ETH Price: $2,546.38 (-0.92%)

Transaction Decoder

Block:
22585726 at May-29-2025 03:28:11 AM +UTC
Transaction Fee:
0.000790981448109846 ETH $2.01
Gas Used:
135,534 Gas / 5.836037069 Gwei

Emitted Events:

405 LinkToken.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000000ad2945d05064ce9f8efd2d9c36d634412f9b85e, 0x000000000000000000000000ddc796a66e8b83d0bccd97df33a6ccfba8fd60ea, 00000000000000000000000000000000000000000000002458524729339ddb66 )
406 LinkToken.Transfer( from=[Sender] 0x0ad2945d05064ce9f8efd2d9c36d634412f9b85e, to=ERC1967Proxy, value=670447014119257004902, data=0x000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000A0000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000 )
407 ERC1967Proxy.0x90890809c654f11d6e72a28fa60149770a0d11ec6c92319d6ceb2bb0a4ea1a15( 0x90890809c654f11d6e72a28fa60149770a0d11ec6c92319d6ceb2bb0a4ea1a15, 0x0000000000000000000000000ad2945d05064ce9f8efd2d9c36d634412f9b85e, 0000000000000000000000000000000000000000000000000000000000000000, 00000000000000000000000000000000000000000000002458524729339ddb66 )

Account State Difference:

  Address   Before After State Difference Code
0x0Ad2945D...412F9b85e
0.19736654704710095 Eth
Nonce: 40
0.196575565598991104 Eth
Nonce: 41
0.000790981448109846
0x51491077...4EcF986CA
(beaverbuild)
19.240890475737337786 Eth19.241161543737337786 Eth0.000271068
0xDdC796a6...BA8fd60eA

Execution Trace

LinkToken.transferAndCall( _to=0xDdC796a66E8b83d0BcCD97dF33A6CcFBA8fd60eA, _value=670447014119257004902, _data=0x000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000A0000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000 ) => ( success=True )
  • ERC1967Proxy.a4c0ed36( )
    • PriorityPool.onTokenTransfer( _sender=0x0Ad2945D05064ce9f8EFD2d9C36D634412F9b85e, _value=670447014119257004902, _calldata=0x000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000A0000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000 )
      transferAndCall[LinkToken (ln:239)]
      File 1 of 3: LinkToken
      pragma solidity ^0.4.16;
      
      
      /**
       * @title SafeMath
       * @dev Math operations with safety checks that throw on error
       */
      library SafeMath {
        function mul(uint256 a, uint256 b) internal constant returns (uint256) {
          uint256 c = a * b;
          assert(a == 0 || c / a == b);
          return c;
        }
      
        function div(uint256 a, uint256 b) internal constant returns (uint256) {
          // assert(b > 0); // Solidity automatically throws when dividing by 0
          uint256 c = a / b;
          // assert(a == b * c + a % b); // There is no case in which this doesn't hold
          return c;
        }
      
        function sub(uint256 a, uint256 b) internal constant returns (uint256) {
          assert(b <= a);
          return a - b;
        }
      
        function add(uint256 a, uint256 b) internal constant returns (uint256) {
          uint256 c = a + b;
          assert(c >= a);
          return c;
        }
      }
      
      
      /**
       * @title ERC20Basic
       * @dev Simpler version of ERC20 interface
       * @dev see https://github.com/ethereum/EIPs/issues/179
       */
      contract ERC20Basic {
        uint256 public totalSupply;
        function balanceOf(address who) constant returns (uint256);
        function transfer(address to, uint256 value) returns (bool);
        event Transfer(address indexed from, address indexed to, uint256 value);
      }
      /**
       * @title ERC20 interface
       * @dev see https://github.com/ethereum/EIPs/issues/20
       */
      contract ERC20 is ERC20Basic {
        function allowance(address owner, address spender) constant returns (uint256);
        function transferFrom(address from, address to, uint256 value) returns (bool);
        function approve(address spender, uint256 value) returns (bool);
        event Approval(address indexed owner, address indexed spender, uint256 value);
      }
      
      contract ERC677 is ERC20 {
        function transferAndCall(address to, uint value, bytes data) returns (bool success);
      
        event Transfer(address indexed from, address indexed to, uint value, bytes data);
      }
      
      contract ERC677Receiver {
        function onTokenTransfer(address _sender, uint _value, bytes _data);
      }
      
      /**
       * @title Basic token
       * @dev Basic version of StandardToken, with no allowances. 
       */
      contract BasicToken is ERC20Basic {
        using SafeMath for uint256;
      
        mapping(address => uint256) balances;
      
        /**
        * @dev transfer token for a specified address
        * @param _to The address to transfer to.
        * @param _value The amount to be transferred.
        */
        function transfer(address _to, uint256 _value) returns (bool) {
          balances[msg.sender] = balances[msg.sender].sub(_value);
          balances[_to] = balances[_to].add(_value);
          Transfer(msg.sender, _to, _value);
          return true;
        }
      
        /**
        * @dev Gets the balance of the specified address.
        * @param _owner The address to query the the balance of. 
        * @return An uint256 representing the amount owned by the passed address.
        */
        function balanceOf(address _owner) constant returns (uint256 balance) {
          return balances[_owner];
        }
      
      }
      
      
      /**
       * @title Standard ERC20 token
       *
       * @dev Implementation of the basic standard token.
       * @dev https://github.com/ethereum/EIPs/issues/20
       * @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
       */
      contract StandardToken is ERC20, BasicToken {
      
        mapping (address => mapping (address => uint256)) allowed;
      
      
        /**
         * @dev Transfer tokens from one address to another
         * @param _from address The address which you want to send tokens from
         * @param _to address The address which you want to transfer to
         * @param _value uint256 the amount of tokens to be transferred
         */
        function transferFrom(address _from, address _to, uint256 _value) returns (bool) {
          var _allowance = allowed[_from][msg.sender];
      
          // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
          // require (_value <= _allowance);
      
          balances[_from] = balances[_from].sub(_value);
          balances[_to] = balances[_to].add(_value);
          allowed[_from][msg.sender] = _allowance.sub(_value);
          Transfer(_from, _to, _value);
          return true;
        }
      
        /**
         * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
         * @param _spender The address which will spend the funds.
         * @param _value The amount of tokens to be spent.
         */
        function approve(address _spender, uint256 _value) returns (bool) {
          allowed[msg.sender][_spender] = _value;
          Approval(msg.sender, _spender, _value);
          return true;
        }
      
        /**
         * @dev Function to check the amount of tokens that an owner allowed to a spender.
         * @param _owner address The address which owns the funds.
         * @param _spender address The address which will spend the funds.
         * @return A uint256 specifying the amount of tokens still available for the spender.
         */
        function allowance(address _owner, address _spender) constant returns (uint256 remaining) {
          return allowed[_owner][_spender];
        }
        
          /*
         * approve should be called when allowed[_spender] == 0. To increment
         * allowed value is better to use this function to avoid 2 calls (and wait until 
         * the first transaction is mined)
         * From MonolithDAO Token.sol
         */
        function increaseApproval (address _spender, uint _addedValue) 
          returns (bool success) {
          allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
          Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
          return true;
        }
      
        function decreaseApproval (address _spender, uint _subtractedValue) 
          returns (bool success) {
          uint oldValue = allowed[msg.sender][_spender];
          if (_subtractedValue > oldValue) {
            allowed[msg.sender][_spender] = 0;
          } else {
            allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
          }
          Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
          return true;
        }
      
      }
      
      contract ERC677Token is ERC677 {
      
        /**
        * @dev transfer token to a contract address with additional data if the recipient is a contact.
        * @param _to The address to transfer to.
        * @param _value The amount to be transferred.
        * @param _data The extra data to be passed to the receiving contract.
        */
        function transferAndCall(address _to, uint _value, bytes _data)
          public
          returns (bool success)
        {
          super.transfer(_to, _value);
          Transfer(msg.sender, _to, _value, _data);
          if (isContract(_to)) {
            contractFallback(_to, _value, _data);
          }
          return true;
        }
      
      
        // PRIVATE
      
        function contractFallback(address _to, uint _value, bytes _data)
          private
        {
          ERC677Receiver receiver = ERC677Receiver(_to);
          receiver.onTokenTransfer(msg.sender, _value, _data);
        }
      
        function isContract(address _addr)
          private
          returns (bool hasCode)
        {
          uint length;
          assembly { length := extcodesize(_addr) }
          return length > 0;
        }
      
      }
      
      contract LinkToken is StandardToken, ERC677Token {
      
        uint public constant totalSupply = 10**27;
        string public constant name = 'ChainLink Token';
        uint8 public constant decimals = 18;
        string public constant symbol = 'LINK';
      
        function LinkToken()
          public
        {
          balances[msg.sender] = totalSupply;
        }
      
        /**
        * @dev transfer token to a specified address with additional data if the recipient is a contract.
        * @param _to The address to transfer to.
        * @param _value The amount to be transferred.
        * @param _data The extra data to be passed to the receiving contract.
        */
        function transferAndCall(address _to, uint _value, bytes _data)
          public
          validRecipient(_to)
          returns (bool success)
        {
          return super.transferAndCall(_to, _value, _data);
        }
      
        /**
        * @dev transfer token to a specified address.
        * @param _to The address to transfer to.
        * @param _value The amount to be transferred.
        */
        function transfer(address _to, uint _value)
          public
          validRecipient(_to)
          returns (bool success)
        {
          return super.transfer(_to, _value);
        }
      
        /**
         * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
         * @param _spender The address which will spend the funds.
         * @param _value The amount of tokens to be spent.
         */
        function approve(address _spender, uint256 _value)
          public
          validRecipient(_spender)
          returns (bool)
        {
          return super.approve(_spender,  _value);
        }
      
        /**
         * @dev Transfer tokens from one address to another
         * @param _from address The address which you want to send tokens from
         * @param _to address The address which you want to transfer to
         * @param _value uint256 the amount of tokens to be transferred
         */
        function transferFrom(address _from, address _to, uint256 _value)
          public
          validRecipient(_to)
          returns (bool)
        {
          return super.transferFrom(_from, _to, _value);
        }
      
      
        // MODIFIERS
      
        modifier validRecipient(address _recipient) {
          require(_recipient != address(0) && _recipient != address(this));
          _;
        }
      
      }

      File 2 of 3: ERC1967Proxy
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor() {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
       * proxy whose upgrades are fully controlled by the current implementation.
       */
      interface IERC1822Proxiable {
          /**
           * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
           * address.
           *
           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
           * function revert if invoked through a proxy.
           */
          function proxiableUUID() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.3) (interfaces/IERC1967.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
       *
       * _Available since v4.9._
       */
      interface IERC1967 {
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Emitted when the beacon is changed.
           */
          event BeaconUpgraded(address indexed beacon);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/beacon/BeaconProxy.sol)
      pragma solidity ^0.8.0;
      import "./IBeacon.sol";
      import "../Proxy.sol";
      import "../ERC1967/ERC1967Upgrade.sol";
      /**
       * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
       *
       * The beacon address is stored in storage slot `uint256(keccak256('eip1967.proxy.beacon')) - 1`, so that it doesn't
       * conflict with the storage layout of the implementation behind the proxy.
       *
       * _Available since v3.4._
       */
      contract BeaconProxy is Proxy, ERC1967Upgrade {
          /**
           * @dev Initializes the proxy with `beacon`.
           *
           * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
           * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
           * constructor.
           *
           * Requirements:
           *
           * - `beacon` must be a contract with the interface {IBeacon}.
           */
          constructor(address beacon, bytes memory data) payable {
              _upgradeBeaconToAndCall(beacon, data, false);
          }
          /**
           * @dev Returns the current beacon address.
           */
          function _beacon() internal view virtual returns (address) {
              return _getBeacon();
          }
          /**
           * @dev Returns the current implementation address of the associated beacon.
           */
          function _implementation() internal view virtual override returns (address) {
              return IBeacon(_getBeacon()).implementation();
          }
          /**
           * @dev Changes the proxy to use a new beacon. Deprecated: see {_upgradeBeaconToAndCall}.
           *
           * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon.
           *
           * Requirements:
           *
           * - `beacon` must be a contract.
           * - The implementation returned by `beacon` must be a contract.
           */
          function _setBeacon(address beacon, bytes memory data) internal virtual {
              _upgradeBeaconToAndCall(beacon, data, false);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeacon {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {BeaconProxy} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (proxy/beacon/UpgradeableBeacon.sol)
      pragma solidity ^0.8.0;
      import "./IBeacon.sol";
      import "../../access/Ownable.sol";
      import "../../utils/Address.sol";
      /**
       * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
       * implementation contract, which is where they will delegate all function calls.
       *
       * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
       */
      contract UpgradeableBeacon is IBeacon, Ownable {
          address private _implementation;
          /**
           * @dev Emitted when the implementation returned by the beacon is changed.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Sets the address of the initial implementation, and the deployer account as the owner who can upgrade the
           * beacon.
           */
          constructor(address implementation_) {
              _setImplementation(implementation_);
          }
          /**
           * @dev Returns the current implementation address.
           */
          function implementation() public view virtual override returns (address) {
              return _implementation;
          }
          /**
           * @dev Upgrades the beacon to a new implementation.
           *
           * Emits an {Upgraded} event.
           *
           * Requirements:
           *
           * - msg.sender must be the owner of the contract.
           * - `newImplementation` must be a contract.
           */
          function upgradeTo(address newImplementation) public virtual onlyOwner {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
          /**
           * @dev Sets the implementation contract address for this beacon
           *
           * Requirements:
           *
           * - `newImplementation` must be a contract.
           */
          function _setImplementation(address newImplementation) private {
              require(Address.isContract(newImplementation), "UpgradeableBeacon: implementation is not a contract");
              _implementation = newImplementation;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
      pragma solidity ^0.8.0;
      import "../Proxy.sol";
      import "./ERC1967Upgrade.sol";
      /**
       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
       * implementation address that can be changed. This address is stored in storage in the location specified by
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
       * implementation behind the proxy.
       */
      contract ERC1967Proxy is Proxy, ERC1967Upgrade {
          /**
           * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
           *
           * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
           * function call, and allows initializing the storage of the proxy like a Solidity constructor.
           */
          constructor(address _logic, bytes memory _data) payable {
              _upgradeToAndCall(_logic, _data, false);
          }
          /**
           * @dev Returns the current implementation address.
           */
          function _implementation() internal view virtual override returns (address impl) {
              return ERC1967Upgrade._getImplementation();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol)
      pragma solidity ^0.8.2;
      import "../beacon/IBeacon.sol";
      import "../../interfaces/IERC1967.sol";
      import "../../interfaces/draft-IERC1822.sol";
      import "../../utils/Address.sol";
      import "../../utils/StorageSlot.sol";
      /**
       * @dev This abstract contract provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
       *
       * _Available since v4.1._
       *
       * @custom:oz-upgrades-unsafe-allow delegatecall
       */
      abstract contract ERC1967Upgrade is IERC1967 {
          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /**
           * @dev Returns the current implementation address.
           */
          function _getImplementation() internal view returns (address) {
              return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
              StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
          }
          /**
           * @dev Perform implementation upgrade
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
          /**
           * @dev Perform implementation upgrade with additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCall(
              address newImplementation,
              bytes memory data,
              bool forceCall
          ) internal {
              _upgradeTo(newImplementation);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(newImplementation, data);
              }
          }
          /**
           * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCallUUPS(
              address newImplementation,
              bytes memory data,
              bool forceCall
          ) internal {
              // Upgrades from old implementations will perform a rollback test. This test requires the new
              // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
              // this special case will break upgrade paths from old UUPS implementation to new ones.
              if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                  _setImplementation(newImplementation);
              } else {
                  try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                      require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                  } catch {
                      revert("ERC1967Upgrade: new implementation is not UUPS");
                  }
                  _upgradeToAndCall(newImplementation, data, forceCall);
              }
          }
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @dev Returns the current admin.
           */
          function _getAdmin() internal view returns (address) {
              return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              require(newAdmin != address(0), "ERC1967: new admin is the zero address");
              StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           */
          function _changeAdmin(address newAdmin) internal {
              emit AdminChanged(_getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
           */
          bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          /**
           * @dev Returns the current beacon.
           */
          function _getBeacon() internal view returns (address) {
              return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
          }
          /**
           * @dev Stores a new beacon in the EIP1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
              require(
                  Address.isContract(IBeacon(newBeacon).implementation()),
                  "ERC1967: beacon implementation is not a contract"
              );
              StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
          }
          /**
           * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
           * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
           *
           * Emits a {BeaconUpgraded} event.
           */
          function _upgradeBeaconToAndCall(
              address newBeacon,
              bytes memory data,
              bool forceCall
          ) internal {
              _setBeacon(newBeacon);
              emit BeaconUpgraded(newBeacon);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
       * be specified by overriding the virtual {_implementation} function.
       *
       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
       * different contract through the {_delegate} function.
       *
       * The success and return data of the delegated call will be returned back to the caller of the proxy.
       */
      abstract contract Proxy {
          /**
           * @dev Delegates the current call to `implementation`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _delegate(address implementation) internal virtual {
              assembly {
                  // Copy msg.data. We take full control of memory in this inline assembly
                  // block because it will not return to Solidity code. We overwrite the
                  // Solidity scratch pad at memory position 0.
                  calldatacopy(0, 0, calldatasize())
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                  // Copy the returned data.
                  returndatacopy(0, 0, returndatasize())
                  switch result
                  // delegatecall returns 0 on error.
                  case 0 {
                      revert(0, returndatasize())
                  }
                  default {
                      return(0, returndatasize())
                  }
              }
          }
          /**
           * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
           * and {_fallback} should delegate.
           */
          function _implementation() internal view virtual returns (address);
          /**
           * @dev Delegates the current call to the address returned by `_implementation()`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _fallback() internal virtual {
              _beforeFallback();
              _delegate(_implementation());
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
           * function in the contract matches the call data.
           */
          fallback() external payable virtual {
              _fallback();
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
           * is empty.
           */
          receive() external payable virtual {
              _fallback();
          }
          /**
           * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
           * call, or as part of the Solidity `fallback` or `receive` functions.
           *
           * If overridden should call `super._beforeFallback()`.
           */
          function _beforeFallback() internal virtual {}
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/ProxyAdmin.sol)
      pragma solidity ^0.8.0;
      import "./TransparentUpgradeableProxy.sol";
      import "../../access/Ownable.sol";
      /**
       * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
       * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
       */
      contract ProxyAdmin is Ownable {
          /**
           * @dev Returns the current implementation of `proxy`.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function getProxyImplementation(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
              // We need to manually run the static call since the getter cannot be flagged as view
              // bytes4(keccak256("implementation()")) == 0x5c60da1b
              (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
              require(success);
              return abi.decode(returndata, (address));
          }
          /**
           * @dev Returns the current admin of `proxy`.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function getProxyAdmin(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
              // We need to manually run the static call since the getter cannot be flagged as view
              // bytes4(keccak256("admin()")) == 0xf851a440
              (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
              require(success);
              return abi.decode(returndata, (address));
          }
          /**
           * @dev Changes the admin of `proxy` to `newAdmin`.
           *
           * Requirements:
           *
           * - This contract must be the current admin of `proxy`.
           */
          function changeProxyAdmin(ITransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
              proxy.changeAdmin(newAdmin);
          }
          /**
           * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function upgrade(ITransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
              proxy.upgradeTo(implementation);
          }
          /**
           * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
           * {TransparentUpgradeableProxy-upgradeToAndCall}.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function upgradeAndCall(
              ITransparentUpgradeableProxy proxy,
              address implementation,
              bytes memory data
          ) public payable virtual onlyOwner {
              proxy.upgradeToAndCall{value: msg.value}(implementation, data);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/TransparentUpgradeableProxy.sol)
      pragma solidity ^0.8.0;
      import "../ERC1967/ERC1967Proxy.sol";
      /**
       * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
       * does not implement this interface directly, and some of its functions are implemented by an internal dispatch
       * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
       * include them in the ABI so this interface must be used to interact with it.
       */
      interface ITransparentUpgradeableProxy is IERC1967 {
          function admin() external view returns (address);
          function implementation() external view returns (address);
          function changeAdmin(address) external;
          function upgradeTo(address) external;
          function upgradeToAndCall(address, bytes memory) external payable;
      }
      /**
       * @dev This contract implements a proxy that is upgradeable by an admin.
       *
       * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
       * clashing], which can potentially be used in an attack, this contract uses the
       * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
       * things that go hand in hand:
       *
       * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
       * that call matches one of the admin functions exposed by the proxy itself.
       * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
       * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
       * "admin cannot fallback to proxy target".
       *
       * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
       * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
       * to sudden errors when trying to call a function from the proxy implementation.
       *
       * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
       * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
       *
       * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
       * inherit from that interface, and instead the admin functions are implicitly implemented using a custom dispatch
       * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
       * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
       * implementation.
       *
       * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the compiler
       * will not check that there are no selector conflicts, due to the note above. A selector clash between any new function
       * and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This could
       * render the admin operations inaccessible, which could prevent upgradeability. Transparency may also be compromised.
       */
      contract TransparentUpgradeableProxy is ERC1967Proxy {
          /**
           * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
           * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
           */
          constructor(
              address _logic,
              address admin_,
              bytes memory _data
          ) payable ERC1967Proxy(_logic, _data) {
              _changeAdmin(admin_);
          }
          /**
           * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
           *
           * CAUTION: This modifier is deprecated, as it could cause issues if the modified function has arguments, and the
           * implementation provides a function with the same selector.
           */
          modifier ifAdmin() {
              if (msg.sender == _getAdmin()) {
                  _;
              } else {
                  _fallback();
              }
          }
          /**
           * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior
           */
          function _fallback() internal virtual override {
              if (msg.sender == _getAdmin()) {
                  bytes memory ret;
                  bytes4 selector = msg.sig;
                  if (selector == ITransparentUpgradeableProxy.upgradeTo.selector) {
                      ret = _dispatchUpgradeTo();
                  } else if (selector == ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                      ret = _dispatchUpgradeToAndCall();
                  } else if (selector == ITransparentUpgradeableProxy.changeAdmin.selector) {
                      ret = _dispatchChangeAdmin();
                  } else if (selector == ITransparentUpgradeableProxy.admin.selector) {
                      ret = _dispatchAdmin();
                  } else if (selector == ITransparentUpgradeableProxy.implementation.selector) {
                      ret = _dispatchImplementation();
                  } else {
                      revert("TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                  }
                  assembly {
                      return(add(ret, 0x20), mload(ret))
                  }
              } else {
                  super._fallback();
              }
          }
          /**
           * @dev Returns the current admin.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
           */
          function _dispatchAdmin() private returns (bytes memory) {
              _requireZeroValue();
              address admin = _getAdmin();
              return abi.encode(admin);
          }
          /**
           * @dev Returns the current implementation.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
           */
          function _dispatchImplementation() private returns (bytes memory) {
              _requireZeroValue();
              address implementation = _implementation();
              return abi.encode(implementation);
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           */
          function _dispatchChangeAdmin() private returns (bytes memory) {
              _requireZeroValue();
              address newAdmin = abi.decode(msg.data[4:], (address));
              _changeAdmin(newAdmin);
              return "";
          }
          /**
           * @dev Upgrade the implementation of the proxy.
           */
          function _dispatchUpgradeTo() private returns (bytes memory) {
              _requireZeroValue();
              address newImplementation = abi.decode(msg.data[4:], (address));
              _upgradeToAndCall(newImplementation, bytes(""), false);
              return "";
          }
          /**
           * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
           * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
           * proxied contract.
           */
          function _dispatchUpgradeToAndCall() private returns (bytes memory) {
              (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
              _upgradeToAndCall(newImplementation, data, true);
              return "";
          }
          /**
           * @dev Returns the current admin.
           */
          function _admin() internal view virtual returns (address) {
              return _getAdmin();
          }
          /**
           * @dev To keep this contract fully transparent, all `ifAdmin` functions must be payable. This helper is here to
           * emulate some proxy functions being non-payable while still allowing value to pass through.
           */
          function _requireZeroValue() private {
              require(msg.value == 0);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
           *
           * _Available since v4.8._
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              if (success) {
                  if (returndata.length == 0) {
                      // only check isContract if the call was successful and the return data is empty
                      // otherwise we already know that it was a contract
                      require(isContract(target), "Address: call to non-contract");
                  }
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason or using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          function _revert(bytes memory returndata, string memory errorMessage) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert(errorMessage);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
      }
      

      File 3 of 3: PriorityPool
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/ContextUpgradeable.sol";
      import {Initializable} from "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          function __Ownable_init() internal onlyInitializing {
              __Ownable_init_unchained();
          }
          function __Ownable_init_unchained() internal onlyInitializing {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby disabling any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
       * proxy whose upgrades are fully controlled by the current implementation.
       */
      interface IERC1822ProxiableUpgradeable {
          /**
           * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
           * address.
           *
           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
           * function revert if invoked through a proxy.
           */
          function proxiableUUID() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
       *
       * _Available since v4.8.3._
       */
      interface IERC1967Upgradeable {
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Emitted when the beacon is changed.
           */
          event BeaconUpgraded(address indexed beacon);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeaconUpgradeable {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {BeaconProxy} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)
      pragma solidity ^0.8.2;
      import "../beacon/IBeaconUpgradeable.sol";
      import "../../interfaces/IERC1967Upgradeable.sol";
      import "../../interfaces/draft-IERC1822Upgradeable.sol";
      import "../../utils/AddressUpgradeable.sol";
      import "../../utils/StorageSlotUpgradeable.sol";
      import {Initializable} from "../utils/Initializable.sol";
      /**
       * @dev This abstract contract provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
       *
       * _Available since v4.1._
       */
      abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable {
          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          function __ERC1967Upgrade_init() internal onlyInitializing {
          }
          function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev Returns the current implementation address.
           */
          function _getImplementation() internal view returns (address) {
              return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
              StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
          }
          /**
           * @dev Perform implementation upgrade
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
          /**
           * @dev Perform implementation upgrade with additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
              _upgradeTo(newImplementation);
              if (data.length > 0 || forceCall) {
                  AddressUpgradeable.functionDelegateCall(newImplementation, data);
              }
          }
          /**
           * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
              // Upgrades from old implementations will perform a rollback test. This test requires the new
              // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
              // this special case will break upgrade paths from old UUPS implementation to new ones.
              if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
                  _setImplementation(newImplementation);
              } else {
                  try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                      require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                  } catch {
                      revert("ERC1967Upgrade: new implementation is not UUPS");
                  }
                  _upgradeToAndCall(newImplementation, data, forceCall);
              }
          }
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @dev Returns the current admin.
           */
          function _getAdmin() internal view returns (address) {
              return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              require(newAdmin != address(0), "ERC1967: new admin is the zero address");
              StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           */
          function _changeAdmin(address newAdmin) internal {
              emit AdminChanged(_getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
           */
          bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          /**
           * @dev Returns the current beacon.
           */
          function _getBeacon() internal view returns (address) {
              return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
          }
          /**
           * @dev Stores a new beacon in the EIP1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
              require(
                  AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
                  "ERC1967: beacon implementation is not a contract"
              );
              StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
          }
          /**
           * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
           * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
           *
           * Emits a {BeaconUpgraded} event.
           */
          function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
              _setBeacon(newBeacon);
              emit BeaconUpgraded(newBeacon);
              if (data.length > 0 || forceCall) {
                  AddressUpgradeable.functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
              }
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.2;
      import "../../utils/AddressUpgradeable.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```solidity
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       *
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           * @custom:oz-retyped-from bool
           */
          uint8 private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint8 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts.
           *
           * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
           * constructor.
           *
           * Emits an {Initialized} event.
           */
          modifier initializer() {
              bool isTopLevelCall = !_initializing;
              require(
                  (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                  "Initializable: contract is already initialized"
              );
              _initialized = 1;
              if (isTopLevelCall) {
                  _initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * A reinitializer may be used after the original initialization step. This is essential to configure modules that
           * are added through upgrades and that require initialization.
           *
           * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
           * cannot be nested. If one is invoked in the context of another, execution will revert.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           *
           * WARNING: setting the version to 255 will prevent any future reinitialization.
           *
           * Emits an {Initialized} event.
           */
          modifier reinitializer(uint8 version) {
              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
              _initialized = version;
              _initializing = true;
              _;
              _initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           *
           * Emits an {Initialized} event the first time it is successfully executed.
           */
          function _disableInitializers() internal virtual {
              require(!_initializing, "Initializable: contract is initializing");
              if (_initialized != type(uint8).max) {
                  _initialized = type(uint8).max;
                  emit Initialized(type(uint8).max);
              }
          }
          /**
           * @dev Returns the highest version that has been initialized. See {reinitializer}.
           */
          function _getInitializedVersion() internal view returns (uint8) {
              return _initialized;
          }
          /**
           * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
           */
          function _isInitializing() internal view returns (bool) {
              return _initializing;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/UUPSUpgradeable.sol)
      pragma solidity ^0.8.0;
      import "../../interfaces/draft-IERC1822Upgradeable.sol";
      import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
      import {Initializable} from "./Initializable.sol";
      /**
       * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
       * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
       *
       * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
       * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
       * `UUPSUpgradeable` with a custom implementation of upgrades.
       *
       * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
       *
       * _Available since v4.1._
       */
      abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
          /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
          address private immutable __self = address(this);
          /**
           * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
           * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
           * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
           * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
           * fail.
           */
          modifier onlyProxy() {
              require(address(this) != __self, "Function must be called through delegatecall");
              require(_getImplementation() == __self, "Function must be called through active proxy");
              _;
          }
          /**
           * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
           * callable on the implementing contract but not through proxies.
           */
          modifier notDelegated() {
              require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
              _;
          }
          function __UUPSUpgradeable_init() internal onlyInitializing {
          }
          function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
           * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
           *
           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
           * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
           */
          function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
              return _IMPLEMENTATION_SLOT;
          }
          /**
           * @dev Upgrade the implementation of the proxy to `newImplementation`.
           *
           * Calls {_authorizeUpgrade}.
           *
           * Emits an {Upgraded} event.
           *
           * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
           */
          function upgradeTo(address newImplementation) public virtual onlyProxy {
              _authorizeUpgrade(newImplementation);
              _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
          }
          /**
           * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
           * encoded in `data`.
           *
           * Calls {_authorizeUpgrade}.
           *
           * Emits an {Upgraded} event.
           *
           * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
           */
          function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
              _authorizeUpgrade(newImplementation);
              _upgradeToAndCallUUPS(newImplementation, data, true);
          }
          /**
           * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
           * {upgradeTo} and {upgradeToAndCall}.
           *
           * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
           *
           * ```solidity
           * function _authorizeUpgrade(address) internal override onlyOwner {}
           * ```
           */
          function _authorizeUpgrade(address newImplementation) internal virtual;
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
      pragma solidity ^0.8.0;
      import "../utils/ContextUpgradeable.sol";
      import {Initializable} from "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which allows children to implement an emergency stop
       * mechanism that can be triggered by an authorized account.
       *
       * This module is used through inheritance. It will make available the
       * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
       * the functions of your contract. Note that they will not be pausable by
       * simply including this module, only once the modifiers are put in place.
       */
      abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
          /**
           * @dev Emitted when the pause is triggered by `account`.
           */
          event Paused(address account);
          /**
           * @dev Emitted when the pause is lifted by `account`.
           */
          event Unpaused(address account);
          bool private _paused;
          /**
           * @dev Initializes the contract in unpaused state.
           */
          function __Pausable_init() internal onlyInitializing {
              __Pausable_init_unchained();
          }
          function __Pausable_init_unchained() internal onlyInitializing {
              _paused = false;
          }
          /**
           * @dev Modifier to make a function callable only when the contract is not paused.
           *
           * Requirements:
           *
           * - The contract must not be paused.
           */
          modifier whenNotPaused() {
              _requireNotPaused();
              _;
          }
          /**
           * @dev Modifier to make a function callable only when the contract is paused.
           *
           * Requirements:
           *
           * - The contract must be paused.
           */
          modifier whenPaused() {
              _requirePaused();
              _;
          }
          /**
           * @dev Returns true if the contract is paused, and false otherwise.
           */
          function paused() public view virtual returns (bool) {
              return _paused;
          }
          /**
           * @dev Throws if the contract is paused.
           */
          function _requireNotPaused() internal view virtual {
              require(!paused(), "Pausable: paused");
          }
          /**
           * @dev Throws if the contract is not paused.
           */
          function _requirePaused() internal view virtual {
              require(paused(), "Pausable: not paused");
          }
          /**
           * @dev Triggers stopped state.
           *
           * Requirements:
           *
           * - The contract must not be paused.
           */
          function _pause() internal virtual whenNotPaused {
              _paused = true;
              emit Paused(_msgSender());
          }
          /**
           * @dev Returns to normal state.
           *
           * Requirements:
           *
           * - The contract must be paused.
           */
          function _unpause() internal virtual whenPaused {
              _paused = false;
              emit Unpaused(_msgSender());
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       *
       * ==== Security Considerations
       *
       * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
       * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
       * considered as an intention to spend the allowance in any specific way. The second is that because permits have
       * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
       * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
       * generally recommended is:
       *
       * ```solidity
       * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
       *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
       *     doThing(..., value);
       * }
       *
       * function doThing(..., uint256 value) public {
       *     token.safeTransferFrom(msg.sender, address(this), value);
       *     ...
       * }
       * ```
       *
       * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
       * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
       * {SafeERC20-safeTransferFrom}).
       *
       * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
       * contracts should have entry points that don't rely on permit.
       */
      interface IERC20PermitUpgradeable {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           *
           * CAUTION: See Security Considerations above.
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20Upgradeable {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 amount) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
      pragma solidity ^0.8.0;
      import "../IERC20Upgradeable.sol";
      import "../extensions/IERC20PermitUpgradeable.sol";
      import "../../../utils/AddressUpgradeable.sol";
      /**
       * @title SafeERC20
       * @dev Wrappers around ERC20 operations that throw on failure (when the token
       * contract returns false). Tokens that return no value (and instead revert or
       * throw on failure) are also supported, non-reverting calls are assumed to be
       * successful.
       * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
       * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
       */
      library SafeERC20Upgradeable {
          using AddressUpgradeable for address;
          /**
           * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
           * non-reverting calls are assumed to be successful.
           */
          function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
              _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
          }
          /**
           * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
           * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
           */
          function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
              _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
          }
          /**
           * @dev Deprecated. This function has issues similar to the ones found in
           * {IERC20-approve}, and its usage is discouraged.
           *
           * Whenever possible, use {safeIncreaseAllowance} and
           * {safeDecreaseAllowance} instead.
           */
          function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
              // safeApprove should only be called when setting an initial allowance,
              // or when resetting it to zero. To increase and decrease it, use
              // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
              require(
                  (value == 0) || (token.allowance(address(this), spender) == 0),
                  "SafeERC20: approve from non-zero to non-zero allowance"
              );
              _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
          }
          /**
           * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
           * non-reverting calls are assumed to be successful.
           */
          function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
              uint256 oldAllowance = token.allowance(address(this), spender);
              _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
          }
          /**
           * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
           * non-reverting calls are assumed to be successful.
           */
          function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
              unchecked {
                  uint256 oldAllowance = token.allowance(address(this), spender);
                  require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                  _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
              }
          }
          /**
           * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
           * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
           * to be set to zero before setting it to a non-zero value, such as USDT.
           */
          function forceApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
              bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
              if (!_callOptionalReturnBool(token, approvalCall)) {
                  _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
                  _callOptionalReturn(token, approvalCall);
              }
          }
          /**
           * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
           * Revert on invalid signature.
           */
          function safePermit(
              IERC20PermitUpgradeable token,
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal {
              uint256 nonceBefore = token.nonces(owner);
              token.permit(owner, spender, value, deadline, v, r, s);
              uint256 nonceAfter = token.nonces(owner);
              require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
          }
          /**
           * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
           * on the return value: the return value is optional (but if data is returned, it must not be false).
           * @param token The token targeted by the call.
           * @param data The call data (encoded using abi.encode or one of its variants).
           */
          function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
              // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
              // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
              // the target address contains contract code and also asserts for success in the low-level call.
              bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
              require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
          }
          /**
           * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
           * on the return value: the return value is optional (but if data is returned, it must not be false).
           * @param token The token targeted by the call.
           * @param data The call data (encoded using abi.encode or one of its variants).
           *
           * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
           */
          function _callOptionalReturnBool(IERC20Upgradeable token, bytes memory data) private returns (bool) {
              // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
              // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
              // and not revert is the subcall reverts.
              (bool success, bytes memory returndata) = address(token).call(data);
              return
                  success && (returndata.length == 0 || abi.decode(returndata, (bool))) && AddressUpgradeable.isContract(address(token));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library AddressUpgradeable {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           *
           * Furthermore, `isContract` will also return true if the target contract within
           * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
           * which only has an effect at the end of a transaction.
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
           *
           * _Available since v4.8._
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              if (success) {
                  if (returndata.length == 0) {
                      // only check isContract if the call was successful and the return data is empty
                      // otherwise we already know that it was a contract
                      require(isContract(target), "Address: call to non-contract");
                  }
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason or using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          function _revert(bytes memory returndata, string memory errorMessage) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert(errorMessage);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
      pragma solidity ^0.8.0;
      import {Initializable} from "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal onlyInitializing {
          }
          function __Context_init_unchained() internal onlyInitializing {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          function _contextSuffixLength() internal view virtual returns (uint256) {
              return 0;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev These functions deal with verification of Merkle Tree proofs.
       *
       * The tree and the proofs can be generated using our
       * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
       * You will find a quickstart guide in the readme.
       *
       * WARNING: You should avoid using leaf values that are 64 bytes long prior to
       * hashing, or use a hash function other than keccak256 for hashing leaves.
       * This is because the concatenation of a sorted pair of internal nodes in
       * the merkle tree could be reinterpreted as a leaf value.
       * OpenZeppelin's JavaScript library generates merkle trees that are safe
       * against this attack out of the box.
       */
      library MerkleProofUpgradeable {
          /**
           * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
           * defined by `root`. For this, a `proof` must be provided, containing
           * sibling hashes on the branch from the leaf to the root of the tree. Each
           * pair of leaves and each pair of pre-images are assumed to be sorted.
           */
          function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
              return processProof(proof, leaf) == root;
          }
          /**
           * @dev Calldata version of {verify}
           *
           * _Available since v4.7._
           */
          function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
              return processProofCalldata(proof, leaf) == root;
          }
          /**
           * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
           * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
           * hash matches the root of the tree. When processing the proof, the pairs
           * of leafs & pre-images are assumed to be sorted.
           *
           * _Available since v4.4._
           */
          function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = _hashPair(computedHash, proof[i]);
              }
              return computedHash;
          }
          /**
           * @dev Calldata version of {processProof}
           *
           * _Available since v4.7._
           */
          function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = _hashPair(computedHash, proof[i]);
              }
              return computedHash;
          }
          /**
           * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
           * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
           *
           * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * _Available since v4.7._
           */
          function multiProofVerify(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32 root,
              bytes32[] memory leaves
          ) internal pure returns (bool) {
              return processMultiProof(proof, proofFlags, leaves) == root;
          }
          /**
           * @dev Calldata version of {multiProofVerify}
           *
           * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * _Available since v4.7._
           */
          function multiProofVerifyCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32 root,
              bytes32[] memory leaves
          ) internal pure returns (bool) {
              return processMultiProofCalldata(proof, proofFlags, leaves) == root;
          }
          /**
           * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
           * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
           * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
           * respectively.
           *
           * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
           * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
           * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
           *
           * _Available since v4.7._
           */
          function processMultiProof(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32[] memory leaves
          ) internal pure returns (bytes32 merkleRoot) {
              // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 proofLen = proof.length;
              uint256 totalHashes = proofFlags.length;
              // Check proof validity.
              require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](totalHashes);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < totalHashes; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i]
                      ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                      : proof[proofPos++];
                  hashes[i] = _hashPair(a, b);
              }
              if (totalHashes > 0) {
                  require(proofPos == proofLen, "MerkleProof: invalid multiproof");
                  unchecked {
                      return hashes[totalHashes - 1];
                  }
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
          /**
           * @dev Calldata version of {processMultiProof}.
           *
           * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * _Available since v4.7._
           */
          function processMultiProofCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32[] memory leaves
          ) internal pure returns (bytes32 merkleRoot) {
              // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 proofLen = proof.length;
              uint256 totalHashes = proofFlags.length;
              // Check proof validity.
              require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](totalHashes);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < totalHashes; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i]
                      ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                      : proof[proofPos++];
                  hashes[i] = _hashPair(a, b);
              }
              if (totalHashes > 0) {
                  require(proofPos == proofLen, "MerkleProof: invalid multiproof");
                  unchecked {
                      return hashes[totalHashes - 1];
                  }
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
          function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
              return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
          }
          function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
              /// @solidity memory-safe-assembly
              assembly {
                  mstore(0x00, a)
                  mstore(0x20, b)
                  value := keccak256(0x00, 0x40)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library MathUpgradeable {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                      // The surrounding unchecked block does not change this fact.
                      // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1, "Math: mulDiv overflow");
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              //
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
              //
              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
              //
              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1 << (log2(a) >> 1);
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 2, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 128;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 64;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 32;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 16;
                  }
                  if (value >> 8 > 0) {
                      value >>= 8;
                      result += 8;
                  }
                  if (value >> 4 > 0) {
                      value >>= 4;
                      result += 4;
                  }
                  if (value >> 2 > 0) {
                      value >>= 2;
                      result += 2;
                  }
                  if (value >> 1 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 10, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10 ** 64) {
                      value /= 10 ** 64;
                      result += 64;
                  }
                  if (value >= 10 ** 32) {
                      value /= 10 ** 32;
                      result += 32;
                  }
                  if (value >= 10 ** 16) {
                      value /= 10 ** 16;
                      result += 16;
                  }
                  if (value >= 10 ** 8) {
                      value /= 10 ** 8;
                      result += 8;
                  }
                  if (value >= 10 ** 4) {
                      value /= 10 ** 4;
                      result += 4;
                  }
                  if (value >= 10 ** 2) {
                      value /= 10 ** 2;
                      result += 2;
                  }
                  if (value >= 10 ** 1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 256, rounded down, of a positive value.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 16;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 8;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 4;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 2;
                  }
                  if (value >> 8 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
      pragma solidity ^0.8.0;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```solidity
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
       * _Available since v4.9 for `string`, `bytes`._
       */
      library StorageSlotUpgradeable {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          struct StringSlot {
              string value;
          }
          struct BytesSlot {
              bytes value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` with member `value` located at `slot`.
           */
          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
           */
          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` with member `value` located at `slot`.
           */
          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
           */
          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 amount) external returns (bool);
      }
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity 0.8.15;
      import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
      interface IERC677 is IERC20 {
          function transferAndCall(
              address _to,
              uint256 _value,
              bytes calldata _data
          ) external returns (bool success);
      }
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity 0.8.15;
      interface IRewardsPoolController {
          /**
           * @notice returns an account's stake balance for use by reward pools
           * controlled by this contract
           * @return account's balance
           */
          function staked(address _account) external view returns (uint256);
          /**
           * @notice returns the total staked amount for use by reward pools
           * controlled by this contract
           * @return total staked amount
           */
          function totalStaked() external view returns (uint256);
          /**
           * @notice adds a new token
           * @param _token token to add
           * @param _rewardsPool token rewards pool to add
           **/
          function addToken(address _token, address _rewardsPool) external;
          function distributeTokens(address[] memory _tokens) external;
          function withdrawRewards(address[] memory _tokens) external;
      }
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity 0.8.15;
      import "./IRewardsPoolController.sol";
      interface ISDLPool is IRewardsPoolController {
          struct RESDLToken {
              uint256 amount;
              uint256 boostAmount;
              uint64 startTime;
              uint64 duration;
              uint64 expiry;
          }
          function effectiveBalanceOf(address _account) external view returns (uint256);
          function ownerOf(uint256 _lockId) external view returns (address);
          function getLockIdsByOwner(address _owner) external view returns (uint256[] memory);
          function supportedTokens() external view returns (address[] memory);
      }
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity 0.8.15;
      import "./IStakingRewardsPool.sol";
      interface IStakingPool is IStakingRewardsPool {
          function deposit(address _account, uint256 _amount, bytes[] calldata _data) external;
          function withdraw(
              address _account,
              address _receiver,
              uint256 _amount,
              bytes[] calldata _data
          ) external;
          function strategyDeposit(uint256 _index, uint256 _amount, bytes calldata _data) external;
          function strategyWithdraw(uint256 _index, uint256 _amount, bytes calldata _data) external;
          function updateStrategyRewards(uint256[] memory _strategyIdxs, bytes memory _data) external;
          function getMaxDeposits() external view returns (uint256);
          function addStrategy(address _strategy) external;
          function removeStrategy(uint256 _index) external;
          function reorderStrategies(uint256[] calldata _newOrder) external;
          function getStrategies() external view returns (address[] memory);
          function setPoolIndex(uint16 _poolIndex) external;
          function canDeposit() external view returns (uint256);
          function token() external view returns (address);
          function poolIndex() external view returns (uint16);
          function canWithdraw() external view returns (uint256);
          function getStrategyDepositRoom() external view returns (uint256);
          function getUnusedDeposits() external view returns (uint256);
          function burn(uint256 _amount) external;
      }
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity 0.8.15;
      import "./IERC677.sol";
      interface IStakingRewardsPool is IERC677 {
          /**
           * @notice returns an account's share balance
           * @param _account account to return balance for
           * @return account's share balance
           **/
          function sharesOf(address _account) external view returns (uint256);
          /**
           * @notice returns the amount of shares that corresponds to a staked amount
           * @param _amount staked amount
           * @return amount of shares
           **/
          function getSharesByStake(uint256 _amount) external view returns (uint256);
          /**
           * @notice returns the amount of stake that corresponds to an amount of shares
           * @param _amount shares amount
           * @return amount of stake
           **/
          function getStakeByShares(uint256 _amount) external view returns (uint256);
          function totalShares() external view returns (uint256);
          function totalSupply() external view returns (uint256);
          function transferShares(address _recipient, uint256 _sharesAmount) external returns (bool);
      }
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity 0.8.15;
      interface IWithdrawalPool {
          function getTotalQueuedWithdrawals() external view returns (uint256);
          function minWithdrawalAmount() external view returns (uint256);
          function getAccountTotalQueuedWithdrawals(address _account) external view returns (uint256);
          function getFinalizedWithdrawalIdsByOwner(
              address _account
          ) external view returns (uint256[] memory, uint256);
          function getBatchIds(uint256[] memory _withdrawalIds) external view returns (uint256[] memory);
          function deposit(uint256 _amount) external;
          function withdraw(uint256[] calldata _withdrawalIds, uint256[] calldata _batchIds) external;
          function queueWithdrawal(address _account, uint256 _amount) external;
          function performUpkeep(bytes calldata _performData) external;
          function checkUpkeep(bytes calldata) external view returns (bool, bytes memory);
      }
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity 0.8.15;
      import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/cryptography/MerkleProofUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol";
      import "@openzeppelin/contracts-upgradeable/utils/math/MathUpgradeable.sol";
      import "../interfaces/IStakingPool.sol";
      import "../interfaces/ISDLPool.sol";
      import "../interfaces/IWithdrawalPool.sol";
      /**
       * @title Priority Pool
       * @notice Allows users to queue asset tokens which are eventually deposited into the staking pool when space becomes available -
       * liquid staking tokens minted by the staking pool are then distributed using a merkle tree
       */
      contract PriorityPool is UUPSUpgradeable, OwnableUpgradeable, PausableUpgradeable {
          using SafeERC20Upgradeable for IERC20Upgradeable;
          enum PoolStatus {
              OPEN,
              DRAINING,
              CLOSED
          }
          // address of staking asset token
          IERC20Upgradeable public token;
          // address of staking pool and liquid staking token
          IStakingPool public stakingPool;
          // address of SDL pool
          ISDLPool public sdlPool;
          // address of oracle contract that handles LST distribution
          address public distributionOracle;
          // min amount of tokens that can be deposited into the staking pool strategies in a single tx
          uint128 public queueDepositMin;
          // max amount of tokens that can be deposited into the staking pool strategies in a single tx
          uint128 public queueDepositMax;
          // current status of the pool
          PoolStatus public poolStatus;
          // merkle root for the latest distribution tree
          bytes32 public merkleRoot;
          // ipfs hash where the latest distribution tree is stored
          bytes32 public ipfsHash;
          // number of entries in the latest distribution tree
          uint256 public merkleTreeSize;
          // total number of tokens queued for deposit into the staking pool
          uint256 public totalQueued;
          // total number of tokens deposited into the staking pool or swapped for LSTs since the last distribution
          uint256 public depositsSinceLastUpdate;
          // total number of shares received for depositsSinceLastUpdate
          uint256 private sharesSinceLastUpdate;
          // list of all accounts that have ever queued tokens
          address[] private accounts;
          // stores each account's index in the distribution tree
          mapping(address => uint256) private accountIndexes;
          // stores the lifetime amount of queued tokens for each account less any tokens that were unqueued
          mapping(address => uint256) private accountQueuedTokens;
          // stores the total amount of LSTs that each account has claimed
          mapping(address => uint256) private accountClaimed;
          // stored the total amount of LST shares that each account has claimed
          mapping(address => uint256) private accountSharesClaimed;
          // address with authorization to pause the pool
          address public rebaseController;
          // address of withdrawal pool
          IWithdrawalPool public withdrawalPool;
          // whether instant withdrawals are enabled
          bool public allowInstantWithdrawals;
          event UnqueueTokens(address indexed account, uint256 amount);
          event ClaimLSDTokens(address indexed account, uint256 amount, uint256 amountWithYield);
          event Deposit(address indexed account, uint256 instantAmount, uint256 queueAmount);
          event Withdraw(address indexed account, uint256 amount);
          event UpdateDistribution(
              bytes32 merkleRoot,
              bytes32 ipfsHash,
              uint256 incrementalAmount,
              uint256 incrementalSharesAmount
          );
          event SetPoolStatus(PoolStatus status);
          event SetQueueDepositParams(uint128 queueDepositMin, uint128 queueDepositMax);
          event DepositTokens(uint256 unusedTokensAmount, uint256 queuedTokensAmount);
          error InvalidValue();
          error UnauthorizedToken();
          error InsufficientQueuedTokens();
          error InvalidProof();
          error InsufficientBalance();
          error NothingToClaim();
          error DepositsDisabled();
          error WithdrawalsDisabled();
          error InsufficientDepositRoom();
          error CannotSetClosedStatus();
          error SenderNotAuthorized();
          error InvalidAmount();
          error StatusAlreadySet();
          error InsufficientLiquidity();
          error WithdrawFailed();
          /// @custom:oz-upgrades-unsafe-allow constructor
          constructor() {
              _disableInitializers();
          }
          /**
           * @notice Initializes contract
           * @param _token address of staking asset token
           * @param _stakingPool address of staking pool
           * @param _sdlPool address of SDL pool
           * @param _queueDepositMin min amount of tokens that can be deposited into the staking pool in a single tx
           * @param _queueDepositMax mmaxin amount of tokens that can be deposited into the staking pool in a single tx
           * @param _allowInstantWithdrawals whether instant withdrawals are enabled
           **/
          function initialize(
              address _token,
              address _stakingPool,
              address _sdlPool,
              uint128 _queueDepositMin,
              uint128 _queueDepositMax,
              bool _allowInstantWithdrawals
          ) public initializer {
              __UUPSUpgradeable_init();
              __Ownable_init();
              __Pausable_init();
              token = IERC20Upgradeable(_token);
              stakingPool = IStakingPool(_stakingPool);
              sdlPool = ISDLPool(_sdlPool);
              queueDepositMin = _queueDepositMin;
              queueDepositMax = _queueDepositMax;
              allowInstantWithdrawals = _allowInstantWithdrawals;
              accounts.push(address(0));
              token.safeIncreaseAllowance(_stakingPool, type(uint256).max);
          }
          /**
           * @notice Reverts if sender is not distribution oracle
           **/
          modifier onlyDistributionOracle() {
              if (msg.sender != distributionOracle) revert SenderNotAuthorized();
              _;
          }
          /**
           * @notice Reverts if sender is not withdrawal pool
           **/
          modifier onlyWithdrawalPool() {
              if (msg.sender != address(withdrawalPool)) revert SenderNotAuthorized();
              _;
          }
          /**
           * @notice Returns a list of all accounts
           * @dev accounts are returned in the same order as they are in the merkle tree
           * @return list of accounts
           */
          function getAccounts() external view returns (address[] memory) {
              return accounts;
          }
          /**
           * @notice Returns the index of an account
           * @dev this index represents an account's position in the merkle tree
           * @param _account account address
           * @return account index
           */
          function getAccountIndex(address _account) external view returns (uint256) {
              return accountIndexes[_account];
          }
          /**
           * @notice Returns an account's current amount of queued tokens
           * @dev _distributionAmount is stored on IPFS
           * @param _account account address
           * @param _distributionAmount account's distribution amount from the latest distribution
           * @return amount of queued tokens for an account
           */
          function getQueuedTokens(
              address _account,
              uint256 _distributionAmount
          ) public view returns (uint256) {
              return accountQueuedTokens[_account] - _distributionAmount;
          }
          /**
           * @notice Returns an account's current amount of withdrawable liquid staking tokens
           * @dev _distributionShareAmount is stored on IPFS
           * @param _account account address
           * @param _distributionShareAmount account's distribution share amounts from the latest distribution
           * @return withdrawable LSD tokens for account
           */
          function getLSDTokens(
              address _account,
              uint256 _distributionShareAmount
          ) external view returns (uint256) {
              uint256 sharesToClaim = _distributionShareAmount - accountSharesClaimed[_account];
              return stakingPool.getStakeByShares(sharesToClaim);
          }
          /**
           * @notice Returns the current amount of withdrawable LSD tokens for multiple accounts
           * @dev _distributionShareAmounts are stored on IPFS and should align with the provided accounts
           * @param _accounts List of account addresses
           * @param _distributionShareAmounts List of distribution share amounts corresponding to each account
           * @return Array of withdrawable LSD token amounts for each account
           */
          function getLSDTokensBatch(
              address[] calldata _accounts,
              uint256[] calldata _distributionShareAmounts
          ) external view returns (uint256[] memory) {
              uint256[] memory withdrawableAmounts = new uint256[](_accounts.length);
              for (uint256 i = 0; i < _accounts.length; i++) {
                  address account = _accounts[i];
                  uint256 sharesToClaim = _distributionShareAmounts[i] - accountSharesClaimed[account];
                  withdrawableAmounts[i] = stakingPool.getStakeByShares(sharesToClaim);
              }
              return withdrawableAmounts;
          }
          /**
           * @notice Returns the total amount of asset tokens that an account can withdraw
           * @dev includes account's queued tokens and LST balance and checks both priority pool
           * and staking pool liquidity
           * @dev _distributionAmount is stored on IPFS
           * @param _account account address
           * @param _distributionAmount account's distribution amount from the latest distribution
           * @return amount of withdrawable tokens
           */
          function canWithdraw(
              address _account,
              uint256 _distributionAmount
          ) external view returns (uint256) {
              uint256 canUnqueue = paused()
                  ? 0
                  : MathUpgradeable.min(getQueuedTokens(_account, _distributionAmount), totalQueued);
              uint256 stLINKCanWithdraw = poolStatus == PoolStatus.CLOSED
                  ? 0
                  : MathUpgradeable.min(
                      stakingPool.balanceOf(_account),
                      (
                          ((allowInstantWithdrawals && withdrawalPool.getTotalQueuedWithdrawals() == 0) ||
                              _account == address(withdrawalPool))
                              ? stakingPool.canWithdraw()
                              : 0
                      ) +
                          totalQueued -
                          canUnqueue
                  );
              return canUnqueue + stLINKCanWithdraw;
          }
          /**
           * @notice ERC677 implementation to receive a token deposit or withdrawal
           * @dev can receive both asset tokens (deposit) and liquid staking tokens (withdrawal)
           * @param _sender of the token transfer
           * @param _value of the token transfer
           * @param _calldata encoded shouldQueue (bool) and deposit/withdrawal data to pass to
           * staking pool strategies (bytes[])
           **/
          function onTokenTransfer(address _sender, uint256 _value, bytes calldata _calldata) external {
              if (_value == 0) revert InvalidValue();
              (bool shouldQueue, bytes[] memory data) = abi.decode(_calldata, (bool, bytes[]));
              if (msg.sender == address(token)) {
                  _deposit(_sender, _value, shouldQueue, data);
              } else if (msg.sender == address(stakingPool)) {
                  uint256 amountWithdrawn = _withdraw(_sender, _value, shouldQueue, true, data);
                  token.safeTransfer(_sender, amountWithdrawn);
              } else {
                  revert UnauthorizedToken();
              }
          }
          /**
           * @notice Deposits asset tokens into the staking pool and/or queues them
           * @param _amount amount to deposit
           * @param _shouldQueue whether tokens should be queued if there's no room in the staking pool
           * @param _data deposit data passed to staking pool strategies
           */
          function deposit(uint256 _amount, bool _shouldQueue, bytes[] calldata _data) external {
              if (_amount == 0) revert InvalidAmount();
              token.safeTransferFrom(msg.sender, address(this), _amount);
              _deposit(msg.sender, _amount, _shouldQueue, _data);
          }
          /**
           * @notice Withdraws asset tokens
           * @dev will unqueue sender's asset tokens before swapping liquid staking tokens if there is
           * sufficient liquidity and _shouldUnqueue is set to true
           * @param _amountToWithdraw amount of tokens to withdraw
           * @param _amount amount as recorded in sender's merkle tree entry (stored on IPFS)
           * @param _sharesAmount shares amount as recorded in sender's merkle tree entry (stored on IPFS)
           * @param _merkleProof merkle proof for sender's merkle tree entry (generated using IPFS data)
           * @param _shouldUnqueue whether tokens should be unqueued before taking LSD tokens
           * @param _shouldQueueWithdrawal whether a withdrawal should be queued if the full withdrawal amount cannot be satisfied
           * @param _data list of withdrawal data passed to staking pool strategies if executing instant withdrawal
           */
          function withdraw(
              uint256 _amountToWithdraw,
              uint256 _amount,
              uint256 _sharesAmount,
              bytes32[] calldata _merkleProof,
              bool _shouldUnqueue,
              bool _shouldQueueWithdrawal,
              bytes[] calldata _data
          ) external {
              if (_amountToWithdraw == 0) revert InvalidAmount();
              uint256 toWithdraw = _amountToWithdraw;
              address account = msg.sender;
              // attempt to unqueue tokens before withdrawing if flag is set
              if (_shouldUnqueue == true) {
                  _requireNotPaused();
                  if (_merkleProof.length != 0) {
                      bytes32 node = keccak256(
                          bytes.concat(keccak256(abi.encode(account, _amount, _sharesAmount)))
                      );
                      if (!MerkleProofUpgradeable.verify(_merkleProof, merkleRoot, node))
                          revert InvalidProof();
                  } else if (accountIndexes[account] != 0 && accountIndexes[account] < merkleTreeSize) {
                      revert InvalidProof();
                  }
                  uint256 queuedTokens = getQueuedTokens(account, _amount);
                  uint256 canUnqueue = queuedTokens <= totalQueued ? queuedTokens : totalQueued;
                  uint256 amountToUnqueue = toWithdraw <= canUnqueue ? toWithdraw : canUnqueue;
                  if (amountToUnqueue != 0) {
                      accountQueuedTokens[account] -= amountToUnqueue;
                      totalQueued -= amountToUnqueue;
                      toWithdraw -= amountToUnqueue;
                      emit UnqueueTokens(account, amountToUnqueue);
                  }
              }
              // attempt to withdraw if tokens remain after unqueueing
              if (toWithdraw != 0) {
                  IERC20Upgradeable(address(stakingPool)).safeTransferFrom(
                      account,
                      address(this),
                      toWithdraw
                  );
                  toWithdraw -= _withdraw(
                      account,
                      toWithdraw,
                      _shouldQueueWithdrawal,
                      toWithdraw == _amountToWithdraw,
                      _data
                  );
              }
              token.safeTransfer(account, _amountToWithdraw - toWithdraw);
          }
          /**
           * @notice Unqueues queued tokens
           * @param _amountToUnqueue amount of tokens to unqueue
           * @param _amount amount as recorded in sender's merkle tree entry (stored on IPFS)
           * @param _sharesAmount shares amount as recorded in sender's merkle tree entry (stored on IPFS)
           * @param _merkleProof merkle proof for sender's merkle tree entry (generated from IPFS data)
           */
          function unqueueTokens(
              uint256 _amountToUnqueue,
              uint256 _amount,
              uint256 _sharesAmount,
              bytes32[] calldata _merkleProof
          ) external whenNotPaused {
              if (_amountToUnqueue == 0) revert InvalidAmount();
              if (_amountToUnqueue > totalQueued) revert InsufficientQueuedTokens();
              address account = msg.sender;
              // verify merkle proof only if sender is included in tree
              if (accountIndexes[account] != 0 && accountIndexes[account] < merkleTreeSize) {
                  bytes32 node = keccak256(
                      bytes.concat(keccak256(abi.encode(account, _amount, _sharesAmount)))
                  );
                  if (!MerkleProofUpgradeable.verify(_merkleProof, merkleRoot, node))
                      revert InvalidProof();
              }
              if (_amountToUnqueue > getQueuedTokens(account, _amount)) revert InsufficientBalance();
              accountQueuedTokens[account] -= _amountToUnqueue;
              totalQueued -= _amountToUnqueue;
              token.safeTransfer(account, _amountToUnqueue);
              emit UnqueueTokens(account, _amountToUnqueue);
          }
          /**
           * @notice Claims withdrawable liquid staking tokens
           * @param _amount amount as recorded in sender's merkle tree entry (stored on IPFS)
           * @param _sharesAmount shares amount as recorded in sender's merkle tree entry (stored on IPFS)
           * @param _merkleProof merkle proof for sender's merkle tree entry (generated from IPFS data)
           */
          function claimLSDTokens(
              uint256 _amount,
              uint256 _sharesAmount,
              bytes32[] calldata _merkleProof
          ) external {
              address account = msg.sender;
              bytes32 node = keccak256(
                  bytes.concat(keccak256(abi.encode(account, _amount, _sharesAmount)))
              );
              if (!MerkleProofUpgradeable.verify(_merkleProof, merkleRoot, node)) revert InvalidProof();
              uint256 amountToClaim = _amount - accountClaimed[account];
              uint256 sharesAmountToClaim = _sharesAmount - accountSharesClaimed[account];
              uint256 amountToClaimWithYield = stakingPool.getStakeByShares(sharesAmountToClaim);
              if (amountToClaimWithYield == 0) revert NothingToClaim();
              accountClaimed[account] = _amount;
              accountSharesClaimed[account] = _sharesAmount;
              IERC20Upgradeable(address(stakingPool)).safeTransfer(account, amountToClaimWithYield);
              emit ClaimLSDTokens(account, amountToClaim, amountToClaimWithYield);
          }
          /**
           * @notice Deposits queued tokens and/or unused tokens sitting in staking pool
           * @dev allows bypassing of the stored deposit limits
           * @param _queueDepositMin min amount of tokens required for deposit into staking pool strategies
           * @param _queueDepositMax max amount of tokens that can be deposited into staking pool strategies at once
           * @param _data list of deposit data passed to staking pool strategies
           */
          function depositQueuedTokens(
              uint256 _queueDepositMin,
              uint256 _queueDepositMax,
              bytes[] calldata _data
          ) external {
              _depositQueuedTokens(_queueDepositMin, _queueDepositMax, _data);
          }
          /**
           * @notice Returns whether a call should be made to performUpkeep to deposit queued/unused tokens
           * into staking pool strategies
           * @return true if performUpkeep should be called, false otherwise
           * @return encoded amount of tokens to be deposited
           */
          function checkUpkeep(bytes calldata) external view returns (bool, bytes memory) {
              uint256 strategyDepositRoom = stakingPool.getStrategyDepositRoom();
              uint256 unusedDeposits = stakingPool.getUnusedDeposits();
              if (poolStatus != PoolStatus.OPEN) return (false, "");
              if (
                  strategyDepositRoom < queueDepositMin ||
                  (totalQueued + unusedDeposits) < queueDepositMin
              ) return (false, "");
              return (
                  true,
                  abi.encode(
                      MathUpgradeable.min(
                          MathUpgradeable.min(strategyDepositRoom, totalQueued + unusedDeposits),
                          queueDepositMax
                      )
                  )
              );
          }
          /**
           * @notice Deposits queued and/or unused tokens into staking pool strategies
           * @dev will revert if less than queueDepositMin tokens can be deposited
           * @param _performData encoded list of deposit data to be passed to staking pool strategies (bytes[])
           */
          function performUpkeep(bytes calldata _performData) external {
              bytes[] memory depositData = abi.decode(_performData, (bytes[]));
              _depositQueuedTokens(queueDepositMin, queueDepositMax, depositData);
          }
          /**
           * @notice Returns the total number of tokens deposited into the staking pool or swapped for LSTs since
           * the last call to updateDistribution and the amount of shares received for those tokens
           * @return amount of deposits
           * @return amount of shares
           */
          function getDepositsSinceLastUpdate() external view returns (uint256, uint256) {
              return (depositsSinceLastUpdate, sharesSinceLastUpdate);
          }
          /**
           * @notice Returns account data used for calculating a new merkle tree
           * @dev merkle tree is calculated based on users' reSDL balance and the number of tokens they have queued
           * @dev accounts are returned in the same order as they are in the merkle tree
           * @return accounts list of all accounts that have ever queued tokens
           * @return sdlBalances list of SDL balances for each account
           * @return queuedBalances list of queued token amounts for each account (ignores previously distributed
           * liquid staking tokens)
           */
          function getAccountData()
              external
              view
              returns (address[] memory, uint256[] memory, uint256[] memory)
          {
              uint256[] memory reSDLBalances = new uint256[](accounts.length);
              uint256[] memory queuedBalances = new uint256[](accounts.length);
              for (uint256 i = 0; i < reSDLBalances.length; ++i) {
                  address account = accounts[i];
                  reSDLBalances[i] = address(sdlPool) == address(0)
                      ? 0
                      : sdlPool.effectiveBalanceOf(account);
                  queuedBalances[i] = accountQueuedTokens[account];
              }
              return (accounts, reSDLBalances, queuedBalances);
          }
          /**
           * @notice Distributes a new batch of liquid staing tokens to users that have queued tokens
           * @param _merkleRoot new merkle root for the distribution tree
           * @param _ipfsHash new ipfs hash for the distribution tree (CIDv0, no prefix - only hash)
           * @param _amountDistributed amount of tokens distributed in this distribution
           * @param _sharesAmountDistributed amount of shares distributed in this distribution
           */
          function updateDistribution(
              bytes32 _merkleRoot,
              bytes32 _ipfsHash,
              uint256 _amountDistributed,
              uint256 _sharesAmountDistributed
          ) external onlyDistributionOracle {
              _unpause();
              depositsSinceLastUpdate -= _amountDistributed;
              sharesSinceLastUpdate -= _sharesAmountDistributed;
              merkleRoot = _merkleRoot;
              ipfsHash = _ipfsHash;
              merkleTreeSize = accounts.length;
              emit UpdateDistribution(
                  _merkleRoot,
                  _ipfsHash,
                  _amountDistributed,
                  _sharesAmountDistributed
              );
          }
          /**
           * @notice Pauses queueing and unqueueing so a new merkle tree can be generated
           */
          function pauseForUpdate() external onlyDistributionOracle {
              _pause();
          }
          /**
           * @notice Executes a batch of withdrawals that have been queued in the withdrawal pool
           * @dev withdraws tokens from the staking pool and sends them to the withdrawal pool
           * @param _amount total amount to withdraw
           * @param _data list of withdrawal data passed to staking pool strategies
           */
          function executeQueuedWithdrawals(
              uint256 _amount,
              bytes[] calldata _data
          ) external onlyWithdrawalPool {
              IERC20Upgradeable(address(stakingPool)).safeTransferFrom(
                  msg.sender,
                  address(this),
                  _amount
              );
              stakingPool.withdraw(address(this), address(this), _amount, _data);
              token.safeTransfer(msg.sender, _amount);
          }
          /**
           * @notice Sets the pool's status
           * @param _status pool status
           */
          function setPoolStatus(PoolStatus _status) external {
              if (msg.sender != owner() && msg.sender != rebaseController) revert SenderNotAuthorized();
              if (_status == poolStatus) revert StatusAlreadySet();
              poolStatus = _status;
              emit SetPoolStatus(_status);
          }
          /**
           * @notice Sets the minimum and maximum amount that can be deposited into strategies at once
           * @param _queueDepositMin minimum amount of tokens required for deposit into staking pool strategies
           * @param _queueDepositMax maximum amount of tokens that can be deposited into staking pool strategies at once
           */
          function setQueueDepositParams(
              uint128 _queueDepositMin,
              uint128 _queueDepositMax
          ) external onlyOwner {
              queueDepositMin = _queueDepositMin;
              queueDepositMax = _queueDepositMax;
              emit SetQueueDepositParams(_queueDepositMin, _queueDepositMax);
          }
          /**
           * @notice Sets whether instant withdrawals are enabled
           * @dev if disabled, all withdrawals will be queued through the withdrawal pool
           * event if there is withdrawal room in the staking pool
           * @param _allowInstantWithdrawals true to allow instant withdrawals, false otherwise
           */
          function setAllowInstantWithdrawals(bool _allowInstantWithdrawals) external onlyOwner {
              allowInstantWithdrawals = _allowInstantWithdrawals;
          }
          /**
           * @notice Sets the distribution oracle
           * @param _distributionOracle address of oracle
           */
          function setDistributionOracle(address _distributionOracle) external onlyOwner {
              distributionOracle = _distributionOracle;
          }
          /**
           * @notice Sets the address of the rebase controller
           * @dev this address has authorization to close the pool in case of emergency
           * @param _rebaseController address of rebase controller
           */
          function setRebaseController(address _rebaseController) external onlyOwner {
              rebaseController = _rebaseController;
          }
          /**
           * @notice Sets the withdrawal pool
           * @param _withdrawalPool address of withdrawal pool
           */
          function setWithdrawalPool(address _withdrawalPool) external onlyOwner {
              if (address(withdrawalPool) != address(0)) {
                  IERC20Upgradeable(address(stakingPool)).safeApprove(address(withdrawalPool), 0);
                  token.safeApprove(address(withdrawalPool), 0);
              }
              IERC20Upgradeable(address(stakingPool)).safeApprove(_withdrawalPool, type(uint256).max);
              token.safeApprove(_withdrawalPool, type(uint256).max);
              withdrawalPool = IWithdrawalPool(_withdrawalPool);
          }
          /**
           * @notice Deposits asset tokens into the withdrawal pool, staking pool, and/or queues them
           * @dev tokens will be deposited into the withdrawal pool if there are queued withdrawals, then the
           * staking pool if there is deposit room. Remaining tokens will then be queued if `_shouldQueue`
           * is true, or otherwise returned to sender
           * @param _account account to deposit for
           * @param _amount amount to deposit
           * @param _shouldQueue whether tokens should be queued
           * @param _data deposit data passed to staking pool strategies
           **/
          function _deposit(
              address _account,
              uint256 _amount,
              bool _shouldQueue,
              bytes[] memory _data
          ) internal {
              if (poolStatus != PoolStatus.OPEN) revert DepositsDisabled();
              uint256 toDeposit = _amount;
              if (totalQueued == 0) {
                  uint256 queuedWithdrawals = withdrawalPool.getTotalQueuedWithdrawals();
                  if (queuedWithdrawals != 0) {
                      uint256 toDepositIntoQueue = toDeposit <= queuedWithdrawals
                          ? toDeposit
                          : queuedWithdrawals;
                      withdrawalPool.deposit(toDepositIntoQueue);
                      toDeposit -= toDepositIntoQueue;
                      IERC20Upgradeable(address(stakingPool)).safeTransfer(_account, toDepositIntoQueue);
                  }
                  if (toDeposit != 0) {
                      uint256 canDeposit = stakingPool.canDeposit();
                      if (canDeposit != 0) {
                          uint256 toDepositIntoPool = toDeposit <= canDeposit ? toDeposit : canDeposit;
                          stakingPool.deposit(_account, toDepositIntoPool, _data);
                          toDeposit -= toDepositIntoPool;
                      }
                  }
              }
              if (toDeposit != 0) {
                  if (_shouldQueue) {
                      _requireNotPaused();
                      if (accountIndexes[_account] == 0) {
                          accounts.push(_account);
                          accountIndexes[_account] = accounts.length - 1;
                      }
                      accountQueuedTokens[_account] += toDeposit;
                      totalQueued += toDeposit;
                  } else {
                      token.safeTransfer(_account, toDeposit);
                  }
              }
              emit Deposit(_account, _amount - toDeposit, _shouldQueue ? toDeposit : 0);
          }
          /**
           * @notice Withdraws asset tokens
           * @dev will swap liquid staking tokens for queued tokens if there are any queued, then
           * remaining tokens will be queued for withdrawal in the withdrawal pool if
           * `_shouldQueueWithdrawal` is true, otherwise function will revert
           * @param _account account to withdraw for
           * @param _amount amount to withdraw
           * @param _shouldQueueWithdrawal whether a withdrawal should be queued if the the full amount cannot be satisfied
           * @param _shouldRevertOnZero whether call should revert if nothing is withdrawn or queued for withdrawal
           * @param _data list of withdrawal data passed to staking pool strategies if executing instant withdrawal
           * @return the amount of tokens that were withdrawn
           **/
          function _withdraw(
              address _account,
              uint256 _amount,
              bool _shouldQueueWithdrawal,
              bool _shouldRevertOnZero,
              bytes[] memory _data
          ) internal returns (uint256) {
              if (poolStatus == PoolStatus.CLOSED) revert WithdrawalsDisabled();
              if (_amount == 0) revert InvalidAmount();
              uint256 toWithdraw = _amount;
              uint256 queued;
              if (totalQueued != 0) {
                  uint256 toWithdrawFromQueue = toWithdraw <= totalQueued ? toWithdraw : totalQueued;
                  totalQueued -= toWithdrawFromQueue;
                  depositsSinceLastUpdate += toWithdrawFromQueue;
                  sharesSinceLastUpdate += stakingPool.getSharesByStake(toWithdrawFromQueue);
                  toWithdraw -= toWithdrawFromQueue;
              }
              if (
                  toWithdraw != 0 &&
                  allowInstantWithdrawals &&
                  withdrawalPool.getTotalQueuedWithdrawals() == 0
              ) {
                  uint256 toWithdrawFromPool = MathUpgradeable.min(stakingPool.canWithdraw(), toWithdraw);
                  if (toWithdrawFromPool != 0) {
                      stakingPool.withdraw(address(this), address(this), toWithdrawFromPool, _data);
                      toWithdraw -= toWithdrawFromPool;
                  }
              }
              if (toWithdraw != 0) {
                  if (!_shouldQueueWithdrawal) revert InsufficientLiquidity();
                  if (toWithdraw >= withdrawalPool.minWithdrawalAmount()) {
                      withdrawalPool.queueWithdrawal(_account, toWithdraw);
                      queued = toWithdraw;
                  } else {
                      IERC20Upgradeable(address(stakingPool)).safeTransfer(_account, toWithdraw);
                  }
              }
              uint256 withdrawn = _amount - toWithdraw;
              if (_shouldRevertOnZero && withdrawn + queued == 0) revert WithdrawFailed();
              if (withdrawn != 0) emit Withdraw(_account, withdrawn);
              return withdrawn;
          }
          /**
           * @notice Deposits queued and/or unused tokens
           * @dev will prioritize unused staking pool deposits, then queued deposits
           * @param _depositMin min amount of tokens required to deposit
           * @param _depositMax max amount of tokens that can be deposited into at once
           * @param _data deposit data passed to staking pool strategies
           **/
          function _depositQueuedTokens(
              uint256 _depositMin,
              uint256 _depositMax,
              bytes[] memory _data
          ) internal {
              if (poolStatus != PoolStatus.OPEN) revert DepositsDisabled();
              uint256 strategyDepositRoom = stakingPool.getStrategyDepositRoom();
              if (strategyDepositRoom == 0 || strategyDepositRoom < _depositMin)
                  revert InsufficientDepositRoom();
              uint256 _totalQueued = totalQueued;
              uint256 unusedDeposits = stakingPool.getUnusedDeposits();
              uint256 canDeposit = _totalQueued + unusedDeposits;
              if (canDeposit == 0 || canDeposit < _depositMin) revert InsufficientQueuedTokens();
              uint256 toDepositFromStakingPool = MathUpgradeable.min(
                  MathUpgradeable.min(unusedDeposits, strategyDepositRoom),
                  _depositMax
              );
              uint256 toDepositFromQueue = MathUpgradeable.min(
                  MathUpgradeable.min(_totalQueued, strategyDepositRoom - toDepositFromStakingPool),
                  _depositMax - toDepositFromStakingPool
              );
              stakingPool.deposit(address(this), toDepositFromQueue, _data);
              _totalQueued -= toDepositFromQueue;
              if (_totalQueued != totalQueued) {
                  uint256 diff = totalQueued - _totalQueued;
                  depositsSinceLastUpdate += diff;
                  sharesSinceLastUpdate += stakingPool.getSharesByStake(diff);
                  totalQueued = _totalQueued;
              }
              emit DepositTokens(toDepositFromStakingPool, toDepositFromQueue);
          }
          /**
           * @dev Checks authorization for contract upgrades
           */
          function _authorizeUpgrade(address) internal override onlyOwner {}
      }