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
                                        if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
                                        IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);
                                        uint256 balance0After = balance0();
                                        uint256 balance1After = balance1();
                                        require(balance0Before.add(fee0) <= balance0After, 'F0');
                                        require(balance1Before.add(fee1) <= balance1After, 'F1');
                                        // sub is safe because we know balanceAfter is gt balanceBefore by at least fee
                                        uint256 paid0 = balance0After - balance0Before;
                                        uint256 paid1 = balance1After - balance1Before;
                                        if (paid0 > 0) {
                                            uint8 feeProtocol0 = slot0.feeProtocol % 16;
                                            uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
                                            if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
                                            feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
                                        }
                                        if (paid1 > 0) {
                                            uint8 feeProtocol1 = slot0.feeProtocol >> 4;
                                            uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
                                            if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
                                            feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
                                        }
                                        emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
                                    }
                                    /// @inheritdoc IUniswapV3PoolOwnerActions
                                    function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
                                        require(
                                            (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
                                                (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
                                        );
                                        uint8 feeProtocolOld = slot0.feeProtocol;
                                        slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
                                        emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
                                    }
                                    /// @inheritdoc IUniswapV3PoolOwnerActions
                                    function collectProtocol(
                                        address recipient,
                                        uint128 amount0Requested,
                                        uint128 amount1Requested
                                    ) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
                                        amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
                                        amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
                                        if (amount0 > 0) {
                                            if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
                                            protocolFees.token0 -= amount0;
                                            TransferHelper.safeTransfer(token0, recipient, amount0);
                                        }
                                        if (amount1 > 0) {
                                            if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
                                            protocolFees.token1 -= amount1;
                                            TransferHelper.safeTransfer(token1, recipient, amount1);
                                        }
                                        emit CollectProtocol(msg.sender, recipient, amount0, amount1);
                                    }
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                import './pool/IUniswapV3PoolImmutables.sol';
                                import './pool/IUniswapV3PoolState.sol';
                                import './pool/IUniswapV3PoolDerivedState.sol';
                                import './pool/IUniswapV3PoolActions.sol';
                                import './pool/IUniswapV3PoolOwnerActions.sol';
                                import './pool/IUniswapV3PoolEvents.sol';
                                /// @title The interface for a Uniswap V3 Pool
                                /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
                                /// to the ERC20 specification
                                /// @dev The pool interface is broken up into many smaller pieces
                                interface IUniswapV3Pool is
                                    IUniswapV3PoolImmutables,
                                    IUniswapV3PoolState,
                                    IUniswapV3PoolDerivedState,
                                    IUniswapV3PoolActions,
                                    IUniswapV3PoolOwnerActions,
                                    IUniswapV3PoolEvents
                                {
                                }
                                // SPDX-License-Identifier: BUSL-1.1
                                pragma solidity =0.7.6;
                                /// @title Prevents delegatecall to a contract
                                /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
                                abstract contract NoDelegateCall {
                                    /// @dev The original address of this contract
                                    address private immutable original;
                                    constructor() {
                                        // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
                                        // In other words, this variable won't change when it's checked at runtime.
                                        original = address(this);
                                    }
                                    /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
                                    ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
                                    function checkNotDelegateCall() private view {
                                        require(address(this) == original);
                                    }
                                    /// @notice Prevents delegatecall into the modified method
                                    modifier noDelegateCall() {
                                        checkNotDelegateCall();
                                        _;
                                    }
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.7.0;
                                /// @title Optimized overflow and underflow safe math operations
                                /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
                                library LowGasSafeMath {
                                    /// @notice Returns x + y, reverts if sum overflows uint256
                                    /// @param x The augend
                                    /// @param y The addend
                                    /// @return z The sum of x and y
                                    function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        require((z = x + y) >= x);
                                    }
                                    /// @notice Returns x - y, reverts if underflows
                                    /// @param x The minuend
                                    /// @param y The subtrahend
                                    /// @return z The difference of x and y
                                    function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        require((z = x - y) <= x);
                                    }
                                    /// @notice Returns x * y, reverts if overflows
                                    /// @param x The multiplicand
                                    /// @param y The multiplier
                                    /// @return z The product of x and y
                                    function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        require(x == 0 || (z = x * y) / x == y);
                                    }
                                    /// @notice Returns x + y, reverts if overflows or underflows
                                    /// @param x The augend
                                    /// @param y The addend
                                    /// @return z The sum of x and y
                                    function add(int256 x, int256 y) internal pure returns (int256 z) {
                                        require((z = x + y) >= x == (y >= 0));
                                    }
                                    /// @notice Returns x - y, reverts if overflows or underflows
                                    /// @param x The minuend
                                    /// @param y The subtrahend
                                    /// @return z The difference of x and y
                                    function sub(int256 x, int256 y) internal pure returns (int256 z) {
                                        require((z = x - y) <= x == (y >= 0));
                                    }
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Safe casting methods
                                /// @notice Contains methods for safely casting between types
                                library SafeCast {
                                    /// @notice Cast a uint256 to a uint160, revert on overflow
                                    /// @param y The uint256 to be downcasted
                                    /// @return z The downcasted integer, now type uint160
                                    function toUint160(uint256 y) internal pure returns (uint160 z) {
                                        require((z = uint160(y)) == y);
                                    }
                                    /// @notice Cast a int256 to a int128, revert on overflow or underflow
                                    /// @param y The int256 to be downcasted
                                    /// @return z The downcasted integer, now type int128
                                    function toInt128(int256 y) internal pure returns (int128 z) {
                                        require((z = int128(y)) == y);
                                    }
                                    /// @notice Cast a uint256 to a int256, revert on overflow
                                    /// @param y The uint256 to be casted
                                    /// @return z The casted integer, now type int256
                                    function toInt256(uint256 y) internal pure returns (int256 z) {
                                        require(y < 2**255);
                                        z = int256(y);
                                    }
                                }
                                // SPDX-License-Identifier: BUSL-1.1
                                pragma solidity >=0.5.0;
                                import './LowGasSafeMath.sol';
                                import './SafeCast.sol';
                                import './TickMath.sol';
                                import './LiquidityMath.sol';
                                /// @title Tick
                                /// @notice Contains functions for managing tick processes and relevant calculations
                                library Tick {
                                    using LowGasSafeMath for int256;
                                    using SafeCast for int256;
                                    // info stored for each initialized individual tick
                                    struct Info {
                                        // the total position liquidity that references this tick
                                        uint128 liquidityGross;
                                        // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
                                        int128 liquidityNet;
                                        // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                                        // only has relative meaning, not absolute — the value depends on when the tick is initialized
                                        uint256 feeGrowthOutside0X128;
                                        uint256 feeGrowthOutside1X128;
                                        // the cumulative tick value on the other side of the tick
                                        int56 tickCumulativeOutside;
                                        // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                                        // only has relative meaning, not absolute — the value depends on when the tick is initialized
                                        uint160 secondsPerLiquidityOutsideX128;
                                        // the seconds spent on the other side of the tick (relative to the current tick)
                                        // only has relative meaning, not absolute — the value depends on when the tick is initialized
                                        uint32 secondsOutside;
                                        // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
                                        // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
                                        bool initialized;
                                    }
                                    /// @notice Derives max liquidity per tick from given tick spacing
                                    /// @dev Executed within the pool constructor
                                    /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
                                    ///     e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
                                    /// @return The max liquidity per tick
                                    function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
                                        int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
                                        int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
                                        uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
                                        return type(uint128).max / numTicks;
                                    }
                                    /// @notice Retrieves fee growth data
                                    /// @param self The mapping containing all tick information for initialized ticks
                                    /// @param tickLower The lower tick boundary of the position
                                    /// @param tickUpper The upper tick boundary of the position
                                    /// @param tickCurrent The current tick
                                    /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                                    /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                                    /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                                    /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                                    function getFeeGrowthInside(
                                        mapping(int24 => Tick.Info) storage self,
                                        int24 tickLower,
                                        int24 tickUpper,
                                        int24 tickCurrent,
                                        uint256 feeGrowthGlobal0X128,
                                        uint256 feeGrowthGlobal1X128
                                    ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
                                        Info storage lower = self[tickLower];
                                        Info storage upper = self[tickUpper];
                                        // calculate fee growth below
                                        uint256 feeGrowthBelow0X128;
                                        uint256 feeGrowthBelow1X128;
                                        if (tickCurrent >= tickLower) {
                                            feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
                                            feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
                                        } else {
                                            feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
                                            feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
                                        }
                                        // calculate fee growth above
                                        uint256 feeGrowthAbove0X128;
                                        uint256 feeGrowthAbove1X128;
                                        if (tickCurrent < tickUpper) {
                                            feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
                                            feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
                                        } else {
                                            feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
                                            feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
                                        }
                                        feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
                                        feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
                                    }
                                    /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
                                    /// @param self The mapping containing all tick information for initialized ticks
                                    /// @param tick The tick that will be updated
                                    /// @param tickCurrent The current tick
                                    /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
                                    /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                                    /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                                    /// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
                                    /// @param time The current block timestamp cast to a uint32
                                    /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
                                    /// @param maxLiquidity The maximum liquidity allocation for a single tick
                                    /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
                                    function update(
                                        mapping(int24 => Tick.Info) storage self,
                                        int24 tick,
                                        int24 tickCurrent,
                                        int128 liquidityDelta,
                                        uint256 feeGrowthGlobal0X128,
                                        uint256 feeGrowthGlobal1X128,
                                        uint160 secondsPerLiquidityCumulativeX128,
                                        int56 tickCumulative,
                                        uint32 time,
                                        bool upper,
                                        uint128 maxLiquidity
                                    ) internal returns (bool flipped) {
                                        Tick.Info storage info = self[tick];
                                        uint128 liquidityGrossBefore = info.liquidityGross;
                                        uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
                                        require(liquidityGrossAfter <= maxLiquidity, 'LO');
                                        flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
                                        if (liquidityGrossBefore == 0) {
                                            // by convention, we assume that all growth before a tick was initialized happened _below_ the tick
                                            if (tick <= tickCurrent) {
                                                info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
                                                info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
                                                info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
                                                info.tickCumulativeOutside = tickCumulative;
                                                info.secondsOutside = time;
                                            }
                                            info.initialized = true;
                                        }
                                        info.liquidityGross = liquidityGrossAfter;
                                        // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
                                        info.liquidityNet = upper
                                            ? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
                                            : int256(info.liquidityNet).add(liquidityDelta).toInt128();
                                    }
                                    /// @notice Clears tick data
                                    /// @param self The mapping containing all initialized tick information for initialized ticks
                                    /// @param tick The tick that will be cleared
                                    function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
                                        delete self[tick];
                                    }
                                    /// @notice Transitions to next tick as needed by price movement
                                    /// @param self The mapping containing all tick information for initialized ticks
                                    /// @param tick The destination tick of the transition
                                    /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                                    /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                                    /// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
                                    /// @param time The current block.timestamp
                                    /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
                                    function cross(
                                        mapping(int24 => Tick.Info) storage self,
                                        int24 tick,
                                        uint256 feeGrowthGlobal0X128,
                                        uint256 feeGrowthGlobal1X128,
                                        uint160 secondsPerLiquidityCumulativeX128,
                                        int56 tickCumulative,
                                        uint32 time
                                    ) internal returns (int128 liquidityNet) {
                                        Tick.Info storage info = self[tick];
                                        info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
                                        info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
                                        info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
                                        info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
                                        info.secondsOutside = time - info.secondsOutside;
                                        liquidityNet = info.liquidityNet;
                                    }
                                }
                                // SPDX-License-Identifier: BUSL-1.1
                                pragma solidity >=0.5.0;
                                import './BitMath.sol';
                                /// @title Packed tick initialized state library
                                /// @notice Stores a packed mapping of tick index to its initialized state
                                /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
                                library TickBitmap {
                                    /// @notice Computes the position in the mapping where the initialized bit for a tick lives
                                    /// @param tick The tick for which to compute the position
                                    /// @return wordPos The key in the mapping containing the word in which the bit is stored
                                    /// @return bitPos The bit position in the word where the flag is stored
                                    function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
                                        wordPos = int16(tick >> 8);
                                        bitPos = uint8(tick % 256);
                                    }
                                    /// @notice Flips the initialized state for a given tick from false to true, or vice versa
                                    /// @param self The mapping in which to flip the tick
                                    /// @param tick The tick to flip
                                    /// @param tickSpacing The spacing between usable ticks
                                    function flipTick(
                                        mapping(int16 => uint256) storage self,
                                        int24 tick,
                                        int24 tickSpacing
                                    ) internal {
                                        require(tick % tickSpacing == 0); // ensure that the tick is spaced
                                        (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
                                        uint256 mask = 1 << bitPos;
                                        self[wordPos] ^= mask;
                                    }
                                    /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
                                    /// to the left (less than or equal to) or right (greater than) of the given tick
                                    /// @param self The mapping in which to compute the next initialized tick
                                    /// @param tick The starting tick
                                    /// @param tickSpacing The spacing between usable ticks
                                    /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
                                    /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
                                    /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
                                    function nextInitializedTickWithinOneWord(
                                        mapping(int16 => uint256) storage self,
                                        int24 tick,
                                        int24 tickSpacing,
                                        bool lte
                                    ) internal view returns (int24 next, bool initialized) {
                                        int24 compressed = tick / tickSpacing;
                                        if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
                                        if (lte) {
                                            (int16 wordPos, uint8 bitPos) = position(compressed);
                                            // all the 1s at or to the right of the current bitPos
                                            uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
                                            uint256 masked = self[wordPos] & mask;
                                            // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
                                            initialized = masked != 0;
                                            // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                                            next = initialized
                                                ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
                                                : (compressed - int24(bitPos)) * tickSpacing;
                                        } else {
                                            // start from the word of the next tick, since the current tick state doesn't matter
                                            (int16 wordPos, uint8 bitPos) = position(compressed + 1);
                                            // all the 1s at or to the left of the bitPos
                                            uint256 mask = ~((1 << bitPos) - 1);
                                            uint256 masked = self[wordPos] & mask;
                                            // if there are no initialized ticks to the left of the current tick, return leftmost in the word
                                            initialized = masked != 0;
                                            // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                                            next = initialized
                                                ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
                                                : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: BUSL-1.1
                                pragma solidity >=0.5.0;
                                import './FullMath.sol';
                                import './FixedPoint128.sol';
                                import './LiquidityMath.sol';
                                /// @title Position
                                /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
                                /// @dev Positions store additional state for tracking fees owed to the position
                                library Position {
                                    // info stored for each user's position
                                    struct Info {
                                        // the amount of liquidity owned by this position
                                        uint128 liquidity;
                                        // fee growth per unit of liquidity as of the last update to liquidity or fees owed
                                        uint256 feeGrowthInside0LastX128;
                                        uint256 feeGrowthInside1LastX128;
                                        // the fees owed to the position owner in token0/token1
                                        uint128 tokensOwed0;
                                        uint128 tokensOwed1;
                                    }
                                    /// @notice Returns the Info struct of a position, given an owner and position boundaries
                                    /// @param self The mapping containing all user positions
                                    /// @param owner The address of the position owner
                                    /// @param tickLower The lower tick boundary of the position
                                    /// @param tickUpper The upper tick boundary of the position
                                    /// @return position The position info struct of the given owners' position
                                    function get(
                                        mapping(bytes32 => Info) storage self,
                                        address owner,
                                        int24 tickLower,
                                        int24 tickUpper
                                    ) internal view returns (Position.Info storage position) {
                                        position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
                                    }
                                    /// @notice Credits accumulated fees to a user's position
                                    /// @param self The individual position to update
                                    /// @param liquidityDelta The change in pool liquidity as a result of the position update
                                    /// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                                    /// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                                    function update(
                                        Info storage self,
                                        int128 liquidityDelta,
                                        uint256 feeGrowthInside0X128,
                                        uint256 feeGrowthInside1X128
                                    ) internal {
                                        Info memory _self = self;
                                        uint128 liquidityNext;
                                        if (liquidityDelta == 0) {
                                            require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
                                            liquidityNext = _self.liquidity;
                                        } else {
                                            liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
                                        }
                                        // calculate accumulated fees
                                        uint128 tokensOwed0 =
                                            uint128(
                                                FullMath.mulDiv(
                                                    feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
                                                    _self.liquidity,
                                                    FixedPoint128.Q128
                                                )
                                            );
                                        uint128 tokensOwed1 =
                                            uint128(
                                                FullMath.mulDiv(
                                                    feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
                                                    _self.liquidity,
                                                    FixedPoint128.Q128
                                                )
                                            );
                                        // update the position
                                        if (liquidityDelta != 0) self.liquidity = liquidityNext;
                                        self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
                                        self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
                                        if (tokensOwed0 > 0 || tokensOwed1 > 0) {
                                            // overflow is acceptable, have to withdraw before you hit type(uint128).max fees
                                            self.tokensOwed0 += tokensOwed0;
                                            self.tokensOwed1 += tokensOwed1;
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: BUSL-1.1
                                pragma solidity >=0.5.0;
                                /// @title Oracle
                                /// @notice Provides price and liquidity data useful for a wide variety of system designs
                                /// @dev Instances of stored oracle data, "observations", are collected in the oracle array
                                /// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
                                /// maximum length of the oracle array. New slots will be added when the array is fully populated.
                                /// Observations are overwritten when the full length of the oracle array is populated.
                                /// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
                                library Oracle {
                                    struct Observation {
                                        // the block timestamp of the observation
                                        uint32 blockTimestamp;
                                        // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
                                        int56 tickCumulative;
                                        // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
                                        uint160 secondsPerLiquidityCumulativeX128;
                                        // whether or not the observation is initialized
                                        bool initialized;
                                    }
                                    /// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values
                                    /// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows
                                    /// @param last The specified observation to be transformed
                                    /// @param blockTimestamp The timestamp of the new observation
                                    /// @param tick The active tick at the time of the new observation
                                    /// @param liquidity The total in-range liquidity at the time of the new observation
                                    /// @return Observation The newly populated observation
                                    function transform(
                                        Observation memory last,
                                        uint32 blockTimestamp,
                                        int24 tick,
                                        uint128 liquidity
                                    ) private pure returns (Observation memory) {
                                        uint32 delta = blockTimestamp - last.blockTimestamp;
                                        return
                                            Observation({
                                                blockTimestamp: blockTimestamp,
                                                tickCumulative: last.tickCumulative + int56(tick) * delta,
                                                secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
                                                    ((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
                                                initialized: true
                                            });
                                    }
                                    /// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
                                    /// @param self The stored oracle array
                                    /// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
                                    /// @return cardinality The number of populated elements in the oracle array
                                    /// @return cardinalityNext The new length of the oracle array, independent of population
                                    function initialize(Observation[65535] storage self, uint32 time)
                                        internal
                                        returns (uint16 cardinality, uint16 cardinalityNext)
                                    {
                                        self[0] = Observation({
                                            blockTimestamp: time,
                                            tickCumulative: 0,
                                            secondsPerLiquidityCumulativeX128: 0,
                                            initialized: true
                                        });
                                        return (1, 1);
                                    }
                                    /// @notice Writes an oracle observation to the array
                                    /// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally.
                                    /// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality
                                    /// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering.
                                    /// @param self The stored oracle array
                                    /// @param index The index of the observation that was most recently written to the observations array
                                    /// @param blockTimestamp The timestamp of the new observation
                                    /// @param tick The active tick at the time of the new observation
                                    /// @param liquidity The total in-range liquidity at the time of the new observation
                                    /// @param cardinality The number of populated elements in the oracle array
                                    /// @param cardinalityNext The new length of the oracle array, independent of population
                                    /// @return indexUpdated The new index of the most recently written element in the oracle array
                                    /// @return cardinalityUpdated The new cardinality of the oracle array
                                    function write(
                                        Observation[65535] storage self,
                                        uint16 index,
                                        uint32 blockTimestamp,
                                        int24 tick,
                                        uint128 liquidity,
                                        uint16 cardinality,
                                        uint16 cardinalityNext
                                    ) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
                                        Observation memory last = self[index];
                                        // early return if we've already written an observation this block
                                        if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
                                        // if the conditions are right, we can bump the cardinality
                                        if (cardinalityNext > cardinality && index == (cardinality - 1)) {
                                            cardinalityUpdated = cardinalityNext;
                                        } else {
                                            cardinalityUpdated = cardinality;
                                        }
                                        indexUpdated = (index + 1) % cardinalityUpdated;
                                        self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
                                    }
                                    /// @notice Prepares the oracle array to store up to `next` observations
                                    /// @param self The stored oracle array
                                    /// @param current The current next cardinality of the oracle array
                                    /// @param next The proposed next cardinality which will be populated in the oracle array
                                    /// @return next The next cardinality which will be populated in the oracle array
                                    function grow(
                                        Observation[65535] storage self,
                                        uint16 current,
                                        uint16 next
                                    ) internal returns (uint16) {
                                        require(current > 0, 'I');
                                        // no-op if the passed next value isn't greater than the current next value
                                        if (next <= current) return current;
                                        // store in each slot to prevent fresh SSTOREs in swaps
                                        // this data will not be used because the initialized boolean is still false
                                        for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
                                        return next;
                                    }
                                    /// @notice comparator for 32-bit timestamps
                                    /// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
                                    /// @param time A timestamp truncated to 32 bits
                                    /// @param a A comparison timestamp from which to determine the relative position of `time`
                                    /// @param b From which to determine the relative position of `time`
                                    /// @return bool Whether `a` is chronologically <= `b`
                                    function lte(
                                        uint32 time,
                                        uint32 a,
                                        uint32 b
                                    ) private pure returns (bool) {
                                        // if there hasn't been overflow, no need to adjust
                                        if (a <= time && b <= time) return a <= b;
                                        uint256 aAdjusted = a > time ? a : a + 2**32;
                                        uint256 bAdjusted = b > time ? b : b + 2**32;
                                        return aAdjusted <= bAdjusted;
                                    }
                                    /// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
                                    /// The result may be the same observation, or adjacent observations.
                                    /// @dev The answer must be contained in the array, used when the target is located within the stored observation
                                    /// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
                                    /// @param self The stored oracle array
                                    /// @param time The current block.timestamp
                                    /// @param target The timestamp at which the reserved observation should be for
                                    /// @param index The index of the observation that was most recently written to the observations array
                                    /// @param cardinality The number of populated elements in the oracle array
                                    /// @return beforeOrAt The observation recorded before, or at, the target
                                    /// @return atOrAfter The observation recorded at, or after, the target
                                    function binarySearch(
                                        Observation[65535] storage self,
                                        uint32 time,
                                        uint32 target,
                                        uint16 index,
                                        uint16 cardinality
                                    ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                                        uint256 l = (index + 1) % cardinality; // oldest observation
                                        uint256 r = l + cardinality - 1; // newest observation
                                        uint256 i;
                                        while (true) {
                                            i = (l + r) / 2;
                                            beforeOrAt = self[i % cardinality];
                                            // we've landed on an uninitialized tick, keep searching higher (more recently)
                                            if (!beforeOrAt.initialized) {
                                                l = i + 1;
                                                continue;
                                            }
                                            atOrAfter = self[(i + 1) % cardinality];
                                            bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
                                            // check if we've found the answer!
                                            if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
                                            if (!targetAtOrAfter) r = i - 1;
                                            else l = i + 1;
                                        }
                                    }
                                    /// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
                                    /// @dev Assumes there is at least 1 initialized observation.
                                    /// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
                                    /// @param self The stored oracle array
                                    /// @param time The current block.timestamp
                                    /// @param target The timestamp at which the reserved observation should be for
                                    /// @param tick The active tick at the time of the returned or simulated observation
                                    /// @param index The index of the observation that was most recently written to the observations array
                                    /// @param liquidity The total pool liquidity at the time of the call
                                    /// @param cardinality The number of populated elements in the oracle array
                                    /// @return beforeOrAt The observation which occurred at, or before, the given timestamp
                                    /// @return atOrAfter The observation which occurred at, or after, the given timestamp
                                    function getSurroundingObservations(
                                        Observation[65535] storage self,
                                        uint32 time,
                                        uint32 target,
                                        int24 tick,
                                        uint16 index,
                                        uint128 liquidity,
                                        uint16 cardinality
                                    ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                                        // optimistically set before to the newest observation
                                        beforeOrAt = self[index];
                                        // if the target is chronologically at or after the newest observation, we can early return
                                        if (lte(time, beforeOrAt.blockTimestamp, target)) {
                                            if (beforeOrAt.blockTimestamp == target) {
                                                // if newest observation equals target, we're in the same block, so we can ignore atOrAfter
                                                return (beforeOrAt, atOrAfter);
                                            } else {
                                                // otherwise, we need to transform
                                                return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
                                            }
                                        }
                                        // now, set before to the oldest observation
                                        beforeOrAt = self[(index + 1) % cardinality];
                                        if (!beforeOrAt.initialized) beforeOrAt = self[0];
                                        // ensure that the target is chronologically at or after the oldest observation
                                        require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
                                        // if we've reached this point, we have to binary search
                                        return binarySearch(self, time, target, index, cardinality);
                                    }
                                    /// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
                                    /// 0 may be passed as `secondsAgo' to return the current cumulative values.
                                    /// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
                                    /// at exactly the timestamp between the two observations.
                                    /// @param self The stored oracle array
                                    /// @param time The current block timestamp
                                    /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
                                    /// @param tick The current tick
                                    /// @param index The index of the observation that was most recently written to the observations array
                                    /// @param liquidity The current in-range pool liquidity
                                    /// @param cardinality The number of populated elements in the oracle array
                                    /// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
                                    /// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
                                    function observeSingle(
                                        Observation[65535] storage self,
                                        uint32 time,
                                        uint32 secondsAgo,
                                        int24 tick,
                                        uint16 index,
                                        uint128 liquidity,
                                        uint16 cardinality
                                    ) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
                                        if (secondsAgo == 0) {
                                            Observation memory last = self[index];
                                            if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
                                            return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
                                        }
                                        uint32 target = time - secondsAgo;
                                        (Observation memory beforeOrAt, Observation memory atOrAfter) =
                                            getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
                                        if (target == beforeOrAt.blockTimestamp) {
                                            // we're at the left boundary
                                            return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
                                        } else if (target == atOrAfter.blockTimestamp) {
                                            // we're at the right boundary
                                            return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
                                        } else {
                                            // we're in the middle
                                            uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
                                            uint32 targetDelta = target - beforeOrAt.blockTimestamp;
                                            return (
                                                beforeOrAt.tickCumulative +
                                                    ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
                                                    targetDelta,
                                                beforeOrAt.secondsPerLiquidityCumulativeX128 +
                                                    uint160(
                                                        (uint256(
                                                            atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
                                                        ) * targetDelta) / observationTimeDelta
                                                    )
                                            );
                                        }
                                    }
                                    /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
                                    /// @dev Reverts if `secondsAgos` > oldest observation
                                    /// @param self The stored oracle array
                                    /// @param time The current block.timestamp
                                    /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
                                    /// @param tick The current tick
                                    /// @param index The index of the observation that was most recently written to the observations array
                                    /// @param liquidity The current in-range pool liquidity
                                    /// @param cardinality The number of populated elements in the oracle array
                                    /// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
                                    /// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
                                    function observe(
                                        Observation[65535] storage self,
                                        uint32 time,
                                        uint32[] memory secondsAgos,
                                        int24 tick,
                                        uint16 index,
                                        uint128 liquidity,
                                        uint16 cardinality
                                    ) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
                                        require(cardinality > 0, 'I');
                                        tickCumulatives = new int56[](secondsAgos.length);
                                        secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
                                        for (uint256 i = 0; i < secondsAgos.length; i++) {
                                            (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
                                                self,
                                                time,
                                                secondsAgos[i],
                                                tick,
                                                index,
                                                liquidity,
                                                cardinality
                                            );
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity >=0.4.0;
                                /// @title Contains 512-bit math functions
                                /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
                                /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
                                library FullMath {
                                    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                                    /// @param a The multiplicand
                                    /// @param b The multiplier
                                    /// @param denominator The divisor
                                    /// @return result The 256-bit result
                                    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
                                    function mulDiv(
                                        uint256 a,
                                        uint256 b,
                                        uint256 denominator
                                    ) internal pure returns (uint256 result) {
                                        // 512-bit multiply [prod1 prod0] = a * b
                                        // Compute the product mod 2**256 and mod 2**256 - 1
                                        // then use the Chinese Remainder Theorem to reconstruct
                                        // the 512 bit result. The result is stored in two 256
                                        // variables such that product = prod1 * 2**256 + prod0
                                        uint256 prod0; // Least significant 256 bits of the product
                                        uint256 prod1; // Most significant 256 bits of the product
                                        assembly {
                                            let mm := mulmod(a, b, not(0))
                                            prod0 := mul(a, b)
                                            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                                        }
                                        // Handle non-overflow cases, 256 by 256 division
                                        if (prod1 == 0) {
                                            require(denominator > 0);
                                            assembly {
                                                result := div(prod0, denominator)
                                            }
                                            return result;
                                        }
                                        // Make sure the result is less than 2**256.
                                        // Also prevents denominator == 0
                                        require(denominator > prod1);
                                        ///////////////////////////////////////////////
                                        // 512 by 256 division.
                                        ///////////////////////////////////////////////
                                        // Make division exact by subtracting the remainder from [prod1 prod0]
                                        // Compute remainder using mulmod
                                        uint256 remainder;
                                        assembly {
                                            remainder := mulmod(a, b, denominator)
                                        }
                                        // Subtract 256 bit number from 512 bit number
                                        assembly {
                                            prod1 := sub(prod1, gt(remainder, prod0))
                                            prod0 := sub(prod0, remainder)
                                        }
                                        // Factor powers of two out of denominator
                                        // Compute largest power of two divisor of denominator.
                                        // Always >= 1.
                                        uint256 twos = -denominator & denominator;
                                        // Divide denominator by power of two
                                        assembly {
                                            denominator := div(denominator, twos)
                                        }
                                        // Divide [prod1 prod0] by the factors of two
                                        assembly {
                                            prod0 := div(prod0, twos)
                                        }
                                        // Shift in bits from prod1 into prod0. For this we need
                                        // to flip `twos` such that it is 2**256 / twos.
                                        // If twos is zero, then it becomes one
                                        assembly {
                                            twos := add(div(sub(0, twos), twos), 1)
                                        }
                                        prod0 |= prod1 * twos;
                                        // Invert denominator mod 2**256
                                        // Now that denominator is an odd number, it has an inverse
                                        // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                                        // Compute the inverse by starting with a seed that is correct
                                        // correct for four bits. That is, denominator * inv = 1 mod 2**4
                                        uint256 inv = (3 * denominator) ^ 2;
                                        // Now use Newton-Raphson iteration to improve the precision.
                                        // Thanks to Hensel's lifting lemma, this also works in modular
                                        // arithmetic, doubling the correct bits in each step.
                                        inv *= 2 - denominator * inv; // inverse mod 2**8
                                        inv *= 2 - denominator * inv; // inverse mod 2**16
                                        inv *= 2 - denominator * inv; // inverse mod 2**32
                                        inv *= 2 - denominator * inv; // inverse mod 2**64
                                        inv *= 2 - denominator * inv; // inverse mod 2**128
                                        inv *= 2 - denominator * inv; // inverse mod 2**256
                                        // Because the division is now exact we can divide by multiplying
                                        // with the modular inverse of denominator. This will give us the
                                        // correct result modulo 2**256. Since the precoditions guarantee
                                        // that the outcome is less than 2**256, this is the final result.
                                        // We don't need to compute the high bits of the result and prod1
                                        // is no longer required.
                                        result = prod0 * inv;
                                        return result;
                                    }
                                    /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                                    /// @param a The multiplicand
                                    /// @param b The multiplier
                                    /// @param denominator The divisor
                                    /// @return result The 256-bit result
                                    function mulDivRoundingUp(
                                        uint256 a,
                                        uint256 b,
                                        uint256 denominator
                                    ) internal pure returns (uint256 result) {
                                        result = mulDiv(a, b, denominator);
                                        if (mulmod(a, b, denominator) > 0) {
                                            require(result < type(uint256).max);
                                            result++;
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.4.0;
                                /// @title FixedPoint128
                                /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
                                library FixedPoint128 {
                                    uint256 internal constant Q128 = 0x100000000000000000000000000000000;
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.6.0;
                                import '../interfaces/IERC20Minimal.sol';
                                /// @title TransferHelper
                                /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false
                                library TransferHelper {
                                    /// @notice Transfers tokens from msg.sender to a recipient
                                    /// @dev Calls transfer on token contract, errors with TF if transfer fails
                                    /// @param token The contract address of the token which will be transferred
                                    /// @param to The recipient of the transfer
                                    /// @param value The value of the transfer
                                    function safeTransfer(
                                        address token,
                                        address to,
                                        uint256 value
                                    ) internal {
                                        (bool success, bytes memory data) =
                                            token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value));
                                        require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF');
                                    }
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Math library for computing sqrt prices from ticks and vice versa
                                /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
                                /// prices between 2**-128 and 2**128
                                library TickMath {
                                    /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
                                    int24 internal constant MIN_TICK = -887272;
                                    /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
                                    int24 internal constant MAX_TICK = -MIN_TICK;
                                    /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
                                    uint160 internal constant MIN_SQRT_RATIO = 4295128739;
                                    /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
                                    uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
                                    /// @notice Calculates sqrt(1.0001^tick) * 2^96
                                    /// @dev Throws if |tick| > max tick
                                    /// @param tick The input tick for the above formula
                                    /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
                                    /// at the given tick
                                    function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                                        uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
                                        require(absTick <= uint256(MAX_TICK), 'T');
                                        uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                                        if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
                                        if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                                        if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                                        if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                                        if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                                        if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                                        if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                                        if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                                        if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                                        if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                                        if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                                        if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                                        if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                                        if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                                        if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                                        if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                                        if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
                                        if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                                        if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
                                        if (tick > 0) ratio = type(uint256).max / ratio;
                                        // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                                        // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                                        // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
                                        sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
                                    }
                                    /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
                                    /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
                                    /// ever return.
                                    /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
                                    /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
                                    function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                                        // second inequality must be < because the price can never reach the price at the max tick
                                        require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
                                        uint256 ratio = uint256(sqrtPriceX96) << 32;
                                        uint256 r = ratio;
                                        uint256 msb = 0;
                                        assembly {
                                            let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                                            msb := or(msb, f)
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                                            msb := or(msb, f)
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            let f := shl(5, gt(r, 0xFFFFFFFF))
                                            msb := or(msb, f)
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            let f := shl(4, gt(r, 0xFFFF))
                                            msb := or(msb, f)
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            let f := shl(3, gt(r, 0xFF))
                                            msb := or(msb, f)
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            let f := shl(2, gt(r, 0xF))
                                            msb := or(msb, f)
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            let f := shl(1, gt(r, 0x3))
                                            msb := or(msb, f)
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            let f := gt(r, 0x1)
                                            msb := or(msb, f)
                                        }
                                        if (msb >= 128) r = ratio >> (msb - 127);
                                        else r = ratio << (127 - msb);
                                        int256 log_2 = (int256(msb) - 128) << 64;
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(63, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(62, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(61, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(60, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(59, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(58, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(57, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(56, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(55, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(54, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(53, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(52, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(51, f))
                                            r := shr(f, r)
                                        }
                                        assembly {
                                            r := shr(127, mul(r, r))
                                            let f := shr(128, r)
                                            log_2 := or(log_2, shl(50, f))
                                        }
                                        int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
                                        int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                                        int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                                        tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
                                    }
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Math library for liquidity
                                library LiquidityMath {
                                    /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
                                    /// @param x The liquidity before change
                                    /// @param y The delta by which liquidity should be changed
                                    /// @return z The liquidity delta
                                    function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
                                        if (y < 0) {
                                            require((z = x - uint128(-y)) < x, 'LS');
                                        } else {
                                            require((z = x + uint128(y)) >= x, 'LA');
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: BUSL-1.1
                                pragma solidity >=0.5.0;
                                import './LowGasSafeMath.sol';
                                import './SafeCast.sol';
                                import './FullMath.sol';
                                import './UnsafeMath.sol';
                                import './FixedPoint96.sol';
                                /// @title Functions based on Q64.96 sqrt price and liquidity
                                /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
                                library SqrtPriceMath {
                                    using LowGasSafeMath for uint256;
                                    using SafeCast for uint256;
                                    /// @notice Gets the next sqrt price given a delta of token0
                                    /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
                                    /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
                                    /// price less in order to not send too much output.
                                    /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
                                    /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
                                    /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
                                    /// @param liquidity The amount of usable liquidity
                                    /// @param amount How much of token0 to add or remove from virtual reserves
                                    /// @param add Whether to add or remove the amount of token0
                                    /// @return The price after adding or removing amount, depending on add
                                    function getNextSqrtPriceFromAmount0RoundingUp(
                                        uint160 sqrtPX96,
                                        uint128 liquidity,
                                        uint256 amount,
                                        bool add
                                    ) internal pure returns (uint160) {
                                        // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
                                        if (amount == 0) return sqrtPX96;
                                        uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                                        if (add) {
                                            uint256 product;
                                            if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
                                                uint256 denominator = numerator1 + product;
                                                if (denominator >= numerator1)
                                                    // always fits in 160 bits
                                                    return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
                                            }
                                            return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
                                        } else {
                                            uint256 product;
                                            // if the product overflows, we know the denominator underflows
                                            // in addition, we must check that the denominator does not underflow
                                            require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
                                            uint256 denominator = numerator1 - product;
                                            return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
                                        }
                                    }
                                    /// @notice Gets the next sqrt price given a delta of token1
                                    /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
                                    /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
                                    /// price less in order to not send too much output.
                                    /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
                                    /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
                                    /// @param liquidity The amount of usable liquidity
                                    /// @param amount How much of token1 to add, or remove, from virtual reserves
                                    /// @param add Whether to add, or remove, the amount of token1
                                    /// @return The price after adding or removing `amount`
                                    function getNextSqrtPriceFromAmount1RoundingDown(
                                        uint160 sqrtPX96,
                                        uint128 liquidity,
                                        uint256 amount,
                                        bool add
                                    ) internal pure returns (uint160) {
                                        // if we're adding (subtracting), rounding down requires rounding the quotient down (up)
                                        // in both cases, avoid a mulDiv for most inputs
                                        if (add) {
                                            uint256 quotient =
                                                (
                                                    amount <= type(uint160).max
                                                        ? (amount << FixedPoint96.RESOLUTION) / liquidity
                                                        : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
                                                );
                                            return uint256(sqrtPX96).add(quotient).toUint160();
                                        } else {
                                            uint256 quotient =
                                                (
                                                    amount <= type(uint160).max
                                                        ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
                                                        : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
                                                );
                                            require(sqrtPX96 > quotient);
                                            // always fits 160 bits
                                            return uint160(sqrtPX96 - quotient);
                                        }
                                    }
                                    /// @notice Gets the next sqrt price given an input amount of token0 or token1
                                    /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
                                    /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
                                    /// @param liquidity The amount of usable liquidity
                                    /// @param amountIn How much of token0, or token1, is being swapped in
                                    /// @param zeroForOne Whether the amount in is token0 or token1
                                    /// @return sqrtQX96 The price after adding the input amount to token0 or token1
                                    function getNextSqrtPriceFromInput(
                                        uint160 sqrtPX96,
                                        uint128 liquidity,
                                        uint256 amountIn,
                                        bool zeroForOne
                                    ) internal pure returns (uint160 sqrtQX96) {
                                        require(sqrtPX96 > 0);
                                        require(liquidity > 0);
                                        // round to make sure that we don't pass the target price
                                        return
                                            zeroForOne
                                                ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
                                                : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
                                    }
                                    /// @notice Gets the next sqrt price given an output amount of token0 or token1
                                    /// @dev Throws if price or liquidity are 0 or the next price is out of bounds
                                    /// @param sqrtPX96 The starting price before accounting for the output amount
                                    /// @param liquidity The amount of usable liquidity
                                    /// @param amountOut How much of token0, or token1, is being swapped out
                                    /// @param zeroForOne Whether the amount out is token0 or token1
                                    /// @return sqrtQX96 The price after removing the output amount of token0 or token1
                                    function getNextSqrtPriceFromOutput(
                                        uint160 sqrtPX96,
                                        uint128 liquidity,
                                        uint256 amountOut,
                                        bool zeroForOne
                                    ) internal pure returns (uint160 sqrtQX96) {
                                        require(sqrtPX96 > 0);
                                        require(liquidity > 0);
                                        // round to make sure that we pass the target price
                                        return
                                            zeroForOne
                                                ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
                                                : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
                                    }
                                    /// @notice Gets the amount0 delta between two prices
                                    /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
                                    /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
                                    /// @param sqrtRatioAX96 A sqrt price
                                    /// @param sqrtRatioBX96 Another sqrt price
                                    /// @param liquidity The amount of usable liquidity
                                    /// @param roundUp Whether to round the amount up or down
                                    /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
                                    function getAmount0Delta(
                                        uint160 sqrtRatioAX96,
                                        uint160 sqrtRatioBX96,
                                        uint128 liquidity,
                                        bool roundUp
                                    ) internal pure returns (uint256 amount0) {
                                        if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                                        uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                                        uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
                                        require(sqrtRatioAX96 > 0);
                                        return
                                            roundUp
                                                ? UnsafeMath.divRoundingUp(
                                                    FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
                                                    sqrtRatioAX96
                                                )
                                                : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
                                    }
                                    /// @notice Gets the amount1 delta between two prices
                                    /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
                                    /// @param sqrtRatioAX96 A sqrt price
                                    /// @param sqrtRatioBX96 Another sqrt price
                                    /// @param liquidity The amount of usable liquidity
                                    /// @param roundUp Whether to round the amount up, or down
                                    /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
                                    function getAmount1Delta(
                                        uint160 sqrtRatioAX96,
                                        uint160 sqrtRatioBX96,
                                        uint128 liquidity,
                                        bool roundUp
                                    ) internal pure returns (uint256 amount1) {
                                        if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                                        return
                                            roundUp
                                                ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
                                                : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
                                    }
                                    /// @notice Helper that gets signed token0 delta
                                    /// @param sqrtRatioAX96 A sqrt price
                                    /// @param sqrtRatioBX96 Another sqrt price
                                    /// @param liquidity The change in liquidity for which to compute the amount0 delta
                                    /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
                                    function getAmount0Delta(
                                        uint160 sqrtRatioAX96,
                                        uint160 sqrtRatioBX96,
                                        int128 liquidity
                                    ) internal pure returns (int256 amount0) {
                                        return
                                            liquidity < 0
                                                ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                                                : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                                    }
                                    /// @notice Helper that gets signed token1 delta
                                    /// @param sqrtRatioAX96 A sqrt price
                                    /// @param sqrtRatioBX96 Another sqrt price
                                    /// @param liquidity The change in liquidity for which to compute the amount1 delta
                                    /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
                                    function getAmount1Delta(
                                        uint160 sqrtRatioAX96,
                                        uint160 sqrtRatioBX96,
                                        int128 liquidity
                                    ) internal pure returns (int256 amount1) {
                                        return
                                            liquidity < 0
                                                ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                                                : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                                    }
                                }
                                // SPDX-License-Identifier: BUSL-1.1
                                pragma solidity >=0.5.0;
                                import './FullMath.sol';
                                import './SqrtPriceMath.sol';
                                /// @title Computes the result of a swap within ticks
                                /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
                                library SwapMath {
                                    /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
                                    /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive
                                    /// @param sqrtRatioCurrentX96 The current sqrt price of the pool
                                    /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
                                    /// @param liquidity The usable liquidity
                                    /// @param amountRemaining How much input or output amount is remaining to be swapped in/out
                                    /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
                                    /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target
                                    /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap
                                    /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap
                                    /// @return feeAmount The amount of input that will be taken as a fee
                                    function computeSwapStep(
                                        uint160 sqrtRatioCurrentX96,
                                        uint160 sqrtRatioTargetX96,
                                        uint128 liquidity,
                                        int256 amountRemaining,
                                        uint24 feePips
                                    )
                                        internal
                                        pure
                                        returns (
                                            uint160 sqrtRatioNextX96,
                                            uint256 amountIn,
                                            uint256 amountOut,
                                            uint256 feeAmount
                                        )
                                    {
                                        bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
                                        bool exactIn = amountRemaining >= 0;
                                        if (exactIn) {
                                            uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
                                            amountIn = zeroForOne
                                                ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
                                                : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
                                            if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
                                            else
                                                sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
                                                    sqrtRatioCurrentX96,
                                                    liquidity,
                                                    amountRemainingLessFee,
                                                    zeroForOne
                                                );
                                        } else {
                                            amountOut = zeroForOne
                                                ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
                                                : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
                                            if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
                                            else
                                                sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
                                                    sqrtRatioCurrentX96,
                                                    liquidity,
                                                    uint256(-amountRemaining),
                                                    zeroForOne
                                                );
                                        }
                                        bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
                                        // get the input/output amounts
                                        if (zeroForOne) {
                                            amountIn = max && exactIn
                                                ? amountIn
                                                : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
                                            amountOut = max && !exactIn
                                                ? amountOut
                                                : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
                                        } else {
                                            amountIn = max && exactIn
                                                ? amountIn
                                                : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
                                            amountOut = max && !exactIn
                                                ? amountOut
                                                : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
                                        }
                                        // cap the output amount to not exceed the remaining output amount
                                        if (!exactIn && amountOut > uint256(-amountRemaining)) {
                                            amountOut = uint256(-amountRemaining);
                                        }
                                        if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
                                            // we didn't reach the target, so take the remainder of the maximum input as fee
                                            feeAmount = uint256(amountRemaining) - amountIn;
                                        } else {
                                            feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title An interface for a contract that is capable of deploying Uniswap V3 Pools
                                /// @notice A contract that constructs a pool must implement this to pass arguments to the pool
                                /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
                                /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain
                                interface IUniswapV3PoolDeployer {
                                    /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
                                    /// @dev Called by the pool constructor to fetch the parameters of the pool
                                    /// Returns factory The factory address
                                    /// Returns token0 The first token of the pool by address sort order
                                    /// Returns token1 The second token of the pool by address sort order
                                    /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                                    /// Returns tickSpacing The minimum number of ticks between initialized ticks
                                    function parameters()
                                        external
                                        view
                                        returns (
                                            address factory,
                                            address token0,
                                            address token1,
                                            uint24 fee,
                                            int24 tickSpacing
                                        );
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title The interface for the Uniswap V3 Factory
                                /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
                                interface IUniswapV3Factory {
                                    /// @notice Emitted when the owner of the factory is changed
                                    /// @param oldOwner The owner before the owner was changed
                                    /// @param newOwner The owner after the owner was changed
                                    event OwnerChanged(address indexed oldOwner, address indexed newOwner);
                                    /// @notice Emitted when a pool is created
                                    /// @param token0 The first token of the pool by address sort order
                                    /// @param token1 The second token of the pool by address sort order
                                    /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                                    /// @param tickSpacing The minimum number of ticks between initialized ticks
                                    /// @param pool The address of the created pool
                                    event PoolCreated(
                                        address indexed token0,
                                        address indexed token1,
                                        uint24 indexed fee,
                                        int24 tickSpacing,
                                        address pool
                                    );
                                    /// @notice Emitted when a new fee amount is enabled for pool creation via the factory
                                    /// @param fee The enabled fee, denominated in hundredths of a bip
                                    /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
                                    event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
                                    /// @notice Returns the current owner of the factory
                                    /// @dev Can be changed by the current owner via setOwner
                                    /// @return The address of the factory owner
                                    function owner() external view returns (address);
                                    /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
                                    /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
                                    /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
                                    /// @return The tick spacing
                                    function feeAmountTickSpacing(uint24 fee) external view returns (int24);
                                    /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
                                    /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
                                    /// @param tokenA The contract address of either token0 or token1
                                    /// @param tokenB The contract address of the other token
                                    /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                                    /// @return pool The pool address
                                    function getPool(
                                        address tokenA,
                                        address tokenB,
                                        uint24 fee
                                    ) external view returns (address pool);
                                    /// @notice Creates a pool for the given two tokens and fee
                                    /// @param tokenA One of the two tokens in the desired pool
                                    /// @param tokenB The other of the two tokens in the desired pool
                                    /// @param fee The desired fee for the pool
                                    /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
                                    /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
                                    /// are invalid.
                                    /// @return pool The address of the newly created pool
                                    function createPool(
                                        address tokenA,
                                        address tokenB,
                                        uint24 fee
                                    ) external returns (address pool);
                                    /// @notice Updates the owner of the factory
                                    /// @dev Must be called by the current owner
                                    /// @param _owner The new owner of the factory
                                    function setOwner(address _owner) external;
                                    /// @notice Enables a fee amount with the given tickSpacing
                                    /// @dev Fee amounts may never be removed once enabled
                                    /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
                                    /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
                                    function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Minimal ERC20 interface for Uniswap
                                /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
                                interface IERC20Minimal {
                                    /// @notice Returns the balance of a token
                                    /// @param account The account for which to look up the number of tokens it has, i.e. its balance
                                    /// @return The number of tokens held by the account
                                    function balanceOf(address account) external view returns (uint256);
                                    /// @notice Transfers the amount of token from the `msg.sender` to the recipient
                                    /// @param recipient The account that will receive the amount transferred
                                    /// @param amount The number of tokens to send from the sender to the recipient
                                    /// @return Returns true for a successful transfer, false for an unsuccessful transfer
                                    function transfer(address recipient, uint256 amount) external returns (bool);
                                    /// @notice Returns the current allowance given to a spender by an owner
                                    /// @param owner The account of the token owner
                                    /// @param spender The account of the token spender
                                    /// @return The current allowance granted by `owner` to `spender`
                                    function allowance(address owner, address spender) external view returns (uint256);
                                    /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
                                    /// @param spender The account which will be allowed to spend a given amount of the owners tokens
                                    /// @param amount The amount of tokens allowed to be used by `spender`
                                    /// @return Returns true for a successful approval, false for unsuccessful
                                    function approve(address spender, uint256 amount) external returns (bool);
                                    /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
                                    /// @param sender The account from which the transfer will be initiated
                                    /// @param recipient The recipient of the transfer
                                    /// @param amount The amount of the transfer
                                    /// @return Returns true for a successful transfer, false for unsuccessful
                                    function transferFrom(
                                        address sender,
                                        address recipient,
                                        uint256 amount
                                    ) external returns (bool);
                                    /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
                                    /// @param from The account from which the tokens were sent, i.e. the balance decreased
                                    /// @param to The account to which the tokens were sent, i.e. the balance increased
                                    /// @param value The amount of tokens that were transferred
                                    event Transfer(address indexed from, address indexed to, uint256 value);
                                    /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
                                    /// @param owner The account that approved spending of its tokens
                                    /// @param spender The account for which the spending allowance was modified
                                    /// @param value The new allowance from the owner to the spender
                                    event Approval(address indexed owner, address indexed spender, uint256 value);
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Callback for IUniswapV3PoolActions#mint
                                /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
                                interface IUniswapV3MintCallback {
                                    /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
                                    /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
                                    /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                                    /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
                                    /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
                                    /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
                                    function uniswapV3MintCallback(
                                        uint256 amount0Owed,
                                        uint256 amount1Owed,
                                        bytes calldata data
                                    ) external;
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Callback for IUniswapV3PoolActions#swap
                                /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
                                interface IUniswapV3SwapCallback {
                                    /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
                                    /// @dev In the implementation you must pay the pool tokens owed for the swap.
                                    /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                                    /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                                    /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                                    /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                                    /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                                    /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                                    /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
                                    function uniswapV3SwapCallback(
                                        int256 amount0Delta,
                                        int256 amount1Delta,
                                        bytes calldata data
                                    ) external;
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Callback for IUniswapV3PoolActions#flash
                                /// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface
                                interface IUniswapV3FlashCallback {
                                    /// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash.
                                    /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts.
                                    /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                                    /// @param fee0 The fee amount in token0 due to the pool by the end of the flash
                                    /// @param fee1 The fee amount in token1 due to the pool by the end of the flash
                                    /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call
                                    function uniswapV3FlashCallback(
                                        uint256 fee0,
                                        uint256 fee1,
                                        bytes calldata data
                                    ) external;
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Pool state that never changes
                                /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
                                interface IUniswapV3PoolImmutables {
                                    /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
                                    /// @return The contract address
                                    function factory() external view returns (address);
                                    /// @notice The first of the two tokens of the pool, sorted by address
                                    /// @return The token contract address
                                    function token0() external view returns (address);
                                    /// @notice The second of the two tokens of the pool, sorted by address
                                    /// @return The token contract address
                                    function token1() external view returns (address);
                                    /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
                                    /// @return The fee
                                    function fee() external view returns (uint24);
                                    /// @notice The pool tick spacing
                                    /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
                                    /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
                                    /// This value is an int24 to avoid casting even though it is always positive.
                                    /// @return The tick spacing
                                    function tickSpacing() external view returns (int24);
                                    /// @notice The maximum amount of position liquidity that can use any tick in the range
                                    /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
                                    /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
                                    /// @return The max amount of liquidity per tick
                                    function maxLiquidityPerTick() external view returns (uint128);
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Pool state that can change
                                /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
                                /// per transaction
                                interface IUniswapV3PoolState {
                                    /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
                                    /// when accessed externally.
                                    /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
                                    /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
                                    /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
                                    /// boundary.
                                    /// observationIndex The index of the last oracle observation that was written,
                                    /// observationCardinality The current maximum number of observations stored in the pool,
                                    /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
                                    /// feeProtocol The protocol fee for both tokens of the pool.
                                    /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
                                    /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
                                    /// unlocked Whether the pool is currently locked to reentrancy
                                    function slot0()
                                        external
                                        view
                                        returns (
                                            uint160 sqrtPriceX96,
                                            int24 tick,
                                            uint16 observationIndex,
                                            uint16 observationCardinality,
                                            uint16 observationCardinalityNext,
                                            uint8 feeProtocol,
                                            bool unlocked
                                        );
                                    /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
                                    /// @dev This value can overflow the uint256
                                    function feeGrowthGlobal0X128() external view returns (uint256);
                                    /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
                                    /// @dev This value can overflow the uint256
                                    function feeGrowthGlobal1X128() external view returns (uint256);
                                    /// @notice The amounts of token0 and token1 that are owed to the protocol
                                    /// @dev Protocol fees will never exceed uint128 max in either token
                                    function protocolFees() external view returns (uint128 token0, uint128 token1);
                                    /// @notice The currently in range liquidity available to the pool
                                    /// @dev This value has no relationship to the total liquidity across all ticks
                                    function liquidity() external view returns (uint128);
                                    /// @notice Look up information about a specific tick in the pool
                                    /// @param tick The tick to look up
                                    /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
                                    /// tick upper,
                                    /// liquidityNet how much liquidity changes when the pool price crosses the tick,
                                    /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
                                    /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
                                    /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
                                    /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
                                    /// secondsOutside the seconds spent on the other side of the tick from the current tick,
                                    /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
                                    /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
                                    /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
                                    /// a specific position.
                                    function ticks(int24 tick)
                                        external
                                        view
                                        returns (
                                            uint128 liquidityGross,
                                            int128 liquidityNet,
                                            uint256 feeGrowthOutside0X128,
                                            uint256 feeGrowthOutside1X128,
                                            int56 tickCumulativeOutside,
                                            uint160 secondsPerLiquidityOutsideX128,
                                            uint32 secondsOutside,
                                            bool initialized
                                        );
                                    /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
                                    function tickBitmap(int16 wordPosition) external view returns (uint256);
                                    /// @notice Returns the information about a position by the position's key
                                    /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
                                    /// @return _liquidity The amount of liquidity in the position,
                                    /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
                                    /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
                                    /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
                                    /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
                                    function positions(bytes32 key)
                                        external
                                        view
                                        returns (
                                            uint128 _liquidity,
                                            uint256 feeGrowthInside0LastX128,
                                            uint256 feeGrowthInside1LastX128,
                                            uint128 tokensOwed0,
                                            uint128 tokensOwed1
                                        );
                                    /// @notice Returns data about a specific observation index
                                    /// @param index The element of the observations array to fetch
                                    /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
                                    /// ago, rather than at a specific index in the array.
                                    /// @return blockTimestamp The timestamp of the observation,
                                    /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
                                    /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
                                    /// Returns initialized whether the observation has been initialized and the values are safe to use
                                    function observations(uint256 index)
                                        external
                                        view
                                        returns (
                                            uint32 blockTimestamp,
                                            int56 tickCumulative,
                                            uint160 secondsPerLiquidityCumulativeX128,
                                            bool initialized
                                        );
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Pool state that is not stored
                                /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
                                /// blockchain. The functions here may have variable gas costs.
                                interface IUniswapV3PoolDerivedState {
                                    /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
                                    /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
                                    /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
                                    /// you must call it with secondsAgos = [3600, 0].
                                    /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
                                    /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
                                    /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
                                    /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
                                    /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
                                    /// timestamp
                                    function observe(uint32[] calldata secondsAgos)
                                        external
                                        view
                                        returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
                                    /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
                                    /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
                                    /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
                                    /// snapshot is taken and the second snapshot is taken.
                                    /// @param tickLower The lower tick of the range
                                    /// @param tickUpper The upper tick of the range
                                    /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
                                    /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
                                    /// @return secondsInside The snapshot of seconds per liquidity for the range
                                    function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                                        external
                                        view
                                        returns (
                                            int56 tickCumulativeInside,
                                            uint160 secondsPerLiquidityInsideX128,
                                            uint32 secondsInside
                                        );
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Permissionless pool actions
                                /// @notice Contains pool methods that can be called by anyone
                                interface IUniswapV3PoolActions {
                                    /// @notice Sets the initial price for the pool
                                    /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
                                    /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
                                    function initialize(uint160 sqrtPriceX96) external;
                                    /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
                                    /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
                                    /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
                                    /// on tickLower, tickUpper, the amount of liquidity, and the current price.
                                    /// @param recipient The address for which the liquidity will be created
                                    /// @param tickLower The lower tick of the position in which to add liquidity
                                    /// @param tickUpper The upper tick of the position in which to add liquidity
                                    /// @param amount The amount of liquidity to mint
                                    /// @param data Any data that should be passed through to the callback
                                    /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
                                    /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
                                    function mint(
                                        address recipient,
                                        int24 tickLower,
                                        int24 tickUpper,
                                        uint128 amount,
                                        bytes calldata data
                                    ) external returns (uint256 amount0, uint256 amount1);
                                    /// @notice Collects tokens owed to a position
                                    /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
                                    /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
                                    /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
                                    /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
                                    /// @param recipient The address which should receive the fees collected
                                    /// @param tickLower The lower tick of the position for which to collect fees
                                    /// @param tickUpper The upper tick of the position for which to collect fees
                                    /// @param amount0Requested How much token0 should be withdrawn from the fees owed
                                    /// @param amount1Requested How much token1 should be withdrawn from the fees owed
                                    /// @return amount0 The amount of fees collected in token0
                                    /// @return amount1 The amount of fees collected in token1
                                    function collect(
                                        address recipient,
                                        int24 tickLower,
                                        int24 tickUpper,
                                        uint128 amount0Requested,
                                        uint128 amount1Requested
                                    ) external returns (uint128 amount0, uint128 amount1);
                                    /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
                                    /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
                                    /// @dev Fees must be collected separately via a call to #collect
                                    /// @param tickLower The lower tick of the position for which to burn liquidity
                                    /// @param tickUpper The upper tick of the position for which to burn liquidity
                                    /// @param amount How much liquidity to burn
                                    /// @return amount0 The amount of token0 sent to the recipient
                                    /// @return amount1 The amount of token1 sent to the recipient
                                    function burn(
                                        int24 tickLower,
                                        int24 tickUpper,
                                        uint128 amount
                                    ) external returns (uint256 amount0, uint256 amount1);
                                    /// @notice Swap token0 for token1, or token1 for token0
                                    /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
                                    /// @param recipient The address to receive the output of the swap
                                    /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
                                    /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
                                    /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
                                    /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
                                    /// @param data Any data to be passed through to the callback
                                    /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
                                    /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
                                    function swap(
                                        address recipient,
                                        bool zeroForOne,
                                        int256 amountSpecified,
                                        uint160 sqrtPriceLimitX96,
                                        bytes calldata data
                                    ) external returns (int256 amount0, int256 amount1);
                                    /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
                                    /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
                                    /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
                                    /// with 0 amount{0,1} and sending the donation amount(s) from the callback
                                    /// @param recipient The address which will receive the token0 and token1 amounts
                                    /// @param amount0 The amount of token0 to send
                                    /// @param amount1 The amount of token1 to send
                                    /// @param data Any data to be passed through to the callback
                                    function flash(
                                        address recipient,
                                        uint256 amount0,
                                        uint256 amount1,
                                        bytes calldata data
                                    ) external;
                                    /// @notice Increase the maximum number of price and liquidity observations that this pool will store
                                    /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
                                    /// the input observationCardinalityNext.
                                    /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
                                    function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Permissioned pool actions
                                /// @notice Contains pool methods that may only be called by the factory owner
                                interface IUniswapV3PoolOwnerActions {
                                    /// @notice Set the denominator of the protocol's % share of the fees
                                    /// @param feeProtocol0 new protocol fee for token0 of the pool
                                    /// @param feeProtocol1 new protocol fee for token1 of the pool
                                    function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
                                    /// @notice Collect the protocol fee accrued to the pool
                                    /// @param recipient The address to which collected protocol fees should be sent
                                    /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
                                    /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
                                    /// @return amount0 The protocol fee collected in token0
                                    /// @return amount1 The protocol fee collected in token1
                                    function collectProtocol(
                                        address recipient,
                                        uint128 amount0Requested,
                                        uint128 amount1Requested
                                    ) external returns (uint128 amount0, uint128 amount1);
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Events emitted by a pool
                                /// @notice Contains all events emitted by the pool
                                interface IUniswapV3PoolEvents {
                                    /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
                                    /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
                                    /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
                                    /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
                                    event Initialize(uint160 sqrtPriceX96, int24 tick);
                                    /// @notice Emitted when liquidity is minted for a given position
                                    /// @param sender The address that minted the liquidity
                                    /// @param owner The owner of the position and recipient of any minted liquidity
                                    /// @param tickLower The lower tick of the position
                                    /// @param tickUpper The upper tick of the position
                                    /// @param amount The amount of liquidity minted to the position range
                                    /// @param amount0 How much token0 was required for the minted liquidity
                                    /// @param amount1 How much token1 was required for the minted liquidity
                                    event Mint(
                                        address sender,
                                        address indexed owner,
                                        int24 indexed tickLower,
                                        int24 indexed tickUpper,
                                        uint128 amount,
                                        uint256 amount0,
                                        uint256 amount1
                                    );
                                    /// @notice Emitted when fees are collected by the owner of a position
                                    /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
                                    /// @param owner The owner of the position for which fees are collected
                                    /// @param tickLower The lower tick of the position
                                    /// @param tickUpper The upper tick of the position
                                    /// @param amount0 The amount of token0 fees collected
                                    /// @param amount1 The amount of token1 fees collected
                                    event Collect(
                                        address indexed owner,
                                        address recipient,
                                        int24 indexed tickLower,
                                        int24 indexed tickUpper,
                                        uint128 amount0,
                                        uint128 amount1
                                    );
                                    /// @notice Emitted when a position's liquidity is removed
                                    /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
                                    /// @param owner The owner of the position for which liquidity is removed
                                    /// @param tickLower The lower tick of the position
                                    /// @param tickUpper The upper tick of the position
                                    /// @param amount The amount of liquidity to remove
                                    /// @param amount0 The amount of token0 withdrawn
                                    /// @param amount1 The amount of token1 withdrawn
                                    event Burn(
                                        address indexed owner,
                                        int24 indexed tickLower,
                                        int24 indexed tickUpper,
                                        uint128 amount,
                                        uint256 amount0,
                                        uint256 amount1
                                    );
                                    /// @notice Emitted by the pool for any swaps between token0 and token1
                                    /// @param sender The address that initiated the swap call, and that received the callback
                                    /// @param recipient The address that received the output of the swap
                                    /// @param amount0 The delta of the token0 balance of the pool
                                    /// @param amount1 The delta of the token1 balance of the pool
                                    /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
                                    /// @param liquidity The liquidity of the pool after the swap
                                    /// @param tick The log base 1.0001 of price of the pool after the swap
                                    event Swap(
                                        address indexed sender,
                                        address indexed recipient,
                                        int256 amount0,
                                        int256 amount1,
                                        uint160 sqrtPriceX96,
                                        uint128 liquidity,
                                        int24 tick
                                    );
                                    /// @notice Emitted by the pool for any flashes of token0/token1
                                    /// @param sender The address that initiated the swap call, and that received the callback
                                    /// @param recipient The address that received the tokens from flash
                                    /// @param amount0 The amount of token0 that was flashed
                                    /// @param amount1 The amount of token1 that was flashed
                                    /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
                                    /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
                                    event Flash(
                                        address indexed sender,
                                        address indexed recipient,
                                        uint256 amount0,
                                        uint256 amount1,
                                        uint256 paid0,
                                        uint256 paid1
                                    );
                                    /// @notice Emitted by the pool for increases to the number of observations that can be stored
                                    /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
                                    /// just before a mint/swap/burn.
                                    /// @param observationCardinalityNextOld The previous value of the next observation cardinality
                                    /// @param observationCardinalityNextNew The updated value of the next observation cardinality
                                    event IncreaseObservationCardinalityNext(
                                        uint16 observationCardinalityNextOld,
                                        uint16 observationCardinalityNextNew
                                    );
                                    /// @notice Emitted when the protocol fee is changed by the pool
                                    /// @param feeProtocol0Old The previous value of the token0 protocol fee
                                    /// @param feeProtocol1Old The previous value of the token1 protocol fee
                                    /// @param feeProtocol0New The updated value of the token0 protocol fee
                                    /// @param feeProtocol1New The updated value of the token1 protocol fee
                                    event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
                                    /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
                                    /// @param sender The address that collects the protocol fees
                                    /// @param recipient The address that receives the collected protocol fees
                                    /// @param amount0 The amount of token0 protocol fees that is withdrawn
                                    /// @param amount0 The amount of token1 protocol fees that is withdrawn
                                    event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title BitMath
                                /// @dev This library provides functionality for computing bit properties of an unsigned integer
                                library BitMath {
                                    /// @notice Returns the index of the most significant bit of the number,
                                    ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                                    /// @dev The function satisfies the property:
                                    ///     x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1)
                                    /// @param x the value for which to compute the most significant bit, must be greater than 0
                                    /// @return r the index of the most significant bit
                                    function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
                                        require(x > 0);
                                        if (x >= 0x100000000000000000000000000000000) {
                                            x >>= 128;
                                            r += 128;
                                        }
                                        if (x >= 0x10000000000000000) {
                                            x >>= 64;
                                            r += 64;
                                        }
                                        if (x >= 0x100000000) {
                                            x >>= 32;
                                            r += 32;
                                        }
                                        if (x >= 0x10000) {
                                            x >>= 16;
                                            r += 16;
                                        }
                                        if (x >= 0x100) {
                                            x >>= 8;
                                            r += 8;
                                        }
                                        if (x >= 0x10) {
                                            x >>= 4;
                                            r += 4;
                                        }
                                        if (x >= 0x4) {
                                            x >>= 2;
                                            r += 2;
                                        }
                                        if (x >= 0x2) r += 1;
                                    }
                                    /// @notice Returns the index of the least significant bit of the number,
                                    ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                                    /// @dev The function satisfies the property:
                                    ///     (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0)
                                    /// @param x the value for which to compute the least significant bit, must be greater than 0
                                    /// @return r the index of the least significant bit
                                    function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
                                        require(x > 0);
                                        r = 255;
                                        if (x & type(uint128).max > 0) {
                                            r -= 128;
                                        } else {
                                            x >>= 128;
                                        }
                                        if (x & type(uint64).max > 0) {
                                            r -= 64;
                                        } else {
                                            x >>= 64;
                                        }
                                        if (x & type(uint32).max > 0) {
                                            r -= 32;
                                        } else {
                                            x >>= 32;
                                        }
                                        if (x & type(uint16).max > 0) {
                                            r -= 16;
                                        } else {
                                            x >>= 16;
                                        }
                                        if (x & type(uint8).max > 0) {
                                            r -= 8;
                                        } else {
                                            x >>= 8;
                                        }
                                        if (x & 0xf > 0) {
                                            r -= 4;
                                        } else {
                                            x >>= 4;
                                        }
                                        if (x & 0x3 > 0) {
                                            r -= 2;
                                        } else {
                                            x >>= 2;
                                        }
                                        if (x & 0x1 > 0) r -= 1;
                                    }
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.5.0;
                                /// @title Math functions that do not check inputs or outputs
                                /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
                                library UnsafeMath {
                                    /// @notice Returns ceil(x / y)
                                    /// @dev division by 0 has unspecified behavior, and must be checked externally
                                    /// @param x The dividend
                                    /// @param y The divisor
                                    /// @return z The quotient, ceil(x / y)
                                    function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        assembly {
                                            z := add(div(x, y), gt(mod(x, y), 0))
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: GPL-2.0-or-later
                                pragma solidity >=0.4.0;
                                /// @title FixedPoint96
                                /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
                                /// @dev Used in SqrtPriceMath.sol
                                library FixedPoint96 {
                                    uint8 internal constant RESOLUTION = 96;
                                    uint256 internal constant Q96 = 0x1000000000000000000000000;
                                }
                                

                                File 4 of 9: WETH9
                                // Copyright (C) 2015, 2016, 2017 Dapphub
                                
                                // This program is free software: you can redistribute it and/or modify
                                // it under the terms of the GNU General Public License as published by
                                // the Free Software Foundation, either version 3 of the License, or
                                // (at your option) any later version.
                                
                                // This program is distributed in the hope that it will be useful,
                                // but WITHOUT ANY WARRANTY; without even the implied warranty of
                                // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                                // GNU General Public License for more details.
                                
                                // You should have received a copy of the GNU General Public License
                                // along with this program.  If not, see <http://www.gnu.org/licenses/>.
                                
                                pragma solidity ^0.4.18;
                                
                                contract WETH9 {
                                    string public name     = "Wrapped Ether";
                                    string public symbol   = "WETH";
                                    uint8  public decimals = 18;
                                
                                    event  Approval(address indexed src, address indexed guy, uint wad);
                                    event  Transfer(address indexed src, address indexed dst, uint wad);
                                    event  Deposit(address indexed dst, uint wad);
                                    event  Withdrawal(address indexed src, uint wad);
                                
                                    mapping (address => uint)                       public  balanceOf;
                                    mapping (address => mapping (address => uint))  public  allowance;
                                
                                    function() public payable {
                                        deposit();
                                    }
                                    function deposit() public payable {
                                        balanceOf[msg.sender] += msg.value;
                                        Deposit(msg.sender, msg.value);
                                    }
                                    function withdraw(uint wad) public {
                                        require(balanceOf[msg.sender] >= wad);
                                        balanceOf[msg.sender] -= wad;
                                        msg.sender.transfer(wad);
                                        Withdrawal(msg.sender, wad);
                                    }
                                
                                    function totalSupply() public view returns (uint) {
                                        return this.balance;
                                    }
                                
                                    function approve(address guy, uint wad) public returns (bool) {
                                        allowance[msg.sender][guy] = wad;
                                        Approval(msg.sender, guy, wad);
                                        return true;
                                    }
                                
                                    function transfer(address dst, uint wad) public returns (bool) {
                                        return transferFrom(msg.sender, dst, wad);
                                    }
                                
                                    function transferFrom(address src, address dst, uint wad)
                                        public
                                        returns (bool)
                                    {
                                        require(balanceOf[src] >= wad);
                                
                                        if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                                            require(allowance[src][msg.sender] >= wad);
                                            allowance[src][msg.sender] -= wad;
                                        }
                                
                                        balanceOf[src] -= wad;
                                        balanceOf[dst] += wad;
                                
                                        Transfer(src, dst, wad);
                                
                                        return true;
                                    }
                                }
                                
                                
                                /*
                                                    GNU GENERAL PUBLIC LICENSE
                                                       Version 3, 29 June 2007
                                
                                 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
                                 Everyone is permitted to copy and distribute verbatim copies
                                 of this license document, but changing it is not allowed.
                                
                                                            Preamble
                                
                                  The GNU General Public License is a free, copyleft license for
                                software and other kinds of works.
                                
                                  The licenses for most software and other practical works are designed
                                to take away your freedom to share and change the works.  By contrast,
                                the GNU General Public License is intended to guarantee your freedom to
                                share and change all versions of a program--to make sure it remains free
                                software for all its users.  We, the Free Software Foundation, use the
                                GNU General Public License for most of our software; it applies also to
                                any other work released this way by its authors.  You can apply it to
                                your programs, too.
                                
                                  When we speak of free software, we are referring to freedom, not
                                price.  Our General Public Licenses are designed to make sure that you
                                have the freedom to distribute copies of free software (and charge for
                                them if you wish), that you receive source code or can get it if you
                                want it, that you can change the software or use pieces of it in new
                                free programs, and that you know you can do these things.
                                
                                  To protect your rights, we need to prevent others from denying you
                                these rights or asking you to surrender the rights.  Therefore, you have
                                certain responsibilities if you distribute copies of the software, or if
                                you modify it: responsibilities to respect the freedom of others.
                                
                                  For example, if you distribute copies of such a program, whether
                                gratis or for a fee, you must pass on to the recipients the same
                                freedoms that you received.  You must make sure that they, too, receive
                                or can get the source code.  And you must show them these terms so they
                                know their rights.
                                
                                  Developers that use the GNU GPL protect your rights with two steps:
                                (1) assert copyright on the software, and (2) offer you this License
                                giving you legal permission to copy, distribute and/or modify it.
                                
                                  For the developers' and authors' protection, the GPL clearly explains
                                that there is no warranty for this free software.  For both users' and
                                authors' sake, the GPL requires that modified versions be marked as
                                changed, so that their problems will not be attributed erroneously to
                                authors of previous versions.
                                
                                  Some devices are designed to deny users access to install or run
                                modified versions of the software inside them, although the manufacturer
                                can do so.  This is fundamentally incompatible with the aim of
                                protecting users' freedom to change the software.  The systematic
                                pattern of such abuse occurs in the area of products for individuals to
                                use, which is precisely where it is most unacceptable.  Therefore, we
                                have designed this version of the GPL to prohibit the practice for those
                                products.  If such problems arise substantially in other domains, we
                                stand ready to extend this provision to those domains in future versions
                                of the GPL, as needed to protect the freedom of users.
                                
                                  Finally, every program is threatened constantly by software patents.
                                States should not allow patents to restrict development and use of
                                software on general-purpose computers, but in those that do, we wish to
                                avoid the special danger that patents applied to a free program could
                                make it effectively proprietary.  To prevent this, the GPL assures that
                                patents cannot be used to render the program non-free.
                                
                                  The precise terms and conditions for copying, distribution and
                                modification follow.
                                
                                                       TERMS AND CONDITIONS
                                
                                  0. Definitions.
                                
                                  "This License" refers to version 3 of the GNU General Public License.
                                
                                  "Copyright" also means copyright-like laws that apply to other kinds of
                                works, such as semiconductor masks.
                                
                                  "The Program" refers to any copyrightable work licensed under this
                                License.  Each licensee is addressed as "you".  "Licensees" and
                                "recipients" may be individuals or organizations.
                                
                                  To "modify" a work means to copy from or adapt all or part of the work
                                in a fashion requiring copyright permission, other than the making of an
                                exact copy.  The resulting work is called a "modified version" of the
                                earlier work or a work "based on" the earlier work.
                                
                                  A "covered work" means either the unmodified Program or a work based
                                on the Program.
                                
                                  To "propagate" a work means to do anything with it that, without
                                permission, would make you directly or secondarily liable for
                                infringement under applicable copyright law, except executing it on a
                                computer or modifying a private copy.  Propagation includes copying,
                                distribution (with or without modification), making available to the
                                public, and in some countries other activities as well.
                                
                                  To "convey" a work means any kind of propagation that enables other
                                parties to make or receive copies.  Mere interaction with a user through
                                a computer network, with no transfer of a copy, is not conveying.
                                
                                  An interactive user interface displays "Appropriate Legal Notices"
                                to the extent that it includes a convenient and prominently visible
                                feature that (1) displays an appropriate copyright notice, and (2)
                                tells the user that there is no warranty for the work (except to the
                                extent that warranties are provided), that licensees may convey the
                                work under this License, and how to view a copy of this License.  If
                                the interface presents a list of user commands or options, such as a
                                menu, a prominent item in the list meets this criterion.
                                
                                  1. Source Code.
                                
                                  The "source code" for a work means the preferred form of the work
                                for making modifications to it.  "Object code" means any non-source
                                form of a work.
                                
                                  A "Standard Interface" means an interface that either is an official
                                standard defined by a recognized standards body, or, in the case of
                                interfaces specified for a particular programming language, one that
                                is widely used among developers working in that language.
                                
                                  The "System Libraries" of an executable work include anything, other
                                than the work as a whole, that (a) is included in the normal form of
                                packaging a Major Component, but which is not part of that Major
                                Component, and (b) serves only to enable use of the work with that
                                Major Component, or to implement a Standard Interface for which an
                                implementation is available to the public in source code form.  A
                                "Major Component", in this context, means a major essential component
                                (kernel, window system, and so on) of the specific operating system
                                (if any) on which the executable work runs, or a compiler used to
                                produce the work, or an object code interpreter used to run it.
                                
                                  The "Corresponding Source" for a work in object code form means all
                                the source code needed to generate, install, and (for an executable
                                work) run the object code and to modify the work, including scripts to
                                control those activities.  However, it does not include the work's
                                System Libraries, or general-purpose tools or generally available free
                                programs which are used unmodified in performing those activities but
                                which are not part of the work.  For example, Corresponding Source
                                includes interface definition files associated with source files for
                                the work, and the source code for shared libraries and dynamically
                                linked subprograms that the work is specifically designed to require,
                                such as by intimate data communication or control flow between those
                                subprograms and other parts of the work.
                                
                                  The Corresponding Source need not include anything that users
                                can regenerate automatically from other parts of the Corresponding
                                Source.
                                
                                  The Corresponding Source for a work in source code form is that
                                same work.
                                
                                  2. Basic Permissions.
                                
                                  All rights granted under this License are granted for the term of
                                copyright on the Program, and are irrevocable provided the stated
                                conditions are met.  This License explicitly affirms your unlimited
                                permission to run the unmodified Program.  The output from running a
                                covered work is covered by this License only if the output, given its
                                content, constitutes a covered work.  This License acknowledges your
                                rights of fair use or other equivalent, as provided by copyright law.
                                
                                  You may make, run and propagate covered works that you do not
                                convey, without conditions so long as your license otherwise remains
                                in force.  You may convey covered works to others for the sole purpose
                                of having them make modifications exclusively for you, or provide you
                                with facilities for running those works, provided that you comply with
                                the terms of this License in conveying all material for which you do
                                not control copyright.  Those thus making or running the covered works
                                for you must do so exclusively on your behalf, under your direction
                                and control, on terms that prohibit them from making any copies of
                                your copyrighted material outside their relationship with you.
                                
                                  Conveying under any other circumstances is permitted solely under
                                the conditions stated below.  Sublicensing is not allowed; section 10
                                makes it unnecessary.
                                
                                  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
                                
                                  No covered work shall be deemed part of an effective technological
                                measure under any applicable law fulfilling obligations under article
                                11 of the WIPO copyright treaty adopted on 20 December 1996, or
                                similar laws prohibiting or restricting circumvention of such
                                measures.
                                
                                  When you convey a covered work, you waive any legal power to forbid
                                circumvention of technological measures to the extent such circumvention
                                is effected by exercising rights under this License with respect to
                                the covered work, and you disclaim any intention to limit operation or
                                modification of the work as a means of enforcing, against the work's
                                users, your or third parties' legal rights to forbid circumvention of
                                technological measures.
                                
                                  4. Conveying Verbatim Copies.
                                
                                  You may convey verbatim copies of the Program's source code as you
                                receive it, in any medium, provided that you conspicuously and
                                appropriately publish on each copy an appropriate copyright notice;
                                keep intact all notices stating that this License and any
                                non-permissive terms added in accord with section 7 apply to the code;
                                keep intact all notices of the absence of any warranty; and give all
                                recipients a copy of this License along with the Program.
                                
                                  You may charge any price or no price for each copy that you convey,
                                and you may offer support or warranty protection for a fee.
                                
                                  5. Conveying Modified Source Versions.
                                
                                  You may convey a work based on the Program, or the modifications to
                                produce it from the Program, in the form of source code under the
                                terms of section 4, provided that you also meet all of these conditions:
                                
                                    a) The work must carry prominent notices stating that you modified
                                    it, and giving a relevant date.
                                
                                    b) The work must carry prominent notices stating that it is
                                    released under this License and any conditions added under section
                                    7.  This requirement modifies the requirement in section 4 to
                                    "keep intact all notices".
                                
                                    c) You must license the entire work, as a whole, under this
                                    License to anyone who comes into possession of a copy.  This
                                    License will therefore apply, along with any applicable section 7
                                    additional terms, to the whole of the work, and all its parts,
                                    regardless of how they are packaged.  This License gives no
                                    permission to license the work in any other way, but it does not
                                    invalidate such permission if you have separately received it.
                                
                                    d) If the work has interactive user interfaces, each must display
                                    Appropriate Legal Notices; however, if the Program has interactive
                                    interfaces that do not display Appropriate Legal Notices, your
                                    work need not make them do so.
                                
                                  A compilation of a covered work with other separate and independent
                                works, which are not by their nature extensions of the covered work,
                                and which are not combined with it such as to form a larger program,
                                in or on a volume of a storage or distribution medium, is called an
                                "aggregate" if the compilation and its resulting copyright are not
                                used to limit the access or legal rights of the compilation's users
                                beyond what the individual works permit.  Inclusion of a covered work
                                in an aggregate does not cause this License to apply to the other
                                parts of the aggregate.
                                
                                  6. Conveying Non-Source Forms.
                                
                                  You may convey a covered work in object code form under the terms
                                of sections 4 and 5, provided that you also convey the
                                machine-readable Corresponding Source under the terms of this License,
                                in one of these ways:
                                
                                    a) Convey the object code in, or embodied in, a physical product
                                    (including a physical distribution medium), accompanied by the
                                    Corresponding Source fixed on a durable physical medium
                                    customarily used for software interchange.
                                
                                    b) Convey the object code in, or embodied in, a physical product
                                    (including a physical distribution medium), accompanied by a
                                    written offer, valid for at least three years and valid for as
                                    long as you offer spare parts or customer support for that product
                                    model, to give anyone who possesses the object code either (1) a
                                    copy of the Corresponding Source for all the software in the
                                    product that is covered by this License, on a durable physical
                                    medium customarily used for software interchange, for a price no
                                    more than your reasonable cost of physically performing this
                                    conveying of source, or (2) access to copy the
                                    Corresponding Source from a network server at no charge.
                                
                                    c) Convey individual copies of the object code with a copy of the
                                    written offer to provide the Corresponding Source.  This
                                    alternative is allowed only occasionally and noncommercially, and
                                    only if you received the object code with such an offer, in accord
                                    with subsection 6b.
                                
                                    d) Convey the object code by offering access from a designated
                                    place (gratis or for a charge), and offer equivalent access to the
                                    Corresponding Source in the same way through the same place at no
                                    further charge.  You need not require recipients to copy the
                                    Corresponding Source along with the object code.  If the place to
                                    copy the object code is a network server, the Corresponding Source
                                    may be on a different server (operated by you or a third party)
                                    that supports equivalent copying facilities, provided you maintain
                                    clear directions next to the object code saying where to find the
                                    Corresponding Source.  Regardless of what server hosts the
                                    Corresponding Source, you remain obligated to ensure that it is
                                    available for as long as needed to satisfy these requirements.
                                
                                    e) Convey the object code using peer-to-peer transmission, provided
                                    you inform other peers where the object code and Corresponding
                                    Source of the work are being offered to the general public at no
                                    charge under subsection 6d.
                                
                                  A separable portion of the object code, whose source code is excluded
                                from the Corresponding Source as a System Library, need not be
                                included in conveying the object code work.
                                
                                  A "User Product" is either (1) a "consumer product", which means any
                                tangible personal property which is normally used for personal, family,
                                or household purposes, or (2) anything designed or sold for incorporation
                                into a dwelling.  In determining whether a product is a consumer product,
                                doubtful cases shall be resolved in favor of coverage.  For a particular
                                product received by a particular user, "normally used" refers to a
                                typical or common use of that class of product, regardless of the status
                                of the particular user or of the way in which the particular user
                                actually uses, or expects or is expected to use, the product.  A product
                                is a consumer product regardless of whether the product has substantial
                                commercial, industrial or non-consumer uses, unless such uses represent
                                the only significant mode of use of the product.
                                
                                  "Installation Information" for a User Product means any methods,
                                procedures, authorization keys, or other information required to install
                                and execute modified versions of a covered work in that User Product from
                                a modified version of its Corresponding Source.  The information must
                                suffice to ensure that the continued functioning of the modified object
                                code is in no case prevented or interfered with solely because
                                modification has been made.
                                
                                  If you convey an object code work under this section in, or with, or
                                specifically for use in, a User Product, and the conveying occurs as
                                part of a transaction in which the right of possession and use of the
                                User Product is transferred to the recipient in perpetuity or for a
                                fixed term (regardless of how the transaction is characterized), the
                                Corresponding Source conveyed under this section must be accompanied
                                by the Installation Information.  But this requirement does not apply
                                if neither you nor any third party retains the ability to install
                                modified object code on the User Product (for example, the work has
                                been installed in ROM).
                                
                                  The requirement to provide Installation Information does not include a
                                requirement to continue to provide support service, warranty, or updates
                                for a work that has been modified or installed by the recipient, or for
                                the User Product in which it has been modified or installed.  Access to a
                                network may be denied when the modification itself materially and
                                adversely affects the operation of the network or violates the rules and
                                protocols for communication across the network.
                                
                                  Corresponding Source conveyed, and Installation Information provided,
                                in accord with this section must be in a format that is publicly
                                documented (and with an implementation available to the public in
                                source code form), and must require no special password or key for
                                unpacking, reading or copying.
                                
                                  7. Additional Terms.
                                
                                  "Additional permissions" are terms that supplement the terms of this
                                License by making exceptions from one or more of its conditions.
                                Additional permissions that are applicable to the entire Program shall
                                be treated as though they were included in this License, to the extent
                                that they are valid under applicable law.  If additional permissions
                                apply only to part of the Program, that part may be used separately
                                under those permissions, but the entire Program remains governed by
                                this License without regard to the additional permissions.
                                
                                  When you convey a copy of a covered work, you may at your option
                                remove any additional permissions from that copy, or from any part of
                                it.  (Additional permissions may be written to require their own
                                removal in certain cases when you modify the work.)  You may place
                                additional permissions on material, added by you to a covered work,
                                for which you have or can give appropriate copyright permission.
                                
                                  Notwithstanding any other provision of this License, for material you
                                add to a covered work, you may (if authorized by the copyright holders of
                                that material) supplement the terms of this License with terms:
                                
                                    a) Disclaiming warranty or limiting liability differently from the
                                    terms of sections 15 and 16 of this License; or
                                
                                    b) Requiring preservation of specified reasonable legal notices or
                                    author attributions in that material or in the Appropriate Legal
                                    Notices displayed by works containing it; or
                                
                                    c) Prohibiting misrepresentation of the origin of that material, or
                                    requiring that modified versions of such material be marked in
                                    reasonable ways as different from the original version; or
                                
                                    d) Limiting the use for publicity purposes of names of licensors or
                                    authors of the material; or
                                
                                    e) Declining to grant rights under trademark law for use of some
                                    trade names, trademarks, or service marks; or
                                
                                    f) Requiring indemnification of licensors and authors of that
                                    material by anyone who conveys the material (or modified versions of
                                    it) with contractual assumptions of liability to the recipient, for
                                    any liability that these contractual assumptions directly impose on
                                    those licensors and authors.
                                
                                  All other non-permissive additional terms are considered "further
                                restrictions" within the meaning of section 10.  If the Program as you
                                received it, or any part of it, contains a notice stating that it is
                                governed by this License along with a term that is a further
                                restriction, you may remove that term.  If a license document contains
                                a further restriction but permits relicensing or conveying under this
                                License, you may add to a covered work material governed by the terms
                                of that license document, provided that the further restriction does
                                not survive such relicensing or conveying.
                                
                                  If you add terms to a covered work in accord with this section, you
                                must place, in the relevant source files, a statement of the
                                additional terms that apply to those files, or a notice indicating
                                where to find the applicable terms.
                                
                                  Additional terms, permissive or non-permissive, may be stated in the
                                form of a separately written license, or stated as exceptions;
                                the above requirements apply either way.
                                
                                  8. Termination.
                                
                                  You may not propagate or modify a covered work except as expressly
                                provided under this License.  Any attempt otherwise to propagate or
                                modify it is void, and will automatically terminate your rights under
                                this License (including any patent licenses granted under the third
                                paragraph of section 11).
                                
                                  However, if you cease all violation of this License, then your
                                license from a particular copyright holder is reinstated (a)
                                provisionally, unless and until the copyright holder explicitly and
                                finally terminates your license, and (b) permanently, if the copyright
                                holder fails to notify you of the violation by some reasonable means
                                prior to 60 days after the cessation.
                                
                                  Moreover, your license from a particular copyright holder is
                                reinstated permanently if the copyright holder notifies you of the
                                violation by some reasonable means, this is the first time you have
                                received notice of violation of this License (for any work) from that
                                copyright holder, and you cure the violation prior to 30 days after
                                your receipt of the notice.
                                
                                  Termination of your rights under this section does not terminate the
                                licenses of parties who have received copies or rights from you under
                                this License.  If your rights have been terminated and not permanently
                                reinstated, you do not qualify to receive new licenses for the same
                                material under section 10.
                                
                                  9. Acceptance Not Required for Having Copies.
                                
                                  You are not required to accept this License in order to receive or
                                run a copy of the Program.  Ancillary propagation of a covered work
                                occurring solely as a consequence of using peer-to-peer transmission
                                to receive a copy likewise does not require acceptance.  However,
                                nothing other than this License grants you permission to propagate or
                                modify any covered work.  These actions infringe copyright if you do
                                not accept this License.  Therefore, by modifying or propagating a
                                covered work, you indicate your acceptance of this License to do so.
                                
                                  10. Automatic Licensing of Downstream Recipients.
                                
                                  Each time you convey a covered work, the recipient automatically
                                receives a license from the original licensors, to run, modify and
                                propagate that work, subject to this License.  You are not responsible
                                for enforcing compliance by third parties with this License.
                                
                                  An "entity transaction" is a transaction transferring control of an
                                organization, or substantially all assets of one, or subdividing an
                                organization, or merging organizations.  If propagation of a covered
                                work results from an entity transaction, each party to that
                                transaction who receives a copy of the work also receives whatever
                                licenses to the work the party's predecessor in interest had or could
                                give under the previous paragraph, plus a right to possession of the
                                Corresponding Source of the work from the predecessor in interest, if
                                the predecessor has it or can get it with reasonable efforts.
                                
                                  You may not impose any further restrictions on the exercise of the
                                rights granted or affirmed under this License.  For example, you may
                                not impose a license fee, royalty, or other charge for exercise of
                                rights granted under this License, and you may not initiate litigation
                                (including a cross-claim or counterclaim in a lawsuit) alleging that
                                any patent claim is infringed by making, using, selling, offering for
                                sale, or importing the Program or any portion of it.
                                
                                  11. Patents.
                                
                                  A "contributor" is a copyright holder who authorizes use under this
                                License of the Program or a work on which the Program is based.  The
                                work thus licensed is called the contributor's "contributor version".
                                
                                  A contributor's "essential patent claims" are all patent claims
                                owned or controlled by the contributor, whether already acquired or
                                hereafter acquired, that would be infringed by some manner, permitted
                                by this License, of making, using, or selling its contributor version,
                                but do not include claims that would be infringed only as a
                                consequence of further modification of the contributor version.  For
                                purposes of this definition, "control" includes the right to grant
                                patent sublicenses in a manner consistent with the requirements of
                                this License.
                                
                                  Each contributor grants you a non-exclusive, worldwide, royalty-free
                                patent license under the contributor's essential patent claims, to
                                make, use, sell, offer for sale, import and otherwise run, modify and
                                propagate the contents of its contributor version.
                                
                                  In the following three paragraphs, a "patent license" is any express
                                agreement or commitment, however denominated, not to enforce a patent
                                (such as an express permission to practice a patent or covenant not to
                                sue for patent infringement).  To "grant" such a patent license to a
                                party means to make such an agreement or commitment not to enforce a
                                patent against the party.
                                
                                  If you convey a covered work, knowingly relying on a patent license,
                                and the Corresponding Source of the work is not available for anyone
                                to copy, free of charge and under the terms of this License, through a
                                publicly available network server or other readily accessible means,
                                then you must either (1) cause the Corresponding Source to be so
                                available, or (2) arrange to deprive yourself of the benefit of the
                                patent license for this particular work, or (3) arrange, in a manner
                                consistent with the requirements of this License, to extend the patent
                                license to downstream recipients.  "Knowingly relying" means you have
                                actual knowledge that, but for the patent license, your conveying the
                                covered work in a country, or your recipient's use of the covered work
                                in a country, would infringe one or more identifiable patents in that
                                country that you have reason to believe are valid.
                                
                                  If, pursuant to or in connection with a single transaction or
                                arrangement, you convey, or propagate by procuring conveyance of, a
                                covered work, and grant a patent license to some of the parties
                                receiving the covered work authorizing them to use, propagate, modify
                                or convey a specific copy of the covered work, then the patent license
                                you grant is automatically extended to all recipients of the covered
                                work and works based on it.
                                
                                  A patent license is "discriminatory" if it does not include within
                                the scope of its coverage, prohibits the exercise of, or is
                                conditioned on the non-exercise of one or more of the rights that are
                                specifically granted under this License.  You may not convey a covered
                                work if you are a party to an arrangement with a third party that is
                                in the business of distributing software, under which you make payment
                                to the third party based on the extent of your activity of conveying
                                the work, and under which the third party grants, to any of the
                                parties who would receive the covered work from you, a discriminatory
                                patent license (a) in connection with copies of the covered work
                                conveyed by you (or copies made from those copies), or (b) primarily
                                for and in connection with specific products or compilations that
                                contain the covered work, unless you entered into that arrangement,
                                or that patent license was granted, prior to 28 March 2007.
                                
                                  Nothing in this License shall be construed as excluding or limiting
                                any implied license or other defenses to infringement that may
                                otherwise be available to you under applicable patent law.
                                
                                  12. No Surrender of Others' Freedom.
                                
                                  If conditions are imposed on you (whether by court order, agreement or
                                otherwise) that contradict the conditions of this License, they do not
                                excuse you from the conditions of this License.  If you cannot convey a
                                covered work so as to satisfy simultaneously your obligations under this
                                License and any other pertinent obligations, then as a consequence you may
                                not convey it at all.  For example, if you agree to terms that obligate you
                                to collect a royalty for further conveying from those to whom you convey
                                the Program, the only way you could satisfy both those terms and this
                                License would be to refrain entirely from conveying the Program.
                                
                                  13. Use with the GNU Affero General Public License.
                                
                                  Notwithstanding any other provision of this License, you have
                                permission to link or combine any covered work with a work licensed
                                under version 3 of the GNU Affero General Public License into a single
                                combined work, and to convey the resulting work.  The terms of this
                                License will continue to apply to the part which is the covered work,
                                but the special requirements of the GNU Affero General Public License,
                                section 13, concerning interaction through a network will apply to the
                                combination as such.
                                
                                  14. Revised Versions of this License.
                                
                                  The Free Software Foundation may publish revised and/or new versions of
                                the GNU General Public License from time to time.  Such new versions will
                                be similar in spirit to the present version, but may differ in detail to
                                address new problems or concerns.
                                
                                  Each version is given a distinguishing version number.  If the
                                Program specifies that a certain numbered version of the GNU General
                                Public License "or any later version" applies to it, you have the
                                option of following the terms and conditions either of that numbered
                                version or of any later version published by the Free Software
                                Foundation.  If the Program does not specify a version number of the
                                GNU General Public License, you may choose any version ever published
                                by the Free Software Foundation.
                                
                                  If the Program specifies that a proxy can decide which future
                                versions of the GNU General Public License can be used, that proxy's
                                public statement of acceptance of a version permanently authorizes you
                                to choose that version for the Program.
                                
                                  Later license versions may give you additional or different
                                permissions.  However, no additional obligations are imposed on any
                                author or copyright holder as a result of your choosing to follow a
                                later version.
                                
                                  15. Disclaimer of Warranty.
                                
                                  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
                                APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
                                HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
                                OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
                                THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
                                PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
                                IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
                                ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
                                
                                  16. Limitation of Liability.
                                
                                  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
                                WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
                                THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
                                GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
                                USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
                                DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
                                PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
                                EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
                                SUCH DAMAGES.
                                
                                  17. Interpretation of Sections 15 and 16.
                                
                                  If the disclaimer of warranty and limitation of liability provided
                                above cannot be given local legal effect according to their terms,
                                reviewing courts shall apply local law that most closely approximates
                                an absolute waiver of all civil liability in connection with the
                                Program, unless a warranty or assumption of liability accompanies a
                                copy of the Program in return for a fee.
                                
                                                     END OF TERMS AND CONDITIONS
                                
                                            How to Apply These Terms to Your New Programs
                                
                                  If you develop a new program, and you want it to be of the greatest
                                possible use to the public, the best way to achieve this is to make it
                                free software which everyone can redistribute and change under these terms.
                                
                                  To do so, attach the following notices to the program.  It is safest
                                to attach them to the start of each source file to most effectively
                                state the exclusion of warranty; and each file should have at least
                                the "copyright" line and a pointer to where the full notice is found.
                                
                                    <one line to give the program's name and a brief idea of what it does.>
                                    Copyright (C) <year>  <name of author>
                                
                                    This program is free software: you can redistribute it and/or modify
                                    it under the terms of the GNU General Public License as published by
                                    the Free Software Foundation, either version 3 of the License, or
                                    (at your option) any later version.
                                
                                    This program is distributed in the hope that it will be useful,
                                    but WITHOUT ANY WARRANTY; without even the implied warranty of
                                    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                                    GNU General Public License for more details.
                                
                                    You should have received a copy of the GNU General Public License
                                    along with this program.  If not, see <http://www.gnu.org/licenses/>.
                                
                                Also add information on how to contact you by electronic and paper mail.
                                
                                  If the program does terminal interaction, make it output a short
                                notice like this when it starts in an interactive mode:
                                
                                    <program>  Copyright (C) <year>  <name of author>
                                    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
                                    This is free software, and you are welcome to redistribute it
                                    under certain conditions; type `show c' for details.
                                
                                The hypothetical commands `show w' and `show c' should show the appropriate
                                parts of the General Public License.  Of course, your program's commands
                                might be different; for a GUI interface, you would use an "about box".
                                
                                  You should also get your employer (if you work as a programmer) or school,
                                if any, to sign a "copyright disclaimer" for the program, if necessary.
                                For more information on this, and how to apply and follow the GNU GPL, see
                                <http://www.gnu.org/licenses/>.
                                
                                  The GNU General Public License does not permit incorporating your program
                                into proprietary programs.  If your program is a subroutine library, you
                                may consider it more useful to permit linking proprietary applications with
                                the library.  If this is what you want to do, use the GNU Lesser General
                                Public License instead of this License.  But first, please read
                                <http://www.gnu.org/philosophy/why-not-lgpl.html>.
                                
                                */

                                File 5 of 9: Core
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {CallPoints, addressToCallPoints} from "./types/callPoints.sol";
                                import {PoolKey} from "./types/poolKey.sol";
                                import {PositionKey, Bounds} from "./types/positionKey.sol";
                                import {FeesPerLiquidity, feesPerLiquidityFromAmounts} from "./types/feesPerLiquidity.sol";
                                import {isPriceIncreasing, SqrtRatioLimitWrongDirection, SwapResult, swapResult} from "./math/swap.sol";
                                import {Position} from "./types/position.sol";
                                import {Ownable} from "solady/auth/Ownable.sol";
                                import {tickToSqrtRatio, sqrtRatioToTick} from "./math/ticks.sol";
                                import {Bitmap} from "./math/bitmap.sol";
                                import {
                                    shouldCallBeforeInitializePool,
                                    shouldCallAfterInitializePool,
                                    shouldCallBeforeUpdatePosition,
                                    shouldCallAfterUpdatePosition,
                                    shouldCallBeforeSwap,
                                    shouldCallAfterSwap,
                                    shouldCallBeforeCollectFees,
                                    shouldCallAfterCollectFees
                                } from "./types/callPoints.sol";
                                import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                import {SafeTransferLib} from "solady/utils/SafeTransferLib.sol";
                                import {SafeCastLib} from "solady/utils/SafeCastLib.sol";
                                import {ExposedStorage} from "./base/ExposedStorage.sol";
                                import {liquidityDeltaToAmountDelta, addLiquidityDelta, subLiquidityDelta} from "./math/liquidity.sol";
                                import {computeFee} from "./math/fee.sol";
                                import {findNextInitializedTick, findPrevInitializedTick, flipTick} from "./math/tickBitmap.sol";
                                import {ICore, UpdatePositionParameters, IExtension} from "./interfaces/ICore.sol";
                                import {FlashAccountant} from "./base/FlashAccountant.sol";
                                import {EfficientHashLib} from "solady/utils/EfficientHashLib.sol";
                                import {
                                    MIN_TICK,
                                    MAX_TICK,
                                    NATIVE_TOKEN_ADDRESS,
                                    FULL_RANGE_ONLY_TICK_SPACING,
                                    MAX_TICK_SPACING
                                } from "./math/constants.sol";
                                import {MIN_SQRT_RATIO, MAX_SQRT_RATIO, SqrtRatio} from "./types/sqrtRatio.sol";
                                /// @title Ekubo Protocol
                                /// @author Moody Salem <[email protected]>
                                /// @notice Singleton holding all the tokens and containing all the possible operations in Ekubo Protocol
                                contract Core is ICore, FlashAccountant, Ownable, ExposedStorage {
                                    using {findNextInitializedTick, findPrevInitializedTick, flipTick} for mapping(uint256 word => Bitmap bitmap);
                                    struct TickInfo {
                                        int128 liquidityDelta;
                                        uint128 liquidityNet;
                                    }
                                    struct PoolState {
                                        SqrtRatio sqrtRatio;
                                        int32 tick;
                                        uint128 liquidity;
                                    }
                                    mapping(address extension => bool isRegistered) private isExtensionRegistered;
                                    mapping(address token => uint256 amountCollected) private protocolFeesCollected;
                                    mapping(bytes32 poolId => PoolState) private poolState;
                                    mapping(bytes32 poolId => FeesPerLiquidity feesPerLiquidity) private poolFeesPerLiquidity;
                                    mapping(bytes32 poolId => mapping(bytes32 positionId => Position position)) private poolPositions;
                                    mapping(bytes32 poolId => mapping(int32 tick => TickInfo tickInfo)) private poolTicks;
                                    mapping(bytes32 poolId => mapping(int32 tick => FeesPerLiquidity feesPerLiquidityOutside)) private
                                        poolTickFeesPerLiquidityOutside;
                                    mapping(bytes32 poolId => mapping(uint256 word => Bitmap bitmap)) private poolInitializedTickBitmaps;
                                    mapping(bytes32 key => uint256) private savedBalances;
                                    constructor(address owner) {
                                        _initializeOwner(owner);
                                    }
                                    function withdrawProtocolFees(address recipient, address token, uint256 amount) external onlyOwner {
                                        protocolFeesCollected[token] -= amount;
                                        if (token == NATIVE_TOKEN_ADDRESS) {
                                            SafeTransferLib.safeTransferETH(recipient, amount);
                                        } else {
                                            SafeTransferLib.safeTransfer(token, recipient, amount);
                                        }
                                        emit ProtocolFeesWithdrawn(recipient, token, amount);
                                    }
                                    // Extensions must call this function to become registered. The call points are validated against the caller address
                                    function registerExtension(CallPoints memory expectedCallPoints) external {
                                        CallPoints memory computed = addressToCallPoints(msg.sender);
                                        if (!computed.eq(expectedCallPoints) || !computed.isValid()) revert FailedRegisterInvalidCallPoints();
                                        if (isExtensionRegistered[msg.sender]) revert ExtensionAlreadyRegistered();
                                        isExtensionRegistered[msg.sender] = true;
                                        emit ExtensionRegistered(msg.sender);
                                    }
                                    function initializePool(PoolKey memory poolKey, int32 tick) external returns (SqrtRatio sqrtRatio) {
                                        poolKey.validatePoolKey();
                                        address extension = poolKey.extension();
                                        if (extension != address(0)) {
                                            if (!isExtensionRegistered[extension]) {
                                                revert ExtensionNotRegistered();
                                            }
                                            if (shouldCallBeforeInitializePool(extension) && extension != msg.sender) {
                                                IExtension(extension).beforeInitializePool(msg.sender, poolKey, tick);
                                            }
                                        }
                                        bytes32 poolId = poolKey.toPoolId();
                                        PoolState memory price = poolState[poolId];
                                        if (SqrtRatio.unwrap(price.sqrtRatio) != 0) revert PoolAlreadyInitialized();
                                        sqrtRatio = tickToSqrtRatio(tick);
                                        poolState[poolId] = PoolState({sqrtRatio: sqrtRatio, tick: tick, liquidity: 0});
                                        emit PoolInitialized(poolId, poolKey, tick, sqrtRatio);
                                        if (shouldCallAfterInitializePool(extension) && extension != msg.sender) {
                                            IExtension(extension).afterInitializePool(msg.sender, poolKey, tick, sqrtRatio);
                                        }
                                    }
                                    function prevInitializedTick(bytes32 poolId, int32 fromTick, uint32 tickSpacing, uint256 skipAhead)
                                        external
                                        view
                                        returns (int32 tick, bool isInitialized)
                                    {
                                        (tick, isInitialized) =
                                            poolInitializedTickBitmaps[poolId].findPrevInitializedTick(fromTick, tickSpacing, skipAhead);
                                    }
                                    function nextInitializedTick(bytes32 poolId, int32 fromTick, uint32 tickSpacing, uint256 skipAhead)
                                        external
                                        view
                                        returns (int32 tick, bool isInitialized)
                                    {
                                        (tick, isInitialized) =
                                            poolInitializedTickBitmaps[poolId].findNextInitializedTick(fromTick, tickSpacing, skipAhead);
                                    }
                                    function load(address token0, address token1, bytes32 salt, uint128 amount0, uint128 amount1) public {
                                        // note we do not check sort order because for save it must be sorted,
                                        //  so balances will always be zero if token0 and token1 are not sorted
                                        //  and this method will throw InsufficientSavedBalance for non-zero amount
                                        (uint256 id,) = _getLocker();
                                        bytes32 key = EfficientHashLib.hash(
                                            bytes32(uint256(uint160(msg.sender))),
                                            bytes32(uint256(uint160(token0))),
                                            bytes32(uint256(uint160(token1))),
                                            salt
                                        );
                                        unchecked {
                                            uint256 packedBalance = savedBalances[key];
                                            uint128 balance0 = uint128(packedBalance >> 128);
                                            uint128 balance1 = uint128(packedBalance);
                                            if (balance0 < amount0 || balance1 < amount1) {
                                                revert InsufficientSavedBalance();
                                            }
                                            // unchecked is ok because we reverted if either balance < amount
                                            savedBalances[key] = (uint256(balance0 - amount0) << 128) + uint256(balance1 - amount1);
                                            _accountDebt(id, token0, -int256(uint256(amount0)));
                                            _accountDebt(id, token1, -int256(uint256(amount1)));
                                        }
                                    }
                                    function save(address owner, address token0, address token1, bytes32 salt, uint128 amount0, uint128 amount1)
                                        public
                                        payable
                                    {
                                        if (token0 >= token1) revert SavedBalanceTokensNotSorted();
                                        (uint256 id,) = _requireLocker();
                                        bytes32 key = EfficientHashLib.hash(
                                            bytes32(uint256(uint160(owner))), bytes32(uint256(uint160(token0))), bytes32(uint256(uint160(token1))), salt
                                        );
                                        uint256 packedBalances = savedBalances[key];
                                        uint128 balance0 = uint128(packedBalances >> 128);
                                        uint128 balance1 = uint128(packedBalances);
                                        // we are using checked math here to protect the uint128 additions from overflowing
                                        savedBalances[key] = (uint256(balance0 + amount0) << 128) + uint256(balance1 + amount1);
                                        _maybeAccountDebtToken0(id, token0, int256(uint256(amount0)));
                                        _accountDebt(id, token1, int256(uint256(amount1)));
                                    }
                                    // Returns the pool fees per liquidity inside the given bounds.
                                    function _getPoolFeesPerLiquidityInside(bytes32 poolId, Bounds memory bounds, uint32 tickSpacing)
                                        internal
                                        view
                                        returns (FeesPerLiquidity memory)
                                    {
                                        if (tickSpacing == FULL_RANGE_ONLY_TICK_SPACING) return poolFeesPerLiquidity[poolId];
                                        int32 tick = poolState[poolId].tick;
                                        mapping(int32 => FeesPerLiquidity) storage poolIdEntry = poolTickFeesPerLiquidityOutside[poolId];
                                        FeesPerLiquidity memory lower = poolIdEntry[bounds.lower];
                                        FeesPerLiquidity memory upper = poolIdEntry[bounds.upper];
                                        if (tick < bounds.lower) {
                                            return lower.sub(upper);
                                        } else if (tick < bounds.upper) {
                                            FeesPerLiquidity memory fees = poolFeesPerLiquidity[poolId];
                                            return fees.sub(lower).sub(upper);
                                        } else {
                                            return upper.sub(lower);
                                        }
                                    }
                                    function getPoolFeesPerLiquidityInside(PoolKey memory poolKey, Bounds memory bounds)
                                        external
                                        view
                                        returns (FeesPerLiquidity memory)
                                    {
                                        return _getPoolFeesPerLiquidityInside(poolKey.toPoolId(), bounds, poolKey.tickSpacing());
                                    }
                                    // Accumulates tokens to fees of a pool. Only callable by the extension of the specified pool
                                    // key, i.e. the current locker _must_ be the extension.
                                    // The extension must call this function within a lock callback.
                                    function accumulateAsFees(PoolKey memory poolKey, uint128 amount0, uint128 amount1) external payable {
                                        (uint256 id, address locker) = _requireLocker();
                                        require(locker == poolKey.extension());
                                        bytes32 poolId = poolKey.toPoolId();
                                        // Note we do not check pool is initialized. If the extension calls this for a pool that does not exist,
                                        //  the fees are simply burned since liquidity is 0.
                                        assembly ("memory-safe") {
                                            if or(amount0, amount1) {
                                                mstore(0, poolId)
                                                mstore(32, 2)
                                                let liquidity := shr(128, sload(keccak256(0, 64)))
                                                if liquidity {
                                                    mstore(32, 3)
                                                    let slot0 := keccak256(0, 64)
                                                    if amount0 {
                                                        let v := div(shl(128, amount0), liquidity)
                                                        sstore(slot0, add(sload(slot0), v))
                                                    }
                                                    if amount1 {
                                                        let slot1 := add(slot0, 1)
                                                        let v := div(shl(128, amount1), liquidity)
                                                        sstore(slot1, add(sload(slot1), v))
                                                    }
                                                }
                                            }
                                        }
                                        // whether the fees are actually accounted to any position, the caller owes the debt
                                        _maybeAccountDebtToken0(id, poolKey.token0, int256(uint256(amount0)));
                                        _accountDebt(id, poolKey.token1, int256(uint256(amount1)));
                                        emit FeesAccumulated(poolId, amount0, amount1);
                                    }
                                    function _updateTick(bytes32 poolId, int32 tick, uint32 tickSpacing, int128 liquidityDelta, bool isUpper) private {
                                        TickInfo storage tickInfo = poolTicks[poolId][tick];
                                        uint128 liquidityNetNext = addLiquidityDelta(tickInfo.liquidityNet, liquidityDelta);
                                        // this is checked math
                                        int128 liquidityDeltaNext =
                                            isUpper ? tickInfo.liquidityDelta - liquidityDelta : tickInfo.liquidityDelta + liquidityDelta;
                                        if ((tickInfo.liquidityNet == 0) != (liquidityNetNext == 0)) {
                                            flipTick(poolInitializedTickBitmaps[poolId], tick, tickSpacing);
                                        }
                                        tickInfo.liquidityDelta = liquidityDeltaNext;
                                        tickInfo.liquidityNet = liquidityNetNext;
                                    }
                                    function _maybeAccountDebtToken0(uint256 id, address token0, int256 debtChange) private {
                                        if (msg.value == 0) {
                                            _accountDebt(id, token0, debtChange);
                                        } else {
                                            if (msg.value > type(uint128).max) revert PaymentOverflow();
                                            if (token0 == NATIVE_TOKEN_ADDRESS) {
                                                unchecked {
                                                    _accountDebt(id, NATIVE_TOKEN_ADDRESS, debtChange - int256(msg.value));
                                                }
                                            } else {
                                                unchecked {
                                                    _accountDebt(id, token0, debtChange);
                                                    _accountDebt(id, NATIVE_TOKEN_ADDRESS, -int256(msg.value));
                                                }
                                            }
                                        }
                                    }
                                    function updatePosition(PoolKey memory poolKey, UpdatePositionParameters memory params)
                                        external
                                        payable
                                        returns (int128 delta0, int128 delta1)
                                    {
                                        (uint256 id, address locker) = _requireLocker();
                                        address extension = poolKey.extension();
                                        if (shouldCallBeforeUpdatePosition(extension) && locker != extension) {
                                            IExtension(extension).beforeUpdatePosition(locker, poolKey, params);
                                        }
                                        params.bounds.validateBounds(poolKey.tickSpacing());
                                        if (params.liquidityDelta != 0) {
                                            bytes32 poolId = poolKey.toPoolId();
                                            PoolState memory price = poolState[poolId];
                                            if (SqrtRatio.unwrap(price.sqrtRatio) == 0) revert PoolNotInitialized();
                                            (SqrtRatio sqrtRatioLower, SqrtRatio sqrtRatioUpper) =
                                                (tickToSqrtRatio(params.bounds.lower), tickToSqrtRatio(params.bounds.upper));
                                            (delta0, delta1) =
                                                liquidityDeltaToAmountDelta(price.sqrtRatio, params.liquidityDelta, sqrtRatioLower, sqrtRatioUpper);
                                            PositionKey memory positionKey = PositionKey({salt: params.salt, owner: locker, bounds: params.bounds});
                                            if (params.liquidityDelta < 0) {
                                                if (poolKey.fee() != 0) {
                                                    unchecked {
                                                        // uint128(-delta0) is ok in unchecked block
                                                        uint128 protocolFees0 = computeFee(uint128(-delta0), poolKey.fee());
                                                        uint128 protocolFees1 = computeFee(uint128(-delta1), poolKey.fee());
                                                        if (protocolFees0 > 0) {
                                                            // this will never overflow for a well behaved token since protocol fees are stored as uint256
                                                            protocolFeesCollected[poolKey.token0] += protocolFees0;
                                                            // magnitude of protocolFees0 is at most equal to -delta0, so after addition delta0 will maximally reach 0 and no overflow/underflow check is needed
                                                            // in addition, casting is safe because computed fee is never g.t. the input amount, which is an int128
                                                            delta0 += int128(protocolFees0);
                                                        }
                                                        // same reasoning applies for the unchecked safety here
                                                        if (protocolFees1 > 0) {
                                                            protocolFeesCollected[poolKey.token1] += protocolFees1;
                                                            delta1 += int128(protocolFees1);
                                                        }
                                                    }
                                                }
                                            }
                                            bytes32 positionId = positionKey.toPositionId();
                                            Position storage position = poolPositions[poolId][positionId];
                                            FeesPerLiquidity memory feesPerLiquidityInside =
                                                _getPoolFeesPerLiquidityInside(poolId, params.bounds, poolKey.tickSpacing());
                                            (uint128 fees0, uint128 fees1) = position.fees(feesPerLiquidityInside);
                                            uint128 liquidityNext = addLiquidityDelta(position.liquidity, params.liquidityDelta);
                                            if (liquidityNext != 0) {
                                                position.liquidity = liquidityNext;
                                                position.feesPerLiquidityInsideLast =
                                                    feesPerLiquidityInside.sub(feesPerLiquidityFromAmounts(fees0, fees1, liquidityNext));
                                            } else {
                                                if (fees0 != 0 || fees1 != 0) revert MustCollectFeesBeforeWithdrawingAllLiquidity();
                                                position.liquidity = 0;
                                                position.feesPerLiquidityInsideLast = FeesPerLiquidity(0, 0);
                                            }
                                            if (!poolKey.isFullRange()) {
                                                _updateTick(poolId, params.bounds.lower, poolKey.tickSpacing(), params.liquidityDelta, false);
                                                _updateTick(poolId, params.bounds.upper, poolKey.tickSpacing(), params.liquidityDelta, true);
                                                if (price.tick >= params.bounds.lower && price.tick < params.bounds.upper) {
                                                    poolState[poolId].liquidity = addLiquidityDelta(poolState[poolId].liquidity, params.liquidityDelta);
                                                }
                                            } else {
                                                poolState[poolId].liquidity = addLiquidityDelta(poolState[poolId].liquidity, params.liquidityDelta);
                                            }
                                            _maybeAccountDebtToken0(id, poolKey.token0, delta0);
                                            _accountDebt(id, poolKey.token1, delta1);
                                            emit PositionUpdated(locker, poolId, params, delta0, delta1);
                                        }
                                        if (shouldCallAfterUpdatePosition(extension) && locker != extension) {
                                            IExtension(extension).afterUpdatePosition(locker, poolKey, params, delta0, delta1);
                                        }
                                    }
                                    function collectFees(PoolKey memory poolKey, bytes32 salt, Bounds memory bounds)
                                        external
                                        returns (uint128 amount0, uint128 amount1)
                                    {
                                        (uint256 id, address locker) = _requireLocker();
                                        address extension = poolKey.extension();
                                        if (shouldCallBeforeCollectFees(extension) && locker != extension) {
                                            IExtension(extension).beforeCollectFees(locker, poolKey, salt, bounds);
                                        }
                                        bytes32 poolId = poolKey.toPoolId();
                                        PositionKey memory positionKey = PositionKey({salt: salt, owner: locker, bounds: bounds});
                                        bytes32 positionId = positionKey.toPositionId();
                                        Position memory position = poolPositions[poolId][positionId];
                                        FeesPerLiquidity memory feesPerLiquidityInside =
                                            _getPoolFeesPerLiquidityInside(poolId, bounds, poolKey.tickSpacing());
                                        (amount0, amount1) = position.fees(feesPerLiquidityInside);
                                        poolPositions[poolId][positionId] =
                                            Position({liquidity: position.liquidity, feesPerLiquidityInsideLast: feesPerLiquidityInside});
                                        _accountDebt(id, poolKey.token0, -int256(uint256(amount0)));
                                        _accountDebt(id, poolKey.token1, -int256(uint256(amount1)));
                                        emit PositionFeesCollected(poolId, positionKey, amount0, amount1);
                                        if (shouldCallAfterCollectFees(extension) && locker != extension) {
                                            IExtension(extension).afterCollectFees(locker, poolKey, salt, bounds, amount0, amount1);
                                        }
                                    }
                                    function swap_611415377(
                                        PoolKey memory poolKey,
                                        int128 amount,
                                        bool isToken1,
                                        SqrtRatio sqrtRatioLimit,
                                        uint256 skipAhead
                                    ) external payable returns (int128 delta0, int128 delta1) {
                                        if (!sqrtRatioLimit.isValid()) revert InvalidSqrtRatioLimit();
                                        (uint256 id, address locker) = _requireLocker();
                                        address extension = poolKey.extension();
                                        if (shouldCallBeforeSwap(extension) && locker != extension) {
                                            IExtension(extension).beforeSwap(locker, poolKey, amount, isToken1, sqrtRatioLimit, skipAhead);
                                        }
                                        bytes32 poolId = poolKey.toPoolId();
                                        SqrtRatio sqrtRatio;
                                        int32 tick;
                                        uint128 liquidity;
                                        {
                                            PoolState storage state = poolState[poolId];
                                            (sqrtRatio, tick, liquidity) = (state.sqrtRatio, state.tick, state.liquidity);
                                        }
                                        if (sqrtRatio.isZero()) revert PoolNotInitialized();
                                        // 0 swap amount is no-op
                                        if (amount != 0) {
                                            bool increasing = isPriceIncreasing(amount, isToken1);
                                            if (increasing) {
                                                if (sqrtRatioLimit < sqrtRatio) revert SqrtRatioLimitWrongDirection();
                                            } else {
                                                if (sqrtRatioLimit > sqrtRatio) revert SqrtRatioLimitWrongDirection();
                                            }
                                            int128 amountRemaining = amount;
                                            uint128 calculatedAmount = 0;
                                            // the slot where inputTokenFeesPerLiquidity is stored, reused later
                                            bytes32 inputTokenFeesPerLiquiditySlot;
                                            // fees per liquidity only for the input token
                                            uint256 inputTokenFeesPerLiquidity;
                                            // this loads only the input token fees per liquidity
                                            if (poolKey.mustLoadFees()) {
                                                assembly ("memory-safe") {
                                                    mstore(0, poolId)
                                                    mstore(32, 3)
                                                    inputTokenFeesPerLiquiditySlot := add(keccak256(0, 64), increasing)
                                                    inputTokenFeesPerLiquidity := sload(inputTokenFeesPerLiquiditySlot)
                                                }
                                            }
                                            while (amountRemaining != 0 && sqrtRatio != sqrtRatioLimit) {
                                                int32 nextTick;
                                                bool isInitialized;
                                                SqrtRatio nextTickSqrtRatio;
                                                SwapResult memory result;
                                                if (poolKey.tickSpacing() != FULL_RANGE_ONLY_TICK_SPACING) {
                                                    (nextTick, isInitialized) = increasing
                                                        ? poolInitializedTickBitmaps[poolId].findNextInitializedTick(tick, poolKey.tickSpacing(), skipAhead)
                                                        : poolInitializedTickBitmaps[poolId].findPrevInitializedTick(tick, poolKey.tickSpacing(), skipAhead);
                                                    nextTickSqrtRatio = tickToSqrtRatio(nextTick);
                                                } else {
                                                    // we never cross ticks in the full range version
                                                    // isInitialized = false;
                                                    (nextTick, nextTickSqrtRatio) = increasing ? (MAX_TICK, MAX_SQRT_RATIO) : (MIN_TICK, MIN_SQRT_RATIO);
                                                }
                                                SqrtRatio limitedNextSqrtRatio =
                                                    increasing ? nextTickSqrtRatio.min(sqrtRatioLimit) : nextTickSqrtRatio.max(sqrtRatioLimit);
                                                result =
                                                    swapResult(sqrtRatio, liquidity, limitedNextSqrtRatio, amountRemaining, isToken1, poolKey.fee());
                                                // this accounts the fees into the feesPerLiquidity memory struct
                                                assembly ("memory-safe") {
                                                    // div by 0 returns 0, so it's ok
                                                    let v := div(shl(128, mload(add(result, 96))), liquidity)
                                                    inputTokenFeesPerLiquidity := add(inputTokenFeesPerLiquidity, v)
                                                }
                                                amountRemaining -= result.consumedAmount;
                                                calculatedAmount += result.calculatedAmount;
                                                if (result.sqrtRatioNext == nextTickSqrtRatio) {
                                                    sqrtRatio = result.sqrtRatioNext;
                                                    tick = increasing ? nextTick : nextTick - 1;
                                                    if (isInitialized) {
                                                        int128 liquidityDelta = poolTicks[poolId][nextTick].liquidityDelta;
                                                        liquidity = increasing
                                                            ? addLiquidityDelta(liquidity, liquidityDelta)
                                                            : subLiquidityDelta(liquidity, liquidityDelta);
                                                        FeesPerLiquidity memory tickFpl = poolTickFeesPerLiquidityOutside[poolId][nextTick];
                                                        FeesPerLiquidity memory totalFpl;
                                                        // load only the slot we didn't load before into totalFpl
                                                        assembly ("memory-safe") {
                                                            mstore(add(totalFpl, mul(32, increasing)), inputTokenFeesPerLiquidity)
                                                            let outputTokenFeesPerLiquidity :=
                                                                sload(add(sub(inputTokenFeesPerLiquiditySlot, increasing), iszero(increasing)))
                                                            mstore(add(totalFpl, mul(32, iszero(increasing))), outputTokenFeesPerLiquidity)
                                                        }
                                                        poolTickFeesPerLiquidityOutside[poolId][nextTick] = totalFpl.sub(tickFpl);
                                                    }
                                                } else if (sqrtRatio != result.sqrtRatioNext) {
                                                    sqrtRatio = result.sqrtRatioNext;
                                                    tick = sqrtRatioToTick(sqrtRatio);
                                                }
                                            }
                                            unchecked {
                                                int256 calculatedAmountSign = int256(FixedPointMathLib.ternary(amount < 0, 1, type(uint256).max));
                                                int128 calculatedAmountDelta = SafeCastLib.toInt128(
                                                    FixedPointMathLib.max(type(int128).min, calculatedAmountSign * int256(uint256(calculatedAmount)))
                                                );
                                                (delta0, delta1) = isToken1
                                                    ? (calculatedAmountDelta, amount - amountRemaining)
                                                    : (amount - amountRemaining, calculatedAmountDelta);
                                            }
                                            assembly ("memory-safe") {
                                                mstore(0, poolId)
                                                mstore(32, 2)
                                                sstore(keccak256(0, 64), add(add(sqrtRatio, shl(96, and(tick, 0xffffffff))), shl(128, liquidity)))
                                            }
                                            if (poolKey.mustLoadFees()) {
                                                assembly ("memory-safe") {
                                                    // this stores only the input token fees per liquidity
                                                    sstore(inputTokenFeesPerLiquiditySlot, inputTokenFeesPerLiquidity)
                                                }
                                            }
                                            _maybeAccountDebtToken0(id, poolKey.token0, delta0);
                                            _accountDebt(id, poolKey.token1, delta1);
                                            assembly ("memory-safe") {
                                                let o := mload(0x40)
                                                mstore(o, shl(96, locker))
                                                mstore(add(o, 20), poolId)
                                                mstore(add(o, 52), or(shl(128, delta0), and(delta1, 0xffffffffffffffffffffffffffffffff)))
                                                mstore(add(o, 84), shl(128, liquidity))
                                                mstore(add(o, 100), shl(160, sqrtRatio))
                                                mstore(add(o, 112), shl(224, tick))
                                                log0(o, 116)
                                            }
                                        }
                                        if (shouldCallAfterSwap(extension) && locker != extension) {
                                            IExtension(extension).afterSwap(
                                                locker, poolKey, amount, isToken1, sqrtRatioLimit, skipAhead, delta0, delta1
                                            );
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                struct CallPoints {
                                    bool beforeInitializePool;
                                    bool afterInitializePool;
                                    bool beforeSwap;
                                    bool afterSwap;
                                    bool beforeUpdatePosition;
                                    bool afterUpdatePosition;
                                    bool beforeCollectFees;
                                    bool afterCollectFees;
                                }
                                using {eq, isValid, toUint8} for CallPoints global;
                                function eq(CallPoints memory a, CallPoints memory b) pure returns (bool) {
                                    return (
                                        a.beforeInitializePool == b.beforeInitializePool && a.afterInitializePool == b.afterInitializePool
                                            && a.beforeSwap == b.beforeSwap && a.afterSwap == b.afterSwap
                                            && a.beforeUpdatePosition == b.beforeUpdatePosition && a.afterUpdatePosition == b.afterUpdatePosition
                                            && a.beforeCollectFees == b.beforeCollectFees && a.afterCollectFees == b.afterCollectFees
                                    );
                                }
                                function isValid(CallPoints memory a) pure returns (bool) {
                                    return (
                                        a.beforeInitializePool || a.afterInitializePool || a.beforeSwap || a.afterSwap || a.beforeUpdatePosition
                                            || a.afterUpdatePosition || a.beforeCollectFees || a.afterCollectFees
                                    );
                                }
                                function toUint8(CallPoints memory callPoints) pure returns (uint8 b) {
                                    assembly ("memory-safe") {
                                        b :=
                                            add(
                                                add(
                                                    add(
                                                        add(
                                                            add(
                                                                add(
                                                                    add(mload(callPoints), mul(128, mload(add(callPoints, 32)))),
                                                                    mul(64, mload(add(callPoints, 64)))
                                                                ),
                                                                mul(32, mload(add(callPoints, 96)))
                                                            ),
                                                            mul(16, mload(add(callPoints, 128)))
                                                        ),
                                                        mul(8, mload(add(callPoints, 160)))
                                                    ),
                                                    mul(4, mload(add(callPoints, 192)))
                                                ),
                                                mul(2, mload(add(callPoints, 224)))
                                            )
                                    }
                                }
                                function addressToCallPoints(address a) pure returns (CallPoints memory result) {
                                    result = byteToCallPoints(uint8(uint160(a) >> 152));
                                }
                                function byteToCallPoints(uint8 b) pure returns (CallPoints memory result) {
                                    // note the order of bytes does not match the struct order of elements because we are matching the cairo implementation
                                    // which for legacy reasons has the fields in this order
                                    result = CallPoints({
                                        beforeInitializePool: (b & 1) != 0,
                                        afterInitializePool: (b & 128) != 0,
                                        beforeSwap: (b & 64) != 0,
                                        afterSwap: (b & 32) != 0,
                                        beforeUpdatePosition: (b & 16) != 0,
                                        afterUpdatePosition: (b & 8) != 0,
                                        beforeCollectFees: (b & 4) != 0,
                                        afterCollectFees: (b & 2) != 0
                                    });
                                }
                                function shouldCallBeforeInitializePool(address a) pure returns (bool yes) {
                                    assembly ("memory-safe") {
                                        yes := and(shr(152, a), 1)
                                    }
                                }
                                function shouldCallAfterInitializePool(address a) pure returns (bool yes) {
                                    assembly ("memory-safe") {
                                        yes := and(shr(159, a), 1)
                                    }
                                }
                                function shouldCallBeforeSwap(address a) pure returns (bool yes) {
                                    assembly ("memory-safe") {
                                        yes := and(shr(158, a), 1)
                                    }
                                }
                                function shouldCallAfterSwap(address a) pure returns (bool yes) {
                                    assembly ("memory-safe") {
                                        yes := and(shr(157, a), 1)
                                    }
                                }
                                function shouldCallBeforeUpdatePosition(address a) pure returns (bool yes) {
                                    assembly ("memory-safe") {
                                        yes := and(shr(156, a), 1)
                                    }
                                }
                                function shouldCallAfterUpdatePosition(address a) pure returns (bool yes) {
                                    assembly ("memory-safe") {
                                        yes := and(shr(155, a), 1)
                                    }
                                }
                                function shouldCallBeforeCollectFees(address a) pure returns (bool yes) {
                                    assembly ("memory-safe") {
                                        yes := and(shr(154, a), 1)
                                    }
                                }
                                function shouldCallAfterCollectFees(address a) pure returns (bool yes) {
                                    assembly ("memory-safe") {
                                        yes := and(shr(153, a), 1)
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {MAX_TICK_SPACING, FULL_RANGE_ONLY_TICK_SPACING} from "../math/constants.sol";
                                using {toPoolId, validatePoolKey, isFullRange, mustLoadFees, tickSpacing, fee, extension} for PoolKey global;
                                // address (20 bytes) | fee (8 bytes) | tickSpacing (4 bytes)
                                type Config is bytes32;
                                function tickSpacing(PoolKey memory pk) pure returns (uint32 r) {
                                    assembly ("memory-safe") {
                                        r := and(mload(add(64, pk)), 0xffffffff)
                                    }
                                }
                                function fee(PoolKey memory pk) pure returns (uint64 r) {
                                    assembly ("memory-safe") {
                                        r := and(mload(add(60, pk)), 0xffffffffffffffff)
                                    }
                                }
                                function extension(PoolKey memory pk) pure returns (address r) {
                                    assembly ("memory-safe") {
                                        r := and(mload(add(52, pk)), 0xffffffffffffffffffffffffffffffffffffffff)
                                    }
                                }
                                function mustLoadFees(PoolKey memory pk) pure returns (bool r) {
                                    assembly ("memory-safe") {
                                        // only if either of tick spacing and fee are nonzero
                                        // if _both_ are zero, then we know we do not need to load fees for swaps
                                        r := iszero(iszero(and(mload(add(64, pk)), 0xffffffffffffffffffffffff)))
                                    }
                                }
                                function isFullRange(PoolKey memory pk) pure returns (bool r) {
                                    r = pk.tickSpacing() == FULL_RANGE_ONLY_TICK_SPACING;
                                }
                                function toConfig(uint64 _fee, uint32 _tickSpacing, address _extension) pure returns (Config c) {
                                    assembly ("memory-safe") {
                                        c := add(add(shl(96, _extension), shl(32, _fee)), _tickSpacing)
                                    }
                                }
                                // Each pool has its own state associated with this key
                                struct PoolKey {
                                    address token0;
                                    address token1;
                                    Config config;
                                }
                                error TokensMustBeSorted();
                                error InvalidTickSpacing();
                                function validatePoolKey(PoolKey memory key) pure {
                                    if (key.token0 >= key.token1) revert TokensMustBeSorted();
                                    if (key.tickSpacing() > MAX_TICK_SPACING) {
                                        revert InvalidTickSpacing();
                                    }
                                }
                                function toPoolId(PoolKey memory key) pure returns (bytes32 result) {
                                    assembly ("memory-safe") {
                                        // it's already copied into memory
                                        result := keccak256(key, 96)
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {MIN_TICK, MAX_TICK, FULL_RANGE_ONLY_TICK_SPACING} from "../math/constants.sol";
                                using {toPositionId} for PositionKey global;
                                using {validateBounds} for Bounds global;
                                // Bounds are lower and upper prices for which a position is active
                                struct Bounds {
                                    int32 lower;
                                    int32 upper;
                                }
                                error BoundsOrder();
                                error MinMaxBounds();
                                error BoundsTickSpacing();
                                error FullRangeOnlyPool();
                                function validateBounds(Bounds memory bounds, uint32 tickSpacing) pure {
                                    if (tickSpacing == FULL_RANGE_ONLY_TICK_SPACING) {
                                        if (bounds.lower != MIN_TICK || bounds.upper != MAX_TICK) revert FullRangeOnlyPool();
                                    } else {
                                        if (bounds.lower >= bounds.upper) revert BoundsOrder();
                                        if (bounds.lower < MIN_TICK || bounds.upper > MAX_TICK) revert MinMaxBounds();
                                        int32 spacing = int32(tickSpacing);
                                        if (bounds.lower % spacing != 0 || bounds.upper % spacing != 0) revert BoundsTickSpacing();
                                    }
                                }
                                // A position is keyed by the pool and this position key
                                struct PositionKey {
                                    bytes32 salt;
                                    address owner;
                                    Bounds bounds;
                                }
                                function toPositionId(PositionKey memory key) pure returns (bytes32 result) {
                                    assembly ("memory-safe") {
                                        // salt and owner
                                        mstore(0, keccak256(key, 64))
                                        // bounds
                                        mstore(32, keccak256(mload(add(key, 64)), 64))
                                        result := keccak256(0, 64)
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                // The total fees per liquidity for each token.
                                // Since these are always read together we put them in a struct, even though they cannot be packed.
                                struct FeesPerLiquidity {
                                    uint256 value0;
                                    uint256 value1;
                                }
                                using {sub} for FeesPerLiquidity global;
                                function sub(FeesPerLiquidity memory a, FeesPerLiquidity memory b) pure returns (FeesPerLiquidity memory result) {
                                    assembly ("memory-safe") {
                                        mstore(result, sub(mload(a), mload(b)))
                                        mstore(add(result, 32), sub(mload(add(a, 32)), mload(add(b, 32))))
                                    }
                                }
                                function feesPerLiquidityFromAmounts(uint128 amount0, uint128 amount1, uint128 liquidity)
                                    pure
                                    returns (FeesPerLiquidity memory result)
                                {
                                    assembly ("memory-safe") {
                                        mstore(result, div(shl(128, amount0), liquidity))
                                        mstore(add(result, 32), div(shl(128, amount1), liquidity))
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                import {computeFee, amountBeforeFee} from "./fee.sol";
                                import {nextSqrtRatioFromAmount0, nextSqrtRatioFromAmount1} from "./sqrtRatio.sol";
                                import {amount0Delta, amount1Delta} from "./delta.sol";
                                import {SafeCastLib} from "solady/utils/SafeCastLib.sol";
                                import {isPriceIncreasing} from "./isPriceIncreasing.sol";
                                import {SqrtRatio} from "../types/sqrtRatio.sol";
                                struct SwapResult {
                                    int128 consumedAmount;
                                    uint128 calculatedAmount;
                                    SqrtRatio sqrtRatioNext;
                                    uint128 feeAmount;
                                }
                                function noOpSwapResult(SqrtRatio sqrtRatioNext) pure returns (SwapResult memory) {
                                    return SwapResult({consumedAmount: 0, calculatedAmount: 0, feeAmount: 0, sqrtRatioNext: sqrtRatioNext});
                                }
                                error SqrtRatioLimitWrongDirection();
                                function swapResult(
                                    SqrtRatio sqrtRatio,
                                    uint128 liquidity,
                                    SqrtRatio sqrtRatioLimit,
                                    int128 amount,
                                    bool isToken1,
                                    uint64 fee
                                ) pure returns (SwapResult memory) {
                                    if (amount == 0 || sqrtRatio == sqrtRatioLimit) {
                                        return noOpSwapResult(sqrtRatio);
                                    }
                                    bool increasing = isPriceIncreasing(amount, isToken1);
                                    // We know sqrtRatio != sqrtRatioLimit because we early return above if it is
                                    if ((sqrtRatioLimit > sqrtRatio) != increasing) revert SqrtRatioLimitWrongDirection();
                                    if (liquidity == 0) {
                                        // if the pool is empty, the swap will always move all the way to the limit price
                                        return noOpSwapResult(sqrtRatioLimit);
                                    }
                                    bool isExactOut = amount < 0;
                                    // this amount is what moves the price
                                    int128 priceImpactAmount;
                                    if (isExactOut) {
                                        priceImpactAmount = amount;
                                    } else {
                                        unchecked {
                                            // cast is safe because amount is g.t.e. 0
                                            // then cast back to int128 is also safe because computeFee never returns a value g.t. the input amount
                                            priceImpactAmount = amount - int128(computeFee(uint128(amount), fee));
                                        }
                                    }
                                    SqrtRatio sqrtRatioNextFromAmount;
                                    if (isToken1) {
                                        sqrtRatioNextFromAmount = nextSqrtRatioFromAmount1(sqrtRatio, liquidity, priceImpactAmount);
                                    } else {
                                        sqrtRatioNextFromAmount = nextSqrtRatioFromAmount0(sqrtRatio, liquidity, priceImpactAmount);
                                    }
                                    int128 consumedAmount;
                                    uint128 calculatedAmount;
                                    uint128 feeAmount;
                                    // the amount requires a swapping past the sqrt ratio limit,
                                    // so we need to compute the result of swapping only to the limit
                                    if (
                                        (increasing && sqrtRatioNextFromAmount > sqrtRatioLimit)
                                            || (!increasing && sqrtRatioNextFromAmount < sqrtRatioLimit)
                                    ) {
                                        uint128 specifiedAmountDelta;
                                        uint128 calculatedAmountDelta;
                                        if (isToken1) {
                                            specifiedAmountDelta = amount1Delta(sqrtRatioLimit, sqrtRatio, liquidity, !isExactOut);
                                            calculatedAmountDelta = amount0Delta(sqrtRatioLimit, sqrtRatio, liquidity, isExactOut);
                                        } else {
                                            specifiedAmountDelta = amount0Delta(sqrtRatioLimit, sqrtRatio, liquidity, !isExactOut);
                                            calculatedAmountDelta = amount1Delta(sqrtRatioLimit, sqrtRatio, liquidity, isExactOut);
                                        }
                                        if (isExactOut) {
                                            uint128 beforeFee = amountBeforeFee(calculatedAmountDelta, fee);
                                            consumedAmount = -SafeCastLib.toInt128(specifiedAmountDelta);
                                            calculatedAmount = beforeFee;
                                            feeAmount = beforeFee - calculatedAmountDelta;
                                        } else {
                                            uint128 beforeFee = amountBeforeFee(specifiedAmountDelta, fee);
                                            consumedAmount = SafeCastLib.toInt128(beforeFee);
                                            calculatedAmount = calculatedAmountDelta;
                                            feeAmount = beforeFee - specifiedAmountDelta;
                                        }
                                        return SwapResult({
                                            consumedAmount: consumedAmount,
                                            calculatedAmount: calculatedAmount,
                                            sqrtRatioNext: sqrtRatioLimit,
                                            feeAmount: feeAmount
                                        });
                                    }
                                    if (sqrtRatioNextFromAmount == sqrtRatio) {
                                        assert(!isExactOut);
                                        return SwapResult({
                                            consumedAmount: amount,
                                            calculatedAmount: 0,
                                            sqrtRatioNext: sqrtRatio,
                                            feeAmount: uint128(amount)
                                        });
                                    }
                                    // rounds down for calculated == output, up for calculated == input
                                    uint128 calculatedAmountWithoutFee;
                                    if (isToken1) {
                                        calculatedAmountWithoutFee = amount0Delta(sqrtRatioNextFromAmount, sqrtRatio, liquidity, isExactOut);
                                    } else {
                                        calculatedAmountWithoutFee = amount1Delta(sqrtRatioNextFromAmount, sqrtRatio, liquidity, isExactOut);
                                    }
                                    // add on the fee to calculated amount for exact output
                                    if (isExactOut) {
                                        uint128 includingFee = amountBeforeFee(calculatedAmountWithoutFee, fee);
                                        calculatedAmount = includingFee;
                                        feeAmount = includingFee - calculatedAmountWithoutFee;
                                    } else {
                                        calculatedAmount = calculatedAmountWithoutFee;
                                        feeAmount = uint128(amount - priceImpactAmount);
                                    }
                                    return SwapResult({
                                        consumedAmount: amount,
                                        calculatedAmount: calculatedAmount,
                                        sqrtRatioNext: sqrtRatioNextFromAmount,
                                        feeAmount: feeAmount
                                    });
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {FeesPerLiquidity} from "./feesPerLiquidity.sol";
                                import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                struct Position {
                                    uint128 liquidity;
                                    FeesPerLiquidity feesPerLiquidityInsideLast;
                                }
                                using {fees} for Position global;
                                /// @dev Returns the fee amounts of token0 and token1 owed to a position based on the given fees per liquidity inside snapshot
                                ///      Note if the computed fees overflows the uint128 type, it will return only the lower 128 bits. It is assumed that accumulated
                                ///      fees will never exceed type(uint128).max.
                                function fees(Position memory position, FeesPerLiquidity memory feesPerLiquidityInside)
                                    pure
                                    returns (uint128, uint128)
                                {
                                    FeesPerLiquidity memory difference = feesPerLiquidityInside.sub(position.feesPerLiquidityInsideLast);
                                    return (
                                        uint128(FixedPointMathLib.fullMulDivN(difference.value0, position.liquidity, 128)),
                                        uint128(FixedPointMathLib.fullMulDivN(difference.value1, position.liquidity, 128))
                                    );
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity ^0.8.4;
                                /// @notice Simple single owner authorization mixin.
                                /// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
                                ///
                                /// @dev Note:
                                /// This implementation does NOT auto-initialize the owner to `msg.sender`.
                                /// You MUST call the `_initializeOwner` in the constructor / initializer.
                                ///
                                /// While the ownable portion follows
                                /// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
                                /// the nomenclature for the 2-step ownership handover may be unique to this codebase.
                                abstract contract Ownable {
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                       CUSTOM ERRORS                        */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev The caller is not authorized to call the function.
                                    error Unauthorized();
                                    /// @dev The `newOwner` cannot be the zero address.
                                    error NewOwnerIsZeroAddress();
                                    /// @dev The `pendingOwner` does not have a valid handover request.
                                    error NoHandoverRequest();
                                    /// @dev Cannot double-initialize.
                                    error AlreadyInitialized();
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                           EVENTS                           */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev The ownership is transferred from `oldOwner` to `newOwner`.
                                    /// This event is intentionally kept the same as OpenZeppelin's Ownable to be
                                    /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
                                    /// despite it not being as lightweight as a single argument event.
                                    event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);
                                    /// @dev An ownership handover to `pendingOwner` has been requested.
                                    event OwnershipHandoverRequested(address indexed pendingOwner);
                                    /// @dev The ownership handover to `pendingOwner` has been canceled.
                                    event OwnershipHandoverCanceled(address indexed pendingOwner);
                                    /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
                                    uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
                                        0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;
                                    /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
                                    uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
                                        0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;
                                    /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
                                    uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
                                        0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                          STORAGE                           */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev The owner slot is given by:
                                    /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
                                    /// It is intentionally chosen to be a high value
                                    /// to avoid collision with lower slots.
                                    /// The choice of manual storage layout is to enable compatibility
                                    /// with both regular and upgradeable contracts.
                                    bytes32 internal constant _OWNER_SLOT =
                                        0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;
                                    /// The ownership handover slot of `newOwner` is given by:
                                    /// ```
                                    ///     mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
                                    ///     let handoverSlot := keccak256(0x00, 0x20)
                                    /// ```
                                    /// It stores the expiry timestamp of the two-step ownership handover.
                                    uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                     INTERNAL FUNCTIONS                     */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
                                    function _guardInitializeOwner() internal pure virtual returns (bool guard) {}
                                    /// @dev Initializes the owner directly without authorization guard.
                                    /// This function must be called upon initialization,
                                    /// regardless of whether the contract is upgradeable or not.
                                    /// This is to enable generalization to both regular and upgradeable contracts,
                                    /// and to save gas in case the initial owner is not the caller.
                                    /// For performance reasons, this function will not check if there
                                    /// is an existing owner.
                                    function _initializeOwner(address newOwner) internal virtual {
                                        if (_guardInitializeOwner()) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let ownerSlot := _OWNER_SLOT
                                                if sload(ownerSlot) {
                                                    mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                // Clean the upper 96 bits.
                                                newOwner := shr(96, shl(96, newOwner))
                                                // Store the new value.
                                                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                                                // Emit the {OwnershipTransferred} event.
                                                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
                                            }
                                        } else {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Clean the upper 96 bits.
                                                newOwner := shr(96, shl(96, newOwner))
                                                // Store the new value.
                                                sstore(_OWNER_SLOT, newOwner)
                                                // Emit the {OwnershipTransferred} event.
                                                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
                                            }
                                        }
                                    }
                                    /// @dev Sets the owner directly without authorization guard.
                                    function _setOwner(address newOwner) internal virtual {
                                        if (_guardInitializeOwner()) {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let ownerSlot := _OWNER_SLOT
                                                // Clean the upper 96 bits.
                                                newOwner := shr(96, shl(96, newOwner))
                                                // Emit the {OwnershipTransferred} event.
                                                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                                                // Store the new value.
                                                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                                            }
                                        } else {
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                let ownerSlot := _OWNER_SLOT
                                                // Clean the upper 96 bits.
                                                newOwner := shr(96, shl(96, newOwner))
                                                // Emit the {OwnershipTransferred} event.
                                                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                                                // Store the new value.
                                                sstore(ownerSlot, newOwner)
                                            }
                                        }
                                    }
                                    /// @dev Throws if the sender is not the owner.
                                    function _checkOwner() internal view virtual {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // If the caller is not the stored owner, revert.
                                            if iszero(eq(caller(), sload(_OWNER_SLOT))) {
                                                mstore(0x00, 0x82b42900) // `Unauthorized()`.
                                                revert(0x1c, 0x04)
                                            }
                                        }
                                    }
                                    /// @dev Returns how long a two-step ownership handover is valid for in seconds.
                                    /// Override to return a different value if needed.
                                    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
                                    function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
                                        return 48 * 3600;
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                  PUBLIC UPDATE FUNCTIONS                   */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Allows the owner to transfer the ownership to `newOwner`.
                                    function transferOwnership(address newOwner) public payable virtual onlyOwner {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if iszero(shl(96, newOwner)) {
                                                mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
                                                revert(0x1c, 0x04)
                                            }
                                        }
                                        _setOwner(newOwner);
                                    }
                                    /// @dev Allows the owner to renounce their ownership.
                                    function renounceOwnership() public payable virtual onlyOwner {
                                        _setOwner(address(0));
                                    }
                                    /// @dev Request a two-step ownership handover to the caller.
                                    /// The request will automatically expire in 48 hours (172800 seconds) by default.
                                    function requestOwnershipHandover() public payable virtual {
                                        unchecked {
                                            uint256 expires = block.timestamp + _ownershipHandoverValidFor();
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Compute and set the handover slot to `expires`.
                                                mstore(0x0c, _HANDOVER_SLOT_SEED)
                                                mstore(0x00, caller())
                                                sstore(keccak256(0x0c, 0x20), expires)
                                                // Emit the {OwnershipHandoverRequested} event.
                                                log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
                                            }
                                        }
                                    }
                                    /// @dev Cancels the two-step ownership handover to the caller, if any.
                                    function cancelOwnershipHandover() public payable virtual {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Compute and set the handover slot to 0.
                                            mstore(0x0c, _HANDOVER_SLOT_SEED)
                                            mstore(0x00, caller())
                                            sstore(keccak256(0x0c, 0x20), 0)
                                            // Emit the {OwnershipHandoverCanceled} event.
                                            log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
                                        }
                                    }
                                    /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
                                    /// Reverts if there is no existing ownership handover requested by `pendingOwner`.
                                    function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Compute and set the handover slot to 0.
                                            mstore(0x0c, _HANDOVER_SLOT_SEED)
                                            mstore(0x00, pendingOwner)
                                            let handoverSlot := keccak256(0x0c, 0x20)
                                            // If the handover does not exist, or has expired.
                                            if gt(timestamp(), sload(handoverSlot)) {
                                                mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
                                                revert(0x1c, 0x04)
                                            }
                                            // Set the handover slot to 0.
                                            sstore(handoverSlot, 0)
                                        }
                                        _setOwner(pendingOwner);
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                   PUBLIC READ FUNCTIONS                    */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Returns the owner of the contract.
                                    function owner() public view virtual returns (address result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            result := sload(_OWNER_SLOT)
                                        }
                                    }
                                    /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
                                    function ownershipHandoverExpiresAt(address pendingOwner)
                                        public
                                        view
                                        virtual
                                        returns (uint256 result)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Compute the handover slot.
                                            mstore(0x0c, _HANDOVER_SLOT_SEED)
                                            mstore(0x00, pendingOwner)
                                            // Load the handover slot.
                                            result := sload(keccak256(0x0c, 0x20))
                                        }
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                         MODIFIERS                          */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Marks a function as only callable by the owner.
                                    modifier onlyOwner() virtual {
                                        _checkOwner();
                                        _;
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {MAX_TICK_SPACING, MAX_TICK_MAGNITUDE} from "./constants.sol";
                                import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                import {SqrtRatio, toSqrtRatio} from "../types/sqrtRatio.sol";
                                error InvalidTick(int32 tick);
                                // Returns the sqrtRatio corresponding for the tick
                                function tickToSqrtRatio(int32 tick) pure returns (SqrtRatio r) {
                                    unchecked {
                                        uint256 t = FixedPointMathLib.abs(tick);
                                        if (t > MAX_TICK_MAGNITUDE) revert InvalidTick(tick);
                                        uint256 ratio;
                                        assembly ("memory-safe") {
                                            ratio := sub(0x100000000000000000000000000000000, mul(and(t, 0x1), 0x8637b66cd638344daef276cd7c5))
                                        }
                                        if ((t & 0x2) != 0) {
                                            ratio = (ratio * 0xffffef390978c398134b4ff3764fe410) >> 128;
                                        }
                                        if ((t & 0x4) != 0) {
                                            ratio = (ratio * 0xffffde72140b00a354bd3dc828e976c9) >> 128;
                                        }
                                        if ((t & 0x8) != 0) {
                                            ratio = (ratio * 0xffffbce42c7be6c998ad6318193c0b18) >> 128;
                                        }
                                        if ((t & 0x10) != 0) {
                                            ratio = (ratio * 0xffff79c86a8f6150a32d9778eceef97c) >> 128;
                                        }
                                        if ((t & 0x20) != 0) {
                                            ratio = (ratio * 0xfffef3911b7cff24ba1b3dbb5f8f5974) >> 128;
                                        }
                                        if ((t & 0x40) != 0) {
                                            ratio = (ratio * 0xfffde72350725cc4ea8feece3b5f13c8) >> 128;
                                        }
                                        if ((t & 0x80) != 0) {
                                            ratio = (ratio * 0xfffbce4b06c196e9247ac87695d53c60) >> 128;
                                        }
                                        if ((t & 0x100) != 0) {
                                            ratio = (ratio * 0xfff79ca7a4d1bf1ee8556cea23cdbaa5) >> 128;
                                        }
                                        if ((t & 0x200) != 0) {
                                            ratio = (ratio * 0xffef3995a5b6a6267530f207142a5764) >> 128;
                                        }
                                        if ((t & 0x400) != 0) {
                                            ratio = (ratio * 0xffde7444b28145508125d10077ba83b8) >> 128;
                                        }
                                        if ((t & 0x800) != 0) {
                                            ratio = (ratio * 0xffbceceeb791747f10df216f2e53ec57) >> 128;
                                        }
                                        if ((t & 0x1000) != 0) {
                                            ratio = (ratio * 0xff79eb706b9a64c6431d76e63531e929) >> 128;
                                        }
                                        if ((t & 0x2000) != 0) {
                                            ratio = (ratio * 0xfef41d1a5f2ae3a20676bec6f7f9459a) >> 128;
                                        }
                                        if ((t & 0x4000) != 0) {
                                            ratio = (ratio * 0xfde95287d26d81bea159c37073122c73) >> 128;
                                        }
                                        if ((t & 0x8000) != 0) {
                                            ratio = (ratio * 0xfbd701c7cbc4c8a6bb81efd232d1e4e7) >> 128;
                                        }
                                        if ((t & 0x10000) != 0) {
                                            ratio = (ratio * 0xf7bf5211c72f5185f372aeb1d48f937e) >> 128;
                                        }
                                        if ((t & 0x20000) != 0) {
                                            ratio = (ratio * 0xefc2bf59df33ecc28125cf78ec4f167f) >> 128;
                                        }
                                        if ((t & 0x40000) != 0) {
                                            ratio = (ratio * 0xe08d35706200796273f0b3a981d90cfd) >> 128;
                                        }
                                        if ((t & 0x80000) != 0) {
                                            ratio = (ratio * 0xc4f76b68947482dc198a48a54348c4ed) >> 128;
                                        }
                                        if ((t & 0x100000) != 0) {
                                            ratio = (ratio * 0x978bcb9894317807e5fa4498eee7c0fa) >> 128;
                                        }
                                        if ((t & 0x200000) != 0) {
                                            ratio = (ratio * 0x59b63684b86e9f486ec54727371ba6ca) >> 128;
                                        }
                                        if ((t & 0x400000) != 0) {
                                            ratio = (ratio * 0x1f703399d88f6aa83a28b22d4a1f56e3) >> 128;
                                        }
                                        if ((t & 0x800000) != 0) {
                                            ratio = (ratio * 0x3dc5dac7376e20fc8679758d1bcdcfc) >> 128;
                                        }
                                        if ((t & 0x1000000) != 0) {
                                            ratio = (ratio * 0xee7e32d61fdb0a5e622b820f681d0) >> 128;
                                        }
                                        if ((t & 0x2000000) != 0) {
                                            ratio = (ratio * 0xde2ee4bc381afa7089aa84bb66) >> 128;
                                        }
                                        if ((t & 0x4000000) != 0) {
                                            ratio = (ratio * 0xc0d55d4d7152c25fb139) >> 128;
                                        }
                                        if (tick > 0) {
                                            ratio = type(uint256).max / ratio;
                                        }
                                        r = toSqrtRatio(ratio, false);
                                    }
                                }
                                function sqrtRatioToTick(SqrtRatio sqrtRatio) pure returns (int32) {
                                    unchecked {
                                        uint256 sqrtRatioFixed = sqrtRatio.toFixed();
                                        bool negative = (sqrtRatioFixed >> 128) == 0;
                                        uint256 x = negative ? (type(uint256).max / sqrtRatioFixed) : sqrtRatioFixed;
                                        // we know x >> 128 is never zero because we check bounds above and then reciprocate sqrtRatio if the high 128 bits are zero
                                        // so we don't need to handle the exceptional case of log2(0)
                                        uint256 msbHigh = FixedPointMathLib.log2(x >> 128);
                                        x = x >> (msbHigh + 1);
                                        uint256 log2_unsigned = msbHigh * 0x10000000000000000;
                                        assembly ("memory-safe") {
                                            // 63
                                            x := shr(127, mul(x, x))
                                            let is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x8000000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 62
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x4000000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 61
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x2000000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 60
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x1000000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 59
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x800000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 58
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x400000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 57
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x200000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 56
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x100000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 55
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x80000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 54
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x40000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 53
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x20000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 52
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x10000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 51
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x8000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 50
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x4000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 49
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x2000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 48
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x1000000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 47
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x800000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 46
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x400000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 45
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x200000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 44
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x100000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 43
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x80000000000))
                                            x := shr(is_high_nonzero, x)
                                            // 42
                                            x := shr(127, mul(x, x))
                                            is_high_nonzero := eq(iszero(shr(128, x)), 0)
                                            log2_unsigned := add(log2_unsigned, mul(is_high_nonzero, 0x40000000000))
                                        }
                                        // 25572630076711825471857579 == 2**64/(log base 2 of sqrt tick size)
                                        // https://www.wolframalpha.com/input?i=floor%28%281%2F+log+base+2+of+%28sqrt%281.000001%29%29%29*2**64%29
                                        int256 logBaseTickSizeX128 =
                                            (negative ? -int256(log2_unsigned) : int256(log2_unsigned)) * 25572630076711825471857579;
                                        int32 tickLow;
                                        int32 tickHigh;
                                        if (negative) {
                                            tickLow = int32((logBaseTickSizeX128 - 112469616488610087266845472033458199637) >> 128);
                                            tickHigh = int32((logBaseTickSizeX128) >> 128);
                                        } else {
                                            tickLow = int32((logBaseTickSizeX128) >> 128);
                                            tickHigh = int32((logBaseTickSizeX128 + 112469616488610087266845472033458199637) >> 128);
                                        }
                                        if (tickLow == tickHigh) {
                                            return tickLow;
                                        }
                                        if (tickToSqrtRatio(tickHigh) <= sqrtRatio) return tickHigh;
                                        return tickLow;
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {LibBit} from "solady/utils/LibBit.sol";
                                type Bitmap is uint256;
                                using {toggle, isSet, leSetBit, geSetBit} for Bitmap global;
                                function toggle(Bitmap bitmap, uint8 index) pure returns (Bitmap result) {
                                    assembly ("memory-safe") {
                                        result := xor(bitmap, shl(index, 1))
                                    }
                                }
                                function isSet(Bitmap bitmap, uint8 index) pure returns (bool yes) {
                                    assembly ("memory-safe") {
                                        yes := and(shr(index, bitmap), 1)
                                    }
                                }
                                // Returns the index of the most significant bit that is set _and_ less or equally significant to index, or 256 if no such bit exists.
                                function leSetBit(Bitmap bitmap, uint8 index) pure returns (uint256) {
                                    unchecked {
                                        uint256 masked;
                                        assembly ("memory-safe") {
                                            masked := and(bitmap, sub(shl(add(index, 1), 1), 1))
                                        }
                                        return LibBit.fls(masked);
                                    }
                                }
                                // Returns the index of the least significant bit that is set _and_ more or equally significant to index, or 256 if no such bit exists.
                                function geSetBit(Bitmap bitmap, uint8 index) pure returns (uint256) {
                                    unchecked {
                                        uint256 masked;
                                        assembly ("memory-safe") {
                                            masked := and(bitmap, not(sub(shl(index, 1), 1)))
                                        }
                                        return LibBit.ffs(masked);
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity ^0.8.4;
                                /// @notice Arithmetic library with operations for fixed-point numbers.
                                /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
                                /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
                                library FixedPointMathLib {
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                       CUSTOM ERRORS                        */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
                                    error ExpOverflow();
                                    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
                                    error FactorialOverflow();
                                    /// @dev The operation failed, due to an overflow.
                                    error RPowOverflow();
                                    /// @dev The mantissa is too big to fit.
                                    error MantissaOverflow();
                                    /// @dev The operation failed, due to an multiplication overflow.
                                    error MulWadFailed();
                                    /// @dev The operation failed, due to an multiplication overflow.
                                    error SMulWadFailed();
                                    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
                                    error DivWadFailed();
                                    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
                                    error SDivWadFailed();
                                    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
                                    error MulDivFailed();
                                    /// @dev The division failed, as the denominator is zero.
                                    error DivFailed();
                                    /// @dev The full precision multiply-divide operation failed, either due
                                    /// to the result being larger than 256 bits, or a division by a zero.
                                    error FullMulDivFailed();
                                    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
                                    error LnWadUndefined();
                                    /// @dev The input outside the acceptable domain.
                                    error OutOfDomain();
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                         CONSTANTS                          */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev The scalar of ETH and most ERC20s.
                                    uint256 internal constant WAD = 1e18;
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Equivalent to `(x * y) / WAD` rounded down.
                                    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
                                            if gt(x, div(not(0), y)) {
                                                if y {
                                                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                            z := div(mul(x, y), WAD)
                                        }
                                    }
                                    /// @dev Equivalent to `(x * y) / WAD` rounded down.
                                    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := mul(x, y)
                                            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
                                            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                                                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            z := sdiv(z, WAD)
                                        }
                                    }
                                    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
                                    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := div(mul(x, y), WAD)
                                        }
                                    }
                                    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
                                    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := sdiv(mul(x, y), WAD)
                                        }
                                    }
                                    /// @dev Equivalent to `(x * y) / WAD` rounded up.
                                    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := mul(x, y)
                                            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
                                            if iszero(eq(div(z, y), x)) {
                                                if y {
                                                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
                                        }
                                    }
                                    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
                                    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
                                        }
                                    }
                                    /// @dev Equivalent to `(x * WAD) / y` rounded down.
                                    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
                                            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                                                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            z := div(mul(x, WAD), y)
                                        }
                                    }
                                    /// @dev Equivalent to `(x * WAD) / y` rounded down.
                                    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := mul(x, WAD)
                                            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
                                            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                                                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            z := sdiv(z, y)
                                        }
                                    }
                                    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
                                    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := div(mul(x, WAD), y)
                                        }
                                    }
                                    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
                                    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := sdiv(mul(x, WAD), y)
                                        }
                                    }
                                    /// @dev Equivalent to `(x * WAD) / y` rounded up.
                                    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
                                            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                                                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
                                        }
                                    }
                                    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
                                    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
                                        }
                                    }
                                    /// @dev Equivalent to `x` to the power of `y`.
                                    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
                                    /// Note: This function is an approximation.
                                    function powWad(int256 x, int256 y) internal pure returns (int256) {
                                        // Using `ln(x)` means `x` must be greater than 0.
                                        return expWad((lnWad(x) * y) / int256(WAD));
                                    }
                                    /// @dev Returns `exp(x)`, denominated in `WAD`.
                                    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
                                    /// Note: This function is an approximation. Monotonically increasing.
                                    function expWad(int256 x) internal pure returns (int256 r) {
                                        unchecked {
                                            // When the result is less than 0.5 we return zero.
                                            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
                                            if (x <= -41446531673892822313) return r;
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                                                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                                                if iszero(slt(x, 135305999368893231589)) {
                                                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
                                            // for more intermediate precision and a binary basis. This base conversion
                                            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                                            x = (x << 78) / 5 ** 18;
                                            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                                            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                                            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                                            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
                                            x = x - k * 54916777467707473351141471128;
                                            // `k` is in the range `[-61, 195]`.
                                            // Evaluate using a (6, 7)-term rational approximation.
                                            // `p` is made monic, we'll multiply by a scale factor later.
                                            int256 y = x + 1346386616545796478920950773328;
                                            y = ((y * x) >> 96) + 57155421227552351082224309758442;
                                            int256 p = y + x - 94201549194550492254356042504812;
                                            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                                            p = p * x + (4385272521454847904659076985693276 << 96);
                                            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
                                            int256 q = x - 2855989394907223263936484059900;
                                            q = ((q * x) >> 96) + 50020603652535783019961831881945;
                                            q = ((q * x) >> 96) - 533845033583426703283633433725380;
                                            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                                            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                                            q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                // Div in assembly because solidity adds a zero check despite the unchecked.
                                                // The q polynomial won't have zeros in the domain as all its roots are complex.
                                                // No scaling is necessary because p is already `2**96` too large.
                                                r := sdiv(p, q)
                                            }
                                            // r should be in the range `(0.09, 0.25) * 2**96`.
                                            // We now need to multiply r by:
                                            // - The scale factor `s ≈ 6.031367120`.
                                            // - The `2**k` factor from the range reduction.
                                            // - The `1e18 / 2**96` factor for base conversion.
                                            // We do this all at once, with an intermediate result in `2**213`
                                            // basis, so the final right shift is always by a positive amount.
                                            r = int256(
                                                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
                                            );
                                        }
                                    }
                                    /// @dev Returns `ln(x)`, denominated in `WAD`.
                                    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
                                    /// Note: This function is an approximation. Monotonically increasing.
                                    function lnWad(int256 x) internal pure returns (int256 r) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
                                            // We do this by multiplying by `2**96 / 10**18`. But since
                                            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
                                            // and add `ln(2**96 / 10**18)` at the end.
                                            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
                                            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                                            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                                            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                                            r := or(r, shl(4, lt(0xffff, shr(r, x))))
                                            r := or(r, shl(3, lt(0xff, shr(r, x))))
                                            // We place the check here for more optimal stack operations.
                                            if iszero(sgt(x, 0)) {
                                                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                                                revert(0x1c, 0x04)
                                            }
                                            // forgefmt: disable-next-item
                                            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                                                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))
                                            // Reduce range of x to (1, 2) * 2**96
                                            // ln(2^k * x) = k * ln(2) + ln(x)
                                            x := shr(159, shl(r, x))
                                            // Evaluate using a (8, 8)-term rational approximation.
                                            // `p` is made monic, we will multiply by a scale factor later.
                                            // forgefmt: disable-next-item
                                            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                                                sar(96, mul(add(43456485725739037958740375743393,
                                                sar(96, mul(add(24828157081833163892658089445524,
                                                sar(96, mul(add(3273285459638523848632254066296,
                                                    x), x))), x))), x)), 11111509109440967052023855526967)
                                            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
                                            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
                                            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
                                            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
                                            // `q` is monic by convention.
                                            let q := add(5573035233440673466300451813936, x)
                                            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
                                            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
                                            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
                                            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
                                            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
                                            q := add(909429971244387300277376558375, sar(96, mul(x, q)))
                                            // `p / q` is in the range `(0, 0.125) * 2**96`.
                                            // Finalization, we need to:
                                            // - Multiply by the scale factor `s = 5.549…`.
                                            // - Add `ln(2**96 / 10**18)`.
                                            // - Add `k * ln(2)`.
                                            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.
                                            // The q polynomial is known not to have zeros in the domain.
                                            // No scaling required because p is already `2**96` too large.
                                            p := sdiv(p, q)
                                            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
                                            p := mul(1677202110996718588342820967067443963516166, p)
                                            // Add `ln(2) * k * 5**18 * 2**192`.
                                            // forgefmt: disable-next-item
                                            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
                                            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
                                            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
                                            // Base conversion: mul `2**18 / 2**192`.
                                            r := sar(174, p)
                                        }
                                    }
                                    /// @dev Returns `W_0(x)`, denominated in `WAD`.
                                    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
                                    /// a.k.a. Product log function. This is an approximation of the principal branch.
                                    /// Note: This function is an approximation. Monotonically increasing.
                                    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
                                        // forgefmt: disable-next-item
                                        unchecked {
                                            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
                                            (int256 wad, int256 p) = (int256(WAD), x);
                                            uint256 c; // Whether we need to avoid catastrophic cancellation.
                                            uint256 i = 4; // Number of iterations.
                                            if (w <= 0x1ffffffffffff) {
                                                if (-0x4000000000000 <= w) {
                                                    i = 1; // Inputs near zero only take one step to converge.
                                                } else if (w <= -0x3ffffffffffffff) {
                                                    i = 32; // Inputs near `-1/e` take very long to converge.
                                                }
                                            } else if (uint256(w >> 63) == uint256(0)) {
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    // Inline log2 for more performance, since the range is small.
                                                    let v := shr(49, w)
                                                    let l := shl(3, lt(0xff, v))
                                                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                                                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                                                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                                                    c := gt(l, 60)
                                                    i := add(2, add(gt(l, 53), c))
                                                }
                                            } else {
                                                int256 ll = lnWad(w = lnWad(w));
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                                                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                                                    i := add(3, iszero(shr(68, x)))
                                                    c := iszero(shr(143, x))
                                                }
                                                if (c == uint256(0)) {
                                                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                                                        int256 e = expWad(w);
                                                        /// @solidity memory-safe-assembly
                                                        assembly {
                                                            let t := mul(w, div(e, wad))
                                                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                                                        }
                                                        if (p <= w) break;
                                                        p = w;
                                                    } while (--i != uint256(0));
                                                    /// @solidity memory-safe-assembly
                                                    assembly {
                                                        w := sub(w, sgt(w, 2))
                                                    }
                                                    return w;
                                                }
                                            }
                                            do { // Otherwise, use Halley's for faster convergence.
                                                int256 e = expWad(w);
                                                /// @solidity memory-safe-assembly
                                                assembly {
                                                    let t := add(w, wad)
                                                    let s := sub(mul(w, e), mul(x, wad))
                                                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                                                }
                                                if (p <= w) break;
                                                p = w;
                                            } while (--i != c);
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                w := sub(w, sgt(w, 2))
                                            }
                                            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
                                            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
                                            if (c == uint256(0)) return w;
                                            int256 t = w | 1;
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                x := sdiv(mul(x, wad), t)
                                            }
                                            x = (t * (wad + lnWad(x)));
                                            /// @solidity memory-safe-assembly
                                            assembly {
                                                w := sdiv(x, add(wad, t))
                                            }
                                        }
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                  GENERAL NUMBER UTILITIES                  */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Returns `a * b == x * y`, with full precision.
                                    function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
                                        internal
                                        pure
                                        returns (bool result)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
                                        }
                                    }
                                    /// @dev Calculates `floor(x * y / d)` with full precision.
                                    /// Throws if result overflows a uint256 or when `d` is zero.
                                    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
                                    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // 512-bit multiply `[p1 p0] = x * y`.
                                            // Compute the product mod `2**256` and mod `2**256 - 1`
                                            // then use the Chinese Remainder Theorem to reconstruct
                                            // the 512 bit result. The result is stored in two 256
                                            // variables such that `product = p1 * 2**256 + p0`.
                                            // Temporarily use `z` as `p0` to save gas.
                                            z := mul(x, y) // Lower 256 bits of `x * y`.
                                            for {} 1 {} {
                                                // If overflows.
                                                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                                                    let mm := mulmod(x, y, not(0))
                                                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                                                    /*------------------- 512 by 256 division --------------------*/
                                                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                                                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                                                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                                                    // Make sure `z` is less than `2**256`. Also prevents `d == 0`.
                                                    // Placing the check here seems to give more optimal stack operations.
                                                    if iszero(gt(d, p1)) {
                                                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                                                    // Invert `d mod 2**256`
                                                    // Now that `d` is an odd number, it has an inverse
                                                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                                                    // Compute the inverse by starting with a seed that is correct
                                                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                                                    let inv := xor(2, mul(3, d))
                                                    // Now use Newton-Raphson iteration to improve the precision.
                                                    // Thanks to Hensel's lifting lemma, this also works in modular
                                                    // arithmetic, doubling the correct bits in each step.
                                                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                                                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                                                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                                                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                                                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                                                    z :=
                                                        mul(
                                                            // Divide [p1 p0] by the factors of two.
                                                            // Shift in bits from `p1` into `p0`. For this we need
                                                            // to flip `t` such that it is `2**256 / t`.
                                                            or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                                                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                                                        )
                                                    break
                                                }
                                                z := div(z, d)
                                                break
                                            }
                                        }
                                    }
                                    /// @dev Calculates `floor(x * y / d)` with full precision.
                                    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
                                    /// Performs the full 512 bit calculation regardless.
                                    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
                                        internal
                                        pure
                                        returns (uint256 z)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := mul(x, y)
                                            let mm := mulmod(x, y, not(0))
                                            let p1 := sub(mm, add(z, lt(mm, z)))
                                            let t := and(d, sub(0, d))
                                            let r := mulmod(x, y, d)
                                            d := div(d, t)
                                            let inv := xor(2, mul(3, d))
                                            inv := mul(inv, sub(2, mul(d, inv)))
                                            inv := mul(inv, sub(2, mul(d, inv)))
                                            inv := mul(inv, sub(2, mul(d, inv)))
                                            inv := mul(inv, sub(2, mul(d, inv)))
                                            inv := mul(inv, sub(2, mul(d, inv)))
                                            z :=
                                                mul(
                                                    or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                                                    mul(sub(2, mul(d, inv)), inv)
                                                )
                                        }
                                    }
                                    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
                                    /// Throws if result overflows a uint256 or when `d` is zero.
                                    /// Credit to Uniswap-v3-core under MIT license:
                                    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
                                    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                                        z = fullMulDiv(x, y, d);
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if mulmod(x, y, d) {
                                                z := add(z, 1)
                                                if iszero(z) {
                                                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                        }
                                    }
                                    /// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
                                    /// Throws if result overflows a uint256.
                                    /// Credit to Philogy under MIT license:
                                    /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
                                    function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Temporarily use `z` as `p0` to save gas.
                                            z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
                                            for {} 1 {} {
                                                if iszero(or(iszero(x), eq(div(z, x), y))) {
                                                    let k := and(n, 0xff) // `n`, cleaned.
                                                    let mm := mulmod(x, y, not(0))
                                                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                                                    //         |      p1     |      z     |
                                                    // Before: | p1_0 ¦ p1_1 | z_0  ¦ z_1 |
                                                    // Final:  |   0  ¦ p1_0 | p1_1 ¦ z_0 |
                                                    // Check that final `z` doesn't overflow by checking that p1_0 = 0.
                                                    if iszero(shr(k, p1)) {
                                                        z := add(shl(sub(256, k), p1), shr(k, z))
                                                        break
                                                    }
                                                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                                z := shr(and(n, 0xff), z)
                                                break
                                            }
                                        }
                                    }
                                    /// @dev Returns `floor(x * y / d)`.
                                    /// Reverts if `x * y` overflows, or `d` is zero.
                                    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := mul(x, y)
                                            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
                                            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                                                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            z := div(z, d)
                                        }
                                    }
                                    /// @dev Returns `ceil(x * y / d)`.
                                    /// Reverts if `x * y` overflows, or `d` is zero.
                                    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := mul(x, y)
                                            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
                                            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                                                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            z := add(iszero(iszero(mod(z, d))), div(z, d))
                                        }
                                    }
                                    /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
                                    function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let g := n
                                            let r := mod(a, n)
                                            for { let y := 1 } 1 {} {
                                                let q := div(g, r)
                                                let t := g
                                                g := r
                                                r := sub(t, mul(r, q))
                                                let u := x
                                                x := y
                                                y := sub(u, mul(y, q))
                                                if iszero(r) { break }
                                            }
                                            x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
                                        }
                                    }
                                    /// @dev Returns `ceil(x / d)`.
                                    /// Reverts if `d` is zero.
                                    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if iszero(d) {
                                                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            z := add(iszero(iszero(mod(x, d))), div(x, d))
                                        }
                                    }
                                    /// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`.
                                    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := mul(gt(x, y), sub(x, y))
                                        }
                                    }
                                    /// @dev Returns `max(0, x - y)`.
                                    function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := mul(gt(x, y), sub(x, y))
                                        }
                                    }
                                    /// @dev Returns `min(2 ** 256 - 1, x + y)`.
                                    function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := or(sub(0, lt(add(x, y), x)), add(x, y))
                                        }
                                    }
                                    /// @dev Returns `min(2 ** 256 - 1, x * y)`.
                                    function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y))
                                        }
                                    }
                                    /// @dev Returns `condition ? x : y`, without branching.
                                    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := xor(x, mul(xor(x, y), iszero(condition)))
                                        }
                                    }
                                    /// @dev Returns `condition ? x : y`, without branching.
                                    function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := xor(x, mul(xor(x, y), iszero(condition)))
                                        }
                                    }
                                    /// @dev Returns `condition ? x : y`, without branching.
                                    function ternary(bool condition, address x, address y) internal pure returns (address z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := xor(x, mul(xor(x, y), iszero(condition)))
                                        }
                                    }
                                    /// @dev Returns `x != 0 ? x : y`, without branching.
                                    function coalesce(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := or(x, mul(y, iszero(x)))
                                        }
                                    }
                                    /// @dev Returns `x != bytes32(0) ? x : y`, without branching.
                                    function coalesce(bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := or(x, mul(y, iszero(x)))
                                        }
                                    }
                                    /// @dev Returns `x != address(0) ? x : y`, without branching.
                                    function coalesce(address x, address y) internal pure returns (address z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := or(x, mul(y, iszero(shl(96, x))))
                                        }
                                    }
                                    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
                                    /// Reverts if the computation overflows.
                                    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
                                            if x {
                                                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                                                let half := shr(1, b) // Divide `b` by 2.
                                                // Divide `y` by 2 every iteration.
                                                for { y := shr(1, y) } y { y := shr(1, y) } {
                                                    let xx := mul(x, x) // Store x squared.
                                                    let xxRound := add(xx, half) // Round to the nearest number.
                                                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                                                    if or(lt(xxRound, xx), shr(128, x)) {
                                                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                                        revert(0x1c, 0x04)
                                                    }
                                                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                                                    // If `y` is odd:
                                                    if and(y, 1) {
                                                        let zx := mul(z, x) // Compute `z * x`.
                                                        let zxRound := add(zx, half) // Round to the nearest number.
                                                        // If `z * x` overflowed or `zx + half` overflowed:
                                                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                                                            // Revert if `x` is non-zero.
                                                            if x {
                                                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                                                revert(0x1c, 0x04)
                                                            }
                                                        }
                                                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                                                    }
                                                }
                                            }
                                        }
                                    }
                                    /// @dev Returns the square root of `x`, rounded down.
                                    function sqrt(uint256 x) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
                                            z := 181 // The "correct" value is 1, but this saves a multiplication later.
                                            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                                            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                                            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
                                            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
                                            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
                                            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
                                            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
                                            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
                                            z := shl(shr(1, r), z)
                                            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
                                            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
                                            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
                                            // That's not possible if `x < 256` but we can just verify those cases exhaustively.
                                            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
                                            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
                                            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.
                                            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
                                            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
                                            // with largest error when `s = 1` and when `s = 256` or `1/256`.
                                            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
                                            // Then we can estimate `sqrt(y)` using
                                            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.
                                            // There is no overflow risk here since `y < 2**136` after the first branch above.
                                            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.
                                            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                                            z := shr(1, add(z, div(x, z)))
                                            z := shr(1, add(z, div(x, z)))
                                            z := shr(1, add(z, div(x, z)))
                                            z := shr(1, add(z, div(x, z)))
                                            z := shr(1, add(z, div(x, z)))
                                            z := shr(1, add(z, div(x, z)))
                                            z := shr(1, add(z, div(x, z)))
                                            // If `x+1` is a perfect square, the Babylonian method cycles between
                                            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
                                            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                                            z := sub(z, lt(div(x, z), z))
                                        }
                                    }
                                    /// @dev Returns the cube root of `x`, rounded down.
                                    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
                                    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
                                    /// Formally verified by xuwinnie:
                                    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
                                    function cbrt(uint256 x) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                                            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                                            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                                            r := or(r, shl(4, lt(0xffff, shr(r, x))))
                                            r := or(r, shl(3, lt(0xff, shr(r, x))))
                                            // Makeshift lookup table to nudge the approximate log2 result.
                                            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
                                            // Newton-Raphson's.
                                            z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                            z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                            z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                            z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                            z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                            z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                            z := div(add(add(div(x, mul(z, z)), z), z), 3)
                                            // Round down.
                                            z := sub(z, lt(div(x, mul(z, z)), z))
                                        }
                                    }
                                    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
                                    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
                                        unchecked {
                                            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
                                            z = (1 + sqrt(x)) * 10 ** 9;
                                            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
                                        }
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
                                        }
                                    }
                                    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
                                    /// Formally verified by xuwinnie:
                                    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
                                    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
                                        unchecked {
                                            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
                                            z = (1 + cbrt(x)) * 10 ** 12;
                                            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
                                        }
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let p := x
                                            for {} 1 {} {
                                                if iszero(shr(229, p)) {
                                                    if iszero(shr(199, p)) {
                                                        p := mul(p, 100000000000000000) // 10 ** 17.
                                                        break
                                                    }
                                                    p := mul(p, 100000000) // 10 ** 8.
                                                    break
                                                }
                                                if iszero(shr(249, p)) { p := mul(p, 100) }
                                                break
                                            }
                                            let t := mulmod(mul(z, z), z, p)
                                            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
                                        }
                                    }
                                    /// @dev Returns the factorial of `x`.
                                    function factorial(uint256 x) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := 1
                                            if iszero(lt(x, 58)) {
                                                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                                                revert(0x1c, 0x04)
                                            }
                                            for {} x { x := sub(x, 1) } { z := mul(z, x) }
                                        }
                                    }
                                    /// @dev Returns the log2 of `x`.
                                    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
                                    /// Returns 0 if `x` is zero.
                                    function log2(uint256 x) internal pure returns (uint256 r) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                                            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                                            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                                            r := or(r, shl(4, lt(0xffff, shr(r, x))))
                                            r := or(r, shl(3, lt(0xff, shr(r, x))))
                                            // forgefmt: disable-next-item
                                            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                                                0x0706060506020504060203020504030106050205030304010505030400000000))
                                        }
                                    }
                                    /// @dev Returns the log2 of `x`, rounded up.
                                    /// Returns 0 if `x` is zero.
                                    function log2Up(uint256 x) internal pure returns (uint256 r) {
                                        r = log2(x);
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            r := add(r, lt(shl(r, 1), x))
                                        }
                                    }
                                    /// @dev Returns the log10 of `x`.
                                    /// Returns 0 if `x` is zero.
                                    function log10(uint256 x) internal pure returns (uint256 r) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                                                x := div(x, 100000000000000000000000000000000000000)
                                                r := 38
                                            }
                                            if iszero(lt(x, 100000000000000000000)) {
                                                x := div(x, 100000000000000000000)
                                                r := add(r, 20)
                                            }
                                            if iszero(lt(x, 10000000000)) {
                                                x := div(x, 10000000000)
                                                r := add(r, 10)
                                            }
                                            if iszero(lt(x, 100000)) {
                                                x := div(x, 100000)
                                                r := add(r, 5)
                                            }
                                            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
                                        }
                                    }
                                    /// @dev Returns the log10 of `x`, rounded up.
                                    /// Returns 0 if `x` is zero.
                                    function log10Up(uint256 x) internal pure returns (uint256 r) {
                                        r = log10(x);
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            r := add(r, lt(exp(10, r), x))
                                        }
                                    }
                                    /// @dev Returns the log256 of `x`.
                                    /// Returns 0 if `x` is zero.
                                    function log256(uint256 x) internal pure returns (uint256 r) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                                            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                                            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                                            r := or(r, shl(4, lt(0xffff, shr(r, x))))
                                            r := or(shr(3, r), lt(0xff, shr(r, x)))
                                        }
                                    }
                                    /// @dev Returns the log256 of `x`, rounded up.
                                    /// Returns 0 if `x` is zero.
                                    function log256Up(uint256 x) internal pure returns (uint256 r) {
                                        r = log256(x);
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            r := add(r, lt(shl(shl(3, r), 1), x))
                                        }
                                    }
                                    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
                                    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
                                    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mantissa := x
                                            if mantissa {
                                                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                                                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                                                    exponent := 33
                                                }
                                                if iszero(mod(mantissa, 10000000000000000000)) {
                                                    mantissa := div(mantissa, 10000000000000000000)
                                                    exponent := add(exponent, 19)
                                                }
                                                if iszero(mod(mantissa, 1000000000000)) {
                                                    mantissa := div(mantissa, 1000000000000)
                                                    exponent := add(exponent, 12)
                                                }
                                                if iszero(mod(mantissa, 1000000)) {
                                                    mantissa := div(mantissa, 1000000)
                                                    exponent := add(exponent, 6)
                                                }
                                                if iszero(mod(mantissa, 10000)) {
                                                    mantissa := div(mantissa, 10000)
                                                    exponent := add(exponent, 4)
                                                }
                                                if iszero(mod(mantissa, 100)) {
                                                    mantissa := div(mantissa, 100)
                                                    exponent := add(exponent, 2)
                                                }
                                                if iszero(mod(mantissa, 10)) {
                                                    mantissa := div(mantissa, 10)
                                                    exponent := add(exponent, 1)
                                                }
                                            }
                                        }
                                    }
                                    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
                                    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
                                    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
                                    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
                                    /// enough to fit in the desired unsigned integer type:
                                    /// ```
                                    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
                                    /// ```
                                    function packSci(uint256 x) internal pure returns (uint256 packed) {
                                        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if shr(249, x) {
                                                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                                                revert(0x1c, 0x04)
                                            }
                                            packed := or(shl(7, x), packed)
                                        }
                                    }
                                    /// @dev Convenience function for unpacking a packed number from `packSci`.
                                    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
                                        unchecked {
                                            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
                                        }
                                    }
                                    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
                                    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        unchecked {
                                            z = (x & y) + ((x ^ y) >> 1);
                                        }
                                    }
                                    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
                                    function avg(int256 x, int256 y) internal pure returns (int256 z) {
                                        unchecked {
                                            z = (x >> 1) + (y >> 1) + (x & y & 1);
                                        }
                                    }
                                    /// @dev Returns the absolute value of `x`.
                                    function abs(int256 x) internal pure returns (uint256 z) {
                                        unchecked {
                                            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
                                        }
                                    }
                                    /// @dev Returns the absolute distance between `x` and `y`.
                                    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
                                        }
                                    }
                                    /// @dev Returns the absolute distance between `x` and `y`.
                                    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
                                        }
                                    }
                                    /// @dev Returns the minimum of `x` and `y`.
                                    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := xor(x, mul(xor(x, y), lt(y, x)))
                                        }
                                    }
                                    /// @dev Returns the minimum of `x` and `y`.
                                    function min(int256 x, int256 y) internal pure returns (int256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := xor(x, mul(xor(x, y), slt(y, x)))
                                        }
                                    }
                                    /// @dev Returns the maximum of `x` and `y`.
                                    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := xor(x, mul(xor(x, y), gt(y, x)))
                                        }
                                    }
                                    /// @dev Returns the maximum of `x` and `y`.
                                    function max(int256 x, int256 y) internal pure returns (int256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := xor(x, mul(xor(x, y), sgt(y, x)))
                                        }
                                    }
                                    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
                                    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
                                        internal
                                        pure
                                        returns (uint256 z)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
                                            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
                                        }
                                    }
                                    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
                                    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
                                            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
                                        }
                                    }
                                    /// @dev Returns greatest common divisor of `x` and `y`.
                                    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            for { z := x } y {} {
                                                let t := y
                                                y := mod(z, y)
                                                z := t
                                            }
                                        }
                                    }
                                    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
                                    /// with `t` clamped between `begin` and `end` (inclusive).
                                    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
                                    /// If `begins == end`, returns `t <= begin ? a : b`.
                                    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
                                        internal
                                        pure
                                        returns (uint256)
                                    {
                                        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
                                        if (t <= begin) return a;
                                        if (t >= end) return b;
                                        unchecked {
                                            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
                                            return a - fullMulDiv(a - b, t - begin, end - begin);
                                        }
                                    }
                                    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
                                    /// with `t` clamped between `begin` and `end` (inclusive).
                                    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
                                    /// If `begins == end`, returns `t <= begin ? a : b`.
                                    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
                                        internal
                                        pure
                                        returns (int256)
                                    {
                                        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
                                        if (t <= begin) return a;
                                        if (t >= end) return b;
                                        // forgefmt: disable-next-item
                                        unchecked {
                                            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                                                uint256(t - begin), uint256(end - begin)));
                                            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                                                uint256(t - begin), uint256(end - begin)));
                                        }
                                    }
                                    /// @dev Returns if `x` is an even number. Some people may need this.
                                    function isEven(uint256 x) internal pure returns (bool) {
                                        return x & uint256(1) == uint256(0);
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                   RAW NUMBER OPERATIONS                    */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Returns `x + y`, without checking for overflow.
                                    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        unchecked {
                                            z = x + y;
                                        }
                                    }
                                    /// @dev Returns `x + y`, without checking for overflow.
                                    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
                                        unchecked {
                                            z = x + y;
                                        }
                                    }
                                    /// @dev Returns `x - y`, without checking for underflow.
                                    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        unchecked {
                                            z = x - y;
                                        }
                                    }
                                    /// @dev Returns `x - y`, without checking for underflow.
                                    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
                                        unchecked {
                                            z = x - y;
                                        }
                                    }
                                    /// @dev Returns `x * y`, without checking for overflow.
                                    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        unchecked {
                                            z = x * y;
                                        }
                                    }
                                    /// @dev Returns `x * y`, without checking for overflow.
                                    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
                                        unchecked {
                                            z = x * y;
                                        }
                                    }
                                    /// @dev Returns `x / y`, returning 0 if `y` is zero.
                                    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := div(x, y)
                                        }
                                    }
                                    /// @dev Returns `x / y`, returning 0 if `y` is zero.
                                    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := sdiv(x, y)
                                        }
                                    }
                                    /// @dev Returns `x % y`, returning 0 if `y` is zero.
                                    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := mod(x, y)
                                        }
                                    }
                                    /// @dev Returns `x % y`, returning 0 if `y` is zero.
                                    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := smod(x, y)
                                        }
                                    }
                                    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
                                    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := addmod(x, y, d)
                                        }
                                    }
                                    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
                                    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := mulmod(x, y, d)
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity ^0.8.4;
                                /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
                                /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
                                /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
                                /// @author Permit2 operations from (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol)
                                ///
                                /// @dev Note:
                                /// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
                                library SafeTransferLib {
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                       CUSTOM ERRORS                        */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev The ETH transfer has failed.
                                    error ETHTransferFailed();
                                    /// @dev The ERC20 `transferFrom` has failed.
                                    error TransferFromFailed();
                                    /// @dev The ERC20 `transfer` has failed.
                                    error TransferFailed();
                                    /// @dev The ERC20 `approve` has failed.
                                    error ApproveFailed();
                                    /// @dev The ERC20 `totalSupply` query has failed.
                                    error TotalSupplyQueryFailed();
                                    /// @dev The Permit2 operation has failed.
                                    error Permit2Failed();
                                    /// @dev The Permit2 amount must be less than `2**160 - 1`.
                                    error Permit2AmountOverflow();
                                    /// @dev The Permit2 approve operation has failed.
                                    error Permit2ApproveFailed();
                                    /// @dev The Permit2 lockdown operation has failed.
                                    error Permit2LockdownFailed();
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                         CONSTANTS                          */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
                                    uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;
                                    /// @dev Suggested gas stipend for contract receiving ETH to perform a few
                                    /// storage reads and writes, but low enough to prevent griefing.
                                    uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;
                                    /// @dev The unique EIP-712 domain domain separator for the DAI token contract.
                                    bytes32 internal constant DAI_DOMAIN_SEPARATOR =
                                        0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7;
                                    /// @dev The address for the WETH9 contract on Ethereum mainnet.
                                    address internal constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
                                    /// @dev The canonical Permit2 address.
                                    /// [Github](https://github.com/Uniswap/permit2)
                                    /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
                                    address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                       ETH OPERATIONS                       */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
                                    //
                                    // The regular variants:
                                    // - Forwards all remaining gas to the target.
                                    // - Reverts if the target reverts.
                                    // - Reverts if the current contract has insufficient balance.
                                    //
                                    // The force variants:
                                    // - Forwards with an optional gas stipend
                                    //   (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
                                    // - If the target reverts, or if the gas stipend is exhausted,
                                    //   creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
                                    //   Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
                                    // - Reverts if the current contract has insufficient balance.
                                    //
                                    // The try variants:
                                    // - Forwards with a mandatory gas stipend.
                                    // - Instead of reverting, returns whether the transfer succeeded.
                                    /// @dev Sends `amount` (in wei) ETH to `to`.
                                    function safeTransferETH(address to, uint256 amount) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
                                                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                        }
                                    }
                                    /// @dev Sends all the ETH in the current contract to `to`.
                                    function safeTransferAllETH(address to) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Transfer all the ETH and check if it succeeded or not.
                                            if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                                                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                        }
                                    }
                                    /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
                                    function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if lt(selfbalance(), amount) {
                                                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                                                mstore(0x00, to) // Store the address in scratch space.
                                                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                                            }
                                        }
                                    }
                                    /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
                                    function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                                                mstore(0x00, to) // Store the address in scratch space.
                                                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                                            }
                                        }
                                    }
                                    /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
                                    function forceSafeTransferETH(address to, uint256 amount) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if lt(selfbalance(), amount) {
                                                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                                                mstore(0x00, to) // Store the address in scratch space.
                                                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                                            }
                                        }
                                    }
                                    /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
                                    function forceSafeTransferAllETH(address to) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // forgefmt: disable-next-item
                                            if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                                                mstore(0x00, to) // Store the address in scratch space.
                                                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                                            }
                                        }
                                    }
                                    /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
                                    function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
                                        internal
                                        returns (bool success)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
                                        }
                                    }
                                    /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
                                    function trySafeTransferAllETH(address to, uint256 gasStipend)
                                        internal
                                        returns (bool success)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
                                        }
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                      ERC20 OPERATIONS                      */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
                                    /// Reverts upon failure.
                                    ///
                                    /// The `from` account must have at least `amount` approved for
                                    /// the current contract to manage.
                                    function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40) // Cache the free memory pointer.
                                            mstore(0x60, amount) // Store the `amount` argument.
                                            mstore(0x40, to) // Store the `to` argument.
                                            mstore(0x2c, shl(96, from)) // Store the `from` argument.
                                            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
                                            let success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                                            if iszero(and(eq(mload(0x00), 1), success)) {
                                                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                    mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                            mstore(0x60, 0) // Restore the zero slot to zero.
                                            mstore(0x40, m) // Restore the free memory pointer.
                                        }
                                    }
                                    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
                                    ///
                                    /// The `from` account must have at least `amount` approved for the current contract to manage.
                                    function trySafeTransferFrom(address token, address from, address to, uint256 amount)
                                        internal
                                        returns (bool success)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40) // Cache the free memory pointer.
                                            mstore(0x60, amount) // Store the `amount` argument.
                                            mstore(0x40, to) // Store the `to` argument.
                                            mstore(0x2c, shl(96, from)) // Store the `from` argument.
                                            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
                                            success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                                            if iszero(and(eq(mload(0x00), 1), success)) {
                                                success := lt(or(iszero(extcodesize(token)), returndatasize()), success)
                                            }
                                            mstore(0x60, 0) // Restore the zero slot to zero.
                                            mstore(0x40, m) // Restore the free memory pointer.
                                        }
                                    }
                                    /// @dev Sends all of ERC20 `token` from `from` to `to`.
                                    /// Reverts upon failure.
                                    ///
                                    /// The `from` account must have their entire balance approved for the current contract to manage.
                                    function safeTransferAllFrom(address token, address from, address to)
                                        internal
                                        returns (uint256 amount)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40) // Cache the free memory pointer.
                                            mstore(0x40, to) // Store the `to` argument.
                                            mstore(0x2c, shl(96, from)) // Store the `from` argument.
                                            mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
                                            // Read the balance, reverting upon failure.
                                            if iszero(
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                    staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
                                                )
                                            ) {
                                                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
                                            amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
                                            // Perform the transfer, reverting upon failure.
                                            let success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                                            if iszero(and(eq(mload(0x00), 1), success)) {
                                                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                    mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                            mstore(0x60, 0) // Restore the zero slot to zero.
                                            mstore(0x40, m) // Restore the free memory pointer.
                                        }
                                    }
                                    /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
                                    /// Reverts upon failure.
                                    function safeTransfer(address token, address to, uint256 amount) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x14, to) // Store the `to` argument.
                                            mstore(0x34, amount) // Store the `amount` argument.
                                            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
                                            // Perform the transfer, reverting upon failure.
                                            let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                            if iszero(and(eq(mload(0x00), 1), success)) {
                                                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                    mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                                        }
                                    }
                                    /// @dev Sends all of ERC20 `token` from the current contract to `to`.
                                    /// Reverts upon failure.
                                    function safeTransferAll(address token, address to) internal returns (uint256 amount) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
                                            mstore(0x20, address()) // Store the address of the current contract.
                                            // Read the balance, reverting upon failure.
                                            if iszero(
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                    staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
                                                )
                                            ) {
                                                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            mstore(0x14, to) // Store the `to` argument.
                                            amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
                                            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
                                            // Perform the transfer, reverting upon failure.
                                            let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                            if iszero(and(eq(mload(0x00), 1), success)) {
                                                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                    mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                                        }
                                    }
                                    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
                                    /// Reverts upon failure.
                                    function safeApprove(address token, address to, uint256 amount) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x14, to) // Store the `to` argument.
                                            mstore(0x34, amount) // Store the `amount` argument.
                                            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                                            let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                            if iszero(and(eq(mload(0x00), 1), success)) {
                                                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                    mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                                        }
                                    }
                                    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
                                    /// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
                                    /// then retries the approval again (some tokens, e.g. USDT, requires this).
                                    /// Reverts upon failure.
                                    function safeApproveWithRetry(address token, address to, uint256 amount) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x14, to) // Store the `to` argument.
                                            mstore(0x34, amount) // Store the `amount` argument.
                                            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                                            // Perform the approval, retrying upon failure.
                                            let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                            if iszero(and(eq(mload(0x00), 1), success)) {
                                                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                    mstore(0x34, 0) // Store 0 for the `amount`.
                                                    mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                                                    pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
                                                    mstore(0x34, amount) // Store back the original `amount`.
                                                    // Retry the approval, reverting upon failure.
                                                    success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                                    if iszero(and(eq(mload(0x00), 1), success)) {
                                                        // Check the `extcodesize` again just in case the token selfdestructs lol.
                                                        if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                                                            mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                                                            revert(0x1c, 0x04)
                                                        }
                                                    }
                                                }
                                            }
                                            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                                        }
                                    }
                                    /// @dev Returns the amount of ERC20 `token` owned by `account`.
                                    /// Returns zero if the `token` does not exist.
                                    function balanceOf(address token, address account) internal view returns (uint256 amount) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x14, account) // Store the `account` argument.
                                            mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
                                            amount :=
                                                mul( // The arguments of `mul` are evaluated from right to left.
                                                    mload(0x20),
                                                    and( // The arguments of `and` are evaluated from right to left.
                                                        gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                        staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                                                    )
                                                )
                                        }
                                    }
                                    /// @dev Returns the total supply of the `token`.
                                    /// Reverts if the token does not exist or does not implement `totalSupply()`.
                                    function totalSupply(address token) internal view returns (uint256 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x00, 0x18160ddd) // `totalSupply()`.
                                            if iszero(
                                                and(gt(returndatasize(), 0x1f), staticcall(gas(), token, 0x1c, 0x04, 0x00, 0x20))
                                            ) {
                                                mstore(0x00, 0x54cd9435) // `TotalSupplyQueryFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            result := mload(0x00)
                                        }
                                    }
                                    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
                                    /// If the initial attempt fails, try to use Permit2 to transfer the token.
                                    /// Reverts upon failure.
                                    ///
                                    /// The `from` account must have at least `amount` approved for the current contract to manage.
                                    function safeTransferFrom2(address token, address from, address to, uint256 amount) internal {
                                        if (!trySafeTransferFrom(token, from, to, amount)) {
                                            permit2TransferFrom(token, from, to, amount);
                                        }
                                    }
                                    /// @dev Sends `amount` of ERC20 `token` from `from` to `to` via Permit2.
                                    /// Reverts upon failure.
                                    function permit2TransferFrom(address token, address from, address to, uint256 amount)
                                        internal
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(add(m, 0x74), shr(96, shl(96, token)))
                                            mstore(add(m, 0x54), amount)
                                            mstore(add(m, 0x34), to)
                                            mstore(add(m, 0x20), shl(96, from))
                                            // `transferFrom(address,address,uint160,address)`.
                                            mstore(m, 0x36c78516000000000000000000000000)
                                            let p := PERMIT2
                                            let exists := eq(chainid(), 1)
                                            if iszero(exists) { exists := iszero(iszero(extcodesize(p))) }
                                            if iszero(
                                                and(
                                                    call(gas(), p, 0, add(m, 0x10), 0x84, codesize(), 0x00),
                                                    lt(iszero(extcodesize(token)), exists) // Token has code and Permit2 exists.
                                                )
                                            ) {
                                                mstore(0x00, 0x7939f4248757f0fd) // `TransferFromFailed()` or `Permit2AmountOverflow()`.
                                                revert(add(0x18, shl(2, iszero(iszero(shr(160, amount))))), 0x04)
                                            }
                                        }
                                    }
                                    /// @dev Permit a user to spend a given amount of
                                    /// another user's tokens via native EIP-2612 permit if possible, falling
                                    /// back to Permit2 if native permit fails or is not implemented on the token.
                                    function permit2(
                                        address token,
                                        address owner,
                                        address spender,
                                        uint256 amount,
                                        uint256 deadline,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) internal {
                                        bool success;
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            for {} shl(96, xor(token, WETH9)) {} {
                                                mstore(0x00, 0x3644e515) // `DOMAIN_SEPARATOR()`.
                                                if iszero(
                                                    and( // The arguments of `and` are evaluated from right to left.
                                                        lt(iszero(mload(0x00)), eq(returndatasize(), 0x20)), // Returns 1 non-zero word.
                                                        // Gas stipend to limit gas burn for tokens that don't refund gas when
                                                        // an non-existing function is called. 5K should be enough for a SLOAD.
                                                        staticcall(5000, token, 0x1c, 0x04, 0x00, 0x20)
                                                    )
                                                ) { break }
                                                // After here, we can be sure that token is a contract.
                                                let m := mload(0x40)
                                                mstore(add(m, 0x34), spender)
                                                mstore(add(m, 0x20), shl(96, owner))
                                                mstore(add(m, 0x74), deadline)
                                                if eq(mload(0x00), DAI_DOMAIN_SEPARATOR) {
                                                    mstore(0x14, owner)
                                                    mstore(0x00, 0x7ecebe00000000000000000000000000) // `nonces(address)`.
                                                    mstore(
                                                        add(m, 0x94),
                                                        lt(iszero(amount), staticcall(gas(), token, 0x10, 0x24, add(m, 0x54), 0x20))
                                                    )
                                                    mstore(m, 0x8fcbaf0c000000000000000000000000) // `IDAIPermit.permit`.
                                                    // `nonces` is already at `add(m, 0x54)`.
                                                    // `amount != 0` is already stored at `add(m, 0x94)`.
                                                    mstore(add(m, 0xb4), and(0xff, v))
                                                    mstore(add(m, 0xd4), r)
                                                    mstore(add(m, 0xf4), s)
                                                    success := call(gas(), token, 0, add(m, 0x10), 0x104, codesize(), 0x00)
                                                    break
                                                }
                                                mstore(m, 0xd505accf000000000000000000000000) // `IERC20Permit.permit`.
                                                mstore(add(m, 0x54), amount)
                                                mstore(add(m, 0x94), and(0xff, v))
                                                mstore(add(m, 0xb4), r)
                                                mstore(add(m, 0xd4), s)
                                                success := call(gas(), token, 0, add(m, 0x10), 0xe4, codesize(), 0x00)
                                                break
                                            }
                                        }
                                        if (!success) simplePermit2(token, owner, spender, amount, deadline, v, r, s);
                                    }
                                    /// @dev Simple permit on the Permit2 contract.
                                    function simplePermit2(
                                        address token,
                                        address owner,
                                        address spender,
                                        uint256 amount,
                                        uint256 deadline,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, 0x927da105) // `allowance(address,address,address)`.
                                            {
                                                let addressMask := shr(96, not(0))
                                                mstore(add(m, 0x20), and(addressMask, owner))
                                                mstore(add(m, 0x40), and(addressMask, token))
                                                mstore(add(m, 0x60), and(addressMask, spender))
                                                mstore(add(m, 0xc0), and(addressMask, spender))
                                            }
                                            let p := mul(PERMIT2, iszero(shr(160, amount)))
                                            if iszero(
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    gt(returndatasize(), 0x5f), // Returns 3 words: `amount`, `expiration`, `nonce`.
                                                    staticcall(gas(), p, add(m, 0x1c), 0x64, add(m, 0x60), 0x60)
                                                )
                                            ) {
                                                mstore(0x00, 0x6b836e6b8757f0fd) // `Permit2Failed()` or `Permit2AmountOverflow()`.
                                                revert(add(0x18, shl(2, iszero(p))), 0x04)
                                            }
                                            mstore(m, 0x2b67b570) // `Permit2.permit` (PermitSingle variant).
                                            // `owner` is already `add(m, 0x20)`.
                                            // `token` is already at `add(m, 0x40)`.
                                            mstore(add(m, 0x60), amount)
                                            mstore(add(m, 0x80), 0xffffffffffff) // `expiration = type(uint48).max`.
                                            // `nonce` is already at `add(m, 0xa0)`.
                                            // `spender` is already at `add(m, 0xc0)`.
                                            mstore(add(m, 0xe0), deadline)
                                            mstore(add(m, 0x100), 0x100) // `signature` offset.
                                            mstore(add(m, 0x120), 0x41) // `signature` length.
                                            mstore(add(m, 0x140), r)
                                            mstore(add(m, 0x160), s)
                                            mstore(add(m, 0x180), shl(248, v))
                                            if iszero( // Revert if token does not have code, or if the call fails.
                                            mul(extcodesize(token), call(gas(), p, 0, add(m, 0x1c), 0x184, codesize(), 0x00))) {
                                                mstore(0x00, 0x6b836e6b) // `Permit2Failed()`.
                                                revert(0x1c, 0x04)
                                            }
                                        }
                                    }
                                    /// @dev Approves `spender` to spend `amount` of `token` for `address(this)`.
                                    function permit2Approve(address token, address spender, uint160 amount, uint48 expiration)
                                        internal
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let addressMask := shr(96, not(0))
                                            let m := mload(0x40)
                                            mstore(m, 0x87517c45) // `approve(address,address,uint160,uint48)`.
                                            mstore(add(m, 0x20), and(addressMask, token))
                                            mstore(add(m, 0x40), and(addressMask, spender))
                                            mstore(add(m, 0x60), and(addressMask, amount))
                                            mstore(add(m, 0x80), and(0xffffffffffff, expiration))
                                            if iszero(call(gas(), PERMIT2, 0, add(m, 0x1c), 0xa0, codesize(), 0x00)) {
                                                mstore(0x00, 0x324f14ae) // `Permit2ApproveFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                        }
                                    }
                                    /// @dev Revokes an approval for `token` and `spender` for `address(this)`.
                                    function permit2Lockdown(address token, address spender) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, 0xcc53287f) // `Permit2.lockdown`.
                                            mstore(add(m, 0x20), 0x20) // Offset of the `approvals`.
                                            mstore(add(m, 0x40), 1) // `approvals.length`.
                                            mstore(add(m, 0x60), shr(96, shl(96, token)))
                                            mstore(add(m, 0x80), shr(96, shl(96, spender)))
                                            if iszero(call(gas(), PERMIT2, 0, add(m, 0x1c), 0xa0, codesize(), 0x00)) {
                                                mstore(0x00, 0x96b3de23) // `Permit2LockdownFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity ^0.8.4;
                                /// @notice Safe integer casting library that reverts on overflow.
                                /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeCastLib.sol)
                                /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol)
                                /// @dev Optimized for runtime gas for very high number of optimizer runs (i.e. >= 1000000).
                                library SafeCastLib {
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                       CUSTOM ERRORS                        */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Unable to cast to the target type due to overflow.
                                    error Overflow();
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*          UNSIGNED INTEGER SAFE CASTING OPERATIONS          */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Casts `x` to a uint8. Reverts on overflow.
                                    function toUint8(uint256 x) internal pure returns (uint8) {
                                        if (x >= 1 << 8) _revertOverflow();
                                        return uint8(x);
                                    }
                                    /// @dev Casts `x` to a uint16. Reverts on overflow.
                                    function toUint16(uint256 x) internal pure returns (uint16) {
                                        if (x >= 1 << 16) _revertOverflow();
                                        return uint16(x);
                                    }
                                    /// @dev Casts `x` to a uint24. Reverts on overflow.
                                    function toUint24(uint256 x) internal pure returns (uint24) {
                                        if (x >= 1 << 24) _revertOverflow();
                                        return uint24(x);
                                    }
                                    /// @dev Casts `x` to a uint32. Reverts on overflow.
                                    function toUint32(uint256 x) internal pure returns (uint32) {
                                        if (x >= 1 << 32) _revertOverflow();
                                        return uint32(x);
                                    }
                                    /// @dev Casts `x` to a uint40. Reverts on overflow.
                                    function toUint40(uint256 x) internal pure returns (uint40) {
                                        if (x >= 1 << 40) _revertOverflow();
                                        return uint40(x);
                                    }
                                    /// @dev Casts `x` to a uint48. Reverts on overflow.
                                    function toUint48(uint256 x) internal pure returns (uint48) {
                                        if (x >= 1 << 48) _revertOverflow();
                                        return uint48(x);
                                    }
                                    /// @dev Casts `x` to a uint56. Reverts on overflow.
                                    function toUint56(uint256 x) internal pure returns (uint56) {
                                        if (x >= 1 << 56) _revertOverflow();
                                        return uint56(x);
                                    }
                                    /// @dev Casts `x` to a uint64. Reverts on overflow.
                                    function toUint64(uint256 x) internal pure returns (uint64) {
                                        if (x >= 1 << 64) _revertOverflow();
                                        return uint64(x);
                                    }
                                    /// @dev Casts `x` to a uint72. Reverts on overflow.
                                    function toUint72(uint256 x) internal pure returns (uint72) {
                                        if (x >= 1 << 72) _revertOverflow();
                                        return uint72(x);
                                    }
                                    /// @dev Casts `x` to a uint80. Reverts on overflow.
                                    function toUint80(uint256 x) internal pure returns (uint80) {
                                        if (x >= 1 << 80) _revertOverflow();
                                        return uint80(x);
                                    }
                                    /// @dev Casts `x` to a uint88. Reverts on overflow.
                                    function toUint88(uint256 x) internal pure returns (uint88) {
                                        if (x >= 1 << 88) _revertOverflow();
                                        return uint88(x);
                                    }
                                    /// @dev Casts `x` to a uint96. Reverts on overflow.
                                    function toUint96(uint256 x) internal pure returns (uint96) {
                                        if (x >= 1 << 96) _revertOverflow();
                                        return uint96(x);
                                    }
                                    /// @dev Casts `x` to a uint104. Reverts on overflow.
                                    function toUint104(uint256 x) internal pure returns (uint104) {
                                        if (x >= 1 << 104) _revertOverflow();
                                        return uint104(x);
                                    }
                                    /// @dev Casts `x` to a uint112. Reverts on overflow.
                                    function toUint112(uint256 x) internal pure returns (uint112) {
                                        if (x >= 1 << 112) _revertOverflow();
                                        return uint112(x);
                                    }
                                    /// @dev Casts `x` to a uint120. Reverts on overflow.
                                    function toUint120(uint256 x) internal pure returns (uint120) {
                                        if (x >= 1 << 120) _revertOverflow();
                                        return uint120(x);
                                    }
                                    /// @dev Casts `x` to a uint128. Reverts on overflow.
                                    function toUint128(uint256 x) internal pure returns (uint128) {
                                        if (x >= 1 << 128) _revertOverflow();
                                        return uint128(x);
                                    }
                                    /// @dev Casts `x` to a uint136. Reverts on overflow.
                                    function toUint136(uint256 x) internal pure returns (uint136) {
                                        if (x >= 1 << 136) _revertOverflow();
                                        return uint136(x);
                                    }
                                    /// @dev Casts `x` to a uint144. Reverts on overflow.
                                    function toUint144(uint256 x) internal pure returns (uint144) {
                                        if (x >= 1 << 144) _revertOverflow();
                                        return uint144(x);
                                    }
                                    /// @dev Casts `x` to a uint152. Reverts on overflow.
                                    function toUint152(uint256 x) internal pure returns (uint152) {
                                        if (x >= 1 << 152) _revertOverflow();
                                        return uint152(x);
                                    }
                                    /// @dev Casts `x` to a uint160. Reverts on overflow.
                                    function toUint160(uint256 x) internal pure returns (uint160) {
                                        if (x >= 1 << 160) _revertOverflow();
                                        return uint160(x);
                                    }
                                    /// @dev Casts `x` to a uint168. Reverts on overflow.
                                    function toUint168(uint256 x) internal pure returns (uint168) {
                                        if (x >= 1 << 168) _revertOverflow();
                                        return uint168(x);
                                    }
                                    /// @dev Casts `x` to a uint176. Reverts on overflow.
                                    function toUint176(uint256 x) internal pure returns (uint176) {
                                        if (x >= 1 << 176) _revertOverflow();
                                        return uint176(x);
                                    }
                                    /// @dev Casts `x` to a uint184. Reverts on overflow.
                                    function toUint184(uint256 x) internal pure returns (uint184) {
                                        if (x >= 1 << 184) _revertOverflow();
                                        return uint184(x);
                                    }
                                    /// @dev Casts `x` to a uint192. Reverts on overflow.
                                    function toUint192(uint256 x) internal pure returns (uint192) {
                                        if (x >= 1 << 192) _revertOverflow();
                                        return uint192(x);
                                    }
                                    /// @dev Casts `x` to a uint200. Reverts on overflow.
                                    function toUint200(uint256 x) internal pure returns (uint200) {
                                        if (x >= 1 << 200) _revertOverflow();
                                        return uint200(x);
                                    }
                                    /// @dev Casts `x` to a uint208. Reverts on overflow.
                                    function toUint208(uint256 x) internal pure returns (uint208) {
                                        if (x >= 1 << 208) _revertOverflow();
                                        return uint208(x);
                                    }
                                    /// @dev Casts `x` to a uint216. Reverts on overflow.
                                    function toUint216(uint256 x) internal pure returns (uint216) {
                                        if (x >= 1 << 216) _revertOverflow();
                                        return uint216(x);
                                    }
                                    /// @dev Casts `x` to a uint224. Reverts on overflow.
                                    function toUint224(uint256 x) internal pure returns (uint224) {
                                        if (x >= 1 << 224) _revertOverflow();
                                        return uint224(x);
                                    }
                                    /// @dev Casts `x` to a uint232. Reverts on overflow.
                                    function toUint232(uint256 x) internal pure returns (uint232) {
                                        if (x >= 1 << 232) _revertOverflow();
                                        return uint232(x);
                                    }
                                    /// @dev Casts `x` to a uint240. Reverts on overflow.
                                    function toUint240(uint256 x) internal pure returns (uint240) {
                                        if (x >= 1 << 240) _revertOverflow();
                                        return uint240(x);
                                    }
                                    /// @dev Casts `x` to a uint248. Reverts on overflow.
                                    function toUint248(uint256 x) internal pure returns (uint248) {
                                        if (x >= 1 << 248) _revertOverflow();
                                        return uint248(x);
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*           SIGNED INTEGER SAFE CASTING OPERATIONS           */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Casts `x` to a int8. Reverts on overflow.
                                    function toInt8(int256 x) internal pure returns (int8) {
                                        unchecked {
                                            if (((1 << 7) + uint256(x)) >> 8 == uint256(0)) return int8(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int16. Reverts on overflow.
                                    function toInt16(int256 x) internal pure returns (int16) {
                                        unchecked {
                                            if (((1 << 15) + uint256(x)) >> 16 == uint256(0)) return int16(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int24. Reverts on overflow.
                                    function toInt24(int256 x) internal pure returns (int24) {
                                        unchecked {
                                            if (((1 << 23) + uint256(x)) >> 24 == uint256(0)) return int24(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int32. Reverts on overflow.
                                    function toInt32(int256 x) internal pure returns (int32) {
                                        unchecked {
                                            if (((1 << 31) + uint256(x)) >> 32 == uint256(0)) return int32(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int40. Reverts on overflow.
                                    function toInt40(int256 x) internal pure returns (int40) {
                                        unchecked {
                                            if (((1 << 39) + uint256(x)) >> 40 == uint256(0)) return int40(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int48. Reverts on overflow.
                                    function toInt48(int256 x) internal pure returns (int48) {
                                        unchecked {
                                            if (((1 << 47) + uint256(x)) >> 48 == uint256(0)) return int48(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int56. Reverts on overflow.
                                    function toInt56(int256 x) internal pure returns (int56) {
                                        unchecked {
                                            if (((1 << 55) + uint256(x)) >> 56 == uint256(0)) return int56(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int64. Reverts on overflow.
                                    function toInt64(int256 x) internal pure returns (int64) {
                                        unchecked {
                                            if (((1 << 63) + uint256(x)) >> 64 == uint256(0)) return int64(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int72. Reverts on overflow.
                                    function toInt72(int256 x) internal pure returns (int72) {
                                        unchecked {
                                            if (((1 << 71) + uint256(x)) >> 72 == uint256(0)) return int72(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int80. Reverts on overflow.
                                    function toInt80(int256 x) internal pure returns (int80) {
                                        unchecked {
                                            if (((1 << 79) + uint256(x)) >> 80 == uint256(0)) return int80(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int88. Reverts on overflow.
                                    function toInt88(int256 x) internal pure returns (int88) {
                                        unchecked {
                                            if (((1 << 87) + uint256(x)) >> 88 == uint256(0)) return int88(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int96. Reverts on overflow.
                                    function toInt96(int256 x) internal pure returns (int96) {
                                        unchecked {
                                            if (((1 << 95) + uint256(x)) >> 96 == uint256(0)) return int96(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int104. Reverts on overflow.
                                    function toInt104(int256 x) internal pure returns (int104) {
                                        unchecked {
                                            if (((1 << 103) + uint256(x)) >> 104 == uint256(0)) return int104(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int112. Reverts on overflow.
                                    function toInt112(int256 x) internal pure returns (int112) {
                                        unchecked {
                                            if (((1 << 111) + uint256(x)) >> 112 == uint256(0)) return int112(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int120. Reverts on overflow.
                                    function toInt120(int256 x) internal pure returns (int120) {
                                        unchecked {
                                            if (((1 << 119) + uint256(x)) >> 120 == uint256(0)) return int120(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int128. Reverts on overflow.
                                    function toInt128(int256 x) internal pure returns (int128) {
                                        unchecked {
                                            if (((1 << 127) + uint256(x)) >> 128 == uint256(0)) return int128(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int136. Reverts on overflow.
                                    function toInt136(int256 x) internal pure returns (int136) {
                                        unchecked {
                                            if (((1 << 135) + uint256(x)) >> 136 == uint256(0)) return int136(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int144. Reverts on overflow.
                                    function toInt144(int256 x) internal pure returns (int144) {
                                        unchecked {
                                            if (((1 << 143) + uint256(x)) >> 144 == uint256(0)) return int144(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int152. Reverts on overflow.
                                    function toInt152(int256 x) internal pure returns (int152) {
                                        unchecked {
                                            if (((1 << 151) + uint256(x)) >> 152 == uint256(0)) return int152(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int160. Reverts on overflow.
                                    function toInt160(int256 x) internal pure returns (int160) {
                                        unchecked {
                                            if (((1 << 159) + uint256(x)) >> 160 == uint256(0)) return int160(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int168. Reverts on overflow.
                                    function toInt168(int256 x) internal pure returns (int168) {
                                        unchecked {
                                            if (((1 << 167) + uint256(x)) >> 168 == uint256(0)) return int168(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int176. Reverts on overflow.
                                    function toInt176(int256 x) internal pure returns (int176) {
                                        unchecked {
                                            if (((1 << 175) + uint256(x)) >> 176 == uint256(0)) return int176(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int184. Reverts on overflow.
                                    function toInt184(int256 x) internal pure returns (int184) {
                                        unchecked {
                                            if (((1 << 183) + uint256(x)) >> 184 == uint256(0)) return int184(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int192. Reverts on overflow.
                                    function toInt192(int256 x) internal pure returns (int192) {
                                        unchecked {
                                            if (((1 << 191) + uint256(x)) >> 192 == uint256(0)) return int192(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int200. Reverts on overflow.
                                    function toInt200(int256 x) internal pure returns (int200) {
                                        unchecked {
                                            if (((1 << 199) + uint256(x)) >> 200 == uint256(0)) return int200(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int208. Reverts on overflow.
                                    function toInt208(int256 x) internal pure returns (int208) {
                                        unchecked {
                                            if (((1 << 207) + uint256(x)) >> 208 == uint256(0)) return int208(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int216. Reverts on overflow.
                                    function toInt216(int256 x) internal pure returns (int216) {
                                        unchecked {
                                            if (((1 << 215) + uint256(x)) >> 216 == uint256(0)) return int216(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int224. Reverts on overflow.
                                    function toInt224(int256 x) internal pure returns (int224) {
                                        unchecked {
                                            if (((1 << 223) + uint256(x)) >> 224 == uint256(0)) return int224(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int232. Reverts on overflow.
                                    function toInt232(int256 x) internal pure returns (int232) {
                                        unchecked {
                                            if (((1 << 231) + uint256(x)) >> 232 == uint256(0)) return int232(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int240. Reverts on overflow.
                                    function toInt240(int256 x) internal pure returns (int240) {
                                        unchecked {
                                            if (((1 << 239) + uint256(x)) >> 240 == uint256(0)) return int240(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /// @dev Casts `x` to a int248. Reverts on overflow.
                                    function toInt248(int256 x) internal pure returns (int248) {
                                        unchecked {
                                            if (((1 << 247) + uint256(x)) >> 248 == uint256(0)) return int248(x);
                                            _revertOverflow();
                                        }
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*               OTHER SAFE CASTING OPERATIONS                */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Casts `x` to a int8. Reverts on overflow.
                                    function toInt8(uint256 x) internal pure returns (int8) {
                                        if (x >= 1 << 7) _revertOverflow();
                                        return int8(int256(x));
                                    }
                                    /// @dev Casts `x` to a int16. Reverts on overflow.
                                    function toInt16(uint256 x) internal pure returns (int16) {
                                        if (x >= 1 << 15) _revertOverflow();
                                        return int16(int256(x));
                                    }
                                    /// @dev Casts `x` to a int24. Reverts on overflow.
                                    function toInt24(uint256 x) internal pure returns (int24) {
                                        if (x >= 1 << 23) _revertOverflow();
                                        return int24(int256(x));
                                    }
                                    /// @dev Casts `x` to a int32. Reverts on overflow.
                                    function toInt32(uint256 x) internal pure returns (int32) {
                                        if (x >= 1 << 31) _revertOverflow();
                                        return int32(int256(x));
                                    }
                                    /// @dev Casts `x` to a int40. Reverts on overflow.
                                    function toInt40(uint256 x) internal pure returns (int40) {
                                        if (x >= 1 << 39) _revertOverflow();
                                        return int40(int256(x));
                                    }
                                    /// @dev Casts `x` to a int48. Reverts on overflow.
                                    function toInt48(uint256 x) internal pure returns (int48) {
                                        if (x >= 1 << 47) _revertOverflow();
                                        return int48(int256(x));
                                    }
                                    /// @dev Casts `x` to a int56. Reverts on overflow.
                                    function toInt56(uint256 x) internal pure returns (int56) {
                                        if (x >= 1 << 55) _revertOverflow();
                                        return int56(int256(x));
                                    }
                                    /// @dev Casts `x` to a int64. Reverts on overflow.
                                    function toInt64(uint256 x) internal pure returns (int64) {
                                        if (x >= 1 << 63) _revertOverflow();
                                        return int64(int256(x));
                                    }
                                    /// @dev Casts `x` to a int72. Reverts on overflow.
                                    function toInt72(uint256 x) internal pure returns (int72) {
                                        if (x >= 1 << 71) _revertOverflow();
                                        return int72(int256(x));
                                    }
                                    /// @dev Casts `x` to a int80. Reverts on overflow.
                                    function toInt80(uint256 x) internal pure returns (int80) {
                                        if (x >= 1 << 79) _revertOverflow();
                                        return int80(int256(x));
                                    }
                                    /// @dev Casts `x` to a int88. Reverts on overflow.
                                    function toInt88(uint256 x) internal pure returns (int88) {
                                        if (x >= 1 << 87) _revertOverflow();
                                        return int88(int256(x));
                                    }
                                    /// @dev Casts `x` to a int96. Reverts on overflow.
                                    function toInt96(uint256 x) internal pure returns (int96) {
                                        if (x >= 1 << 95) _revertOverflow();
                                        return int96(int256(x));
                                    }
                                    /// @dev Casts `x` to a int104. Reverts on overflow.
                                    function toInt104(uint256 x) internal pure returns (int104) {
                                        if (x >= 1 << 103) _revertOverflow();
                                        return int104(int256(x));
                                    }
                                    /// @dev Casts `x` to a int112. Reverts on overflow.
                                    function toInt112(uint256 x) internal pure returns (int112) {
                                        if (x >= 1 << 111) _revertOverflow();
                                        return int112(int256(x));
                                    }
                                    /// @dev Casts `x` to a int120. Reverts on overflow.
                                    function toInt120(uint256 x) internal pure returns (int120) {
                                        if (x >= 1 << 119) _revertOverflow();
                                        return int120(int256(x));
                                    }
                                    /// @dev Casts `x` to a int128. Reverts on overflow.
                                    function toInt128(uint256 x) internal pure returns (int128) {
                                        if (x >= 1 << 127) _revertOverflow();
                                        return int128(int256(x));
                                    }
                                    /// @dev Casts `x` to a int136. Reverts on overflow.
                                    function toInt136(uint256 x) internal pure returns (int136) {
                                        if (x >= 1 << 135) _revertOverflow();
                                        return int136(int256(x));
                                    }
                                    /// @dev Casts `x` to a int144. Reverts on overflow.
                                    function toInt144(uint256 x) internal pure returns (int144) {
                                        if (x >= 1 << 143) _revertOverflow();
                                        return int144(int256(x));
                                    }
                                    /// @dev Casts `x` to a int152. Reverts on overflow.
                                    function toInt152(uint256 x) internal pure returns (int152) {
                                        if (x >= 1 << 151) _revertOverflow();
                                        return int152(int256(x));
                                    }
                                    /// @dev Casts `x` to a int160. Reverts on overflow.
                                    function toInt160(uint256 x) internal pure returns (int160) {
                                        if (x >= 1 << 159) _revertOverflow();
                                        return int160(int256(x));
                                    }
                                    /// @dev Casts `x` to a int168. Reverts on overflow.
                                    function toInt168(uint256 x) internal pure returns (int168) {
                                        if (x >= 1 << 167) _revertOverflow();
                                        return int168(int256(x));
                                    }
                                    /// @dev Casts `x` to a int176. Reverts on overflow.
                                    function toInt176(uint256 x) internal pure returns (int176) {
                                        if (x >= 1 << 175) _revertOverflow();
                                        return int176(int256(x));
                                    }
                                    /// @dev Casts `x` to a int184. Reverts on overflow.
                                    function toInt184(uint256 x) internal pure returns (int184) {
                                        if (x >= 1 << 183) _revertOverflow();
                                        return int184(int256(x));
                                    }
                                    /// @dev Casts `x` to a int192. Reverts on overflow.
                                    function toInt192(uint256 x) internal pure returns (int192) {
                                        if (x >= 1 << 191) _revertOverflow();
                                        return int192(int256(x));
                                    }
                                    /// @dev Casts `x` to a int200. Reverts on overflow.
                                    function toInt200(uint256 x) internal pure returns (int200) {
                                        if (x >= 1 << 199) _revertOverflow();
                                        return int200(int256(x));
                                    }
                                    /// @dev Casts `x` to a int208. Reverts on overflow.
                                    function toInt208(uint256 x) internal pure returns (int208) {
                                        if (x >= 1 << 207) _revertOverflow();
                                        return int208(int256(x));
                                    }
                                    /// @dev Casts `x` to a int216. Reverts on overflow.
                                    function toInt216(uint256 x) internal pure returns (int216) {
                                        if (x >= 1 << 215) _revertOverflow();
                                        return int216(int256(x));
                                    }
                                    /// @dev Casts `x` to a int224. Reverts on overflow.
                                    function toInt224(uint256 x) internal pure returns (int224) {
                                        if (x >= 1 << 223) _revertOverflow();
                                        return int224(int256(x));
                                    }
                                    /// @dev Casts `x` to a int232. Reverts on overflow.
                                    function toInt232(uint256 x) internal pure returns (int232) {
                                        if (x >= 1 << 231) _revertOverflow();
                                        return int232(int256(x));
                                    }
                                    /// @dev Casts `x` to a int240. Reverts on overflow.
                                    function toInt240(uint256 x) internal pure returns (int240) {
                                        if (x >= 1 << 239) _revertOverflow();
                                        return int240(int256(x));
                                    }
                                    /// @dev Casts `x` to a int248. Reverts on overflow.
                                    function toInt248(uint256 x) internal pure returns (int248) {
                                        if (x >= 1 << 247) _revertOverflow();
                                        return int248(int256(x));
                                    }
                                    /// @dev Casts `x` to a int256. Reverts on overflow.
                                    function toInt256(uint256 x) internal pure returns (int256) {
                                        if (int256(x) >= 0) return int256(x);
                                        _revertOverflow();
                                    }
                                    /// @dev Casts `x` to a uint256. Reverts on overflow.
                                    function toUint256(int256 x) internal pure returns (uint256) {
                                        if (x >= 0) return uint256(x);
                                        _revertOverflow();
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                      PRIVATE HELPERS                       */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    function _revertOverflow() private pure {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Store the function selector of `Overflow()`.
                                            mstore(0x00, 0x35278d12)
                                            // Revert with (offset, size).
                                            revert(0x1c, 0x04)
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {IExposedStorage} from "../interfaces/IExposedStorage.sol";
                                abstract contract ExposedStorage is IExposedStorage {
                                    function sload() external view {
                                        assembly ("memory-safe") {
                                            for { let i := 4 } lt(i, calldatasize()) { i := add(i, 32) } { mstore(sub(i, 4), sload(calldataload(i))) }
                                            return(0, sub(calldatasize(), 4))
                                        }
                                    }
                                    function tload() external view {
                                        assembly ("memory-safe") {
                                            for { let i := 4 } lt(i, calldatasize()) { i := add(i, 32) } { mstore(sub(i, 4), tload(calldataload(i))) }
                                            return(0, sub(calldatasize(), 4))
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                import {SafeCastLib} from "solady/utils/SafeCastLib.sol";
                                import {amount0Delta, amount1Delta, sortAndConvertToFixedSqrtRatios} from "./delta.sol";
                                import {SqrtRatio} from "../types/sqrtRatio.sol";
                                /**
                                 * @notice Returns the token0 and token1 delta owed for a given change in liquidity.
                                 * @param sqrtRatio        Current price (as a sqrt ratio).
                                 * @param liquidityDelta   Signed liquidity change; positive = added, negative = removed.
                                 * @param sqrtRatioLower   The lower bound of the price range (as a sqrt ratio).
                                 * @param sqrtRatioUpper   The upper bound of the price range (as a sqrt ratio).
                                 */
                                function liquidityDeltaToAmountDelta(
                                    SqrtRatio sqrtRatio,
                                    int128 liquidityDelta,
                                    SqrtRatio sqrtRatioLower,
                                    SqrtRatio sqrtRatioUpper
                                ) pure returns (int128 delta0, int128 delta1) {
                                    unchecked {
                                        if (liquidityDelta == 0) {
                                            return (0, 0);
                                        }
                                        bool isPositive = (liquidityDelta > 0);
                                        // type(uint256).max cast to int256 is -1
                                        int256 sign = int256(FixedPointMathLib.ternary(isPositive, 1, type(uint256).max));
                                        // absolute value of a int128 always fits in a uint128
                                        uint128 magnitude = uint128(FixedPointMathLib.abs(liquidityDelta));
                                        if (sqrtRatio <= sqrtRatioLower) {
                                            delta0 = SafeCastLib.toInt128(
                                                sign * int256(uint256(amount0Delta(sqrtRatioLower, sqrtRatioUpper, magnitude, isPositive)))
                                            );
                                        } else if (sqrtRatio < sqrtRatioUpper) {
                                            delta0 = SafeCastLib.toInt128(
                                                sign * int256(uint256(amount0Delta(sqrtRatio, sqrtRatioUpper, magnitude, isPositive)))
                                            );
                                            delta1 = SafeCastLib.toInt128(
                                                sign * int256(uint256(amount1Delta(sqrtRatioLower, sqrtRatio, magnitude, isPositive)))
                                            );
                                        } else {
                                            delta1 = SafeCastLib.toInt128(
                                                sign * int256(uint256(amount1Delta(sqrtRatioLower, sqrtRatioUpper, magnitude, isPositive)))
                                            );
                                        }
                                    }
                                }
                                function maxLiquidityForToken0(uint256 sqrtRatioLower, uint256 sqrtRatioUpper, uint128 amount) pure returns (uint256) {
                                    unchecked {
                                        uint256 numerator_1 = FixedPointMathLib.fullMulDivN(sqrtRatioLower, sqrtRatioUpper, 128);
                                        return FixedPointMathLib.fullMulDiv(amount, numerator_1, (sqrtRatioUpper - sqrtRatioLower));
                                    }
                                }
                                function maxLiquidityForToken1(uint256 sqrtRatioLower, uint256 sqrtRatioUpper, uint128 amount) pure returns (uint256) {
                                    unchecked {
                                        return (uint256(amount) << 128) / (sqrtRatioUpper - sqrtRatioLower);
                                    }
                                }
                                function maxLiquidity(
                                    SqrtRatio _sqrtRatio,
                                    SqrtRatio sqrtRatioA,
                                    SqrtRatio sqrtRatioB,
                                    uint128 amount0,
                                    uint128 amount1
                                ) pure returns (uint128) {
                                    uint256 sqrtRatio = _sqrtRatio.toFixed();
                                    (uint256 sqrtRatioLower, uint256 sqrtRatioUpper) = sortAndConvertToFixedSqrtRatios(sqrtRatioA, sqrtRatioB);
                                    if (sqrtRatio <= sqrtRatioLower) {
                                        return uint128(
                                            FixedPointMathLib.min(type(uint128).max, maxLiquidityForToken0(sqrtRatioLower, sqrtRatioUpper, amount0))
                                        );
                                    } else if (sqrtRatio < sqrtRatioUpper) {
                                        return uint128(
                                            FixedPointMathLib.min(
                                                type(uint128).max,
                                                FixedPointMathLib.min(
                                                    maxLiquidityForToken0(sqrtRatio, sqrtRatioUpper, amount0),
                                                    maxLiquidityForToken1(sqrtRatioLower, sqrtRatio, amount1)
                                                )
                                            )
                                        );
                                    } else {
                                        return uint128(
                                            FixedPointMathLib.min(type(uint128).max, maxLiquidityForToken1(sqrtRatioLower, sqrtRatioUpper, amount1))
                                        );
                                    }
                                }
                                error LiquidityDeltaOverflow();
                                function addLiquidityDelta(uint128 liquidity, int128 liquidityDelta) pure returns (uint128 result) {
                                    assembly ("memory-safe") {
                                        result := add(liquidity, liquidityDelta)
                                        if and(result, shl(128, 0xffffffffffffffffffffffffffffffff)) {
                                            mstore(0, shl(224, 0x6d862c50))
                                            revert(0, 4)
                                        }
                                    }
                                }
                                function subLiquidityDelta(uint128 liquidity, int128 liquidityDelta) pure returns (uint128 result) {
                                    assembly ("memory-safe") {
                                        result := sub(liquidity, liquidityDelta)
                                        if and(result, shl(128, 0xffffffffffffffffffffffffffffffff)) {
                                            mstore(0, shl(224, 0x6d862c50))
                                            revert(0, 4)
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                // Returns the fee to charge based on the amount, which is the fee (a 0.64 number) times the
                                // amount, rounded up
                                function computeFee(uint128 amount, uint64 fee) pure returns (uint128 result) {
                                    assembly ("memory-safe") {
                                        result := shr(64, add(mul(amount, fee), 0xffffffffffffffff))
                                    }
                                }
                                error AmountBeforeFeeOverflow();
                                // Returns the amount before the fee is applied, which is the amount minus the fee, rounded up
                                function amountBeforeFee(uint128 afterFee, uint64 fee) pure returns (uint128 result) {
                                    uint256 r;
                                    assembly ("memory-safe") {
                                        let v := shl(64, afterFee)
                                        let d := sub(0x10000000000000000, fee)
                                        let q := div(v, d)
                                        r := add(iszero(iszero(mod(v, d))), q)
                                    }
                                    if (r > type(uint128).max) {
                                        revert AmountBeforeFeeOverflow();
                                    }
                                    result = uint128(r);
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {Bitmap} from "../math/bitmap.sol";
                                import {MIN_TICK, MAX_TICK} from "../math/constants.sol";
                                import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                // Returns the index of the word and the index _in_ that word which contains the bit representing whether the tick is initialized
                                // Addition of the offset does two things--it centers the 0 tick within a single bitmap regardless of tick spacing,
                                // and gives us a contiguous range of unsigned integers for all ticks
                                // Always rounds the tick down to the nearest multiple of tickSpacing
                                function tickToBitmapWordAndIndex(int32 tick, uint32 tickSpacing) pure returns (uint256 word, uint256 index) {
                                    assembly ("memory-safe") {
                                        let rawIndex := add(sub(sdiv(tick, tickSpacing), slt(smod(tick, tickSpacing), 0)), 89421695)
                                        word := div(rawIndex, 256)
                                        index := mod(rawIndex, 256)
                                    }
                                }
                                // Returns the index of the word and the index _in_ that word which contains the bit representing whether the tick is initialized
                                /// @dev This function is only safe if tickSpacing is between 1 and MAX_TICK_SPACING, and word/index correspond to the results of tickToBitmapWordAndIndex for a tick between MIN_TICK and MAX_TICK
                                function bitmapWordAndIndexToTick(uint256 word, uint256 index, uint32 tickSpacing) pure returns (int32 tick) {
                                    assembly ("memory-safe") {
                                        let rawIndex := add(mul(word, 256), index)
                                        tick := mul(sub(rawIndex, 89421695), tickSpacing)
                                    }
                                }
                                // Flips the tick in the bitmap from true to false or vice versa
                                function flipTick(mapping(uint256 word => Bitmap bitmap) storage map, int32 tick, uint32 tickSpacing) {
                                    (uint256 word, uint256 index) = tickToBitmapWordAndIndex(tick, tickSpacing);
                                    assembly ("memory-safe") {
                                        mstore(0, word)
                                        mstore(32, map.slot)
                                        let k := keccak256(0, 64)
                                        let v := sload(k)
                                        sstore(k, xor(v, shl(index, 1)))
                                    }
                                }
                                function findNextInitializedTick(
                                    mapping(uint256 word => Bitmap bitmap) storage map,
                                    int32 fromTick,
                                    uint32 tickSpacing,
                                    uint256 skipAhead
                                ) view returns (int32 nextTick, bool isInitialized) {
                                    unchecked {
                                        nextTick = fromTick;
                                        while (true) {
                                            // convert the given tick to the bitmap position of the next nearest potential initialized tick
                                            (uint256 word, uint256 index) = tickToBitmapWordAndIndex(nextTick + int32(tickSpacing), tickSpacing);
                                            // find the index of the previous tick in that word
                                            uint256 nextIndex = map[word].geSetBit(uint8(index));
                                            // if we found one, return it
                                            if (nextIndex != 256) {
                                                (nextTick, isInitialized) = (bitmapWordAndIndexToTick(word, nextIndex, tickSpacing), true);
                                                break;
                                            }
                                            // otherwise, return the tick of the most significant bit in the word
                                            nextTick = bitmapWordAndIndexToTick(word, 255, tickSpacing);
                                            if (nextTick >= MAX_TICK) {
                                                nextTick = MAX_TICK;
                                                break;
                                            }
                                            // if we are done searching, stop here
                                            if (skipAhead == 0) {
                                                break;
                                            }
                                            skipAhead--;
                                        }
                                    }
                                }
                                function findPrevInitializedTick(
                                    mapping(uint256 word => Bitmap bitmap) storage map,
                                    int32 fromTick,
                                    uint32 tickSpacing,
                                    uint256 skipAhead
                                ) view returns (int32 prevTick, bool isInitialized) {
                                    unchecked {
                                        prevTick = fromTick;
                                        while (true) {
                                            // convert the given tick to its bitmap position
                                            (uint256 word, uint256 index) = tickToBitmapWordAndIndex(prevTick, tickSpacing);
                                            // find the index of the previous tick in that word
                                            uint256 prevIndex = map[word].leSetBit(uint8(index));
                                            if (prevIndex != 256) {
                                                (prevTick, isInitialized) = (bitmapWordAndIndexToTick(word, prevIndex, tickSpacing), true);
                                                break;
                                            }
                                            prevTick = bitmapWordAndIndexToTick(word, 0, tickSpacing);
                                            if (prevTick <= MIN_TICK) {
                                                prevTick = MIN_TICK;
                                                break;
                                            }
                                            if (skipAhead == 0) {
                                                break;
                                            }
                                            skipAhead--;
                                            prevTick--;
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {CallPoints} from "../types/callPoints.sol";
                                import {PoolKey} from "../types/poolKey.sol";
                                import {PositionKey, Bounds} from "../types/positionKey.sol";
                                import {FeesPerLiquidity} from "../types/feesPerLiquidity.sol";
                                import {IExposedStorage} from "../interfaces/IExposedStorage.sol";
                                import {IFlashAccountant} from "../interfaces/IFlashAccountant.sol";
                                import {SqrtRatio} from "../types/sqrtRatio.sol";
                                struct UpdatePositionParameters {
                                    bytes32 salt;
                                    Bounds bounds;
                                    int128 liquidityDelta;
                                }
                                interface IExtension {
                                    function beforeInitializePool(address caller, PoolKey calldata key, int32 tick) external;
                                    function afterInitializePool(address caller, PoolKey calldata key, int32 tick, SqrtRatio sqrtRatio) external;
                                    function beforeUpdatePosition(address locker, PoolKey memory poolKey, UpdatePositionParameters memory params)
                                        external;
                                    function afterUpdatePosition(
                                        address locker,
                                        PoolKey memory poolKey,
                                        UpdatePositionParameters memory params,
                                        int128 delta0,
                                        int128 delta1
                                    ) external;
                                    function beforeSwap(
                                        address locker,
                                        PoolKey memory poolKey,
                                        int128 amount,
                                        bool isToken1,
                                        SqrtRatio sqrtRatioLimit,
                                        uint256 skipAhead
                                    ) external;
                                    function afterSwap(
                                        address locker,
                                        PoolKey memory poolKey,
                                        int128 amount,
                                        bool isToken1,
                                        SqrtRatio sqrtRatioLimit,
                                        uint256 skipAhead,
                                        int128 delta0,
                                        int128 delta1
                                    ) external;
                                    function beforeCollectFees(address locker, PoolKey memory poolKey, bytes32 salt, Bounds memory bounds) external;
                                    function afterCollectFees(
                                        address locker,
                                        PoolKey memory poolKey,
                                        bytes32 salt,
                                        Bounds memory bounds,
                                        uint128 amount0,
                                        uint128 amount1
                                    ) external;
                                }
                                interface ICore is IFlashAccountant, IExposedStorage {
                                    event ProtocolFeesWithdrawn(address recipient, address token, uint256 amount);
                                    event ExtensionRegistered(address extension);
                                    event PoolInitialized(bytes32 poolId, PoolKey poolKey, int32 tick, SqrtRatio sqrtRatio);
                                    event PositionFeesCollected(bytes32 poolId, PositionKey positionKey, uint128 amount0, uint128 amount1);
                                    event FeesAccumulated(bytes32 poolId, uint128 amount0, uint128 amount1);
                                    event PositionUpdated(
                                        address locker, bytes32 poolId, UpdatePositionParameters params, int128 delta0, int128 delta1
                                    );
                                    // This error is thrown by swaps and deposits when this particular deployment of the contract is expired.
                                    error FailedRegisterInvalidCallPoints();
                                    error ExtensionAlreadyRegistered();
                                    error InsufficientSavedBalance();
                                    error PoolAlreadyInitialized();
                                    error ExtensionNotRegistered();
                                    error PoolNotInitialized();
                                    error MustCollectFeesBeforeWithdrawingAllLiquidity();
                                    error SqrtRatioLimitOutOfRange();
                                    error InvalidSqrtRatioLimit();
                                    error SavedBalanceTokensNotSorted();
                                    // Allows the owner of the contract to withdraw the protocol withdrawal fees collected
                                    // To withdraw the native token protocol fees, call with token = NATIVE_TOKEN_ADDRESS
                                    function withdrawProtocolFees(address recipient, address token, uint256 amount) external;
                                    // Extensions must call this function to become registered. The call points are validated against the caller address
                                    function registerExtension(CallPoints memory expectedCallPoints) external;
                                    // Sets the initial price for a new pool in terms of tick.
                                    function initializePool(PoolKey memory poolKey, int32 tick) external returns (SqrtRatio sqrtRatio);
                                    function prevInitializedTick(bytes32 poolId, int32 fromTick, uint32 tickSpacing, uint256 skipAhead)
                                        external
                                        view
                                        returns (int32 tick, bool isInitialized);
                                    function nextInitializedTick(bytes32 poolId, int32 fromTick, uint32 tickSpacing, uint256 skipAhead)
                                        external
                                        view
                                        returns (int32 tick, bool isInitialized);
                                    // Loads 2 tokens from the saved balances of the caller as payment in the current context.
                                    function load(address token0, address token1, bytes32 salt, uint128 amount0, uint128 amount1) external;
                                    // Saves an amount of 2 tokens to be used later, in a single slot.
                                    function save(address owner, address token0, address token1, bytes32 salt, uint128 amount0, uint128 amount1)
                                        external
                                        payable;
                                    // Returns the pool fees per liquidity inside the given bounds.
                                    function getPoolFeesPerLiquidityInside(PoolKey memory poolKey, Bounds memory bounds)
                                        external
                                        view
                                        returns (FeesPerLiquidity memory);
                                    // Accumulates tokens to fees of a pool. Only callable by the extension of the specified pool
                                    // key, i.e. the current locker _must_ be the extension.
                                    // The extension must call this function within a lock callback.
                                    function accumulateAsFees(PoolKey memory poolKey, uint128 amount0, uint128 amount1) external payable;
                                    function updatePosition(PoolKey memory poolKey, UpdatePositionParameters memory params)
                                        external
                                        payable
                                        returns (int128 delta0, int128 delta1);
                                    function collectFees(PoolKey memory poolKey, bytes32 salt, Bounds memory bounds)
                                        external
                                        returns (uint128 amount0, uint128 amount1);
                                    function swap_611415377(
                                        PoolKey memory poolKey,
                                        int128 amount,
                                        bool isToken1,
                                        SqrtRatio sqrtRatioLimit,
                                        uint256 skipAhead
                                    ) external payable returns (int128 delta0, int128 delta1);
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {NATIVE_TOKEN_ADDRESS} from "../math/constants.sol";
                                import {IPayer, IFlashAccountant} from "../interfaces/IFlashAccountant.sol";
                                import {SafeTransferLib} from "solady/utils/SafeTransferLib.sol";
                                abstract contract FlashAccountant is IFlashAccountant {
                                    // These offsets are selected so that they do not accidentally overlap with any other base contract's use of transient storage
                                    // cast keccak "FlashAccountant#CURRENT_LOCKER_SLOT"
                                    uint256 private constant _CURRENT_LOCKER_SLOT = 0x07cc7f5195d862f505d6b095c82f92e00cfc1766f5bca4383c28dc5fca1555fd;
                                    // cast keccak "FlashAccountant#NONZERO_DEBT_COUNT_OFFSET"
                                    uint256 private constant _NONZERO_DEBT_COUNT_OFFSET =
                                        0x7772acfd7e0f66ebb20a058830296c3dc1301b111d23348e1c961d324223190d;
                                    // cast keccak "FlashAccountant#DEBT_HASH_OFFSET"
                                    uint256 private constant _DEBT_HASH_OFFSET = 0x3fee1dc3ade45aa30d633b5b8645760533723e46597841ef1126c6577a091742;
                                    // cast keccak "FlashAccountant#PAY_REENTRANCY_LOCK"
                                    uint256 private constant _PAY_REENTRANCY_LOCK = 0xe1be600102d456bf2d4dee36e1641404df82292916888bf32557e00dfe166412;
                                    function _getLocker() internal view returns (uint256 id, address locker) {
                                        assembly ("memory-safe") {
                                            let current := tload(_CURRENT_LOCKER_SLOT)
                                            if iszero(current) {
                                                // cast sig "NotLocked()"
                                                mstore(0, shl(224, 0x1834e265))
                                                revert(0, 4)
                                            }
                                            id := sub(shr(160, current), 1)
                                            locker := shr(96, shl(96, current))
                                        }
                                    }
                                    function _requireLocker() internal view returns (uint256 id, address locker) {
                                        (id, locker) = _getLocker();
                                        if (locker != msg.sender) revert LockerOnly();
                                    }
                                    // We assume debtChange cannot exceed a 128 bits value, even though it uses a int256 container
                                    // This must be enforced at the places it is called for this contract's safety
                                    // Negative means erasing debt, positive means adding debt
                                    function _accountDebt(uint256 id, address token, int256 debtChange) internal {
                                        assembly ("memory-safe") {
                                            if iszero(iszero(debtChange)) {
                                                mstore(0, add(add(shl(160, id), token), _DEBT_HASH_OFFSET))
                                                let deltaSlot := keccak256(0, 32)
                                                let current := tload(deltaSlot)
                                                // we know this never overflows because debtChange is only ever derived from 128 bit values in inheriting contracts
                                                let next := add(current, debtChange)
                                                let nextZero := iszero(next)
                                                if xor(iszero(current), nextZero) {
                                                    let nzdCountSlot := add(id, _NONZERO_DEBT_COUNT_OFFSET)
                                                    tstore(nzdCountSlot, add(sub(tload(nzdCountSlot), nextZero), iszero(nextZero)))
                                                }
                                                tstore(deltaSlot, next)
                                            }
                                        }
                                    }
                                    // The entrypoint for all operations on the core contract
                                    function lock() external {
                                        assembly ("memory-safe") {
                                            let current := tload(_CURRENT_LOCKER_SLOT)
                                            let id := shr(160, current)
                                            // store the count
                                            tstore(_CURRENT_LOCKER_SLOT, or(shl(160, add(id, 1)), caller()))
                                            let free := mload(0x40)
                                            // Prepare call to locked(uint256) -> selector 0xb45a3c0e
                                            mstore(free, shl(224, 0xb45a3c0e))
                                            mstore(add(free, 4), id) // ID argument
                                            calldatacopy(add(free, 36), 4, sub(calldatasize(), 4))
                                            // Call the original caller with the packed data
                                            let success := call(gas(), caller(), 0, free, add(calldatasize(), 32), 0, 0)
                                            // Pass through the error on failure
                                            if iszero(success) {
                                                returndatacopy(free, 0, returndatasize())
                                                revert(free, returndatasize())
                                            }
                                            // Undo the "locker" state changes
                                            tstore(_CURRENT_LOCKER_SLOT, current)
                                            // Check if something is nonzero
                                            let nonzeroDebtCount := tload(add(_NONZERO_DEBT_COUNT_OFFSET, id))
                                            if nonzeroDebtCount {
                                                // cast sig "DebtsNotZeroed(uint256)"
                                                mstore(0x00, 0x9731ba37)
                                                mstore(0x20, id)
                                                revert(0x1c, 0x24)
                                            }
                                            // Directly return whatever the subcall returned
                                            returndatacopy(free, 0, returndatasize())
                                            return(free, returndatasize())
                                        }
                                    }
                                    // Allows forwarding the lock context to another actor, allowing them to act on the original locker's debt
                                    function forward(address to) external {
                                        (uint256 id, address locker) = _requireLocker();
                                        // update this lock's locker to the forwarded address for the duration of the forwarded
                                        // call, meaning only the forwarded address can update state
                                        assembly ("memory-safe") {
                                            tstore(_CURRENT_LOCKER_SLOT, or(shl(160, add(id, 1)), to))
                                            let free := mload(0x40)
                                            // Prepare call to forwarded(uint256,address) -> selector 0x64919dea
                                            mstore(free, shl(224, 0x64919dea))
                                            mstore(add(free, 4), id)
                                            mstore(add(free, 36), locker)
                                            calldatacopy(add(free, 68), 36, sub(calldatasize(), 36))
                                            // Call the forwardee with the packed data
                                            let success := call(gas(), to, 0, free, add(32, calldatasize()), 0, 0)
                                            // Pass through the error on failure
                                            if iszero(success) {
                                                returndatacopy(free, 0, returndatasize())
                                                revert(free, returndatasize())
                                            }
                                            tstore(_CURRENT_LOCKER_SLOT, or(shl(160, add(id, 1)), locker))
                                            // Directly return whatever the subcall returned
                                            returndatacopy(free, 0, returndatasize())
                                            return(free, returndatasize())
                                        }
                                    }
                                    function pay(address token) external returns (uint128 payment) {
                                        assembly ("memory-safe") {
                                            if tload(_PAY_REENTRANCY_LOCK) {
                                                // cast sig "PayReentrance()"
                                                mstore(0, 0xced108be)
                                                revert(0x1c, 0x04)
                                            }
                                            tstore(_PAY_REENTRANCY_LOCK, 1)
                                        }
                                        (uint256 id,) = _getLocker();
                                        assembly ("memory-safe") {
                                            let free := mload(0x40)
                                            mstore(20, address()) // Store the `account` argument.
                                            mstore(0, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
                                            let tokenBalanceBefore :=
                                                mul( // The arguments of `mul` are evaluated from right to left.
                                                    mload(free),
                                                    and( // The arguments of `and` are evaluated from right to left.
                                                        gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                        staticcall(gas(), token, 0x10, 0x24, free, 0x20)
                                                    )
                                                )
                                            // Prepare call to "payCallback(uint256,address)"
                                            mstore(free, shl(224, 0x599d0714))
                                            mstore(add(free, 4), id)
                                            mstore(add(free, 36), token)
                                            // copy the token, plus anything else that they wanted to forward
                                            calldatacopy(add(free, 68), 36, sub(calldatasize(), 36))
                                            // Call the forwardee with the packed data
                                            // Pass through the error on failure
                                            if iszero(call(gas(), caller(), 0, free, add(32, calldatasize()), 0, 0)) {
                                                returndatacopy(free, 0, returndatasize())
                                                revert(free, returndatasize())
                                            }
                                            // Arguments are still in scratch, we don't need to rewrite them
                                            let tokenBalanceAfter :=
                                                mul( // The arguments of `mul` are evaluated from right to left.
                                                    mload(0x20),
                                                    and( // The arguments of `and` are evaluated from right to left.
                                                        gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                        staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                                                    )
                                                )
                                            if lt(tokenBalanceAfter, tokenBalanceBefore) {
                                                // cast sig "NoPaymentMade()"
                                                mstore(0x00, 0x01b243b9)
                                                revert(0x1c, 4)
                                            }
                                            payment := sub(tokenBalanceAfter, tokenBalanceBefore)
                                            // We never expect tokens to have this much total supply
                                            if gt(payment, 0xffffffffffffffffffffffffffffffff) {
                                                // cast sig "PaymentOverflow()"
                                                mstore(0x00, 0x9cac58ca)
                                                revert(0x1c, 4)
                                            }
                                        }
                                        // The unary negative operator never fails because payment is less than max uint128
                                        unchecked {
                                            _accountDebt(id, token, -int256(uint256(payment)));
                                        }
                                        assembly ("memory-safe") {
                                            tstore(_PAY_REENTRANCY_LOCK, 0)
                                        }
                                    }
                                    function withdraw(address token, address recipient, uint128 amount) external {
                                        (uint256 id,) = _requireLocker();
                                        _accountDebt(id, token, int256(uint256(amount)));
                                        if (token == NATIVE_TOKEN_ADDRESS) {
                                            SafeTransferLib.safeTransferETH(recipient, amount);
                                        } else {
                                            SafeTransferLib.safeTransfer(token, recipient, amount);
                                        }
                                    }
                                    receive() external payable {
                                        (uint256 id,) = _getLocker();
                                        // Note because we use msg.value here, this contract can never be multicallable, i.e. it should never expose the ability
                                        //      to delegatecall itself more than once in a single call
                                        unchecked {
                                            // We never expect the native token to exceed this supply
                                            if (msg.value > type(uint128).max) revert PaymentOverflow();
                                            _accountDebt(id, NATIVE_TOKEN_ADDRESS, -int256(msg.value));
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity ^0.8.4;
                                /// @notice Library for efficiently performing keccak256 hashes.
                                /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/EfficientHashLib.sol)
                                /// @dev To avoid stack-too-deep, you can use:
                                /// ```
                                /// bytes32[] memory buffer = EfficientHashLib.malloc(10);
                                /// EfficientHashLib.set(buffer, 0, value0);
                                /// ..
                                /// EfficientHashLib.set(buffer, 9, value9);
                                /// bytes32 finalHash = EfficientHashLib.hash(buffer);
                                /// ```
                                library EfficientHashLib {
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*               MALLOC-LESS HASHING OPERATIONS               */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Returns `keccak256(abi.encode(v0))`.
                                    function hash(bytes32 v0) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x00, v0)
                                            result := keccak256(0x00, 0x20)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0))`.
                                    function hash(uint256 v0) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x00, v0)
                                            result := keccak256(0x00, 0x20)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, v1))`.
                                    function hash(bytes32 v0, bytes32 v1) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x00, v0)
                                            mstore(0x20, v1)
                                            result := keccak256(0x00, 0x40)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, v1))`.
                                    function hash(uint256 v0, uint256 v1) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x00, v0)
                                            mstore(0x20, v1)
                                            result := keccak256(0x00, 0x40)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, v1, v2))`.
                                    function hash(bytes32 v0, bytes32 v1, bytes32 v2) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            result := keccak256(m, 0x60)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, v1, v2))`.
                                    function hash(uint256 v0, uint256 v1, uint256 v2) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            result := keccak256(m, 0x60)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, v1, v2, v3))`.
                                    function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3)
                                        internal
                                        pure
                                        returns (bytes32 result)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            result := keccak256(m, 0x80)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, v1, v2, v3))`.
                                    function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3)
                                        internal
                                        pure
                                        returns (bytes32 result)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            result := keccak256(m, 0x80)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v4))`.
                                    function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3, bytes32 v4)
                                        internal
                                        pure
                                        returns (bytes32 result)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            result := keccak256(m, 0xa0)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v4))`.
                                    function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3, uint256 v4)
                                        internal
                                        pure
                                        returns (bytes32 result)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            result := keccak256(m, 0xa0)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v5))`.
                                    function hash(bytes32 v0, bytes32 v1, bytes32 v2, bytes32 v3, bytes32 v4, bytes32 v5)
                                        internal
                                        pure
                                        returns (bytes32 result)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            result := keccak256(m, 0xc0)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v5))`.
                                    function hash(uint256 v0, uint256 v1, uint256 v2, uint256 v3, uint256 v4, uint256 v5)
                                        internal
                                        pure
                                        returns (bytes32 result)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            result := keccak256(m, 0xc0)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v6))`.
                                    function hash(
                                        bytes32 v0,
                                        bytes32 v1,
                                        bytes32 v2,
                                        bytes32 v3,
                                        bytes32 v4,
                                        bytes32 v5,
                                        bytes32 v6
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            result := keccak256(m, 0xe0)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v6))`.
                                    function hash(
                                        uint256 v0,
                                        uint256 v1,
                                        uint256 v2,
                                        uint256 v3,
                                        uint256 v4,
                                        uint256 v5,
                                        uint256 v6
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            result := keccak256(m, 0xe0)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v7))`.
                                    function hash(
                                        bytes32 v0,
                                        bytes32 v1,
                                        bytes32 v2,
                                        bytes32 v3,
                                        bytes32 v4,
                                        bytes32 v5,
                                        bytes32 v6,
                                        bytes32 v7
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            result := keccak256(m, 0x100)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v7))`.
                                    function hash(
                                        uint256 v0,
                                        uint256 v1,
                                        uint256 v2,
                                        uint256 v3,
                                        uint256 v4,
                                        uint256 v5,
                                        uint256 v6,
                                        uint256 v7
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            result := keccak256(m, 0x100)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v8))`.
                                    function hash(
                                        bytes32 v0,
                                        bytes32 v1,
                                        bytes32 v2,
                                        bytes32 v3,
                                        bytes32 v4,
                                        bytes32 v5,
                                        bytes32 v6,
                                        bytes32 v7,
                                        bytes32 v8
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            mstore(add(m, 0x100), v8)
                                            result := keccak256(m, 0x120)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v8))`.
                                    function hash(
                                        uint256 v0,
                                        uint256 v1,
                                        uint256 v2,
                                        uint256 v3,
                                        uint256 v4,
                                        uint256 v5,
                                        uint256 v6,
                                        uint256 v7,
                                        uint256 v8
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            mstore(add(m, 0x100), v8)
                                            result := keccak256(m, 0x120)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v9))`.
                                    function hash(
                                        bytes32 v0,
                                        bytes32 v1,
                                        bytes32 v2,
                                        bytes32 v3,
                                        bytes32 v4,
                                        bytes32 v5,
                                        bytes32 v6,
                                        bytes32 v7,
                                        bytes32 v8,
                                        bytes32 v9
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            mstore(add(m, 0x100), v8)
                                            mstore(add(m, 0x120), v9)
                                            result := keccak256(m, 0x140)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v9))`.
                                    function hash(
                                        uint256 v0,
                                        uint256 v1,
                                        uint256 v2,
                                        uint256 v3,
                                        uint256 v4,
                                        uint256 v5,
                                        uint256 v6,
                                        uint256 v7,
                                        uint256 v8,
                                        uint256 v9
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            mstore(add(m, 0x100), v8)
                                            mstore(add(m, 0x120), v9)
                                            result := keccak256(m, 0x140)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v10))`.
                                    function hash(
                                        bytes32 v0,
                                        bytes32 v1,
                                        bytes32 v2,
                                        bytes32 v3,
                                        bytes32 v4,
                                        bytes32 v5,
                                        bytes32 v6,
                                        bytes32 v7,
                                        bytes32 v8,
                                        bytes32 v9,
                                        bytes32 v10
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            mstore(add(m, 0x100), v8)
                                            mstore(add(m, 0x120), v9)
                                            mstore(add(m, 0x140), v10)
                                            result := keccak256(m, 0x160)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v10))`.
                                    function hash(
                                        uint256 v0,
                                        uint256 v1,
                                        uint256 v2,
                                        uint256 v3,
                                        uint256 v4,
                                        uint256 v5,
                                        uint256 v6,
                                        uint256 v7,
                                        uint256 v8,
                                        uint256 v9,
                                        uint256 v10
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            mstore(add(m, 0x100), v8)
                                            mstore(add(m, 0x120), v9)
                                            mstore(add(m, 0x140), v10)
                                            result := keccak256(m, 0x160)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v11))`.
                                    function hash(
                                        bytes32 v0,
                                        bytes32 v1,
                                        bytes32 v2,
                                        bytes32 v3,
                                        bytes32 v4,
                                        bytes32 v5,
                                        bytes32 v6,
                                        bytes32 v7,
                                        bytes32 v8,
                                        bytes32 v9,
                                        bytes32 v10,
                                        bytes32 v11
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            mstore(add(m, 0x100), v8)
                                            mstore(add(m, 0x120), v9)
                                            mstore(add(m, 0x140), v10)
                                            mstore(add(m, 0x160), v11)
                                            result := keccak256(m, 0x180)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v11))`.
                                    function hash(
                                        uint256 v0,
                                        uint256 v1,
                                        uint256 v2,
                                        uint256 v3,
                                        uint256 v4,
                                        uint256 v5,
                                        uint256 v6,
                                        uint256 v7,
                                        uint256 v8,
                                        uint256 v9,
                                        uint256 v10,
                                        uint256 v11
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            mstore(add(m, 0x100), v8)
                                            mstore(add(m, 0x120), v9)
                                            mstore(add(m, 0x140), v10)
                                            mstore(add(m, 0x160), v11)
                                            result := keccak256(m, 0x180)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v12))`.
                                    function hash(
                                        bytes32 v0,
                                        bytes32 v1,
                                        bytes32 v2,
                                        bytes32 v3,
                                        bytes32 v4,
                                        bytes32 v5,
                                        bytes32 v6,
                                        bytes32 v7,
                                        bytes32 v8,
                                        bytes32 v9,
                                        bytes32 v10,
                                        bytes32 v11,
                                        bytes32 v12
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            mstore(add(m, 0x100), v8)
                                            mstore(add(m, 0x120), v9)
                                            mstore(add(m, 0x140), v10)
                                            mstore(add(m, 0x160), v11)
                                            mstore(add(m, 0x180), v12)
                                            result := keccak256(m, 0x1a0)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v12))`.
                                    function hash(
                                        uint256 v0,
                                        uint256 v1,
                                        uint256 v2,
                                        uint256 v3,
                                        uint256 v4,
                                        uint256 v5,
                                        uint256 v6,
                                        uint256 v7,
                                        uint256 v8,
                                        uint256 v9,
                                        uint256 v10,
                                        uint256 v11,
                                        uint256 v12
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            mstore(add(m, 0x100), v8)
                                            mstore(add(m, 0x120), v9)
                                            mstore(add(m, 0x140), v10)
                                            mstore(add(m, 0x160), v11)
                                            mstore(add(m, 0x180), v12)
                                            result := keccak256(m, 0x1a0)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v13))`.
                                    function hash(
                                        bytes32 v0,
                                        bytes32 v1,
                                        bytes32 v2,
                                        bytes32 v3,
                                        bytes32 v4,
                                        bytes32 v5,
                                        bytes32 v6,
                                        bytes32 v7,
                                        bytes32 v8,
                                        bytes32 v9,
                                        bytes32 v10,
                                        bytes32 v11,
                                        bytes32 v12,
                                        bytes32 v13
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            mstore(add(m, 0x100), v8)
                                            mstore(add(m, 0x120), v9)
                                            mstore(add(m, 0x140), v10)
                                            mstore(add(m, 0x160), v11)
                                            mstore(add(m, 0x180), v12)
                                            mstore(add(m, 0x1a0), v13)
                                            result := keccak256(m, 0x1c0)
                                        }
                                    }
                                    /// @dev Returns `keccak256(abi.encode(v0, .., v13))`.
                                    function hash(
                                        uint256 v0,
                                        uint256 v1,
                                        uint256 v2,
                                        uint256 v3,
                                        uint256 v4,
                                        uint256 v5,
                                        uint256 v6,
                                        uint256 v7,
                                        uint256 v8,
                                        uint256 v9,
                                        uint256 v10,
                                        uint256 v11,
                                        uint256 v12,
                                        uint256 v13
                                    ) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, v0)
                                            mstore(add(m, 0x20), v1)
                                            mstore(add(m, 0x40), v2)
                                            mstore(add(m, 0x60), v3)
                                            mstore(add(m, 0x80), v4)
                                            mstore(add(m, 0xa0), v5)
                                            mstore(add(m, 0xc0), v6)
                                            mstore(add(m, 0xe0), v7)
                                            mstore(add(m, 0x100), v8)
                                            mstore(add(m, 0x120), v9)
                                            mstore(add(m, 0x140), v10)
                                            mstore(add(m, 0x160), v11)
                                            mstore(add(m, 0x180), v12)
                                            mstore(add(m, 0x1a0), v13)
                                            result := keccak256(m, 0x1c0)
                                        }
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*             BYTES32 BUFFER HASHING OPERATIONS              */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Returns `keccak256(abi.encode(buffer[0], .., buffer[buffer.length - 1]))`.
                                    function hash(bytes32[] memory buffer) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            result := keccak256(add(buffer, 0x20), shl(5, mload(buffer)))
                                        }
                                    }
                                    /// @dev Sets `buffer[i]` to `value`, without a bounds check.
                                    /// Returns the `buffer` for function chaining.
                                    function set(bytes32[] memory buffer, uint256 i, bytes32 value)
                                        internal
                                        pure
                                        returns (bytes32[] memory)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(add(buffer, shl(5, add(1, i))), value)
                                        }
                                        return buffer;
                                    }
                                    /// @dev Sets `buffer[i]` to `value`, without a bounds check.
                                    /// Returns the `buffer` for function chaining.
                                    function set(bytes32[] memory buffer, uint256 i, uint256 value)
                                        internal
                                        pure
                                        returns (bytes32[] memory)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(add(buffer, shl(5, add(1, i))), value)
                                        }
                                        return buffer;
                                    }
                                    /// @dev Returns `new bytes32[](n)`, without zeroing out the memory.
                                    function malloc(uint256 n) internal pure returns (bytes32[] memory buffer) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            buffer := mload(0x40)
                                            mstore(buffer, n)
                                            mstore(0x40, add(shl(5, add(1, n)), buffer))
                                        }
                                    }
                                    /// @dev Frees memory that has been allocated for `buffer`.
                                    /// No-op if `buffer.length` is zero, or if new memory has been allocated after `buffer`.
                                    function free(bytes32[] memory buffer) internal pure {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let n := mload(buffer)
                                            mstore(shl(6, lt(iszero(n), eq(add(shl(5, add(1, n)), buffer), mload(0x40)))), buffer)
                                        }
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                      EQUALITY CHECKS                       */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Returns `a == abi.decode(b, (bytes32))`.
                                    function eq(bytes32 a, bytes memory b) internal pure returns (bool result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            result := and(eq(0x20, mload(b)), eq(a, mload(add(b, 0x20))))
                                        }
                                    }
                                    /// @dev Returns `abi.decode(a, (bytes32)) == a`.
                                    function eq(bytes memory a, bytes32 b) internal pure returns (bool result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            result := and(eq(0x20, mload(a)), eq(b, mload(add(a, 0x20))))
                                        }
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*               BYTE SLICE HASHING OPERATIONS                */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Returns the keccak256 of the slice from `start` to `end` (exclusive).
                                    /// `start` and `end` are byte offsets.
                                    function hash(bytes memory b, uint256 start, uint256 end)
                                        internal
                                        pure
                                        returns (bytes32 result)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let n := mload(b)
                                            end := xor(end, mul(xor(end, n), lt(n, end)))
                                            start := xor(start, mul(xor(start, n), lt(n, start)))
                                            result := keccak256(add(add(b, 0x20), start), mul(gt(end, start), sub(end, start)))
                                        }
                                    }
                                    /// @dev Returns the keccak256 of the slice from `start` to the end of the bytes.
                                    function hash(bytes memory b, uint256 start) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let n := mload(b)
                                            start := xor(start, mul(xor(start, n), lt(n, start)))
                                            result := keccak256(add(add(b, 0x20), start), mul(gt(n, start), sub(n, start)))
                                        }
                                    }
                                    /// @dev Returns the keccak256 of the bytes.
                                    function hash(bytes memory b) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            result := keccak256(add(b, 0x20), mload(b))
                                        }
                                    }
                                    /// @dev Returns the keccak256 of the slice from `start` to `end` (exclusive).
                                    /// `start` and `end` are byte offsets.
                                    function hashCalldata(bytes calldata b, uint256 start, uint256 end)
                                        internal
                                        pure
                                        returns (bytes32 result)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            end := xor(end, mul(xor(end, b.length), lt(b.length, end)))
                                            start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
                                            let n := mul(gt(end, start), sub(end, start))
                                            calldatacopy(mload(0x40), add(b.offset, start), n)
                                            result := keccak256(mload(0x40), n)
                                        }
                                    }
                                    /// @dev Returns the keccak256 of the slice from `start` to the end of the bytes.
                                    function hashCalldata(bytes calldata b, uint256 start) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
                                            let n := mul(gt(b.length, start), sub(b.length, start))
                                            calldatacopy(mload(0x40), add(b.offset, start), n)
                                            result := keccak256(mload(0x40), n)
                                        }
                                    }
                                    /// @dev Returns the keccak256 of the bytes.
                                    function hashCalldata(bytes calldata b) internal pure returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            calldatacopy(mload(0x40), b.offset, b.length)
                                            result := keccak256(mload(0x40), b.length)
                                        }
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                      SHA2-256 HELPERS                      */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Returns `sha256(abi.encode(b))`. Yes, it's more efficient.
                                    function sha2(bytes32 b) internal view returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x00, b)
                                            result := mload(staticcall(gas(), 2, 0x00, 0x20, 0x01, 0x20))
                                            if iszero(returndatasize()) { invalid() }
                                        }
                                    }
                                    /// @dev Returns the sha256 of the slice from `start` to `end` (exclusive).
                                    /// `start` and `end` are byte offsets.
                                    function sha2(bytes memory b, uint256 start, uint256 end)
                                        internal
                                        view
                                        returns (bytes32 result)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let n := mload(b)
                                            end := xor(end, mul(xor(end, n), lt(n, end)))
                                            start := xor(start, mul(xor(start, n), lt(n, start)))
                                            // forgefmt: disable-next-item
                                            result := mload(staticcall(gas(), 2, add(add(b, 0x20), start),
                                                mul(gt(end, start), sub(end, start)), 0x01, 0x20))
                                            if iszero(returndatasize()) { invalid() }
                                        }
                                    }
                                    /// @dev Returns the sha256 of the slice from `start` to the end of the bytes.
                                    function sha2(bytes memory b, uint256 start) internal view returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let n := mload(b)
                                            start := xor(start, mul(xor(start, n), lt(n, start)))
                                            // forgefmt: disable-next-item
                                            result := mload(staticcall(gas(), 2, add(add(b, 0x20), start),
                                                mul(gt(n, start), sub(n, start)), 0x01, 0x20))
                                            if iszero(returndatasize()) { invalid() }
                                        }
                                    }
                                    /// @dev Returns the sha256 of the bytes.
                                    function sha2(bytes memory b) internal view returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            result := mload(staticcall(gas(), 2, add(b, 0x20), mload(b), 0x01, 0x20))
                                            if iszero(returndatasize()) { invalid() }
                                        }
                                    }
                                    /// @dev Returns the sha256 of the slice from `start` to `end` (exclusive).
                                    /// `start` and `end` are byte offsets.
                                    function sha2Calldata(bytes calldata b, uint256 start, uint256 end)
                                        internal
                                        view
                                        returns (bytes32 result)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            end := xor(end, mul(xor(end, b.length), lt(b.length, end)))
                                            start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
                                            let n := mul(gt(end, start), sub(end, start))
                                            calldatacopy(mload(0x40), add(b.offset, start), n)
                                            result := mload(staticcall(gas(), 2, mload(0x40), n, 0x01, 0x20))
                                            if iszero(returndatasize()) { invalid() }
                                        }
                                    }
                                    /// @dev Returns the sha256 of the slice from `start` to the end of the bytes.
                                    function sha2Calldata(bytes calldata b, uint256 start) internal view returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            start := xor(start, mul(xor(start, b.length), lt(b.length, start)))
                                            let n := mul(gt(b.length, start), sub(b.length, start))
                                            calldatacopy(mload(0x40), add(b.offset, start), n)
                                            result := mload(staticcall(gas(), 2, mload(0x40), n, 0x01, 0x20))
                                            if iszero(returndatasize()) { invalid() }
                                        }
                                    }
                                    /// @dev Returns the sha256 of the bytes.
                                    function sha2Calldata(bytes calldata b) internal view returns (bytes32 result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            calldatacopy(mload(0x40), b.offset, b.length)
                                            result := mload(staticcall(gas(), 2, mload(0x40), b.length, 0x01, 0x20))
                                            if iszero(returndatasize()) { invalid() }
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                int32 constant MIN_TICK = -88722835;
                                int32 constant MAX_TICK = 88722835;
                                uint32 constant MAX_TICK_MAGNITUDE = uint32(MAX_TICK);
                                uint32 constant MAX_TICK_SPACING = 698605;
                                uint32 constant FULL_RANGE_ONLY_TICK_SPACING = 0;
                                // We use this address to represent the native token within the protocol
                                address constant NATIVE_TOKEN_ADDRESS = address(0);
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                // A dynamic fixed point number (a la floating point) that stores a shifting 94 bit view of the underlying fixed point value,
                                //  based on the most significant bits (mantissa)
                                // If the most significant 2 bits are 11, it represents a 64.30
                                // If the most significant 2 bits are 10, it represents a 32.62 number
                                // If the most significant 2 bits are 01, it represents a 0.94 number
                                // If the most significant 2 bits are 00, it represents a 0.126 number that is always less than 2**-32
                                type SqrtRatio is uint96;
                                uint96 constant MIN_SQRT_RATIO_RAW = 4611797791050542631;
                                SqrtRatio constant MIN_SQRT_RATIO = SqrtRatio.wrap(MIN_SQRT_RATIO_RAW);
                                uint96 constant MAX_SQRT_RATIO_RAW = 79227682466138141934206691491;
                                SqrtRatio constant MAX_SQRT_RATIO = SqrtRatio.wrap(MAX_SQRT_RATIO_RAW);
                                uint96 constant TWO_POW_95 = 0x800000000000000000000000;
                                uint96 constant TWO_POW_94 = 0x400000000000000000000000;
                                uint96 constant TWO_POW_62 = 0x4000000000000000;
                                uint96 constant TWO_POW_62_MINUS_ONE = 0x3fffffffffffffff;
                                uint96 constant BIT_MASK = 0xc00000000000000000000000; // TWO_POW_95 | TWO_POW_94
                                SqrtRatio constant ONE = SqrtRatio.wrap((TWO_POW_95) + (1 << 62));
                                using {
                                    toFixed,
                                    isValid,
                                    ge as >=,
                                    le as <=,
                                    lt as <,
                                    gt as >,
                                    eq as ==,
                                    neq as !=,
                                    isZero,
                                    min,
                                    max
                                } for SqrtRatio global;
                                function isValid(SqrtRatio sqrtRatio) pure returns (bool r) {
                                    assembly ("memory-safe") {
                                        r :=
                                            and(
                                                // greater than or equal to TWO_POW_62, i.e. the whole number portion is nonzero
                                                gt(and(sqrtRatio, not(BIT_MASK)), TWO_POW_62_MINUS_ONE),
                                                // and between min/max sqrt ratio
                                                and(iszero(lt(sqrtRatio, MIN_SQRT_RATIO_RAW)), iszero(gt(sqrtRatio, MAX_SQRT_RATIO_RAW)))
                                            )
                                    }
                                }
                                error ValueOverflowsSqrtRatioContainer();
                                // If passing a value greater than this constant with roundUp = true, toSqrtRatio will overflow
                                // For roundUp = false, the constant is type(uint192).max
                                uint256 constant MAX_FIXED_VALUE_ROUND_UP =
                                    0x1000000000000000000000000000000000000000000000000 - 0x4000000000000000000000000;
                                // Converts a 64.128 value into the compact SqrtRatio representation
                                function toSqrtRatio(uint256 sqrtRatio, bool roundUp) pure returns (SqrtRatio r) {
                                    assembly ("memory-safe") {
                                        let addend := mul(roundUp, 0x3)
                                        // lt 2**96 after rounding up
                                        switch lt(sqrtRatio, sub(0x1000000000000000000000000, addend))
                                        case 1 { r := shr(2, add(sqrtRatio, addend)) }
                                        default {
                                            // 2**34 - 1
                                            addend := mul(roundUp, 0x3ffffffff)
                                            // lt 2**128 after rounding up
                                            switch lt(sqrtRatio, sub(0x100000000000000000000000000000000, addend))
                                            case 1 { r := or(TWO_POW_94, shr(34, add(sqrtRatio, addend))) }
                                            default {
                                                addend := mul(roundUp, 0x3ffffffffffffffff)
                                                // lt 2**160 after rounding up
                                                switch lt(sqrtRatio, sub(0x10000000000000000000000000000000000000000, addend))
                                                case 1 { r := or(TWO_POW_95, shr(66, add(sqrtRatio, addend))) }
                                                default {
                                                    // 2**98 - 1
                                                    addend := mul(roundUp, 0x3ffffffffffffffffffffffff)
                                                    switch lt(sqrtRatio, sub(0x1000000000000000000000000000000000000000000000000, addend))
                                                    case 1 { r := or(BIT_MASK, shr(98, add(sqrtRatio, addend))) }
                                                    default {
                                                        // cast sig "ValueOverflowsSqrtRatioContainer()"
                                                        mstore(0, shl(224, 0xa10459f4))
                                                        revert(0, 4)
                                                    }
                                                }
                                            }
                                        }
                                    }
                                }
                                // Returns the 64.128 representation of the given sqrt ratio
                                function toFixed(SqrtRatio sqrtRatio) pure returns (uint256 r) {
                                    assembly ("memory-safe") {
                                        r := shl(add(2, shr(89, and(sqrtRatio, BIT_MASK))), and(sqrtRatio, not(BIT_MASK)))
                                    }
                                }
                                // The below operators assume that the SqrtRatio is valid, i.e. SqrtRatio#isValid returns true
                                function lt(SqrtRatio a, SqrtRatio b) pure returns (bool r) {
                                    r = SqrtRatio.unwrap(a) < SqrtRatio.unwrap(b);
                                }
                                function gt(SqrtRatio a, SqrtRatio b) pure returns (bool r) {
                                    r = SqrtRatio.unwrap(a) > SqrtRatio.unwrap(b);
                                }
                                function le(SqrtRatio a, SqrtRatio b) pure returns (bool r) {
                                    r = SqrtRatio.unwrap(a) <= SqrtRatio.unwrap(b);
                                }
                                function ge(SqrtRatio a, SqrtRatio b) pure returns (bool r) {
                                    r = SqrtRatio.unwrap(a) >= SqrtRatio.unwrap(b);
                                }
                                function eq(SqrtRatio a, SqrtRatio b) pure returns (bool r) {
                                    r = SqrtRatio.unwrap(a) == SqrtRatio.unwrap(b);
                                }
                                function neq(SqrtRatio a, SqrtRatio b) pure returns (bool r) {
                                    r = SqrtRatio.unwrap(a) != SqrtRatio.unwrap(b);
                                }
                                function isZero(SqrtRatio a) pure returns (bool r) {
                                    assembly ("memory-safe") {
                                        r := iszero(a)
                                    }
                                }
                                function max(SqrtRatio a, SqrtRatio b) pure returns (SqrtRatio r) {
                                    assembly ("memory-safe") {
                                        r := xor(a, mul(xor(a, b), gt(b, a)))
                                    }
                                }
                                function min(SqrtRatio a, SqrtRatio b) pure returns (SqrtRatio r) {
                                    assembly ("memory-safe") {
                                        r := xor(a, mul(xor(a, b), lt(b, a)))
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                import {SqrtRatio, toSqrtRatio, MAX_FIXED_VALUE_ROUND_UP} from "../types/sqrtRatio.sol";
                                error ZeroLiquidityNextSqrtRatioFromAmount0();
                                // Compute the next ratio from a delta amount0, always rounded towards starting price for input, and
                                // away from starting price for output
                                function nextSqrtRatioFromAmount0(SqrtRatio _sqrtRatio, uint128 liquidity, int128 amount)
                                    pure
                                    returns (SqrtRatio sqrtRatioNext)
                                {
                                    if (amount == 0) {
                                        return _sqrtRatio;
                                    }
                                    if (liquidity == 0) {
                                        revert ZeroLiquidityNextSqrtRatioFromAmount0();
                                    }
                                    uint256 sqrtRatio = _sqrtRatio.toFixed();
                                    uint256 liquidityX128 = uint256(liquidity) << 128;
                                    uint256 amountAbs = FixedPointMathLib.abs(int256(amount));
                                    if (amount < 0) {
                                        unchecked {
                                            // multiplication will revert on overflow, so we return the maximum value for the type
                                            if (amountAbs > type(uint256).max / sqrtRatio) {
                                                return SqrtRatio.wrap(type(uint96).max);
                                            }
                                            uint256 product = sqrtRatio * amountAbs;
                                            // again it will overflow if this is the case, so return the max value
                                            if (product >= liquidityX128) {
                                                return SqrtRatio.wrap(type(uint96).max);
                                            }
                                            uint256 denominator = liquidityX128 - product;
                                            uint256 resultFixed = FixedPointMathLib.fullMulDivUp(liquidityX128, sqrtRatio, denominator);
                                            if (resultFixed > MAX_FIXED_VALUE_ROUND_UP) {
                                                return SqrtRatio.wrap(type(uint96).max);
                                            }
                                            sqrtRatioNext = toSqrtRatio(resultFixed, true);
                                        }
                                    } else {
                                        uint256 denominator;
                                        unchecked {
                                            uint256 denominatorP1 = liquidityX128 / sqrtRatio;
                                            // this can never overflow, amountAbs is limited to 2**128-1 and liquidityX128 / sqrtRatio is limited to (2**128-1 << 128)
                                            // adding the 2 values can at most equal type(uint256).max
                                            denominator = denominatorP1 + amountAbs;
                                        }
                                        sqrtRatioNext = toSqrtRatio(FixedPointMathLib.divUp(liquidityX128, denominator), true);
                                    }
                                }
                                error ZeroLiquidityNextSqrtRatioFromAmount1();
                                function nextSqrtRatioFromAmount1(SqrtRatio _sqrtRatio, uint128 liquidity, int128 amount)
                                    pure
                                    returns (SqrtRatio sqrtRatioNext)
                                {
                                    if (amount == 0) {
                                        return _sqrtRatio;
                                    }
                                    if (liquidity == 0) {
                                        revert ZeroLiquidityNextSqrtRatioFromAmount1();
                                    }
                                    uint256 sqrtRatio = _sqrtRatio.toFixed();
                                    unchecked {
                                        uint256 shiftedAmountAbs = FixedPointMathLib.abs(int256(amount)) << 128;
                                        uint256 quotient = shiftedAmountAbs / liquidity;
                                        if (amount < 0) {
                                            if (quotient >= sqrtRatio) {
                                                // Underflow => return 0
                                                return SqrtRatio.wrap(0);
                                            }
                                            uint256 sqrtRatioNextFixed = sqrtRatio - quotient;
                                            assembly ("memory-safe") {
                                                // subtraction of 1 is safe because sqrtRatio > quotient => sqrtRatio - quotient >= 1
                                                sqrtRatioNextFixed := sub(sqrtRatioNextFixed, iszero(iszero(mod(shiftedAmountAbs, liquidity))))
                                            }
                                            sqrtRatioNext = toSqrtRatio(sqrtRatioNextFixed, false);
                                        } else {
                                            uint256 sum = sqrtRatio + quotient;
                                            if (sum < sqrtRatio || sum > type(uint192).max) {
                                                return SqrtRatio.wrap(type(uint96).max);
                                            }
                                            sqrtRatioNext = toSqrtRatio(sum, false);
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
                                import {SqrtRatio} from "../types/sqrtRatio.sol";
                                error Amount0DeltaOverflow();
                                error Amount1DeltaOverflow();
                                function sortAndConvertToFixedSqrtRatios(SqrtRatio sqrtRatioA, SqrtRatio sqrtRatioB)
                                    pure
                                    returns (uint256 sqrtRatioLower, uint256 sqrtRatioUpper)
                                {
                                    uint256 aFixed = sqrtRatioA.toFixed();
                                    uint256 bFixed = sqrtRatioB.toFixed();
                                    (sqrtRatioLower, sqrtRatioUpper) = (FixedPointMathLib.min(aFixed, bFixed), FixedPointMathLib.max(aFixed, bFixed));
                                }
                                function amount0Delta(SqrtRatio sqrtRatioA, SqrtRatio sqrtRatioB, uint128 liquidity, bool roundUp)
                                    pure
                                    returns (uint128 amount0)
                                {
                                    unchecked {
                                        (uint256 sqrtRatioLower, uint256 sqrtRatioUpper) = sortAndConvertToFixedSqrtRatios(sqrtRatioA, sqrtRatioB);
                                        if (roundUp) {
                                            uint256 result0 = FixedPointMathLib.fullMulDivUp(
                                                (uint256(liquidity) << 128), (sqrtRatioUpper - sqrtRatioLower), sqrtRatioUpper
                                            );
                                            uint256 result = FixedPointMathLib.divUp(result0, sqrtRatioLower);
                                            if (result > type(uint128).max) revert Amount0DeltaOverflow();
                                            amount0 = uint128(result);
                                        } else {
                                            uint256 result0 = FixedPointMathLib.fullMulDiv(
                                                (uint256(liquidity) << 128), (sqrtRatioUpper - sqrtRatioLower), sqrtRatioUpper
                                            );
                                            uint256 result = result0 / sqrtRatioLower;
                                            if (result > type(uint128).max) revert Amount0DeltaOverflow();
                                            amount0 = uint128(result);
                                        }
                                    }
                                }
                                function amount1Delta(SqrtRatio sqrtRatioA, SqrtRatio sqrtRatioB, uint128 liquidity, bool roundUp)
                                    pure
                                    returns (uint128 amount1)
                                {
                                    unchecked {
                                        (uint256 sqrtRatioLower, uint256 sqrtRatioUpper) = sortAndConvertToFixedSqrtRatios(sqrtRatioA, sqrtRatioB);
                                        uint256 difference = sqrtRatioUpper - sqrtRatioLower;
                                        if (roundUp) {
                                            uint256 result = FixedPointMathLib.fullMulDivN(difference, liquidity, 128);
                                            assembly {
                                                // addition is safe from overflow because the result of fullMulDivN will never equal type(uint256).max
                                                result :=
                                                    add(result, iszero(iszero(mulmod(difference, liquidity, 0x100000000000000000000000000000000))))
                                            }
                                            if (result > type(uint128).max) revert Amount1DeltaOverflow();
                                            amount1 = uint128(result);
                                        } else {
                                            uint256 result = FixedPointMathLib.fullMulDivN(difference, liquidity, 128);
                                            if (result > type(uint128).max) revert Amount1DeltaOverflow();
                                            amount1 = uint128(result);
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                function isPriceIncreasing(int128 amount, bool isToken1) pure returns (bool increasing) {
                                    assembly ("memory-safe") {
                                        increasing := xor(isToken1, slt(amount, 0))
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity ^0.8.4;
                                /// @notice Library for bit twiddling and boolean operations.
                                /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBit.sol)
                                /// @author Inspired by (https://graphics.stanford.edu/~seander/bithacks.html)
                                library LibBit {
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                  BIT TWIDDLING OPERATIONS                  */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    /// @dev Find last set.
                                    /// Returns the index of the most significant bit of `x`,
                                    /// counting from the least significant bit position.
                                    /// If `x` is zero, returns 256.
                                    function fls(uint256 x) internal pure returns (uint256 r) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            r := or(shl(8, iszero(x)), shl(7, lt(0xffffffffffffffffffffffffffffffff, x)))
                                            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                                            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                                            r := or(r, shl(4, lt(0xffff, shr(r, x))))
                                            r := or(r, shl(3, lt(0xff, shr(r, x))))
                                            // forgefmt: disable-next-item
                                            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                                                0x0706060506020504060203020504030106050205030304010505030400000000))
                                        }
                                    }
                                    /// @dev Count leading zeros.
                                    /// Returns the number of zeros preceding the most significant one bit.
                                    /// If `x` is zero, returns 256.
                                    function clz(uint256 x) internal pure returns (uint256 r) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                                            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                                            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                                            r := or(r, shl(4, lt(0xffff, shr(r, x))))
                                            r := or(r, shl(3, lt(0xff, shr(r, x))))
                                            // forgefmt: disable-next-item
                                            r := add(xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                                                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)), iszero(x))
                                        }
                                    }
                                    /// @dev Find first set.
                                    /// Returns the index of the least significant bit of `x`,
                                    /// counting from the least significant bit position.
                                    /// If `x` is zero, returns 256.
                                    /// Equivalent to `ctz` (count trailing zeros), which gives
                                    /// the number of zeros following the least significant one bit.
                                    function ffs(uint256 x) internal pure returns (uint256 r) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Isolate the least significant bit.
                                            x := and(x, add(not(x), 1))
                                            // For the upper 3 bits of the result, use a De Bruijn-like lookup.
                                            // Credit to adhusson: https://blog.adhusson.com/cheap-find-first-set-evm/
                                            // forgefmt: disable-next-item
                                            r := shl(5, shr(252, shl(shl(2, shr(250, mul(x,
                                                0xb6db6db6ddddddddd34d34d349249249210842108c6318c639ce739cffffffff))),
                                                0x8040405543005266443200005020610674053026020000107506200176117077)))
                                            // For the lower 5 bits of the result, use a De Bruijn lookup.
                                            // forgefmt: disable-next-item
                                            r := or(r, byte(and(div(0xd76453e0, shr(r, x)), 0x1f),
                                                0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405))
                                        }
                                    }
                                    /// @dev Returns the number of set bits in `x`.
                                    function popCount(uint256 x) internal pure returns (uint256 c) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let max := not(0)
                                            let isMax := eq(x, max)
                                            x := sub(x, and(shr(1, x), div(max, 3)))
                                            x := add(and(x, div(max, 5)), and(shr(2, x), div(max, 5)))
                                            x := and(add(x, shr(4, x)), div(max, 17))
                                            c := or(shl(8, isMax), shr(248, mul(x, div(max, 255))))
                                        }
                                    }
                                    /// @dev Returns whether `x` is a power of 2.
                                    function isPo2(uint256 x) internal pure returns (bool result) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Equivalent to `x && !(x & (x - 1))`.
                                            result := iszero(add(and(x, sub(x, 1)), iszero(x)))
                                        }
                                    }
                                    /// @dev Returns `x` reversed at the bit level.
                                    function reverseBits(uint256 x) internal pure returns (uint256 r) {
                                        uint256 m0 = 0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f;
                                        uint256 m1 = m0 ^ (m0 << 2);
                                        uint256 m2 = m1 ^ (m1 << 1);
                                        r = reverseBytes(x);
                                        r = (m2 & (r >> 1)) | ((m2 & r) << 1);
                                        r = (m1 & (r >> 2)) | ((m1 & r) << 2);
                                        r = (m0 & (r >> 4)) | ((m0 & r) << 4);
                                    }
                                    /// @dev Returns `x` reversed at the byte level.
                                    function reverseBytes(uint256 x) internal pure returns (uint256 r) {
                                        unchecked {
                                            // Computing masks on-the-fly reduces bytecode size by about 200 bytes.
                                            uint256 m0 = 0x100000000000000000000000000000001 * (~toUint(x == uint256(0)) >> 192);
                                            uint256 m1 = m0 ^ (m0 << 32);
                                            uint256 m2 = m1 ^ (m1 << 16);
                                            uint256 m3 = m2 ^ (m2 << 8);
                                            r = (m3 & (x >> 8)) | ((m3 & x) << 8);
                                            r = (m2 & (r >> 16)) | ((m2 & r) << 16);
                                            r = (m1 & (r >> 32)) | ((m1 & r) << 32);
                                            r = (m0 & (r >> 64)) | ((m0 & r) << 64);
                                            r = (r >> 128) | (r << 128);
                                        }
                                    }
                                    /// @dev Returns the common prefix of `x` and `y` at the bit level.
                                    function commonBitPrefix(uint256 x, uint256 y) internal pure returns (uint256) {
                                        unchecked {
                                            uint256 s = 256 - clz(x ^ y);
                                            return (x >> s) << s;
                                        }
                                    }
                                    /// @dev Returns the common prefix of `x` and `y` at the nibble level.
                                    function commonNibblePrefix(uint256 x, uint256 y) internal pure returns (uint256) {
                                        unchecked {
                                            uint256 s = (64 - (clz(x ^ y) >> 2)) << 2;
                                            return (x >> s) << s;
                                        }
                                    }
                                    /// @dev Returns the common prefix of `x` and `y` at the byte level.
                                    function commonBytePrefix(uint256 x, uint256 y) internal pure returns (uint256) {
                                        unchecked {
                                            uint256 s = (32 - (clz(x ^ y) >> 3)) << 3;
                                            return (x >> s) << s;
                                        }
                                    }
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                     BOOLEAN OPERATIONS                     */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                    // A Solidity bool on the stack or memory is represented as a 256-bit word.
                                    // Non-zero values are true, zero is false.
                                    // A clean bool is either 0 (false) or 1 (true) under the hood.
                                    // Usually, if not always, the bool result of a regular Solidity expression,
                                    // or the argument of a public/external function will be a clean bool.
                                    // You can usually use the raw variants for more performance.
                                    // If uncertain, test (best with exact compiler settings).
                                    // Or use the non-raw variants (compiler can sometimes optimize out the double `iszero`s).
                                    /// @dev Returns `x & y`. Inputs must be clean.
                                    function rawAnd(bool x, bool y) internal pure returns (bool z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := and(x, y)
                                        }
                                    }
                                    /// @dev Returns `x & y`.
                                    function and(bool x, bool y) internal pure returns (bool z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := and(iszero(iszero(x)), iszero(iszero(y)))
                                        }
                                    }
                                    /// @dev Returns `x | y`. Inputs must be clean.
                                    function rawOr(bool x, bool y) internal pure returns (bool z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := or(x, y)
                                        }
                                    }
                                    /// @dev Returns `x | y`.
                                    function or(bool x, bool y) internal pure returns (bool z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := or(iszero(iszero(x)), iszero(iszero(y)))
                                        }
                                    }
                                    /// @dev Returns 1 if `b` is true, else 0. Input must be clean.
                                    function rawToUint(bool b) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := b
                                        }
                                    }
                                    /// @dev Returns 1 if `b` is true, else 0.
                                    function toUint(bool b) internal pure returns (uint256 z) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            z := iszero(iszero(b))
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                // Exposes all the storage of a contract via view methods.
                                // Absent https://eips.ethereum.org/EIPS/eip-2330 this makes it easier to access specific pieces of state in the inheriting contract.
                                interface IExposedStorage {
                                    // Loads each slot after the function selector from the contract's storage and returns all of them.
                                    function sload() external view;
                                    // Loads each slot after the function selector from the contract's transient storage and returns all of them.
                                    function tload() external view;
                                }
                                // SPDX-License-Identifier: UNLICENSED
                                pragma solidity =0.8.28;
                                interface ILocker {
                                    function locked(uint256 id) external;
                                }
                                interface IForwardee {
                                    function forwarded(uint256 id, address originalLocker) external;
                                }
                                interface IPayer {
                                    function payCallback(uint256 id, address token) external;
                                }
                                interface IFlashAccountant {
                                    error NotLocked();
                                    error LockerOnly();
                                    error NoPaymentMade();
                                    error DebtsNotZeroed(uint256 id);
                                    // Thrown if the contract receives too much payment in the payment callback or from a direct native token transfer
                                    error PaymentOverflow();
                                    error PayReentrance();
                                    // Create a lock context
                                    // Any data passed after the function signature is passed through back to the caller after the locked function signature and data, with no additional encoding
                                    // In addition, any data returned from ILocker#locked is also returned from this function exactly as is, i.e. with no additional encoding or decoding
                                    // Reverts are also bubbled up
                                    function lock() external;
                                    // Forward the lock from the current locker to the given address
                                    // Any additional calldata is also passed through to the forwardee, with no additional encoding
                                    // In addition, any data returned from IForwardee#forwarded is also returned from this function exactly as is, i.e. with no additional encoding or decoding
                                    // Reverts are also bubbled up
                                    function forward(address to) external;
                                    // Pays the given amount of token, by calling the payCallback function on the caller to afford them the opportunity to make the payment.
                                    // This function, unlike lock and forward, does not return any of the returndata from the callback.
                                    // This function also cannot be re-entered like lock and forward.
                                    // Must be locked, as the contract accounts the payment against the current locker's debts.
                                    // Token must not be the NATIVE_TOKEN_ADDRESS, as the `balanceOf` calls will fail.
                                    // If you want to pay in the chain's native token, simply transfer it to this contract using a call.
                                    // The payer must implement payCallback in which they must transfer the token to Core.
                                    function pay(address token) external returns (uint128 payment);
                                    // Withdraws a token amount from the accountant to the given recipient.
                                    // The contract must be locked, as it tracks the withdrawn amount against the current locker's delta.
                                    function withdraw(address token, address recipient, uint128 amount) external;
                                    // This contract can receive ETH as a payment as well
                                    receive() external payable;
                                }
                                

                                File 6 of 9: FiatTokenProxy
                                pragma solidity ^0.4.24;
                                
                                // File: zos-lib/contracts/upgradeability/Proxy.sol
                                
                                /**
                                 * @title Proxy
                                 * @dev Implements delegation of calls to other contracts, with proper
                                 * forwarding of return values and bubbling of failures.
                                 * It defines a fallback function that delegates all calls to the address
                                 * returned by the abstract _implementation() internal function.
                                 */
                                contract Proxy {
                                  /**
                                   * @dev Fallback function.
                                   * Implemented entirely in `_fallback`.
                                   */
                                  function () payable external {
                                    _fallback();
                                  }
                                
                                  /**
                                   * @return The Address of the implementation.
                                   */
                                  function _implementation() internal view returns (address);
                                
                                  /**
                                   * @dev Delegates execution to an implementation contract.
                                   * This is a low level function that doesn't return to its internal call site.
                                   * It will return to the external caller whatever the implementation returns.
                                   * @param implementation Address to delegate.
                                   */
                                  function _delegate(address implementation) internal {
                                    assembly {
                                      // Copy msg.data. We take full control of memory in this inline assembly
                                      // block because it will not return to Solidity code. We overwrite the
                                      // Solidity scratch pad at memory position 0.
                                      calldatacopy(0, 0, calldatasize)
                                
                                      // Call the implementation.
                                      // out and outsize are 0 because we don't know the size yet.
                                      let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0)
                                
                                      // Copy the returned data.
                                      returndatacopy(0, 0, returndatasize)
                                
                                      switch result
                                      // delegatecall returns 0 on error.
                                      case 0 { revert(0, returndatasize) }
                                      default { return(0, returndatasize) }
                                    }
                                  }
                                
                                  /**
                                   * @dev Function that is run as the first thing in the fallback function.
                                   * Can be redefined in derived contracts to add functionality.
                                   * Redefinitions must call super._willFallback().
                                   */
                                  function _willFallback() internal {
                                  }
                                
                                  /**
                                   * @dev fallback implementation.
                                   * Extracted to enable manual triggering.
                                   */
                                  function _fallback() internal {
                                    _willFallback();
                                    _delegate(_implementation());
                                  }
                                }
                                
                                // File: openzeppelin-solidity/contracts/AddressUtils.sol
                                
                                /**
                                 * Utility library of inline functions on addresses
                                 */
                                library AddressUtils {
                                
                                  /**
                                   * Returns whether the target address is a contract
                                   * @dev This function will return false if invoked during the constructor of a contract,
                                   * as the code is not actually created until after the constructor finishes.
                                   * @param addr address to check
                                   * @return whether the target address is a contract
                                   */
                                  function isContract(address addr) internal view returns (bool) {
                                    uint256 size;
                                    // XXX Currently there is no better way to check if there is a contract in an address
                                    // than to check the size of the code at that address.
                                    // See https://ethereum.stackexchange.com/a/14016/36603
                                    // for more details about how this works.
                                    // TODO Check this again before the Serenity release, because all addresses will be
                                    // contracts then.
                                    // solium-disable-next-line security/no-inline-assembly
                                    assembly { size := extcodesize(addr) }
                                    return size > 0;
                                  }
                                
                                }
                                
                                // File: zos-lib/contracts/upgradeability/UpgradeabilityProxy.sol
                                
                                /**
                                 * @title UpgradeabilityProxy
                                 * @dev This contract implements a proxy that allows to change the
                                 * implementation address to which it will delegate.
                                 * Such a change is called an implementation upgrade.
                                 */
                                contract UpgradeabilityProxy is Proxy {
                                  /**
                                   * @dev Emitted when the implementation is upgraded.
                                   * @param implementation Address of the new implementation.
                                   */
                                  event Upgraded(address implementation);
                                
                                  /**
                                   * @dev Storage slot with the address of the current implementation.
                                   * This is the keccak-256 hash of "org.zeppelinos.proxy.implementation", and is
                                   * validated in the constructor.
                                   */
                                  bytes32 private constant IMPLEMENTATION_SLOT = 0x7050c9e0f4ca769c69bd3a8ef740bc37934f8e2c036e5a723fd8ee048ed3f8c3;
                                
                                  /**
                                   * @dev Contract constructor.
                                   * @param _implementation Address of the initial implementation.
                                   */
                                  constructor(address _implementation) public {
                                    assert(IMPLEMENTATION_SLOT == keccak256("org.zeppelinos.proxy.implementation"));
                                
                                    _setImplementation(_implementation);
                                  }
                                
                                  /**
                                   * @dev Returns the current implementation.
                                   * @return Address of the current implementation
                                   */
                                  function _implementation() internal view returns (address impl) {
                                    bytes32 slot = IMPLEMENTATION_SLOT;
                                    assembly {
                                      impl := sload(slot)
                                    }
                                  }
                                
                                  /**
                                   * @dev Upgrades the proxy to a new implementation.
                                   * @param newImplementation Address of the new implementation.
                                   */
                                  function _upgradeTo(address newImplementation) internal {
                                    _setImplementation(newImplementation);
                                    emit Upgraded(newImplementation);
                                  }
                                
                                  /**
                                   * @dev Sets the implementation address of the proxy.
                                   * @param newImplementation Address of the new implementation.
                                   */
                                  function _setImplementation(address newImplementation) private {
                                    require(AddressUtils.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");
                                
                                    bytes32 slot = IMPLEMENTATION_SLOT;
                                
                                    assembly {
                                      sstore(slot, newImplementation)
                                    }
                                  }
                                }
                                
                                // File: zos-lib/contracts/upgradeability/AdminUpgradeabilityProxy.sol
                                
                                /**
                                 * @title AdminUpgradeabilityProxy
                                 * @dev This contract combines an upgradeability proxy with an authorization
                                 * mechanism for administrative tasks.
                                 * All external functions in this contract must be guarded by the
                                 * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
                                 * feature proposal that would enable this to be done automatically.
                                 */
                                contract AdminUpgradeabilityProxy is UpgradeabilityProxy {
                                  /**
                                   * @dev Emitted when the administration has been transferred.
                                   * @param previousAdmin Address of the previous admin.
                                   * @param newAdmin Address of the new admin.
                                   */
                                  event AdminChanged(address previousAdmin, address newAdmin);
                                
                                  /**
                                   * @dev Storage slot with the admin of the contract.
                                   * This is the keccak-256 hash of "org.zeppelinos.proxy.admin", and is
                                   * validated in the constructor.
                                   */
                                  bytes32 private constant ADMIN_SLOT = 0x10d6a54a4754c8869d6886b5f5d7fbfa5b4522237ea5c60d11bc4e7a1ff9390b;
                                
                                  /**
                                   * @dev Modifier to check whether the `msg.sender` is the admin.
                                   * If it is, it will run the function. Otherwise, it will delegate the call
                                   * to the implementation.
                                   */
                                  modifier ifAdmin() {
                                    if (msg.sender == _admin()) {
                                      _;
                                    } else {
                                      _fallback();
                                    }
                                  }
                                
                                  /**
                                   * Contract constructor.
                                   * It sets the `msg.sender` as the proxy administrator.
                                   * @param _implementation address of the initial implementation.
                                   */
                                  constructor(address _implementation) UpgradeabilityProxy(_implementation) public {
                                    assert(ADMIN_SLOT == keccak256("org.zeppelinos.proxy.admin"));
                                
                                    _setAdmin(msg.sender);
                                  }
                                
                                  /**
                                   * @return The address of the proxy admin.
                                   */
                                  function admin() external view ifAdmin returns (address) {
                                    return _admin();
                                  }
                                
                                  /**
                                   * @return The address of the implementation.
                                   */
                                  function implementation() external view ifAdmin returns (address) {
                                    return _implementation();
                                  }
                                
                                  /**
                                   * @dev Changes the admin of the proxy.
                                   * Only the current admin can call this function.
                                   * @param newAdmin Address to transfer proxy administration to.
                                   */
                                  function changeAdmin(address newAdmin) external ifAdmin {
                                    require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
                                    emit AdminChanged(_admin(), newAdmin);
                                    _setAdmin(newAdmin);
                                  }
                                
                                  /**
                                   * @dev Upgrade the backing implementation of the proxy.
                                   * Only the admin can call this function.
                                   * @param newImplementation Address of the new implementation.
                                   */
                                  function upgradeTo(address newImplementation) external ifAdmin {
                                    _upgradeTo(newImplementation);
                                  }
                                
                                  /**
                                   * @dev Upgrade the backing implementation of the proxy and call a function
                                   * on the new implementation.
                                   * This is useful to initialize the proxied contract.
                                   * @param newImplementation Address of the new implementation.
                                   * @param data Data to send as msg.data in the low level call.
                                   * It should include the signature and the parameters of the function to be
                                   * called, as described in
                                   * https://solidity.readthedocs.io/en/develop/abi-spec.html#function-selector-and-argument-encoding.
                                   */
                                  function upgradeToAndCall(address newImplementation, bytes data) payable external ifAdmin {
                                    _upgradeTo(newImplementation);
                                    require(address(this).call.value(msg.value)(data));
                                  }
                                
                                  /**
                                   * @return The admin slot.
                                   */
                                  function _admin() internal view returns (address adm) {
                                    bytes32 slot = ADMIN_SLOT;
                                    assembly {
                                      adm := sload(slot)
                                    }
                                  }
                                
                                  /**
                                   * @dev Sets the address of the proxy admin.
                                   * @param newAdmin Address of the new proxy admin.
                                   */
                                  function _setAdmin(address newAdmin) internal {
                                    bytes32 slot = ADMIN_SLOT;
                                
                                    assembly {
                                      sstore(slot, newAdmin)
                                    }
                                  }
                                
                                  /**
                                   * @dev Only fall back when the sender is not the admin.
                                   */
                                  function _willFallback() internal {
                                    require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
                                    super._willFallback();
                                  }
                                }
                                
                                // File: contracts/FiatTokenProxy.sol
                                
                                /**
                                * Copyright CENTRE SECZ 2018
                                *
                                * Permission is hereby granted, free of charge, to any person obtaining a copy 
                                * of this software and associated documentation files (the "Software"), to deal 
                                * in the Software without restriction, including without limitation the rights 
                                * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 
                                * copies of the Software, and to permit persons to whom the Software is furnished to 
                                * do so, subject to the following conditions:
                                *
                                * The above copyright notice and this permission notice shall be included in all 
                                * copies or substantial portions of the Software.
                                *
                                * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
                                * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
                                * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
                                * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
                                * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 
                                * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
                                */
                                
                                pragma solidity ^0.4.24;
                                
                                
                                /**
                                 * @title FiatTokenProxy
                                 * @dev This contract proxies FiatToken calls and enables FiatToken upgrades
                                */ 
                                contract FiatTokenProxy is AdminUpgradeabilityProxy {
                                    constructor(address _implementation) public AdminUpgradeabilityProxy(_implementation) {
                                    }
                                }

                                File 7 of 9: MetaAggregationRouterV2
                                // SPDX-License-Identifier: MIT
                                pragma solidity 0.8.9;
                                import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
                                import '@openzeppelin/contracts/utils/Context.sol';
                                import '@openzeppelin/contracts/access/Ownable.sol';
                                import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol';
                                import './dependency/Permitable.sol';
                                import './interfaces/IAggregationExecutor.sol';
                                import './interfaces/IAggregationExecutor1Inch.sol';
                                import './libraries/TransferHelper.sol';
                                import './libraries/RevertReasonParser.sol';
                                contract MetaAggregationRouterV2 is Permitable, Ownable {
                                  using SafeERC20 for IERC20;
                                  address public immutable WETH;
                                  address private constant ETH_ADDRESS = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
                                  uint256 private constant _PARTIAL_FILL = 0x01;
                                  uint256 private constant _REQUIRES_EXTRA_ETH = 0x02;
                                  uint256 private constant _SHOULD_CLAIM = 0x04;
                                  uint256 private constant _BURN_FROM_MSG_SENDER = 0x08;
                                  uint256 private constant _BURN_FROM_TX_ORIGIN = 0x10;
                                  uint256 private constant _SIMPLE_SWAP = 0x20;
                                  uint256 private constant _FEE_ON_DST = 0x40;
                                  uint256 private constant _FEE_IN_BPS = 0x80;
                                  uint256 private constant _APPROVE_FUND = 0x100;
                                  uint256 private constant BPS = 10000;
                                  mapping(address => bool) public isWhitelist;
                                  struct SwapDescriptionV2 {
                                    IERC20 srcToken;
                                    IERC20 dstToken;
                                    address[] srcReceivers; // transfer src token to these addresses, default
                                    uint256[] srcAmounts;
                                    address[] feeReceivers;
                                    uint256[] feeAmounts;
                                    address dstReceiver;
                                    uint256 amount;
                                    uint256 minReturnAmount;
                                    uint256 flags;
                                    bytes permit;
                                  }
                                  /// @dev  use for swapGeneric and swap to avoid stack too deep
                                  struct SwapExecutionParams {
                                    address callTarget; // call this address
                                    address approveTarget; // approve this address if _APPROVE_FUND set
                                    bytes targetData;
                                    SwapDescriptionV2 desc;
                                    bytes clientData;
                                  }
                                  struct SimpleSwapData {
                                    address[] firstPools;
                                    uint256[] firstSwapAmounts;
                                    bytes[] swapDatas;
                                    uint256 deadline;
                                    bytes destTokenFeeData;
                                  }
                                  event Swapped(
                                    address sender,
                                    IERC20 srcToken,
                                    IERC20 dstToken,
                                    address dstReceiver,
                                    uint256 spentAmount,
                                    uint256 returnAmount
                                  );
                                  event ClientData(bytes clientData);
                                  event Exchange(address pair, uint256 amountOut, address output);
                                  event Fee(address token, uint256 totalAmount, uint256 totalFee, address[] recipients, uint256[] amounts, bool isBps);
                                  constructor(address _WETH) {
                                    WETH = _WETH;
                                  }
                                  receive() external payable {}
                                  function rescueFunds(address token, uint256 amount) external onlyOwner {
                                    if (_isETH(IERC20(token))) {
                                      TransferHelper.safeTransferETH(msg.sender, amount);
                                    } else {
                                      TransferHelper.safeTransfer(token, msg.sender, amount);
                                    }
                                  }
                                  function updateWhitelist(address[] memory addr, bool[] memory value) external onlyOwner {
                                    require(addr.length == value.length);
                                    for (uint256 i; i < addr.length; ++i) {
                                      isWhitelist[addr[i]] = value[i];
                                    }
                                  }
                                  function swapGeneric(SwapExecutionParams calldata execution)
                                    external
                                    payable
                                    returns (uint256 returnAmount, uint256 gasUsed)
                                  {
                                    uint256 gasBefore = gasleft();
                                    require(isWhitelist[execution.callTarget], 'Address not whitelisted');
                                    if (execution.approveTarget != execution.callTarget && execution.approveTarget != address(0)) {
                                      require(isWhitelist[execution.approveTarget], 'Address not whitelisted');
                                    }
                                    SwapDescriptionV2 memory desc = execution.desc;
                                    require(desc.minReturnAmount > 0, 'Invalid min return amount');
                                    // if extra eth is needed, in case srcToken is ETH
                                    _collectExtraETHIfNeeded(desc);
                                    _permit(desc.srcToken, desc.amount, desc.permit);
                                    bool feeInBps = _flagsChecked(desc.flags, _FEE_IN_BPS);
                                    uint256 spentAmount;
                                    address dstReceiver = desc.dstReceiver == address(0) ? msg.sender : desc.dstReceiver;
                                    if (!_flagsChecked(desc.flags, _FEE_ON_DST)) {
                                      // fee on src token
                                      // take fee on srcToken
                                      // take fee and deduct total amount
                                      desc.amount = _takeFee(desc.srcToken, msg.sender, desc.feeReceivers, desc.feeAmounts, desc.amount, feeInBps);
                                      bool collected;
                                      if (!_isETH(desc.srcToken) && _flagsChecked(desc.flags, _SHOULD_CLAIM)) {
                                        (collected, desc.amount) = _collectTokenIfNeeded(desc, msg.sender, address(this));
                                      }
                                      _transferFromOrApproveTarget(msg.sender, execution.approveTarget, desc, collected);
                                      // execute swap
                                      (spentAmount, returnAmount) = _executeSwap(
                                        execution.callTarget,
                                        execution.targetData,
                                        desc,
                                        _isETH(desc.srcToken) ? desc.amount : 0,
                                        dstReceiver
                                      );
                                    } else {
                                      bool collected;
                                      if (!_isETH(desc.srcToken) && _flagsChecked(desc.flags, _SHOULD_CLAIM)) {
                                        (collected, desc.amount) = _collectTokenIfNeeded(desc, msg.sender, address(this));
                                      }
                                      uint256 initialDstReceiverBalance = _getBalance(desc.dstToken, dstReceiver);
                                      _transferFromOrApproveTarget(msg.sender, execution.approveTarget, desc, collected);
                                      // fee on dst token
                                      // router get dst token first
                                      (spentAmount, returnAmount) = _executeSwap(
                                        execution.callTarget,
                                        execution.targetData,
                                        desc,
                                        _isETH(desc.srcToken) ? msg.value : 0,
                                        address(this)
                                      );
                                      {
                                        // then take fee on dst token
                                        uint256 leftAmount = _takeFee(
                                          desc.dstToken,
                                          address(this),
                                          desc.feeReceivers,
                                          desc.feeAmounts,
                                          returnAmount,
                                          feeInBps
                                        );
                                        _doTransferERC20(desc.dstToken, address(this), dstReceiver, leftAmount);
                                      }
                                      returnAmount = _getBalance(desc.dstToken, dstReceiver) - initialDstReceiverBalance;
                                    }
                                    // check return amount
                                    _checkReturnAmount(spentAmount, returnAmount, desc);
                                    //revoke allowance
                                    if (!_isETH(desc.srcToken) && execution.approveTarget != address(0)) {
                                      desc.srcToken.safeApprove(execution.approveTarget, 0);
                                    }
                                    emit Swapped(msg.sender, desc.srcToken, desc.dstToken, dstReceiver, spentAmount, returnAmount);
                                    emit Exchange(execution.callTarget, returnAmount, _isETH(desc.dstToken) ? WETH : address(desc.dstToken));
                                    emit ClientData(execution.clientData);
                                    unchecked {
                                      gasUsed = gasBefore - gasleft();
                                    }
                                  }
                                  function swap(SwapExecutionParams calldata execution)
                                    external
                                    payable
                                    returns (uint256 returnAmount, uint256 gasUsed)
                                  {
                                    uint256 gasBefore = gasleft();
                                    SwapDescriptionV2 memory desc = execution.desc;
                                    require(desc.minReturnAmount > 0, 'Min return should not be 0');
                                    require(execution.targetData.length > 0, 'executorData should be not zero');
                                    // simple mode swap
                                    if (_flagsChecked(desc.flags, _SIMPLE_SWAP)) {
                                      return
                                        swapSimpleMode(IAggregationExecutor(execution.callTarget), desc, execution.targetData, execution.clientData);
                                    }
                                    _collectExtraETHIfNeeded(desc);
                                    _permit(desc.srcToken, desc.amount, desc.permit);
                                    bool feeInBps = _flagsChecked(desc.flags, _FEE_IN_BPS);
                                    uint256 spentAmount;
                                    address dstReceiver = desc.dstReceiver == address(0) ? msg.sender : desc.dstReceiver;
                                    if (!_flagsChecked(desc.flags, _FEE_ON_DST)) {
                                      // fee on src token
                                      {
                                        // take fee on srcToken
                                        // deduct total swap amount
                                        desc.amount = _takeFee(
                                          desc.srcToken,
                                          msg.sender,
                                          desc.feeReceivers,
                                          desc.feeAmounts,
                                          _isETH(desc.srcToken) ? msg.value : desc.amount,
                                          feeInBps
                                        );
                                        // transfer fund from msg.sender to our executor
                                        _transferFromOrApproveTarget(msg.sender, address(0), desc, false);
                                        // execute swap
                                        (spentAmount, returnAmount) = _executeSwap(
                                          execution.callTarget,
                                          abi.encodeWithSelector(IAggregationExecutor.callBytes.selector, execution.targetData),
                                          desc,
                                          _isETH(desc.srcToken) ? desc.amount : 0,
                                          dstReceiver
                                        );
                                      }
                                    } else {
                                      // fee on dst token
                                      // router get dst token first
                                      uint256 initialDstReceiverBalance = _getBalance(desc.dstToken, dstReceiver);
                                      // transfer fund from msg.sender to our executor
                                      _transferFromOrApproveTarget(msg.sender, address(0), desc, false);
                                      // swap to receive dstToken on this router
                                      (spentAmount, returnAmount) = _executeSwap(
                                        execution.callTarget,
                                        abi.encodeWithSelector(IAggregationExecutor.callBytes.selector, execution.targetData),
                                        desc,
                                        _isETH(desc.srcToken) ? msg.value : 0,
                                        address(this)
                                      );
                                      {
                                        // then take fee on dst token
                                        uint256 leftAmount = _takeFee(
                                          desc.dstToken,
                                          address(this),
                                          desc.feeReceivers,
                                          desc.feeAmounts,
                                          returnAmount,
                                          feeInBps
                                        );
                                        _doTransferERC20(desc.dstToken, address(this), dstReceiver, leftAmount);
                                      }
                                      returnAmount = _getBalance(desc.dstToken, dstReceiver) - initialDstReceiverBalance;
                                    }
                                    _checkReturnAmount(spentAmount, returnAmount, desc);
                                    emit Swapped(msg.sender, desc.srcToken, desc.dstToken, dstReceiver, spentAmount, returnAmount);
                                    emit Exchange(execution.callTarget, returnAmount, _isETH(desc.dstToken) ? WETH : address(desc.dstToken));
                                    emit ClientData(execution.clientData);
                                    unchecked {
                                      gasUsed = gasBefore - gasleft();
                                    }
                                  }
                                  function swapSimpleMode(
                                    IAggregationExecutor caller,
                                    SwapDescriptionV2 memory desc,
                                    bytes calldata executorData,
                                    bytes calldata clientData
                                  ) public returns (uint256 returnAmount, uint256 gasUsed) {
                                    uint256 gasBefore = gasleft();
                                    require(!_isETH(desc.srcToken), 'src is eth, should use normal swap');
                                    _permit(desc.srcToken, desc.amount, desc.permit);
                                    address dstReceiver = (desc.dstReceiver == address(0)) ? msg.sender : desc.dstReceiver;
                                    {
                                      bool isBps = _flagsChecked(desc.flags, _FEE_IN_BPS);
                                      if (!_flagsChecked(desc.flags, _FEE_ON_DST)) {
                                        // take fee and deduct total swap amount
                                        desc.amount = _takeFee(desc.srcToken, msg.sender, desc.feeReceivers, desc.feeAmounts, desc.amount, isBps);
                                      } else {
                                        dstReceiver = address(this);
                                      }
                                    }
                                    uint256 initialDstBalance = _getBalance(desc.dstToken, dstReceiver);
                                    uint256 initialSrcBalance = _getBalance(desc.srcToken, msg.sender);
                                    _swapMultiSequencesWithSimpleMode(
                                      caller,
                                      address(desc.srcToken),
                                      desc.amount,
                                      address(desc.dstToken),
                                      dstReceiver,
                                      executorData
                                    );
                                    // amount returned to this router
                                    returnAmount = _getBalance(desc.dstToken, dstReceiver) - initialDstBalance;
                                    {
                                      // take fee
                                      if (_flagsChecked(desc.flags, _FEE_ON_DST)) {
                                        {
                                          bool isBps = _flagsChecked(desc.flags, _FEE_IN_BPS);
                                          returnAmount = _takeFee(
                                            desc.dstToken,
                                            address(this),
                                            desc.feeReceivers,
                                            desc.feeAmounts,
                                            returnAmount,
                                            isBps
                                          );
                                        }
                                        IERC20 dstToken = desc.dstToken;
                                        dstReceiver = desc.dstReceiver == address(0) ? msg.sender : desc.dstReceiver;
                                        // dst receiver initial balance
                                        initialDstBalance = _getBalance(dstToken, dstReceiver);
                                        // transfer remainning token to dst receiver
                                        _doTransferERC20(dstToken, address(this), dstReceiver, returnAmount);
                                        // amount returned to dst receiver
                                        returnAmount = _getBalance(dstToken, dstReceiver) - initialDstBalance;
                                      }
                                    }
                                    uint256 spentAmount = initialSrcBalance - _getBalance(desc.srcToken, msg.sender);
                                    _checkReturnAmount(spentAmount, returnAmount, desc);
                                    emit Swapped(msg.sender, desc.srcToken, desc.dstToken, dstReceiver, spentAmount, returnAmount);
                                    emit Exchange(address(caller), returnAmount, _isETH(desc.dstToken) ? WETH : address(desc.dstToken));
                                    emit ClientData(clientData);
                                    unchecked {
                                      gasUsed = gasBefore - gasleft();
                                    }
                                  }
                                  function _doTransferERC20(
                                    IERC20 token,
                                    address from,
                                    address to,
                                    uint256 amount
                                  ) internal {
                                    require(from != to, 'sender != recipient');
                                    if (amount > 0) {
                                      if (_isETH(token)) {
                                        if (from == address(this)) TransferHelper.safeTransferETH(to, amount);
                                      } else {
                                        if (from == address(this)) {
                                          TransferHelper.safeTransfer(address(token), to, amount);
                                        } else {
                                          TransferHelper.safeTransferFrom(address(token), from, to, amount);
                                        }
                                      }
                                    }
                                  }
                                  // Only use this mode if the first pool of each sequence can receive tokenIn directly into the pool
                                  function _swapMultiSequencesWithSimpleMode(
                                    IAggregationExecutor caller,
                                    address tokenIn,
                                    uint256 totalSwapAmount,
                                    address tokenOut,
                                    address dstReceiver,
                                    bytes calldata data
                                  ) internal {
                                    SimpleSwapData memory swapData = abi.decode(data, (SimpleSwapData));
                                    require(swapData.deadline >= block.timestamp, 'ROUTER: Expired');
                                    require(
                                      swapData.firstPools.length == swapData.firstSwapAmounts.length &&
                                        swapData.firstPools.length == swapData.swapDatas.length,
                                      'invalid swap data length'
                                    );
                                    uint256 numberSeq = swapData.firstPools.length;
                                    for (uint256 i = 0; i < numberSeq; i++) {
                                      // collect amount to the first pool
                                      {
                                        uint256 balanceBefore = _getBalance(IERC20(tokenIn), msg.sender);
                                        _doTransferERC20(IERC20(tokenIn), msg.sender, swapData.firstPools[i], swapData.firstSwapAmounts[i]);
                                        require(swapData.firstSwapAmounts[i] <= totalSwapAmount, 'invalid swap amount');
                                        uint256 spentAmount = balanceBefore - _getBalance(IERC20(tokenIn), msg.sender);
                                        totalSwapAmount -= spentAmount;
                                      }
                                      {
                                        // solhint-disable-next-line avoid-low-level-calls
                                        // may take some native tokens for commission fee
                                        (bool success, bytes memory result) = address(caller).call(
                                          abi.encodeWithSelector(caller.swapSingleSequence.selector, swapData.swapDatas[i])
                                        );
                                        if (!success) {
                                          revert(RevertReasonParser.parse(result, 'swapSingleSequence failed: '));
                                        }
                                      }
                                    }
                                    {
                                      // solhint-disable-next-line avoid-low-level-calls
                                      // may take some native tokens for commission fee
                                      (bool success, bytes memory result) = address(caller).call(
                                        abi.encodeWithSelector(
                                          caller.finalTransactionProcessing.selector,
                                          tokenIn,
                                          tokenOut,
                                          dstReceiver,
                                          swapData.destTokenFeeData
                                        )
                                      );
                                      if (!success) {
                                        revert(RevertReasonParser.parse(result, 'finalTransactionProcessing failed: '));
                                      }
                                    }
                                  }
                                  function _getBalance(IERC20 token, address account) internal view returns (uint256) {
                                    if (_isETH(token)) {
                                      return account.balance;
                                    } else {
                                      return token.balanceOf(account);
                                    }
                                  }
                                  function _isETH(IERC20 token) internal pure returns (bool) {
                                    return (address(token) == ETH_ADDRESS);
                                  }
                                  /// @dev this function calls to external contract to execute swap and also validate the returned amounts
                                  function _executeSwap(
                                    address callTarget,
                                    bytes memory targetData,
                                    SwapDescriptionV2 memory desc,
                                    uint256 value,
                                    address dstReceiver
                                  ) internal returns (uint256 spentAmount, uint256 returnAmount) {
                                    uint256 initialDstBalance = _getBalance(desc.dstToken, dstReceiver);
                                    uint256 routerInitialSrcBalance = _getBalance(desc.srcToken, address(this));
                                    uint256 routerInitialDstBalance = _getBalance(desc.dstToken, address(this));
                                    {
                                      // call to external contract
                                      (bool success, ) = callTarget.call{value: value}(targetData);
                                      require(success, 'Call failed');
                                    }
                                    // if the `callTarget` returns amount to `msg.sender`, meaning this contract
                                    if (dstReceiver != address(this)) {
                                      uint256 stuckAmount = _getBalance(desc.dstToken, address(this)) - routerInitialDstBalance;
                                      _doTransferERC20(desc.dstToken, address(this), dstReceiver, stuckAmount);
                                    }
                                    // safe check here
                                    returnAmount = _getBalance(desc.dstToken, dstReceiver) - initialDstBalance;
                                    spentAmount = desc.amount;
                                    //should refund tokens router collected when partial fill
                                    if (
                                      _flagsChecked(desc.flags, _PARTIAL_FILL) && (_isETH(desc.srcToken) || _flagsChecked(desc.flags, _SHOULD_CLAIM))
                                    ) {
                                      uint256 currBalance = _getBalance(desc.srcToken, address(this));
                                      if (currBalance != routerInitialSrcBalance) {
                                        spentAmount = routerInitialSrcBalance - currBalance;
                                        _doTransferERC20(desc.srcToken, address(this), msg.sender, desc.amount - spentAmount);
                                      }
                                    }
                                  }
                                  function _collectExtraETHIfNeeded(SwapDescriptionV2 memory desc) internal {
                                    bool srcETH = _isETH(desc.srcToken);
                                    if (_flagsChecked(desc.flags, _REQUIRES_EXTRA_ETH)) {
                                      require(msg.value > (srcETH ? desc.amount : 0), 'Invalid msg.value');
                                    } else {
                                      require(msg.value == (srcETH ? desc.amount : 0), 'Invalid msg.value');
                                    }
                                  }
                                  function _collectTokenIfNeeded(
                                    SwapDescriptionV2 memory desc,
                                    address from,
                                    address to
                                  ) internal returns (bool collected, uint256 amount) {
                                    require(!_isETH(desc.srcToken), 'Claim token is ETH');
                                    uint256 initialRouterSrcBalance = _getBalance(desc.srcToken, address(this));
                                    _doTransferERC20(desc.srcToken, from, to, desc.amount);
                                    collected = true;
                                    amount = _getBalance(desc.srcToken, address(this)) - initialRouterSrcBalance;
                                  }
                                  /// @dev transfer fund to `callTarget` or approve `approveTarget`
                                  function _transferFromOrApproveTarget(
                                    address from,
                                    address approveTarget,
                                    SwapDescriptionV2 memory desc,
                                    bool collected
                                  ) internal {
                                    // if token is collected
                                    require(desc.srcReceivers.length == desc.srcAmounts.length, 'invalid srcReceivers length');
                                    if (collected) {
                                      if (_flagsChecked(desc.flags, _APPROVE_FUND) && approveTarget != address(0)) {
                                        // approve to approveTarget since some systems use an allowance proxy contract
                                        desc.srcToken.safeIncreaseAllowance(approveTarget, desc.amount);
                                        return;
                                      }
                                    }
                                    uint256 total;
                                    for (uint256 i; i < desc.srcReceivers.length; ++i) {
                                      total += desc.srcAmounts[i];
                                      _doTransferERC20(desc.srcToken, collected ? address(this) : from, desc.srcReceivers[i], desc.srcAmounts[i]);
                                    }
                                    require(total <= desc.amount, 'Exceeded desc.amount');
                                  }
                                  /// @dev token transferred from `from` to `feeData.recipients`
                                  function _takeFee(
                                    IERC20 token,
                                    address from,
                                    address[] memory recipients,
                                    uint256[] memory amounts,
                                    uint256 totalAmount,
                                    bool inBps
                                  ) internal returns (uint256 leftAmount) {
                                    leftAmount = totalAmount;
                                    uint256 recipientsLen = recipients.length;
                                    if (recipientsLen > 0) {
                                      bool isETH = _isETH(token);
                                      uint256 balanceBefore = _getBalance(token, isETH ? address(this) : from);
                                      require(amounts.length == recipientsLen, 'Invalid length');
                                      for (uint256 i; i < recipientsLen; ++i) {
                                        uint256 amount = inBps ? (totalAmount * amounts[i]) / BPS : amounts[i];
                                        _doTransferERC20(token, isETH ? address(this) : from, recipients[i], amount);
                                      }
                                      uint256 totalFee = balanceBefore - _getBalance(token, isETH ? address(this) : from);
                                      leftAmount = totalAmount - totalFee;
                                      emit Fee(address(token), totalAmount, totalFee, recipients, amounts, inBps);
                                    }
                                  }
                                  function _checkReturnAmount(
                                    uint256 spentAmount,
                                    uint256 returnAmount,
                                    SwapDescriptionV2 memory desc
                                  ) internal pure {
                                    if (_flagsChecked(desc.flags, _PARTIAL_FILL)) {
                                      require(returnAmount * desc.amount >= desc.minReturnAmount * spentAmount, 'Return amount is not enough');
                                    } else {
                                      require(returnAmount >= desc.minReturnAmount, 'Return amount is not enough');
                                    }
                                  }
                                  function _flagsChecked(uint256 number, uint256 flag) internal pure returns (bool) {
                                    return number & flag != 0;
                                  }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity ^0.8.0;
                                import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
                                import '@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol';
                                import '../libraries/RevertReasonParser.sol';
                                /*
                                “Copyright (c) 2019-2021 1inch 
                                Permission is hereby granted, free of charge, to any person obtaining a copy of this software
                                and associated documentation files (the "Software"), to deal in the Software without restriction,
                                including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
                                and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
                                subject to the following conditions: 
                                The above copyright notice and this permission notice shall be included
                                in all copies or substantial portions of the Software. 
                                THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
                                THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
                                IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
                                WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
                                OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE”.
                                */
                                contract Permitable {
                                  event Error(string reason);
                                  function _permit(
                                    IERC20 token,
                                    uint256 amount,
                                    bytes memory permit
                                  ) internal {
                                    if (permit.length == 32 * 7) {
                                      // solhint-disable-next-line avoid-low-level-calls
                                      (bool success, bytes memory result) = address(token).call(
                                        abi.encodePacked(IERC20Permit.permit.selector, permit)
                                      );
                                      if (!success) {
                                        string memory reason = RevertReasonParser.parse(result, 'Permit call failed: ');
                                        if (token.allowance(msg.sender, address(this)) < amount) {
                                          revert(reason);
                                        } else {
                                          emit Error(reason);
                                        }
                                      }
                                    }
                                  }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity >=0.6.12;
                                interface IAggregationExecutor {
                                  function callBytes(bytes calldata data) external payable; // 0xd9c45357
                                  // callbytes per swap sequence
                                  function swapSingleSequence(bytes calldata data) external;
                                  function finalTransactionProcessing(
                                    address tokenIn,
                                    address tokenOut,
                                    address to,
                                    bytes calldata destTokenFeeData
                                  ) external;
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity 0.8.9;
                                import '@openzeppelin/contracts/interfaces/IERC20.sol';
                                interface IAggregationExecutor1Inch {
                                  function callBytes(address msgSender, bytes calldata data) external payable; // 0x2636f7f8
                                }
                                interface IAggregationRouter1InchV4 {
                                  function swap(
                                    IAggregationExecutor1Inch caller,
                                    SwapDescription1Inch calldata desc,
                                    bytes calldata data
                                  ) external payable returns (uint256 returnAmount, uint256 gasLeft);
                                }
                                struct SwapDescription1Inch {
                                  IERC20 srcToken;
                                  IERC20 dstToken;
                                  address payable srcReceiver;
                                  address payable dstReceiver;
                                  uint256 amount;
                                  uint256 minReturnAmount;
                                  uint256 flags;
                                  bytes permit;
                                }
                                struct SwapDescriptionExecutor1Inch {
                                  IERC20 srcToken;
                                  IERC20 dstToken;
                                  address payable srcReceiver1Inch;
                                  address payable dstReceiver;
                                  address[] srcReceivers;
                                  uint256[] srcAmounts;
                                  uint256 amount;
                                  uint256 minReturnAmount;
                                  uint256 flags;
                                  bytes permit;
                                }
                                // SPDX-License-Identifier: GPL-3.0-or-later
                                pragma solidity >=0.7.6;
                                /*
                                “Copyright (c) 2019-2021 1inch 
                                Permission is hereby granted, free of charge, to any person obtaining a copy of this software
                                and associated documentation files (the "Software"), to deal in the Software without restriction,
                                including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
                                and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
                                subject to the following conditions: 
                                The above copyright notice and this permission notice shall be included
                                in all copies or substantial portions of the Software. 
                                THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
                                THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
                                IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
                                WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
                                OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE”.
                                */
                                library RevertReasonParser {
                                  function parse(bytes memory data, string memory prefix) internal pure returns (string memory) {
                                    // https://solidity.readthedocs.io/en/latest/control-structures.html#revert
                                    // We assume that revert reason is abi-encoded as Error(string)
                                    // 68 = 4-byte selector 0x08c379a0 + 32 bytes offset + 32 bytes length
                                    if (data.length >= 68 && data[0] == '\\x08' && data[1] == '\\xc3' && data[2] == '\\x79' && data[3] == '\\xa0') {
                                      string memory reason;
                                      // solhint-disable no-inline-assembly
                                      assembly {
                                        // 68 = 32 bytes data length + 4-byte selector + 32 bytes offset
                                        reason := add(data, 68)
                                      }
                                      /*
                                                revert reason is padded up to 32 bytes with ABI encoder: Error(string)
                                                also sometimes there is extra 32 bytes of zeros padded in the end:
                                                https://github.com/ethereum/solidity/issues/10170
                                                because of that we can't check for equality and instead check
                                                that string length + extra 68 bytes is less than overall data length
                                            */
                                      require(data.length >= 68 + bytes(reason).length, 'Invalid revert reason');
                                      return string(abi.encodePacked(prefix, 'Error(', reason, ')'));
                                    }
                                    // 36 = 4-byte selector 0x4e487b71 + 32 bytes integer
                                    else if (data.length == 36 && data[0] == '\\x4e' && data[1] == '\\x48' && data[2] == '\\x7b' && data[3] == '\\x71') {
                                      uint256 code;
                                      // solhint-disable no-inline-assembly
                                      assembly {
                                        // 36 = 32 bytes data length + 4-byte selector
                                        code := mload(add(data, 36))
                                      }
                                      return string(abi.encodePacked(prefix, 'Panic(', _toHex(code), ')'));
                                    }
                                    return string(abi.encodePacked(prefix, 'Unknown(', _toHex(data), ')'));
                                  }
                                  function _toHex(uint256 value) private pure returns (string memory) {
                                    return _toHex(abi.encodePacked(value));
                                  }
                                  function _toHex(bytes memory data) private pure returns (string memory) {
                                    bytes16 alphabet = 0x30313233343536373839616263646566;
                                    bytes memory str = new bytes(2 + data.length * 2);
                                    str[0] = '0';
                                    str[1] = 'x';
                                    for (uint256 i = 0; i < data.length; i++) {
                                      str[2 * i + 2] = alphabet[uint8(data[i] >> 4)];
                                      str[2 * i + 3] = alphabet[uint8(data[i] & 0x0f)];
                                    }
                                    return string(str);
                                  }
                                }
                                // SPDX-License-Identifier: GPL-3.0-or-later
                                pragma solidity >=0.5.16;
                                // helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false
                                library TransferHelper {
                                  function safeApprove(
                                    address token,
                                    address to,
                                    uint256 value
                                  ) internal {
                                    // bytes4(keccak256(bytes('approve(address,uint256)')));
                                    (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));
                                    require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: APPROVE_FAILED');
                                  }
                                  function safeTransfer(
                                    address token,
                                    address to,
                                    uint256 value
                                  ) internal {
                                    // bytes4(keccak256(bytes('transfer(address,uint256)')));
                                    if (value == 0) return;
                                    (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));
                                    require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FAILED');
                                  }
                                  function safeTransferFrom(
                                    address token,
                                    address from,
                                    address to,
                                    uint256 value
                                  ) internal {
                                    // bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
                                    if (value == 0) return;
                                    (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));
                                    require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FROM_FAILED');
                                  }
                                  function safeTransferETH(address to, uint256 value) internal {
                                    if (value == 0) return;
                                    (bool success, ) = to.call{value: value}(new bytes(0));
                                    require(success, 'TransferHelper: ETH_TRANSFER_FAILED');
                                  }
                                }
                                // SPDX-License-Identifier: MIT
                                // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
                                pragma solidity ^0.8.0;
                                import "../utils/Context.sol";
                                /**
                                 * @dev Contract module which provides a basic access control mechanism, where
                                 * there is an account (an owner) that can be granted exclusive access to
                                 * specific functions.
                                 *
                                 * By default, the owner account will be the one that deploys the contract. This
                                 * can later be changed with {transferOwnership}.
                                 *
                                 * This module is used through inheritance. It will make available the modifier
                                 * `onlyOwner`, which can be applied to your functions to restrict their use to
                                 * the owner.
                                 */
                                abstract contract Ownable is Context {
                                    address private _owner;
                                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                                    /**
                                     * @dev Initializes the contract setting the deployer as the initial owner.
                                     */
                                    constructor() {
                                        _transferOwnership(_msgSender());
                                    }
                                    /**
                                     * @dev Returns the address of the current owner.
                                     */
                                    function owner() public view virtual returns (address) {
                                        return _owner;
                                    }
                                    /**
                                     * @dev Throws if called by any account other than the owner.
                                     */
                                    modifier onlyOwner() {
                                        require(owner() == _msgSender(), "Ownable: caller is not the owner");
                                        _;
                                    }
                                    /**
                                     * @dev Leaves the contract without owner. It will not be possible to call
                                     * `onlyOwner` functions anymore. Can only be called by the current owner.
                                     *
                                     * NOTE: Renouncing ownership will leave the contract without an owner,
                                     * thereby removing any functionality that is only available to the owner.
                                     */
                                    function renounceOwnership() public virtual onlyOwner {
                                        _transferOwnership(address(0));
                                    }
                                    /**
                                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                                     * Can only be called by the current owner.
                                     */
                                    function transferOwnership(address newOwner) public virtual onlyOwner {
                                        require(newOwner != address(0), "Ownable: new owner is the zero address");
                                        _transferOwnership(newOwner);
                                    }
                                    /**
                                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                                     * Internal function without access restriction.
                                     */
                                    function _transferOwnership(address newOwner) internal virtual {
                                        address oldOwner = _owner;
                                        _owner = newOwner;
                                        emit OwnershipTransferred(oldOwner, newOwner);
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                // OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)
                                pragma solidity ^0.8.0;
                                import "../token/ERC20/IERC20.sol";
                                // SPDX-License-Identifier: MIT
                                // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                                pragma solidity ^0.8.0;
                                /**
                                 * @dev Interface of the ERC20 standard as defined in the EIP.
                                 */
                                interface IERC20 {
                                    /**
                                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                                     * another (`to`).
                                     *
                                     * Note that `value` may be zero.
                                     */
                                    event Transfer(address indexed from, address indexed to, uint256 value);
                                    /**
                                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                                     * a call to {approve}. `value` is the new allowance.
                                     */
                                    event Approval(address indexed owner, address indexed spender, uint256 value);
                                    /**
                                     * @dev Returns the amount of tokens in existence.
                                     */
                                    function totalSupply() external view returns (uint256);
                                    /**
                                     * @dev Returns the amount of tokens owned by `account`.
                                     */
                                    function balanceOf(address account) external view returns (uint256);
                                    /**
                                     * @dev Moves `amount` tokens from the caller's account to `to`.
                                     *
                                     * Returns a boolean value indicating whether the operation succeeded.
                                     *
                                     * Emits a {Transfer} event.
                                     */
                                    function transfer(address to, uint256 amount) external returns (bool);
                                    /**
                                     * @dev Returns the remaining number of tokens that `spender` will be
                                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                                     * zero by default.
                                     *
                                     * This value changes when {approve} or {transferFrom} are called.
                                     */
                                    function allowance(address owner, address spender) external view returns (uint256);
                                    /**
                                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                                     *
                                     * Returns a boolean value indicating whether the operation succeeded.
                                     *
                                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                                     * that someone may use both the old and the new allowance by unfortunate
                                     * transaction ordering. One possible solution to mitigate this race
                                     * condition is to first reduce the spender's allowance to 0 and set the
                                     * desired value afterwards:
                                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                                     *
                                     * Emits an {Approval} event.
                                     */
                                    function approve(address spender, uint256 amount) external returns (bool);
                                    /**
                                     * @dev Moves `amount` tokens from `from` to `to` using the
                                     * allowance mechanism. `amount` is then deducted from the caller's
                                     * allowance.
                                     *
                                     * Returns a boolean value indicating whether the operation succeeded.
                                     *
                                     * Emits a {Transfer} event.
                                     */
                                    function transferFrom(
                                        address from,
                                        address to,
                                        uint256 amount
                                    ) external returns (bool);
                                }
                                // SPDX-License-Identifier: MIT
                                // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
                                pragma solidity ^0.8.0;
                                /**
                                 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                                 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                                 *
                                 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                                 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                                 * need to send a transaction, and thus is not required to hold Ether at all.
                                 */
                                interface IERC20Permit {
                                    /**
                                     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                                     * given ``owner``'s signed approval.
                                     *
                                     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                                     * ordering also apply here.
                                     *
                                     * Emits an {Approval} event.
                                     *
                                     * Requirements:
                                     *
                                     * - `spender` cannot be the zero address.
                                     * - `deadline` must be a timestamp in the future.
                                     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                                     * over the EIP712-formatted function arguments.
                                     * - the signature must use ``owner``'s current nonce (see {nonces}).
                                     *
                                     * For more information on the signature format, see the
                                     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                                     * section].
                                     */
                                    function permit(
                                        address owner,
                                        address spender,
                                        uint256 value,
                                        uint256 deadline,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) external;
                                    /**
                                     * @dev Returns the current nonce for `owner`. This value must be
                                     * included whenever a signature is generated for {permit}.
                                     *
                                     * Every successful call to {permit} increases ``owner``'s nonce by one. This
                                     * prevents a signature from being used multiple times.
                                     */
                                    function nonces(address owner) external view returns (uint256);
                                    /**
                                     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                                     */
                                    // solhint-disable-next-line func-name-mixedcase
                                    function DOMAIN_SEPARATOR() external view returns (bytes32);
                                }
                                // SPDX-License-Identifier: MIT
                                // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)
                                pragma solidity ^0.8.0;
                                import "../IERC20.sol";
                                import "../../../utils/Address.sol";
                                /**
                                 * @title SafeERC20
                                 * @dev Wrappers around ERC20 operations that throw on failure (when the token
                                 * contract returns false). Tokens that return no value (and instead revert or
                                 * throw on failure) are also supported, non-reverting calls are assumed to be
                                 * successful.
                                 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                                 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                                 */
                                library SafeERC20 {
                                    using Address for address;
                                    function safeTransfer(
                                        IERC20 token,
                                        address to,
                                        uint256 value
                                    ) internal {
                                        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                                    }
                                    function safeTransferFrom(
                                        IERC20 token,
                                        address from,
                                        address to,
                                        uint256 value
                                    ) internal {
                                        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                                    }
                                    /**
                                     * @dev Deprecated. This function has issues similar to the ones found in
                                     * {IERC20-approve}, and its usage is discouraged.
                                     *
                                     * Whenever possible, use {safeIncreaseAllowance} and
                                     * {safeDecreaseAllowance} instead.
                                     */
                                    function safeApprove(
                                        IERC20 token,
                                        address spender,
                                        uint256 value
                                    ) internal {
                                        // safeApprove should only be called when setting an initial allowance,
                                        // or when resetting it to zero. To increase and decrease it, use
                                        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                                        require(
                                            (value == 0) || (token.allowance(address(this), spender) == 0),
                                            "SafeERC20: approve from non-zero to non-zero allowance"
                                        );
                                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                                    }
                                    function safeIncreaseAllowance(
                                        IERC20 token,
                                        address spender,
                                        uint256 value
                                    ) internal {
                                        uint256 newAllowance = token.allowance(address(this), spender) + value;
                                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                                    }
                                    function safeDecreaseAllowance(
                                        IERC20 token,
                                        address spender,
                                        uint256 value
                                    ) internal {
                                        unchecked {
                                            uint256 oldAllowance = token.allowance(address(this), spender);
                                            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                                            uint256 newAllowance = oldAllowance - value;
                                            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                                        }
                                    }
                                    /**
                                     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                                     * on the return value: the return value is optional (but if data is returned, it must not be false).
                                     * @param token The token targeted by the call.
                                     * @param data The call data (encoded using abi.encode or one of its variants).
                                     */
                                    function _callOptionalReturn(IERC20 token, bytes memory data) private {
                                        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                                        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                                        // the target address contains contract code and also asserts for success in the low-level call.
                                        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                                        if (returndata.length > 0) {
                                            // Return data is optional
                                            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
                                pragma solidity ^0.8.1;
                                /**
                                 * @dev Collection of functions related to the address type
                                 */
                                library Address {
                                    /**
                                     * @dev Returns true if `account` is a contract.
                                     *
                                     * [IMPORTANT]
                                     * ====
                                     * It is unsafe to assume that an address for which this function returns
                                     * false is an externally-owned account (EOA) and not a contract.
                                     *
                                     * Among others, `isContract` will return false for the following
                                     * types of addresses:
                                     *
                                     *  - an externally-owned account
                                     *  - a contract in construction
                                     *  - an address where a contract will be created
                                     *  - an address where a contract lived, but was destroyed
                                     * ====
                                     *
                                     * [IMPORTANT]
                                     * ====
                                     * You shouldn't rely on `isContract` to protect against flash loan attacks!
                                     *
                                     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                                     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                                     * constructor.
                                     * ====
                                     */
                                    function isContract(address account) internal view returns (bool) {
                                        // This method relies on extcodesize/address.code.length, which returns 0
                                        // for contracts in construction, since the code is only stored at the end
                                        // of the constructor execution.
                                        return account.code.length > 0;
                                    }
                                    /**
                                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                                     * `recipient`, forwarding all available gas and reverting on errors.
                                     *
                                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                                     * imposed by `transfer`, making them unable to receive funds via
                                     * `transfer`. {sendValue} removes this limitation.
                                     *
                                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                                     *
                                     * IMPORTANT: because control is transferred to `recipient`, care must be
                                     * taken to not create reentrancy vulnerabilities. Consider using
                                     * {ReentrancyGuard} or the
                                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                                     */
                                    function sendValue(address payable recipient, uint256 amount) internal {
                                        require(address(this).balance >= amount, "Address: insufficient balance");
                                        (bool success, ) = recipient.call{value: amount}("");
                                        require(success, "Address: unable to send value, recipient may have reverted");
                                    }
                                    /**
                                     * @dev Performs a Solidity function call using a low level `call`. A
                                     * plain `call` is an unsafe replacement for a function call: use this
                                     * function instead.
                                     *
                                     * If `target` reverts with a revert reason, it is bubbled up by this
                                     * function (like regular Solidity function calls).
                                     *
                                     * Returns the raw returned data. To convert to the expected return value,
                                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                                     *
                                     * Requirements:
                                     *
                                     * - `target` must be a contract.
                                     * - calling `target` with `data` must not revert.
                                     *
                                     * _Available since v3.1._
                                     */
                                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                                        return functionCall(target, data, "Address: low-level call failed");
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                                     * `errorMessage` as a fallback revert reason when `target` reverts.
                                     *
                                     * _Available since v3.1._
                                     */
                                    function functionCall(
                                        address target,
                                        bytes memory data,
                                        string memory errorMessage
                                    ) internal returns (bytes memory) {
                                        return functionCallWithValue(target, data, 0, errorMessage);
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                                     * but also transferring `value` wei to `target`.
                                     *
                                     * Requirements:
                                     *
                                     * - the calling contract must have an ETH balance of at least `value`.
                                     * - the called Solidity function must be `payable`.
                                     *
                                     * _Available since v3.1._
                                     */
                                    function functionCallWithValue(
                                        address target,
                                        bytes memory data,
                                        uint256 value
                                    ) internal returns (bytes memory) {
                                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                                     *
                                     * _Available since v3.1._
                                     */
                                    function functionCallWithValue(
                                        address target,
                                        bytes memory data,
                                        uint256 value,
                                        string memory errorMessage
                                    ) internal returns (bytes memory) {
                                        require(address(this).balance >= value, "Address: insufficient balance for call");
                                        require(isContract(target), "Address: call to non-contract");
                                        (bool success, bytes memory returndata) = target.call{value: value}(data);
                                        return verifyCallResult(success, returndata, errorMessage);
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                                     * but performing a static call.
                                     *
                                     * _Available since v3.3._
                                     */
                                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                                        return functionStaticCall(target, data, "Address: low-level static call failed");
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                                     * but performing a static call.
                                     *
                                     * _Available since v3.3._
                                     */
                                    function functionStaticCall(
                                        address target,
                                        bytes memory data,
                                        string memory errorMessage
                                    ) internal view returns (bytes memory) {
                                        require(isContract(target), "Address: static call to non-contract");
                                        (bool success, bytes memory returndata) = target.staticcall(data);
                                        return verifyCallResult(success, returndata, errorMessage);
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                                     * but performing a delegate call.
                                     *
                                     * _Available since v3.4._
                                     */
                                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                                     * but performing a delegate call.
                                     *
                                     * _Available since v3.4._
                                     */
                                    function functionDelegateCall(
                                        address target,
                                        bytes memory data,
                                        string memory errorMessage
                                    ) internal returns (bytes memory) {
                                        require(isContract(target), "Address: delegate call to non-contract");
                                        (bool success, bytes memory returndata) = target.delegatecall(data);
                                        return verifyCallResult(success, returndata, errorMessage);
                                    }
                                    /**
                                     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                                     * revert reason using the provided one.
                                     *
                                     * _Available since v4.3._
                                     */
                                    function verifyCallResult(
                                        bool success,
                                        bytes memory returndata,
                                        string memory errorMessage
                                    ) internal pure returns (bytes memory) {
                                        if (success) {
                                            return returndata;
                                        } else {
                                            // Look for revert reason and bubble it up if present
                                            if (returndata.length > 0) {
                                                // The easiest way to bubble the revert reason is using memory via assembly
                                                assembly {
                                                    let returndata_size := mload(returndata)
                                                    revert(add(32, returndata), returndata_size)
                                                }
                                            } else {
                                                revert(errorMessage);
                                            }
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                                pragma solidity ^0.8.0;
                                /**
                                 * @dev Provides information about the current execution context, including the
                                 * sender of the transaction and its data. While these are generally available
                                 * via msg.sender and msg.data, they should not be accessed in such a direct
                                 * manner, since when dealing with meta-transactions the account sending and
                                 * paying for execution may not be the actual sender (as far as an application
                                 * is concerned).
                                 *
                                 * This contract is only required for intermediate, library-like contracts.
                                 */
                                abstract contract Context {
                                    function _msgSender() internal view virtual returns (address) {
                                        return msg.sender;
                                    }
                                    function _msgData() internal view virtual returns (bytes calldata) {
                                        return msg.data;
                                    }
                                }
                                

                                File 8 of 9: GenericSwapFacetV3
                                // SPDX-License-Identifier: MIT
                                pragma solidity >=0.8.0 ^0.8.0 ^0.8.17 ^0.8.4;
                                
                                // lib/solmate/src/tokens/ERC20.sol
                                
                                /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
                                /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
                                /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
                                /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
                                abstract contract ERC20 {
                                    /*//////////////////////////////////////////////////////////////
                                                                 EVENTS
                                    //////////////////////////////////////////////////////////////*/
                                
                                    event Transfer(address indexed from, address indexed to, uint256 amount);
                                
                                    event Approval(address indexed owner, address indexed spender, uint256 amount);
                                
                                    /*//////////////////////////////////////////////////////////////
                                                            METADATA STORAGE
                                    //////////////////////////////////////////////////////////////*/
                                
                                    string public name;
                                
                                    string public symbol;
                                
                                    uint8 public immutable decimals;
                                
                                    /*//////////////////////////////////////////////////////////////
                                                              ERC20 STORAGE
                                    //////////////////////////////////////////////////////////////*/
                                
                                    uint256 public totalSupply;
                                
                                    mapping(address => uint256) public balanceOf;
                                
                                    mapping(address => mapping(address => uint256)) public allowance;
                                
                                    /*//////////////////////////////////////////////////////////////
                                                            EIP-2612 STORAGE
                                    //////////////////////////////////////////////////////////////*/
                                
                                    uint256 internal immutable INITIAL_CHAIN_ID;
                                
                                    bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
                                
                                    mapping(address => uint256) public nonces;
                                
                                    /*//////////////////////////////////////////////////////////////
                                                               CONSTRUCTOR
                                    //////////////////////////////////////////////////////////////*/
                                
                                    constructor(
                                        string memory _name,
                                        string memory _symbol,
                                        uint8 _decimals
                                    ) {
                                        name = _name;
                                        symbol = _symbol;
                                        decimals = _decimals;
                                
                                        INITIAL_CHAIN_ID = block.chainid;
                                        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
                                    }
                                
                                    /*//////////////////////////////////////////////////////////////
                                                               ERC20 LOGIC
                                    //////////////////////////////////////////////////////////////*/
                                
                                    function approve(address spender, uint256 amount) public virtual returns (bool) {
                                        allowance[msg.sender][spender] = amount;
                                
                                        emit Approval(msg.sender, spender, amount);
                                
                                        return true;
                                    }
                                
                                    function transfer(address to, uint256 amount) public virtual returns (bool) {
                                        balanceOf[msg.sender] -= amount;
                                
                                        // Cannot overflow because the sum of all user
                                        // balances can't exceed the max uint256 value.
                                        unchecked {
                                            balanceOf[to] += amount;
                                        }
                                
                                        emit Transfer(msg.sender, to, amount);
                                
                                        return true;
                                    }
                                
                                    function transferFrom(
                                        address from,
                                        address to,
                                        uint256 amount
                                    ) public virtual returns (bool) {
                                        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
                                
                                        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
                                
                                        balanceOf[from] -= amount;
                                
                                        // Cannot overflow because the sum of all user
                                        // balances can't exceed the max uint256 value.
                                        unchecked {
                                            balanceOf[to] += amount;
                                        }
                                
                                        emit Transfer(from, to, amount);
                                
                                        return true;
                                    }
                                
                                    /*//////////////////////////////////////////////////////////////
                                                             EIP-2612 LOGIC
                                    //////////////////////////////////////////////////////////////*/
                                
                                    function permit(
                                        address owner,
                                        address spender,
                                        uint256 value,
                                        uint256 deadline,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) public virtual {
                                        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
                                
                                        // Unchecked because the only math done is incrementing
                                        // the owner's nonce which cannot realistically overflow.
                                        unchecked {
                                            address recoveredAddress = ecrecover(
                                                keccak256(
                                                    abi.encodePacked(
                                                        "\x19\x01",
                                                        DOMAIN_SEPARATOR(),
                                                        keccak256(
                                                            abi.encode(
                                                                keccak256(
                                                                    "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                                                ),
                                                                owner,
                                                                spender,
                                                                value,
                                                                nonces[owner]++,
                                                                deadline
                                                            )
                                                        )
                                                    )
                                                ),
                                                v,
                                                r,
                                                s
                                            );
                                
                                            require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
                                
                                            allowance[recoveredAddress][spender] = value;
                                        }
                                
                                        emit Approval(owner, spender, value);
                                    }
                                
                                    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
                                        return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
                                    }
                                
                                    function computeDomainSeparator() internal view virtual returns (bytes32) {
                                        return
                                            keccak256(
                                                abi.encode(
                                                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                                                    keccak256(bytes(name)),
                                                    keccak256("1"),
                                                    block.chainid,
                                                    address(this)
                                                )
                                            );
                                    }
                                
                                    /*//////////////////////////////////////////////////////////////
                                                        INTERNAL MINT/BURN LOGIC
                                    //////////////////////////////////////////////////////////////*/
                                
                                    function _mint(address to, uint256 amount) internal virtual {
                                        totalSupply += amount;
                                
                                        // Cannot overflow because the sum of all user
                                        // balances can't exceed the max uint256 value.
                                        unchecked {
                                            balanceOf[to] += amount;
                                        }
                                
                                        emit Transfer(address(0), to, amount);
                                    }
                                
                                    function _burn(address from, uint256 amount) internal virtual {
                                        balanceOf[from] -= amount;
                                
                                        // Cannot underflow because a user's balance
                                        // will never be larger than the total supply.
                                        unchecked {
                                            totalSupply -= amount;
                                        }
                                
                                        emit Transfer(from, address(0), amount);
                                    }
                                }
                                
                                // src/Errors/GenericErrors.sol
                                
                                /// @custom:version 1.0.1
                                
                                error AlreadyInitialized();
                                error CannotAuthoriseSelf();
                                error CannotBridgeToSameNetwork();
                                error ContractCallNotAllowed();
                                error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
                                error DiamondIsPaused();
                                error ETHTransferFailed();
                                error ExternalCallFailed();
                                error FunctionDoesNotExist();
                                error InformationMismatch();
                                error InsufficientBalance(uint256 required, uint256 balance);
                                error InvalidAmount();
                                error InvalidCallData();
                                error InvalidConfig();
                                error InvalidContract();
                                error InvalidDestinationChain();
                                error InvalidFallbackAddress();
                                error InvalidReceiver();
                                error InvalidSendingToken();
                                error NativeAssetNotSupported();
                                error NativeAssetTransferFailed();
                                error NoSwapDataProvided();
                                error NoSwapFromZeroBalance();
                                error NotAContract();
                                error NotInitialized();
                                error NoTransferToNullAddress();
                                error NullAddrIsNotAnERC20Token();
                                error NullAddrIsNotAValidSpender();
                                error OnlyContractOwner();
                                error RecoveryAddressCannotBeZero();
                                error ReentrancyError();
                                error TokenNotSupported();
                                error TransferFromFailed();
                                error UnAuthorized();
                                error UnsupportedChainId(uint256 chainId);
                                error WithdrawFailed();
                                error ZeroAmount();
                                
                                // lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol
                                
                                // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
                                
                                /**
                                 * @dev Interface of the ERC20 standard as defined in the EIP.
                                 */
                                interface IERC20 {
                                    /**
                                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                                     * another (`to`).
                                     *
                                     * Note that `value` may be zero.
                                     */
                                    event Transfer(address indexed from, address indexed to, uint256 value);
                                
                                    /**
                                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                                     * a call to {approve}. `value` is the new allowance.
                                     */
                                    event Approval(address indexed owner, address indexed spender, uint256 value);
                                
                                    /**
                                     * @dev Returns the amount of tokens in existence.
                                     */
                                    function totalSupply() external view returns (uint256);
                                
                                    /**
                                     * @dev Returns the amount of tokens owned by `account`.
                                     */
                                    function balanceOf(address account) external view returns (uint256);
                                
                                    /**
                                     * @dev Moves `amount` tokens from the caller's account to `to`.
                                     *
                                     * Returns a boolean value indicating whether the operation succeeded.
                                     *
                                     * Emits a {Transfer} event.
                                     */
                                    function transfer(address to, uint256 amount) external returns (bool);
                                
                                    /**
                                     * @dev Returns the remaining number of tokens that `spender` will be
                                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                                     * zero by default.
                                     *
                                     * This value changes when {approve} or {transferFrom} are called.
                                     */
                                    function allowance(address owner, address spender) external view returns (uint256);
                                
                                    /**
                                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                                     *
                                     * Returns a boolean value indicating whether the operation succeeded.
                                     *
                                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                                     * that someone may use both the old and the new allowance by unfortunate
                                     * transaction ordering. One possible solution to mitigate this race
                                     * condition is to first reduce the spender's allowance to 0 and set the
                                     * desired value afterwards:
                                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                                     *
                                     * Emits an {Approval} event.
                                     */
                                    function approve(address spender, uint256 amount) external returns (bool);
                                
                                    /**
                                     * @dev Moves `amount` tokens from `from` to `to` using the
                                     * allowance mechanism. `amount` is then deducted from the caller's
                                     * allowance.
                                     *
                                     * Returns a boolean value indicating whether the operation succeeded.
                                     *
                                     * Emits a {Transfer} event.
                                     */
                                    function transferFrom(address from, address to, uint256 amount) external returns (bool);
                                }
                                
                                // src/Interfaces/ILiFi.sol
                                
                                /// @title LIFI Interface
                                /// @author LI.FI (https://li.fi)
                                /// @custom:version 1.0.0
                                interface ILiFi {
                                    /// Structs ///
                                
                                    struct BridgeData {
                                        bytes32 transactionId;
                                        string bridge;
                                        string integrator;
                                        address referrer;
                                        address sendingAssetId;
                                        address receiver;
                                        uint256 minAmount;
                                        uint256 destinationChainId;
                                        bool hasSourceSwaps;
                                        bool hasDestinationCall;
                                    }
                                
                                    /// Events ///
                                
                                    event LiFiTransferStarted(ILiFi.BridgeData bridgeData);
                                
                                    event LiFiTransferCompleted(
                                        bytes32 indexed transactionId,
                                        address receivingAssetId,
                                        address receiver,
                                        uint256 amount,
                                        uint256 timestamp
                                    );
                                
                                    event LiFiTransferRecovered(
                                        bytes32 indexed transactionId,
                                        address receivingAssetId,
                                        address receiver,
                                        uint256 amount,
                                        uint256 timestamp
                                    );
                                
                                    event LiFiGenericSwapCompleted(
                                        bytes32 indexed transactionId,
                                        string integrator,
                                        string referrer,
                                        address receiver,
                                        address fromAssetId,
                                        address toAssetId,
                                        uint256 fromAmount,
                                        uint256 toAmount
                                    );
                                
                                    // Deprecated but kept here to include in ABI to parse historic events
                                    event LiFiSwappedGeneric(
                                        bytes32 indexed transactionId,
                                        string integrator,
                                        string referrer,
                                        address fromAssetId,
                                        address toAssetId,
                                        uint256 fromAmount,
                                        uint256 toAmount
                                    );
                                }
                                
                                // src/Libraries/LibBytes.sol
                                
                                /// @custom:version 1.0.0
                                
                                library LibBytes {
                                    // solhint-disable no-inline-assembly
                                
                                    // LibBytes specific errors
                                    error SliceOverflow();
                                    error SliceOutOfBounds();
                                    error AddressOutOfBounds();
                                
                                    bytes16 private constant _SYMBOLS = "0123456789abcdef";
                                
                                    // -------------------------
                                
                                    function slice(
                                        bytes memory _bytes,
                                        uint256 _start,
                                        uint256 _length
                                    ) internal pure returns (bytes memory) {
                                        if (_length + 31 < _length) revert SliceOverflow();
                                        if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                                
                                        bytes memory tempBytes;
                                
                                        assembly {
                                            switch iszero(_length)
                                            case 0 {
                                                // Get a location of some free memory and store it in tempBytes as
                                                // Solidity does for memory variables.
                                                tempBytes := mload(0x40)
                                
                                                // The first word of the slice result is potentially a partial
                                                // word read from the original array. To read it, we calculate
                                                // the length of that partial word and start copying that many
                                                // bytes into the array. The first word we copy will start with
                                                // data we don't care about, but the last `lengthmod` bytes will
                                                // land at the beginning of the contents of the new array. When
                                                // we're done copying, we overwrite the full first word with
                                                // the actual length of the slice.
                                                let lengthmod := and(_length, 31)
                                
                                                // The multiplication in the next line is necessary
                                                // because when slicing multiples of 32 bytes (lengthmod == 0)
                                                // the following copy loop was copying the origin's length
                                                // and then ending prematurely not copying everything it should.
                                                let mc := add(
                                                    add(tempBytes, lengthmod),
                                                    mul(0x20, iszero(lengthmod))
                                                )
                                                let end := add(mc, _length)
                                
                                                for {
                                                    // The multiplication in the next line has the same exact purpose
                                                    // as the one above.
                                                    let cc := add(
                                                        add(
                                                            add(_bytes, lengthmod),
                                                            mul(0x20, iszero(lengthmod))
                                                        ),
                                                        _start
                                                    )
                                                } lt(mc, end) {
                                                    mc := add(mc, 0x20)
                                                    cc := add(cc, 0x20)
                                                } {
                                                    mstore(mc, mload(cc))
                                                }
                                
                                                mstore(tempBytes, _length)
                                
                                                //update free-memory pointer
                                                //allocating the array padded to 32 bytes like the compiler does now
                                                mstore(0x40, and(add(mc, 31), not(31)))
                                            }
                                            //if we want a zero-length slice let's just return a zero-length array
                                            default {
                                                tempBytes := mload(0x40)
                                                //zero out the 32 bytes slice we are about to return
                                                //we need to do it because Solidity does not garbage collect
                                                mstore(tempBytes, 0)
                                
                                                mstore(0x40, add(tempBytes, 0x20))
                                            }
                                        }
                                
                                        return tempBytes;
                                    }
                                
                                    function toAddress(
                                        bytes memory _bytes,
                                        uint256 _start
                                    ) internal pure returns (address) {
                                        if (_bytes.length < _start + 20) {
                                            revert AddressOutOfBounds();
                                        }
                                        address tempAddress;
                                
                                        assembly {
                                            tempAddress := div(
                                                mload(add(add(_bytes, 0x20), _start)),
                                                0x1000000000000000000000000
                                            )
                                        }
                                
                                        return tempAddress;
                                    }
                                
                                    /// Copied from OpenZeppelin's `Strings.sol` utility library.
                                    /// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8335676b0e99944eef6a742e16dcd9ff6e68e609/contracts/utils/Strings.sol
                                    function toHexString(
                                        uint256 value,
                                        uint256 length
                                    ) internal pure returns (string memory) {
                                        bytes memory buffer = new bytes(2 * length + 2);
                                        buffer[0] = "0";
                                        buffer[1] = "x";
                                        for (uint256 i = 2 * length + 1; i > 1; --i) {
                                            buffer[i] = _SYMBOLS[value & 0xf];
                                            value >>= 4;
                                        }
                                        require(value == 0, "Strings: hex length insufficient");
                                        return string(buffer);
                                    }
                                }
                                
                                // lib/solady/src/utils/SafeTransferLib.sol
                                
                                /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
                                /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
                                /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
                                /// @author Permit2 operations from (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol)
                                ///
                                /// @dev Note:
                                /// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
                                /// - For ERC20s, this implementation won't check that a token has code,
                                ///   responsibility is delegated to the caller.
                                library SafeTransferLib_0 {
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                       CUSTOM ERRORS                        */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                
                                    /// @dev The ETH transfer has failed.
                                    error ETHTransferFailed();
                                
                                    /// @dev The ERC20 `transferFrom` has failed.
                                    error TransferFromFailed();
                                
                                    /// @dev The ERC20 `transfer` has failed.
                                    error TransferFailed();
                                
                                    /// @dev The ERC20 `approve` has failed.
                                    error ApproveFailed();
                                
                                    /// @dev The Permit2 operation has failed.
                                    error Permit2Failed();
                                
                                    /// @dev The Permit2 amount must be less than `2**160 - 1`.
                                    error Permit2AmountOverflow();
                                
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                         CONSTANTS                          */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                
                                    /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
                                    uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;
                                
                                    /// @dev Suggested gas stipend for contract receiving ETH to perform a few
                                    /// storage reads and writes, but low enough to prevent griefing.
                                    uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;
                                
                                    /// @dev The unique EIP-712 domain domain separator for the DAI token contract.
                                    bytes32 internal constant DAI_DOMAIN_SEPARATOR =
                                        0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7;
                                
                                    /// @dev The address for the WETH9 contract on Ethereum mainnet.
                                    address internal constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
                                
                                    /// @dev The canonical Permit2 address.
                                    /// [Github](https://github.com/Uniswap/permit2)
                                    /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
                                    address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
                                
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                       ETH OPERATIONS                       */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                
                                    // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
                                    //
                                    // The regular variants:
                                    // - Forwards all remaining gas to the target.
                                    // - Reverts if the target reverts.
                                    // - Reverts if the current contract has insufficient balance.
                                    //
                                    // The force variants:
                                    // - Forwards with an optional gas stipend
                                    //   (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
                                    // - If the target reverts, or if the gas stipend is exhausted,
                                    //   creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
                                    //   Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
                                    // - Reverts if the current contract has insufficient balance.
                                    //
                                    // The try variants:
                                    // - Forwards with a mandatory gas stipend.
                                    // - Instead of reverting, returns whether the transfer succeeded.
                                
                                    /// @dev Sends `amount` (in wei) ETH to `to`.
                                    function safeTransferETH(address to, uint256 amount) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
                                                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                        }
                                    }
                                
                                    /// @dev Sends all the ETH in the current contract to `to`.
                                    function safeTransferAllETH(address to) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Transfer all the ETH and check if it succeeded or not.
                                            if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                                                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                        }
                                    }
                                
                                    /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
                                    function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if lt(selfbalance(), amount) {
                                                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                                                mstore(0x00, to) // Store the address in scratch space.
                                                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                                            }
                                        }
                                    }
                                
                                    /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
                                    function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                                                mstore(0x00, to) // Store the address in scratch space.
                                                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                                            }
                                        }
                                    }
                                
                                    /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
                                    function forceSafeTransferETH(address to, uint256 amount) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            if lt(selfbalance(), amount) {
                                                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                                                mstore(0x00, to) // Store the address in scratch space.
                                                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                                            }
                                        }
                                    }
                                
                                    /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
                                    function forceSafeTransferAllETH(address to) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // forgefmt: disable-next-item
                                            if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                                                mstore(0x00, to) // Store the address in scratch space.
                                                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                                                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                                                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
                                            }
                                        }
                                    }
                                
                                    /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
                                    function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
                                        internal
                                        returns (bool success)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
                                        }
                                    }
                                
                                    /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
                                    function trySafeTransferAllETH(address to, uint256 gasStipend)
                                        internal
                                        returns (bool success)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
                                        }
                                    }
                                
                                    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                                    /*                      ERC20 OPERATIONS                      */
                                    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                                
                                    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
                                    /// Reverts upon failure.
                                    ///
                                    /// The `from` account must have at least `amount` approved for
                                    /// the current contract to manage.
                                    function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40) // Cache the free memory pointer.
                                            mstore(0x60, amount) // Store the `amount` argument.
                                            mstore(0x40, to) // Store the `to` argument.
                                            mstore(0x2c, shl(96, from)) // Store the `from` argument.
                                            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
                                            // Perform the transfer, reverting upon failure.
                                            if iszero(
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                                                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                                                )
                                            ) {
                                                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            mstore(0x60, 0) // Restore the zero slot to zero.
                                            mstore(0x40, m) // Restore the free memory pointer.
                                        }
                                    }
                                
                                    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
                                    ///
                                    /// The `from` account must have at least `amount` approved for the current contract to manage.
                                    function trySafeTransferFrom(address token, address from, address to, uint256 amount)
                                        internal
                                        returns (bool success)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40) // Cache the free memory pointer.
                                            mstore(0x60, amount) // Store the `amount` argument.
                                            mstore(0x40, to) // Store the `to` argument.
                                            mstore(0x2c, shl(96, from)) // Store the `from` argument.
                                            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
                                            success :=
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                                                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                                                )
                                            mstore(0x60, 0) // Restore the zero slot to zero.
                                            mstore(0x40, m) // Restore the free memory pointer.
                                        }
                                    }
                                
                                    /// @dev Sends all of ERC20 `token` from `from` to `to`.
                                    /// Reverts upon failure.
                                    ///
                                    /// The `from` account must have their entire balance approved for the current contract to manage.
                                    function safeTransferAllFrom(address token, address from, address to)
                                        internal
                                        returns (uint256 amount)
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40) // Cache the free memory pointer.
                                            mstore(0x40, to) // Store the `to` argument.
                                            mstore(0x2c, shl(96, from)) // Store the `from` argument.
                                            mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
                                            // Read the balance, reverting upon failure.
                                            if iszero(
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                    staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
                                                )
                                            ) {
                                                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
                                            amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
                                            // Perform the transfer, reverting upon failure.
                                            if iszero(
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                                                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                                                )
                                            ) {
                                                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            mstore(0x60, 0) // Restore the zero slot to zero.
                                            mstore(0x40, m) // Restore the free memory pointer.
                                        }
                                    }
                                
                                    /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
                                    /// Reverts upon failure.
                                    function safeTransfer(address token, address to, uint256 amount) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x14, to) // Store the `to` argument.
                                            mstore(0x34, amount) // Store the `amount` argument.
                                            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
                                            // Perform the transfer, reverting upon failure.
                                            if iszero(
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                                                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                                )
                                            ) {
                                                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                                        }
                                    }
                                
                                    /// @dev Sends all of ERC20 `token` from the current contract to `to`.
                                    /// Reverts upon failure.
                                    function safeTransferAll(address token, address to) internal returns (uint256 amount) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
                                            mstore(0x20, address()) // Store the address of the current contract.
                                            // Read the balance, reverting upon failure.
                                            if iszero(
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                    staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
                                                )
                                            ) {
                                                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            mstore(0x14, to) // Store the `to` argument.
                                            amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
                                            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
                                            // Perform the transfer, reverting upon failure.
                                            if iszero(
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                                                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                                )
                                            ) {
                                                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                                        }
                                    }
                                
                                    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
                                    /// Reverts upon failure.
                                    function safeApprove(address token, address to, uint256 amount) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x14, to) // Store the `to` argument.
                                            mstore(0x34, amount) // Store the `amount` argument.
                                            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                                            // Perform the approval, reverting upon failure.
                                            if iszero(
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                                                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                                )
                                            ) {
                                                mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                                                revert(0x1c, 0x04)
                                            }
                                            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                                        }
                                    }
                                
                                    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
                                    /// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
                                    /// then retries the approval again (some tokens, e.g. USDT, requires this).
                                    /// Reverts upon failure.
                                    function safeApproveWithRetry(address token, address to, uint256 amount) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x14, to) // Store the `to` argument.
                                            mstore(0x34, amount) // Store the `amount` argument.
                                            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                                            // Perform the approval, retrying upon failure.
                                            if iszero(
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                                                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                                )
                                            ) {
                                                mstore(0x34, 0) // Store 0 for the `amount`.
                                                mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                                                pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
                                                mstore(0x34, amount) // Store back the original `amount`.
                                                // Retry the approval, reverting upon failure.
                                                if iszero(
                                                    and(
                                                        or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                                                        call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                                                    )
                                                ) {
                                                    mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                                                    revert(0x1c, 0x04)
                                                }
                                            }
                                            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
                                        }
                                    }
                                
                                    /// @dev Returns the amount of ERC20 `token` owned by `account`.
                                    /// Returns zero if the `token` does not exist.
                                    function balanceOf(address token, address account) internal view returns (uint256 amount) {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            mstore(0x14, account) // Store the `account` argument.
                                            mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
                                            amount :=
                                                mul( // The arguments of `mul` are evaluated from right to left.
                                                    mload(0x20),
                                                    and( // The arguments of `and` are evaluated from right to left.
                                                        gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                                                        staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                                                    )
                                                )
                                        }
                                    }
                                
                                    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
                                    /// If the initial attempt fails, try to use Permit2 to transfer the token.
                                    /// Reverts upon failure.
                                    ///
                                    /// The `from` account must have at least `amount` approved for the current contract to manage.
                                    function safeTransferFrom2(address token, address from, address to, uint256 amount) internal {
                                        if (!trySafeTransferFrom(token, from, to, amount)) {
                                            permit2TransferFrom(token, from, to, amount);
                                        }
                                    }
                                
                                    /// @dev Sends `amount` of ERC20 `token` from `from` to `to` via Permit2.
                                    /// Reverts upon failure.
                                    function permit2TransferFrom(address token, address from, address to, uint256 amount)
                                        internal
                                    {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(add(m, 0x74), shr(96, shl(96, token)))
                                            mstore(add(m, 0x54), amount)
                                            mstore(add(m, 0x34), to)
                                            mstore(add(m, 0x20), shl(96, from))
                                            // `transferFrom(address,address,uint160,address)`.
                                            mstore(m, 0x36c78516000000000000000000000000)
                                            let p := PERMIT2
                                            let exists := eq(chainid(), 1)
                                            if iszero(exists) { exists := iszero(iszero(extcodesize(p))) }
                                            if iszero(and(call(gas(), p, 0, add(m, 0x10), 0x84, codesize(), 0x00), exists)) {
                                                mstore(0x00, 0x7939f4248757f0fd) // `TransferFromFailed()` or `Permit2AmountOverflow()`.
                                                revert(add(0x18, shl(2, iszero(iszero(shr(160, amount))))), 0x04)
                                            }
                                        }
                                    }
                                
                                    /// @dev Permit a user to spend a given amount of
                                    /// another user's tokens via native EIP-2612 permit if possible, falling
                                    /// back to Permit2 if native permit fails or is not implemented on the token.
                                    function permit2(
                                        address token,
                                        address owner,
                                        address spender,
                                        uint256 amount,
                                        uint256 deadline,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) internal {
                                        bool success;
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            for {} shl(96, xor(token, WETH9)) {} {
                                                mstore(0x00, 0x3644e515) // `DOMAIN_SEPARATOR()`.
                                                if iszero(
                                                    and( // The arguments of `and` are evaluated from right to left.
                                                        lt(iszero(mload(0x00)), eq(returndatasize(), 0x20)), // Returns 1 non-zero word.
                                                        // Gas stipend to limit gas burn for tokens that don't refund gas when
                                                        // an non-existing function is called. 5K should be enough for a SLOAD.
                                                        staticcall(5000, token, 0x1c, 0x04, 0x00, 0x20)
                                                    )
                                                ) { break }
                                                // After here, we can be sure that token is a contract.
                                                let m := mload(0x40)
                                                mstore(add(m, 0x34), spender)
                                                mstore(add(m, 0x20), shl(96, owner))
                                                mstore(add(m, 0x74), deadline)
                                                if eq(mload(0x00), DAI_DOMAIN_SEPARATOR) {
                                                    mstore(0x14, owner)
                                                    mstore(0x00, 0x7ecebe00000000000000000000000000) // `nonces(address)`.
                                                    mstore(add(m, 0x94), staticcall(gas(), token, 0x10, 0x24, add(m, 0x54), 0x20))
                                                    mstore(m, 0x8fcbaf0c000000000000000000000000) // `IDAIPermit.permit`.
                                                    // `nonces` is already at `add(m, 0x54)`.
                                                    // `1` is already stored at `add(m, 0x94)`.
                                                    mstore(add(m, 0xb4), and(0xff, v))
                                                    mstore(add(m, 0xd4), r)
                                                    mstore(add(m, 0xf4), s)
                                                    success := call(gas(), token, 0, add(m, 0x10), 0x104, codesize(), 0x00)
                                                    break
                                                }
                                                mstore(m, 0xd505accf000000000000000000000000) // `IERC20Permit.permit`.
                                                mstore(add(m, 0x54), amount)
                                                mstore(add(m, 0x94), and(0xff, v))
                                                mstore(add(m, 0xb4), r)
                                                mstore(add(m, 0xd4), s)
                                                success := call(gas(), token, 0, add(m, 0x10), 0xe4, codesize(), 0x00)
                                                break
                                            }
                                        }
                                        if (!success) simplePermit2(token, owner, spender, amount, deadline, v, r, s);
                                    }
                                
                                    /// @dev Simple permit on the Permit2 contract.
                                    function simplePermit2(
                                        address token,
                                        address owner,
                                        address spender,
                                        uint256 amount,
                                        uint256 deadline,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) internal {
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            let m := mload(0x40)
                                            mstore(m, 0x927da105) // `allowance(address,address,address)`.
                                            {
                                                let addressMask := shr(96, not(0))
                                                mstore(add(m, 0x20), and(addressMask, owner))
                                                mstore(add(m, 0x40), and(addressMask, token))
                                                mstore(add(m, 0x60), and(addressMask, spender))
                                                mstore(add(m, 0xc0), and(addressMask, spender))
                                            }
                                            let p := mul(PERMIT2, iszero(shr(160, amount)))
                                            if iszero(
                                                and( // The arguments of `and` are evaluated from right to left.
                                                    gt(returndatasize(), 0x5f), // Returns 3 words: `amount`, `expiration`, `nonce`.
                                                    staticcall(gas(), p, add(m, 0x1c), 0x64, add(m, 0x60), 0x60)
                                                )
                                            ) {
                                                mstore(0x00, 0x6b836e6b8757f0fd) // `Permit2Failed()` or `Permit2AmountOverflow()`.
                                                revert(add(0x18, shl(2, iszero(p))), 0x04)
                                            }
                                            mstore(m, 0x2b67b570) // `Permit2.permit` (PermitSingle variant).
                                            // `owner` is already `add(m, 0x20)`.
                                            // `token` is already at `add(m, 0x40)`.
                                            mstore(add(m, 0x60), amount)
                                            mstore(add(m, 0x80), 0xffffffffffff) // `expiration = type(uint48).max`.
                                            // `nonce` is already at `add(m, 0xa0)`.
                                            // `spender` is already at `add(m, 0xc0)`.
                                            mstore(add(m, 0xe0), deadline)
                                            mstore(add(m, 0x100), 0x100) // `signature` offset.
                                            mstore(add(m, 0x120), 0x41) // `signature` length.
                                            mstore(add(m, 0x140), r)
                                            mstore(add(m, 0x160), s)
                                            mstore(add(m, 0x180), shl(248, v))
                                            if iszero(call(gas(), p, 0, add(m, 0x1c), 0x184, codesize(), 0x00)) {
                                                mstore(0x00, 0x6b836e6b) // `Permit2Failed()`.
                                                revert(0x1c, 0x04)
                                            }
                                        }
                                    }
                                }
                                
                                // src/Libraries/LibAllowList.sol
                                
                                /// @custom:version 1.0.0
                                
                                /// @title Lib Allow List
                                /// @author LI.FI (https://li.fi)
                                /// @notice Library for managing and accessing the conract address allow list
                                library LibAllowList {
                                    /// Storage ///
                                    bytes32 internal constant NAMESPACE =
                                        keccak256("com.lifi.library.allow.list");
                                
                                    struct AllowListStorage {
                                        mapping(address => bool) allowlist;
                                        mapping(bytes4 => bool) selectorAllowList;
                                        address[] contracts;
                                    }
                                
                                    /// @dev Adds a contract address to the allow list
                                    /// @param _contract the contract address to add
                                    function addAllowedContract(address _contract) internal {
                                        _checkAddress(_contract);
                                
                                        AllowListStorage storage als = _getStorage();
                                
                                        if (als.allowlist[_contract]) return;
                                
                                        als.allowlist[_contract] = true;
                                        als.contracts.push(_contract);
                                    }
                                
                                    /// @dev Checks whether a contract address has been added to the allow list
                                    /// @param _contract the contract address to check
                                    function contractIsAllowed(
                                        address _contract
                                    ) internal view returns (bool) {
                                        return _getStorage().allowlist[_contract];
                                    }
                                
                                    /// @dev Remove a contract address from the allow list
                                    /// @param _contract the contract address to remove
                                    function removeAllowedContract(address _contract) internal {
                                        AllowListStorage storage als = _getStorage();
                                
                                        if (!als.allowlist[_contract]) {
                                            return;
                                        }
                                
                                        als.allowlist[_contract] = false;
                                
                                        uint256 length = als.contracts.length;
                                        // Find the contract in the list
                                        for (uint256 i = 0; i < length; i++) {
                                            if (als.contracts[i] == _contract) {
                                                // Move the last element into the place to delete
                                                als.contracts[i] = als.contracts[length - 1];
                                                // Remove the last element
                                                als.contracts.pop();
                                                break;
                                            }
                                        }
                                    }
                                
                                    /// @dev Fetch contract addresses from the allow list
                                    function getAllowedContracts() internal view returns (address[] memory) {
                                        return _getStorage().contracts;
                                    }
                                
                                    /// @dev Add a selector to the allow list
                                    /// @param _selector the selector to add
                                    function addAllowedSelector(bytes4 _selector) internal {
                                        _getStorage().selectorAllowList[_selector] = true;
                                    }
                                
                                    /// @dev Removes a selector from the allow list
                                    /// @param _selector the selector to remove
                                    function removeAllowedSelector(bytes4 _selector) internal {
                                        _getStorage().selectorAllowList[_selector] = false;
                                    }
                                
                                    /// @dev Returns if selector has been added to the allow list
                                    /// @param _selector the selector to check
                                    function selectorIsAllowed(bytes4 _selector) internal view returns (bool) {
                                        return _getStorage().selectorAllowList[_selector];
                                    }
                                
                                    /// @dev Fetch local storage struct
                                    function _getStorage()
                                        internal
                                        pure
                                        returns (AllowListStorage storage als)
                                    {
                                        bytes32 position = NAMESPACE;
                                        // solhint-disable-next-line no-inline-assembly
                                        assembly {
                                            als.slot := position
                                        }
                                    }
                                
                                    /// @dev Contains business logic for validating a contract address.
                                    /// @param _contract address of the dex to check
                                    function _checkAddress(address _contract) private view {
                                        if (_contract == address(0)) revert InvalidContract();
                                
                                        if (_contract.code.length == 0) revert InvalidContract();
                                    }
                                }
                                
                                // src/Libraries/LibUtil.sol
                                
                                /// @custom:version 1.0.0
                                
                                library LibUtil {
                                    using LibBytes for bytes;
                                
                                    function getRevertMsg(
                                        bytes memory _res
                                    ) internal pure returns (string memory) {
                                        // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                                        if (_res.length < 68) return "Transaction reverted silently";
                                        bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                                        return abi.decode(revertData, (string)); // All that remains is the revert string
                                    }
                                
                                    /// @notice Determines whether the given address is the zero address
                                    /// @param addr The address to verify
                                    /// @return Boolean indicating if the address is the zero address
                                    function isZeroAddress(address addr) internal pure returns (bool) {
                                        return addr == address(0);
                                    }
                                
                                    function revertWith(bytes memory data) internal pure {
                                        assembly {
                                            let dataSize := mload(data) // Load the size of the data
                                            let dataPtr := add(data, 0x20) // Advance data pointer to the next word
                                            revert(dataPtr, dataSize) // Revert with the given data
                                        }
                                    }
                                }
                                
                                // lib/solmate/src/utils/SafeTransferLib.sol
                                
                                /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
                                /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
                                /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
                                /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
                                library SafeTransferLib_1 {
                                    /*//////////////////////////////////////////////////////////////
                                                             ETH OPERATIONS
                                    //////////////////////////////////////////////////////////////*/
                                
                                    function safeTransferETH(address to, uint256 amount) internal {
                                        bool success;
                                
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Transfer the ETH and store if it succeeded or not.
                                            success := call(gas(), to, amount, 0, 0, 0, 0)
                                        }
                                
                                        require(success, "ETH_TRANSFER_FAILED");
                                    }
                                
                                    /*//////////////////////////////////////////////////////////////
                                                            ERC20 OPERATIONS
                                    //////////////////////////////////////////////////////////////*/
                                
                                    function safeTransferFrom(
                                        ERC20 token,
                                        address from,
                                        address to,
                                        uint256 amount
                                    ) internal {
                                        bool success;
                                
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Get a pointer to some free memory.
                                            let freeMemoryPointer := mload(0x40)
                                
                                            // Write the abi-encoded calldata into memory, beginning with the function selector.
                                            mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                                            mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument.
                                            mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument.
                                            mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument.
                                
                                            success := and(
                                                // Set success to whether the call reverted, if not we check it either
                                                // returned exactly 1 (can't just be non-zero data), or had no return data.
                                                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                                                // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                                                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                                                // Counterintuitively, this call must be positioned second to the or() call in the
                                                // surrounding and() call or else returndatasize() will be zero during the computation.
                                                call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
                                            )
                                        }
                                
                                        require(success, "TRANSFER_FROM_FAILED");
                                    }
                                
                                    function safeTransfer(
                                        ERC20 token,
                                        address to,
                                        uint256 amount
                                    ) internal {
                                        bool success;
                                
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Get a pointer to some free memory.
                                            let freeMemoryPointer := mload(0x40)
                                
                                            // Write the abi-encoded calldata into memory, beginning with the function selector.
                                            mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                                            mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
                                            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
                                
                                            success := and(
                                                // Set success to whether the call reverted, if not we check it either
                                                // returned exactly 1 (can't just be non-zero data), or had no return data.
                                                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                                                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                                                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                                                // Counterintuitively, this call must be positioned second to the or() call in the
                                                // surrounding and() call or else returndatasize() will be zero during the computation.
                                                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                                            )
                                        }
                                
                                        require(success, "TRANSFER_FAILED");
                                    }
                                
                                    function safeApprove(
                                        ERC20 token,
                                        address to,
                                        uint256 amount
                                    ) internal {
                                        bool success;
                                
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            // Get a pointer to some free memory.
                                            let freeMemoryPointer := mload(0x40)
                                
                                            // Write the abi-encoded calldata into memory, beginning with the function selector.
                                            mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
                                            mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
                                            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
                                
                                            success := and(
                                                // Set success to whether the call reverted, if not we check it either
                                                // returned exactly 1 (can't just be non-zero data), or had no return data.
                                                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                                                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                                                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                                                // Counterintuitively, this call must be positioned second to the or() call in the
                                                // surrounding and() call or else returndatasize() will be zero during the computation.
                                                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                                            )
                                        }
                                
                                        require(success, "APPROVE_FAILED");
                                    }
                                }
                                
                                // src/Libraries/LibAsset.sol
                                
                                /// @title LibAsset
                                /// @custom:version 2.0.0
                                /// @notice This library contains helpers for dealing with onchain transfers
                                ///         of assets, including accounting for the native asset `assetId`
                                ///         conventions and any noncompliant ERC20 transfers
                                library LibAsset {
                                    using SafeTransferLib_0 for address;
                                    using SafeTransferLib_0 for address payable;
                                
                                    address internal constant NULL_ADDRESS = address(0);
                                
                                    address internal constant NON_EVM_ADDRESS =
                                        0x11f111f111f111F111f111f111F111f111f111F1;
                                
                                    /// @dev All native assets use the empty address for their asset id
                                    ///      by convention
                                
                                    address internal constant NATIVE_ASSETID = NULL_ADDRESS;
                                
                                    /// @dev EIP-7702 delegation designator prefix for Account Abstraction
                                    bytes3 internal constant DELEGATION_DESIGNATOR = 0xef0100;
                                
                                    /// @notice Gets the balance of the inheriting contract for the given asset
                                    /// @param assetId The asset identifier to get the balance of
                                    /// @return Balance held by contracts using this library (returns 0 if assetId does not exist)
                                    function getOwnBalance(address assetId) internal view returns (uint256) {
                                        return
                                            isNativeAsset(assetId)
                                                ? address(this).balance
                                                : assetId.balanceOf(address(this));
                                    }
                                
                                    /// @notice Wrapper function to transfer a given asset (native or erc20) to
                                    ///         some recipient. Should handle all non-compliant return value
                                    ///         tokens as well by using the SafeERC20 contract by open zeppelin.
                                    /// @param assetId Asset id for transfer (address(0) for native asset,
                                    ///                token address for erc20s)
                                    /// @param recipient Address to send asset to
                                    /// @param amount Amount to send to given recipient
                                    function transferAsset(
                                        address assetId,
                                        address payable recipient,
                                        uint256 amount
                                    ) internal {
                                        if (isNativeAsset(assetId)) {
                                            transferNativeAsset(recipient, amount);
                                        } else {
                                            transferERC20(assetId, recipient, amount);
                                        }
                                    }
                                
                                    /// @notice Transfers ether from the inheriting contract to a given
                                    ///         recipient
                                    /// @param recipient Address to send ether to
                                    /// @param amount Amount to send to given recipient
                                    function transferNativeAsset(
                                        address payable recipient,
                                        uint256 amount
                                    ) private {
                                        // make sure a meaningful receiver address was provided
                                        if (recipient == NULL_ADDRESS) revert InvalidReceiver();
                                
                                        // transfer native asset (will revert if target reverts or contract has insufficient balance)
                                        recipient.safeTransferETH(amount);
                                    }
                                
                                    /// @notice Transfers tokens from the inheriting contract to a given recipient
                                    /// @param assetId Token address to transfer
                                    /// @param recipient Address to send tokens to
                                    /// @param amount Amount to send to given recipient
                                    function transferERC20(
                                        address assetId,
                                        address recipient,
                                        uint256 amount
                                    ) private {
                                        // make sure a meaningful receiver address was provided
                                        if (recipient == NULL_ADDRESS) {
                                            revert InvalidReceiver();
                                        }
                                
                                        // transfer ERC20 assets (will revert if target reverts or contract has insufficient balance)
                                        assetId.safeTransfer(recipient, amount);
                                    }
                                
                                    /// @notice Transfers tokens from a sender to a given recipient
                                    /// @param assetId Token address to transfer
                                    /// @param from Address of sender/owner
                                    /// @param recipient Address of recipient/spender
                                    /// @param amount Amount to transfer from owner to spender
                                    function transferFromERC20(
                                        address assetId,
                                        address from,
                                        address recipient,
                                        uint256 amount
                                    ) internal {
                                        // check if native asset
                                        if (isNativeAsset(assetId)) {
                                            revert NullAddrIsNotAnERC20Token();
                                        }
                                
                                        // make sure a meaningful receiver address was provided
                                        if (recipient == NULL_ADDRESS) {
                                            revert InvalidReceiver();
                                        }
                                
                                        // transfer ERC20 assets (will revert if target reverts or contract has insufficient balance)
                                        assetId.safeTransferFrom(from, recipient, amount);
                                    }
                                
                                    /// @notice Pulls tokens from msg.sender
                                    /// @param assetId Token address to transfer
                                    /// @param amount Amount to transfer from owner
                                    function depositAsset(address assetId, uint256 amount) internal {
                                        // make sure a meaningful amount was provided
                                        if (amount == 0) revert InvalidAmount();
                                
                                        // check if native asset
                                        if (isNativeAsset(assetId)) {
                                            // ensure msg.value is equal or greater than amount
                                            if (msg.value < amount) revert InvalidAmount();
                                        } else {
                                            // transfer ERC20 assets (will revert if target reverts or contract has insufficient balance)
                                            assetId.safeTransferFrom(msg.sender, address(this), amount);
                                        }
                                    }
                                
                                    function depositAssets(LibSwap.SwapData[] calldata swaps) internal {
                                        for (uint256 i = 0; i < swaps.length; ) {
                                            LibSwap.SwapData calldata swap = swaps[i];
                                            if (swap.requiresDeposit) {
                                                depositAsset(swap.sendingAssetId, swap.fromAmount);
                                            }
                                            unchecked {
                                                i++;
                                            }
                                        }
                                    }
                                
                                    /// @notice If the current allowance is insufficient, the allowance for a given spender
                                    ///         is set to MAX_UINT.
                                    /// @param assetId Token address to transfer
                                    /// @param spender Address to give spend approval to
                                    /// @param amount allowance amount required for current transaction
                                    function maxApproveERC20(
                                        IERC20 assetId,
                                        address spender,
                                        uint256 amount
                                    ) internal {
                                        approveERC20(assetId, spender, amount, type(uint256).max);
                                    }
                                
                                    /// @notice If the current allowance is insufficient, the allowance for a given spender
                                    ///         is set to the amount provided
                                    /// @param assetId Token address to transfer
                                    /// @param spender Address to give spend approval to
                                    /// @param requiredAllowance Allowance required for current transaction
                                    /// @param setAllowanceTo The amount the allowance should be set to if current allowance is insufficient
                                    function approveERC20(
                                        IERC20 assetId,
                                        address spender,
                                        uint256 requiredAllowance,
                                        uint256 setAllowanceTo
                                    ) internal {
                                        if (isNativeAsset(address(assetId))) {
                                            return;
                                        }
                                
                                        // make sure a meaningful spender address was provided
                                        if (spender == NULL_ADDRESS) {
                                            revert NullAddrIsNotAValidSpender();
                                        }
                                
                                        // check if allowance is sufficient, otherwise set allowance to provided amount
                                        // If the initial attempt to approve fails, attempts to reset the approved amount to zero,
                                        // then retries the approval again (some tokens, e.g. USDT, requires this).
                                        // Reverts upon failure
                                        if (assetId.allowance(address(this), spender) < requiredAllowance) {
                                            address(assetId).safeApproveWithRetry(spender, setAllowanceTo);
                                        }
                                    }
                                
                                    /// @notice Determines whether the given assetId is the native asset
                                    /// @param assetId The asset identifier to evaluate
                                    /// @return Boolean indicating if the asset is the native asset
                                    function isNativeAsset(address assetId) internal pure returns (bool) {
                                        return assetId == NATIVE_ASSETID;
                                    }
                                
                                    /// @notice Checks if the given address is a contract (including EIP‑7702 AA‑wallets)
                                    ///         Returns true for any account with runtime code or with the 0xef0100 prefix (EIP‑7702).
                                    ///         Limitations:
                                    ///         - Still returns false during construction phase of a contract
                                    ///         - Cannot distinguish between EOA and self-destructed contract
                                    /// @param account The address to be checked
                                    function isContract(address account) internal view returns (bool) {
                                        bytes memory code = new bytes(23); // 3 bytes prefix + 20 bytes address
                                
                                        assembly {
                                            extcodecopy(account, add(code, 0x20), 0, 23)
                                        }
                                
                                        // Check for delegation designator prefix
                                        bytes3 prefix;
                                        assembly {
                                            prefix := mload(add(code, 32))
                                        }
                                
                                        if (prefix == DELEGATION_DESIGNATOR) {
                                            // Extract delegate address (next 20 bytes)
                                            address delegateAddr;
                                            assembly {
                                                delegateAddr := mload(add(add(code, 0x20), 3))
                                                delegateAddr := shr(96, delegateAddr)
                                            }
                                
                                            // Only check first level of delegation
                                            uint256 delegateSize;
                                            assembly {
                                                delegateSize := extcodesize(delegateAddr)
                                            }
                                            return delegateSize > 0;
                                        }
                                
                                        // If not delegated, check if it's a regular contract
                                        uint256 size;
                                        assembly {
                                            size := extcodesize(account)
                                        }
                                        return size > 0;
                                    }
                                }
                                
                                // src/Libraries/LibSwap.sol
                                
                                /// @title LibSwap
                                /// @custom:version 1.1.0
                                /// @notice This library contains functionality to execute mostly swaps but also
                                ///         other calls such as fee collection, token wrapping/unwrapping or
                                ///         sending gas to destination chain
                                library LibSwap {
                                    /// @notice Struct containing all necessary data to execute a swap or generic call
                                    /// @param callTo The address of the contract to call for executing the swap
                                    /// @param approveTo The address that will receive token approval (can be different than callTo for some DEXs)
                                    /// @param sendingAssetId The address of the token being sent
                                    /// @param receivingAssetId The address of the token expected to be received
                                    /// @param fromAmount The exact amount of the sending asset to be used in the call
                                    /// @param callData Encoded function call data to be sent to the `callTo` contract
                                    /// @param requiresDeposit A flag indicating whether the tokens must be deposited (pulled) before the call
                                    struct SwapData {
                                        address callTo;
                                        address approveTo;
                                        address sendingAssetId;
                                        address receivingAssetId;
                                        uint256 fromAmount;
                                        bytes callData;
                                        bool requiresDeposit;
                                    }
                                
                                    /// @notice Emitted after a successful asset swap or related operation
                                    /// @param transactionId    The unique identifier associated with the swap operation
                                    /// @param dex              The address of the DEX or contract that handled the swap
                                    /// @param fromAssetId      The address of the token that was sent
                                    /// @param toAssetId        The address of the token that was received
                                    /// @param fromAmount       The amount of `fromAssetId` sent
                                    /// @param toAmount         The amount of `toAssetId` received
                                    /// @param timestamp        The timestamp when the swap was executed
                                    event AssetSwapped(
                                        bytes32 transactionId,
                                        address dex,
                                        address fromAssetId,
                                        address toAssetId,
                                        uint256 fromAmount,
                                        uint256 toAmount,
                                        uint256 timestamp
                                    );
                                
                                    function swap(bytes32 transactionId, SwapData calldata _swap) internal {
                                        // make sure callTo is a contract
                                        if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
                                
                                        // make sure that fromAmount is not 0
                                        uint256 fromAmount = _swap.fromAmount;
                                        if (fromAmount == 0) revert NoSwapFromZeroBalance();
                                
                                        // determine how much native value to send with the swap call
                                        uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
                                            ? _swap.fromAmount
                                            : 0;
                                
                                        // store initial balance (required for event emission)
                                        uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
                                            _swap.receivingAssetId
                                        );
                                
                                        // max approve (if ERC20)
                                        if (nativeValue == 0) {
                                            LibAsset.maxApproveERC20(
                                                IERC20(_swap.sendingAssetId),
                                                _swap.approveTo,
                                                _swap.fromAmount
                                            );
                                        }
                                
                                        // we used to have a sending asset balance check here (initialSendingAssetBalance >= _swap.fromAmount)
                                        // this check was removed to allow for more flexibility with rebasing/fee-taking tokens
                                        // the general assumption is that if not enough tokens are available to execute the calldata, the transaction will fail anyway
                                        // the error message might not be as explicit though
                                
                                        // execute the swap
                                        // solhint-disable-next-line avoid-low-level-calls
                                        (bool success, bytes memory res) = _swap.callTo.call{
                                            value: nativeValue
                                        }(_swap.callData);
                                        if (!success) {
                                            LibUtil.revertWith(res);
                                        }
                                
                                        // get post-swap balance
                                        uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                                
                                        // emit event
                                        emit AssetSwapped(
                                            transactionId,
                                            _swap.callTo,
                                            _swap.sendingAssetId,
                                            _swap.receivingAssetId,
                                            _swap.fromAmount,
                                            newBalance > initialReceivingAssetBalance
                                                ? newBalance - initialReceivingAssetBalance
                                                : newBalance,
                                            block.timestamp
                                        );
                                    }
                                }
                                
                                // src/Facets/GenericSwapFacetV3.sol
                                
                                /// @title GenericSwapFacetV3
                                /// @author LI.FI (https://li.fi)
                                /// @notice Provides gas-optimized functionality for fee collection and for swapping through any APPROVED DEX
                                /// @dev Can only execute calldata for APPROVED function selectors
                                /// @custom:version 1.0.2
                                contract GenericSwapFacetV3 is ILiFi {
                                    using SafeTransferLib_1 for ERC20;
                                
                                    /// Storage
                                    address public immutable NATIVE_ADDRESS;
                                
                                    /// Constructor
                                    /// @param _nativeAddress the address of the native token for this network
                                    constructor(address _nativeAddress) {
                                        NATIVE_ADDRESS = _nativeAddress;
                                    }
                                
                                    /// External Methods ///
                                
                                    // SINGLE SWAPS
                                
                                    /// @notice Performs a single swap from an ERC20 token to another ERC20 token
                                    /// @param _transactionId the transaction id associated with the operation
                                    /// @param _integrator the name of the integrator
                                    /// @param _referrer the address of the referrer
                                    /// @param _receiver the address to receive the swapped tokens into (also excess tokens)
                                    /// @param _minAmountOut the minimum amount of the final asset to receive
                                    /// @param _swapData an object containing swap related data to perform swaps before bridging
                                    function swapTokensSingleV3ERC20ToERC20(
                                        bytes32 _transactionId,
                                        string calldata _integrator,
                                        string calldata _referrer,
                                        address payable _receiver,
                                        uint256 _minAmountOut,
                                        LibSwap.SwapData calldata _swapData
                                    ) external {
                                        _depositAndSwapERC20Single(_swapData, _receiver);
                                
                                        address receivingAssetId = _swapData.receivingAssetId;
                                        address sendingAssetId = _swapData.sendingAssetId;
                                
                                        // get contract's balance (which will be sent in full to user)
                                        uint256 amountReceived = ERC20(receivingAssetId).balanceOf(
                                            address(this)
                                        );
                                
                                        // ensure that minAmountOut was received
                                        if (amountReceived < _minAmountOut)
                                            revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived);
                                
                                        // transfer funds to receiver
                                        ERC20(receivingAssetId).safeTransfer(_receiver, amountReceived);
                                
                                        // emit events (both required for tracking)
                                        uint256 fromAmount = _swapData.fromAmount;
                                        emit LibSwap.AssetSwapped(
                                            _transactionId,
                                            _swapData.callTo,
                                            sendingAssetId,
                                            receivingAssetId,
                                            fromAmount,
                                            amountReceived,
                                            block.timestamp
                                        );
                                
                                        emit ILiFi.LiFiGenericSwapCompleted(
                                            _transactionId,
                                            _integrator,
                                            _referrer,
                                            _receiver,
                                            sendingAssetId,
                                            receivingAssetId,
                                            fromAmount,
                                            amountReceived
                                        );
                                    }
                                
                                    /// @notice Performs a single swap from an ERC20 token to the network's native token
                                    /// @param _transactionId the transaction id associated with the operation
                                    /// @param _integrator the name of the integrator
                                    /// @param _referrer the address of the referrer
                                    /// @param _receiver the address to receive the swapped tokens into (also excess tokens)
                                    /// @param _minAmountOut the minimum amount of the final asset to receive
                                    /// @param _swapData an object containing swap related data to perform swaps before bridging
                                    function swapTokensSingleV3ERC20ToNative(
                                        bytes32 _transactionId,
                                        string calldata _integrator,
                                        string calldata _referrer,
                                        address payable _receiver,
                                        uint256 _minAmountOut,
                                        LibSwap.SwapData calldata _swapData
                                    ) external {
                                        _depositAndSwapERC20Single(_swapData, _receiver);
                                
                                        // get contract's balance (which will be sent in full to user)
                                        uint256 amountReceived = address(this).balance;
                                
                                        // ensure that minAmountOut was received
                                        if (amountReceived < _minAmountOut)
                                            revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived);
                                
                                        // transfer funds to receiver
                                        // solhint-disable-next-line avoid-low-level-calls
                                        (bool success, ) = _receiver.call{ value: amountReceived }("");
                                        if (!success) revert NativeAssetTransferFailed();
                                
                                        // emit events (both required for tracking)
                                        address sendingAssetId = _swapData.sendingAssetId;
                                        uint256 fromAmount = _swapData.fromAmount;
                                        emit LibSwap.AssetSwapped(
                                            _transactionId,
                                            _swapData.callTo,
                                            sendingAssetId,
                                            NATIVE_ADDRESS,
                                            fromAmount,
                                            amountReceived,
                                            block.timestamp
                                        );
                                
                                        emit ILiFi.LiFiGenericSwapCompleted(
                                            _transactionId,
                                            _integrator,
                                            _referrer,
                                            _receiver,
                                            sendingAssetId,
                                            NATIVE_ADDRESS,
                                            fromAmount,
                                            amountReceived
                                        );
                                    }
                                
                                    /// @notice Performs a single swap from the network's native token to ERC20 token
                                    /// @param _transactionId the transaction id associated with the operation
                                    /// @param _integrator the name of the integrator
                                    /// @param _referrer the address of the referrer
                                    /// @param _receiver the address to receive the swapped tokens into (also excess tokens)
                                    /// @param _minAmountOut the minimum amount of the final asset to receive
                                    /// @param _swapData an object containing swap related data to perform swaps before bridging
                                    function swapTokensSingleV3NativeToERC20(
                                        bytes32 _transactionId,
                                        string calldata _integrator,
                                        string calldata _referrer,
                                        address payable _receiver,
                                        uint256 _minAmountOut,
                                        LibSwap.SwapData calldata _swapData
                                    ) external payable {
                                        address callTo = _swapData.callTo;
                                        // ensure that contract (callTo) and function selector are whitelisted
                                        if (
                                            !(LibAllowList.contractIsAllowed(callTo) &&
                                                LibAllowList.selectorIsAllowed(bytes4(_swapData.callData[:4])))
                                        ) revert ContractCallNotAllowed();
                                
                                        // execute swap
                                        // solhint-disable-next-line avoid-low-level-calls
                                        (bool success, bytes memory res) = callTo.call{ value: msg.value }(
                                            _swapData.callData
                                        );
                                        if (!success) {
                                            LibUtil.revertWith(res);
                                        }
                                
                                        _returnPositiveSlippageNative(_receiver);
                                
                                        // get contract's balance (which will be sent in full to user)
                                        address receivingAssetId = _swapData.receivingAssetId;
                                        uint256 amountReceived = ERC20(receivingAssetId).balanceOf(
                                            address(this)
                                        );
                                
                                        // ensure that minAmountOut was received
                                        if (amountReceived < _minAmountOut)
                                            revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived);
                                
                                        // transfer funds to receiver
                                        ERC20(receivingAssetId).safeTransfer(_receiver, amountReceived);
                                
                                        // emit events (both required for tracking)
                                        uint256 fromAmount = _swapData.fromAmount;
                                        emit LibSwap.AssetSwapped(
                                            _transactionId,
                                            callTo,
                                            NATIVE_ADDRESS,
                                            receivingAssetId,
                                            fromAmount,
                                            amountReceived,
                                            block.timestamp
                                        );
                                
                                        emit ILiFi.LiFiGenericSwapCompleted(
                                            _transactionId,
                                            _integrator,
                                            _referrer,
                                            _receiver,
                                            NATIVE_ADDRESS,
                                            receivingAssetId,
                                            fromAmount,
                                            amountReceived
                                        );
                                    }
                                
                                    // MULTIPLE SWAPS
                                
                                    /// @notice Performs multiple swaps in one transaction, starting with ERC20 and ending with native
                                    /// @param _transactionId the transaction id associated with the operation
                                    /// @param _integrator the name of the integrator
                                    /// @param _referrer the address of the referrer
                                    /// @param _receiver the address to receive the swapped tokens into (also excess tokens)
                                    /// @param _minAmountOut the minimum amount of the final asset to receive
                                    /// @param _swapData an object containing swap related data to perform swaps before bridging
                                    function swapTokensMultipleV3ERC20ToNative(
                                        bytes32 _transactionId,
                                        string calldata _integrator,
                                        string calldata _referrer,
                                        address payable _receiver,
                                        uint256 _minAmountOut,
                                        LibSwap.SwapData[] calldata _swapData
                                    ) external {
                                        _depositMultipleERC20Tokens(_swapData);
                                        _executeSwaps(_swapData, _transactionId, _receiver);
                                        _transferNativeTokensAndEmitEvent(
                                            _transactionId,
                                            _integrator,
                                            _referrer,
                                            _receiver,
                                            _minAmountOut,
                                            _swapData
                                        );
                                    }
                                
                                    /// @notice Performs multiple swaps in one transaction, starting with ERC20 and ending with ERC20
                                    /// @param _transactionId the transaction id associated with the operation
                                    /// @param _integrator the name of the integrator
                                    /// @param _referrer the address of the referrer
                                    /// @param _receiver the address to receive the swapped tokens into (also excess tokens)
                                    /// @param _minAmountOut the minimum amount of the final asset to receive
                                    /// @param _swapData an object containing swap related data to perform swaps before bridging
                                    function swapTokensMultipleV3ERC20ToERC20(
                                        bytes32 _transactionId,
                                        string calldata _integrator,
                                        string calldata _referrer,
                                        address payable _receiver,
                                        uint256 _minAmountOut,
                                        LibSwap.SwapData[] calldata _swapData
                                    ) external {
                                        _depositMultipleERC20Tokens(_swapData);
                                        _executeSwaps(_swapData, _transactionId, _receiver);
                                        _transferERC20TokensAndEmitEvent(
                                            _transactionId,
                                            _integrator,
                                            _referrer,
                                            _receiver,
                                            _minAmountOut,
                                            _swapData
                                        );
                                    }
                                
                                    /// @notice Performs multiple swaps in one transaction, starting with native and ending with ERC20
                                    /// @param _transactionId the transaction id associated with the operation
                                    /// @param _integrator the name of the integrator
                                    /// @param _referrer the address of the referrer
                                    /// @param _receiver the address to receive the swapped tokens into (also excess tokens)
                                    /// @param _minAmountOut the minimum amount of the final asset to receive
                                    /// @param _swapData an object containing swap related data to perform swaps before bridging
                                    function swapTokensMultipleV3NativeToERC20(
                                        bytes32 _transactionId,
                                        string calldata _integrator,
                                        string calldata _referrer,
                                        address payable _receiver,
                                        uint256 _minAmountOut,
                                        LibSwap.SwapData[] calldata _swapData
                                    ) external payable {
                                        _executeSwaps(_swapData, _transactionId, _receiver);
                                        _transferERC20TokensAndEmitEvent(
                                            _transactionId,
                                            _integrator,
                                            _referrer,
                                            _receiver,
                                            _minAmountOut,
                                            _swapData
                                        );
                                    }
                                
                                    /// Private helper methods ///
                                    function _depositMultipleERC20Tokens(
                                        LibSwap.SwapData[] calldata _swapData
                                    ) private {
                                        // initialize variables before loop to save gas
                                        uint256 numOfSwaps = _swapData.length;
                                        LibSwap.SwapData calldata currentSwap;
                                
                                        // go through all swaps and deposit tokens, where required
                                        for (uint256 i = 0; i < numOfSwaps; ) {
                                            currentSwap = _swapData[i];
                                            if (currentSwap.requiresDeposit) {
                                                // we will not check msg.value as tx will fail anyway if not enough value available
                                                // thus we only deposit ERC20 tokens here
                                                ERC20(currentSwap.sendingAssetId).safeTransferFrom(
                                                    msg.sender,
                                                    address(this),
                                                    currentSwap.fromAmount
                                                );
                                            }
                                            unchecked {
                                                ++i;
                                            }
                                        }
                                    }
                                
                                    function _depositAndSwapERC20Single(
                                        LibSwap.SwapData calldata _swapData,
                                        address _receiver
                                    ) private {
                                        ERC20 sendingAsset = ERC20(_swapData.sendingAssetId);
                                        uint256 fromAmount = _swapData.fromAmount;
                                        // deposit funds
                                        sendingAsset.safeTransferFrom(msg.sender, address(this), fromAmount);
                                
                                        // ensure that contract (callTo) and function selector are whitelisted
                                        address callTo = _swapData.callTo;
                                        address approveTo = _swapData.approveTo;
                                        bytes calldata callData = _swapData.callData;
                                        if (
                                            !(LibAllowList.contractIsAllowed(callTo) &&
                                                LibAllowList.selectorIsAllowed(bytes4(callData[:4])))
                                        ) revert ContractCallNotAllowed();
                                
                                        // ensure that approveTo address is also whitelisted if it differs from callTo
                                        if (approveTo != callTo && !LibAllowList.contractIsAllowed(approveTo))
                                            revert ContractCallNotAllowed();
                                
                                        // check if the current allowance is sufficient
                                        uint256 currentAllowance = sendingAsset.allowance(
                                            address(this),
                                            approveTo
                                        );
                                
                                        // check if existing allowance is sufficient
                                        if (currentAllowance < fromAmount) {
                                            // check if is non-zero, set to 0 if not
                                            if (currentAllowance != 0) sendingAsset.safeApprove(approveTo, 0);
                                            // set allowance to uint max to avoid future approvals
                                            sendingAsset.safeApprove(approveTo, type(uint256).max);
                                        }
                                
                                        // execute swap
                                        // solhint-disable-next-line avoid-low-level-calls
                                        (bool success, bytes memory res) = callTo.call(callData);
                                        if (!success) {
                                            LibUtil.revertWith(res);
                                        }
                                
                                        _returnPositiveSlippageERC20(sendingAsset, _receiver);
                                    }
                                
                                    // @dev: this function will not work with swapData that has multiple swaps with the same sendingAssetId
                                    //       as the _returnPositiveSlippage... functionality will refund all remaining tokens after the first swap
                                    //       We accept this fact since the use case is not common yet. As an alternative you can always use the
                                    //       "swapTokensGeneric" function of the original GenericSwapFacet
                                    function _executeSwaps(
                                        LibSwap.SwapData[] calldata _swapData,
                                        bytes32 _transactionId,
                                        address _receiver
                                    ) private {
                                        // initialize variables before loop to save gas
                                        uint256 numOfSwaps = _swapData.length;
                                        ERC20 sendingAsset;
                                        address sendingAssetId;
                                        address receivingAssetId;
                                        LibSwap.SwapData calldata currentSwap;
                                        bool success;
                                        bytes memory returnData;
                                        uint256 currentAllowance;
                                
                                        // go through all swaps
                                        for (uint256 i = 0; i < numOfSwaps; ) {
                                            currentSwap = _swapData[i];
                                            sendingAssetId = currentSwap.sendingAssetId;
                                            sendingAsset = ERC20(currentSwap.sendingAssetId);
                                            receivingAssetId = currentSwap.receivingAssetId;
                                
                                            // check if callTo address is whitelisted
                                            if (
                                                !LibAllowList.contractIsAllowed(currentSwap.callTo) ||
                                                !LibAllowList.selectorIsAllowed(
                                                    bytes4(currentSwap.callData[:4])
                                                )
                                            ) {
                                                revert ContractCallNotAllowed();
                                            }
                                
                                            // if approveTo address is different to callTo, check if it's whitelisted, too
                                            if (
                                                currentSwap.approveTo != currentSwap.callTo &&
                                                !LibAllowList.contractIsAllowed(currentSwap.approveTo)
                                            ) {
                                                revert ContractCallNotAllowed();
                                            }
                                
                                            if (LibAsset.isNativeAsset(sendingAssetId)) {
                                                // Native
                                                // execute the swap
                                                (success, returnData) = currentSwap.callTo.call{
                                                    value: currentSwap.fromAmount
                                                }(currentSwap.callData);
                                                if (!success) {
                                                    LibUtil.revertWith(returnData);
                                                }
                                
                                                // return any potential leftover sendingAsset tokens
                                                // but only for swaps, not for fee collections (otherwise the whole amount would be returned before the actual swap)
                                                if (sendingAssetId != receivingAssetId)
                                                    _returnPositiveSlippageNative(_receiver);
                                            } else {
                                                // ERC20
                                                // check if the current allowance is sufficient
                                                currentAllowance = sendingAsset.allowance(
                                                    address(this),
                                                    currentSwap.approveTo
                                                );
                                                if (currentAllowance < currentSwap.fromAmount) {
                                                    sendingAsset.safeApprove(currentSwap.approveTo, 0);
                                                    sendingAsset.safeApprove(
                                                        currentSwap.approveTo,
                                                        type(uint256).max
                                                    );
                                                }
                                
                                                // execute the swap
                                                (success, returnData) = currentSwap.callTo.call(
                                                    currentSwap.callData
                                                );
                                                if (!success) {
                                                    LibUtil.revertWith(returnData);
                                                }
                                
                                                // return any potential leftover sendingAsset tokens
                                                // but only for swaps, not for fee collections (otherwise the whole amount would be returned before the actual swap)
                                                if (sendingAssetId != receivingAssetId)
                                                    _returnPositiveSlippageERC20(sendingAsset, _receiver);
                                            }
                                
                                            // emit AssetSwapped event
                                            // @dev: this event might in some cases emit inaccurate information. e.g. if a token is swapped and this contract already held a balance of the receivingAsset
                                            //       then the event will show swapOutputAmount + existingBalance as toAmount. We accept this potential inaccuracy in return for gas savings and may update this
                                            //       at a later stage when the described use case becomes more common
                                            emit LibSwap.AssetSwapped(
                                                _transactionId,
                                                currentSwap.callTo,
                                                sendingAssetId,
                                                receivingAssetId,
                                                currentSwap.fromAmount,
                                                LibAsset.isNativeAsset(receivingAssetId)
                                                    ? address(this).balance
                                                    : ERC20(receivingAssetId).balanceOf(address(this)),
                                                block.timestamp
                                            );
                                
                                            unchecked {
                                                ++i;
                                            }
                                        }
                                    }
                                
                                    function _transferERC20TokensAndEmitEvent(
                                        bytes32 _transactionId,
                                        string calldata _integrator,
                                        string calldata _referrer,
                                        address payable _receiver,
                                        uint256 _minAmountOut,
                                        LibSwap.SwapData[] calldata _swapData
                                    ) private {
                                        // determine the end result of the swap
                                        address finalAssetId = _swapData[_swapData.length - 1]
                                            .receivingAssetId;
                                        uint256 amountReceived = ERC20(finalAssetId).balanceOf(address(this));
                                
                                        // make sure minAmountOut was received
                                        if (amountReceived < _minAmountOut)
                                            revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived);
                                
                                        // transfer to receiver
                                        ERC20(finalAssetId).safeTransfer(_receiver, amountReceived);
                                
                                        // emit event
                                        emit ILiFi.LiFiGenericSwapCompleted(
                                            _transactionId,
                                            _integrator,
                                            _referrer,
                                            _receiver,
                                            _swapData[0].sendingAssetId,
                                            finalAssetId,
                                            _swapData[0].fromAmount,
                                            amountReceived
                                        );
                                    }
                                
                                    function _transferNativeTokensAndEmitEvent(
                                        bytes32 _transactionId,
                                        string calldata _integrator,
                                        string calldata _referrer,
                                        address payable _receiver,
                                        uint256 _minAmountOut,
                                        LibSwap.SwapData[] calldata _swapData
                                    ) private {
                                        uint256 amountReceived = address(this).balance;
                                
                                        // make sure minAmountOut was received
                                        if (amountReceived < _minAmountOut)
                                            revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived);
                                
                                        // transfer funds to receiver
                                        // solhint-disable-next-line avoid-low-level-calls
                                        (bool success, ) = _receiver.call{ value: amountReceived }("");
                                        if (!success) {
                                            revert NativeAssetTransferFailed();
                                        }
                                
                                        // emit event
                                        emit ILiFi.LiFiGenericSwapCompleted(
                                            _transactionId,
                                            _integrator,
                                            _referrer,
                                            _receiver,
                                            _swapData[0].sendingAssetId,
                                            NATIVE_ADDRESS,
                                            _swapData[0].fromAmount,
                                            amountReceived
                                        );
                                    }
                                
                                    // returns any unused 'sendingAsset' tokens (=> positive slippage) to the receiver address
                                    function _returnPositiveSlippageERC20(
                                        ERC20 sendingAsset,
                                        address receiver
                                    ) private {
                                        // if a balance exists in sendingAsset, it must be positive slippage
                                        if (address(sendingAsset) != NATIVE_ADDRESS) {
                                            uint256 sendingAssetBalance = sendingAsset.balanceOf(
                                                address(this)
                                            );
                                
                                            // we decided to change this value from 0 to 1 to have more flexibility with rebasing tokens that
                                            // sometimes produce rounding errors. In those cases there might be 1 wei leftover at the end of a swap
                                            // but this 1 wei is not transferable, so the tx reverts. We accept that 1 wei dust gets stuck in the contract
                                            // with every tx as this does not represent a significant USD value in any relevant token.
                                            if (sendingAssetBalance > 1) {
                                                sendingAsset.safeTransfer(receiver, sendingAssetBalance);
                                            }
                                        }
                                    }
                                
                                    // returns any unused native tokens (=> positive slippage) to the receiver address
                                    function _returnPositiveSlippageNative(address receiver) private {
                                        // if a native balance exists in sendingAsset, it must be positive slippage
                                        uint256 nativeBalance = address(this).balance;
                                
                                        if (nativeBalance > 0) {
                                            // solhint-disable-next-line avoid-low-level-calls
                                            (bool success, ) = receiver.call{ value: nativeBalance }("");
                                            if (!success) revert NativeAssetTransferFailed();
                                        }
                                    }
                                }

                                File 9 of 9: FiatTokenV2_2
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                import { EIP712Domain } from "./EIP712Domain.sol"; // solhint-disable-line no-unused-import
                                import { Blacklistable } from "../v1/Blacklistable.sol"; // solhint-disable-line no-unused-import
                                import { FiatTokenV1 } from "../v1/FiatTokenV1.sol"; // solhint-disable-line no-unused-import
                                import { FiatTokenV2 } from "./FiatTokenV2.sol"; // solhint-disable-line no-unused-import
                                import { FiatTokenV2_1 } from "./FiatTokenV2_1.sol";
                                import { EIP712 } from "../util/EIP712.sol";
                                // solhint-disable func-name-mixedcase
                                /**
                                 * @title FiatToken V2.2
                                 * @notice ERC20 Token backed by fiat reserves, version 2.2
                                 */
                                contract FiatTokenV2_2 is FiatTokenV2_1 {
                                    /**
                                     * @notice Initialize v2.2
                                     * @param accountsToBlacklist   A list of accounts to migrate from the old blacklist
                                     * @param newSymbol             New token symbol
                                     * data structure to the new blacklist data structure.
                                     */
                                    function initializeV2_2(
                                        address[] calldata accountsToBlacklist,
                                        string calldata newSymbol
                                    ) external {
                                        // solhint-disable-next-line reason-string
                                        require(_initializedVersion == 2);
                                        // Update fiat token symbol
                                        symbol = newSymbol;
                                        // Add previously blacklisted accounts to the new blacklist data structure
                                        // and remove them from the old blacklist data structure.
                                        for (uint256 i = 0; i < accountsToBlacklist.length; i++) {
                                            require(
                                                _deprecatedBlacklisted[accountsToBlacklist[i]],
                                                "FiatTokenV2_2: Blacklisting previously unblacklisted account!"
                                            );
                                            _blacklist(accountsToBlacklist[i]);
                                            delete _deprecatedBlacklisted[accountsToBlacklist[i]];
                                        }
                                        _blacklist(address(this));
                                        delete _deprecatedBlacklisted[address(this)];
                                        _initializedVersion = 3;
                                    }
                                    /**
                                     * @dev Internal function to get the current chain id.
                                     * @return The current chain id.
                                     */
                                    function _chainId() internal virtual view returns (uint256) {
                                        uint256 chainId;
                                        assembly {
                                            chainId := chainid()
                                        }
                                        return chainId;
                                    }
                                    /**
                                     * @inheritdoc EIP712Domain
                                     */
                                    function _domainSeparator() internal override view returns (bytes32) {
                                        return EIP712.makeDomainSeparator(name, "2", _chainId());
                                    }
                                    /**
                                     * @notice Update allowance with a signed permit
                                     * @dev EOA wallet signatures should be packed in the order of r, s, v.
                                     * @param owner       Token owner's address (Authorizer)
                                     * @param spender     Spender's address
                                     * @param value       Amount of allowance
                                     * @param deadline    The time at which the signature expires (unix time), or max uint256 value to signal no expiration
                                     * @param signature   Signature bytes signed by an EOA wallet or a contract wallet
                                     */
                                    function permit(
                                        address owner,
                                        address spender,
                                        uint256 value,
                                        uint256 deadline,
                                        bytes memory signature
                                    ) external whenNotPaused {
                                        _permit(owner, spender, value, deadline, signature);
                                    }
                                    /**
                                     * @notice Execute a transfer with a signed authorization
                                     * @dev EOA wallet signatures should be packed in the order of r, s, v.
                                     * @param from          Payer's address (Authorizer)
                                     * @param to            Payee's address
                                     * @param value         Amount to be transferred
                                     * @param validAfter    The time after which this is valid (unix time)
                                     * @param validBefore   The time before which this is valid (unix time)
                                     * @param nonce         Unique nonce
                                     * @param signature     Signature bytes signed by an EOA wallet or a contract wallet
                                     */
                                    function transferWithAuthorization(
                                        address from,
                                        address to,
                                        uint256 value,
                                        uint256 validAfter,
                                        uint256 validBefore,
                                        bytes32 nonce,
                                        bytes memory signature
                                    ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
                                        _transferWithAuthorization(
                                            from,
                                            to,
                                            value,
                                            validAfter,
                                            validBefore,
                                            nonce,
                                            signature
                                        );
                                    }
                                    /**
                                     * @notice Receive a transfer with a signed authorization from the payer
                                     * @dev This has an additional check to ensure that the payee's address
                                     * matches the caller of this function to prevent front-running attacks.
                                     * EOA wallet signatures should be packed in the order of r, s, v.
                                     * @param from          Payer's address (Authorizer)
                                     * @param to            Payee's address
                                     * @param value         Amount to be transferred
                                     * @param validAfter    The time after which this is valid (unix time)
                                     * @param validBefore   The time before which this is valid (unix time)
                                     * @param nonce         Unique nonce
                                     * @param signature     Signature bytes signed by an EOA wallet or a contract wallet
                                     */
                                    function receiveWithAuthorization(
                                        address from,
                                        address to,
                                        uint256 value,
                                        uint256 validAfter,
                                        uint256 validBefore,
                                        bytes32 nonce,
                                        bytes memory signature
                                    ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
                                        _receiveWithAuthorization(
                                            from,
                                            to,
                                            value,
                                            validAfter,
                                            validBefore,
                                            nonce,
                                            signature
                                        );
                                    }
                                    /**
                                     * @notice Attempt to cancel an authorization
                                     * @dev Works only if the authorization is not yet used.
                                     * EOA wallet signatures should be packed in the order of r, s, v.
                                     * @param authorizer    Authorizer's address
                                     * @param nonce         Nonce of the authorization
                                     * @param signature     Signature bytes signed by an EOA wallet or a contract wallet
                                     */
                                    function cancelAuthorization(
                                        address authorizer,
                                        bytes32 nonce,
                                        bytes memory signature
                                    ) external whenNotPaused {
                                        _cancelAuthorization(authorizer, nonce, signature);
                                    }
                                    /**
                                     * @dev Helper method that sets the blacklist state of an account on balanceAndBlacklistStates.
                                     * If _shouldBlacklist is true, we apply a (1 << 255) bitmask with an OR operation on the
                                     * account's balanceAndBlacklistState. This flips the high bit for the account to 1,
                                     * indicating that the account is blacklisted.
                                     *
                                     * If _shouldBlacklist if false, we reset the account's balanceAndBlacklistStates to their
                                     * balances. This clears the high bit for the account, indicating that the account is unblacklisted.
                                     * @param _account         The address of the account.
                                     * @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted.
                                     */
                                    function _setBlacklistState(address _account, bool _shouldBlacklist)
                                        internal
                                        override
                                    {
                                        balanceAndBlacklistStates[_account] = _shouldBlacklist
                                            ? balanceAndBlacklistStates[_account] | (1 << 255)
                                            : _balanceOf(_account);
                                    }
                                    /**
                                     * @dev Helper method that sets the balance of an account on balanceAndBlacklistStates.
                                     * Since balances are stored in the last 255 bits of the balanceAndBlacklistStates value,
                                     * we need to ensure that the updated balance does not exceed (2^255 - 1).
                                     * Since blacklisted accounts' balances cannot be updated, the method will also
                                     * revert if the account is blacklisted
                                     * @param _account The address of the account.
                                     * @param _balance The new fiat token balance of the account (max: (2^255 - 1)).
                                     */
                                    function _setBalance(address _account, uint256 _balance) internal override {
                                        require(
                                            _balance <= ((1 << 255) - 1),
                                            "FiatTokenV2_2: Balance exceeds (2^255 - 1)"
                                        );
                                        require(
                                            !_isBlacklisted(_account),
                                            "FiatTokenV2_2: Account is blacklisted"
                                        );
                                        balanceAndBlacklistStates[_account] = _balance;
                                    }
                                    /**
                                     * @inheritdoc Blacklistable
                                     */
                                    function _isBlacklisted(address _account)
                                        internal
                                        override
                                        view
                                        returns (bool)
                                    {
                                        return balanceAndBlacklistStates[_account] >> 255 == 1;
                                    }
                                    /**
                                     * @dev Helper method to obtain the balance of an account. Since balances
                                     * are stored in the last 255 bits of the balanceAndBlacklistStates value,
                                     * we apply a ((1 << 255) - 1) bit bitmask with an AND operation on the
                                     * balanceAndBlacklistState to obtain the balance.
                                     * @param _account  The address of the account.
                                     * @return          The fiat token balance of the account.
                                     */
                                    function _balanceOf(address _account)
                                        internal
                                        override
                                        view
                                        returns (uint256)
                                    {
                                        return balanceAndBlacklistStates[_account] & ((1 << 255) - 1);
                                    }
                                    /**
                                     * @inheritdoc FiatTokenV1
                                     */
                                    function approve(address spender, uint256 value)
                                        external
                                        override
                                        whenNotPaused
                                        returns (bool)
                                    {
                                        _approve(msg.sender, spender, value);
                                        return true;
                                    }
                                    /**
                                     * @inheritdoc FiatTokenV2
                                     */
                                    function permit(
                                        address owner,
                                        address spender,
                                        uint256 value,
                                        uint256 deadline,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) external override whenNotPaused {
                                        _permit(owner, spender, value, deadline, v, r, s);
                                    }
                                    /**
                                     * @inheritdoc FiatTokenV2
                                     */
                                    function increaseAllowance(address spender, uint256 increment)
                                        external
                                        override
                                        whenNotPaused
                                        returns (bool)
                                    {
                                        _increaseAllowance(msg.sender, spender, increment);
                                        return true;
                                    }
                                    /**
                                     * @inheritdoc FiatTokenV2
                                     */
                                    function decreaseAllowance(address spender, uint256 decrement)
                                        external
                                        override
                                        whenNotPaused
                                        returns (bool)
                                    {
                                        _decreaseAllowance(msg.sender, spender, decrement);
                                        return true;
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity >=0.6.2 <0.8.0;
                                /**
                                 * @dev Collection of functions related to the address type
                                 */
                                library Address {
                                    /**
                                     * @dev Returns true if `account` is a contract.
                                     *
                                     * [IMPORTANT]
                                     * ====
                                     * It is unsafe to assume that an address for which this function returns
                                     * false is an externally-owned account (EOA) and not a contract.
                                     *
                                     * Among others, `isContract` will return false for the following
                                     * types of addresses:
                                     *
                                     *  - an externally-owned account
                                     *  - a contract in construction
                                     *  - an address where a contract will be created
                                     *  - an address where a contract lived, but was destroyed
                                     * ====
                                     */
                                    function isContract(address account) internal view returns (bool) {
                                        // This method relies on extcodesize, which returns 0 for contracts in
                                        // construction, since the code is only stored at the end of the
                                        // constructor execution.
                                        uint256 size;
                                        // solhint-disable-next-line no-inline-assembly
                                        assembly { size := extcodesize(account) }
                                        return size > 0;
                                    }
                                    /**
                                     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                                     * `recipient`, forwarding all available gas and reverting on errors.
                                     *
                                     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                                     * of certain opcodes, possibly making contracts go over the 2300 gas limit
                                     * imposed by `transfer`, making them unable to receive funds via
                                     * `transfer`. {sendValue} removes this limitation.
                                     *
                                     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                                     *
                                     * IMPORTANT: because control is transferred to `recipient`, care must be
                                     * taken to not create reentrancy vulnerabilities. Consider using
                                     * {ReentrancyGuard} or the
                                     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                                     */
                                    function sendValue(address payable recipient, uint256 amount) internal {
                                        require(address(this).balance >= amount, "Address: insufficient balance");
                                        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                                        (bool success, ) = recipient.call{ value: amount }("");
                                        require(success, "Address: unable to send value, recipient may have reverted");
                                    }
                                    /**
                                     * @dev Performs a Solidity function call using a low level `call`. A
                                     * plain`call` is an unsafe replacement for a function call: use this
                                     * function instead.
                                     *
                                     * If `target` reverts with a revert reason, it is bubbled up by this
                                     * function (like regular Solidity function calls).
                                     *
                                     * Returns the raw returned data. To convert to the expected return value,
                                     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                                     *
                                     * Requirements:
                                     *
                                     * - `target` must be a contract.
                                     * - calling `target` with `data` must not revert.
                                     *
                                     * _Available since v3.1._
                                     */
                                    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                                      return functionCall(target, data, "Address: low-level call failed");
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                                     * `errorMessage` as a fallback revert reason when `target` reverts.
                                     *
                                     * _Available since v3.1._
                                     */
                                    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                                        return functionCallWithValue(target, data, 0, errorMessage);
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                                     * but also transferring `value` wei to `target`.
                                     *
                                     * Requirements:
                                     *
                                     * - the calling contract must have an ETH balance of at least `value`.
                                     * - the called Solidity function must be `payable`.
                                     *
                                     * _Available since v3.1._
                                     */
                                    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                                        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                                     * with `errorMessage` as a fallback revert reason when `target` reverts.
                                     *
                                     * _Available since v3.1._
                                     */
                                    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                                        require(address(this).balance >= value, "Address: insufficient balance for call");
                                        require(isContract(target), "Address: call to non-contract");
                                        // solhint-disable-next-line avoid-low-level-calls
                                        (bool success, bytes memory returndata) = target.call{ value: value }(data);
                                        return _verifyCallResult(success, returndata, errorMessage);
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                                     * but performing a static call.
                                     *
                                     * _Available since v3.3._
                                     */
                                    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                                        return functionStaticCall(target, data, "Address: low-level static call failed");
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                                     * but performing a static call.
                                     *
                                     * _Available since v3.3._
                                     */
                                    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                                        require(isContract(target), "Address: static call to non-contract");
                                        // solhint-disable-next-line avoid-low-level-calls
                                        (bool success, bytes memory returndata) = target.staticcall(data);
                                        return _verifyCallResult(success, returndata, errorMessage);
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                                     * but performing a delegate call.
                                     *
                                     * _Available since v3.4._
                                     */
                                    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                                        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                                    }
                                    /**
                                     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                                     * but performing a delegate call.
                                     *
                                     * _Available since v3.4._
                                     */
                                    function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                                        require(isContract(target), "Address: delegate call to non-contract");
                                        // solhint-disable-next-line avoid-low-level-calls
                                        (bool success, bytes memory returndata) = target.delegatecall(data);
                                        return _verifyCallResult(success, returndata, errorMessage);
                                    }
                                    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                                        if (success) {
                                            return returndata;
                                        } else {
                                            // Look for revert reason and bubble it up if present
                                            if (returndata.length > 0) {
                                                // The easiest way to bubble the revert reason is using memory via assembly
                                                // solhint-disable-next-line no-inline-assembly
                                                assembly {
                                                    let returndata_size := mload(returndata)
                                                    revert(add(32, returndata), returndata_size)
                                                }
                                            } else {
                                                revert(errorMessage);
                                            }
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity >=0.6.0 <0.8.0;
                                import "./IERC20.sol";
                                import "../../math/SafeMath.sol";
                                import "../../utils/Address.sol";
                                /**
                                 * @title SafeERC20
                                 * @dev Wrappers around ERC20 operations that throw on failure (when the token
                                 * contract returns false). Tokens that return no value (and instead revert or
                                 * throw on failure) are also supported, non-reverting calls are assumed to be
                                 * successful.
                                 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                                 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                                 */
                                library SafeERC20 {
                                    using SafeMath for uint256;
                                    using Address for address;
                                    function safeTransfer(IERC20 token, address to, uint256 value) internal {
                                        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                                    }
                                    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                                        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                                    }
                                    /**
                                     * @dev Deprecated. This function has issues similar to the ones found in
                                     * {IERC20-approve}, and its usage is discouraged.
                                     *
                                     * Whenever possible, use {safeIncreaseAllowance} and
                                     * {safeDecreaseAllowance} instead.
                                     */
                                    function safeApprove(IERC20 token, address spender, uint256 value) internal {
                                        // safeApprove should only be called when setting an initial allowance,
                                        // or when resetting it to zero. To increase and decrease it, use
                                        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                                        // solhint-disable-next-line max-line-length
                                        require((value == 0) || (token.allowance(address(this), spender) == 0),
                                            "SafeERC20: approve from non-zero to non-zero allowance"
                                        );
                                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                                    }
                                    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                                        uint256 newAllowance = token.allowance(address(this), spender).add(value);
                                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                                    }
                                    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                                        uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
                                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                                    }
                                    /**
                                     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                                     * on the return value: the return value is optional (but if data is returned, it must not be false).
                                     * @param token The token targeted by the call.
                                     * @param data The call data (encoded using abi.encode or one of its variants).
                                     */
                                    function _callOptionalReturn(IERC20 token, bytes memory data) private {
                                        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                                        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                                        // the target address contains contract code and also asserts for success in the low-level call.
                                        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                                        if (returndata.length > 0) { // Return data is optional
                                            // solhint-disable-next-line max-line-length
                                            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                                        }
                                    }
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity >=0.6.0 <0.8.0;
                                /**
                                 * @dev Interface of the ERC20 standard as defined in the EIP.
                                 */
                                interface IERC20 {
                                    /**
                                     * @dev Returns the amount of tokens in existence.
                                     */
                                    function totalSupply() external view returns (uint256);
                                    /**
                                     * @dev Returns the amount of tokens owned by `account`.
                                     */
                                    function balanceOf(address account) external view returns (uint256);
                                    /**
                                     * @dev Moves `amount` tokens from the caller's account to `recipient`.
                                     *
                                     * Returns a boolean value indicating whether the operation succeeded.
                                     *
                                     * Emits a {Transfer} event.
                                     */
                                    function transfer(address recipient, uint256 amount) external returns (bool);
                                    /**
                                     * @dev Returns the remaining number of tokens that `spender` will be
                                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                                     * zero by default.
                                     *
                                     * This value changes when {approve} or {transferFrom} are called.
                                     */
                                    function allowance(address owner, address spender) external view returns (uint256);
                                    /**
                                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                                     *
                                     * Returns a boolean value indicating whether the operation succeeded.
                                     *
                                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                                     * that someone may use both the old and the new allowance by unfortunate
                                     * transaction ordering. One possible solution to mitigate this race
                                     * condition is to first reduce the spender's allowance to 0 and set the
                                     * desired value afterwards:
                                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                                     *
                                     * Emits an {Approval} event.
                                     */
                                    function approve(address spender, uint256 amount) external returns (bool);
                                    /**
                                     * @dev Moves `amount` tokens from `sender` to `recipient` using the
                                     * allowance mechanism. `amount` is then deducted from the caller's
                                     * allowance.
                                     *
                                     * Returns a boolean value indicating whether the operation succeeded.
                                     *
                                     * Emits a {Transfer} event.
                                     */
                                    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
                                    /**
                                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                                     * another (`to`).
                                     *
                                     * Note that `value` may be zero.
                                     */
                                    event Transfer(address indexed from, address indexed to, uint256 value);
                                    /**
                                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                                     * a call to {approve}. `value` is the new allowance.
                                     */
                                    event Approval(address indexed owner, address indexed spender, uint256 value);
                                }
                                // SPDX-License-Identifier: MIT
                                pragma solidity >=0.6.0 <0.8.0;
                                /**
                                 * @dev Wrappers over Solidity's arithmetic operations with added overflow
                                 * checks.
                                 *
                                 * Arithmetic operations in Solidity wrap on overflow. This can easily result
                                 * in bugs, because programmers usually assume that an overflow raises an
                                 * error, which is the standard behavior in high level programming languages.
                                 * `SafeMath` restores this intuition by reverting the transaction when an
                                 * operation overflows.
                                 *
                                 * Using this library instead of the unchecked operations eliminates an entire
                                 * class of bugs, so it's recommended to use it always.
                                 */
                                library SafeMath {
                                    /**
                                     * @dev Returns the addition of two unsigned integers, with an overflow flag.
                                     *
                                     * _Available since v3.4._
                                     */
                                    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                        uint256 c = a + b;
                                        if (c < a) return (false, 0);
                                        return (true, c);
                                    }
                                    /**
                                     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
                                     *
                                     * _Available since v3.4._
                                     */
                                    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                        if (b > a) return (false, 0);
                                        return (true, a - b);
                                    }
                                    /**
                                     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
                                     *
                                     * _Available since v3.4._
                                     */
                                    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                                        // benefit is lost if 'b' is also tested.
                                        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                                        if (a == 0) return (true, 0);
                                        uint256 c = a * b;
                                        if (c / a != b) return (false, 0);
                                        return (true, c);
                                    }
                                    /**
                                     * @dev Returns the division of two unsigned integers, with a division by zero flag.
                                     *
                                     * _Available since v3.4._
                                     */
                                    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                        if (b == 0) return (false, 0);
                                        return (true, a / b);
                                    }
                                    /**
                                     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
                                     *
                                     * _Available since v3.4._
                                     */
                                    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                                        if (b == 0) return (false, 0);
                                        return (true, a % b);
                                    }
                                    /**
                                     * @dev Returns the addition of two unsigned integers, reverting on
                                     * overflow.
                                     *
                                     * Counterpart to Solidity's `+` operator.
                                     *
                                     * Requirements:
                                     *
                                     * - Addition cannot overflow.
                                     */
                                    function add(uint256 a, uint256 b) internal pure returns (uint256) {
                                        uint256 c = a + b;
                                        require(c >= a, "SafeMath: addition overflow");
                                        return c;
                                    }
                                    /**
                                     * @dev Returns the subtraction of two unsigned integers, reverting on
                                     * overflow (when the result is negative).
                                     *
                                     * Counterpart to Solidity's `-` operator.
                                     *
                                     * Requirements:
                                     *
                                     * - Subtraction cannot overflow.
                                     */
                                    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                                        require(b <= a, "SafeMath: subtraction overflow");
                                        return a - b;
                                    }
                                    /**
                                     * @dev Returns the multiplication of two unsigned integers, reverting on
                                     * overflow.
                                     *
                                     * Counterpart to Solidity's `*` operator.
                                     *
                                     * Requirements:
                                     *
                                     * - Multiplication cannot overflow.
                                     */
                                    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                                        if (a == 0) return 0;
                                        uint256 c = a * b;
                                        require(c / a == b, "SafeMath: multiplication overflow");
                                        return c;
                                    }
                                    /**
                                     * @dev Returns the integer division of two unsigned integers, reverting on
                                     * division by zero. The result is rounded towards zero.
                                     *
                                     * Counterpart to Solidity's `/` operator. Note: this function uses a
                                     * `revert` opcode (which leaves remaining gas untouched) while Solidity
                                     * uses an invalid opcode to revert (consuming all remaining gas).
                                     *
                                     * Requirements:
                                     *
                                     * - The divisor cannot be zero.
                                     */
                                    function div(uint256 a, uint256 b) internal pure returns (uint256) {
                                        require(b > 0, "SafeMath: division by zero");
                                        return a / b;
                                    }
                                    /**
                                     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                                     * reverting when dividing by zero.
                                     *
                                     * Counterpart to Solidity's `%` operator. This function uses a `revert`
                                     * opcode (which leaves remaining gas untouched) while Solidity uses an
                                     * invalid opcode to revert (consuming all remaining gas).
                                     *
                                     * Requirements:
                                     *
                                     * - The divisor cannot be zero.
                                     */
                                    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                                        require(b > 0, "SafeMath: modulo by zero");
                                        return a % b;
                                    }
                                    /**
                                     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
                                     * overflow (when the result is negative).
                                     *
                                     * CAUTION: This function is deprecated because it requires allocating memory for the error
                                     * message unnecessarily. For custom revert reasons use {trySub}.
                                     *
                                     * Counterpart to Solidity's `-` operator.
                                     *
                                     * Requirements:
                                     *
                                     * - Subtraction cannot overflow.
                                     */
                                    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                                        require(b <= a, errorMessage);
                                        return a - b;
                                    }
                                    /**
                                     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
                                     * division by zero. The result is rounded towards zero.
                                     *
                                     * CAUTION: This function is deprecated because it requires allocating memory for the error
                                     * message unnecessarily. For custom revert reasons use {tryDiv}.
                                     *
                                     * Counterpart to Solidity's `/` operator. Note: this function uses a
                                     * `revert` opcode (which leaves remaining gas untouched) while Solidity
                                     * uses an invalid opcode to revert (consuming all remaining gas).
                                     *
                                     * Requirements:
                                     *
                                     * - The divisor cannot be zero.
                                     */
                                    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                                        require(b > 0, errorMessage);
                                        return a / b;
                                    }
                                    /**
                                     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                                     * reverting with custom message when dividing by zero.
                                     *
                                     * CAUTION: This function is deprecated because it requires allocating memory for the error
                                     * message unnecessarily. For custom revert reasons use {tryMod}.
                                     *
                                     * Counterpart to Solidity's `%` operator. This function uses a `revert`
                                     * opcode (which leaves remaining gas untouched) while Solidity uses an
                                     * invalid opcode to revert (consuming all remaining gas).
                                     *
                                     * Requirements:
                                     *
                                     * - The divisor cannot be zero.
                                     */
                                    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                                        require(b > 0, errorMessage);
                                        return a % b;
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                import { FiatTokenV2 } from "./FiatTokenV2.sol";
                                // solhint-disable func-name-mixedcase
                                /**
                                 * @title FiatToken V2.1
                                 * @notice ERC20 Token backed by fiat reserves, version 2.1
                                 */
                                contract FiatTokenV2_1 is FiatTokenV2 {
                                    /**
                                     * @notice Initialize v2.1
                                     * @param lostAndFound  The address to which the locked funds are sent
                                     */
                                    function initializeV2_1(address lostAndFound) external {
                                        // solhint-disable-next-line reason-string
                                        require(_initializedVersion == 1);
                                        uint256 lockedAmount = _balanceOf(address(this));
                                        if (lockedAmount > 0) {
                                            _transfer(address(this), lostAndFound, lockedAmount);
                                        }
                                        _blacklist(address(this));
                                        _initializedVersion = 2;
                                    }
                                    /**
                                     * @notice Version string for the EIP712 domain separator
                                     * @return Version string
                                     */
                                    function version() external pure returns (string memory) {
                                        return "2";
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                import { FiatTokenV1_1 } from "../v1.1/FiatTokenV1_1.sol";
                                import { EIP712 } from "../util/EIP712.sol";
                                import { EIP3009 } from "./EIP3009.sol";
                                import { EIP2612 } from "./EIP2612.sol";
                                /**
                                 * @title FiatToken V2
                                 * @notice ERC20 Token backed by fiat reserves, version 2
                                 */
                                contract FiatTokenV2 is FiatTokenV1_1, EIP3009, EIP2612 {
                                    uint8 internal _initializedVersion;
                                    /**
                                     * @notice Initialize v2
                                     * @param newName   New token name
                                     */
                                    function initializeV2(string calldata newName) external {
                                        // solhint-disable-next-line reason-string
                                        require(initialized && _initializedVersion == 0);
                                        name = newName;
                                        _DEPRECATED_CACHED_DOMAIN_SEPARATOR = EIP712.makeDomainSeparator(
                                            newName,
                                            "2"
                                        );
                                        _initializedVersion = 1;
                                    }
                                    /**
                                     * @notice Increase the allowance by a given increment
                                     * @param spender   Spender's address
                                     * @param increment Amount of increase in allowance
                                     * @return True if successful
                                     */
                                    function increaseAllowance(address spender, uint256 increment)
                                        external
                                        virtual
                                        whenNotPaused
                                        notBlacklisted(msg.sender)
                                        notBlacklisted(spender)
                                        returns (bool)
                                    {
                                        _increaseAllowance(msg.sender, spender, increment);
                                        return true;
                                    }
                                    /**
                                     * @notice Decrease the allowance by a given decrement
                                     * @param spender   Spender's address
                                     * @param decrement Amount of decrease in allowance
                                     * @return True if successful
                                     */
                                    function decreaseAllowance(address spender, uint256 decrement)
                                        external
                                        virtual
                                        whenNotPaused
                                        notBlacklisted(msg.sender)
                                        notBlacklisted(spender)
                                        returns (bool)
                                    {
                                        _decreaseAllowance(msg.sender, spender, decrement);
                                        return true;
                                    }
                                    /**
                                     * @notice Execute a transfer with a signed authorization
                                     * @param from          Payer's address (Authorizer)
                                     * @param to            Payee's address
                                     * @param value         Amount to be transferred
                                     * @param validAfter    The time after which this is valid (unix time)
                                     * @param validBefore   The time before which this is valid (unix time)
                                     * @param nonce         Unique nonce
                                     * @param v             v of the signature
                                     * @param r             r of the signature
                                     * @param s             s of the signature
                                     */
                                    function transferWithAuthorization(
                                        address from,
                                        address to,
                                        uint256 value,
                                        uint256 validAfter,
                                        uint256 validBefore,
                                        bytes32 nonce,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
                                        _transferWithAuthorization(
                                            from,
                                            to,
                                            value,
                                            validAfter,
                                            validBefore,
                                            nonce,
                                            v,
                                            r,
                                            s
                                        );
                                    }
                                    /**
                                     * @notice Receive a transfer with a signed authorization from the payer
                                     * @dev This has an additional check to ensure that the payee's address
                                     * matches the caller of this function to prevent front-running attacks.
                                     * @param from          Payer's address (Authorizer)
                                     * @param to            Payee's address
                                     * @param value         Amount to be transferred
                                     * @param validAfter    The time after which this is valid (unix time)
                                     * @param validBefore   The time before which this is valid (unix time)
                                     * @param nonce         Unique nonce
                                     * @param v             v of the signature
                                     * @param r             r of the signature
                                     * @param s             s of the signature
                                     */
                                    function receiveWithAuthorization(
                                        address from,
                                        address to,
                                        uint256 value,
                                        uint256 validAfter,
                                        uint256 validBefore,
                                        bytes32 nonce,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
                                        _receiveWithAuthorization(
                                            from,
                                            to,
                                            value,
                                            validAfter,
                                            validBefore,
                                            nonce,
                                            v,
                                            r,
                                            s
                                        );
                                    }
                                    /**
                                     * @notice Attempt to cancel an authorization
                                     * @dev Works only if the authorization is not yet used.
                                     * @param authorizer    Authorizer's address
                                     * @param nonce         Nonce of the authorization
                                     * @param v             v of the signature
                                     * @param r             r of the signature
                                     * @param s             s of the signature
                                     */
                                    function cancelAuthorization(
                                        address authorizer,
                                        bytes32 nonce,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) external whenNotPaused {
                                        _cancelAuthorization(authorizer, nonce, v, r, s);
                                    }
                                    /**
                                     * @notice Update allowance with a signed permit
                                     * @param owner       Token owner's address (Authorizer)
                                     * @param spender     Spender's address
                                     * @param value       Amount of allowance
                                     * @param deadline    The time at which the signature expires (unix time), or max uint256 value to signal no expiration
                                     * @param v           v of the signature
                                     * @param r           r of the signature
                                     * @param s           s of the signature
                                     */
                                    function permit(
                                        address owner,
                                        address spender,
                                        uint256 value,
                                        uint256 deadline,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    )
                                        external
                                        virtual
                                        whenNotPaused
                                        notBlacklisted(owner)
                                        notBlacklisted(spender)
                                    {
                                        _permit(owner, spender, value, deadline, v, r, s);
                                    }
                                    /**
                                     * @dev Internal function to increase the allowance by a given increment
                                     * @param owner     Token owner's address
                                     * @param spender   Spender's address
                                     * @param increment Amount of increase
                                     */
                                    function _increaseAllowance(
                                        address owner,
                                        address spender,
                                        uint256 increment
                                    ) internal override {
                                        _approve(owner, spender, allowed[owner][spender].add(increment));
                                    }
                                    /**
                                     * @dev Internal function to decrease the allowance by a given decrement
                                     * @param owner     Token owner's address
                                     * @param spender   Spender's address
                                     * @param decrement Amount of decrease
                                     */
                                    function _decreaseAllowance(
                                        address owner,
                                        address spender,
                                        uint256 decrement
                                    ) internal override {
                                        _approve(
                                            owner,
                                            spender,
                                            allowed[owner][spender].sub(
                                                decrement,
                                                "ERC20: decreased allowance below zero"
                                            )
                                        );
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                // solhint-disable func-name-mixedcase
                                /**
                                 * @title EIP712 Domain
                                 */
                                contract EIP712Domain {
                                    // was originally DOMAIN_SEPARATOR
                                    // but that has been moved to a method so we can override it in V2_2+
                                    bytes32 internal _DEPRECATED_CACHED_DOMAIN_SEPARATOR;
                                    /**
                                     * @notice Get the EIP712 Domain Separator.
                                     * @return The bytes32 EIP712 domain separator.
                                     */
                                    function DOMAIN_SEPARATOR() external view returns (bytes32) {
                                        return _domainSeparator();
                                    }
                                    /**
                                     * @dev Internal method to get the EIP712 Domain Separator.
                                     * @return The bytes32 EIP712 domain separator.
                                     */
                                    function _domainSeparator() internal virtual view returns (bytes32) {
                                        return _DEPRECATED_CACHED_DOMAIN_SEPARATOR;
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol";
                                import { EIP712Domain } from "./EIP712Domain.sol";
                                import { SignatureChecker } from "../util/SignatureChecker.sol";
                                import { MessageHashUtils } from "../util/MessageHashUtils.sol";
                                /**
                                 * @title EIP-3009
                                 * @notice Provide internal implementation for gas-abstracted transfers
                                 * @dev Contracts that inherit from this must wrap these with publicly
                                 * accessible functions, optionally adding modifiers where necessary
                                 */
                                abstract contract EIP3009 is AbstractFiatTokenV2, EIP712Domain {
                                    // keccak256("TransferWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)")
                                    bytes32
                                        public constant TRANSFER_WITH_AUTHORIZATION_TYPEHASH = 0x7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a2267;
                                    // keccak256("ReceiveWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)")
                                    bytes32
                                        public constant RECEIVE_WITH_AUTHORIZATION_TYPEHASH = 0xd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de8;
                                    // keccak256("CancelAuthorization(address authorizer,bytes32 nonce)")
                                    bytes32
                                        public constant CANCEL_AUTHORIZATION_TYPEHASH = 0x158b0a9edf7a828aad02f63cd515c68ef2f50ba807396f6d12842833a1597429;
                                    /**
                                     * @dev authorizer address => nonce => bool (true if nonce is used)
                                     */
                                    mapping(address => mapping(bytes32 => bool)) private _authorizationStates;
                                    event AuthorizationUsed(address indexed authorizer, bytes32 indexed nonce);
                                    event AuthorizationCanceled(
                                        address indexed authorizer,
                                        bytes32 indexed nonce
                                    );
                                    /**
                                     * @notice Returns the state of an authorization
                                     * @dev Nonces are randomly generated 32-byte data unique to the
                                     * authorizer's address
                                     * @param authorizer    Authorizer's address
                                     * @param nonce         Nonce of the authorization
                                     * @return True if the nonce is used
                                     */
                                    function authorizationState(address authorizer, bytes32 nonce)
                                        external
                                        view
                                        returns (bool)
                                    {
                                        return _authorizationStates[authorizer][nonce];
                                    }
                                    /**
                                     * @notice Execute a transfer with a signed authorization
                                     * @param from          Payer's address (Authorizer)
                                     * @param to            Payee's address
                                     * @param value         Amount to be transferred
                                     * @param validAfter    The time after which this is valid (unix time)
                                     * @param validBefore   The time before which this is valid (unix time)
                                     * @param nonce         Unique nonce
                                     * @param v             v of the signature
                                     * @param r             r of the signature
                                     * @param s             s of the signature
                                     */
                                    function _transferWithAuthorization(
                                        address from,
                                        address to,
                                        uint256 value,
                                        uint256 validAfter,
                                        uint256 validBefore,
                                        bytes32 nonce,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) internal {
                                        _transferWithAuthorization(
                                            from,
                                            to,
                                            value,
                                            validAfter,
                                            validBefore,
                                            nonce,
                                            abi.encodePacked(r, s, v)
                                        );
                                    }
                                    /**
                                     * @notice Execute a transfer with a signed authorization
                                     * @dev EOA wallet signatures should be packed in the order of r, s, v.
                                     * @param from          Payer's address (Authorizer)
                                     * @param to            Payee's address
                                     * @param value         Amount to be transferred
                                     * @param validAfter    The time after which this is valid (unix time)
                                     * @param validBefore   The time before which this is valid (unix time)
                                     * @param nonce         Unique nonce
                                     * @param signature     Signature byte array produced by an EOA wallet or a contract wallet
                                     */
                                    function _transferWithAuthorization(
                                        address from,
                                        address to,
                                        uint256 value,
                                        uint256 validAfter,
                                        uint256 validBefore,
                                        bytes32 nonce,
                                        bytes memory signature
                                    ) internal {
                                        _requireValidAuthorization(from, nonce, validAfter, validBefore);
                                        _requireValidSignature(
                                            from,
                                            keccak256(
                                                abi.encode(
                                                    TRANSFER_WITH_AUTHORIZATION_TYPEHASH,
                                                    from,
                                                    to,
                                                    value,
                                                    validAfter,
                                                    validBefore,
                                                    nonce
                                                )
                                            ),
                                            signature
                                        );
                                        _markAuthorizationAsUsed(from, nonce);
                                        _transfer(from, to, value);
                                    }
                                    /**
                                     * @notice Receive a transfer with a signed authorization from the payer
                                     * @dev This has an additional check to ensure that the payee's address
                                     * matches the caller of this function to prevent front-running attacks.
                                     * @param from          Payer's address (Authorizer)
                                     * @param to            Payee's address
                                     * @param value         Amount to be transferred
                                     * @param validAfter    The time after which this is valid (unix time)
                                     * @param validBefore   The time before which this is valid (unix time)
                                     * @param nonce         Unique nonce
                                     * @param v             v of the signature
                                     * @param r             r of the signature
                                     * @param s             s of the signature
                                     */
                                    function _receiveWithAuthorization(
                                        address from,
                                        address to,
                                        uint256 value,
                                        uint256 validAfter,
                                        uint256 validBefore,
                                        bytes32 nonce,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) internal {
                                        _receiveWithAuthorization(
                                            from,
                                            to,
                                            value,
                                            validAfter,
                                            validBefore,
                                            nonce,
                                            abi.encodePacked(r, s, v)
                                        );
                                    }
                                    /**
                                     * @notice Receive a transfer with a signed authorization from the payer
                                     * @dev This has an additional check to ensure that the payee's address
                                     * matches the caller of this function to prevent front-running attacks.
                                     * EOA wallet signatures should be packed in the order of r, s, v.
                                     * @param from          Payer's address (Authorizer)
                                     * @param to            Payee's address
                                     * @param value         Amount to be transferred
                                     * @param validAfter    The time after which this is valid (unix time)
                                     * @param validBefore   The time before which this is valid (unix time)
                                     * @param nonce         Unique nonce
                                     * @param signature     Signature byte array produced by an EOA wallet or a contract wallet
                                     */
                                    function _receiveWithAuthorization(
                                        address from,
                                        address to,
                                        uint256 value,
                                        uint256 validAfter,
                                        uint256 validBefore,
                                        bytes32 nonce,
                                        bytes memory signature
                                    ) internal {
                                        require(to == msg.sender, "FiatTokenV2: caller must be the payee");
                                        _requireValidAuthorization(from, nonce, validAfter, validBefore);
                                        _requireValidSignature(
                                            from,
                                            keccak256(
                                                abi.encode(
                                                    RECEIVE_WITH_AUTHORIZATION_TYPEHASH,
                                                    from,
                                                    to,
                                                    value,
                                                    validAfter,
                                                    validBefore,
                                                    nonce
                                                )
                                            ),
                                            signature
                                        );
                                        _markAuthorizationAsUsed(from, nonce);
                                        _transfer(from, to, value);
                                    }
                                    /**
                                     * @notice Attempt to cancel an authorization
                                     * @param authorizer    Authorizer's address
                                     * @param nonce         Nonce of the authorization
                                     * @param v             v of the signature
                                     * @param r             r of the signature
                                     * @param s             s of the signature
                                     */
                                    function _cancelAuthorization(
                                        address authorizer,
                                        bytes32 nonce,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) internal {
                                        _cancelAuthorization(authorizer, nonce, abi.encodePacked(r, s, v));
                                    }
                                    /**
                                     * @notice Attempt to cancel an authorization
                                     * @dev EOA wallet signatures should be packed in the order of r, s, v.
                                     * @param authorizer    Authorizer's address
                                     * @param nonce         Nonce of the authorization
                                     * @param signature     Signature byte array produced by an EOA wallet or a contract wallet
                                     */
                                    function _cancelAuthorization(
                                        address authorizer,
                                        bytes32 nonce,
                                        bytes memory signature
                                    ) internal {
                                        _requireUnusedAuthorization(authorizer, nonce);
                                        _requireValidSignature(
                                            authorizer,
                                            keccak256(
                                                abi.encode(CANCEL_AUTHORIZATION_TYPEHASH, authorizer, nonce)
                                            ),
                                            signature
                                        );
                                        _authorizationStates[authorizer][nonce] = true;
                                        emit AuthorizationCanceled(authorizer, nonce);
                                    }
                                    /**
                                     * @notice Validates that signature against input data struct
                                     * @param signer        Signer's address
                                     * @param dataHash      Hash of encoded data struct
                                     * @param signature     Signature byte array produced by an EOA wallet or a contract wallet
                                     */
                                    function _requireValidSignature(
                                        address signer,
                                        bytes32 dataHash,
                                        bytes memory signature
                                    ) private view {
                                        require(
                                            SignatureChecker.isValidSignatureNow(
                                                signer,
                                                MessageHashUtils.toTypedDataHash(_domainSeparator(), dataHash),
                                                signature
                                            ),
                                            "FiatTokenV2: invalid signature"
                                        );
                                    }
                                    /**
                                     * @notice Check that an authorization is unused
                                     * @param authorizer    Authorizer's address
                                     * @param nonce         Nonce of the authorization
                                     */
                                    function _requireUnusedAuthorization(address authorizer, bytes32 nonce)
                                        private
                                        view
                                    {
                                        require(
                                            !_authorizationStates[authorizer][nonce],
                                            "FiatTokenV2: authorization is used or canceled"
                                        );
                                    }
                                    /**
                                     * @notice Check that authorization is valid
                                     * @param authorizer    Authorizer's address
                                     * @param nonce         Nonce of the authorization
                                     * @param validAfter    The time after which this is valid (unix time)
                                     * @param validBefore   The time before which this is valid (unix time)
                                     */
                                    function _requireValidAuthorization(
                                        address authorizer,
                                        bytes32 nonce,
                                        uint256 validAfter,
                                        uint256 validBefore
                                    ) private view {
                                        require(
                                            now > validAfter,
                                            "FiatTokenV2: authorization is not yet valid"
                                        );
                                        require(now < validBefore, "FiatTokenV2: authorization is expired");
                                        _requireUnusedAuthorization(authorizer, nonce);
                                    }
                                    /**
                                     * @notice Mark an authorization as used
                                     * @param authorizer    Authorizer's address
                                     * @param nonce         Nonce of the authorization
                                     */
                                    function _markAuthorizationAsUsed(address authorizer, bytes32 nonce)
                                        private
                                    {
                                        _authorizationStates[authorizer][nonce] = true;
                                        emit AuthorizationUsed(authorizer, nonce);
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol";
                                import { EIP712Domain } from "./EIP712Domain.sol";
                                import { MessageHashUtils } from "../util/MessageHashUtils.sol";
                                import { SignatureChecker } from "../util/SignatureChecker.sol";
                                /**
                                 * @title EIP-2612
                                 * @notice Provide internal implementation for gas-abstracted approvals
                                 */
                                abstract contract EIP2612 is AbstractFiatTokenV2, EIP712Domain {
                                    // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")
                                    bytes32
                                        public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
                                    mapping(address => uint256) private _permitNonces;
                                    /**
                                     * @notice Nonces for permit
                                     * @param owner Token owner's address (Authorizer)
                                     * @return Next nonce
                                     */
                                    function nonces(address owner) external view returns (uint256) {
                                        return _permitNonces[owner];
                                    }
                                    /**
                                     * @notice Verify a signed approval permit and execute if valid
                                     * @param owner     Token owner's address (Authorizer)
                                     * @param spender   Spender's address
                                     * @param value     Amount of allowance
                                     * @param deadline  The time at which the signature expires (unix time), or max uint256 value to signal no expiration
                                     * @param v         v of the signature
                                     * @param r         r of the signature
                                     * @param s         s of the signature
                                     */
                                    function _permit(
                                        address owner,
                                        address spender,
                                        uint256 value,
                                        uint256 deadline,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) internal {
                                        _permit(owner, spender, value, deadline, abi.encodePacked(r, s, v));
                                    }
                                    /**
                                     * @notice Verify a signed approval permit and execute if valid
                                     * @dev EOA wallet signatures should be packed in the order of r, s, v.
                                     * @param owner      Token owner's address (Authorizer)
                                     * @param spender    Spender's address
                                     * @param value      Amount of allowance
                                     * @param deadline   The time at which the signature expires (unix time), or max uint256 value to signal no expiration
                                     * @param signature  Signature byte array signed by an EOA wallet or a contract wallet
                                     */
                                    function _permit(
                                        address owner,
                                        address spender,
                                        uint256 value,
                                        uint256 deadline,
                                        bytes memory signature
                                    ) internal {
                                        require(
                                            deadline == type(uint256).max || deadline >= now,
                                            "FiatTokenV2: permit is expired"
                                        );
                                        bytes32 typedDataHash = MessageHashUtils.toTypedDataHash(
                                            _domainSeparator(),
                                            keccak256(
                                                abi.encode(
                                                    PERMIT_TYPEHASH,
                                                    owner,
                                                    spender,
                                                    value,
                                                    _permitNonces[owner]++,
                                                    deadline
                                                )
                                            )
                                        );
                                        require(
                                            SignatureChecker.isValidSignatureNow(
                                                owner,
                                                typedDataHash,
                                                signature
                                            ),
                                            "EIP2612: invalid signature"
                                        );
                                        _approve(owner, spender, value);
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                import { AbstractFiatTokenV1 } from "../v1/AbstractFiatTokenV1.sol";
                                abstract contract AbstractFiatTokenV2 is AbstractFiatTokenV1 {
                                    function _increaseAllowance(
                                        address owner,
                                        address spender,
                                        uint256 increment
                                    ) internal virtual;
                                    function _decreaseAllowance(
                                        address owner,
                                        address spender,
                                        uint256 decrement
                                    ) internal virtual;
                                }
                                /**
                                 * SPDX-License-Identifier: MIT
                                 *
                                 * Copyright (c) 2016 Smart Contract Solutions, Inc.
                                 * Copyright (c) 2018-2020 CENTRE SECZ
                                 *
                                 * Permission is hereby granted, free of charge, to any person obtaining a copy
                                 * of this software and associated documentation files (the "Software"), to deal
                                 * in the Software without restriction, including without limitation the rights
                                 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
                                 * copies of the Software, and to permit persons to whom the Software is
                                 * furnished to do so, subject to the following conditions:
                                 *
                                 * The above copyright notice and this permission notice shall be included in
                                 * copies or substantial portions of the Software.
                                 *
                                 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
                                 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
                                 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
                                 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
                                 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
                                 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
                                 * SOFTWARE.
                                 */
                                pragma solidity 0.6.12;
                                import { Ownable } from "./Ownable.sol";
                                /**
                                 * @notice Base contract which allows children to implement an emergency stop
                                 * mechanism
                                 * @dev Forked from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/feb665136c0dae9912e08397c1a21c4af3651ef3/contracts/lifecycle/Pausable.sol
                                 * Modifications:
                                 * 1. Added pauser role, switched pause/unpause to be onlyPauser (6/14/2018)
                                 * 2. Removed whenNotPause/whenPaused from pause/unpause (6/14/2018)
                                 * 3. Removed whenPaused (6/14/2018)
                                 * 4. Switches ownable library to use ZeppelinOS (7/12/18)
                                 * 5. Remove constructor (7/13/18)
                                 * 6. Reformat, conform to Solidity 0.6 syntax and add error messages (5/13/20)
                                 * 7. Make public functions external (5/27/20)
                                 */
                                contract Pausable is Ownable {
                                    event Pause();
                                    event Unpause();
                                    event PauserChanged(address indexed newAddress);
                                    address public pauser;
                                    bool public paused = false;
                                    /**
                                     * @dev Modifier to make a function callable only when the contract is not paused.
                                     */
                                    modifier whenNotPaused() {
                                        require(!paused, "Pausable: paused");
                                        _;
                                    }
                                    /**
                                     * @dev throws if called by any account other than the pauser
                                     */
                                    modifier onlyPauser() {
                                        require(msg.sender == pauser, "Pausable: caller is not the pauser");
                                        _;
                                    }
                                    /**
                                     * @dev called by the owner to pause, triggers stopped state
                                     */
                                    function pause() external onlyPauser {
                                        paused = true;
                                        emit Pause();
                                    }
                                    /**
                                     * @dev called by the owner to unpause, returns to normal state
                                     */
                                    function unpause() external onlyPauser {
                                        paused = false;
                                        emit Unpause();
                                    }
                                    /**
                                     * @notice Updates the pauser address.
                                     * @param _newPauser The address of the new pauser.
                                     */
                                    function updatePauser(address _newPauser) external onlyOwner {
                                        require(
                                            _newPauser != address(0),
                                            "Pausable: new pauser is the zero address"
                                        );
                                        pauser = _newPauser;
                                        emit PauserChanged(pauser);
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: MIT
                                 *
                                 * Copyright (c) 2018 zOS Global Limited.
                                 * Copyright (c) 2018-2020 CENTRE SECZ
                                 *
                                 * Permission is hereby granted, free of charge, to any person obtaining a copy
                                 * of this software and associated documentation files (the "Software"), to deal
                                 * in the Software without restriction, including without limitation the rights
                                 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
                                 * copies of the Software, and to permit persons to whom the Software is
                                 * furnished to do so, subject to the following conditions:
                                 *
                                 * The above copyright notice and this permission notice shall be included in
                                 * copies or substantial portions of the Software.
                                 *
                                 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
                                 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
                                 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
                                 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
                                 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
                                 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
                                 * SOFTWARE.
                                 */
                                pragma solidity 0.6.12;
                                /**
                                 * @notice The Ownable contract has an owner address, and provides basic
                                 * authorization control functions
                                 * @dev Forked from https://github.com/OpenZeppelin/openzeppelin-labs/blob/3887ab77b8adafba4a26ace002f3a684c1a3388b/upgradeability_ownership/contracts/ownership/Ownable.sol
                                 * Modifications:
                                 * 1. Consolidate OwnableStorage into this contract (7/13/18)
                                 * 2. Reformat, conform to Solidity 0.6 syntax, and add error messages (5/13/20)
                                 * 3. Make public functions external (5/27/20)
                                 */
                                contract Ownable {
                                    // Owner of the contract
                                    address private _owner;
                                    /**
                                     * @dev Event to show ownership has been transferred
                                     * @param previousOwner representing the address of the previous owner
                                     * @param newOwner representing the address of the new owner
                                     */
                                    event OwnershipTransferred(address previousOwner, address newOwner);
                                    /**
                                     * @dev The constructor sets the original owner of the contract to the sender account.
                                     */
                                    constructor() public {
                                        setOwner(msg.sender);
                                    }
                                    /**
                                     * @dev Tells the address of the owner
                                     * @return the address of the owner
                                     */
                                    function owner() external view returns (address) {
                                        return _owner;
                                    }
                                    /**
                                     * @dev Sets a new owner address
                                     */
                                    function setOwner(address newOwner) internal {
                                        _owner = newOwner;
                                    }
                                    /**
                                     * @dev Throws if called by any account other than the owner.
                                     */
                                    modifier onlyOwner() {
                                        require(msg.sender == _owner, "Ownable: caller is not the owner");
                                        _;
                                    }
                                    /**
                                     * @dev Allows the current owner to transfer control of the contract to a newOwner.
                                     * @param newOwner The address to transfer ownership to.
                                     */
                                    function transferOwnership(address newOwner) external onlyOwner {
                                        require(
                                            newOwner != address(0),
                                            "Ownable: new owner is the zero address"
                                        );
                                        emit OwnershipTransferred(_owner, newOwner);
                                        setOwner(newOwner);
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol";
                                import { AbstractFiatTokenV1 } from "./AbstractFiatTokenV1.sol";
                                import { Ownable } from "./Ownable.sol";
                                import { Pausable } from "./Pausable.sol";
                                import { Blacklistable } from "./Blacklistable.sol";
                                /**
                                 * @title FiatToken
                                 * @dev ERC20 Token backed by fiat reserves
                                 */
                                contract FiatTokenV1 is AbstractFiatTokenV1, Ownable, Pausable, Blacklistable {
                                    using SafeMath for uint256;
                                    string public name;
                                    string public symbol;
                                    uint8 public decimals;
                                    string public currency;
                                    address public masterMinter;
                                    bool internal initialized;
                                    /// @dev A mapping that stores the balance and blacklist states for a given address.
                                    /// The first bit defines whether the address is blacklisted (1 if blacklisted, 0 otherwise).
                                    /// The last 255 bits define the balance for the address.
                                    mapping(address => uint256) internal balanceAndBlacklistStates;
                                    mapping(address => mapping(address => uint256)) internal allowed;
                                    uint256 internal totalSupply_ = 0;
                                    mapping(address => bool) internal minters;
                                    mapping(address => uint256) internal minterAllowed;
                                    event Mint(address indexed minter, address indexed to, uint256 amount);
                                    event Burn(address indexed burner, uint256 amount);
                                    event MinterConfigured(address indexed minter, uint256 minterAllowedAmount);
                                    event MinterRemoved(address indexed oldMinter);
                                    event MasterMinterChanged(address indexed newMasterMinter);
                                    /**
                                     * @notice Initializes the fiat token contract.
                                     * @param tokenName       The name of the fiat token.
                                     * @param tokenSymbol     The symbol of the fiat token.
                                     * @param tokenCurrency   The fiat currency that the token represents.
                                     * @param tokenDecimals   The number of decimals that the token uses.
                                     * @param newMasterMinter The masterMinter address for the fiat token.
                                     * @param newPauser       The pauser address for the fiat token.
                                     * @param newBlacklister  The blacklister address for the fiat token.
                                     * @param newOwner        The owner of the fiat token.
                                     */
                                    function initialize(
                                        string memory tokenName,
                                        string memory tokenSymbol,
                                        string memory tokenCurrency,
                                        uint8 tokenDecimals,
                                        address newMasterMinter,
                                        address newPauser,
                                        address newBlacklister,
                                        address newOwner
                                    ) public {
                                        require(!initialized, "FiatToken: contract is already initialized");
                                        require(
                                            newMasterMinter != address(0),
                                            "FiatToken: new masterMinter is the zero address"
                                        );
                                        require(
                                            newPauser != address(0),
                                            "FiatToken: new pauser is the zero address"
                                        );
                                        require(
                                            newBlacklister != address(0),
                                            "FiatToken: new blacklister is the zero address"
                                        );
                                        require(
                                            newOwner != address(0),
                                            "FiatToken: new owner is the zero address"
                                        );
                                        name = tokenName;
                                        symbol = tokenSymbol;
                                        currency = tokenCurrency;
                                        decimals = tokenDecimals;
                                        masterMinter = newMasterMinter;
                                        pauser = newPauser;
                                        blacklister = newBlacklister;
                                        setOwner(newOwner);
                                        initialized = true;
                                    }
                                    /**
                                     * @dev Throws if called by any account other than a minter.
                                     */
                                    modifier onlyMinters() {
                                        require(minters[msg.sender], "FiatToken: caller is not a minter");
                                        _;
                                    }
                                    /**
                                     * @notice Mints fiat tokens to an address.
                                     * @param _to The address that will receive the minted tokens.
                                     * @param _amount The amount of tokens to mint. Must be less than or equal
                                     * to the minterAllowance of the caller.
                                     * @return True if the operation was successful.
                                     */
                                    function mint(address _to, uint256 _amount)
                                        external
                                        whenNotPaused
                                        onlyMinters
                                        notBlacklisted(msg.sender)
                                        notBlacklisted(_to)
                                        returns (bool)
                                    {
                                        require(_to != address(0), "FiatToken: mint to the zero address");
                                        require(_amount > 0, "FiatToken: mint amount not greater than 0");
                                        uint256 mintingAllowedAmount = minterAllowed[msg.sender];
                                        require(
                                            _amount <= mintingAllowedAmount,
                                            "FiatToken: mint amount exceeds minterAllowance"
                                        );
                                        totalSupply_ = totalSupply_.add(_amount);
                                        _setBalance(_to, _balanceOf(_to).add(_amount));
                                        minterAllowed[msg.sender] = mintingAllowedAmount.sub(_amount);
                                        emit Mint(msg.sender, _to, _amount);
                                        emit Transfer(address(0), _to, _amount);
                                        return true;
                                    }
                                    /**
                                     * @dev Throws if called by any account other than the masterMinter
                                     */
                                    modifier onlyMasterMinter() {
                                        require(
                                            msg.sender == masterMinter,
                                            "FiatToken: caller is not the masterMinter"
                                        );
                                        _;
                                    }
                                    /**
                                     * @notice Gets the minter allowance for an account.
                                     * @param minter The address to check.
                                     * @return The remaining minter allowance for the account.
                                     */
                                    function minterAllowance(address minter) external view returns (uint256) {
                                        return minterAllowed[minter];
                                    }
                                    /**
                                     * @notice Checks if an account is a minter.
                                     * @param account The address to check.
                                     * @return True if the account is a minter, false if the account is not a minter.
                                     */
                                    function isMinter(address account) external view returns (bool) {
                                        return minters[account];
                                    }
                                    /**
                                     * @notice Gets the remaining amount of fiat tokens a spender is allowed to transfer on
                                     * behalf of the token owner.
                                     * @param owner   The token owner's address.
                                     * @param spender The spender's address.
                                     * @return The remaining allowance.
                                     */
                                    function allowance(address owner, address spender)
                                        external
                                        override
                                        view
                                        returns (uint256)
                                    {
                                        return allowed[owner][spender];
                                    }
                                    /**
                                     * @notice Gets the totalSupply of the fiat token.
                                     * @return The totalSupply of the fiat token.
                                     */
                                    function totalSupply() external override view returns (uint256) {
                                        return totalSupply_;
                                    }
                                    /**
                                     * @notice Gets the fiat token balance of an account.
                                     * @param account  The address to check.
                                     * @return balance The fiat token balance of the account.
                                     */
                                    function balanceOf(address account)
                                        external
                                        override
                                        view
                                        returns (uint256)
                                    {
                                        return _balanceOf(account);
                                    }
                                    /**
                                     * @notice Sets a fiat token allowance for a spender to spend on behalf of the caller.
                                     * @param spender The spender's address.
                                     * @param value   The allowance amount.
                                     * @return True if the operation was successful.
                                     */
                                    function approve(address spender, uint256 value)
                                        external
                                        virtual
                                        override
                                        whenNotPaused
                                        notBlacklisted(msg.sender)
                                        notBlacklisted(spender)
                                        returns (bool)
                                    {
                                        _approve(msg.sender, spender, value);
                                        return true;
                                    }
                                    /**
                                     * @dev Internal function to set allowance.
                                     * @param owner     Token owner's address.
                                     * @param spender   Spender's address.
                                     * @param value     Allowance amount.
                                     */
                                    function _approve(
                                        address owner,
                                        address spender,
                                        uint256 value
                                    ) internal override {
                                        require(owner != address(0), "ERC20: approve from the zero address");
                                        require(spender != address(0), "ERC20: approve to the zero address");
                                        allowed[owner][spender] = value;
                                        emit Approval(owner, spender, value);
                                    }
                                    /**
                                     * @notice Transfers tokens from an address to another by spending the caller's allowance.
                                     * @dev The caller must have some fiat token allowance on the payer's tokens.
                                     * @param from  Payer's address.
                                     * @param to    Payee's address.
                                     * @param value Transfer amount.
                                     * @return True if the operation was successful.
                                     */
                                    function transferFrom(
                                        address from,
                                        address to,
                                        uint256 value
                                    )
                                        external
                                        override
                                        whenNotPaused
                                        notBlacklisted(msg.sender)
                                        notBlacklisted(from)
                                        notBlacklisted(to)
                                        returns (bool)
                                    {
                                        require(
                                            value <= allowed[from][msg.sender],
                                            "ERC20: transfer amount exceeds allowance"
                                        );
                                        _transfer(from, to, value);
                                        allowed[from][msg.sender] = allowed[from][msg.sender].sub(value);
                                        return true;
                                    }
                                    /**
                                     * @notice Transfers tokens from the caller.
                                     * @param to    Payee's address.
                                     * @param value Transfer amount.
                                     * @return True if the operation was successful.
                                     */
                                    function transfer(address to, uint256 value)
                                        external
                                        override
                                        whenNotPaused
                                        notBlacklisted(msg.sender)
                                        notBlacklisted(to)
                                        returns (bool)
                                    {
                                        _transfer(msg.sender, to, value);
                                        return true;
                                    }
                                    /**
                                     * @dev Internal function to process transfers.
                                     * @param from  Payer's address.
                                     * @param to    Payee's address.
                                     * @param value Transfer amount.
                                     */
                                    function _transfer(
                                        address from,
                                        address to,
                                        uint256 value
                                    ) internal override {
                                        require(from != address(0), "ERC20: transfer from the zero address");
                                        require(to != address(0), "ERC20: transfer to the zero address");
                                        require(
                                            value <= _balanceOf(from),
                                            "ERC20: transfer amount exceeds balance"
                                        );
                                        _setBalance(from, _balanceOf(from).sub(value));
                                        _setBalance(to, _balanceOf(to).add(value));
                                        emit Transfer(from, to, value);
                                    }
                                    /**
                                     * @notice Adds or updates a new minter with a mint allowance.
                                     * @param minter The address of the minter.
                                     * @param minterAllowedAmount The minting amount allowed for the minter.
                                     * @return True if the operation was successful.
                                     */
                                    function configureMinter(address minter, uint256 minterAllowedAmount)
                                        external
                                        whenNotPaused
                                        onlyMasterMinter
                                        returns (bool)
                                    {
                                        minters[minter] = true;
                                        minterAllowed[minter] = minterAllowedAmount;
                                        emit MinterConfigured(minter, minterAllowedAmount);
                                        return true;
                                    }
                                    /**
                                     * @notice Removes a minter.
                                     * @param minter The address of the minter to remove.
                                     * @return True if the operation was successful.
                                     */
                                    function removeMinter(address minter)
                                        external
                                        onlyMasterMinter
                                        returns (bool)
                                    {
                                        minters[minter] = false;
                                        minterAllowed[minter] = 0;
                                        emit MinterRemoved(minter);
                                        return true;
                                    }
                                    /**
                                     * @notice Allows a minter to burn some of its own tokens.
                                     * @dev The caller must be a minter, must not be blacklisted, and the amount to burn
                                     * should be less than or equal to the account's balance.
                                     * @param _amount the amount of tokens to be burned.
                                     */
                                    function burn(uint256 _amount)
                                        external
                                        whenNotPaused
                                        onlyMinters
                                        notBlacklisted(msg.sender)
                                    {
                                        uint256 balance = _balanceOf(msg.sender);
                                        require(_amount > 0, "FiatToken: burn amount not greater than 0");
                                        require(balance >= _amount, "FiatToken: burn amount exceeds balance");
                                        totalSupply_ = totalSupply_.sub(_amount);
                                        _setBalance(msg.sender, balance.sub(_amount));
                                        emit Burn(msg.sender, _amount);
                                        emit Transfer(msg.sender, address(0), _amount);
                                    }
                                    /**
                                     * @notice Updates the master minter address.
                                     * @param _newMasterMinter The address of the new master minter.
                                     */
                                    function updateMasterMinter(address _newMasterMinter) external onlyOwner {
                                        require(
                                            _newMasterMinter != address(0),
                                            "FiatToken: new masterMinter is the zero address"
                                        );
                                        masterMinter = _newMasterMinter;
                                        emit MasterMinterChanged(masterMinter);
                                    }
                                    /**
                                     * @inheritdoc Blacklistable
                                     */
                                    function _blacklist(address _account) internal override {
                                        _setBlacklistState(_account, true);
                                    }
                                    /**
                                     * @inheritdoc Blacklistable
                                     */
                                    function _unBlacklist(address _account) internal override {
                                        _setBlacklistState(_account, false);
                                    }
                                    /**
                                     * @dev Helper method that sets the blacklist state of an account.
                                     * @param _account         The address of the account.
                                     * @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted.
                                     */
                                    function _setBlacklistState(address _account, bool _shouldBlacklist)
                                        internal
                                        virtual
                                    {
                                        _deprecatedBlacklisted[_account] = _shouldBlacklist;
                                    }
                                    /**
                                     * @dev Helper method that sets the balance of an account.
                                     * @param _account The address of the account.
                                     * @param _balance The new fiat token balance of the account.
                                     */
                                    function _setBalance(address _account, uint256 _balance) internal virtual {
                                        balanceAndBlacklistStates[_account] = _balance;
                                    }
                                    /**
                                     * @inheritdoc Blacklistable
                                     */
                                    function _isBlacklisted(address _account)
                                        internal
                                        virtual
                                        override
                                        view
                                        returns (bool)
                                    {
                                        return _deprecatedBlacklisted[_account];
                                    }
                                    /**
                                     * @dev Helper method to obtain the balance of an account.
                                     * @param _account  The address of the account.
                                     * @return          The fiat token balance of the account.
                                     */
                                    function _balanceOf(address _account)
                                        internal
                                        virtual
                                        view
                                        returns (uint256)
                                    {
                                        return balanceAndBlacklistStates[_account];
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                import { Ownable } from "./Ownable.sol";
                                /**
                                 * @title Blacklistable Token
                                 * @dev Allows accounts to be blacklisted by a "blacklister" role
                                 */
                                abstract contract Blacklistable is Ownable {
                                    address public blacklister;
                                    mapping(address => bool) internal _deprecatedBlacklisted;
                                    event Blacklisted(address indexed _account);
                                    event UnBlacklisted(address indexed _account);
                                    event BlacklisterChanged(address indexed newBlacklister);
                                    /**
                                     * @dev Throws if called by any account other than the blacklister.
                                     */
                                    modifier onlyBlacklister() {
                                        require(
                                            msg.sender == blacklister,
                                            "Blacklistable: caller is not the blacklister"
                                        );
                                        _;
                                    }
                                    /**
                                     * @dev Throws if argument account is blacklisted.
                                     * @param _account The address to check.
                                     */
                                    modifier notBlacklisted(address _account) {
                                        require(
                                            !_isBlacklisted(_account),
                                            "Blacklistable: account is blacklisted"
                                        );
                                        _;
                                    }
                                    /**
                                     * @notice Checks if account is blacklisted.
                                     * @param _account The address to check.
                                     * @return True if the account is blacklisted, false if the account is not blacklisted.
                                     */
                                    function isBlacklisted(address _account) external view returns (bool) {
                                        return _isBlacklisted(_account);
                                    }
                                    /**
                                     * @notice Adds account to blacklist.
                                     * @param _account The address to blacklist.
                                     */
                                    function blacklist(address _account) external onlyBlacklister {
                                        _blacklist(_account);
                                        emit Blacklisted(_account);
                                    }
                                    /**
                                     * @notice Removes account from blacklist.
                                     * @param _account The address to remove from the blacklist.
                                     */
                                    function unBlacklist(address _account) external onlyBlacklister {
                                        _unBlacklist(_account);
                                        emit UnBlacklisted(_account);
                                    }
                                    /**
                                     * @notice Updates the blacklister address.
                                     * @param _newBlacklister The address of the new blacklister.
                                     */
                                    function updateBlacklister(address _newBlacklister) external onlyOwner {
                                        require(
                                            _newBlacklister != address(0),
                                            "Blacklistable: new blacklister is the zero address"
                                        );
                                        blacklister = _newBlacklister;
                                        emit BlacklisterChanged(blacklister);
                                    }
                                    /**
                                     * @dev Checks if account is blacklisted.
                                     * @param _account The address to check.
                                     * @return true if the account is blacklisted, false otherwise.
                                     */
                                    function _isBlacklisted(address _account)
                                        internal
                                        virtual
                                        view
                                        returns (bool);
                                    /**
                                     * @dev Helper method that blacklists an account.
                                     * @param _account The address to blacklist.
                                     */
                                    function _blacklist(address _account) internal virtual;
                                    /**
                                     * @dev Helper method that unblacklists an account.
                                     * @param _account The address to unblacklist.
                                     */
                                    function _unBlacklist(address _account) internal virtual;
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                                abstract contract AbstractFiatTokenV1 is IERC20 {
                                    function _approve(
                                        address owner,
                                        address spender,
                                        uint256 value
                                    ) internal virtual;
                                    function _transfer(
                                        address from,
                                        address to,
                                        uint256 value
                                    ) internal virtual;
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                import { Ownable } from "../v1/Ownable.sol";
                                import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                                import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
                                contract Rescuable is Ownable {
                                    using SafeERC20 for IERC20;
                                    address private _rescuer;
                                    event RescuerChanged(address indexed newRescuer);
                                    /**
                                     * @notice Returns current rescuer
                                     * @return Rescuer's address
                                     */
                                    function rescuer() external view returns (address) {
                                        return _rescuer;
                                    }
                                    /**
                                     * @notice Revert if called by any account other than the rescuer.
                                     */
                                    modifier onlyRescuer() {
                                        require(msg.sender == _rescuer, "Rescuable: caller is not the rescuer");
                                        _;
                                    }
                                    /**
                                     * @notice Rescue ERC20 tokens locked up in this contract.
                                     * @param tokenContract ERC20 token contract address
                                     * @param to        Recipient address
                                     * @param amount    Amount to withdraw
                                     */
                                    function rescueERC20(
                                        IERC20 tokenContract,
                                        address to,
                                        uint256 amount
                                    ) external onlyRescuer {
                                        tokenContract.safeTransfer(to, amount);
                                    }
                                    /**
                                     * @notice Updates the rescuer address.
                                     * @param newRescuer The address of the new rescuer.
                                     */
                                    function updateRescuer(address newRescuer) external onlyOwner {
                                        require(
                                            newRescuer != address(0),
                                            "Rescuable: new rescuer is the zero address"
                                        );
                                        _rescuer = newRescuer;
                                        emit RescuerChanged(newRescuer);
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                import { FiatTokenV1 } from "../v1/FiatTokenV1.sol";
                                import { Rescuable } from "./Rescuable.sol";
                                /**
                                 * @title FiatTokenV1_1
                                 * @dev ERC20 Token backed by fiat reserves
                                 */
                                contract FiatTokenV1_1 is FiatTokenV1, Rescuable {
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                import { ECRecover } from "./ECRecover.sol";
                                import { IERC1271 } from "../interface/IERC1271.sol";
                                /**
                                 * @dev Signature verification helper that can be used instead of `ECRecover.recover` to seamlessly support both ECDSA
                                 * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets.
                                 *
                                 * Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/SignatureChecker.sol
                                 */
                                library SignatureChecker {
                                    /**
                                     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
                                     * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECRecover.recover`.
                                     * @param signer        Address of the claimed signer
                                     * @param digest        Keccak-256 hash digest of the signed message
                                     * @param signature     Signature byte array associated with hash
                                     */
                                    function isValidSignatureNow(
                                        address signer,
                                        bytes32 digest,
                                        bytes memory signature
                                    ) external view returns (bool) {
                                        if (!isContract(signer)) {
                                            return ECRecover.recover(digest, signature) == signer;
                                        }
                                        return isValidERC1271SignatureNow(signer, digest, signature);
                                    }
                                    /**
                                     * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
                                     * against the signer smart contract using ERC1271.
                                     * @param signer        Address of the claimed signer
                                     * @param digest        Keccak-256 hash digest of the signed message
                                     * @param signature     Signature byte array associated with hash
                                     *
                                     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
                                     * change through time. It could return true at block N and false at block N+1 (or the opposite).
                                     */
                                    function isValidERC1271SignatureNow(
                                        address signer,
                                        bytes32 digest,
                                        bytes memory signature
                                    ) internal view returns (bool) {
                                        (bool success, bytes memory result) = signer.staticcall(
                                            abi.encodeWithSelector(
                                                IERC1271.isValidSignature.selector,
                                                digest,
                                                signature
                                            )
                                        );
                                        return (success &&
                                            result.length >= 32 &&
                                            abi.decode(result, (bytes32)) ==
                                            bytes32(IERC1271.isValidSignature.selector));
                                    }
                                    /**
                                     * @dev Checks if the input address is a smart contract.
                                     */
                                    function isContract(address addr) internal view returns (bool) {
                                        uint256 size;
                                        assembly {
                                            size := extcodesize(addr)
                                        }
                                        return size > 0;
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                /**
                                 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
                                 *
                                 * The library provides methods for generating a hash of a message that conforms to the
                                 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
                                 * specifications.
                                 */
                                library MessageHashUtils {
                                    /**
                                     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
                                     * Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/MessageHashUtils.sol
                                     *
                                     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
                                     * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
                                     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
                                     *
                                     * @param domainSeparator    Domain separator
                                     * @param structHash         Hashed EIP-712 data struct
                                     * @return digest            The keccak256 digest of an EIP-712 typed data
                                     */
                                    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash)
                                        internal
                                        pure
                                        returns (bytes32 digest)
                                    {
                                        assembly {
                                            let ptr := mload(0x40)
                                            mstore(ptr, "\\x19\\x01")
                                            mstore(add(ptr, 0x02), domainSeparator)
                                            mstore(add(ptr, 0x22), structHash)
                                            digest := keccak256(ptr, 0x42)
                                        }
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                /**
                                 * @title EIP712
                                 * @notice A library that provides EIP712 helper functions
                                 */
                                library EIP712 {
                                    /**
                                     * @notice Make EIP712 domain separator
                                     * @param name      Contract name
                                     * @param version   Contract version
                                     * @param chainId   Blockchain ID
                                     * @return Domain separator
                                     */
                                    function makeDomainSeparator(
                                        string memory name,
                                        string memory version,
                                        uint256 chainId
                                    ) internal view returns (bytes32) {
                                        return
                                            keccak256(
                                                abi.encode(
                                                    // keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
                                                    0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f,
                                                    keccak256(bytes(name)),
                                                    keccak256(bytes(version)),
                                                    chainId,
                                                    address(this)
                                                )
                                            );
                                    }
                                    /**
                                     * @notice Make EIP712 domain separator
                                     * @param name      Contract name
                                     * @param version   Contract version
                                     * @return Domain separator
                                     */
                                    function makeDomainSeparator(string memory name, string memory version)
                                        internal
                                        view
                                        returns (bytes32)
                                    {
                                        uint256 chainId;
                                        assembly {
                                            chainId := chainid()
                                        }
                                        return makeDomainSeparator(name, version, chainId);
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                /**
                                 * @title ECRecover
                                 * @notice A library that provides a safe ECDSA recovery function
                                 */
                                library ECRecover {
                                    /**
                                     * @notice Recover signer's address from a signed message
                                     * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/65e4ffde586ec89af3b7e9140bdc9235d1254853/contracts/cryptography/ECDSA.sol
                                     * Modifications: Accept v, r, and s as separate arguments
                                     * @param digest    Keccak-256 hash digest of the signed message
                                     * @param v         v of the signature
                                     * @param r         r of the signature
                                     * @param s         s of the signature
                                     * @return Signer address
                                     */
                                    function recover(
                                        bytes32 digest,
                                        uint8 v,
                                        bytes32 r,
                                        bytes32 s
                                    ) internal pure returns (address) {
                                        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
                                        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
                                        // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
                                        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
                                        //
                                        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
                                        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
                                        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
                                        // these malleable signatures as well.
                                        if (
                                            uint256(s) >
                                            0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0
                                        ) {
                                            revert("ECRecover: invalid signature 's' value");
                                        }
                                        if (v != 27 && v != 28) {
                                            revert("ECRecover: invalid signature 'v' value");
                                        }
                                        // If the signature is valid (and not malleable), return the signer address
                                        address signer = ecrecover(digest, v, r, s);
                                        require(signer != address(0), "ECRecover: invalid signature");
                                        return signer;
                                    }
                                    /**
                                     * @notice Recover signer's address from a signed message
                                     * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/0053ee040a7ff1dbc39691c9e67a69f564930a88/contracts/utils/cryptography/ECDSA.sol
                                     * @param digest    Keccak-256 hash digest of the signed message
                                     * @param signature Signature byte array associated with hash
                                     * @return Signer address
                                     */
                                    function recover(bytes32 digest, bytes memory signature)
                                        internal
                                        pure
                                        returns (address)
                                    {
                                        require(signature.length == 65, "ECRecover: invalid signature length");
                                        bytes32 r;
                                        bytes32 s;
                                        uint8 v;
                                        // ecrecover takes the signature parameters, and the only way to get them
                                        // currently is to use assembly.
                                        /// @solidity memory-safe-assembly
                                        assembly {
                                            r := mload(add(signature, 0x20))
                                            s := mload(add(signature, 0x40))
                                            v := byte(0, mload(add(signature, 0x60)))
                                        }
                                        return recover(digest, v, r, s);
                                    }
                                }
                                /**
                                 * SPDX-License-Identifier: Apache-2.0
                                 *
                                 * Copyright (c) 2023, Circle Internet Financial, LLC.
                                 *
                                 * Licensed under the Apache License, Version 2.0 (the "License");
                                 * you may not use this file except in compliance with the License.
                                 * You may obtain a copy of the License at
                                 *
                                 * http://www.apache.org/licenses/LICENSE-2.0
                                 *
                                 * Unless required by applicable law or agreed to in writing, software
                                 * distributed under the License is distributed on an "AS IS" BASIS,
                                 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                 * See the License for the specific language governing permissions and
                                 * limitations under the License.
                                 */
                                pragma solidity 0.6.12;
                                /**
                                 * @dev Interface of the ERC1271 standard signature validation method for
                                 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
                                 */
                                interface IERC1271 {
                                    /**
                                     * @dev Should return whether the signature provided is valid for the provided data
                                     * @param hash          Hash of the data to be signed
                                     * @param signature     Signature byte array associated with the provided data hash
                                     * @return magicValue   bytes4 magic value 0x1626ba7e when function passes
                                     */
                                    function isValidSignature(bytes32 hash, bytes memory signature)
                                        external
                                        view
                                        returns (bytes4 magicValue);
                                }