Transaction Hash:
Block:
22846181 at Jul-04-2025 01:34:11 PM +UTC
Transaction Fee:
0.000213506904915136 ETH
$0.54
Gas Used:
77,008 Gas / 2.772528892 Gwei
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4337005d...1eE5D98b6 | (Pimlico: ERC-4337 Bundler 5) |
0.202944029512742746 Eth
Nonce: 26206
|
0.20273052260782761 Eth
Nonce: 26207
| 0.000213506904915136 | |
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 15.792765824374978651 Eth | 15.792799573241716155 Eth | 0.000033748866737504 | |
0xEB7096be...Cf0129F7B |
Execution Trace
EntryPoint.handleOps( ops=, beneficiary=0x4337005db25DbAD41Da5692ba1188751eE5D98b6 )
0xeb7096be7b1ac4039ba14884eee93accf0129f7b.19822f7c( )
-
Null: 0x000...001.5aad6210( )
- ETH 0.000893640270869863
EntryPoint.CALL( )
-
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "./MessageHashUtils.sol"; import {ShortStrings, ShortString} from "../ShortStrings.sol"; import {IERC5267} from "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * @custom:oz-upgrades-unsafe-allow state-variable-immutable */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: By default this function reads _name which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } /** * @dev The version parameter for the EIP712 domain. * * NOTE: By default this function reads _version which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\\x19Ethereum Signed Message:\ 32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { mstore(0x00, "\\x19Ethereum Signed Message:\ 32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\\x19Ethereum Signed Message:\ " + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\\x19Ethereum Signed Message:\ ", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuardTransient.sol) pragma solidity ^0.8.24; import {TransientSlot} from "./TransientSlot.sol"; /** * @dev Variant of {ReentrancyGuard} that uses transient storage. * * NOTE: This variant only works on networks where EIP-1153 is available. * * _Available since v5.1._ */ abstract contract ReentrancyGuardTransient { using TransientSlot for *; // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant REENTRANCY_GUARD_STORAGE = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_reentrancyGuardEntered()) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail REENTRANCY_GUARD_STORAGE.asBoolean().tstore(true); } function _nonReentrantAfter() private { REENTRANCY_GUARD_STORAGE.asBoolean().tstore(false); } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return REENTRANCY_GUARD_STORAGE.asBoolean().tload(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol) pragma solidity ^0.8.20; import {StorageSlot} from "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); assembly ("memory-safe") { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using * {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct Int256Slot { int256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Int256Slot` with member `value` located at `slot`. */ function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } /** * @dev Returns a `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/TransientSlot.sol) // This file was procedurally generated from scripts/generate/templates/TransientSlot.js. pragma solidity ^0.8.24; /** * @dev Library for reading and writing value-types to specific transient storage slots. * * Transient slots are often used to store temporary values that are removed after the current transaction. * This library helps with reading and writing to such slots without the need for inline assembly. * * * Example reading and writing values using transient storage: * ```solidity * contract Lock { * using TransientSlot for *; * * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _LOCK_SLOT = 0xf4678858b2b588224636b8522b729e7722d32fc491da849ed75b3fdf3c84f542; * * modifier locked() { * require(!_LOCK_SLOT.asBoolean().tload()); * * _LOCK_SLOT.asBoolean().tstore(true); * _; * _LOCK_SLOT.asBoolean().tstore(false); * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library TransientSlot { /** * @dev UDVT that represent a slot holding a address. */ type AddressSlot is bytes32; /** * @dev Cast an arbitrary slot to a AddressSlot. */ function asAddress(bytes32 slot) internal pure returns (AddressSlot) { return AddressSlot.wrap(slot); } /** * @dev UDVT that represent a slot holding a bool. */ type BooleanSlot is bytes32; /** * @dev Cast an arbitrary slot to a BooleanSlot. */ function asBoolean(bytes32 slot) internal pure returns (BooleanSlot) { return BooleanSlot.wrap(slot); } /** * @dev UDVT that represent a slot holding a bytes32. */ type Bytes32Slot is bytes32; /** * @dev Cast an arbitrary slot to a Bytes32Slot. */ function asBytes32(bytes32 slot) internal pure returns (Bytes32Slot) { return Bytes32Slot.wrap(slot); } /** * @dev UDVT that represent a slot holding a uint256. */ type Uint256Slot is bytes32; /** * @dev Cast an arbitrary slot to a Uint256Slot. */ function asUint256(bytes32 slot) internal pure returns (Uint256Slot) { return Uint256Slot.wrap(slot); } /** * @dev UDVT that represent a slot holding a int256. */ type Int256Slot is bytes32; /** * @dev Cast an arbitrary slot to a Int256Slot. */ function asInt256(bytes32 slot) internal pure returns (Int256Slot) { return Int256Slot.wrap(slot); } /** * @dev Load the value held at location `slot` in transient storage. */ function tload(AddressSlot slot) internal view returns (address value) { assembly ("memory-safe") { value := tload(slot) } } /** * @dev Store `value` at location `slot` in transient storage. */ function tstore(AddressSlot slot, address value) internal { assembly ("memory-safe") { tstore(slot, value) } } /** * @dev Load the value held at location `slot` in transient storage. */ function tload(BooleanSlot slot) internal view returns (bool value) { assembly ("memory-safe") { value := tload(slot) } } /** * @dev Store `value` at location `slot` in transient storage. */ function tstore(BooleanSlot slot, bool value) internal { assembly ("memory-safe") { tstore(slot, value) } } /** * @dev Load the value held at location `slot` in transient storage. */ function tload(Bytes32Slot slot) internal view returns (bytes32 value) { assembly ("memory-safe") { value := tload(slot) } } /** * @dev Store `value` at location `slot` in transient storage. */ function tstore(Bytes32Slot slot, bytes32 value) internal { assembly ("memory-safe") { tstore(slot, value) } } /** * @dev Load the value held at location `slot` in transient storage. */ function tload(Uint256Slot slot) internal view returns (uint256 value) { assembly ("memory-safe") { value := tload(slot) } } /** * @dev Store `value` at location `slot` in transient storage. */ function tstore(Uint256Slot slot, uint256 value) internal { assembly ("memory-safe") { tstore(slot, value) } } /** * @dev Load the value held at location `slot` in transient storage. */ function tload(Int256Slot slot) internal view returns (int256 value) { assembly ("memory-safe") { value := tload(slot) } } /** * @dev Store `value` at location `slot` in transient storage. */ function tstore(Int256Slot slot, int256 value) internal { assembly ("memory-safe") { tstore(slot, value) } } } pragma solidity ^0.8.28; // SPDX-License-Identifier: MIT // solhint-disable no-inline-assembly import "../interfaces/PackedUserOperation.sol"; import "../core/UserOperationLib.sol"; library Eip7702Support { // EIP-7702 code prefix before delegate address. bytes3 internal constant EIP7702_PREFIX = 0xef0100; // EIP-7702 initCode marker, to specify this account is EIP-7702. bytes2 internal constant INITCODE_EIP7702_MARKER = 0x7702; using UserOperationLib for PackedUserOperation; /** * Get the alternative 'InitCodeHash' value for the UserOp hash calculation when using EIP-7702. * * @param userOp - the UserOperation to for the 'InitCodeHash' calculation. * @return the 'InitCodeHash' value. */ function _getEip7702InitCodeHashOverride(PackedUserOperation calldata userOp) internal view returns (bytes32) { bytes calldata initCode = userOp.initCode; if (!_isEip7702InitCode(initCode)) { return 0; } address delegate = _getEip7702Delegate(userOp.sender); if (initCode.length <= 20) return keccak256(abi.encodePacked(delegate)); else return keccak256(abi.encodePacked(delegate, initCode[20 :])); } /** * Check if this 'initCode' is actually an EIP-7702 authorization. * This is indicated by 'initCode' that starts with INITCODE_EIP7702_MARKER. * * @param initCode - the 'initCode' to check. * @return true if the 'initCode' is EIP-7702 authorization, false otherwise. */ function _isEip7702InitCode(bytes calldata initCode) internal pure returns (bool) { if (initCode.length < 2) { return false; } bytes20 initCodeStart; // non-empty calldata bytes are always zero-padded to 32-bytes, so can be safely casted to "bytes20" assembly ("memory-safe") { initCodeStart := calldataload(initCode.offset) } // make sure first 20 bytes of initCode are "0x7702" (padded with zeros) return initCodeStart == bytes20(INITCODE_EIP7702_MARKER); } /** * Get the EIP-7702 delegate from contract code. * Must only be used if _isEip7702InitCode(initCode) is true. * * @param sender - the EIP-7702 'sender' account to get the delegated contract code address. * @return the address of the EIP-7702 authorized contract. */ function _getEip7702Delegate(address sender) internal view returns (address) { bytes32 senderCode; assembly ("memory-safe") { extcodecopy(sender, 0, 0, 23) senderCode := mload(0) } // To be a valid EIP-7702 delegate, the first 3 bytes are EIP7702_PREFIX // followed by the delegate address if (bytes3(senderCode) != EIP7702_PREFIX) { // instead of just "not an EIP-7702 delegate", if some info. require(sender.code.length > 0, "sender has no code"); revert("not an EIP-7702 delegate"); } return address(bytes20(senderCode << 24)); } } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ import "../interfaces/IAccount.sol"; import "../interfaces/IAccountExecute.sol"; import "../interfaces/IEntryPoint.sol"; import "../interfaces/IPaymaster.sol"; import "./UserOperationLib.sol"; import "./StakeManager.sol"; import "./NonceManager.sol"; import "./Helpers.sol"; import "./SenderCreator.sol"; import "./Eip7702Support.sol"; import "../utils/Exec.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuardTransient.sol"; import "@openzeppelin/contracts/utils/introspection/ERC165.sol"; import "@openzeppelin/contracts/utils/cryptography/EIP712.sol"; /** * Account-Abstraction (EIP-4337) singleton EntryPoint v0.8 implementation. * Only one instance required on each chain. * @custom:security-contact https://bounty.ethereum.org */ contract EntryPoint is IEntryPoint, StakeManager, NonceManager, ReentrancyGuardTransient, ERC165, EIP712 { using UserOperationLib for PackedUserOperation; /** * internal-use constants */ // allow some slack for future gas price changes. uint256 private constant INNER_GAS_OVERHEAD = 10000; // Marker for inner call revert on out of gas bytes32 private constant INNER_OUT_OF_GAS = hex"deaddead"; bytes32 private constant INNER_REVERT_LOW_PREFUND = hex"deadaa51"; uint256 private constant REVERT_REASON_MAX_LEN = 2048; // Penalty charged for either unused execution gas or postOp gas uint256 private constant UNUSED_GAS_PENALTY_PERCENT = 10; // Threshold below which no penalty would be charged uint256 private constant PENALTY_GAS_THRESHOLD = 40000; SenderCreator private immutable _senderCreator = new SenderCreator(); string constant internal DOMAIN_NAME = "ERC4337"; string constant internal DOMAIN_VERSION = "1"; constructor() EIP712(DOMAIN_NAME, DOMAIN_VERSION) { } /// @inheritdoc IEntryPoint function handleOps( PackedUserOperation[] calldata ops, address payable beneficiary ) external nonReentrant { uint256 opslen = ops.length; UserOpInfo[] memory opInfos = new UserOpInfo[](opslen); unchecked { _iterateValidationPhase(ops, opInfos, address(0), 0); uint256 collected = 0; emit BeforeExecution(); for (uint256 i = 0; i < opslen; i++) { collected += _executeUserOp(i, ops[i], opInfos[i]); } _compensate(beneficiary, collected); } } /// @inheritdoc IEntryPoint function handleAggregatedOps( UserOpsPerAggregator[] calldata opsPerAggregator, address payable beneficiary ) external nonReentrant { unchecked { uint256 opasLen = opsPerAggregator.length; uint256 totalOps = 0; for (uint256 i = 0; i < opasLen; i++) { UserOpsPerAggregator calldata opa = opsPerAggregator[i]; PackedUserOperation[] calldata ops = opa.userOps; IAggregator aggregator = opa.aggregator; // address(1) is special marker of "signature error" require( address(aggregator) != address(1), SignatureValidationFailed(address(aggregator)) ); if (address(aggregator) != address(0)) { // solhint-disable-next-line no-empty-blocks try aggregator.validateSignatures(ops, opa.signature) {} catch { revert SignatureValidationFailed(address(aggregator)); } } totalOps += ops.length; } UserOpInfo[] memory opInfos = new UserOpInfo[](totalOps); uint256 opIndex = 0; for (uint256 a = 0; a < opasLen; a++) { UserOpsPerAggregator calldata opa = opsPerAggregator[a]; PackedUserOperation[] calldata ops = opa.userOps; IAggregator aggregator = opa.aggregator; opIndex += _iterateValidationPhase(ops, opInfos, address(aggregator), opIndex); } emit BeforeExecution(); uint256 collected = 0; opIndex = 0; for (uint256 a = 0; a < opasLen; a++) { UserOpsPerAggregator calldata opa = opsPerAggregator[a]; emit SignatureAggregatorChanged(address(opa.aggregator)); PackedUserOperation[] calldata ops = opa.userOps; uint256 opslen = ops.length; for (uint256 i = 0; i < opslen; i++) { collected += _executeUserOp(opIndex, ops[i], opInfos[opIndex]); opIndex++; } } _compensate(beneficiary, collected); } } /// @inheritdoc IEntryPoint function getUserOpHash( PackedUserOperation calldata userOp ) public view returns (bytes32) { bytes32 overrideInitCodeHash = Eip7702Support._getEip7702InitCodeHashOverride(userOp); return MessageHashUtils.toTypedDataHash(getDomainSeparatorV4(), userOp.hash(overrideInitCodeHash)); } /// @inheritdoc IEntryPoint function getSenderAddress(bytes calldata initCode) external { address sender = senderCreator().createSender(initCode); revert SenderAddressResult(sender); } /// @inheritdoc IEntryPoint function senderCreator() public view virtual returns (ISenderCreator) { return _senderCreator; } /// @inheritdoc IEntryPoint function delegateAndRevert(address target, bytes calldata data) external { (bool success, bytes memory ret) = target.delegatecall(data); revert DelegateAndRevert(success, ret); } function getPackedUserOpTypeHash() external pure returns (bytes32) { return UserOperationLib.PACKED_USEROP_TYPEHASH; } function getDomainSeparatorV4() public virtual view returns (bytes32) { return _domainSeparatorV4(); } /// @inheritdoc IERC165 function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { // note: solidity "type(IEntryPoint).interfaceId" is without inherited methods but we want to check everything return interfaceId == (type(IEntryPoint).interfaceId ^ type(IStakeManager).interfaceId ^ type(INonceManager).interfaceId) || interfaceId == type(IEntryPoint).interfaceId || interfaceId == type(IStakeManager).interfaceId || interfaceId == type(INonceManager).interfaceId || super.supportsInterface(interfaceId); } /** * Compensate the caller's beneficiary address with the collected fees of all UserOperations. * @param beneficiary - The address to receive the fees. * @param amount - Amount to transfer. */ function _compensate(address payable beneficiary, uint256 amount) internal virtual { require(beneficiary != address(0), "AA90 invalid beneficiary"); (bool success,) = beneficiary.call{value: amount}(""); require(success, "AA91 failed send to beneficiary"); } /** * Execute a user operation. * @param opIndex - Index into the opInfo array. * @param userOp - The userOp to execute. * @param opInfo - The opInfo filled by validatePrepayment for this userOp. * @return collected - The total amount this userOp paid. */ function _executeUserOp( uint256 opIndex, PackedUserOperation calldata userOp, UserOpInfo memory opInfo ) internal virtual returns (uint256 collected) { uint256 preGas = gasleft(); bytes memory context = _getMemoryBytesFromOffset(opInfo.contextOffset); bool success; { uint256 saveFreePtr = _getFreePtr(); bytes calldata callData = userOp.callData; bytes memory innerCall; bytes4 methodSig; assembly ("memory-safe") { let len := callData.length if gt(len, 3) { methodSig := calldataload(callData.offset) } } if (methodSig == IAccountExecute.executeUserOp.selector) { bytes memory executeUserOp = abi.encodeCall(IAccountExecute.executeUserOp, (userOp, opInfo.userOpHash)); innerCall = abi.encodeCall(this.innerHandleOp, (executeUserOp, opInfo, context)); } else { innerCall = abi.encodeCall(this.innerHandleOp, (callData, opInfo, context)); } assembly ("memory-safe") { success := call(gas(), address(), 0, add(innerCall, 0x20), mload(innerCall), 0, 32) collected := mload(0) } _restoreFreePtr(saveFreePtr); } if (!success) { bytes32 innerRevertCode; assembly ("memory-safe") { let len := returndatasize() if eq(32, len) { returndatacopy(0, 0, 32) innerRevertCode := mload(0) } } if (innerRevertCode == INNER_OUT_OF_GAS) { // handleOps was called with gas limit too low. abort entire bundle. // can only be caused by bundler (leaving not enough gas for inner call) revert FailedOp(opIndex, "AA95 out of gas"); } else if (innerRevertCode == INNER_REVERT_LOW_PREFUND) { // innerCall reverted on prefund too low. treat entire prefund as "gas cost" uint256 actualGas = preGas - gasleft() + opInfo.preOpGas; uint256 actualGasCost = opInfo.prefund; _emitPrefundTooLow(opInfo); _emitUserOperationEvent(opInfo, false, actualGasCost, actualGas); collected = actualGasCost; } else { uint256 freePtr = _getFreePtr(); emit PostOpRevertReason( opInfo.userOpHash, opInfo.mUserOp.sender, opInfo.mUserOp.nonce, Exec.getReturnData(REVERT_REASON_MAX_LEN) ); _restoreFreePtr(freePtr); uint256 actualGas = preGas - gasleft() + opInfo.preOpGas; collected = _postExecution( IPaymaster.PostOpMode.postOpReverted, opInfo, context, actualGas ); } } } /** * Emit the UserOperationEvent for the given UserOperation. * * @param opInfo - The details of the current UserOperation. * @param success - Whether the execution of the UserOperation has succeeded or not. * @param actualGasCost - The actual cost of the consumed gas charged from the sender or the paymaster. * @param actualGas - The actual amount of gas used. */ function _emitUserOperationEvent(UserOpInfo memory opInfo, bool success, uint256 actualGasCost, uint256 actualGas) internal virtual { emit UserOperationEvent( opInfo.userOpHash, opInfo.mUserOp.sender, opInfo.mUserOp.paymaster, opInfo.mUserOp.nonce, success, actualGasCost, actualGas ); } /** * Emit the UserOperationPrefundTooLow event for the given UserOperation. * * @param opInfo - The details of the current UserOperation. */ function _emitPrefundTooLow(UserOpInfo memory opInfo) internal virtual { emit UserOperationPrefundTooLow( opInfo.userOpHash, opInfo.mUserOp.sender, opInfo.mUserOp.nonce ); } /** * Iterate over calldata PackedUserOperation array and perform account and paymaster validation. * @notice UserOpInfo is a global array of all UserOps while PackedUserOperation is grouped per aggregator. * * @param ops - an array of UserOps to be validated * @param opInfos - an array of UserOp metadata being read and filled in during this function's execution * @param expectedAggregator - an address of the aggregator specified for a given UserOp if any, or address(0) * @param opIndexOffset - an offset for the index between 'ops' and 'opInfos' arrays, see the notice. * @return opsLen - processed UserOps (length of "ops" array) */ function _iterateValidationPhase( PackedUserOperation[] calldata ops, UserOpInfo[] memory opInfos, address expectedAggregator, uint256 opIndexOffset ) internal returns (uint256 opsLen){ unchecked { opsLen = ops.length; for (uint256 i = 0; i < opsLen; i++) { UserOpInfo memory opInfo = opInfos[opIndexOffset + i]; ( uint256 validationData, uint256 pmValidationData ) = _validatePrepayment(opIndexOffset + i, ops[i], opInfo); _validateAccountAndPaymasterValidationData( opIndexOffset + i, validationData, pmValidationData, expectedAggregator ); } } } /** * A memory copy of UserOp static fields only. * Excluding: callData, initCode and signature. Replacing paymasterAndData with paymaster. */ struct MemoryUserOp { address sender; uint256 nonce; uint256 verificationGasLimit; uint256 callGasLimit; uint256 paymasterVerificationGasLimit; uint256 paymasterPostOpGasLimit; uint256 preVerificationGas; address paymaster; uint256 maxFeePerGas; uint256 maxPriorityFeePerGas; } struct UserOpInfo { MemoryUserOp mUserOp; bytes32 userOpHash; uint256 prefund; uint256 contextOffset; uint256 preOpGas; } /** * Inner function to handle a UserOperation. * Must be declared "external" to open a call context, but it can only be called by handleOps. * @param callData - The callData to execute. * @param opInfo - The UserOpInfo struct. * @param context - The context bytes. * @return actualGasCost - the actual cost in eth this UserOperation paid for gas */ function innerHandleOp( bytes memory callData, UserOpInfo memory opInfo, bytes calldata context ) external returns (uint256 actualGasCost) { uint256 preGas = gasleft(); require(msg.sender == address(this), "AA92 internal call only"); MemoryUserOp memory mUserOp = opInfo.mUserOp; uint256 callGasLimit = mUserOp.callGasLimit; unchecked { // handleOps was called with gas limit too low. abort entire bundle. if ( gasleft() * 63 / 64 < callGasLimit + mUserOp.paymasterPostOpGasLimit + INNER_GAS_OVERHEAD ) { assembly ("memory-safe") { mstore(0, INNER_OUT_OF_GAS) revert(0, 32) } } } IPaymaster.PostOpMode mode = IPaymaster.PostOpMode.opSucceeded; if (callData.length > 0) { bool success = Exec.call(mUserOp.sender, 0, callData, callGasLimit); if (!success) { uint256 freePtr = _getFreePtr(); bytes memory result = Exec.getReturnData(REVERT_REASON_MAX_LEN); if (result.length > 0) { emit UserOperationRevertReason( opInfo.userOpHash, mUserOp.sender, mUserOp.nonce, result ); } _restoreFreePtr(freePtr); mode = IPaymaster.PostOpMode.opReverted; } } unchecked { uint256 actualGas = preGas - gasleft() + opInfo.preOpGas; return _postExecution(mode, opInfo, context, actualGas); } } /** * Copy general fields from userOp into the memory opInfo structure. * @param userOp - The user operation. * @param mUserOp - The memory user operation. */ function _copyUserOpToMemory( PackedUserOperation calldata userOp, MemoryUserOp memory mUserOp ) internal virtual pure { mUserOp.sender = userOp.sender; mUserOp.nonce = userOp.nonce; (mUserOp.verificationGasLimit, mUserOp.callGasLimit) = UserOperationLib.unpackUints(userOp.accountGasLimits); mUserOp.preVerificationGas = userOp.preVerificationGas; (mUserOp.maxPriorityFeePerGas, mUserOp.maxFeePerGas) = UserOperationLib.unpackUints(userOp.gasFees); bytes calldata paymasterAndData = userOp.paymasterAndData; if (paymasterAndData.length > 0) { require( paymasterAndData.length >= UserOperationLib.PAYMASTER_DATA_OFFSET, "AA93 invalid paymasterAndData" ); address paymaster; (paymaster, mUserOp.paymasterVerificationGasLimit, mUserOp.paymasterPostOpGasLimit) = UserOperationLib.unpackPaymasterStaticFields(paymasterAndData); require(paymaster != address(0), "AA98 invalid paymaster"); mUserOp.paymaster = paymaster; } } /** * Get the required prefunded gas fee amount for an operation. * * @param mUserOp - The user operation in memory. * @return requiredPrefund - the required amount. */ function _getRequiredPrefund( MemoryUserOp memory mUserOp ) internal virtual pure returns (uint256 requiredPrefund) { unchecked { uint256 requiredGas = mUserOp.verificationGasLimit + mUserOp.callGasLimit + mUserOp.paymasterVerificationGasLimit + mUserOp.paymasterPostOpGasLimit + mUserOp.preVerificationGas; requiredPrefund = requiredGas * mUserOp.maxFeePerGas; } } /** * Create sender smart contract account if init code is provided. * @param opIndex - The operation index. * @param opInfo - The operation info. * @param initCode - The init code for the smart contract account. */ function _createSenderIfNeeded( uint256 opIndex, UserOpInfo memory opInfo, bytes calldata initCode ) internal virtual { if (initCode.length != 0) { address sender = opInfo.mUserOp.sender; if (Eip7702Support._isEip7702InitCode(initCode)) { if (initCode.length > 20) { // Already validated it is an EIP-7702 delegate (and hence, already has code) - see getUserOpHash() // Note: Can be called multiple times as long as an appropriate initCode is supplied senderCreator().initEip7702Sender{ gas: opInfo.mUserOp.verificationGasLimit }(sender, initCode[20 :]); } return; } if (sender.code.length != 0) revert FailedOp(opIndex, "AA10 sender already constructed"); if (initCode.length < 20) { revert FailedOp(opIndex, "AA99 initCode too small"); } address sender1 = senderCreator().createSender{ gas: opInfo.mUserOp.verificationGasLimit }(initCode); if (sender1 == address(0)) revert FailedOp(opIndex, "AA13 initCode failed or OOG"); if (sender1 != sender) revert FailedOp(opIndex, "AA14 initCode must return sender"); if (sender1.code.length == 0) revert FailedOp(opIndex, "AA15 initCode must create sender"); address factory = address(bytes20(initCode[0 : 20])); emit AccountDeployed( opInfo.userOpHash, sender, factory, opInfo.mUserOp.paymaster ); } } /** * Call account.validateUserOp. * Revert (with FailedOp) in case validateUserOp reverts, or account didn't send required prefund. * Decrement account's deposit if needed. * @param opIndex - The operation index. * @param op - The user operation. * @param opInfo - The operation info. * @param requiredPrefund - The required prefund amount. * @return validationData - The account's validationData. */ function _validateAccountPrepayment( uint256 opIndex, PackedUserOperation calldata op, UserOpInfo memory opInfo, uint256 requiredPrefund ) internal virtual returns ( uint256 validationData ) { unchecked { MemoryUserOp memory mUserOp = opInfo.mUserOp; address sender = mUserOp.sender; _createSenderIfNeeded(opIndex, opInfo, op.initCode); address paymaster = mUserOp.paymaster; uint256 missingAccountFunds = 0; if (paymaster == address(0)) { uint256 bal = balanceOf(sender); missingAccountFunds = bal > requiredPrefund ? 0 : requiredPrefund - bal; } validationData = _callValidateUserOp(opIndex, op, opInfo, missingAccountFunds); if (paymaster == address(0)) { if (!_tryDecrementDeposit(sender, requiredPrefund)) { revert FailedOp(opIndex, "AA21 didn't pay prefund"); } } } } /** * Make a call to the sender.validateUserOp() function. * Handle wrong output size by reverting with a FailedOp error. * * @param opIndex - index of the UserOperation in the bundle. * @param op - the packed UserOperation object. * @param opInfo - the in-memory UserOperation information. * @param missingAccountFunds - the amount of deposit the account has to make to cover the UserOperation gas. */ function _callValidateUserOp( uint256 opIndex, PackedUserOperation calldata op, UserOpInfo memory opInfo, uint256 missingAccountFunds ) internal virtual returns (uint256 validationData) { uint256 gasLimit = opInfo.mUserOp.verificationGasLimit; address sender = opInfo.mUserOp.sender; bool success; { uint256 saveFreePtr = _getFreePtr(); bytes memory callData = abi.encodeCall(IAccount.validateUserOp, (op, opInfo.userOpHash, missingAccountFunds)); assembly ("memory-safe"){ success := call(gasLimit, sender, 0, add(callData, 0x20), mload(callData), 0, 32) validationData := mload(0) // any return data size other than 32 is considered failure if iszero(eq(returndatasize(), 32)) { success := 0 } } _restoreFreePtr(saveFreePtr); } if (!success) { if (sender.code.length == 0) { revert FailedOp(opIndex, "AA20 account not deployed"); } else { revert FailedOpWithRevert(opIndex, "AA23 reverted", Exec.getReturnData(REVERT_REASON_MAX_LEN)); } } } /** * In case the request has a paymaster: * - Validate paymaster has enough deposit. * - Call paymaster.validatePaymasterUserOp. * - Revert with proper FailedOp in case paymaster reverts. * - Decrement paymaster's deposit. * @param opIndex - The operation index. * @param op - The user operation. * @param opInfo - The operation info. * @return context - The Paymaster-provided value to be passed to the 'postOp' function later * @return validationData - The Paymaster's validationData. */ function _validatePaymasterPrepayment( uint256 opIndex, PackedUserOperation calldata op, UserOpInfo memory opInfo ) internal virtual returns (bytes memory context, uint256 validationData) { unchecked { uint256 preGas = gasleft(); MemoryUserOp memory mUserOp = opInfo.mUserOp; address paymaster = mUserOp.paymaster; uint256 requiredPreFund = opInfo.prefund; if (!_tryDecrementDeposit(paymaster, requiredPreFund)) { revert FailedOp(opIndex, "AA31 paymaster deposit too low"); } uint256 pmVerificationGasLimit = mUserOp.paymasterVerificationGasLimit; (context, validationData) = _callValidatePaymasterUserOp(opIndex, op, opInfo); if (preGas - gasleft() > pmVerificationGasLimit) { revert FailedOp(opIndex, "AA36 over paymasterVerificationGasLimit"); } } } function _callValidatePaymasterUserOp( uint256 opIndex, PackedUserOperation calldata op, UserOpInfo memory opInfo ) internal returns (bytes memory context, uint256 validationData) { uint256 freePtr = _getFreePtr(); bytes memory validatePaymasterCall = abi.encodeCall( IPaymaster.validatePaymasterUserOp, (op, opInfo.userOpHash, opInfo.prefund) ); address paymaster = opInfo.mUserOp.paymaster; uint256 paymasterVerificationGasLimit = opInfo.mUserOp.paymasterVerificationGasLimit; bool success; uint256 contextLength; uint256 contextOffset; uint256 maxContextLength; uint256 len; assembly ("memory-safe") { success := call(paymasterVerificationGasLimit, paymaster, 0, add(validatePaymasterCall, 0x20), mload(validatePaymasterCall), 0, 0) len := returndatasize() // return data from validatePaymasterUserOp is (bytes context, validationData) // encoded as: // 32 bytes offset of context (always 64) // 32 bytes of validationData // 32 bytes of context length // context data (rounded up, to 32 bytes boundary) // so entire buffer size is (at least) 96+content.length. // // we use freePtr, fetched before calling encodeCall, as return data pointer. // this way we reuse that memory without unnecessary memory expansion returndatacopy(freePtr, 0, len) validationData := mload(add(freePtr, 32)) contextOffset := mload(freePtr) maxContextLength := sub(len, 96) context := add(freePtr, 64) contextLength := mload(context) } unchecked { if (!success || contextOffset != 64 || contextLength + 31 < maxContextLength) { revert FailedOpWithRevert(opIndex, "AA33 reverted", Exec.getReturnData(REVERT_REASON_MAX_LEN)); } } finalizeAllocation(freePtr, len); } /** * Revert if either account validationData or paymaster validationData is expired. * @param opIndex - The operation index. * @param validationData - The account validationData. * @param paymasterValidationData - The paymaster validationData. * @param expectedAggregator - The expected aggregator. */ function _validateAccountAndPaymasterValidationData( uint256 opIndex, uint256 validationData, uint256 paymasterValidationData, address expectedAggregator ) internal virtual view { (address aggregator, bool outOfTimeRange) = _getValidationData( validationData ); if (expectedAggregator != aggregator) { revert FailedOp(opIndex, "AA24 signature error"); } if (outOfTimeRange) { revert FailedOp(opIndex, "AA22 expired or not due"); } // pmAggregator is not a real signature aggregator: we don't have logic to handle it as address. // Non-zero address means that the paymaster fails due to some signature check (which is ok only during estimation). address pmAggregator; (pmAggregator, outOfTimeRange) = _getValidationData( paymasterValidationData ); if (pmAggregator != address(0)) { revert FailedOp(opIndex, "AA34 signature error"); } if (outOfTimeRange) { revert FailedOp(opIndex, "AA32 paymaster expired or not due"); } } /** * Parse validationData into its components. * @param validationData - The packed validation data (sigFailed, validAfter, validUntil). * @return aggregator the aggregator of the validationData * @return outOfTimeRange true if current time is outside the time range of this validationData. */ function _getValidationData( uint256 validationData ) internal virtual view returns (address aggregator, bool outOfTimeRange) { if (validationData == 0) { return (address(0), false); } ValidationData memory data = _parseValidationData(validationData); // solhint-disable-next-line not-rely-on-time outOfTimeRange = block.timestamp > data.validUntil || block.timestamp <= data.validAfter; aggregator = data.aggregator; } /** * Validate account and paymaster (if defined) and * also make sure total validation doesn't exceed verificationGasLimit. * This method is called off-chain (simulateValidation()) and on-chain (from handleOps) * @param opIndex - The index of this userOp into the "opInfos" array. * @param userOp - The packed calldata UserOperation structure to validate. * @param outOpInfo - The empty unpacked in-memory UserOperation structure that will be filled in here. * * @return validationData - The account's validationData. * @return paymasterValidationData - The paymaster's validationData. */ function _validatePrepayment( uint256 opIndex, PackedUserOperation calldata userOp, UserOpInfo memory outOpInfo ) internal virtual returns (uint256 validationData, uint256 paymasterValidationData) { uint256 preGas = gasleft(); MemoryUserOp memory mUserOp = outOpInfo.mUserOp; _copyUserOpToMemory(userOp, mUserOp); // getUserOpHash uses temporary allocations, no required after it returns uint256 freePtr = _getFreePtr(); outOpInfo.userOpHash = getUserOpHash(userOp); _restoreFreePtr(freePtr); // Validate all numeric values in userOp are well below 128 bit, so they can safely be added // and multiplied without causing overflow. uint256 verificationGasLimit = mUserOp.verificationGasLimit; uint256 maxGasValues = mUserOp.preVerificationGas | verificationGasLimit | mUserOp.callGasLimit | mUserOp.paymasterVerificationGasLimit | mUserOp.paymasterPostOpGasLimit | mUserOp.maxFeePerGas | mUserOp.maxPriorityFeePerGas; require(maxGasValues <= type(uint120).max, FailedOp(opIndex, "AA94 gas values overflow")); uint256 requiredPreFund = _getRequiredPrefund(mUserOp); outOpInfo.prefund = requiredPreFund; validationData = _validateAccountPrepayment( opIndex, userOp, outOpInfo, requiredPreFund ); require( _validateAndUpdateNonce(mUserOp.sender, mUserOp.nonce), FailedOp(opIndex, "AA25 invalid account nonce") ); unchecked { if (preGas - gasleft() > verificationGasLimit) { revert FailedOp(opIndex, "AA26 over verificationGasLimit"); } } bytes memory context; if (mUserOp.paymaster != address(0)) { (context, paymasterValidationData) = _validatePaymasterPrepayment( opIndex, userOp, outOpInfo ); } unchecked { outOpInfo.contextOffset = _getOffsetOfMemoryBytes(context); outOpInfo.preOpGas = preGas - gasleft() + userOp.preVerificationGas; } } /** * Process post-operation, called just after the callData is executed. * If a paymaster is defined and its validation returned a non-empty context, its postOp is called. * The excess amount is refunded to the account (or paymaster - if it was used in the request). * @param mode - Whether is called from innerHandleOp, or outside (postOpReverted). * @param opInfo - UserOp fields and info collected during validation. * @param context - The context returned in validatePaymasterUserOp. * @param actualGas - The gas used so far by this user operation. * * @return actualGasCost - the actual cost in eth this UserOperation paid for gas */ function _postExecution( IPaymaster.PostOpMode mode, UserOpInfo memory opInfo, bytes memory context, uint256 actualGas ) internal virtual returns (uint256 actualGasCost) { uint256 preGas = gasleft(); unchecked { address refundAddress; MemoryUserOp memory mUserOp = opInfo.mUserOp; uint256 gasPrice = _getUserOpGasPrice(mUserOp); address paymaster = mUserOp.paymaster; // Calculating a penalty for unused execution gas { uint256 executionGasUsed = actualGas - opInfo.preOpGas; // this check is required for the gas used within EntryPoint and not covered by explicit gas limits actualGas += _getUnusedGasPenalty(executionGasUsed, mUserOp.callGasLimit); } uint256 postOpUnusedGasPenalty; if (paymaster == address(0)) { refundAddress = mUserOp.sender; } else { refundAddress = paymaster; if (context.length > 0) { actualGasCost = actualGas * gasPrice; uint256 postOpPreGas = gasleft(); if (mode != IPaymaster.PostOpMode.postOpReverted) { try IPaymaster(paymaster).postOp{ gas: mUserOp.paymasterPostOpGasLimit }(mode, context, actualGasCost, gasPrice) // solhint-disable-next-line no-empty-blocks {} catch { bytes memory reason = Exec.getReturnData(REVERT_REASON_MAX_LEN); revert PostOpReverted(reason); } } // Calculating a penalty for unused postOp gas // note that if postOp is reverted, the maximum penalty (10% of postOpGasLimit) is charged. uint256 postOpGasUsed = postOpPreGas - gasleft(); postOpUnusedGasPenalty = _getUnusedGasPenalty(postOpGasUsed, mUserOp.paymasterPostOpGasLimit); } } actualGas += preGas - gasleft() + postOpUnusedGasPenalty; actualGasCost = actualGas * gasPrice; uint256 prefund = opInfo.prefund; if (prefund < actualGasCost) { if (mode == IPaymaster.PostOpMode.postOpReverted) { actualGasCost = prefund; _emitPrefundTooLow(opInfo); _emitUserOperationEvent(opInfo, false, actualGasCost, actualGas); } else { assembly ("memory-safe") { mstore(0, INNER_REVERT_LOW_PREFUND) revert(0, 32) } } } else { uint256 refund = prefund - actualGasCost; _incrementDeposit(refundAddress, refund); bool success = mode == IPaymaster.PostOpMode.opSucceeded; _emitUserOperationEvent(opInfo, success, actualGasCost, actualGas); } } // unchecked } /** * The gas price this UserOp agrees to pay. * Relayer/block builder might submit the TX with higher priorityFee, but the user should not be affected. * @param mUserOp - The userOp to get the gas price from. */ function _getUserOpGasPrice( MemoryUserOp memory mUserOp ) internal view returns (uint256) { unchecked { uint256 maxFeePerGas = mUserOp.maxFeePerGas; uint256 maxPriorityFeePerGas = mUserOp.maxPriorityFeePerGas; return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee); } } /** * The offset of the given bytes in memory. * @param data - The bytes to get the offset of. */ function _getOffsetOfMemoryBytes( bytes memory data ) internal pure returns (uint256 offset) { assembly ("memory-safe") { offset := data } } /** * The bytes in memory at the given offset. * @param offset - The offset to get the bytes from. */ function _getMemoryBytesFromOffset( uint256 offset ) internal pure returns (bytes memory data) { assembly ("memory-safe") { data := offset } } /** * save free memory pointer. * save "free memory" pointer, so that it can be restored later using restoreFreePtr. * This reduce unneeded memory expansion, and reduce memory expansion cost. * NOTE: all dynamic allocations between saveFreePtr and restoreFreePtr MUST NOT be used after restoreFreePtr is called. */ function _getFreePtr() internal pure returns (uint256 ptr) { assembly ("memory-safe") { ptr := mload(0x40) } } /** * restore free memory pointer. * any allocated memory since saveFreePtr is cleared, and MUST NOT be accessed later. */ function _restoreFreePtr(uint256 ptr) internal pure { assembly ("memory-safe") { mstore(0x40, ptr) } } function _getUnusedGasPenalty(uint256 gasUsed, uint256 gasLimit) internal pure returns (uint256) { unchecked { if (gasLimit <= gasUsed + PENALTY_GAS_THRESHOLD) { return 0; } uint256 unusedGas = gasLimit - gasUsed; uint256 unusedGasPenalty = (unusedGas * UNUSED_GAS_PENALTY_PERCENT) / 100; return unusedGasPenalty; } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /* solhint-disable no-inline-assembly */ /* * For simulation purposes, validateUserOp (and validatePaymasterUserOp) * must return this value in case of signature failure, instead of revert. */ uint256 constant SIG_VALIDATION_FAILED = 1; /* * For simulation purposes, validateUserOp (and validatePaymasterUserOp) * return this value on success. */ uint256 constant SIG_VALIDATION_SUCCESS = 0; /** * Returned data from validateUserOp. * validateUserOp returns a uint256, which is created by `_packedValidationData` and * parsed by `_parseValidationData`. * @param aggregator - address(0) - The account validated the signature by itself. * address(1) - The account failed to validate the signature. * otherwise - This is an address of a signature aggregator that must * be used to validate the signature. * @param validAfter - This UserOp is valid only after this timestamp. * @param validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely". */ struct ValidationData { address aggregator; uint48 validAfter; uint48 validUntil; } /** * Extract aggregator/sigFailed, validAfter, validUntil. * Also convert zero validUntil to type(uint48).max. * @param validationData - The packed validation data. * @return data - The unpacked in-memory validation data. */ function _parseValidationData( uint256 validationData ) pure returns (ValidationData memory data) { address aggregator = address(uint160(validationData)); uint48 validUntil = uint48(validationData >> 160); if (validUntil == 0) { validUntil = type(uint48).max; } uint48 validAfter = uint48(validationData >> (48 + 160)); return ValidationData(aggregator, validAfter, validUntil); } /** * Helper to pack the return value for validateUserOp. * @param data - The ValidationData to pack. * @return the packed validation data. */ function _packValidationData( ValidationData memory data ) pure returns (uint256) { return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48)); } /** * Helper to pack the return value for validateUserOp, when not using an aggregator. * @param sigFailed - True for signature failure, false for success. * @param validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely". * @param validAfter - First timestamp this UserOperation is valid. * @return the packed validation data. */ function _packValidationData( bool sigFailed, uint48 validUntil, uint48 validAfter ) pure returns (uint256) { return (sigFailed ? SIG_VALIDATION_FAILED : SIG_VALIDATION_SUCCESS) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48)); } /** * keccak function over calldata. * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it. * * @param data - the calldata bytes array to perform keccak on. * @return ret - the keccak hash of the 'data' array. */ function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) { assembly ("memory-safe") { let mem := mload(0x40) let len := data.length calldatacopy(mem, data.offset, len) ret := keccak256(mem, len) } } /** * The minimum of two numbers. * @param a - First number. * @param b - Second number. * @return - the minimum value. */ function min(uint256 a, uint256 b) pure returns (uint256) { return a < b ? a : b; } /** * standard solidity memory allocation finalization. * copied from solidity generated code * @param memPointer - The current memory pointer * @param allocationSize - Bytes allocated from memPointer. */ function finalizeAllocation(uint256 memPointer, uint256 allocationSize) pure { assembly ("memory-safe"){ finalize_allocation(memPointer, allocationSize) function finalize_allocation(memPtr, size) { let newFreePtr := add(memPtr, round_up_to_mul_of_32(size)) mstore(64, newFreePtr) } function round_up_to_mul_of_32(value) -> result { result := and(add(value, 31), not(31)) } } } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; import "../interfaces/INonceManager.sol"; /** * nonce management functionality */ abstract contract NonceManager is INonceManager { /** * The next valid sequence number for a given nonce key. */ mapping(address => mapping(uint192 => uint256)) public nonceSequenceNumber; /// @inheritdoc INonceManager function getNonce(address sender, uint192 key) public view override returns (uint256 nonce) { return nonceSequenceNumber[sender][key] | (uint256(key) << 64); } /// @inheritdoc INonceManager function incrementNonce(uint192 key) external override { nonceSequenceNumber[msg.sender][key]++; } /** * validate nonce uniqueness for this account. * called just after validateUserOp() * @return true if the nonce was incremented successfully. * false if the current nonce doesn't match the given one. */ function _validateAndUpdateNonce(address sender, uint256 nonce) internal returns (bool) { uint192 key = uint192(nonce >> 64); uint64 seq = uint64(nonce); return nonceSequenceNumber[sender][key]++ == seq; } } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ import "../interfaces/ISenderCreator.sol"; import "../interfaces/IEntryPoint.sol"; import "../utils/Exec.sol"; /** * Helper contract for EntryPoint, to call userOp.initCode from a "neutral" address, * which is explicitly not the entryPoint itself. */ contract SenderCreator is ISenderCreator { address public immutable entryPoint; constructor(){ entryPoint = msg.sender; } uint256 private constant REVERT_REASON_MAX_LEN = 2048; /** * Call the "initCode" factory to create and return the sender account address. * @param initCode - The initCode value from a UserOp. contains 20 bytes of factory address, * followed by calldata. * @return sender - The returned address of the created account, or zero address on failure. */ function createSender( bytes calldata initCode ) external returns (address sender) { require(msg.sender == entryPoint, "AA97 should call from EntryPoint"); address factory = address(bytes20(initCode[0 : 20])); bytes memory initCallData = initCode[20 :]; bool success; assembly ("memory-safe") { success := call( gas(), factory, 0, add(initCallData, 0x20), mload(initCallData), 0, 32 ) if success { sender := mload(0) } } } /// @inheritdoc ISenderCreator function initEip7702Sender( address sender, bytes memory initCallData ) external { require(msg.sender == entryPoint, "AA97 should call from EntryPoint"); bool success; assembly ("memory-safe") { success := call( gas(), sender, 0, add(initCallData, 0x20), mload(initCallData), 0, 0 ) } if (!success) { bytes memory result = Exec.getReturnData(REVERT_REASON_MAX_LEN); revert IEntryPoint.FailedOpWithRevert(0, "AA13 EIP7702 sender init failed", result); } } } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; import "../interfaces/IStakeManager.sol"; /* solhint-disable avoid-low-level-calls */ /* solhint-disable not-rely-on-time */ /** * Manage deposits and stakes. * Deposit is just a balance used to pay for UserOperations (either by a paymaster or an account). * Stake is value locked for at least "unstakeDelay" by a paymaster. */ abstract contract StakeManager is IStakeManager { /// maps paymaster to their deposits and stakes mapping(address => DepositInfo) private deposits; /// @inheritdoc IStakeManager function getDepositInfo( address account ) external view returns (DepositInfo memory info) { return deposits[account]; } /** * Internal method to return just the stake info. * @param addr - The account to query. */ function _getStakeInfo( address addr ) internal view returns (StakeInfo memory info) { DepositInfo storage depositInfo = deposits[addr]; info.stake = depositInfo.stake; info.unstakeDelaySec = depositInfo.unstakeDelaySec; } /// @inheritdoc IStakeManager function balanceOf(address account) public view returns (uint256) { return deposits[account].deposit; } receive() external payable { depositTo(msg.sender); } /** * Increments an account's deposit. * @param account - The account to increment. * @param amount - The amount to increment by. * @return the updated deposit of this account */ function _incrementDeposit(address account, uint256 amount) internal returns (uint256) { unchecked { DepositInfo storage info = deposits[account]; uint256 newAmount = info.deposit + amount; info.deposit = newAmount; return newAmount; } } /** * Try to decrement the account's deposit. * @param account - The account to decrement. * @param amount - The amount to decrement by. * @return true if the decrement succeeded (that is, previous balance was at least that amount) */ function _tryDecrementDeposit(address account, uint256 amount) internal returns(bool) { unchecked { DepositInfo storage info = deposits[account]; uint256 currentDeposit = info.deposit; if (currentDeposit < amount) { return false; } info.deposit = currentDeposit - amount; return true; } } /// @inheritdoc IStakeManager function depositTo(address account) public virtual payable { uint256 newDeposit = _incrementDeposit(account, msg.value); emit Deposited(account, newDeposit); } /// @inheritdoc IStakeManager function addStake(uint32 unstakeDelaySec) external payable { DepositInfo storage info = deposits[msg.sender]; require(unstakeDelaySec > 0, "must specify unstake delay"); require( unstakeDelaySec >= info.unstakeDelaySec, "cannot decrease unstake time" ); uint256 stake = info.stake + msg.value; require(stake > 0, "no stake specified"); require(stake <= type(uint112).max, "stake overflow"); deposits[msg.sender] = DepositInfo( info.deposit, true, uint112(stake), unstakeDelaySec, 0 ); emit StakeLocked(msg.sender, stake, unstakeDelaySec); } /// @inheritdoc IStakeManager function unlockStake() external { DepositInfo storage info = deposits[msg.sender]; require(info.unstakeDelaySec != 0, "not staked"); require(info.staked, "already unstaking"); uint48 withdrawTime = uint48(block.timestamp) + info.unstakeDelaySec; info.withdrawTime = withdrawTime; info.staked = false; emit StakeUnlocked(msg.sender, withdrawTime); } /// @inheritdoc IStakeManager function withdrawStake(address payable withdrawAddress) external { DepositInfo storage info = deposits[msg.sender]; uint256 stake = info.stake; require(stake > 0, "No stake to withdraw"); require(info.withdrawTime > 0, "must call unlockStake() first"); require( info.withdrawTime <= block.timestamp, "Stake withdrawal is not due" ); info.unstakeDelaySec = 0; info.withdrawTime = 0; info.stake = 0; emit StakeWithdrawn(msg.sender, withdrawAddress, stake); (bool success,) = withdrawAddress.call{value: stake}(""); require(success, "failed to withdraw stake"); } /// @inheritdoc IStakeManager function withdrawTo( address payable withdrawAddress, uint256 withdrawAmount ) external { DepositInfo storage info = deposits[msg.sender]; uint256 currentDeposit = info.deposit; require(withdrawAmount <= currentDeposit, "Withdraw amount too large"); info.deposit = currentDeposit - withdrawAmount; emit Withdrawn(msg.sender, withdrawAddress, withdrawAmount); (bool success,) = withdrawAddress.call{value: withdrawAmount}(""); require(success, "failed to withdraw"); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /* solhint-disable no-inline-assembly */ import "../interfaces/PackedUserOperation.sol"; import {calldataKeccak, min} from "./Helpers.sol"; /** * Utility functions helpful when working with UserOperation structs. */ library UserOperationLib { uint256 public constant PAYMASTER_VALIDATION_GAS_OFFSET = 20; uint256 public constant PAYMASTER_POSTOP_GAS_OFFSET = 36; uint256 public constant PAYMASTER_DATA_OFFSET = 52; /** * Relayer/block builder might submit the TX with higher priorityFee, * but the user should not pay above what he signed for. * @param userOp - The user operation data. */ function gasPrice( PackedUserOperation calldata userOp ) internal view returns (uint256) { unchecked { (uint256 maxPriorityFeePerGas, uint256 maxFeePerGas) = unpackUints(userOp.gasFees); return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee); } } bytes32 internal constant PACKED_USEROP_TYPEHASH = keccak256( "PackedUserOperation(address sender,uint256 nonce,bytes initCode,bytes callData,bytes32 accountGasLimits,uint256 preVerificationGas,bytes32 gasFees,bytes paymasterAndData)" ); /** * Pack the user operation data into bytes for hashing. * @param userOp - The user operation data. * @param overrideInitCodeHash - If set, encode this instead of the initCode field in the userOp. */ function encode( PackedUserOperation calldata userOp, bytes32 overrideInitCodeHash ) internal pure returns (bytes memory ret) { address sender = userOp.sender; uint256 nonce = userOp.nonce; bytes32 hashInitCode = overrideInitCodeHash != 0 ? overrideInitCodeHash : calldataKeccak(userOp.initCode); bytes32 hashCallData = calldataKeccak(userOp.callData); bytes32 accountGasLimits = userOp.accountGasLimits; uint256 preVerificationGas = userOp.preVerificationGas; bytes32 gasFees = userOp.gasFees; bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData); return abi.encode( UserOperationLib.PACKED_USEROP_TYPEHASH, sender, nonce, hashInitCode, hashCallData, accountGasLimits, preVerificationGas, gasFees, hashPaymasterAndData ); } function unpackUints( bytes32 packed ) internal pure returns (uint256 high128, uint256 low128) { return (unpackHigh128(packed), unpackLow128(packed)); } // Unpack just the high 128-bits from a packed value function unpackHigh128(bytes32 packed) internal pure returns (uint256) { return uint256(packed) >> 128; } // Unpack just the low 128-bits from a packed value function unpackLow128(bytes32 packed) internal pure returns (uint256) { return uint128(uint256(packed)); } function unpackMaxPriorityFeePerGas(PackedUserOperation calldata userOp) internal pure returns (uint256) { return unpackHigh128(userOp.gasFees); } function unpackMaxFeePerGas(PackedUserOperation calldata userOp) internal pure returns (uint256) { return unpackLow128(userOp.gasFees); } function unpackVerificationGasLimit(PackedUserOperation calldata userOp) internal pure returns (uint256) { return unpackHigh128(userOp.accountGasLimits); } function unpackCallGasLimit(PackedUserOperation calldata userOp) internal pure returns (uint256) { return unpackLow128(userOp.accountGasLimits); } function unpackPaymasterVerificationGasLimit(PackedUserOperation calldata userOp) internal pure returns (uint256) { return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET])); } function unpackPostOpGasLimit(PackedUserOperation calldata userOp) internal pure returns (uint256) { return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET])); } function unpackPaymasterStaticFields( bytes calldata paymasterAndData ) internal pure returns (address paymaster, uint256 validationGasLimit, uint256 postOpGasLimit) { return ( address(bytes20(paymasterAndData[: PAYMASTER_VALIDATION_GAS_OFFSET])), uint128(bytes16(paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET])), uint128(bytes16(paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET])) ); } /** * Hash the user operation data. * @param userOp - The user operation data. * @param overrideInitCodeHash - If set, the initCode hash will be replaced with this value just for UserOp hashing. */ function hash( PackedUserOperation calldata userOp, bytes32 overrideInitCodeHash ) internal pure returns (bytes32) { return keccak256(encode(userOp, overrideInitCodeHash)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; import "./PackedUserOperation.sol"; interface IAccount { /** * Validate user's signature and nonce * the entryPoint will make the call to the recipient only if this validation call returns successfully. * signature failure should be reported by returning SIG_VALIDATION_FAILED (1). * This allows making a "simulation call" without a valid signature * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure. * * @dev Must validate caller is the entryPoint. * Must validate the signature and nonce * @param userOp - The operation that is about to be executed. * @param userOpHash - Hash of the user's request data. can be used as the basis for signature. * @param missingAccountFunds - Missing funds on the account's deposit in the entrypoint. * This is the minimum amount to transfer to the sender(entryPoint) to be * able to make the call. The excess is left as a deposit in the entrypoint * for future calls. Can be withdrawn anytime using "entryPoint.withdrawTo()". * In case there is a paymaster in the request (or the current deposit is high * enough), this value will be zero. * @return validationData - Packaged ValidationData structure. use `_packValidationData` and * `_unpackValidationData` to encode and decode. * <20-byte> aggregatorOrSigFail - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an "aggregator" contract. * <6-byte> validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely" * <6-byte> validAfter - First timestamp this operation is valid * If an account doesn't use time-range, it is enough to * return SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function validateUserOp( PackedUserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds ) external returns (uint256 validationData); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; import "./PackedUserOperation.sol"; interface IAccountExecute { /** * Account may implement this execute method. * passing this methodSig at the beginning of callData will cause the entryPoint to pass the full UserOp (and hash) * to the account. * The account should skip the methodSig, and use the callData (and optionally, other UserOp fields) * * @param userOp - The operation that was just validated. * @param userOpHash - Hash of the user's request data. */ function executeUserOp( PackedUserOperation calldata userOp, bytes32 userOpHash ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; import "./PackedUserOperation.sol"; /** * Aggregated Signatures validator. */ interface IAggregator { /** * Validate an aggregated signature. * Reverts if the aggregated signature does not match the given list of operations. * @param userOps - An array of UserOperations to validate the signature for. * @param signature - The aggregated signature. */ function validateSignatures( PackedUserOperation[] calldata userOps, bytes calldata signature ) external; /** * Validate the signature of a single userOp. * This method should be called by bundler after EntryPointSimulation.simulateValidation() returns * the aggregator this account uses. * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps. * @param userOp - The userOperation received from the user. * @return sigForUserOp - The value to put into the signature field of the userOp when calling handleOps. * (usually empty, unless account and aggregator support some kind of "multisig". */ function validateUserOpSignature( PackedUserOperation calldata userOp ) external view returns (bytes memory sigForUserOp); /** * Aggregate multiple signatures into a single value. * This method is called off-chain to calculate the signature to pass with handleOps() * bundler MAY use optimized custom code to perform this aggregation. * @param userOps - An array of UserOperations to collect the signatures from. * @return aggregatedSignature - The aggregated signature. */ function aggregateSignatures( PackedUserOperation[] calldata userOps ) external view returns (bytes memory aggregatedSignature); } /** ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation. ** Only one instance required on each chain. **/ // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ /* solhint-disable reason-string */ import "./PackedUserOperation.sol"; import "./IStakeManager.sol"; import "./IAggregator.sol"; import "./INonceManager.sol"; import "./ISenderCreator.sol"; interface IEntryPoint is IStakeManager, INonceManager { /*** * An event emitted after each successful request. * @param userOpHash - Unique identifier for the request (hash its entire content, except signature). * @param sender - The account that generates this request. * @param paymaster - If non-null, the paymaster that pays for this request. * @param nonce - The nonce value from the request. * @param success - True if the sender transaction succeeded, false if reverted. * @param actualGasCost - Actual amount paid (by account or paymaster) for this UserOperation. * @param actualGasUsed - Total gas used by this UserOperation (including preVerification, creation, * validation and execution). */ event UserOperationEvent( bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed ); /** * Account "sender" was deployed. * @param userOpHash - The userOp that deployed this account. UserOperationEvent will follow. * @param sender - The account that is deployed * @param factory - The factory used to deploy this account (in the initCode) * @param paymaster - The paymaster used by this UserOp */ event AccountDeployed( bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster ); /** * An event emitted if the UserOperation "callData" reverted with non-zero length. * @param userOpHash - The request unique identifier. * @param sender - The sender of this request. * @param nonce - The nonce used in the request. * @param revertReason - The return bytes from the reverted "callData" call. */ event UserOperationRevertReason( bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason ); /** * An event emitted if the UserOperation Paymaster's "postOp" call reverted with non-zero length. * @param userOpHash - The request unique identifier. * @param sender - The sender of this request. * @param nonce - The nonce used in the request. * @param revertReason - The return bytes from the reverted call to "postOp". */ event PostOpRevertReason( bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason ); /** * UserOp consumed more than prefund. The UserOperation is reverted, and no refund is made. * @param userOpHash - The request unique identifier. * @param sender - The sender of this request. * @param nonce - The nonce used in the request. */ event UserOperationPrefundTooLow( bytes32 indexed userOpHash, address indexed sender, uint256 nonce ); /** * An event emitted by handleOps() and handleAggregatedOps(), before starting the execution loop. * Any event emitted before this event, is part of the validation. */ event BeforeExecution(); /** * Signature aggregator used by the following UserOperationEvents within this bundle. * @param aggregator - The aggregator used for the following UserOperationEvents. */ event SignatureAggregatorChanged(address indexed aggregator); /** * A custom revert error of handleOps andhandleAggregatedOps, to identify the offending op. * Should be caught in off-chain handleOps/handleAggregatedOps simulation and not happen on-chain. * Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts. * NOTE: If simulateValidation passes successfully, there should be no reason for handleOps to fail on it. * @param opIndex - Index into the array of ops to the failed one (in simulateValidation, this is always zero). * @param reason - Revert reason. The string starts with a unique code "AAmn", * where "m" is "1" for factory, "2" for account and "3" for paymaster issues, * so a failure can be attributed to the correct entity. */ error FailedOp(uint256 opIndex, string reason); /** * A custom revert error of handleOps and handleAggregatedOps, to report a revert by account or paymaster. * @param opIndex - Index into the array of ops to the failed one (in simulateValidation, this is always zero). * @param reason - Revert reason. see FailedOp(uint256,string), above * @param inner - data from inner cought revert reason * @dev note that inner is truncated to 2048 bytes */ error FailedOpWithRevert(uint256 opIndex, string reason, bytes inner); error PostOpReverted(bytes returnData); /** * Error case when a signature aggregator fails to verify the aggregated signature it had created. * @param aggregator The aggregator that failed to verify the signature */ error SignatureValidationFailed(address aggregator); // Return value of getSenderAddress. error SenderAddressResult(address sender); // UserOps handled, per aggregator. struct UserOpsPerAggregator { PackedUserOperation[] userOps; // Aggregator address IAggregator aggregator; // Aggregated signature bytes signature; } /** * Execute a batch of UserOperations. * No signature aggregator is used. * If any account requires an aggregator (that is, it returned an aggregator when * performing simulateValidation), then handleAggregatedOps() must be used instead. * @param ops - The operations to execute. * @param beneficiary - The address to receive the fees. */ function handleOps( PackedUserOperation[] calldata ops, address payable beneficiary ) external; /** * Execute a batch of UserOperation with Aggregators * @param opsPerAggregator - The operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts). * @param beneficiary - The address to receive the fees. */ function handleAggregatedOps( UserOpsPerAggregator[] calldata opsPerAggregator, address payable beneficiary ) external; /** * Generate a request Id - unique identifier for this request. * The request ID is a hash over the content of the userOp (except the signature), entrypoint address, chainId and (optionally) 7702 delegate address * @param userOp - The user operation to generate the request ID for. * @return hash the hash of this UserOperation */ function getUserOpHash( PackedUserOperation calldata userOp ) external view returns (bytes32); /** * Gas and return values during simulation. * @param preOpGas - The gas used for validation (including preValidationGas) * @param prefund - The required prefund for this operation * @param accountValidationData - returned validationData from account. * @param paymasterValidationData - return validationData from paymaster. * @param paymasterContext - Returned by validatePaymasterUserOp (to be passed into postOp) */ struct ReturnInfo { uint256 preOpGas; uint256 prefund; uint256 accountValidationData; uint256 paymasterValidationData; bytes paymasterContext; } /** * Get counterfactual sender address. * Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation. * This method always revert, and returns the address in SenderAddressResult error. * @notice this method cannot be used for EIP-7702 derived contracts. * * @param initCode - The constructor code to be passed into the UserOperation. */ function getSenderAddress(bytes memory initCode) external; error DelegateAndRevert(bool success, bytes ret); /** * Helper method for dry-run testing. * @dev calling this method, the EntryPoint will make a delegatecall to the given data, and report (via revert) the result. * The method always revert, so is only useful off-chain for dry run calls, in cases where state-override to replace * actual EntryPoint code is less convenient. * @param target a target contract to make a delegatecall from entrypoint * @param data data to pass to target in a delegatecall */ function delegateAndRevert(address target, bytes calldata data) external; /** * @notice Retrieves the immutable SenderCreator contract which is responsible for deployment of sender contracts. */ function senderCreator() external view returns (ISenderCreator); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; interface INonceManager { /** * Return the next nonce for this sender. * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop) * But UserOp with different keys can come with arbitrary order. * * @param sender the account address * @param key the high 192 bit of the nonce * @return nonce a full nonce to pass for next UserOp with this sender. */ function getNonce(address sender, uint192 key) external view returns (uint256 nonce); /** * Manually increment the nonce of the sender. * This method is exposed just for completeness.. * Account does NOT need to call it, neither during validation, nor elsewhere, * as the EntryPoint will update the nonce regardless. * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future * UserOperations will not pay extra for the first transaction with a given key. * * @param key - the "nonce key" to increment the "nonce sequence" for. */ function incrementNonce(uint192 key) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; import "./PackedUserOperation.sol"; /** * The interface exposed by a paymaster contract, who agrees to pay the gas for user's operations. * A paymaster must hold a stake to cover the required entrypoint stake and also the gas for the transaction. */ interface IPaymaster { enum PostOpMode { // User op succeeded. opSucceeded, // User op reverted. Still has to pay for gas. opReverted, // Only used internally in the EntryPoint (cleanup after postOp reverts). Never calling paymaster with this value postOpReverted } /** * Payment validation: check if paymaster agrees to pay. * Must verify sender is the entryPoint. * Revert to reject this request. * Note that bundlers will reject this method if it changes the state, unless the paymaster is trusted (whitelisted). * The paymaster pre-pays using its deposit, and receive back a refund after the postOp method returns. * @param userOp - The user operation. * @param userOpHash - Hash of the user's request data. * @param maxCost - The maximum cost of this transaction (based on maximum gas and gas price from userOp). * @return context - Value to send to a postOp. Zero length to signify postOp is not required. * @return validationData - Signature and time-range of this operation, encoded the same as the return * value of validateUserOperation. * <20-byte> aggregatorOrSigFail - 0 for valid signature, 1 to mark signature failure, * other values are invalid for paymaster. * <6-byte> validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely" * <6-byte> validAfter - first timestamp this operation is valid * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function validatePaymasterUserOp( PackedUserOperation calldata userOp, bytes32 userOpHash, uint256 maxCost ) external returns (bytes memory context, uint256 validationData); /** * Post-operation handler. * Must verify sender is the entryPoint. * @param mode - Enum with the following options: * opSucceeded - User operation succeeded. * opReverted - User op reverted. The paymaster still has to pay for gas. * postOpReverted - never passed in a call to postOp(). * @param context - The context value returned by validatePaymasterUserOp * @param actualGasCost - Actual cost of gas used so far (without this postOp call). * @param actualUserOpFeePerGas - the gas price this UserOp pays. This value is based on the UserOp's maxFeePerGas * and maxPriorityFee (and basefee) * It is not the same as tx.gasprice, which is what the bundler pays. */ function postOp( PostOpMode mode, bytes calldata context, uint256 actualGasCost, uint256 actualUserOpFeePerGas ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; interface ISenderCreator { /** * @dev Creates a new sender contract. * @return sender Address of the newly created sender contract. */ function createSender(bytes calldata initCode) external returns (address sender); /** * Use initCallData to initialize an EIP-7702 account. * The caller is the EntryPoint contract and it is already verified to be an EIP-7702 account. * Note: Can be called multiple times as long as an appropriate initCode is supplied * * @param sender - the 'sender' EIP-7702 account to be initialized. * @param initCallData - the call data to be passed to the sender account call. */ function initEip7702Sender(address sender, bytes calldata initCallData) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /** * Manage deposits and stakes. * Deposit is just a balance used to pay for UserOperations (either by a paymaster or an account). * Stake is value locked for at least "unstakeDelay" by the staked entity. */ interface IStakeManager { event Deposited(address indexed account, uint256 totalDeposit); event Withdrawn( address indexed account, address withdrawAddress, uint256 amount ); // Emitted when stake or unstake delay are modified. event StakeLocked( address indexed account, uint256 totalStaked, uint256 unstakeDelaySec ); // Emitted once a stake is scheduled for withdrawal. event StakeUnlocked(address indexed account, uint256 withdrawTime); event StakeWithdrawn( address indexed account, address withdrawAddress, uint256 amount ); /** * @param deposit - The entity's deposit. * @param staked - True if this entity is staked. * @param stake - Actual amount of ether staked for this entity. * @param unstakeDelaySec - Minimum delay to withdraw the stake. * @param withdrawTime - First block timestamp where 'withdrawStake' will be callable, or zero if already locked. * @dev Sizes were chosen so that deposit fits into one cell (used during handleOp) * and the rest fit into a 2nd cell (used during stake/unstake) * - 112 bit allows for 10^15 eth * - 48 bit for full timestamp * - 32 bit allows 150 years for unstake delay */ struct DepositInfo { uint256 deposit; bool staked; uint112 stake; uint32 unstakeDelaySec; uint48 withdrawTime; } // API struct used by getStakeInfo and simulateValidation. struct StakeInfo { uint256 stake; uint256 unstakeDelaySec; } /** * Get deposit info. * @param account - The account to query. * @return info - Full deposit information of given account. */ function getDepositInfo( address account ) external view returns (DepositInfo memory info); /** * Get account balance. * @param account - The account to query. * @return - The deposit (for gas payment) of the account. */ function balanceOf(address account) external view returns (uint256); /** * Add to the deposit of the given account. * @param account - The account to add to. */ function depositTo(address account) external payable; /** * Add to the account's stake - amount and delay * any pending unstake is first cancelled. * @param unstakeDelaySec - The new lock duration before the deposit can be withdrawn. */ function addStake(uint32 unstakeDelaySec) external payable; /** * Attempt to unlock the stake. * The value can be withdrawn (using withdrawStake) after the unstake delay. */ function unlockStake() external; /** * Withdraw from the (unlocked) stake. * Must first call unlockStake and wait for the unstakeDelay to pass. * @param withdrawAddress - The address to send withdrawn value. */ function withdrawStake(address payable withdrawAddress) external; /** * Withdraw from the deposit. * @param withdrawAddress - The address to send withdrawn value. * @param withdrawAmount - The amount to withdraw. */ function withdrawTo( address payable withdrawAddress, uint256 withdrawAmount ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /** * User Operation struct * @param sender - The sender account of this request. * @param nonce - Unique value the sender uses to verify it is not a replay. * @param initCode - If set, the account contract will be created by this constructor * @param callData - The method call to execute on this account. * @param accountGasLimits - Packed gas limits for validateUserOp and gas limit passed to the callData method call. * @param preVerificationGas - Gas not calculated by the handleOps method, but added to the gas paid. * Covers batch overhead. * @param gasFees - packed gas fields maxPriorityFeePerGas and maxFeePerGas - Same as EIP-1559 gas parameters. * @param paymasterAndData - If set, this field holds the paymaster address, verification gas limit, postOp gas limit and paymaster-specific extra data * The paymaster will pay for the transaction instead of the sender. * @param signature - Sender-verified signature over the entire request, the EntryPoint address and the chain ID. */ struct PackedUserOperation { address sender; uint256 nonce; bytes initCode; bytes callData; bytes32 accountGasLimits; uint256 preVerificationGas; bytes32 gasFees; bytes paymasterAndData; bytes signature; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; // solhint-disable no-inline-assembly /** * Utility functions helpful when making different kinds of contract calls in Solidity. */ library Exec { function call( address to, uint256 value, bytes memory data, uint256 txGas ) internal returns (bool success) { assembly ("memory-safe") { success := call(txGas, to, value, add(data, 0x20), mload(data), 0, 0) } } function staticcall( address to, bytes memory data, uint256 txGas ) internal view returns (bool success) { assembly ("memory-safe") { success := staticcall(txGas, to, add(data, 0x20), mload(data), 0, 0) } } function delegateCall( address to, bytes memory data, uint256 txGas ) internal returns (bool success) { assembly ("memory-safe") { success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0, 0) } } // get returned data from last call or delegateCall // maxLen - maximum length of data to return, or zero, for the full length function getReturnData(uint256 maxLen) internal pure returns (bytes memory returnData) { assembly ("memory-safe") { let len := returndatasize() if gt(maxLen,0) { if gt(len, maxLen) { len := maxLen } } let ptr := mload(0x40) mstore(0x40, add(ptr, add(len, 0x20))) mstore(ptr, len) returndatacopy(add(ptr, 0x20), 0, len) returnData := ptr } } // revert with explicit byte array (probably reverted info from call) function revertWithData(bytes memory returnData) internal pure { assembly ("memory-safe") { revert(add(returnData, 32), mload(returnData)) } } // Propagate revert data from last call function revertWithReturnData() internal pure { revertWithData(getReturnData(0)); } }