ETH Price: $2,681.87 (+5.77%)

Transaction Decoder

Block:
22533730 at May-21-2025 08:45:35 PM +UTC
Transaction Fee:
0.000084780385363926 ETH $0.23
Gas Used:
72,387 Gas / 1.171210098 Gwei

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
14.013724126572605581 Eth14.013724138154525581 Eth0.00000001158192
0xfbcDaf6F...3F3e7118e
0.00151551 Eth
Nonce: 0
0.001430729614636074 Eth
Nonce: 1
0.000084780385363926

Execution Trace

ETH 0.0013 L1ChugSplashProxy.e11013dd( )
  • ProxyAdmin.STATICCALL( )
  • ETH 0.0013 L1StandardBridge.bridgeETHTo( _to=0xfbcDaf6F7c2B6427C3e4f5407E6D4E83F3e7118e, _minGasLimit=200000, _extraData=0x6272696467670A )
    • ETH 0.0013 Lib_ResolvedDelegateProxy.3dbb202b( )
      • Lib_AddressManager.getAddress( _name=OVM_L1CrossDomainMessenger ) => ( 0x5D5a095665886119693F0B41d8DFeE78da033e8B )
      • ETH 0.0013 L1CrossDomainMessenger.sendMessage( _target=0x4200000000000000000000000000000000000010, _message=0x1635F5FD000000000000000000000000FBCDAF6F7C2B6427C3E4F5407E6D4E83F3E7118E000000000000000000000000FBCDAF6F7C2B6427C3E4F5407E6D4E83F3E7118E00000000000000000000000000000000000000000000000000049E57D6354000000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000076272696467670A00000000000000000000000000000000000000000000000000, _minGasLimit=200000 )
        File 1 of 6: L1ChugSplashProxy
        // SPDX-License-Identifier: MIT
        pragma solidity >0.5.0 <0.8.0;
        import { iL1ChugSplashDeployer } from "./interfaces/iL1ChugSplashDeployer.sol";
        /**
         * @title L1ChugSplashProxy
         * @dev Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
         * functions `setCode` and `setStorage` for changing the code or storage of the contract. Nifty!
         *
         * Note for future developers: do NOT make anything in this contract 'public' unless you know what
         * you're doing. Anything public can potentially have a function signature that conflicts with a
         * signature attached to the implementation contract. Public functions SHOULD always have the
         * 'proxyCallIfNotOwner' modifier unless there's some *really* good reason not to have that
         * modifier. And there almost certainly is not a good reason to not have that modifier. Beware!
         */
        contract L1ChugSplashProxy {
            /*************
             * Constants *
             *************/
            // "Magic" prefix. When prepended to some arbitrary bytecode and used to create a contract, the
            // appended bytecode will be deployed as given.
            bytes13 constant internal DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
            // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
            bytes32 constant internal IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            // bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
            bytes32 constant internal OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /***************
             * Constructor *
             ***************/
            
            /**
             * @param _owner Address of the initial contract owner.
             */
            constructor(
                address _owner
            ) {
                _setOwner(_owner);
            }
            /**********************
             * Function Modifiers *
             **********************/
            /**
             * Blocks a function from being called when the parent signals that the system should be paused
             * via an isUpgrading function.
             */
            modifier onlyWhenNotPaused() {
                address owner = _getOwner();
                // We do a low-level call because there's no guarantee that the owner actually *is* an
                // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
                // it turns out that it isn't the right type of contract.
                (bool success, bytes memory returndata) = owner.staticcall(
                    abi.encodeWithSelector(
                        iL1ChugSplashDeployer.isUpgrading.selector
                    )
                );
                // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
                // can just continue as normal. We also expect that the return value is exactly 32 bytes
                // long. If this isn't the case then we can safely ignore the result.
                if (success && returndata.length == 32) {
                    // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                    // case that the isUpgrading function returned something other than 0 or 1. But we only
                    // really care about the case where this value is 0 (= false).
                    uint256 ret = abi.decode(returndata, (uint256));
                    require(
                        ret == 0,
                        "L1ChugSplashProxy: system is currently being upgraded"
                    );
                }
                _;
            }
            /**
             * Makes a proxy call instead of triggering the given function when the caller is either the
             * owner or the zero address. Caller can only ever be the zero address if this function is
             * being called off-chain via eth_call, which is totally fine and can be convenient for
             * client-side tooling. Avoids situations where the proxy and implementation share a sighash
             * and the proxy function ends up being called instead of the implementation one.
             *
             * Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If there's a
             * way for someone to send a transaction with msg.sender == address(0) in any real context then
             * we have much bigger problems. Primary reason to include this additional allowed sender is
             * because the owner address can be changed dynamically and we do not want clients to have to
             * keep track of the current owner in order to make an eth_call that doesn't trigger the
             * proxied contract.
             */
            modifier proxyCallIfNotOwner() {
                if (msg.sender == _getOwner() || msg.sender == address(0)) {
                    _;
                } else {
                    // This WILL halt the call frame on completion.
                    _doProxyCall();
                }
            }
            /*********************
             * Fallback Function *
             *********************/
            fallback()
                external
                payable
            {
                // Proxy call by default.
                _doProxyCall();
            }
            /********************
             * Public Functions *
             ********************/
            /**
             * Sets the code that should be running behind this proxy. Note that this scheme is a bit
             * different from the standard proxy scheme where one would typically deploy the code
             * separately and then set the implementation address. We're doing it this way because it gives
             * us a lot more freedom on the client side. Can only be triggered by the contract owner.
             * @param _code New contract code to run inside this contract.
             */
            function setCode(
                bytes memory _code
            )
                proxyCallIfNotOwner
                public
            {
                // Get the code hash of the current implementation.
                address implementation = _getImplementation();
                // If the code hash matches the new implementation then we return early.
                if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                    return;
                }
                // Create the deploycode by appending the magic prefix.
                bytes memory deploycode = abi.encodePacked(
                    DEPLOY_CODE_PREFIX,
                    _code
                );
                // Deploy the code and set the new implementation address.
                address newImplementation;
                assembly {
                    newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
                }
                // Check that the code was actually deployed correctly. I'm not sure if you can ever
                // actually fail this check. Should only happen if the contract creation from above runs
                // out of gas but this parent execution thread does NOT run out of gas. Seems like we
                // should be doing this check anyway though.
                require(
                    _getAccountCodeHash(newImplementation) == keccak256(_code),
                    "L1ChugSplashProxy: code was not correctly deployed."
                );
                _setImplementation(newImplementation);
            }
            /**
             * Modifies some storage slot within the proxy contract. Gives us a lot of power to perform
             * upgrades in a more transparent way. Only callable by the owner.
             * @param _key Storage key to modify.
             * @param _value New value for the storage key.
             */
            function setStorage(
                bytes32 _key,
                bytes32 _value
            )
                proxyCallIfNotOwner
                public
            {
                assembly {
                    sstore(_key, _value)
                }
            }
            /**
             * Changes the owner of the proxy contract. Only callable by the owner.
             * @param _owner New owner of the proxy contract.
             */
            function setOwner(
                address _owner
            )
                proxyCallIfNotOwner
                public
            {
                _setOwner(_owner);
            }
            /**
             * Queries the owner of the proxy contract. Can only be called by the owner OR by making an
             * eth_call and setting the "from" address to address(0).
             * @return Owner address.
             */
            function getOwner()
                proxyCallIfNotOwner
                public
                returns (
                    address
                )
            {
                return _getOwner();
            }
            /**
             * Queries the implementation address. Can only be called by the owner OR by making an
             * eth_call and setting the "from" address to address(0).
             * @return Implementation address.
             */
            function getImplementation()
                proxyCallIfNotOwner
                public
                returns (
                    address
                )
            {
                return _getImplementation();
            }
            /**********************
             * Internal Functions *
             **********************/
            /**
             * Sets the implementation address.
             * @param _implementation New implementation address.
             */
            function _setImplementation(
                address _implementation
            )
                internal
            {
                assembly {
                    sstore(IMPLEMENTATION_KEY, _implementation)
                }
            }
            /**
             * Queries the implementation address.
             * @return Implementation address.
             */
            function _getImplementation()
                internal
                view
                returns (
                    address
                )
            {
                address implementation;
                assembly {
                    implementation := sload(IMPLEMENTATION_KEY)
                }
                return implementation;
            }
            /**
             * Changes the owner of the proxy contract.
             * @param _owner New owner of the proxy contract.
             */
            function _setOwner(
                address _owner
            )
                internal
            {
                assembly {
                    sstore(OWNER_KEY, _owner)
                }
            }
            /**
             * Queries the owner of the proxy contract.
             * @return Owner address.
             */
            function _getOwner()
                internal
                view 
                returns (
                    address
                )
            {
                address owner;
                assembly {
                    owner := sload(OWNER_KEY)
                }
                return owner;
            }
            /**
             * Gets the code hash for a given account.
             * @param _account Address of the account to get a code hash for.
             * @return Code hash for the account.
             */
            function _getAccountCodeHash(
                address _account
            )
                internal
                view
                returns (
                    bytes32
                )
            {
                bytes32 codeHash;
                assembly {
                    codeHash := extcodehash(_account)
                }
                return codeHash;
            }
            /**
             * Performs the proxy call via a delegatecall.
             */
            function _doProxyCall()
                onlyWhenNotPaused
                internal
            {
                address implementation = _getImplementation();
                require(
                    implementation != address(0),
                    "L1ChugSplashProxy: implementation is not set yet"
                );
                assembly {
                    // Copy calldata into memory at 0x0....calldatasize.
                    calldatacopy(0x0, 0x0, calldatasize())
                    // Perform the delegatecall, make sure to pass all available gas.
                    let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                    // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                    // overwrite the calldata that we just copied into memory but that doesn't really
                    // matter because we'll be returning in a second anyway.
                    returndatacopy(0x0, 0x0, returndatasize())
                    
                    // Success == 0 means a revert. We'll revert too and pass the data up.
                    if iszero(success) {
                        revert(0x0, returndatasize())
                    }
                    // Otherwise we'll just return and pass the data up.
                    return(0x0, returndatasize())
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >0.5.0 <0.8.0;
        /**
         * @title iL1ChugSplashDeployer
         */
        interface iL1ChugSplashDeployer {
            function isUpgrading()
                external
                view
                returns (
                    bool
                );
        }
        

        File 2 of 6: ProxyAdmin
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
        /**
         * @custom:legacy
         * @title AddressManager
         * @notice AddressManager is a legacy contract that was used in the old version of the Optimism
         *         system to manage a registry of string names to addresses. We now use a more standard
         *         proxy system instead, but this contract is still necessary for backwards compatibility
         *         with several older contracts.
         */
        contract AddressManager is Ownable {
            /**
             * @notice Mapping of the hashes of string names to addresses.
             */
            mapping(bytes32 => address) private addresses;
            /**
             * @notice Emitted when an address is modified in the registry.
             *
             * @param name       String name being set in the registry.
             * @param newAddress Address set for the given name.
             * @param oldAddress Address that was previously set for the given name.
             */
            event AddressSet(string indexed name, address newAddress, address oldAddress);
            /**
             * @notice Changes the address associated with a particular name.
             *
             * @param _name    String name to associate an address with.
             * @param _address Address to associate with the name.
             */
            function setAddress(string memory _name, address _address) external onlyOwner {
                bytes32 nameHash = _getNameHash(_name);
                address oldAddress = addresses[nameHash];
                addresses[nameHash] = _address;
                emit AddressSet(_name, _address, oldAddress);
            }
            /**
             * @notice Retrieves the address associated with a given name.
             *
             * @param _name Name to retrieve an address for.
             *
             * @return Address associated with the given name.
             */
            function getAddress(string memory _name) external view returns (address) {
                return addresses[_getNameHash(_name)];
            }
            /**
             * @notice Computes the hash of a name.
             *
             * @param _name Name to compute a hash for.
             *
             * @return Hash of the given name.
             */
            function _getNameHash(string memory _name) internal pure returns (bytes32) {
                return keccak256(abi.encodePacked(_name));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        /**
         * @title IL1ChugSplashDeployer
         */
        interface IL1ChugSplashDeployer {
            function isUpgrading() external view returns (bool);
        }
        /**
         * @custom:legacy
         * @title L1ChugSplashProxy
         * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
         *         functions `setCode` and `setStorage` for changing the code or storage of the contract.
         *
         *         Note for future developers: do NOT make anything in this contract 'public' unless you
         *         know what you're doing. Anything public can potentially have a function signature that
         *         conflicts with a signature attached to the implementation contract. Public functions
         *         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
         *         reason not to have that modifier. And there almost certainly is not a good reason to not
         *         have that modifier. Beware!
         */
        contract L1ChugSplashProxy {
            /**
             * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
             *         contract, the appended bytecode will be deployed as given.
             */
            bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
            /**
             * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
             */
            bytes32 internal constant IMPLEMENTATION_KEY =
                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
             */
            bytes32 internal constant OWNER_KEY =
                0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @notice Blocks a function from being called when the parent signals that the system should
             *         be paused via an isUpgrading function.
             */
            modifier onlyWhenNotPaused() {
                address owner = _getOwner();
                // We do a low-level call because there's no guarantee that the owner actually *is* an
                // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
                // it turns out that it isn't the right type of contract.
                (bool success, bytes memory returndata) = owner.staticcall(
                    abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector)
                );
                // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
                // can just continue as normal. We also expect that the return value is exactly 32 bytes
                // long. If this isn't the case then we can safely ignore the result.
                if (success && returndata.length == 32) {
                    // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                    // case that the isUpgrading function returned something other than 0 or 1. But we only
                    // really care about the case where this value is 0 (= false).
                    uint256 ret = abi.decode(returndata, (uint256));
                    require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
                }
                _;
            }
            /**
             * @notice Makes a proxy call instead of triggering the given function when the caller is
             *         either the owner or the zero address. Caller can only ever be the zero address if
             *         this function is being called off-chain via eth_call, which is totally fine and can
             *         be convenient for client-side tooling. Avoids situations where the proxy and
             *         implementation share a sighash and the proxy function ends up being called instead
             *         of the implementation one.
             *
             *         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
             *         there's a way for someone to send a transaction with msg.sender == address(0) in any
             *         real context then we have much bigger problems. Primary reason to include this
             *         additional allowed sender is because the owner address can be changed dynamically
             *         and we do not want clients to have to keep track of the current owner in order to
             *         make an eth_call that doesn't trigger the proxied contract.
             */
            // slither-disable-next-line incorrect-modifier
            modifier proxyCallIfNotOwner() {
                if (msg.sender == _getOwner() || msg.sender == address(0)) {
                    _;
                } else {
                    // This WILL halt the call frame on completion.
                    _doProxyCall();
                }
            }
            /**
             * @param _owner Address of the initial contract owner.
             */
            constructor(address _owner) {
                _setOwner(_owner);
            }
            // slither-disable-next-line locked-ether
            receive() external payable {
                // Proxy call by default.
                _doProxyCall();
            }
            // slither-disable-next-line locked-ether
            fallback() external payable {
                // Proxy call by default.
                _doProxyCall();
            }
            /**
             * @notice Sets the code that should be running behind this proxy.
             *
             *         Note: This scheme is a bit different from the standard proxy scheme where one would
             *         typically deploy the code separately and then set the implementation address. We're
             *         doing it this way because it gives us a lot more freedom on the client side. Can
             *         only be triggered by the contract owner.
             *
             * @param _code New contract code to run inside this contract.
             */
            function setCode(bytes memory _code) external proxyCallIfNotOwner {
                // Get the code hash of the current implementation.
                address implementation = _getImplementation();
                // If the code hash matches the new implementation then we return early.
                if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                    return;
                }
                // Create the deploycode by appending the magic prefix.
                bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
                // Deploy the code and set the new implementation address.
                address newImplementation;
                assembly {
                    newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
                }
                // Check that the code was actually deployed correctly. I'm not sure if you can ever
                // actually fail this check. Should only happen if the contract creation from above runs
                // out of gas but this parent execution thread does NOT run out of gas. Seems like we
                // should be doing this check anyway though.
                require(
                    _getAccountCodeHash(newImplementation) == keccak256(_code),
                    "L1ChugSplashProxy: code was not correctly deployed"
                );
                _setImplementation(newImplementation);
            }
            /**
             * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
             *         perform upgrades in a more transparent way. Only callable by the owner.
             *
             * @param _key   Storage key to modify.
             * @param _value New value for the storage key.
             */
            function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
                assembly {
                    sstore(_key, _value)
                }
            }
            /**
             * @notice Changes the owner of the proxy contract. Only callable by the owner.
             *
             * @param _owner New owner of the proxy contract.
             */
            function setOwner(address _owner) external proxyCallIfNotOwner {
                _setOwner(_owner);
            }
            /**
             * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
             *         making an eth_call and setting the "from" address to address(0).
             *
             * @return Owner address.
             */
            function getOwner() external proxyCallIfNotOwner returns (address) {
                return _getOwner();
            }
            /**
             * @notice Queries the implementation address. Can only be called by the owner OR by making an
             *         eth_call and setting the "from" address to address(0).
             *
             * @return Implementation address.
             */
            function getImplementation() external proxyCallIfNotOwner returns (address) {
                return _getImplementation();
            }
            /**
             * @notice Sets the implementation address.
             *
             * @param _implementation New implementation address.
             */
            function _setImplementation(address _implementation) internal {
                assembly {
                    sstore(IMPLEMENTATION_KEY, _implementation)
                }
            }
            /**
             * @notice Changes the owner of the proxy contract.
             *
             * @param _owner New owner of the proxy contract.
             */
            function _setOwner(address _owner) internal {
                assembly {
                    sstore(OWNER_KEY, _owner)
                }
            }
            /**
             * @notice Performs the proxy call via a delegatecall.
             */
            function _doProxyCall() internal onlyWhenNotPaused {
                address implementation = _getImplementation();
                require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
                assembly {
                    // Copy calldata into memory at 0x0....calldatasize.
                    calldatacopy(0x0, 0x0, calldatasize())
                    // Perform the delegatecall, make sure to pass all available gas.
                    let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                    // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                    // overwrite the calldata that we just copied into memory but that doesn't really
                    // matter because we'll be returning in a second anyway.
                    returndatacopy(0x0, 0x0, returndatasize())
                    // Success == 0 means a revert. We'll revert too and pass the data up.
                    if iszero(success) {
                        revert(0x0, returndatasize())
                    }
                    // Otherwise we'll just return and pass the data up.
                    return(0x0, returndatasize())
                }
            }
            /**
             * @notice Queries the implementation address.
             *
             * @return Implementation address.
             */
            function _getImplementation() internal view returns (address) {
                address implementation;
                assembly {
                    implementation := sload(IMPLEMENTATION_KEY)
                }
                return implementation;
            }
            /**
             * @notice Queries the owner of the proxy contract.
             *
             * @return Owner address.
             */
            function _getOwner() internal view returns (address) {
                address owner;
                assembly {
                    owner := sload(OWNER_KEY)
                }
                return owner;
            }
            /**
             * @notice Gets the code hash for a given account.
             *
             * @param _account Address of the account to get a code hash for.
             *
             * @return Code hash for the account.
             */
            function _getAccountCodeHash(address _account) internal view returns (bytes32) {
                bytes32 codeHash;
                assembly {
                    codeHash := extcodehash(_account)
                }
                return codeHash;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        /**
         * @title Proxy
         * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
         *         if the caller is address(0), meaning that the call originated from an off-chain
         *         simulation.
         */
        contract Proxy {
            /**
             * @notice The storage slot that holds the address of the implementation.
             *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
             */
            bytes32 internal constant IMPLEMENTATION_KEY =
                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @notice The storage slot that holds the address of the owner.
             *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
             */
            bytes32 internal constant OWNER_KEY =
                0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @notice An event that is emitted each time the implementation is changed. This event is part
             *         of the EIP-1967 specification.
             *
             * @param implementation The address of the implementation contract
             */
            event Upgraded(address indexed implementation);
            /**
             * @notice An event that is emitted each time the owner is upgraded. This event is part of the
             *         EIP-1967 specification.
             *
             * @param previousAdmin The previous owner of the contract
             * @param newAdmin      The new owner of the contract
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @notice A modifier that reverts if not called by the owner or by address(0) to allow
             *         eth_call to interact with this proxy without needing to use low-level storage
             *         inspection. We assume that nobody is able to trigger calls from address(0) during
             *         normal EVM execution.
             */
            modifier proxyCallIfNotAdmin() {
                if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                    _;
                } else {
                    // This WILL halt the call frame on completion.
                    _doProxyCall();
                }
            }
            /**
             * @notice Sets the initial admin during contract deployment. Admin address is stored at the
             *         EIP-1967 admin storage slot so that accidental storage collision with the
             *         implementation is not possible.
             *
             * @param _admin Address of the initial contract admin. Admin as the ability to access the
             *               transparent proxy interface.
             */
            constructor(address _admin) {
                _changeAdmin(_admin);
            }
            // slither-disable-next-line locked-ether
            receive() external payable {
                // Proxy call by default.
                _doProxyCall();
            }
            // slither-disable-next-line locked-ether
            fallback() external payable {
                // Proxy call by default.
                _doProxyCall();
            }
            /**
             * @notice Set the implementation contract address. The code at the given address will execute
             *         when this contract is called.
             *
             * @param _implementation Address of the implementation contract.
             */
            function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                _setImplementation(_implementation);
            }
            /**
             * @notice Set the implementation and call a function in a single transaction. Useful to ensure
             *         atomic execution of initialization-based upgrades.
             *
             * @param _implementation Address of the implementation contract.
             * @param _data           Calldata to delegatecall the new implementation with.
             */
            function upgradeToAndCall(address _implementation, bytes calldata _data)
                public
                payable
                virtual
                proxyCallIfNotAdmin
                returns (bytes memory)
            {
                _setImplementation(_implementation);
                (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                require(success, "Proxy: delegatecall to new implementation contract failed");
                return returndata;
            }
            /**
             * @notice Changes the owner of the proxy contract. Only callable by the owner.
             *
             * @param _admin New owner of the proxy contract.
             */
            function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                _changeAdmin(_admin);
            }
            /**
             * @notice Gets the owner of the proxy contract.
             *
             * @return Owner address.
             */
            function admin() public virtual proxyCallIfNotAdmin returns (address) {
                return _getAdmin();
            }
            /**
             * @notice Queries the implementation address.
             *
             * @return Implementation address.
             */
            function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                return _getImplementation();
            }
            /**
             * @notice Sets the implementation address.
             *
             * @param _implementation New implementation address.
             */
            function _setImplementation(address _implementation) internal {
                assembly {
                    sstore(IMPLEMENTATION_KEY, _implementation)
                }
                emit Upgraded(_implementation);
            }
            /**
             * @notice Changes the owner of the proxy contract.
             *
             * @param _admin New owner of the proxy contract.
             */
            function _changeAdmin(address _admin) internal {
                address previous = _getAdmin();
                assembly {
                    sstore(OWNER_KEY, _admin)
                }
                emit AdminChanged(previous, _admin);
            }
            /**
             * @notice Performs the proxy call via a delegatecall.
             */
            function _doProxyCall() internal {
                address impl = _getImplementation();
                require(impl != address(0), "Proxy: implementation not initialized");
                assembly {
                    // Copy calldata into memory at 0x0....calldatasize.
                    calldatacopy(0x0, 0x0, calldatasize())
                    // Perform the delegatecall, make sure to pass all available gas.
                    let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                    // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                    // overwrite the calldata that we just copied into memory but that doesn't really
                    // matter because we'll be returning in a second anyway.
                    returndatacopy(0x0, 0x0, returndatasize())
                    // Success == 0 means a revert. We'll revert too and pass the data up.
                    if iszero(success) {
                        revert(0x0, returndatasize())
                    }
                    // Otherwise we'll just return and pass the data up.
                    return(0x0, returndatasize())
                }
            }
            /**
             * @notice Queries the implementation address.
             *
             * @return Implementation address.
             */
            function _getImplementation() internal view returns (address) {
                address impl;
                assembly {
                    impl := sload(IMPLEMENTATION_KEY)
                }
                return impl;
            }
            /**
             * @notice Queries the owner of the proxy contract.
             *
             * @return Owner address.
             */
            function _getAdmin() internal view returns (address) {
                address owner;
                assembly {
                    owner := sload(OWNER_KEY)
                }
                return owner;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
        import { Proxy } from "./Proxy.sol";
        import { AddressManager } from "../legacy/AddressManager.sol";
        import { L1ChugSplashProxy } from "../legacy/L1ChugSplashProxy.sol";
        /**
         * @title IStaticERC1967Proxy
         * @notice IStaticERC1967Proxy is a static version of the ERC1967 proxy interface.
         */
        interface IStaticERC1967Proxy {
            function implementation() external view returns (address);
            function admin() external view returns (address);
        }
        /**
         * @title IStaticL1ChugSplashProxy
         * @notice IStaticL1ChugSplashProxy is a static version of the ChugSplash proxy interface.
         */
        interface IStaticL1ChugSplashProxy {
            function getImplementation() external view returns (address);
            function getOwner() external view returns (address);
        }
        /**
         * @title ProxyAdmin
         * @notice This is an auxiliary contract meant to be assigned as the admin of an ERC1967 Proxy,
         *         based on the OpenZeppelin implementation. It has backwards compatibility logic to work
         *         with the various types of proxies that have been deployed by Optimism in the past.
         */
        contract ProxyAdmin is Ownable {
            /**
             * @notice The proxy types that the ProxyAdmin can manage.
             *
             * @custom:value ERC1967    Represents an ERC1967 compliant transparent proxy interface.
             * @custom:value CHUGSPLASH Represents the Chugsplash proxy interface (legacy).
             * @custom:value RESOLVED   Represents the ResolvedDelegate proxy (legacy).
             */
            enum ProxyType {
                ERC1967,
                CHUGSPLASH,
                RESOLVED
            }
            /**
             * @notice A mapping of proxy types, used for backwards compatibility.
             */
            mapping(address => ProxyType) public proxyType;
            /**
             * @notice A reverse mapping of addresses to names held in the AddressManager. This must be
             *         manually kept up to date with changes in the AddressManager for this contract
             *         to be able to work as an admin for the ResolvedDelegateProxy type.
             */
            mapping(address => string) public implementationName;
            /**
             * @notice The address of the address manager, this is required to manage the
             *         ResolvedDelegateProxy type.
             */
            AddressManager public addressManager;
            /**
             * @notice A legacy upgrading indicator used by the old Chugsplash Proxy.
             */
            bool internal upgrading;
            /**
             * @param _owner Address of the initial owner of this contract.
             */
            constructor(address _owner) Ownable() {
                _transferOwnership(_owner);
            }
            /**
             * @notice Sets the proxy type for a given address. Only required for non-standard (legacy)
             *         proxy types.
             *
             * @param _address Address of the proxy.
             * @param _type    Type of the proxy.
             */
            function setProxyType(address _address, ProxyType _type) external onlyOwner {
                proxyType[_address] = _type;
            }
            /**
             * @notice Sets the implementation name for a given address. Only required for
             *         ResolvedDelegateProxy type proxies that have an implementation name.
             *
             * @param _address Address of the ResolvedDelegateProxy.
             * @param _name    Name of the implementation for the proxy.
             */
            function setImplementationName(address _address, string memory _name) external onlyOwner {
                implementationName[_address] = _name;
            }
            /**
             * @notice Set the address of the AddressManager. This is required to manage legacy
             *         ResolvedDelegateProxy type proxy contracts.
             *
             * @param _address Address of the AddressManager.
             */
            function setAddressManager(AddressManager _address) external onlyOwner {
                addressManager = _address;
            }
            /**
             * @custom:legacy
             * @notice Set an address in the address manager. Since only the owner of the AddressManager
             *         can directly modify addresses and the ProxyAdmin will own the AddressManager, this
             *         gives the owner of the ProxyAdmin the ability to modify addresses directly.
             *
             * @param _name    Name to set within the AddressManager.
             * @param _address Address to attach to the given name.
             */
            function setAddress(string memory _name, address _address) external onlyOwner {
                addressManager.setAddress(_name, _address);
            }
            /**
             * @custom:legacy
             * @notice Set the upgrading status for the Chugsplash proxy type.
             *
             * @param _upgrading Whether or not the system is upgrading.
             */
            function setUpgrading(bool _upgrading) external onlyOwner {
                upgrading = _upgrading;
            }
            /**
             * @custom:legacy
             * @notice Legacy function used to tell ChugSplashProxy contracts if an upgrade is happening.
             *
             * @return Whether or not there is an upgrade going on. May not actually tell you whether an
             *         upgrade is going on, since we don't currently plan to use this variable for anything
             *         other than a legacy indicator to fix a UX bug in the ChugSplash proxy.
             */
            function isUpgrading() external view returns (bool) {
                return upgrading;
            }
            /**
             * @notice Returns the implementation of the given proxy address.
             *
             * @param _proxy Address of the proxy to get the implementation of.
             *
             * @return Address of the implementation of the proxy.
             */
            function getProxyImplementation(address _proxy) external view returns (address) {
                ProxyType ptype = proxyType[_proxy];
                if (ptype == ProxyType.ERC1967) {
                    return IStaticERC1967Proxy(_proxy).implementation();
                } else if (ptype == ProxyType.CHUGSPLASH) {
                    return IStaticL1ChugSplashProxy(_proxy).getImplementation();
                } else if (ptype == ProxyType.RESOLVED) {
                    return addressManager.getAddress(implementationName[_proxy]);
                } else {
                    revert("ProxyAdmin: unknown proxy type");
                }
            }
            /**
             * @notice Returns the admin of the given proxy address.
             *
             * @param _proxy Address of the proxy to get the admin of.
             *
             * @return Address of the admin of the proxy.
             */
            function getProxyAdmin(address payable _proxy) external view returns (address) {
                ProxyType ptype = proxyType[_proxy];
                if (ptype == ProxyType.ERC1967) {
                    return IStaticERC1967Proxy(_proxy).admin();
                } else if (ptype == ProxyType.CHUGSPLASH) {
                    return IStaticL1ChugSplashProxy(_proxy).getOwner();
                } else if (ptype == ProxyType.RESOLVED) {
                    return addressManager.owner();
                } else {
                    revert("ProxyAdmin: unknown proxy type");
                }
            }
            /**
             * @notice Updates the admin of the given proxy address.
             *
             * @param _proxy    Address of the proxy to update.
             * @param _newAdmin Address of the new proxy admin.
             */
            function changeProxyAdmin(address payable _proxy, address _newAdmin) external onlyOwner {
                ProxyType ptype = proxyType[_proxy];
                if (ptype == ProxyType.ERC1967) {
                    Proxy(_proxy).changeAdmin(_newAdmin);
                } else if (ptype == ProxyType.CHUGSPLASH) {
                    L1ChugSplashProxy(_proxy).setOwner(_newAdmin);
                } else if (ptype == ProxyType.RESOLVED) {
                    addressManager.transferOwnership(_newAdmin);
                } else {
                    revert("ProxyAdmin: unknown proxy type");
                }
            }
            /**
             * @notice Changes a proxy's implementation contract.
             *
             * @param _proxy          Address of the proxy to upgrade.
             * @param _implementation Address of the new implementation address.
             */
            function upgrade(address payable _proxy, address _implementation) public onlyOwner {
                ProxyType ptype = proxyType[_proxy];
                if (ptype == ProxyType.ERC1967) {
                    Proxy(_proxy).upgradeTo(_implementation);
                } else if (ptype == ProxyType.CHUGSPLASH) {
                    L1ChugSplashProxy(_proxy).setStorage(
                        // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc,
                        bytes32(uint256(uint160(_implementation)))
                    );
                } else if (ptype == ProxyType.RESOLVED) {
                    string memory name = implementationName[_proxy];
                    addressManager.setAddress(name, _implementation);
                } else {
                    // It should not be possible to retrieve a ProxyType value which is not matched by
                    // one of the previous conditions.
                    assert(false);
                }
            }
            /**
             * @notice Changes a proxy's implementation contract and delegatecalls the new implementation
             *         with some given data. Useful for atomic upgrade-and-initialize calls.
             *
             * @param _proxy          Address of the proxy to upgrade.
             * @param _implementation Address of the new implementation address.
             * @param _data           Data to trigger the new implementation with.
             */
            function upgradeAndCall(
                address payable _proxy,
                address _implementation,
                bytes memory _data
            ) external payable onlyOwner {
                ProxyType ptype = proxyType[_proxy];
                if (ptype == ProxyType.ERC1967) {
                    Proxy(_proxy).upgradeToAndCall{ value: msg.value }(_implementation, _data);
                } else {
                    // reverts if proxy type is unknown
                    upgrade(_proxy, _implementation);
                    (bool success, ) = _proxy.call{ value: msg.value }(_data);
                    require(success, "ProxyAdmin: call to proxy after upgrade failed");
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor() {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
        }
        

        File 3 of 6: L1StandardBridge
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        // Contracts
        import { StandardBridge } from "src/universal/StandardBridge.sol";
        // Libraries
        import { Predeploys } from "src/libraries/Predeploys.sol";
        // Interfaces
        import { ISemver } from "interfaces/universal/ISemver.sol";
        import { ICrossDomainMessenger } from "interfaces/universal/ICrossDomainMessenger.sol";
        import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
        /// @custom:proxied true
        /// @title L1StandardBridge
        /// @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and
        ///         L2. In the case that an ERC20 token is native to L1, it will be escrowed within this
        ///         contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was
        ///         stored within this contract. After Bedrock, ETH is instead stored inside the
        ///         OptimismPortal contract.
        ///         NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples
        ///         of some token types that may not be properly supported by this contract include, but are
        ///         not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists.
        contract L1StandardBridge is StandardBridge, ISemver {
            /// @custom:legacy
            /// @notice Emitted whenever a deposit of ETH from L1 into L2 is initiated.
            /// @param from      Address of the depositor.
            /// @param to        Address of the recipient on L2.
            /// @param amount    Amount of ETH deposited.
            /// @param extraData Extra data attached to the deposit.
            event ETHDepositInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
            /// @custom:legacy
            /// @notice Emitted whenever a withdrawal of ETH from L2 to L1 is finalized.
            /// @param from      Address of the withdrawer.
            /// @param to        Address of the recipient on L1.
            /// @param amount    Amount of ETH withdrawn.
            /// @param extraData Extra data attached to the withdrawal.
            event ETHWithdrawalFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
            /// @custom:legacy
            /// @notice Emitted whenever an ERC20 deposit is initiated.
            /// @param l1Token   Address of the token on L1.
            /// @param l2Token   Address of the corresponding token on L2.
            /// @param from      Address of the depositor.
            /// @param to        Address of the recipient on L2.
            /// @param amount    Amount of the ERC20 deposited.
            /// @param extraData Extra data attached to the deposit.
            event ERC20DepositInitiated(
                address indexed l1Token,
                address indexed l2Token,
                address indexed from,
                address to,
                uint256 amount,
                bytes extraData
            );
            /// @custom:legacy
            /// @notice Emitted whenever an ERC20 withdrawal is finalized.
            /// @param l1Token   Address of the token on L1.
            /// @param l2Token   Address of the corresponding token on L2.
            /// @param from      Address of the withdrawer.
            /// @param to        Address of the recipient on L1.
            /// @param amount    Amount of the ERC20 withdrawn.
            /// @param extraData Extra data attached to the withdrawal.
            event ERC20WithdrawalFinalized(
                address indexed l1Token,
                address indexed l2Token,
                address indexed from,
                address to,
                uint256 amount,
                bytes extraData
            );
            /// @notice Semantic version.
            /// @custom:semver 2.3.0
            string public constant version = "2.3.0";
            /// @notice Address of the SuperchainConfig contract.
            ISuperchainConfig public superchainConfig;
            /// @custom:legacy
            /// @custom:spacer systemConfig
            /// @notice Spacer taking up the legacy `systemConfig` slot.
            address private spacer_51_0_20;
            /// @notice Constructs the L1StandardBridge contract.
            constructor() StandardBridge() {
                _disableInitializers();
            }
            /// @notice Initializer.
            /// @param _messenger        Contract for the CrossDomainMessenger on this network.
            /// @param _superchainConfig Contract for the SuperchainConfig on this network.
            function initialize(ICrossDomainMessenger _messenger, ISuperchainConfig _superchainConfig) external initializer {
                superchainConfig = _superchainConfig;
                __StandardBridge_init({
                    _messenger: _messenger,
                    _otherBridge: StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE))
                });
            }
            /// @inheritdoc StandardBridge
            function paused() public view override returns (bool) {
                return superchainConfig.paused();
            }
            /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
            receive() external payable override onlyEOA {
                _initiateETHDeposit(msg.sender, msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
            }
            /// @custom:legacy
            /// @notice Deposits some amount of ETH into the sender's account on L2.
            /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
            /// @param _extraData   Optional data to forward to L2.
            ///                     Data supplied here will not be used to execute any code on L2 and is
            ///                     only emitted as extra data for the convenience of off-chain tooling.
            function depositETH(uint32 _minGasLimit, bytes calldata _extraData) external payable onlyEOA {
                _initiateETHDeposit(msg.sender, msg.sender, _minGasLimit, _extraData);
            }
            /// @custom:legacy
            /// @notice Deposits some amount of ETH into a target account on L2.
            ///         Note that if ETH is sent to a contract on L2 and the call fails, then that ETH will
            ///         be locked in the L2StandardBridge. ETH may be recoverable if the call can be
            ///         successfully replayed by increasing the amount of gas supplied to the call. If the
            ///         call will fail for any amount of gas, then the ETH will be locked permanently.
            /// @param _to          Address of the recipient on L2.
            /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
            /// @param _extraData   Optional data to forward to L2.
            ///                     Data supplied here will not be used to execute any code on L2 and is
            ///                     only emitted as extra data for the convenience of off-chain tooling.
            function depositETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) external payable {
                _initiateETHDeposit(msg.sender, _to, _minGasLimit, _extraData);
            }
            /// @custom:legacy
            /// @notice Deposits some amount of ERC20 tokens into the sender's account on L2.
            /// @param _l1Token     Address of the L1 token being deposited.
            /// @param _l2Token     Address of the corresponding token on L2.
            /// @param _amount      Amount of the ERC20 to deposit.
            /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
            /// @param _extraData   Optional data to forward to L2.
            ///                     Data supplied here will not be used to execute any code on L2 and is
            ///                     only emitted as extra data for the convenience of off-chain tooling.
            function depositERC20(
                address _l1Token,
                address _l2Token,
                uint256 _amount,
                uint32 _minGasLimit,
                bytes calldata _extraData
            )
                external
                virtual
                onlyEOA
            {
                _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
            }
            /// @custom:legacy
            /// @notice Deposits some amount of ERC20 tokens into a target account on L2.
            /// @param _l1Token     Address of the L1 token being deposited.
            /// @param _l2Token     Address of the corresponding token on L2.
            /// @param _to          Address of the recipient on L2.
            /// @param _amount      Amount of the ERC20 to deposit.
            /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
            /// @param _extraData   Optional data to forward to L2.
            ///                     Data supplied here will not be used to execute any code on L2 and is
            ///                     only emitted as extra data for the convenience of off-chain tooling.
            function depositERC20To(
                address _l1Token,
                address _l2Token,
                address _to,
                uint256 _amount,
                uint32 _minGasLimit,
                bytes calldata _extraData
            )
                external
                virtual
            {
                _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, _to, _amount, _minGasLimit, _extraData);
            }
            /// @custom:legacy
            /// @notice Finalizes a withdrawal of ETH from L2.
            /// @param _from      Address of the withdrawer on L2.
            /// @param _to        Address of the recipient on L1.
            /// @param _amount    Amount of ETH to withdraw.
            /// @param _extraData Optional data forwarded from L2.
            function finalizeETHWithdrawal(
                address _from,
                address _to,
                uint256 _amount,
                bytes calldata _extraData
            )
                external
                payable
            {
                finalizeBridgeETH(_from, _to, _amount, _extraData);
            }
            /// @custom:legacy
            /// @notice Finalizes a withdrawal of ERC20 tokens from L2.
            /// @param _l1Token   Address of the token on L1.
            /// @param _l2Token   Address of the corresponding token on L2.
            /// @param _from      Address of the withdrawer on L2.
            /// @param _to        Address of the recipient on L1.
            /// @param _amount    Amount of the ERC20 to withdraw.
            /// @param _extraData Optional data forwarded from L2.
            function finalizeERC20Withdrawal(
                address _l1Token,
                address _l2Token,
                address _from,
                address _to,
                uint256 _amount,
                bytes calldata _extraData
            )
                external
            {
                finalizeBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _extraData);
            }
            /// @custom:legacy
            /// @notice Retrieves the access of the corresponding L2 bridge contract.
            /// @return Address of the corresponding L2 bridge contract.
            function l2TokenBridge() external view returns (address) {
                return address(otherBridge);
            }
            /// @notice Internal function for initiating an ETH deposit.
            /// @param _from        Address of the sender on L1.
            /// @param _to          Address of the recipient on L2.
            /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
            /// @param _extraData   Optional data to forward to L2.
            function _initiateETHDeposit(address _from, address _to, uint32 _minGasLimit, bytes memory _extraData) internal {
                _initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData);
            }
            /// @notice Internal function for initiating an ERC20 deposit.
            /// @param _l1Token     Address of the L1 token being deposited.
            /// @param _l2Token     Address of the corresponding token on L2.
            /// @param _from        Address of the sender on L1.
            /// @param _to          Address of the recipient on L2.
            /// @param _amount      Amount of the ERC20 to deposit.
            /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
            /// @param _extraData   Optional data to forward to L2.
            function _initiateERC20Deposit(
                address _l1Token,
                address _l2Token,
                address _from,
                address _to,
                uint256 _amount,
                uint32 _minGasLimit,
                bytes memory _extraData
            )
                internal
            {
                _initiateBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _minGasLimit, _extraData);
            }
            /// @inheritdoc StandardBridge
            /// @notice Emits the legacy ETHDepositInitiated event followed by the ETHBridgeInitiated event.
            ///         This is necessary for backwards compatibility with the legacy bridge.
            function _emitETHBridgeInitiated(
                address _from,
                address _to,
                uint256 _amount,
                bytes memory _extraData
            )
                internal
                override
            {
                emit ETHDepositInitiated(_from, _to, _amount, _extraData);
                super._emitETHBridgeInitiated(_from, _to, _amount, _extraData);
            }
            /// @inheritdoc StandardBridge
            /// @notice Emits the legacy ERC20DepositInitiated event followed by the ERC20BridgeInitiated
            ///         event. This is necessary for backwards compatibility with the legacy bridge.
            function _emitETHBridgeFinalized(
                address _from,
                address _to,
                uint256 _amount,
                bytes memory _extraData
            )
                internal
                override
            {
                emit ETHWithdrawalFinalized(_from, _to, _amount, _extraData);
                super._emitETHBridgeFinalized(_from, _to, _amount, _extraData);
            }
            /// @inheritdoc StandardBridge
            /// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
            ///         event. This is necessary for backwards compatibility with the legacy bridge.
            function _emitERC20BridgeInitiated(
                address _localToken,
                address _remoteToken,
                address _from,
                address _to,
                uint256 _amount,
                bytes memory _extraData
            )
                internal
                override
            {
                emit ERC20DepositInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                super._emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
            }
            /// @inheritdoc StandardBridge
            /// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
            ///         event. This is necessary for backwards compatibility with the legacy bridge.
            function _emitERC20BridgeFinalized(
                address _localToken,
                address _remoteToken,
                address _from,
                address _to,
                uint256 _amount,
                bytes memory _extraData
            )
                internal
                override
            {
                emit ERC20WithdrawalFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                super._emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        // Contracts
        import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
        // Libraries
        import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
        import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
        import { SafeCall } from "src/libraries/SafeCall.sol";
        import { EOA } from "src/libraries/EOA.sol";
        // Interfaces
        import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import { IOptimismMintableERC20 } from "interfaces/universal/IOptimismMintableERC20.sol";
        import { ILegacyMintableERC20 } from "interfaces/legacy/ILegacyMintableERC20.sol";
        import { ICrossDomainMessenger } from "interfaces/universal/ICrossDomainMessenger.sol";
        /// @custom:upgradeable
        /// @title StandardBridge
        /// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
        ///         the core bridging logic, including escrowing tokens that are native to the local chain
        ///         and minting/burning tokens that are native to the remote chain.
        abstract contract StandardBridge is Initializable {
            using SafeERC20 for IERC20;
            /// @notice The L2 gas limit set when eth is depoisited using the receive() function.
            uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;
            /// @custom:legacy
            /// @custom:spacer messenger
            /// @notice Spacer for backwards compatibility.
            bytes30 private spacer_0_2_30;
            /// @custom:legacy
            /// @custom:spacer l2TokenBridge
            /// @notice Spacer for backwards compatibility.
            address private spacer_1_0_20;
            /// @notice Mapping that stores deposits for a given pair of local and remote tokens.
            mapping(address => mapping(address => uint256)) public deposits;
            /// @notice Messenger contract on this domain.
            /// @custom:network-specific
            ICrossDomainMessenger public messenger;
            /// @notice Corresponding bridge on the other domain.
            /// @custom:network-specific
            StandardBridge public otherBridge;
            /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
            ///         A gap size of 45 was chosen here, so that the first slot used in a child contract
            ///         would be a multiple of 50.
            uint256[45] private __gap;
            /// @notice Emitted when an ETH bridge is initiated to the other chain.
            /// @param from      Address of the sender.
            /// @param to        Address of the receiver.
            /// @param amount    Amount of ETH sent.
            /// @param extraData Extra data sent with the transaction.
            event ETHBridgeInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
            /// @notice Emitted when an ETH bridge is finalized on this chain.
            /// @param from      Address of the sender.
            /// @param to        Address of the receiver.
            /// @param amount    Amount of ETH sent.
            /// @param extraData Extra data sent with the transaction.
            event ETHBridgeFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
            /// @notice Emitted when an ERC20 bridge is initiated to the other chain.
            /// @param localToken  Address of the ERC20 on this chain.
            /// @param remoteToken Address of the ERC20 on the remote chain.
            /// @param from        Address of the sender.
            /// @param to          Address of the receiver.
            /// @param amount      Amount of the ERC20 sent.
            /// @param extraData   Extra data sent with the transaction.
            event ERC20BridgeInitiated(
                address indexed localToken,
                address indexed remoteToken,
                address indexed from,
                address to,
                uint256 amount,
                bytes extraData
            );
            /// @notice Emitted when an ERC20 bridge is finalized on this chain.
            /// @param localToken  Address of the ERC20 on this chain.
            /// @param remoteToken Address of the ERC20 on the remote chain.
            /// @param from        Address of the sender.
            /// @param to          Address of the receiver.
            /// @param amount      Amount of the ERC20 sent.
            /// @param extraData   Extra data sent with the transaction.
            event ERC20BridgeFinalized(
                address indexed localToken,
                address indexed remoteToken,
                address indexed from,
                address to,
                uint256 amount,
                bytes extraData
            );
            /// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
            ///         calling code within their constructors, but also doesn't really matter since we're
            ///         just trying to prevent users accidentally depositing with smart contract wallets.
            modifier onlyEOA() {
                require(EOA.isSenderEOA(), "StandardBridge: function can only be called from an EOA");
                _;
            }
            /// @notice Ensures that the caller is a cross-chain message from the other bridge.
            modifier onlyOtherBridge() {
                require(
                    msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(otherBridge),
                    "StandardBridge: function can only be called from the other bridge"
                );
                _;
            }
            /// @notice Initializer.
            /// @param _messenger   Contract for CrossDomainMessenger on this network.
            /// @param _otherBridge Contract for the other StandardBridge contract.
            function __StandardBridge_init(
                ICrossDomainMessenger _messenger,
                StandardBridge _otherBridge
            )
                internal
                onlyInitializing
            {
                messenger = _messenger;
                otherBridge = _otherBridge;
            }
            /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
            ///         Must be implemented by contracts that inherit.
            receive() external payable virtual;
            /// @notice Getter for messenger contract.
            ///         Public getter is legacy and will be removed in the future. Use `messenger` instead.
            /// @return Contract of the messenger on this domain.
            /// @custom:legacy
            function MESSENGER() external view returns (ICrossDomainMessenger) {
                return messenger;
            }
            /// @notice Getter for the other bridge contract.
            ///         Public getter is legacy and will be removed in the future. Use `otherBridge` instead.
            /// @return Contract of the bridge on the other network.
            /// @custom:legacy
            function OTHER_BRIDGE() external view returns (StandardBridge) {
                return otherBridge;
            }
            /// @notice This function should return true if the contract is paused.
            ///         On L1 this function will check the SuperchainConfig for its paused status.
            ///         On L2 this function should be a no-op.
            /// @return Whether or not the contract is paused.
            function paused() public view virtual returns (bool) {
                return false;
            }
            /// @notice Sends ETH to the sender's address on the other chain.
            /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
            /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
            ///                     not be triggered with this data, but it will be emitted and can be used
            ///                     to identify the transaction.
            function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA {
                _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
            }
            /// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
            ///         smart contract and the call fails, the ETH will be temporarily locked in the
            ///         StandardBridge on the other chain until the call is replayed. If the call cannot be
            ///         replayed with any amount of gas (call always reverts), then the ETH will be
            ///         permanently locked in the StandardBridge on the other chain. ETH will also
            ///         be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
            ///         in that case.
            /// @param _to          Address of the receiver.
            /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
            /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
            ///                     not be triggered with this data, but it will be emitted and can be used
            ///                     to identify the transaction.
            function bridgeETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) public payable {
                _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
            }
            /// @notice Sends ERC20 tokens to the sender's address on the other chain.
            /// @param _localToken  Address of the ERC20 on this chain.
            /// @param _remoteToken Address of the corresponding token on the remote chain.
            /// @param _amount      Amount of local tokens to deposit.
            /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
            /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
            ///                     not be triggered with this data, but it will be emitted and can be used
            ///                     to identify the transaction.
            function bridgeERC20(
                address _localToken,
                address _remoteToken,
                uint256 _amount,
                uint32 _minGasLimit,
                bytes calldata _extraData
            )
                public
                virtual
                onlyEOA
            {
                _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
            }
            /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
            /// @param _localToken  Address of the ERC20 on this chain.
            /// @param _remoteToken Address of the corresponding token on the remote chain.
            /// @param _to          Address of the receiver.
            /// @param _amount      Amount of local tokens to deposit.
            /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
            /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
            ///                     not be triggered with this data, but it will be emitted and can be used
            ///                     to identify the transaction.
            function bridgeERC20To(
                address _localToken,
                address _remoteToken,
                address _to,
                uint256 _amount,
                uint32 _minGasLimit,
                bytes calldata _extraData
            )
                public
                virtual
            {
                _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData);
            }
            /// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
            ///         StandardBridge contract on the remote chain.
            /// @param _from      Address of the sender.
            /// @param _to        Address of the receiver.
            /// @param _amount    Amount of ETH being bridged.
            /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
            ///                   not be triggered with this data, but it will be emitted and can be used
            ///                   to identify the transaction.
            function finalizeBridgeETH(
                address _from,
                address _to,
                uint256 _amount,
                bytes calldata _extraData
            )
                public
                payable
                onlyOtherBridge
            {
                require(paused() == false, "StandardBridge: paused");
                require(msg.value == _amount, "StandardBridge: amount sent does not match amount required");
                require(_to != address(this), "StandardBridge: cannot send to self");
                require(_to != address(messenger), "StandardBridge: cannot send to messenger");
                // Emit the correct events. By default this will be _amount, but child
                // contracts may override this function in order to emit legacy events as well.
                _emitETHBridgeFinalized(_from, _to, _amount, _extraData);
                bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
                require(success, "StandardBridge: ETH transfer failed");
            }
            /// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
            ///         StandardBridge contract on the remote chain.
            /// @param _localToken  Address of the ERC20 on this chain.
            /// @param _remoteToken Address of the corresponding token on the remote chain.
            /// @param _from        Address of the sender.
            /// @param _to          Address of the receiver.
            /// @param _amount      Amount of the ERC20 being bridged.
            /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
            ///                     not be triggered with this data, but it will be emitted and can be used
            ///                     to identify the transaction.
            function finalizeBridgeERC20(
                address _localToken,
                address _remoteToken,
                address _from,
                address _to,
                uint256 _amount,
                bytes calldata _extraData
            )
                public
                onlyOtherBridge
            {
                require(paused() == false, "StandardBridge: paused");
                if (_isOptimismMintableERC20(_localToken)) {
                    require(
                        _isCorrectTokenPair(_localToken, _remoteToken),
                        "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                    );
                    IOptimismMintableERC20(_localToken).mint(_to, _amount);
                } else {
                    deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount;
                    IERC20(_localToken).safeTransfer(_to, _amount);
                }
                // Emit the correct events. By default this will be ERC20BridgeFinalized, but child
                // contracts may override this function in order to emit legacy events as well.
                _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
            }
            /// @notice Initiates a bridge of ETH through the CrossDomainMessenger.
            /// @param _from        Address of the sender.
            /// @param _to          Address of the receiver.
            /// @param _amount      Amount of ETH being bridged.
            /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
            /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
            ///                     not be triggered with this data, but it will be emitted and can be used
            ///                     to identify the transaction.
            function _initiateBridgeETH(
                address _from,
                address _to,
                uint256 _amount,
                uint32 _minGasLimit,
                bytes memory _extraData
            )
                internal
            {
                require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value");
                // Emit the correct events. By default this will be _amount, but child
                // contracts may override this function in order to emit legacy events as well.
                _emitETHBridgeInitiated(_from, _to, _amount, _extraData);
                messenger.sendMessage{ value: _amount }({
                    _target: address(otherBridge),
                    _message: abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData),
                    _minGasLimit: _minGasLimit
                });
            }
            /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
            /// @param _localToken  Address of the ERC20 on this chain.
            /// @param _remoteToken Address of the corresponding token on the remote chain.
            /// @param _to          Address of the receiver.
            /// @param _amount      Amount of local tokens to deposit.
            /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
            /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
            ///                     not be triggered with this data, but it will be emitted and can be used
            ///                     to identify the transaction.
            function _initiateBridgeERC20(
                address _localToken,
                address _remoteToken,
                address _from,
                address _to,
                uint256 _amount,
                uint32 _minGasLimit,
                bytes memory _extraData
            )
                internal
            {
                require(msg.value == 0, "StandardBridge: cannot send value");
                if (_isOptimismMintableERC20(_localToken)) {
                    require(
                        _isCorrectTokenPair(_localToken, _remoteToken),
                        "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                    );
                    IOptimismMintableERC20(_localToken).burn(_from, _amount);
                } else {
                    IERC20(_localToken).safeTransferFrom(_from, address(this), _amount);
                    deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount;
                }
                // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
                // contracts may override this function in order to emit legacy events as well.
                _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                messenger.sendMessage({
                    _target: address(otherBridge),
                    _message: abi.encodeWithSelector(
                        this.finalizeBridgeERC20.selector,
                        // Because this call will be executed on the remote chain, we reverse the order of
                        // the remote and local token addresses relative to their order in the
                        // finalizeBridgeERC20 function.
                        _remoteToken,
                        _localToken,
                        _from,
                        _to,
                        _amount,
                        _extraData
                    ),
                    _minGasLimit: _minGasLimit
                });
            }
            /// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
            ///         Just the way we like it.
            /// @param _token Address of the token to check.
            /// @return True if the token is an OptimismMintableERC20.
            function _isOptimismMintableERC20(address _token) internal view returns (bool) {
                return ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId)
                    || ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
            }
            /// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
            ///         Calls can be saved in the future by combining this logic with
            ///         `_isOptimismMintableERC20`.
            /// @param _mintableToken OptimismMintableERC20 to check against.
            /// @param _otherToken    Pair token to check.
            /// @return True if the other token is the correct pair token for the OptimismMintableERC20.
            function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) {
                if (ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId)) {
                    return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token();
                } else {
                    return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
                }
            }
            /// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
            ///         when an ETH bridge is finalized on this chain.
            /// @param _from      Address of the sender.
            /// @param _to        Address of the receiver.
            /// @param _amount    Amount of ETH sent.
            /// @param _extraData Extra data sent with the transaction.
            function _emitETHBridgeInitiated(
                address _from,
                address _to,
                uint256 _amount,
                bytes memory _extraData
            )
                internal
                virtual
            {
                emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
            }
            /// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
            ///         ETH bridge is finalized on this chain.
            /// @param _from      Address of the sender.
            /// @param _to        Address of the receiver.
            /// @param _amount    Amount of ETH sent.
            /// @param _extraData Extra data sent with the transaction.
            function _emitETHBridgeFinalized(
                address _from,
                address _to,
                uint256 _amount,
                bytes memory _extraData
            )
                internal
                virtual
            {
                emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
            }
            /// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
            ///         event when an ERC20 bridge is initiated to the other chain.
            /// @param _localToken  Address of the ERC20 on this chain.
            /// @param _remoteToken Address of the ERC20 on the remote chain.
            /// @param _from        Address of the sender.
            /// @param _to          Address of the receiver.
            /// @param _amount      Amount of the ERC20 sent.
            /// @param _extraData   Extra data sent with the transaction.
            function _emitERC20BridgeInitiated(
                address _localToken,
                address _remoteToken,
                address _from,
                address _to,
                uint256 _amount,
                bytes memory _extraData
            )
                internal
                virtual
            {
                emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
            }
            /// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
            ///         event when an ERC20 bridge is initiated to the other chain.
            /// @param _localToken  Address of the ERC20 on this chain.
            /// @param _remoteToken Address of the ERC20 on the remote chain.
            /// @param _from        Address of the sender.
            /// @param _to          Address of the receiver.
            /// @param _amount      Amount of the ERC20 sent.
            /// @param _extraData   Extra data sent with the transaction.
            function _emitERC20BridgeFinalized(
                address _localToken,
                address _remoteToken,
                address _from,
                address _to,
                uint256 _amount,
                bytes memory _extraData
            )
                internal
                virtual
            {
                emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title Predeploys
        /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
        //          This excludes the preinstalls (non-protocol contracts).
        library Predeploys {
            /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
            uint256 internal constant PREDEPLOY_COUNT = 2048;
            /// @custom:legacy
            /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
            ///         L2ToL1MessagePasser contract instead.
            address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
            /// @custom:legacy
            /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
            ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
            ///         Not embedded into new OP-Stack chains.
            address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
            /// @custom:legacy
            /// @notice Address of the DeployerWhitelist predeploy. No longer active.
            address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
            /// @notice Address of the canonical WETH contract.
            address internal constant WETH = 0x4200000000000000000000000000000000000006;
            /// @notice Address of the L2CrossDomainMessenger predeploy.
            address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
            /// @notice Address of the GasPriceOracle predeploy. Includes fee information
            ///         and helpers for computing the L1 portion of the transaction fee.
            address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
            /// @notice Address of the L2StandardBridge predeploy.
            address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
            //// @notice Address of the SequencerFeeWallet predeploy.
            address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
            /// @notice Address of the OptimismMintableERC20Factory predeploy.
            address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
            /// @custom:legacy
            /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
            ///         instead, which exposes more information about the L1 state.
            address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
            /// @notice Address of the L2ERC721Bridge predeploy.
            address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
            /// @notice Address of the L1Block predeploy.
            address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
            /// @notice Address of the L2ToL1MessagePasser predeploy.
            address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
            /// @notice Address of the OptimismMintableERC721Factory predeploy.
            address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
            /// @notice Address of the ProxyAdmin predeploy.
            address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
            /// @notice Address of the BaseFeeVault predeploy.
            address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
            /// @notice Address of the L1FeeVault predeploy.
            address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
            /// @notice Address of the OperatorFeeVault predeploy.
            address internal constant OPERATOR_FEE_VAULT = 0x420000000000000000000000000000000000001b;
            /// @notice Address of the SchemaRegistry predeploy.
            address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
            /// @notice Address of the EAS predeploy.
            address internal constant EAS = 0x4200000000000000000000000000000000000021;
            /// @notice Address of the GovernanceToken predeploy.
            address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
            /// @custom:legacy
            /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
            ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
            ///         can no longer be accessed.
            address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
            /// @notice Address of the CrossL2Inbox predeploy.
            address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
            /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
            address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
            /// @notice Address of the SuperchainWETH predeploy.
            address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;
            /// @notice Address of the ETHLiquidity predeploy.
            address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;
            /// @notice Address of the OptimismSuperchainERC20Factory predeploy.
            address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;
            /// @notice Address of the OptimismSuperchainERC20Beacon predeploy.
            address internal constant OPTIMISM_SUPERCHAIN_ERC20_BEACON = 0x4200000000000000000000000000000000000027;
            // TODO: Precalculate the address of the implementation contract
            /// @notice Arbitrary address of the OptimismSuperchainERC20 implementation contract.
            address internal constant OPTIMISM_SUPERCHAIN_ERC20 = 0xB9415c6cA93bdC545D4c5177512FCC22EFa38F28;
            /// @notice Address of the SuperchainTokenBridge predeploy.
            address internal constant SUPERCHAIN_TOKEN_BRIDGE = 0x4200000000000000000000000000000000000028;
            /// @notice Returns the name of the predeploy at the given address.
            function getName(address _addr) internal pure returns (string memory out_) {
                require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
                if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
                if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
                if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
                if (_addr == WETH) return "WETH";
                if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
                if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
                if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
                if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
                if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
                if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
                if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
                if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
                if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
                if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
                if (_addr == PROXY_ADMIN) return "ProxyAdmin";
                if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
                if (_addr == L1_FEE_VAULT) return "L1FeeVault";
                if (_addr == OPERATOR_FEE_VAULT) return "OperatorFeeVault";
                if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
                if (_addr == EAS) return "EAS";
                if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
                if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
                if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
                if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
                if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
                if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
                if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
                if (_addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON) return "OptimismSuperchainERC20Beacon";
                if (_addr == SUPERCHAIN_TOKEN_BRIDGE) return "SuperchainTokenBridge";
                revert("Predeploys: unnamed predeploy");
            }
            /// @notice Returns true if the predeploy is not proxied.
            function notProxied(address _addr) internal pure returns (bool) {
                return _addr == GOVERNANCE_TOKEN || _addr == WETH;
            }
            /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
            function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
                return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
                    || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
                    || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
                    || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
                    || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
                    || _addr == L1_FEE_VAULT || _addr == OPERATOR_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS
                    || _addr == GOVERNANCE_TOKEN || (_useInterop && _addr == CROSS_L2_INBOX)
                    || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) || (_useInterop && _addr == SUPERCHAIN_WETH)
                    || (_useInterop && _addr == ETH_LIQUIDITY) || (_useInterop && _addr == SUPERCHAIN_TOKEN_BRIDGE);
            }
            function isPredeployNamespace(address _addr) internal pure returns (bool) {
                return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
            }
            /// @notice Function to compute the expected address of the predeploy implementation
            ///         in the genesis state.
            function predeployToCodeNamespace(address _addr) internal pure returns (address) {
                require(
                    isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
                );
                return address(
                    uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
                );
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title ISemver
        /// @notice ISemver is a simple contract for ensuring that contracts are
        ///         versioned using semantic versioning.
        interface ISemver {
            /// @notice Getter for the semantic version of the contract. This is not
            ///         meant to be used onchain but instead meant to be used by offchain
            ///         tooling.
            /// @return Semver contract version as a string.
            function version() external view returns (string memory);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        interface ICrossDomainMessenger {
            event FailedRelayedMessage(bytes32 indexed msgHash);
            event Initialized(uint8 version);
            event RelayedMessage(bytes32 indexed msgHash);
            event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
            event SentMessageExtension1(address indexed sender, uint256 value);
            function MESSAGE_VERSION() external view returns (uint16);
            function MIN_GAS_CALLDATA_OVERHEAD() external view returns (uint64);
            function MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR() external view returns (uint64);
            function MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR() external view returns (uint64);
            function OTHER_MESSENGER() external view returns (ICrossDomainMessenger);
            function RELAY_CALL_OVERHEAD() external view returns (uint64);
            function RELAY_CONSTANT_OVERHEAD() external view returns (uint64);
            function RELAY_GAS_CHECK_BUFFER() external view returns (uint64);
            function RELAY_RESERVED_GAS() external view returns (uint64);
            function TX_BASE_GAS() external view returns (uint64);
            function FLOOR_CALLDATA_OVERHEAD() external view returns (uint64);
            function ENCODING_OVERHEAD() external view returns (uint64);
            function baseGas(bytes memory _message, uint32 _minGasLimit) external pure returns (uint64);
            function failedMessages(bytes32) external view returns (bool);
            function messageNonce() external view returns (uint256);
            function otherMessenger() external view returns (ICrossDomainMessenger);
            function paused() external view returns (bool);
            function relayMessage(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _minGasLimit,
                bytes memory _message
            )
                external
                payable;
            function sendMessage(address _target, bytes memory _message, uint32 _minGasLimit) external payable;
            function successfulMessages(bytes32) external view returns (bool);
            function xDomainMessageSender() external view returns (address);
            function __constructor__() external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        interface ISuperchainConfig {
            enum UpdateType {
                GUARDIAN
            }
            event ConfigUpdate(UpdateType indexed updateType, bytes data);
            event Initialized(uint8 version);
            event Paused(string identifier);
            event Unpaused();
            function GUARDIAN_SLOT() external view returns (bytes32);
            function PAUSED_SLOT() external view returns (bytes32);
            function guardian() external view returns (address guardian_);
            function initialize(address _guardian, bool _paused) external;
            function pause(string memory _identifier) external;
            function paused() external view returns (bool paused_);
            function unpause() external;
            function version() external view returns (string memory);
            function __constructor__() external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/Address.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
             * initialization step. This is essential to configure modules that are added through upgrades and that require
             * initialization.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)
        pragma solidity ^0.8.0;
        import "./IERC165.sol";
        /**
         * @dev Library used to query support of an interface declared via {IERC165}.
         *
         * Note that these functions return the actual result of the query: they do not
         * `revert` if an interface is not supported. It is up to the caller to decide
         * what to do in these cases.
         */
        library ERC165Checker {
            // As per the EIP-165 spec, no interface should ever match 0xffffffff
            bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
            /**
             * @dev Returns true if `account` supports the {IERC165} interface,
             */
            function supportsERC165(address account) internal view returns (bool) {
                // Any contract that implements ERC165 must explicitly indicate support of
                // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
                return
                    _supportsERC165Interface(account, type(IERC165).interfaceId) &&
                    !_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
            }
            /**
             * @dev Returns true if `account` supports the interface defined by
             * `interfaceId`. Support for {IERC165} itself is queried automatically.
             *
             * See {IERC165-supportsInterface}.
             */
            function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
                // query support of both ERC165 as per the spec and support of _interfaceId
                return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
            }
            /**
             * @dev Returns a boolean array where each value corresponds to the
             * interfaces passed in and whether they're supported or not. This allows
             * you to batch check interfaces for a contract where your expectation
             * is that some interfaces may not be supported.
             *
             * See {IERC165-supportsInterface}.
             *
             * _Available since v3.4._
             */
            function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
                internal
                view
                returns (bool[] memory)
            {
                // an array of booleans corresponding to interfaceIds and whether they're supported or not
                bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
                // query support of ERC165 itself
                if (supportsERC165(account)) {
                    // query support of each interface in interfaceIds
                    for (uint256 i = 0; i < interfaceIds.length; i++) {
                        interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
                    }
                }
                return interfaceIdsSupported;
            }
            /**
             * @dev Returns true if `account` supports all the interfaces defined in
             * `interfaceIds`. Support for {IERC165} itself is queried automatically.
             *
             * Batch-querying can lead to gas savings by skipping repeated checks for
             * {IERC165} support.
             *
             * See {IERC165-supportsInterface}.
             */
            function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
                // query support of ERC165 itself
                if (!supportsERC165(account)) {
                    return false;
                }
                // query support of each interface in _interfaceIds
                for (uint256 i = 0; i < interfaceIds.length; i++) {
                    if (!_supportsERC165Interface(account, interfaceIds[i])) {
                        return false;
                    }
                }
                // all interfaces supported
                return true;
            }
            /**
             * @notice Query if a contract implements an interface, does not check ERC165 support
             * @param account The address of the contract to query for support of an interface
             * @param interfaceId The interface identifier, as specified in ERC-165
             * @return true if the contract at account indicates support of the interface with
             * identifier interfaceId, false otherwise
             * @dev Assumes that account contains a contract that supports ERC165, otherwise
             * the behavior of this method is undefined. This precondition can be checked
             * with {supportsERC165}.
             * Interface identification is specified in ERC-165.
             */
            function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
                // prepare call
                bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
                // perform static call
                bool success;
                uint256 returnSize;
                uint256 returnValue;
                assembly {
                    success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
                    returnSize := returndatasize()
                    returnValue := mload(0x00)
                }
                return success && returnSize >= 0x20 && returnValue > 0;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
        pragma solidity ^0.8.0;
        import "../IERC20.sol";
        import "../extensions/draft-IERC20Permit.sol";
        import "../../../utils/Address.sol";
        /**
         * @title SafeERC20
         * @dev Wrappers around ERC20 operations that throw on failure (when the token
         * contract returns false). Tokens that return no value (and instead revert or
         * throw on failure) are also supported, non-reverting calls are assumed to be
         * successful.
         * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
         * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
         */
        library SafeERC20 {
            using Address for address;
            function safeTransfer(
                IERC20 token,
                address to,
                uint256 value
            ) internal {
                _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
            }
            function safeTransferFrom(
                IERC20 token,
                address from,
                address to,
                uint256 value
            ) internal {
                _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
            }
            /**
             * @dev Deprecated. This function has issues similar to the ones found in
             * {IERC20-approve}, and its usage is discouraged.
             *
             * Whenever possible, use {safeIncreaseAllowance} and
             * {safeDecreaseAllowance} instead.
             */
            function safeApprove(
                IERC20 token,
                address spender,
                uint256 value
            ) internal {
                // safeApprove should only be called when setting an initial allowance,
                // or when resetting it to zero. To increase and decrease it, use
                // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                require(
                    (value == 0) || (token.allowance(address(this), spender) == 0),
                    "SafeERC20: approve from non-zero to non-zero allowance"
                );
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
            }
            function safeIncreaseAllowance(
                IERC20 token,
                address spender,
                uint256 value
            ) internal {
                uint256 newAllowance = token.allowance(address(this), spender) + value;
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
            }
            function safeDecreaseAllowance(
                IERC20 token,
                address spender,
                uint256 value
            ) internal {
                unchecked {
                    uint256 oldAllowance = token.allowance(address(this), spender);
                    require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                    uint256 newAllowance = oldAllowance - value;
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                }
            }
            function safePermit(
                IERC20Permit token,
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal {
                uint256 nonceBefore = token.nonces(owner);
                token.permit(owner, spender, value, deadline, v, r, s);
                uint256 nonceAfter = token.nonces(owner);
                require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             */
            function _callOptionalReturn(IERC20 token, bytes memory data) private {
                // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                // the target address contains contract code and also asserts for success in the low-level call.
                bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                if (returndata.length > 0) {
                    // Return data is optional
                    require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title SafeCall
        /// @notice Perform low level safe calls
        library SafeCall {
            /// @notice Performs a low level call without copying any returndata.
            /// @dev Passes no calldata to the call context.
            /// @param _target   Address to call
            /// @param _gas      Amount of gas to pass to the call
            /// @param _value    Amount of value to pass to the call
            function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                assembly {
                    success_ :=
                        call(
                            _gas, // gas
                            _target, // recipient
                            _value, // ether value
                            0, // inloc
                            0, // inlen
                            0, // outloc
                            0 // outlen
                        )
                }
            }
            /// @notice Perform a low level call with all gas without copying any returndata
            /// @param _target   Address to call
            /// @param _value    Amount of value to pass to the call
            function send(address _target, uint256 _value) internal returns (bool success_) {
                success_ = send(_target, gasleft(), _value);
            }
            /// @notice Perform a low level call without copying any returndata
            /// @param _target   Address to call
            /// @param _gas      Amount of gas to pass to the call
            /// @param _value    Amount of value to pass to the call
            /// @param _calldata Calldata to pass to the call
            function call(
                address _target,
                uint256 _gas,
                uint256 _value,
                bytes memory _calldata
            )
                internal
                returns (bool success_)
            {
                assembly {
                    success_ :=
                        call(
                            _gas, // gas
                            _target, // recipient
                            _value, // ether value
                            add(_calldata, 32), // inloc
                            mload(_calldata), // inlen
                            0, // outloc
                            0 // outlen
                        )
                }
            }
            /// @notice Perform a low level call without copying any returndata
            /// @param _target   Address to call
            /// @param _value    Amount of value to pass to the call
            /// @param _calldata Calldata to pass to the call
            function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
            }
            /// @notice Perform a low level call without copying any returndata
            /// @param _target   Address to call
            /// @param _calldata Calldata to pass to the call
            function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
            }
            /// @notice Helper function to determine if there is sufficient gas remaining within the context
            ///         to guarantee that the minimum gas requirement for a call will be met as well as
            ///         optionally reserving a specified amount of gas for after the call has concluded.
            /// @param _minGas      The minimum amount of gas that may be passed to the target context.
            /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
            ///                     of the target context.
            /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
            ///         context as well as reserve `_reservedGas` for the caller after the execution of
            ///         the target context.
            /// @dev !!!!! FOOTGUN ALERT !!!!!
            ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
            ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
            ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
            ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
            ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
            ///          factors of the dynamic cost of the `CALL` opcode.
            ///      2.) This function should *directly* precede the external call if possible. There is an
            ///          added buffer to account for gas consumed between this check and the call, but it
            ///          is only 5,700 gas.
            ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
            ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
            ///          truncated.
            ///      4.) Use wisely. This function is not a silver bullet.
            function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                bool _hasMinGas;
                assembly {
                    // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                    _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                }
                return _hasMinGas;
            }
            /// @notice Perform a low level call without copying any returndata. This function
            ///         will revert if the call cannot be performed with the specified minimum
            ///         gas.
            /// @param _target   Address to call
            /// @param _minGas   The minimum amount of gas that may be passed to the call
            /// @param _value    Amount of value to pass to the call
            /// @param _calldata Calldata to pass to the call
            function callWithMinGas(
                address _target,
                uint256 _minGas,
                uint256 _value,
                bytes memory _calldata
            )
                internal
                returns (bool)
            {
                bool _success;
                bool _hasMinGas = hasMinGas(_minGas, 0);
                assembly {
                    // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                    if iszero(_hasMinGas) {
                        // Store the "Error(string)" selector in scratch space.
                        mstore(0, 0x08c379a0)
                        // Store the pointer to the string length in scratch space.
                        mstore(32, 32)
                        // Store the string.
                        //
                        // SAFETY:
                        // - We pad the beginning of the string with two zero bytes as well as the
                        // length (24) to ensure that we override the free memory pointer at offset
                        // 0x40. This is necessary because the free memory pointer is likely to
                        // be greater than 1 byte when this function is called, but it is incredibly
                        // unlikely that it will be greater than 3 bytes. As for the data within
                        // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                        // - It's fine to clobber the free memory pointer, we're reverting.
                        mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                        // Revert with 'Error("SafeCall: Not enough gas")'
                        revert(28, 100)
                    }
                    // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                    // above assertion. This ensures that, in all circumstances (except for when the
                    // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                    // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                    // the minimum amount of gas specified.
                    _success :=
                        call(
                            gas(), // gas
                            _target, // recipient
                            _value, // ether value
                            add(_calldata, 32), // inloc
                            mload(_calldata), // inlen
                            0x00, // outloc
                            0x00 // outlen
                        )
                }
                return _success;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title EOA
        /// @notice A library for detecting if an address is an EOA.
        library EOA {
            /// @notice Returns true if sender address is an EOA.
            /// @return isEOA_ True if the sender address is an EOA.
            function isSenderEOA() internal view returns (bool isEOA_) {
                if (msg.sender == tx.origin) {
                    isEOA_ = true;
                } else if (address(msg.sender).code.length == 23) {
                    // If the sender is not the origin, check for 7702 delegated EOAs.
                    assembly {
                        let ptr := mload(0x40)
                        mstore(0x40, add(ptr, 0x20))
                        extcodecopy(caller(), ptr, 0, 0x20)
                        isEOA_ := eq(shr(232, mload(ptr)), 0xEF0100)
                    }
                } else {
                    // If more or less than 23 bytes of code, not a 7702 delegated EOA.
                    isEOA_ = false;
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves `amount` tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 amount) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
            /**
             * @dev Moves `amount` tokens from `from` to `to` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(
                address from,
                address to,
                uint256 amount
            ) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
        /// @title IOptimismMintableERC20
        /// @notice This interface is available on the OptimismMintableERC20 contract.
        ///         We declare it as a separate interface so that it can be used in
        ///         custom implementations of OptimismMintableERC20.
        interface IOptimismMintableERC20 is IERC165 {
            function remoteToken() external view returns (address);
            function bridge() external returns (address);
            function mint(address _to, uint256 _amount) external;
            function burn(address _from, uint256 _amount) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
        /// @custom:legacy
        /// @title ILegacyMintableERC20
        /// @notice This interface was available on the legacy L2StandardERC20 contract.
        ///         It remains available on the OptimismMintableERC20 contract for
        ///         backwards compatibility.
        interface ILegacyMintableERC20 is IERC165 {
            function l1Token() external view returns (address);
            function mint(address _to, uint256 _amount) external;
            function burn(address _from, uint256 _amount) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(isContract(target), "Address: delegate call to non-contract");
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165 {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
         * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
         *
         * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
         * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
         * need to send a transaction, and thus is not required to hold Ether at all.
         */
        interface IERC20Permit {
            /**
             * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
             * given ``owner``'s signed approval.
             *
             * IMPORTANT: The same issues {IERC20-approve} has related to transaction
             * ordering also apply here.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `deadline` must be a timestamp in the future.
             * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
             * over the EIP712-formatted function arguments.
             * - the signature must use ``owner``'s current nonce (see {nonces}).
             *
             * For more information on the signature format, see the
             * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
             * section].
             */
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external;
            /**
             * @dev Returns the current nonce for `owner`. This value must be
             * included whenever a signature is generated for {permit}.
             *
             * Every successful call to {permit} increases ``owner``'s nonce by one. This
             * prevents a signature from being used multiple times.
             */
            function nonces(address owner) external view returns (uint256);
            /**
             * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
             */
            // solhint-disable-next-line func-name-mixedcase
            function DOMAIN_SEPARATOR() external view returns (bytes32);
        }
        

        File 4 of 6: Lib_ResolvedDelegateProxy
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor () internal {
                address msgSender = _msgSender();
                _owner = msgSender;
                emit OwnershipTransferred(address(0), msgSender);
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
                _;
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                emit OwnershipTransferred(_owner, address(0));
                _owner = address(0);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                emit OwnershipTransferred(_owner, newOwner);
                _owner = newOwner;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /*
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with GSN meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address payable) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes memory) {
                this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                return msg.data;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >0.5.0 <0.8.0;
        /* External Imports */
        import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
        /**
         * @title Lib_AddressManager
         */
        contract Lib_AddressManager is Ownable {
            /**********
             * Events *
             **********/
            event AddressSet(
                string indexed _name,
                address _newAddress,
                address _oldAddress
            );
            /*************
             * Variables *
             *************/
            mapping (bytes32 => address) private addresses;
            /********************
             * Public Functions *
             ********************/
            /**
             * Changes the address associated with a particular name.
             * @param _name String name to associate an address with.
             * @param _address Address to associate with the name.
             */
            function setAddress(
                string memory _name,
                address _address
            )
                external
                onlyOwner
            {
                bytes32 nameHash = _getNameHash(_name);
                address oldAddress = addresses[nameHash];
                addresses[nameHash] = _address;
                emit AddressSet(
                    _name,
                    _address,
                    oldAddress
                );
            }
            /**
             * Retrieves the address associated with a given name.
             * @param _name Name to retrieve an address for.
             * @return Address associated with the given name.
             */
            function getAddress(
                string memory _name
            )
                external
                view
                returns (
                    address
                )
            {
                return addresses[_getNameHash(_name)];
            }
            /**********************
             * Internal Functions *
             **********************/
            /**
             * Computes the hash of a name.
             * @param _name Name to compute a hash for.
             * @return Hash of the given name.
             */
            function _getNameHash(
                string memory _name
            )
                internal
                pure
                returns (
                    bytes32
                )
            {
                return keccak256(abi.encodePacked(_name));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >0.5.0 <0.8.0;
        /* Library Imports */
        import { Lib_AddressManager } from "./Lib_AddressManager.sol";
        /**
         * @title Lib_ResolvedDelegateProxy
         */
        contract Lib_ResolvedDelegateProxy {
            /*************
             * Variables *
             *************/
            // Using mappings to store fields to avoid overwriting storage slots in the
            // implementation contract. For example, instead of storing these fields at
            // storage slot `0` & `1`, they are stored at `keccak256(key + slot)`.
            // See: https://solidity.readthedocs.io/en/v0.7.0/internals/layout_in_storage.html
            // NOTE: Do not use this code in your own contract system.
            //      There is a known flaw in this contract, and we will remove it from the repository
            //      in the near future. Due to the very limited way that we are using it, this flaw is
            //      not an issue in our system.
            mapping (address => string) private implementationName;
            mapping (address => Lib_AddressManager) private addressManager;
            /***************
             * Constructor *
             ***************/
            /**
             * @param _libAddressManager Address of the Lib_AddressManager.
             * @param _implementationName implementationName of the contract to proxy to.
             */
            constructor(
                address _libAddressManager,
                string memory _implementationName
            ) {
                addressManager[address(this)] = Lib_AddressManager(_libAddressManager);
                implementationName[address(this)] = _implementationName;
            }
            /*********************
             * Fallback Function *
             *********************/
            fallback()
                external
                payable
            {
                address target = addressManager[address(this)].getAddress(
                    (implementationName[address(this)])
                );
                require(
                    target != address(0),
                    "Target address must be initialized."
                );
                (bool success, bytes memory returndata) = target.delegatecall(msg.data);
                if (success == true) {
                    assembly {
                        return(add(returndata, 0x20), mload(returndata))
                    }
                } else {
                    assembly {
                        revert(add(returndata, 0x20), mload(returndata))
                    }
                }
            }
        }
        

        File 5 of 6: Lib_AddressManager
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor () internal {
                address msgSender = _msgSender();
                _owner = msgSender;
                emit OwnershipTransferred(address(0), msgSender);
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
                _;
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                emit OwnershipTransferred(_owner, address(0));
                _owner = address(0);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                emit OwnershipTransferred(_owner, newOwner);
                _owner = newOwner;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /*
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with GSN meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address payable) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes memory) {
                this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                return msg.data;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >0.5.0 <0.8.0;
        /* External Imports */
        import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
        /**
         * @title Lib_AddressManager
         */
        contract Lib_AddressManager is Ownable {
            /**********
             * Events *
             **********/
            event AddressSet(
                string indexed _name,
                address _newAddress,
                address _oldAddress
            );
            /*************
             * Variables *
             *************/
            mapping (bytes32 => address) private addresses;
            /********************
             * Public Functions *
             ********************/
            /**
             * Changes the address associated with a particular name.
             * @param _name String name to associate an address with.
             * @param _address Address to associate with the name.
             */
            function setAddress(
                string memory _name,
                address _address
            )
                external
                onlyOwner
            {
                bytes32 nameHash = _getNameHash(_name);
                address oldAddress = addresses[nameHash];
                addresses[nameHash] = _address;
                emit AddressSet(
                    _name,
                    _address,
                    oldAddress
                );
            }
            /**
             * Retrieves the address associated with a given name.
             * @param _name Name to retrieve an address for.
             * @return Address associated with the given name.
             */
            function getAddress(
                string memory _name
            )
                external
                view
                returns (
                    address
                )
            {
                return addresses[_getNameHash(_name)];
            }
            /**********************
             * Internal Functions *
             **********************/
            /**
             * Computes the hash of a name.
             * @param _name Name to compute a hash for.
             * @return Hash of the given name.
             */
            function _getNameHash(
                string memory _name
            )
                internal
                pure
                returns (
                    bytes32
                )
            {
                return keccak256(abi.encodePacked(_name));
            }
        }
        

        File 6 of 6: L1CrossDomainMessenger
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        // Contracts
        import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
        // Libraries
        import { Predeploys } from "src/libraries/Predeploys.sol";
        // Interfaces
        import { ISemver } from "interfaces/universal/ISemver.sol";
        import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
        import { IOptimismPortal2 as IOptimismPortal } from "interfaces/L1/IOptimismPortal2.sol";
        /// @custom:proxied true
        /// @title L1CrossDomainMessenger
        /// @notice The L1CrossDomainMessenger is a message passing interface between L1 and L2 responsible
        ///         for sending and receiving data on the L1 side. Users are encouraged to use this
        ///         interface instead of interacting with lower-level contracts directly.
        contract L1CrossDomainMessenger is CrossDomainMessenger, ISemver {
            /// @notice Contract of the SuperchainConfig.
            ISuperchainConfig public superchainConfig;
            /// @notice Contract of the OptimismPortal.
            /// @custom:network-specific
            IOptimismPortal public portal;
            /// @custom:legacy
            /// @custom:spacer systemConfig
            /// @notice Spacer taking up the legacy `systemConfig` slot.
            address private spacer_253_0_20;
            /// @notice Semantic version.
            /// @custom:semver 2.6.0
            string public constant version = "2.6.0";
            /// @notice Constructs the L1CrossDomainMessenger contract.
            constructor() {
                _disableInitializers();
            }
            /// @notice Initializes the contract.
            /// @param _superchainConfig Contract of the SuperchainConfig contract on this network.
            /// @param _portal Contract of the OptimismPortal contract on this network.
            function initialize(ISuperchainConfig _superchainConfig, IOptimismPortal _portal) external initializer {
                superchainConfig = _superchainConfig;
                portal = _portal;
                __CrossDomainMessenger_init({ _otherMessenger: CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER) });
            }
            /// @notice Getter function for the OptimismPortal contract on this chain.
            ///         Public getter is legacy and will be removed in the future. Use `portal()` instead.
            /// @return Contract of the OptimismPortal on this chain.
            /// @custom:legacy
            function PORTAL() external view returns (IOptimismPortal) {
                return portal;
            }
            /// @inheritdoc CrossDomainMessenger
            function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal override {
                portal.depositTransaction{ value: _value }({
                    _to: _to,
                    _value: _value,
                    _gasLimit: _gasLimit,
                    _isCreation: false,
                    _data: _data
                });
            }
            /// @inheritdoc CrossDomainMessenger
            function _isOtherMessenger() internal view override returns (bool) {
                return msg.sender == address(portal) && portal.l2Sender() == address(otherMessenger);
            }
            /// @inheritdoc CrossDomainMessenger
            function _isUnsafeTarget(address _target) internal view override returns (bool) {
                return _target == address(this) || _target == address(portal);
            }
            /// @inheritdoc CrossDomainMessenger
            function paused() public view override returns (bool) {
                return superchainConfig.paused();
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        // Libraries
        import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
        import { SafeCall } from "src/libraries/SafeCall.sol";
        import { Hashing } from "src/libraries/Hashing.sol";
        import { Encoding } from "src/libraries/Encoding.sol";
        import { Constants } from "src/libraries/Constants.sol";
        /// @custom:legacy
        /// @title CrossDomainMessengerLegacySpacer0
        /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
        ///         libAddressManager variable used to exist. Must be the first contract in the inheritance
        ///         tree of the CrossDomainMessenger.
        contract CrossDomainMessengerLegacySpacer0 {
            /// @custom:legacy
            /// @custom:spacer libAddressManager
            /// @notice Spacer for backwards compatibility.
            address private spacer_0_0_20;
        }
        /// @custom:legacy
        /// @title CrossDomainMessengerLegacySpacer1
        /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
        ///         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
        ///         the third contract in the inheritance tree of the CrossDomainMessenger.
        contract CrossDomainMessengerLegacySpacer1 {
            /// @custom:legacy
            /// @custom:spacer ContextUpgradable's __gap
            /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
            ///         ContextUpgradable.
            uint256[50] private spacer_1_0_1600;
            /// @custom:legacy
            /// @custom:spacer OwnableUpgradeable's _owner
            /// @notice Spacer for backwards compatibility.
            ///         Come from OpenZeppelin OwnableUpgradeable.
            address private spacer_51_0_20;
            /// @custom:legacy
            /// @custom:spacer OwnableUpgradeable's __gap
            /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
            ///         OwnableUpgradeable.
            uint256[49] private spacer_52_0_1568;
            /// @custom:legacy
            /// @custom:spacer PausableUpgradable's _paused
            /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
            ///         PausableUpgradable.
            bool private spacer_101_0_1;
            /// @custom:legacy
            /// @custom:spacer PausableUpgradable's __gap
            /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
            ///         PausableUpgradable.
            uint256[49] private spacer_102_0_1568;
            /// @custom:legacy
            /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
            /// @notice Spacer for backwards compatibility.
            uint256 private spacer_151_0_32;
            /// @custom:legacy
            /// @custom:spacer ReentrancyGuardUpgradeable's __gap
            /// @notice Spacer for backwards compatibility.
            uint256[49] private spacer_152_0_1568;
            /// @custom:legacy
            /// @custom:spacer blockedMessages
            /// @notice Spacer for backwards compatibility.
            mapping(bytes32 => bool) private spacer_201_0_32;
            /// @custom:legacy
            /// @custom:spacer relayedMessages
            /// @notice Spacer for backwards compatibility.
            mapping(bytes32 => bool) private spacer_202_0_32;
        }
        /// @custom:upgradeable
        /// @title CrossDomainMessenger
        /// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
        ///         cross-chain messenger contracts. It's designed to be a universal interface that only
        ///         needs to be extended slightly to provide low-level message passing functionality on each
        ///         chain it's deployed on. Currently only designed for message passing between two paired
        ///         chains and does not support one-to-many interactions.
        ///         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
        abstract contract CrossDomainMessenger is
            CrossDomainMessengerLegacySpacer0,
            Initializable,
            CrossDomainMessengerLegacySpacer1
        {
            /// @notice Current message version identifier.
            uint16 public constant MESSAGE_VERSION = 1;
            /// @notice Constant overhead added to the base gas for a message.
            uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
            /// @notice Numerator for dynamic overhead added to the base gas for a message.
            uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
            /// @notice Denominator for dynamic overhead added to the base gas for a message.
            uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
            /// @notice Extra gas added to base gas for each byte of calldata in a message.
            uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
            /// @notice Gas reserved for performing the external call in `relayMessage`.
            uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
            /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
            uint64 public constant RELAY_RESERVED_GAS = 40_000;
            /// @notice Gas reserved for the execution between the `hasMinGas` check and the external
            ///         call in `relayMessage`.
            uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
            /// @notice Base gas required for any transaction in the EVM.
            uint64 public constant TX_BASE_GAS = 21_000;
            /// @notice Floor overhead per byte of non-zero calldata in a message. Calldata floor was
            ///         introduced in EIP-7623.
            uint64 public constant FLOOR_CALLDATA_OVERHEAD = 40;
            /// @notice Overhead added to the internal message data when the full call to relayMessage is
            ///         ABI encoded. This is a constant value that is specific to the V1 message encoding
            ///         scheme. 260 is an upper bound, actual overhead can be as low as 228 bytes for an
            ///         empty message.
            uint64 public constant ENCODING_OVERHEAD = 260;
            /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
            ///         be present in this mapping if it has successfully been relayed on this chain, and
            ///         can therefore not be relayed again.
            mapping(bytes32 => bool) public successfulMessages;
            /// @notice Address of the sender of the currently executing message on the other chain. If the
            ///         value of this variable is the default value (0x00000000...dead) then no message is
            ///         currently being executed. Use the xDomainMessageSender getter which will throw an
            ///         error if this is the case.
            address internal xDomainMsgSender;
            /// @notice Nonce for the next message to be sent, without the message version applied. Use the
            ///         messageNonce getter which will insert the message version into the nonce to give you
            ///         the actual nonce to be used for the message.
            uint240 internal msgNonce;
            /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
            ///         executed at least once. A message will not be present in this mapping if it
            ///         successfully executed on the first attempt.
            mapping(bytes32 => bool) public failedMessages;
            /// @notice CrossDomainMessenger contract on the other chain.
            /// @custom:network-specific
            CrossDomainMessenger public otherMessenger;
            /// @notice Reserve extra slots in the storage layout for future upgrades.
            ///         A gap size of 43 was chosen here, so that the first slot used in a child contract
            ///         would be 1 plus a multiple of 50.
            uint256[43] private __gap;
            /// @notice Emitted whenever a message is sent to the other chain.
            /// @param target       Address of the recipient of the message.
            /// @param sender       Address of the sender of the message.
            /// @param message      Message to trigger the recipient address with.
            /// @param messageNonce Unique nonce attached to the message.
            /// @param gasLimit     Minimum gas limit that the message can be executed with.
            event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
            /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
            ///         SentMessage event without breaking the ABI of this contract, this is good enough.
            /// @param sender Address of the sender of the message.
            /// @param value  ETH value sent along with the message to the recipient.
            event SentMessageExtension1(address indexed sender, uint256 value);
            /// @notice Emitted whenever a message is successfully relayed on this chain.
            /// @param msgHash Hash of the message that was relayed.
            event RelayedMessage(bytes32 indexed msgHash);
            /// @notice Emitted whenever a message fails to be relayed on this chain.
            /// @param msgHash Hash of the message that failed to be relayed.
            event FailedRelayedMessage(bytes32 indexed msgHash);
            /// @notice Sends a message to some target address on the other chain. Note that if the call
            ///         always reverts, then the message will be unrelayable, and any ETH sent will be
            ///         permanently locked. The same will occur if the target on the other chain is
            ///         considered unsafe (see the _isUnsafeTarget() function).
            /// @param _target      Target contract or wallet address.
            /// @param _message     Message to trigger the target address with.
            /// @param _minGasLimit Minimum gas limit that the message can be executed with.
            function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
                // Triggers a message to the other messenger. Note that the amount of gas provided to the
                // message is the amount of gas requested by the user PLUS the base gas value. We want to
                // guarantee the property that the call to the target contract will always have at least
                // the minimum gas limit specified by the user.
                _sendMessage({
                    _to: address(otherMessenger),
                    _gasLimit: baseGas(_message, _minGasLimit),
                    _value: msg.value,
                    _data: abi.encodeWithSelector(
                        this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
                    )
                });
                emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
                emit SentMessageExtension1(msg.sender, msg.value);
                unchecked {
                    ++msgNonce;
                }
            }
            /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
            ///         be executed via cross-chain call from the other messenger OR if the message was
            ///         already received once and is currently being replayed.
            /// @param _nonce       Nonce of the message being relayed.
            /// @param _sender      Address of the user who sent the message.
            /// @param _target      Address that the message is targeted at.
            /// @param _value       ETH value to send with the message.
            /// @param _minGasLimit Minimum amount of gas that the message can be executed with.
            /// @param _message     Message to send to the target.
            function relayMessage(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _minGasLimit,
                bytes calldata _message
            )
                external
                payable
            {
                // On L1 this function will check the Portal for its paused status.
                // On L2 this function should be a no-op, because paused will always return false.
                require(paused() == false, "CrossDomainMessenger: paused");
                (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
                // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
                // to check that the legacy version of the message has not already been relayed.
                if (version == 0) {
                    bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
                    require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
                }
                // We use the v1 message hash as the unique identifier for the message because it commits
                // to the value and minimum gas limit of the message.
                bytes32 versionedHash =
                    Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
                if (_isOtherMessenger()) {
                    // These properties should always hold when the message is first submitted (as
                    // opposed to being replayed).
                    assert(msg.value == _value);
                    assert(!failedMessages[versionedHash]);
                } else {
                    require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
                    require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
                }
                require(
                    _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
                );
                require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
                // If there is not enough gas left to perform the external call and finish the execution,
                // return early and assign the message to the failedMessages mapping.
                // We are asserting that we have enough gas to:
                // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
                //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
                // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
                //
                // If `xDomainMsgSender` is not the default L2 sender, this function
                // is being re-entered. This marks the message as failed to allow it to be replayed.
                if (
                    !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
                        || xDomainMsgSender != Constants.DEFAULT_L2_SENDER
                ) {
                    failedMessages[versionedHash] = true;
                    emit FailedRelayedMessage(versionedHash);
                    // Revert in this case if the transaction was triggered by the estimation address. This
                    // should only be possible during gas estimation or we have bigger problems. Reverting
                    // here will make the behavior of gas estimation change such that the gas limit
                    // computed will be the amount required to relay the message, even if that amount is
                    // greater than the minimum gas limit specified by the user.
                    if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                        revert("CrossDomainMessenger: failed to relay message");
                    }
                    return;
                }
                xDomainMsgSender = _sender;
                bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
                xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                if (success) {
                    // This check is identical to one above, but it ensures that the same message cannot be relayed
                    // twice, and adds a layer of protection against rentrancy.
                    assert(successfulMessages[versionedHash] == false);
                    successfulMessages[versionedHash] = true;
                    emit RelayedMessage(versionedHash);
                } else {
                    failedMessages[versionedHash] = true;
                    emit FailedRelayedMessage(versionedHash);
                    // Revert in this case if the transaction was triggered by the estimation address. This
                    // should only be possible during gas estimation or we have bigger problems. Reverting
                    // here will make the behavior of gas estimation change such that the gas limit
                    // computed will be the amount required to relay the message, even if that amount is
                    // greater than the minimum gas limit specified by the user.
                    if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                        revert("CrossDomainMessenger: failed to relay message");
                    }
                }
            }
            /// @notice Retrieves the address of the contract or wallet that initiated the currently
            ///         executing message on the other chain. Will throw an error if there is no message
            ///         currently being executed. Allows the recipient of a call to see who triggered it.
            /// @return Address of the sender of the currently executing message on the other chain.
            function xDomainMessageSender() external view returns (address) {
                require(
                    xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
                );
                return xDomainMsgSender;
            }
            /// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain
            ///         Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead.
            /// @return CrossDomainMessenger contract on the other chain.
            /// @custom:legacy
            function OTHER_MESSENGER() public view returns (CrossDomainMessenger) {
                return otherMessenger;
            }
            /// @notice Retrieves the next message nonce. Message version will be added to the upper two
            ///         bytes of the message nonce. Message version allows us to treat messages as having
            ///         different structures.
            /// @return Nonce of the next message to be sent, with added message version.
            function messageNonce() public view returns (uint256) {
                return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
            }
            /// @notice Computes the amount of gas required to guarantee that a given message will be
            ///         received on the other chain without running out of gas. Guaranteeing that a message
            ///         will not run out of gas is important because this ensures that a message can always
            ///         be replayed on the other chain if it fails to execute completely.
            /// @param _message     Message to compute the amount of required gas for.
            /// @param _minGasLimit Minimum desired gas limit when message goes to target.
            /// @return Amount of gas required to guarantee message receipt.
            function baseGas(bytes memory _message, uint32 _minGasLimit) public pure returns (uint64) {
                // Base gas should really be computed on the fully encoded message but that would break the
                // expected API, so we instead just add the encoding overhead to the message length inside
                // of this function.
                // We need a minimum amount of execution gas to ensure that the message will be received on
                // the other side without running out of gas (stored within the failedMessages mapping).
                // If we get beyond the hasMinGas check, then we *must* supply more than minGasLimit to
                // the external call.
                uint64 executionGas = uint64(
                    // Constant costs for relayMessage
                    RELAY_CONSTANT_OVERHEAD
                    // Covers dynamic parts of the CALL opcode
                    + RELAY_CALL_OVERHEAD
                    // Ensures execution of relayMessage completes after call
                    + RELAY_RESERVED_GAS
                    // Buffer between hasMinGas check and the CALL
                    + RELAY_GAS_CHECK_BUFFER
                    // Minimum gas limit, multiplied by 64/63 to account for EIP-150.
                    + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
                );
                // Total message size is the result of properly ABI encoding the call to relayMessage.
                // Since we only get the message data and not the rest of the calldata, we use the
                // ENCODING_OVERHEAD constant to conservatively account for the remaining bytes.
                uint64 totalMessageSize = uint64(_message.length + ENCODING_OVERHEAD);
                // Finally, replicate the transaction cost formula as defined after EIP-7623. This is
                // mostly relevant in the L1 -> L2 case because we need to be able to cover the intrinsic
                // cost of the message but it doesn't hurt in the L2 -> L1 case. After EIP-7623, the cost
                // of a transaction is floored by its calldata size. We don't need to account for the
                // contract creation case because this is always a call to relayMessage.
                return TX_BASE_GAS
                    + uint64(
                        Math.max(
                            executionGas + (totalMessageSize * MIN_GAS_CALLDATA_OVERHEAD),
                            (totalMessageSize * FLOOR_CALLDATA_OVERHEAD)
                        )
                    );
            }
            /// @notice Initializer.
            /// @param _otherMessenger CrossDomainMessenger contract on the other chain.
            function __CrossDomainMessenger_init(CrossDomainMessenger _otherMessenger) internal onlyInitializing {
                // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
                // meaning that this is a fresh contract deployment.
                // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
                // a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice.
                if (xDomainMsgSender == address(0)) {
                    xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                }
                otherMessenger = _otherMessenger;
            }
            /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
            ///         contracts because the logic for this depends on the network where the messenger is
            ///         being deployed.
            /// @param _to       Recipient of the message on the other chain.
            /// @param _gasLimit Minimum gas limit the message can be executed with.
            /// @param _value    Amount of ETH to send with the message.
            /// @param _data     Message data.
            function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
            /// @notice Checks whether the message is coming from the other messenger. Implemented by child
            ///         contracts because the logic for this depends on the network where the messenger is
            ///         being deployed.
            /// @return Whether the message is coming from the other messenger.
            function _isOtherMessenger() internal view virtual returns (bool);
            /// @notice Checks whether a given call target is a system address that could cause the
            ///         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
            ///         addresses. This is ONLY used to prevent the execution of messages to specific
            ///         system addresses that could cause security issues, e.g., having the
            ///         CrossDomainMessenger send messages to itself.
            /// @param _target Address of the contract to check.
            /// @return Whether or not the address is an unsafe system address.
            function _isUnsafeTarget(address _target) internal view virtual returns (bool);
            /// @notice This function should return true if the contract is paused.
            ///         On L1 this function will check the SuperchainConfig for its paused status.
            ///         On L2 this function should be a no-op.
            /// @return Whether or not the contract is paused.
            function paused() public view virtual returns (bool) {
                return false;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title Predeploys
        /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
        //          This excludes the preinstalls (non-protocol contracts).
        library Predeploys {
            /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
            uint256 internal constant PREDEPLOY_COUNT = 2048;
            /// @custom:legacy
            /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
            ///         L2ToL1MessagePasser contract instead.
            address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
            /// @custom:legacy
            /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
            ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
            ///         Not embedded into new OP-Stack chains.
            address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
            /// @custom:legacy
            /// @notice Address of the DeployerWhitelist predeploy. No longer active.
            address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
            /// @notice Address of the canonical WETH contract.
            address internal constant WETH = 0x4200000000000000000000000000000000000006;
            /// @notice Address of the L2CrossDomainMessenger predeploy.
            address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
            /// @notice Address of the GasPriceOracle predeploy. Includes fee information
            ///         and helpers for computing the L1 portion of the transaction fee.
            address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
            /// @notice Address of the L2StandardBridge predeploy.
            address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
            //// @notice Address of the SequencerFeeWallet predeploy.
            address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
            /// @notice Address of the OptimismMintableERC20Factory predeploy.
            address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
            /// @custom:legacy
            /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
            ///         instead, which exposes more information about the L1 state.
            address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
            /// @notice Address of the L2ERC721Bridge predeploy.
            address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
            /// @notice Address of the L1Block predeploy.
            address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
            /// @notice Address of the L2ToL1MessagePasser predeploy.
            address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
            /// @notice Address of the OptimismMintableERC721Factory predeploy.
            address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
            /// @notice Address of the ProxyAdmin predeploy.
            address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
            /// @notice Address of the BaseFeeVault predeploy.
            address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
            /// @notice Address of the L1FeeVault predeploy.
            address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
            /// @notice Address of the OperatorFeeVault predeploy.
            address internal constant OPERATOR_FEE_VAULT = 0x420000000000000000000000000000000000001b;
            /// @notice Address of the SchemaRegistry predeploy.
            address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
            /// @notice Address of the EAS predeploy.
            address internal constant EAS = 0x4200000000000000000000000000000000000021;
            /// @notice Address of the GovernanceToken predeploy.
            address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
            /// @custom:legacy
            /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
            ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
            ///         can no longer be accessed.
            address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
            /// @notice Address of the CrossL2Inbox predeploy.
            address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
            /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
            address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
            /// @notice Address of the SuperchainWETH predeploy.
            address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;
            /// @notice Address of the ETHLiquidity predeploy.
            address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;
            /// @notice Address of the OptimismSuperchainERC20Factory predeploy.
            address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;
            /// @notice Address of the OptimismSuperchainERC20Beacon predeploy.
            address internal constant OPTIMISM_SUPERCHAIN_ERC20_BEACON = 0x4200000000000000000000000000000000000027;
            // TODO: Precalculate the address of the implementation contract
            /// @notice Arbitrary address of the OptimismSuperchainERC20 implementation contract.
            address internal constant OPTIMISM_SUPERCHAIN_ERC20 = 0xB9415c6cA93bdC545D4c5177512FCC22EFa38F28;
            /// @notice Address of the SuperchainTokenBridge predeploy.
            address internal constant SUPERCHAIN_TOKEN_BRIDGE = 0x4200000000000000000000000000000000000028;
            /// @notice Returns the name of the predeploy at the given address.
            function getName(address _addr) internal pure returns (string memory out_) {
                require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
                if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
                if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
                if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
                if (_addr == WETH) return "WETH";
                if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
                if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
                if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
                if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
                if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
                if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
                if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
                if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
                if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
                if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
                if (_addr == PROXY_ADMIN) return "ProxyAdmin";
                if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
                if (_addr == L1_FEE_VAULT) return "L1FeeVault";
                if (_addr == OPERATOR_FEE_VAULT) return "OperatorFeeVault";
                if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
                if (_addr == EAS) return "EAS";
                if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
                if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
                if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
                if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
                if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
                if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
                if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
                if (_addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON) return "OptimismSuperchainERC20Beacon";
                if (_addr == SUPERCHAIN_TOKEN_BRIDGE) return "SuperchainTokenBridge";
                revert("Predeploys: unnamed predeploy");
            }
            /// @notice Returns true if the predeploy is not proxied.
            function notProxied(address _addr) internal pure returns (bool) {
                return _addr == GOVERNANCE_TOKEN || _addr == WETH;
            }
            /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
            function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
                return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
                    || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
                    || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
                    || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
                    || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
                    || _addr == L1_FEE_VAULT || _addr == OPERATOR_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS
                    || _addr == GOVERNANCE_TOKEN || (_useInterop && _addr == CROSS_L2_INBOX)
                    || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) || (_useInterop && _addr == SUPERCHAIN_WETH)
                    || (_useInterop && _addr == ETH_LIQUIDITY) || (_useInterop && _addr == SUPERCHAIN_TOKEN_BRIDGE);
            }
            function isPredeployNamespace(address _addr) internal pure returns (bool) {
                return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
            }
            /// @notice Function to compute the expected address of the predeploy implementation
            ///         in the genesis state.
            function predeployToCodeNamespace(address _addr) internal pure returns (address) {
                require(
                    isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
                );
                return address(
                    uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
                );
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title ISemver
        /// @notice ISemver is a simple contract for ensuring that contracts are
        ///         versioned using semantic versioning.
        interface ISemver {
            /// @notice Getter for the semantic version of the contract. This is not
            ///         meant to be used onchain but instead meant to be used by offchain
            ///         tooling.
            /// @return Semver contract version as a string.
            function version() external view returns (string memory);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        interface ISuperchainConfig {
            enum UpdateType {
                GUARDIAN
            }
            event ConfigUpdate(UpdateType indexed updateType, bytes data);
            event Initialized(uint8 version);
            event Paused(string identifier);
            event Unpaused();
            function GUARDIAN_SLOT() external view returns (bytes32);
            function PAUSED_SLOT() external view returns (bytes32);
            function guardian() external view returns (address guardian_);
            function initialize(address _guardian, bool _paused) external;
            function pause(string memory _identifier) external;
            function paused() external view returns (bool paused_);
            function unpause() external;
            function version() external view returns (string memory);
            function __constructor__() external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import { Types } from "src/libraries/Types.sol";
        import { GameType, Timestamp } from "src/dispute/lib/LibUDT.sol";
        import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
        import { IDisputeGameFactory } from "interfaces/dispute/IDisputeGameFactory.sol";
        import { ISystemConfig } from "interfaces/L1/ISystemConfig.sol";
        import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
        interface IOptimismPortal2 {
            error AlreadyFinalized();
            error BadTarget();
            error Blacklisted();
            error CallPaused();
            error ContentLengthMismatch();
            error EmptyItem();
            error GasEstimation();
            error InvalidDataRemainder();
            error InvalidDisputeGame();
            error InvalidGameType();
            error InvalidHeader();
            error InvalidMerkleProof();
            error InvalidProof();
            error LargeCalldata();
            error NonReentrant();
            error OutOfGas();
            error ProposalNotValidated();
            error SmallGasLimit();
            error Unauthorized();
            error UnexpectedList();
            error UnexpectedString();
            error Unproven();
            error LegacyGame();
            event DisputeGameBlacklisted(IDisputeGame indexed disputeGame);
            event Initialized(uint8 version);
            event RespectedGameTypeSet(GameType indexed newGameType, Timestamp indexed updatedAt);
            event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
            event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
            event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
            event WithdrawalProvenExtension1(bytes32 indexed withdrawalHash, address indexed proofSubmitter);
            receive() external payable;
            function blacklistDisputeGame(IDisputeGame _disputeGame) external;
            function checkWithdrawal(bytes32 _withdrawalHash, address _proofSubmitter) external view;
            function depositTransaction(
                address _to,
                uint256 _value,
                uint64 _gasLimit,
                bool _isCreation,
                bytes memory _data
            )
                external
                payable;
            function disputeGameBlacklist(IDisputeGame) external view returns (bool);
            function disputeGameFactory() external view returns (IDisputeGameFactory);
            function disputeGameFinalityDelaySeconds() external view returns (uint256);
            function donateETH() external payable;
            function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external;
            function finalizeWithdrawalTransactionExternalProof(
                Types.WithdrawalTransaction memory _tx,
                address _proofSubmitter
            )
                external;
            function finalizedWithdrawals(bytes32) external view returns (bool);
            function guardian() external view returns (address);
            function initialize(
                IDisputeGameFactory _disputeGameFactory,
                ISystemConfig _systemConfig,
                ISuperchainConfig _superchainConfig,
                GameType _initialRespectedGameType
            )
                external;
            function l2Sender() external view returns (address);
            function minimumGasLimit(uint64 _byteCount) external pure returns (uint64);
            function numProofSubmitters(bytes32 _withdrawalHash) external view returns (uint256);
            function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep
            function paused() external view returns (bool);
            function proofMaturityDelaySeconds() external view returns (uint256);
            function proofSubmitters(bytes32, uint256) external view returns (address);
            function proveWithdrawalTransaction(
                Types.WithdrawalTransaction memory _tx,
                uint256 _disputeGameIndex,
                Types.OutputRootProof memory _outputRootProof,
                bytes[] memory _withdrawalProof
            )
                external;
            function provenWithdrawals(
                bytes32,
                address
            )
                external
                view
                returns (IDisputeGame disputeGameProxy, uint64 timestamp); // nosemgrep
            function respectedGameType() external view returns (GameType);
            function respectedGameTypeUpdatedAt() external view returns (uint64);
            function setRespectedGameType(GameType _gameType) external;
            function superchainConfig() external view returns (ISuperchainConfig);
            function systemConfig() external view returns (ISystemConfig);
            function version() external pure returns (string memory);
            function __constructor__(uint256 _proofMaturityDelaySeconds, uint256 _disputeGameFinalityDelaySeconds) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
             * initialization step. This is essential to configure modules that are added through upgrades and that require
             * initialization.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1);
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator,
                Rounding rounding
            ) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`.
                // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1;
                uint256 x = a;
                if (x >> 128 > 0) {
                    x >>= 128;
                    result <<= 64;
                }
                if (x >> 64 > 0) {
                    x >>= 64;
                    result <<= 32;
                }
                if (x >> 32 > 0) {
                    x >>= 32;
                    result <<= 16;
                }
                if (x >> 16 > 0) {
                    x >>= 16;
                    result <<= 8;
                }
                if (x >> 8 > 0) {
                    x >>= 8;
                    result <<= 4;
                }
                if (x >> 4 > 0) {
                    x >>= 4;
                    result <<= 2;
                }
                if (x >> 2 > 0) {
                    result <<= 1;
                }
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                uint256 result = sqrt(a);
                if (rounding == Rounding.Up && result * result < a) {
                    result += 1;
                }
                return result;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title SafeCall
        /// @notice Perform low level safe calls
        library SafeCall {
            /// @notice Performs a low level call without copying any returndata.
            /// @dev Passes no calldata to the call context.
            /// @param _target   Address to call
            /// @param _gas      Amount of gas to pass to the call
            /// @param _value    Amount of value to pass to the call
            function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                assembly {
                    success_ :=
                        call(
                            _gas, // gas
                            _target, // recipient
                            _value, // ether value
                            0, // inloc
                            0, // inlen
                            0, // outloc
                            0 // outlen
                        )
                }
            }
            /// @notice Perform a low level call with all gas without copying any returndata
            /// @param _target   Address to call
            /// @param _value    Amount of value to pass to the call
            function send(address _target, uint256 _value) internal returns (bool success_) {
                success_ = send(_target, gasleft(), _value);
            }
            /// @notice Perform a low level call without copying any returndata
            /// @param _target   Address to call
            /// @param _gas      Amount of gas to pass to the call
            /// @param _value    Amount of value to pass to the call
            /// @param _calldata Calldata to pass to the call
            function call(
                address _target,
                uint256 _gas,
                uint256 _value,
                bytes memory _calldata
            )
                internal
                returns (bool success_)
            {
                assembly {
                    success_ :=
                        call(
                            _gas, // gas
                            _target, // recipient
                            _value, // ether value
                            add(_calldata, 32), // inloc
                            mload(_calldata), // inlen
                            0, // outloc
                            0 // outlen
                        )
                }
            }
            /// @notice Perform a low level call without copying any returndata
            /// @param _target   Address to call
            /// @param _value    Amount of value to pass to the call
            /// @param _calldata Calldata to pass to the call
            function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
            }
            /// @notice Perform a low level call without copying any returndata
            /// @param _target   Address to call
            /// @param _calldata Calldata to pass to the call
            function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
            }
            /// @notice Helper function to determine if there is sufficient gas remaining within the context
            ///         to guarantee that the minimum gas requirement for a call will be met as well as
            ///         optionally reserving a specified amount of gas for after the call has concluded.
            /// @param _minGas      The minimum amount of gas that may be passed to the target context.
            /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
            ///                     of the target context.
            /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
            ///         context as well as reserve `_reservedGas` for the caller after the execution of
            ///         the target context.
            /// @dev !!!!! FOOTGUN ALERT !!!!!
            ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
            ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
            ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
            ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
            ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
            ///          factors of the dynamic cost of the `CALL` opcode.
            ///      2.) This function should *directly* precede the external call if possible. There is an
            ///          added buffer to account for gas consumed between this check and the call, but it
            ///          is only 5,700 gas.
            ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
            ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
            ///          truncated.
            ///      4.) Use wisely. This function is not a silver bullet.
            function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                bool _hasMinGas;
                assembly {
                    // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                    _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                }
                return _hasMinGas;
            }
            /// @notice Perform a low level call without copying any returndata. This function
            ///         will revert if the call cannot be performed with the specified minimum
            ///         gas.
            /// @param _target   Address to call
            /// @param _minGas   The minimum amount of gas that may be passed to the call
            /// @param _value    Amount of value to pass to the call
            /// @param _calldata Calldata to pass to the call
            function callWithMinGas(
                address _target,
                uint256 _minGas,
                uint256 _value,
                bytes memory _calldata
            )
                internal
                returns (bool)
            {
                bool _success;
                bool _hasMinGas = hasMinGas(_minGas, 0);
                assembly {
                    // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                    if iszero(_hasMinGas) {
                        // Store the "Error(string)" selector in scratch space.
                        mstore(0, 0x08c379a0)
                        // Store the pointer to the string length in scratch space.
                        mstore(32, 32)
                        // Store the string.
                        //
                        // SAFETY:
                        // - We pad the beginning of the string with two zero bytes as well as the
                        // length (24) to ensure that we override the free memory pointer at offset
                        // 0x40. This is necessary because the free memory pointer is likely to
                        // be greater than 1 byte when this function is called, but it is incredibly
                        // unlikely that it will be greater than 3 bytes. As for the data within
                        // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                        // - It's fine to clobber the free memory pointer, we're reverting.
                        mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                        // Revert with 'Error("SafeCall: Not enough gas")'
                        revert(28, 100)
                    }
                    // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                    // above assertion. This ensures that, in all circumstances (except for when the
                    // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                    // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                    // the minimum amount of gas specified.
                    _success :=
                        call(
                            gas(), // gas
                            _target, // recipient
                            _value, // ether value
                            add(_calldata, 32), // inloc
                            mload(_calldata), // inlen
                            0x00, // outloc
                            0x00 // outlen
                        )
                }
                return _success;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        // Libraries
        import { Types } from "src/libraries/Types.sol";
        import { Encoding } from "src/libraries/Encoding.sol";
        /// @title Hashing
        /// @notice Hashing handles Optimism's various different hashing schemes.
        library Hashing {
            /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
            ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
            ///         system.
            /// @param _tx User deposit transaction to hash.
            /// @return Hash of the RLP encoded L2 deposit transaction.
            function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                return keccak256(Encoding.encodeDepositTransaction(_tx));
            }
            /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
            ///         of the L2 transaction that corresponds to a deposit is unique and is
            ///         deterministically generated from L1 transaction data.
            /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
            /// @param _logIndex    The index of the log that created the deposit transaction.
            /// @return Hash of the deposit transaction's "source hash".
            function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                return keccak256(abi.encode(bytes32(0), depositId));
            }
            /// @notice Hashes the cross domain message based on the version that is encoded into the
            ///         message nonce.
            /// @param _nonce    Message nonce with version encoded into the first two bytes.
            /// @param _sender   Address of the sender of the message.
            /// @param _target   Address of the target of the message.
            /// @param _value    ETH value to send to the target.
            /// @param _gasLimit Gas limit to use for the message.
            /// @param _data     Data to send with the message.
            /// @return Hashed cross domain message.
            function hashCrossDomainMessage(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _gasLimit,
                bytes memory _data
            )
                internal
                pure
                returns (bytes32)
            {
                (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                if (version == 0) {
                    return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                } else if (version == 1) {
                    return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                } else {
                    revert("Hashing: unknown cross domain message version");
                }
            }
            /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
            /// @param _target Address of the target of the message.
            /// @param _sender Address of the sender of the message.
            /// @param _data   Data to send with the message.
            /// @param _nonce  Message nonce.
            /// @return Hashed cross domain message.
            function hashCrossDomainMessageV0(
                address _target,
                address _sender,
                bytes memory _data,
                uint256 _nonce
            )
                internal
                pure
                returns (bytes32)
            {
                return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
            }
            /// @notice Hashes a cross domain message based on the V1 (current) encoding.
            /// @param _nonce    Message nonce.
            /// @param _sender   Address of the sender of the message.
            /// @param _target   Address of the target of the message.
            /// @param _value    ETH value to send to the target.
            /// @param _gasLimit Gas limit to use for the message.
            /// @param _data     Data to send with the message.
            /// @return Hashed cross domain message.
            function hashCrossDomainMessageV1(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _gasLimit,
                bytes memory _data
            )
                internal
                pure
                returns (bytes32)
            {
                return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
            }
            /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
            /// @param _tx Withdrawal transaction to hash.
            /// @return Hashed withdrawal transaction.
            function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
            }
            /// @notice Hashes the various elements of an output root proof into an output root hash which
            ///         can be used to check if the proof is valid.
            /// @param _outputRootProof Output root proof which should hash to an output root.
            /// @return Hashed output root proof.
            function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                return keccak256(
                    abi.encode(
                        _outputRootProof.version,
                        _outputRootProof.stateRoot,
                        _outputRootProof.messagePasserStorageRoot,
                        _outputRootProof.latestBlockhash
                    )
                );
            }
            /// @notice Generates a unique hash for cross l2 messages. This hash is used to identify
            ///         the message and ensure it is not relayed more than once.
            /// @param _destination Chain ID of the destination chain.
            /// @param _source Chain ID of the source chain.
            /// @param _nonce Unique nonce associated with the message to prevent replay attacks.
            /// @param _sender Address of the user who originally sent the message.
            /// @param _target Address of the contract or wallet that the message is targeting on the destination chain.
            /// @param _message The message payload to be relayed to the target on the destination chain.
            /// @return Hash of the encoded message parameters, used to uniquely identify the message.
            function hashL2toL2CrossDomainMessage(
                uint256 _destination,
                uint256 _source,
                uint256 _nonce,
                address _sender,
                address _target,
                bytes memory _message
            )
                internal
                pure
                returns (bytes32)
            {
                return keccak256(abi.encode(_destination, _source, _nonce, _sender, _target, _message));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        // Libraries
        import { Types } from "src/libraries/Types.sol";
        import { Hashing } from "src/libraries/Hashing.sol";
        import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
        /// @title Encoding
        /// @notice Encoding handles Optimism's various different encoding schemes.
        library Encoding {
            /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
            ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
            ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
            /// @param _tx User deposit transaction to encode.
            /// @return RLP encoded L2 deposit transaction.
            function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                bytes[] memory raw = new bytes[](8);
                raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                raw[1] = RLPWriter.writeAddress(_tx.from);
                raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                raw[3] = RLPWriter.writeUint(_tx.mint);
                raw[4] = RLPWriter.writeUint(_tx.value);
                raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                raw[6] = RLPWriter.writeBool(false);
                raw[7] = RLPWriter.writeBytes(_tx.data);
                return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
            }
            /// @notice Encodes the cross domain message based on the version that is encoded into the
            ///         message nonce.
            /// @param _nonce    Message nonce with version encoded into the first two bytes.
            /// @param _sender   Address of the sender of the message.
            /// @param _target   Address of the target of the message.
            /// @param _value    ETH value to send to the target.
            /// @param _gasLimit Gas limit to use for the message.
            /// @param _data     Data to send with the message.
            /// @return Encoded cross domain message.
            function encodeCrossDomainMessage(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _gasLimit,
                bytes memory _data
            )
                internal
                pure
                returns (bytes memory)
            {
                (, uint16 version) = decodeVersionedNonce(_nonce);
                if (version == 0) {
                    return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                } else if (version == 1) {
                    return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                } else {
                    revert("Encoding: unknown cross domain message version");
                }
            }
            /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
            /// @param _target Address of the target of the message.
            /// @param _sender Address of the sender of the message.
            /// @param _data   Data to send with the message.
            /// @param _nonce  Message nonce.
            /// @return Encoded cross domain message.
            function encodeCrossDomainMessageV0(
                address _target,
                address _sender,
                bytes memory _data,
                uint256 _nonce
            )
                internal
                pure
                returns (bytes memory)
            {
                // nosemgrep: sol-style-use-abi-encodecall
                return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
            }
            /// @notice Encodes a cross domain message based on the V1 (current) encoding.
            /// @param _nonce    Message nonce.
            /// @param _sender   Address of the sender of the message.
            /// @param _target   Address of the target of the message.
            /// @param _value    ETH value to send to the target.
            /// @param _gasLimit Gas limit to use for the message.
            /// @param _data     Data to send with the message.
            /// @return Encoded cross domain message.
            function encodeCrossDomainMessageV1(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _gasLimit,
                bytes memory _data
            )
                internal
                pure
                returns (bytes memory)
            {
                // nosemgrep: sol-style-use-abi-encodecall
                return abi.encodeWithSignature(
                    "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                    _nonce,
                    _sender,
                    _target,
                    _value,
                    _gasLimit,
                    _data
                );
            }
            /// @notice Adds a version number into the first two bytes of a message nonce.
            /// @param _nonce   Message nonce to encode into.
            /// @param _version Version number to encode into the message nonce.
            /// @return Message nonce with version encoded into the first two bytes.
            function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                uint256 nonce;
                assembly {
                    nonce := or(shl(240, _version), _nonce)
                }
                return nonce;
            }
            /// @notice Pulls the version out of a version-encoded nonce.
            /// @param _nonce Message nonce with version encoded into the first two bytes.
            /// @return Nonce without encoded version.
            /// @return Version of the message.
            function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                uint240 nonce;
                uint16 version;
                assembly {
                    nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                    version := shr(240, _nonce)
                }
                return (nonce, version);
            }
            /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
            /// @param _baseFeeScalar       L1 base fee Scalar
            /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
            /// @param _sequenceNumber      Number of L2 blocks since epoch start.
            /// @param _timestamp           L1 timestamp.
            /// @param _number              L1 blocknumber.
            /// @param _baseFee             L1 base fee.
            /// @param _blobBaseFee         L1 blob base fee.
            /// @param _hash                L1 blockhash.
            /// @param _batcherHash         Versioned hash to authenticate batcher by.
            function encodeSetL1BlockValuesEcotone(
                uint32 _baseFeeScalar,
                uint32 _blobBaseFeeScalar,
                uint64 _sequenceNumber,
                uint64 _timestamp,
                uint64 _number,
                uint256 _baseFee,
                uint256 _blobBaseFee,
                bytes32 _hash,
                bytes32 _batcherHash
            )
                internal
                pure
                returns (bytes memory)
            {
                bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                return abi.encodePacked(
                    functionSignature,
                    _baseFeeScalar,
                    _blobBaseFeeScalar,
                    _sequenceNumber,
                    _timestamp,
                    _number,
                    _baseFee,
                    _blobBaseFee,
                    _hash,
                    _batcherHash
                );
            }
            /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesIsthmus
            /// @param _baseFeeScalar       L1 base fee Scalar
            /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
            /// @param _sequenceNumber      Number of L2 blocks since epoch start.
            /// @param _timestamp           L1 timestamp.
            /// @param _number              L1 blocknumber.
            /// @param _baseFee             L1 base fee.
            /// @param _blobBaseFee         L1 blob base fee.
            /// @param _hash                L1 blockhash.
            /// @param _batcherHash         Versioned hash to authenticate batcher by.
            /// @param _operatorFeeScalar   Operator fee scalar.
            /// @param _operatorFeeConstant Operator fee constant.
            function encodeSetL1BlockValuesIsthmus(
                uint32 _baseFeeScalar,
                uint32 _blobBaseFeeScalar,
                uint64 _sequenceNumber,
                uint64 _timestamp,
                uint64 _number,
                uint256 _baseFee,
                uint256 _blobBaseFee,
                bytes32 _hash,
                bytes32 _batcherHash,
                uint32 _operatorFeeScalar,
                uint64 _operatorFeeConstant
            )
                internal
                pure
                returns (bytes memory)
            {
                bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesIsthmus()"));
                return abi.encodePacked(
                    functionSignature,
                    _baseFeeScalar,
                    _blobBaseFeeScalar,
                    _sequenceNumber,
                    _timestamp,
                    _number,
                    _baseFee,
                    _blobBaseFee,
                    _hash,
                    _batcherHash,
                    _operatorFeeScalar,
                    _operatorFeeConstant
                );
            }
            /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
            /// @param _baseFeeScalar       L1 base fee Scalar
            /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
            /// @param _sequenceNumber      Number of L2 blocks since epoch start.
            /// @param _timestamp           L1 timestamp.
            /// @param _number              L1 blocknumber.
            /// @param _baseFee             L1 base fee.
            /// @param _blobBaseFee         L1 blob base fee.
            /// @param _hash                L1 blockhash.
            /// @param _batcherHash         Versioned hash to authenticate batcher by.
            function encodeSetL1BlockValuesInterop(
                uint32 _baseFeeScalar,
                uint32 _blobBaseFeeScalar,
                uint64 _sequenceNumber,
                uint64 _timestamp,
                uint64 _number,
                uint256 _baseFee,
                uint256 _blobBaseFee,
                bytes32 _hash,
                bytes32 _batcherHash
            )
                internal
                pure
                returns (bytes memory)
            {
                bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()"));
                return abi.encodePacked(
                    functionSignature,
                    _baseFeeScalar,
                    _blobBaseFeeScalar,
                    _sequenceNumber,
                    _timestamp,
                    _number,
                    _baseFee,
                    _blobBaseFee,
                    _hash,
                    _batcherHash
                );
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        // Interfaces
        import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
        /// @title Constants
        /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
        ///         the stuff used in multiple contracts. Constants that only apply to a single contract
        ///         should be defined in that contract instead.
        library Constants {
            /// @notice Special address to be used as the tx origin for gas estimation calls in the
            ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
            ///         the minimum gas limit specified by the user is not actually enough to execute the
            ///         given message and you're attempting to estimate the actual necessary gas limit. We
            ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
            ///         never have any code on any EVM chain.
            address internal constant ESTIMATION_ADDRESS = address(1);
            /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
            ///         CrossDomainMessenger contracts before an actual sender is set. This value is
            ///         non-zero to reduce the gas cost of message passing transactions.
            address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
            /// @notice The storage slot that holds the address of a proxy implementation.
            /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
            bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /// @notice The storage slot that holds the address of the owner.
            /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
            bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /// @notice The address that represents ether when dealing with ERC20 token addresses.
            address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
            /// @notice The address that represents the system caller responsible for L1 attributes
            ///         transactions.
            address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
            /// @notice Returns the default values for the ResourceConfig. These are the recommended values
            ///         for a production network.
            function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
                IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
                    maxResourceLimit: 20_000_000,
                    elasticityMultiplier: 10,
                    baseFeeMaxChangeDenominator: 8,
                    minimumBaseFee: 1 gwei,
                    systemTxMaxGas: 1_000_000,
                    maximumBaseFee: type(uint128).max
                });
                return config;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title Types
        /// @notice Contains various types used throughout the Optimism contract system.
        library Types {
            /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
            ///         timestamp that the output root is posted. This timestamp is used to verify that the
            ///         finalization period has passed since the output root was submitted.
            /// @custom:field outputRoot    Hash of the L2 output.
            /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
            /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
            struct OutputProposal {
                bytes32 outputRoot;
                uint128 timestamp;
                uint128 l2BlockNumber;
            }
            /// @notice Struct representing the elements that are hashed together to generate an output root
            ///         which itself represents a snapshot of the L2 state.
            /// @custom:field version                  Version of the output root.
            /// @custom:field stateRoot                Root of the state trie at the block of this output.
            /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
            /// @custom:field latestBlockhash          Hash of the block this output was generated from.
            struct OutputRootProof {
                bytes32 version;
                bytes32 stateRoot;
                bytes32 messagePasserStorageRoot;
                bytes32 latestBlockhash;
            }
            /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
            ///         user (as opposed to a system deposit transaction generated by the system).
            /// @custom:field from        Address of the sender of the transaction.
            /// @custom:field to          Address of the recipient of the transaction.
            /// @custom:field isCreation  True if the transaction is a contract creation.
            /// @custom:field value       Value to send to the recipient.
            /// @custom:field mint        Amount of ETH to mint.
            /// @custom:field gasLimit    Gas limit of the transaction.
            /// @custom:field data        Data of the transaction.
            /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
            /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
            struct UserDepositTransaction {
                address from;
                address to;
                bool isCreation;
                uint256 value;
                uint256 mint;
                uint64 gasLimit;
                bytes data;
                bytes32 l1BlockHash;
                uint256 logIndex;
            }
            /// @notice Struct representing a withdrawal transaction.
            /// @custom:field nonce    Nonce of the withdrawal transaction
            /// @custom:field sender   Address of the sender of the transaction.
            /// @custom:field target   Address of the recipient of the transaction.
            /// @custom:field value    Value to send to the recipient.
            /// @custom:field gasLimit Gas limit of the transaction.
            /// @custom:field data     Data of the transaction.
            struct WithdrawalTransaction {
                uint256 nonce;
                address sender;
                address target;
                uint256 value;
                uint256 gasLimit;
                bytes data;
            }
            /// @notice Enum representing where the FeeVault withdraws funds to.
            /// @custom:value L1 FeeVault withdraws funds to L1.
            /// @custom:value L2 FeeVault withdraws funds to L2.
            enum WithdrawalNetwork {
                L1,
                L2
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.15;
        // Libraries
        import { Position } from "src/dispute/lib/LibPosition.sol";
        using LibClaim for Claim global;
        using LibHash for Hash global;
        using LibDuration for Duration global;
        using LibClock for Clock global;
        using LibGameId for GameId global;
        using LibTimestamp for Timestamp global;
        using LibVMStatus for VMStatus global;
        using LibGameType for GameType global;
        /// @notice A `Clock` represents a packed `Duration` and `Timestamp`
        /// @dev The packed layout of this type is as follows:
        /// ┌────────────┬────────────────┐
        /// │    Bits    │     Value      │
        /// ├────────────┼────────────────┤
        /// │ [0, 64)    │ Duration       │
        /// │ [64, 128)  │ Timestamp      │
        /// └────────────┴────────────────┘
        type Clock is uint128;
        /// @title LibClock
        /// @notice This library contains helper functions for working with the `Clock` type.
        library LibClock {
            /// @notice Packs a `Duration` and `Timestamp` into a `Clock` type.
            /// @param _duration The `Duration` to pack into the `Clock` type.
            /// @param _timestamp The `Timestamp` to pack into the `Clock` type.
            /// @return clock_ The `Clock` containing the `_duration` and `_timestamp`.
            function wrap(Duration _duration, Timestamp _timestamp) internal pure returns (Clock clock_) {
                assembly {
                    clock_ := or(shl(0x40, _duration), _timestamp)
                }
            }
            /// @notice Pull the `Duration` out of a `Clock` type.
            /// @param _clock The `Clock` type to pull the `Duration` out of.
            /// @return duration_ The `Duration` pulled out of `_clock`.
            function duration(Clock _clock) internal pure returns (Duration duration_) {
                // Shift the high-order 64 bits into the low-order 64 bits, leaving only the `duration`.
                assembly {
                    duration_ := shr(0x40, _clock)
                }
            }
            /// @notice Pull the `Timestamp` out of a `Clock` type.
            /// @param _clock The `Clock` type to pull the `Timestamp` out of.
            /// @return timestamp_ The `Timestamp` pulled out of `_clock`.
            function timestamp(Clock _clock) internal pure returns (Timestamp timestamp_) {
                // Clean the high-order 192 bits by shifting the clock left and then right again, leaving
                // only the `timestamp`.
                assembly {
                    timestamp_ := shr(0xC0, shl(0xC0, _clock))
                }
            }
            /// @notice Get the value of a `Clock` type in the form of the underlying uint128.
            /// @param _clock The `Clock` type to get the value of.
            /// @return clock_ The value of the `Clock` type as a uint128 type.
            function raw(Clock _clock) internal pure returns (uint128 clock_) {
                assembly {
                    clock_ := _clock
                }
            }
        }
        /// @notice A `GameId` represents a packed 4 byte game ID, a 8 byte timestamp, and a 20 byte address.
        /// @dev The packed layout of this type is as follows:
        /// ┌───────────┬───────────┐
        /// │   Bits    │   Value   │
        /// ├───────────┼───────────┤
        /// │ [0, 32)   │ Game Type │
        /// │ [32, 96)  │ Timestamp │
        /// │ [96, 256) │ Address   │
        /// └───────────┴───────────┘
        type GameId is bytes32;
        /// @title LibGameId
        /// @notice Utility functions for packing and unpacking GameIds.
        library LibGameId {
            /// @notice Packs values into a 32 byte GameId type.
            /// @param _gameType The game type.
            /// @param _timestamp The timestamp of the game's creation.
            /// @param _gameProxy The game proxy address.
            /// @return gameId_ The packed GameId.
            function pack(
                GameType _gameType,
                Timestamp _timestamp,
                address _gameProxy
            )
                internal
                pure
                returns (GameId gameId_)
            {
                assembly {
                    gameId_ := or(or(shl(224, _gameType), shl(160, _timestamp)), _gameProxy)
                }
            }
            /// @notice Unpacks values from a 32 byte GameId type.
            /// @param _gameId The packed GameId.
            /// @return gameType_ The game type.
            /// @return timestamp_ The timestamp of the game's creation.
            /// @return gameProxy_ The game proxy address.
            function unpack(GameId _gameId)
                internal
                pure
                returns (GameType gameType_, Timestamp timestamp_, address gameProxy_)
            {
                assembly {
                    gameType_ := shr(224, _gameId)
                    timestamp_ := and(shr(160, _gameId), 0xFFFFFFFFFFFFFFFF)
                    gameProxy_ := and(_gameId, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                }
            }
        }
        /// @notice A claim represents an MPT root representing the state of the fault proof program.
        type Claim is bytes32;
        /// @title LibClaim
        /// @notice This library contains helper functions for working with the `Claim` type.
        library LibClaim {
            /// @notice Get the value of a `Claim` type in the form of the underlying bytes32.
            /// @param _claim The `Claim` type to get the value of.
            /// @return claim_ The value of the `Claim` type as a bytes32 type.
            function raw(Claim _claim) internal pure returns (bytes32 claim_) {
                assembly {
                    claim_ := _claim
                }
            }
            /// @notice Hashes a claim and a position together.
            /// @param _claim A Claim type.
            /// @param _position The position of `claim`.
            /// @param _challengeIndex The index of the claim being moved against.
            /// @return claimHash_ A hash of abi.encodePacked(claim, position|challengeIndex);
            function hashClaimPos(
                Claim _claim,
                Position _position,
                uint256 _challengeIndex
            )
                internal
                pure
                returns (Hash claimHash_)
            {
                assembly {
                    mstore(0x00, _claim)
                    mstore(0x20, or(shl(128, _position), and(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, _challengeIndex)))
                    claimHash_ := keccak256(0x00, 0x40)
                }
            }
        }
        /// @notice A dedicated duration type.
        /// @dev Unit: seconds
        type Duration is uint64;
        /// @title LibDuration
        /// @notice This library contains helper functions for working with the `Duration` type.
        library LibDuration {
            /// @notice Get the value of a `Duration` type in the form of the underlying uint64.
            /// @param _duration The `Duration` type to get the value of.
            /// @return duration_ The value of the `Duration` type as a uint64 type.
            function raw(Duration _duration) internal pure returns (uint64 duration_) {
                assembly {
                    duration_ := _duration
                }
            }
        }
        /// @notice A custom type for a generic hash.
        type Hash is bytes32;
        /// @title LibHash
        /// @notice This library contains helper functions for working with the `Hash` type.
        library LibHash {
            /// @notice Get the value of a `Hash` type in the form of the underlying bytes32.
            /// @param _hash The `Hash` type to get the value of.
            /// @return hash_ The value of the `Hash` type as a bytes32 type.
            function raw(Hash _hash) internal pure returns (bytes32 hash_) {
                assembly {
                    hash_ := _hash
                }
            }
        }
        /// @notice A dedicated timestamp type.
        type Timestamp is uint64;
        /// @title LibTimestamp
        /// @notice This library contains helper functions for working with the `Timestamp` type.
        library LibTimestamp {
            /// @notice Get the value of a `Timestamp` type in the form of the underlying uint64.
            /// @param _timestamp The `Timestamp` type to get the value of.
            /// @return timestamp_ The value of the `Timestamp` type as a uint64 type.
            function raw(Timestamp _timestamp) internal pure returns (uint64 timestamp_) {
                assembly {
                    timestamp_ := _timestamp
                }
            }
        }
        /// @notice A `VMStatus` represents the status of a VM execution.
        type VMStatus is uint8;
        /// @title LibVMStatus
        /// @notice This library contains helper functions for working with the `VMStatus` type.
        library LibVMStatus {
            /// @notice Get the value of a `VMStatus` type in the form of the underlying uint8.
            /// @param _vmstatus The `VMStatus` type to get the value of.
            /// @return vmstatus_ The value of the `VMStatus` type as a uint8 type.
            function raw(VMStatus _vmstatus) internal pure returns (uint8 vmstatus_) {
                assembly {
                    vmstatus_ := _vmstatus
                }
            }
        }
        /// @notice A `GameType` represents the type of game being played.
        type GameType is uint32;
        /// @title LibGameType
        /// @notice This library contains helper functions for working with the `GameType` type.
        library LibGameType {
            /// @notice Get the value of a `GameType` type in the form of the underlying uint32.
            /// @param _gametype The `GameType` type to get the value of.
            /// @return gametype_ The value of the `GameType` type as a uint32 type.
            function raw(GameType _gametype) internal pure returns (uint32 gametype_) {
                assembly {
                    gametype_ := _gametype
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import { IInitializable } from "interfaces/dispute/IInitializable.sol";
        import { Timestamp, GameStatus, GameType, Claim, Hash } from "src/dispute/lib/Types.sol";
        interface IDisputeGame is IInitializable {
            event Resolved(GameStatus indexed status);
            function createdAt() external view returns (Timestamp);
            function resolvedAt() external view returns (Timestamp);
            function status() external view returns (GameStatus);
            function gameType() external view returns (GameType gameType_);
            function gameCreator() external pure returns (address creator_);
            function rootClaim() external pure returns (Claim rootClaim_);
            function l1Head() external pure returns (Hash l1Head_);
            function l2BlockNumber() external pure returns (uint256 l2BlockNumber_);
            function extraData() external pure returns (bytes memory extraData_);
            function resolve() external returns (GameStatus status_);
            function gameData() external view returns (GameType gameType_, Claim rootClaim_, bytes memory extraData_);
            function wasRespectedGameTypeWhenCreated() external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
        import { GameId, Timestamp, Claim, Hash, GameType } from "src/dispute/lib/Types.sol";
        interface IDisputeGameFactory {
            struct GameSearchResult {
                uint256 index;
                GameId metadata;
                Timestamp timestamp;
                Claim rootClaim;
                bytes extraData;
            }
            error GameAlreadyExists(Hash uuid);
            error IncorrectBondAmount();
            error NoImplementation(GameType gameType);
            event DisputeGameCreated(address indexed disputeProxy, GameType indexed gameType, Claim indexed rootClaim);
            event ImplementationSet(address indexed impl, GameType indexed gameType);
            event InitBondUpdated(GameType indexed gameType, uint256 indexed newBond);
            event Initialized(uint8 version);
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            function create(
                GameType _gameType,
                Claim _rootClaim,
                bytes memory _extraData
            )
                external
                payable
                returns (IDisputeGame proxy_);
            function findLatestGames(
                GameType _gameType,
                uint256 _start,
                uint256 _n
            )
                external
                view
                returns (GameSearchResult[] memory games_);
            function gameAtIndex(uint256 _index)
                external
                view
                returns (GameType gameType_, Timestamp timestamp_, IDisputeGame proxy_);
            function gameCount() external view returns (uint256 gameCount_);
            function gameImpls(GameType) external view returns (IDisputeGame);
            function games(
                GameType _gameType,
                Claim _rootClaim,
                bytes memory _extraData
            )
                external
                view
                returns (IDisputeGame proxy_, Timestamp timestamp_);
            function getGameUUID(
                GameType _gameType,
                Claim _rootClaim,
                bytes memory _extraData
            )
                external
                pure
                returns (Hash uuid_);
            function initBonds(GameType) external view returns (uint256);
            function initialize(address _owner) external;
            function owner() external view returns (address);
            function renounceOwnership() external;
            function setImplementation(GameType _gameType, IDisputeGame _impl) external;
            function setInitBond(GameType _gameType, uint256 _initBond) external;
            function transferOwnership(address newOwner) external; // nosemgrep
            function version() external view returns (string memory);
            function __constructor__() external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
        interface ISystemConfig {
            enum UpdateType {
                BATCHER,
                FEE_SCALARS,
                GAS_LIMIT,
                UNSAFE_BLOCK_SIGNER,
                EIP_1559_PARAMS,
                OPERATOR_FEE_PARAMS
            }
            struct Addresses {
                address l1CrossDomainMessenger;
                address l1ERC721Bridge;
                address l1StandardBridge;
                address disputeGameFactory;
                address optimismPortal;
                address optimismMintableERC20Factory;
            }
            event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
            event Initialized(uint8 version);
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            function BATCH_INBOX_SLOT() external view returns (bytes32);
            function DISPUTE_GAME_FACTORY_SLOT() external view returns (bytes32);
            function L1_CROSS_DOMAIN_MESSENGER_SLOT() external view returns (bytes32);
            function L1_ERC_721_BRIDGE_SLOT() external view returns (bytes32);
            function L1_STANDARD_BRIDGE_SLOT() external view returns (bytes32);
            function OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT() external view returns (bytes32);
            function OPTIMISM_PORTAL_SLOT() external view returns (bytes32);
            function START_BLOCK_SLOT() external view returns (bytes32);
            function UNSAFE_BLOCK_SIGNER_SLOT() external view returns (bytes32);
            function VERSION() external view returns (uint256);
            function basefeeScalar() external view returns (uint32);
            function batchInbox() external view returns (address addr_);
            function batcherHash() external view returns (bytes32);
            function blobbasefeeScalar() external view returns (uint32);
            function disputeGameFactory() external view returns (address addr_);
            function gasLimit() external view returns (uint64);
            function eip1559Denominator() external view returns (uint32);
            function eip1559Elasticity() external view returns (uint32);
            function getAddresses() external view returns (Addresses memory);
            function initialize(
                address _owner,
                uint32 _basefeeScalar,
                uint32 _blobbasefeeScalar,
                bytes32 _batcherHash,
                uint64 _gasLimit,
                address _unsafeBlockSigner,
                IResourceMetering.ResourceConfig memory _config,
                address _batchInbox,
                Addresses memory _addresses
            )
                external;
            function l1CrossDomainMessenger() external view returns (address addr_);
            function l1ERC721Bridge() external view returns (address addr_);
            function l1StandardBridge() external view returns (address addr_);
            function maximumGasLimit() external pure returns (uint64);
            function minimumGasLimit() external view returns (uint64);
            function operatorFeeConstant() external view returns (uint64);
            function operatorFeeScalar() external view returns (uint32);
            function optimismMintableERC20Factory() external view returns (address addr_);
            function optimismPortal() external view returns (address addr_);
            function overhead() external view returns (uint256);
            function owner() external view returns (address);
            function renounceOwnership() external;
            function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory);
            function scalar() external view returns (uint256);
            function setBatcherHash(bytes32 _batcherHash) external;
            function setGasConfig(uint256 _overhead, uint256 _scalar) external;
            function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external;
            function setGasLimit(uint64 _gasLimit) external;
            function setOperatorFeeScalars(uint32 _operatorFeeScalar, uint64 _operatorFeeConstant) external;
            function setUnsafeBlockSigner(address _unsafeBlockSigner) external;
            function setEIP1559Params(uint32 _denominator, uint32 _elasticity) external;
            function startBlock() external view returns (uint256 startBlock_);
            function transferOwnership(address newOwner) external; // nosemgrep
            function unsafeBlockSigner() external view returns (address addr_);
            function version() external pure returns (string memory);
            function __constructor__() external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
        /// @title RLPWriter
        /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
        ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
        ///         modifications to improve legibility.
        library RLPWriter {
            /// @notice RLP encodes a byte string.
            /// @param _in The byte string to encode.
            /// @return out_ The RLP encoded string in bytes.
            function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                if (_in.length == 1 && uint8(_in[0]) < 128) {
                    out_ = _in;
                } else {
                    out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                }
            }
            /// @notice RLP encodes a list of RLP encoded byte byte strings.
            /// @param _in The list of RLP encoded byte strings.
            /// @return list_ The RLP encoded list of items in bytes.
            function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                list_ = _flatten(_in);
                list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
            }
            /// @notice RLP encodes a string.
            /// @param _in The string to encode.
            /// @return out_ The RLP encoded string in bytes.
            function writeString(string memory _in) internal pure returns (bytes memory out_) {
                out_ = writeBytes(bytes(_in));
            }
            /// @notice RLP encodes an address.
            /// @param _in The address to encode.
            /// @return out_ The RLP encoded address in bytes.
            function writeAddress(address _in) internal pure returns (bytes memory out_) {
                out_ = writeBytes(abi.encodePacked(_in));
            }
            /// @notice RLP encodes a uint.
            /// @param _in The uint256 to encode.
            /// @return out_ The RLP encoded uint256 in bytes.
            function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                out_ = writeBytes(_toBinary(_in));
            }
            /// @notice RLP encodes a bool.
            /// @param _in The bool to encode.
            /// @return out_ The RLP encoded bool in bytes.
            function writeBool(bool _in) internal pure returns (bytes memory out_) {
                out_ = new bytes(1);
                out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
            }
            /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
            /// @param _len    The length of the string or the payload.
            /// @param _offset 128 if item is string, 192 if item is list.
            /// @return out_ RLP encoded bytes.
            function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                if (_len < 56) {
                    out_ = new bytes(1);
                    out_[0] = bytes1(uint8(_len) + uint8(_offset));
                } else {
                    uint256 lenLen;
                    uint256 i = 1;
                    while (_len / i != 0) {
                        lenLen++;
                        i *= 256;
                    }
                    out_ = new bytes(lenLen + 1);
                    out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                    for (i = 1; i <= lenLen; i++) {
                        out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                    }
                }
            }
            /// @notice Encode integer in big endian binary form with no leading zeroes.
            /// @param _x The integer to encode.
            /// @return out_ RLP encoded bytes.
            function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                bytes memory b = abi.encodePacked(_x);
                uint256 i = 0;
                for (; i < 32; i++) {
                    if (b[i] != 0) {
                        break;
                    }
                }
                out_ = new bytes(32 - i);
                for (uint256 j = 0; j < out_.length; j++) {
                    out_[j] = b[i++];
                }
            }
            /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
            /// @notice Copies a piece of memory to another location.
            /// @param _dest Destination location.
            /// @param _src  Source location.
            /// @param _len  Length of memory to copy.
            function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                uint256 dest = _dest;
                uint256 src = _src;
                uint256 len = _len;
                for (; len >= 32; len -= 32) {
                    assembly {
                        mstore(dest, mload(src))
                    }
                    dest += 32;
                    src += 32;
                }
                uint256 mask;
                unchecked {
                    mask = 256 ** (32 - len) - 1;
                }
                assembly {
                    let srcpart := and(mload(src), not(mask))
                    let destpart := and(mload(dest), mask)
                    mstore(dest, or(destpart, srcpart))
                }
            }
            /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
            /// @notice Flattens a list of byte strings into one byte string.
            /// @param _list List of byte strings to flatten.
            /// @return out_ The flattened byte string.
            function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                if (_list.length == 0) {
                    return new bytes(0);
                }
                uint256 len;
                uint256 i = 0;
                for (; i < _list.length; i++) {
                    len += _list[i].length;
                }
                out_ = new bytes(len);
                uint256 flattenedPtr;
                assembly {
                    flattenedPtr := add(out_, 0x20)
                }
                for (i = 0; i < _list.length; i++) {
                    bytes memory item = _list[i];
                    uint256 listPtr;
                    assembly {
                        listPtr := add(item, 0x20)
                    }
                    _memcpy(flattenedPtr, listPtr, item.length);
                    flattenedPtr += _list[i].length;
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        interface IResourceMetering {
            struct ResourceParams {
                uint128 prevBaseFee;
                uint64 prevBoughtGas;
                uint64 prevBlockNum;
            }
            struct ResourceConfig {
                uint32 maxResourceLimit;
                uint8 elasticityMultiplier;
                uint8 baseFeeMaxChangeDenominator;
                uint32 minimumBaseFee;
                uint32 systemTxMaxGas;
                uint128 maximumBaseFee;
            }
            error OutOfGas();
            event Initialized(uint8 version);
            function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep
            function __constructor__() external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.15;
        using LibPosition for Position global;
        /// @notice A `Position` represents a position of a claim within the game tree.
        /// @dev This is represented as a "generalized index" where the high-order bit
        /// is the level in the tree and the remaining bits is a unique bit pattern, allowing
        /// a unique identifier for each node in the tree. Mathematically, it is calculated
        /// as 2^{depth} + indexAtDepth.
        type Position is uint128;
        /// @title LibPosition
        /// @notice This library contains helper functions for working with the `Position` type.
        library LibPosition {
            /// @notice the `MAX_POSITION_BITLEN` is the number of bits that the `Position` type, and the implementation of
            ///         its behavior within this library, can safely support.
            uint8 internal constant MAX_POSITION_BITLEN = 126;
            /// @notice Computes a generalized index (2^{depth} + indexAtDepth).
            /// @param _depth The depth of the position.
            /// @param _indexAtDepth The index at the depth of the position.
            /// @return position_ The computed generalized index.
            function wrap(uint8 _depth, uint128 _indexAtDepth) internal pure returns (Position position_) {
                assembly {
                    // gindex = 2^{_depth} + _indexAtDepth
                    position_ := add(shl(_depth, 1), _indexAtDepth)
                }
            }
            /// @notice Pulls the `depth` out of a `Position` type.
            /// @param _position The generalized index to get the `depth` of.
            /// @return depth_ The `depth` of the `position` gindex.
            /// @custom:attribution Solady <https://github.com/Vectorized/Solady>
            function depth(Position _position) internal pure returns (uint8 depth_) {
                // Return the most significant bit offset, which signifies the depth of the gindex.
                assembly {
                    depth_ := or(depth_, shl(6, lt(0xffffffffffffffff, shr(depth_, _position))))
                    depth_ := or(depth_, shl(5, lt(0xffffffff, shr(depth_, _position))))
                    // For the remaining 32 bits, use a De Bruijn lookup.
                    _position := shr(depth_, _position)
                    _position := or(_position, shr(1, _position))
                    _position := or(_position, shr(2, _position))
                    _position := or(_position, shr(4, _position))
                    _position := or(_position, shr(8, _position))
                    _position := or(_position, shr(16, _position))
                    depth_ :=
                        or(
                            depth_,
                            byte(
                                shr(251, mul(_position, shl(224, 0x07c4acdd))),
                                0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f
                            )
                        )
                }
            }
            /// @notice Pulls the `indexAtDepth` out of a `Position` type.
            ///         The `indexAtDepth` is the left/right index of a position at a specific depth within
            ///         the binary tree, starting from index 0. For example, at gindex 2, the `depth` = 1
            ///         and the `indexAtDepth` = 0.
            /// @param _position The generalized index to get the `indexAtDepth` of.
            /// @return indexAtDepth_ The `indexAtDepth` of the `position` gindex.
            function indexAtDepth(Position _position) internal pure returns (uint128 indexAtDepth_) {
                // Return bits p_{msb-1}...p_{0}. This effectively pulls the 2^{depth} out of the gindex,
                // leaving only the `indexAtDepth`.
                uint256 msb = depth(_position);
                assembly {
                    indexAtDepth_ := sub(_position, shl(msb, 1))
                }
            }
            /// @notice Get the left child of `_position`.
            /// @param _position The position to get the left position of.
            /// @return left_ The position to the left of `position`.
            function left(Position _position) internal pure returns (Position left_) {
                assembly {
                    left_ := shl(1, _position)
                }
            }
            /// @notice Get the right child of `_position`
            /// @param _position The position to get the right position of.
            /// @return right_ The position to the right of `position`.
            function right(Position _position) internal pure returns (Position right_) {
                assembly {
                    right_ := or(1, shl(1, _position))
                }
            }
            /// @notice Get the parent position of `_position`.
            /// @param _position The position to get the parent position of.
            /// @return parent_ The parent position of `position`.
            function parent(Position _position) internal pure returns (Position parent_) {
                assembly {
                    parent_ := shr(1, _position)
                }
            }
            /// @notice Get the deepest, right most gindex relative to the `position`. This is equivalent to
            ///         calling `right` on a position until the maximum depth is reached.
            /// @param _position The position to get the relative deepest, right most gindex of.
            /// @param _maxDepth The maximum depth of the game.
            /// @return rightIndex_ The deepest, right most gindex relative to the `position`.
            function rightIndex(Position _position, uint256 _maxDepth) internal pure returns (Position rightIndex_) {
                uint256 msb = depth(_position);
                assembly {
                    let remaining := sub(_maxDepth, msb)
                    rightIndex_ := or(shl(remaining, _position), sub(shl(remaining, 1), 1))
                }
            }
            /// @notice Get the deepest, right most trace index relative to the `position`. This is
            ///         equivalent to calling `right` on a position until the maximum depth is reached and
            ///         then finding its index at depth.
            /// @param _position The position to get the relative trace index of.
            /// @param _maxDepth The maximum depth of the game.
            /// @return traceIndex_ The trace index relative to the `position`.
            function traceIndex(Position _position, uint256 _maxDepth) internal pure returns (uint256 traceIndex_) {
                uint256 msb = depth(_position);
                assembly {
                    let remaining := sub(_maxDepth, msb)
                    traceIndex_ := sub(or(shl(remaining, _position), sub(shl(remaining, 1), 1)), shl(_maxDepth, 1))
                }
            }
            /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
            ///         trace index.
            /// @param _position The position to get the highest ancestor of.
            /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
            function traceAncestor(Position _position) internal pure returns (Position ancestor_) {
                // Create a field with only the lowest unset bit of `_position` set.
                Position lsb;
                assembly {
                    lsb := and(not(_position), add(_position, 1))
                }
                // Find the index of the lowest unset bit within the field.
                uint256 msb = depth(lsb);
                // The highest ancestor that commits to the same trace index is the original position
                // shifted right by the index of the lowest unset bit.
                assembly {
                    let a := shr(msb, _position)
                    // Bound the ancestor to the minimum gindex, 1.
                    ancestor_ := or(a, iszero(a))
                }
            }
            /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
            ///         trace index, while still being below `_upperBoundExclusive`.
            /// @param _position The position to get the highest ancestor of.
            /// @param _upperBoundExclusive The exclusive upper depth bound, used to inform where to stop in order
            ///                             to not escape a sub-tree.
            /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
            function traceAncestorBounded(
                Position _position,
                uint256 _upperBoundExclusive
            )
                internal
                pure
                returns (Position ancestor_)
            {
                // This function only works for positions that are below the upper bound.
                if (_position.depth() <= _upperBoundExclusive) {
                    assembly {
                        // Revert with `ClaimAboveSplit()`
                        mstore(0x00, 0xb34b5c22)
                        revert(0x1C, 0x04)
                    }
                }
                // Grab the global trace ancestor.
                ancestor_ = traceAncestor(_position);
                // If the ancestor is above or at the upper bound, shift it to be below the upper bound.
                // This should be a special case that only covers positions that commit to the final leaf
                // in a sub-tree.
                if (ancestor_.depth() <= _upperBoundExclusive) {
                    ancestor_ = ancestor_.rightIndex(_upperBoundExclusive + 1);
                }
            }
            /// @notice Get the move position of `_position`, which is the left child of:
            ///         1. `_position` if `_isAttack` is true.
            ///         2. `_position | 1` if `_isAttack` is false.
            /// @param _position The position to get the relative attack/defense position of.
            /// @param _isAttack Whether or not the move is an attack move.
            /// @return move_ The move position relative to `position`.
            function move(Position _position, bool _isAttack) internal pure returns (Position move_) {
                assembly {
                    move_ := shl(1, or(iszero(_isAttack), _position))
                }
            }
            /// @notice Get the value of a `Position` type in the form of the underlying uint128.
            /// @param _position The position to get the value of.
            /// @return raw_ The value of the `position` as a uint128 type.
            function raw(Position _position) internal pure returns (uint128 raw_) {
                assembly {
                    raw_ := _position
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        interface IInitializable {
            function initialize() external payable;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.15;
        // Libraries
        import {
            Position,
            Hash,
            GameType,
            VMStatus,
            Timestamp,
            Duration,
            Clock,
            GameId,
            Claim,
            LibGameId,
            LibClock
        } from "src/dispute/lib/LibUDT.sol";
        /// @notice The current status of the dispute game.
        enum GameStatus {
            // The game is currently in progress, and has not been resolved.
            IN_PROGRESS,
            // The game has concluded, and the `rootClaim` was challenged successfully.
            CHALLENGER_WINS,
            // The game has concluded, and the `rootClaim` could not be contested.
            DEFENDER_WINS
        }
        /// @notice The game's bond distribution type. Games are expected to start in the `UNDECIDED`
        ///         state, and then choose either `NORMAL` or `REFUND`.
        enum BondDistributionMode {
            // Bond distribution strategy has not been chosen.
            UNDECIDED,
            // Bonds should be distributed as normal.
            NORMAL,
            // Bonds should be refunded to claimants.
            REFUND
        }
        /// @notice Represents an L2 output root and the L2 block number at which it was generated.
        /// @custom:field root The output root.
        /// @custom:field l2BlockNumber The L2 block number at which the output root was generated.
        struct OutputRoot {
            Hash root;
            uint256 l2BlockNumber;
        }
        /// @title GameTypes
        /// @notice A library that defines the IDs of games that can be played.
        library GameTypes {
            /// @dev A dispute game type the uses the cannon vm.
            GameType internal constant CANNON = GameType.wrap(0);
            /// @dev A permissioned dispute game type that uses the cannon vm.
            GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1);
            /// @notice A dispute game type that uses the asterisc vm.
            GameType internal constant ASTERISC = GameType.wrap(2);
            /// @notice A dispute game type that uses the asterisc vm with Kona.
            GameType internal constant ASTERISC_KONA = GameType.wrap(3);
            /// @notice A dispute game type that uses OP Succinct
            GameType internal constant OP_SUCCINCT = GameType.wrap(6);
            /// @notice A dispute game type with short game duration for testing withdrawals.
            ///         Not intended for production use.
            GameType internal constant FAST = GameType.wrap(254);
            /// @notice A dispute game type that uses an alphabet vm.
            ///         Not intended for production use.
            GameType internal constant ALPHABET = GameType.wrap(255);
            /// @notice A dispute game type that uses RISC Zero's Kailua
            GameType internal constant KAILUA = GameType.wrap(1337);
        }
        /// @title VMStatuses
        /// @notice Named type aliases for the various valid VM status bytes.
        library VMStatuses {
            /// @notice The VM has executed successfully and the outcome is valid.
            VMStatus internal constant VALID = VMStatus.wrap(0);
            /// @notice The VM has executed successfully and the outcome is invalid.
            VMStatus internal constant INVALID = VMStatus.wrap(1);
            /// @notice The VM has paniced.
            VMStatus internal constant PANIC = VMStatus.wrap(2);
            /// @notice The VM execution is still in progress.
            VMStatus internal constant UNFINISHED = VMStatus.wrap(3);
        }
        /// @title LocalPreimageKey
        /// @notice Named type aliases for local `PreimageOracle` key identifiers.
        library LocalPreimageKey {
            /// @notice The identifier for the L1 head hash.
            uint256 internal constant L1_HEAD_HASH = 0x01;
            /// @notice The identifier for the starting output root.
            uint256 internal constant STARTING_OUTPUT_ROOT = 0x02;
            /// @notice The identifier for the disputed output root.
            uint256 internal constant DISPUTED_OUTPUT_ROOT = 0x03;
            /// @notice The identifier for the disputed L2 block number.
            uint256 internal constant DISPUTED_L2_BLOCK_NUMBER = 0x04;
            /// @notice The identifier for the chain ID.
            uint256 internal constant CHAIN_ID = 0x05;
        }