ETH Price: $3,777.67 (+2.06%)
Gas: 1.44 Gwei

Transaction Decoder

Block:
19902408 at May-19-2024 07:10:59 AM +UTC
Transaction Fee:
0.000129842748792918 ETH $0.49
Gas Used:
44,874 Gas / 2.893496207 Gwei

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
13.065756601517946775 Eth13.065757048409676463 Eth0.000000446891729688
0x9D7dBb01...332721EC4
0.000338491783846719 Eth
Nonce: 20
0.000208649035053801 Eth
Nonce: 21
0.000129842748792918

Execution Trace

ETH 0.0001 L1ChugSplashProxy.e11013dd( )
  • ProxyAdmin.STATICCALL( )
  • ETH 0.0001 L1StandardBridge.bridgeETHTo( _to=0x9D7dBb019f35cF9d26be2b06F8f1E43332721EC4, _minGasLimit=200000, _extraData=0x7375706572627269646765 )
    File 1 of 3: L1ChugSplashProxy
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    /**
     * @title IL1ChugSplashDeployer
     */
    interface IL1ChugSplashDeployer {
        function isUpgrading() external view returns (bool);
    }
    /**
     * @custom:legacy
     * @title L1ChugSplashProxy
     * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
     *         functions `setCode` and `setStorage` for changing the code or storage of the contract.
     *
     *         Note for future developers: do NOT make anything in this contract 'public' unless you
     *         know what you're doing. Anything public can potentially have a function signature that
     *         conflicts with a signature attached to the implementation contract. Public functions
     *         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
     *         reason not to have that modifier. And there almost certainly is not a good reason to not
     *         have that modifier. Beware!
     */
    contract L1ChugSplashProxy {
        /**
         * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
         *         contract, the appended bytecode will be deployed as given.
         */
        bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
        /**
         * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
         */
        bytes32 internal constant IMPLEMENTATION_KEY =
            0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /**
         * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
         */
        bytes32 internal constant OWNER_KEY =
            0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /**
         * @notice Blocks a function from being called when the parent signals that the system should
         *         be paused via an isUpgrading function.
         */
        modifier onlyWhenNotPaused() {
            address owner = _getOwner();
            // We do a low-level call because there's no guarantee that the owner actually *is* an
            // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
            // it turns out that it isn't the right type of contract.
            (bool success, bytes memory returndata) = owner.staticcall(
                abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector)
            );
            // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
            // can just continue as normal. We also expect that the return value is exactly 32 bytes
            // long. If this isn't the case then we can safely ignore the result.
            if (success && returndata.length == 32) {
                // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                // case that the isUpgrading function returned something other than 0 or 1. But we only
                // really care about the case where this value is 0 (= false).
                uint256 ret = abi.decode(returndata, (uint256));
                require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
            }
            _;
        }
        /**
         * @notice Makes a proxy call instead of triggering the given function when the caller is
         *         either the owner or the zero address. Caller can only ever be the zero address if
         *         this function is being called off-chain via eth_call, which is totally fine and can
         *         be convenient for client-side tooling. Avoids situations where the proxy and
         *         implementation share a sighash and the proxy function ends up being called instead
         *         of the implementation one.
         *
         *         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
         *         there's a way for someone to send a transaction with msg.sender == address(0) in any
         *         real context then we have much bigger problems. Primary reason to include this
         *         additional allowed sender is because the owner address can be changed dynamically
         *         and we do not want clients to have to keep track of the current owner in order to
         *         make an eth_call that doesn't trigger the proxied contract.
         */
        // slither-disable-next-line incorrect-modifier
        modifier proxyCallIfNotOwner() {
            if (msg.sender == _getOwner() || msg.sender == address(0)) {
                _;
            } else {
                // This WILL halt the call frame on completion.
                _doProxyCall();
            }
        }
        /**
         * @param _owner Address of the initial contract owner.
         */
        constructor(address _owner) {
            _setOwner(_owner);
        }
        // slither-disable-next-line locked-ether
        receive() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        // slither-disable-next-line locked-ether
        fallback() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        /**
         * @notice Sets the code that should be running behind this proxy.
         *
         *         Note: This scheme is a bit different from the standard proxy scheme where one would
         *         typically deploy the code separately and then set the implementation address. We're
         *         doing it this way because it gives us a lot more freedom on the client side. Can
         *         only be triggered by the contract owner.
         *
         * @param _code New contract code to run inside this contract.
         */
        function setCode(bytes memory _code) external proxyCallIfNotOwner {
            // Get the code hash of the current implementation.
            address implementation = _getImplementation();
            // If the code hash matches the new implementation then we return early.
            if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                return;
            }
            // Create the deploycode by appending the magic prefix.
            bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
            // Deploy the code and set the new implementation address.
            address newImplementation;
            assembly {
                newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
            }
            // Check that the code was actually deployed correctly. I'm not sure if you can ever
            // actually fail this check. Should only happen if the contract creation from above runs
            // out of gas but this parent execution thread does NOT run out of gas. Seems like we
            // should be doing this check anyway though.
            require(
                _getAccountCodeHash(newImplementation) == keccak256(_code),
                "L1ChugSplashProxy: code was not correctly deployed"
            );
            _setImplementation(newImplementation);
        }
        /**
         * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
         *         perform upgrades in a more transparent way. Only callable by the owner.
         *
         * @param _key   Storage key to modify.
         * @param _value New value for the storage key.
         */
        function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
            assembly {
                sstore(_key, _value)
            }
        }
        /**
         * @notice Changes the owner of the proxy contract. Only callable by the owner.
         *
         * @param _owner New owner of the proxy contract.
         */
        function setOwner(address _owner) external proxyCallIfNotOwner {
            _setOwner(_owner);
        }
        /**
         * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
         *         making an eth_call and setting the "from" address to address(0).
         *
         * @return Owner address.
         */
        function getOwner() external proxyCallIfNotOwner returns (address) {
            return _getOwner();
        }
        /**
         * @notice Queries the implementation address. Can only be called by the owner OR by making an
         *         eth_call and setting the "from" address to address(0).
         *
         * @return Implementation address.
         */
        function getImplementation() external proxyCallIfNotOwner returns (address) {
            return _getImplementation();
        }
        /**
         * @notice Sets the implementation address.
         *
         * @param _implementation New implementation address.
         */
        function _setImplementation(address _implementation) internal {
            assembly {
                sstore(IMPLEMENTATION_KEY, _implementation)
            }
        }
        /**
         * @notice Changes the owner of the proxy contract.
         *
         * @param _owner New owner of the proxy contract.
         */
        function _setOwner(address _owner) internal {
            assembly {
                sstore(OWNER_KEY, _owner)
            }
        }
        /**
         * @notice Performs the proxy call via a delegatecall.
         */
        function _doProxyCall() internal onlyWhenNotPaused {
            address implementation = _getImplementation();
            require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
            assembly {
                // Copy calldata into memory at 0x0....calldatasize.
                calldatacopy(0x0, 0x0, calldatasize())
                // Perform the delegatecall, make sure to pass all available gas.
                let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                // overwrite the calldata that we just copied into memory but that doesn't really
                // matter because we'll be returning in a second anyway.
                returndatacopy(0x0, 0x0, returndatasize())
                // Success == 0 means a revert. We'll revert too and pass the data up.
                if iszero(success) {
                    revert(0x0, returndatasize())
                }
                // Otherwise we'll just return and pass the data up.
                return(0x0, returndatasize())
            }
        }
        /**
         * @notice Queries the implementation address.
         *
         * @return Implementation address.
         */
        function _getImplementation() internal view returns (address) {
            address implementation;
            assembly {
                implementation := sload(IMPLEMENTATION_KEY)
            }
            return implementation;
        }
        /**
         * @notice Queries the owner of the proxy contract.
         *
         * @return Owner address.
         */
        function _getOwner() internal view returns (address) {
            address owner;
            assembly {
                owner := sload(OWNER_KEY)
            }
            return owner;
        }
        /**
         * @notice Gets the code hash for a given account.
         *
         * @param _account Address of the account to get a code hash for.
         *
         * @return Code hash for the account.
         */
        function _getAccountCodeHash(address _account) internal view returns (bytes32) {
            bytes32 codeHash;
            assembly {
                codeHash := extcodehash(_account)
            }
            return codeHash;
        }
    }
    

    File 2 of 3: ProxyAdmin
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
    /**
     * @custom:legacy
     * @title AddressManager
     * @notice AddressManager is a legacy contract that was used in the old version of the Optimism
     *         system to manage a registry of string names to addresses. We now use a more standard
     *         proxy system instead, but this contract is still necessary for backwards compatibility
     *         with several older contracts.
     */
    contract AddressManager is Ownable {
        /**
         * @notice Mapping of the hashes of string names to addresses.
         */
        mapping(bytes32 => address) private addresses;
        /**
         * @notice Emitted when an address is modified in the registry.
         *
         * @param name       String name being set in the registry.
         * @param newAddress Address set for the given name.
         * @param oldAddress Address that was previously set for the given name.
         */
        event AddressSet(string indexed name, address newAddress, address oldAddress);
        /**
         * @notice Changes the address associated with a particular name.
         *
         * @param _name    String name to associate an address with.
         * @param _address Address to associate with the name.
         */
        function setAddress(string memory _name, address _address) external onlyOwner {
            bytes32 nameHash = _getNameHash(_name);
            address oldAddress = addresses[nameHash];
            addresses[nameHash] = _address;
            emit AddressSet(_name, _address, oldAddress);
        }
        /**
         * @notice Retrieves the address associated with a given name.
         *
         * @param _name Name to retrieve an address for.
         *
         * @return Address associated with the given name.
         */
        function getAddress(string memory _name) external view returns (address) {
            return addresses[_getNameHash(_name)];
        }
        /**
         * @notice Computes the hash of a name.
         *
         * @param _name Name to compute a hash for.
         *
         * @return Hash of the given name.
         */
        function _getNameHash(string memory _name) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked(_name));
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    /**
     * @title IL1ChugSplashDeployer
     */
    interface IL1ChugSplashDeployer {
        function isUpgrading() external view returns (bool);
    }
    /**
     * @custom:legacy
     * @title L1ChugSplashProxy
     * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
     *         functions `setCode` and `setStorage` for changing the code or storage of the contract.
     *
     *         Note for future developers: do NOT make anything in this contract 'public' unless you
     *         know what you're doing. Anything public can potentially have a function signature that
     *         conflicts with a signature attached to the implementation contract. Public functions
     *         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
     *         reason not to have that modifier. And there almost certainly is not a good reason to not
     *         have that modifier. Beware!
     */
    contract L1ChugSplashProxy {
        /**
         * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
         *         contract, the appended bytecode will be deployed as given.
         */
        bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
        /**
         * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
         */
        bytes32 internal constant IMPLEMENTATION_KEY =
            0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /**
         * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
         */
        bytes32 internal constant OWNER_KEY =
            0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /**
         * @notice Blocks a function from being called when the parent signals that the system should
         *         be paused via an isUpgrading function.
         */
        modifier onlyWhenNotPaused() {
            address owner = _getOwner();
            // We do a low-level call because there's no guarantee that the owner actually *is* an
            // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
            // it turns out that it isn't the right type of contract.
            (bool success, bytes memory returndata) = owner.staticcall(
                abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector)
            );
            // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
            // can just continue as normal. We also expect that the return value is exactly 32 bytes
            // long. If this isn't the case then we can safely ignore the result.
            if (success && returndata.length == 32) {
                // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                // case that the isUpgrading function returned something other than 0 or 1. But we only
                // really care about the case where this value is 0 (= false).
                uint256 ret = abi.decode(returndata, (uint256));
                require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
            }
            _;
        }
        /**
         * @notice Makes a proxy call instead of triggering the given function when the caller is
         *         either the owner or the zero address. Caller can only ever be the zero address if
         *         this function is being called off-chain via eth_call, which is totally fine and can
         *         be convenient for client-side tooling. Avoids situations where the proxy and
         *         implementation share a sighash and the proxy function ends up being called instead
         *         of the implementation one.
         *
         *         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
         *         there's a way for someone to send a transaction with msg.sender == address(0) in any
         *         real context then we have much bigger problems. Primary reason to include this
         *         additional allowed sender is because the owner address can be changed dynamically
         *         and we do not want clients to have to keep track of the current owner in order to
         *         make an eth_call that doesn't trigger the proxied contract.
         */
        // slither-disable-next-line incorrect-modifier
        modifier proxyCallIfNotOwner() {
            if (msg.sender == _getOwner() || msg.sender == address(0)) {
                _;
            } else {
                // This WILL halt the call frame on completion.
                _doProxyCall();
            }
        }
        /**
         * @param _owner Address of the initial contract owner.
         */
        constructor(address _owner) {
            _setOwner(_owner);
        }
        // slither-disable-next-line locked-ether
        receive() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        // slither-disable-next-line locked-ether
        fallback() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        /**
         * @notice Sets the code that should be running behind this proxy.
         *
         *         Note: This scheme is a bit different from the standard proxy scheme where one would
         *         typically deploy the code separately and then set the implementation address. We're
         *         doing it this way because it gives us a lot more freedom on the client side. Can
         *         only be triggered by the contract owner.
         *
         * @param _code New contract code to run inside this contract.
         */
        function setCode(bytes memory _code) external proxyCallIfNotOwner {
            // Get the code hash of the current implementation.
            address implementation = _getImplementation();
            // If the code hash matches the new implementation then we return early.
            if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                return;
            }
            // Create the deploycode by appending the magic prefix.
            bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
            // Deploy the code and set the new implementation address.
            address newImplementation;
            assembly {
                newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
            }
            // Check that the code was actually deployed correctly. I'm not sure if you can ever
            // actually fail this check. Should only happen if the contract creation from above runs
            // out of gas but this parent execution thread does NOT run out of gas. Seems like we
            // should be doing this check anyway though.
            require(
                _getAccountCodeHash(newImplementation) == keccak256(_code),
                "L1ChugSplashProxy: code was not correctly deployed"
            );
            _setImplementation(newImplementation);
        }
        /**
         * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
         *         perform upgrades in a more transparent way. Only callable by the owner.
         *
         * @param _key   Storage key to modify.
         * @param _value New value for the storage key.
         */
        function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
            assembly {
                sstore(_key, _value)
            }
        }
        /**
         * @notice Changes the owner of the proxy contract. Only callable by the owner.
         *
         * @param _owner New owner of the proxy contract.
         */
        function setOwner(address _owner) external proxyCallIfNotOwner {
            _setOwner(_owner);
        }
        /**
         * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
         *         making an eth_call and setting the "from" address to address(0).
         *
         * @return Owner address.
         */
        function getOwner() external proxyCallIfNotOwner returns (address) {
            return _getOwner();
        }
        /**
         * @notice Queries the implementation address. Can only be called by the owner OR by making an
         *         eth_call and setting the "from" address to address(0).
         *
         * @return Implementation address.
         */
        function getImplementation() external proxyCallIfNotOwner returns (address) {
            return _getImplementation();
        }
        /**
         * @notice Sets the implementation address.
         *
         * @param _implementation New implementation address.
         */
        function _setImplementation(address _implementation) internal {
            assembly {
                sstore(IMPLEMENTATION_KEY, _implementation)
            }
        }
        /**
         * @notice Changes the owner of the proxy contract.
         *
         * @param _owner New owner of the proxy contract.
         */
        function _setOwner(address _owner) internal {
            assembly {
                sstore(OWNER_KEY, _owner)
            }
        }
        /**
         * @notice Performs the proxy call via a delegatecall.
         */
        function _doProxyCall() internal onlyWhenNotPaused {
            address implementation = _getImplementation();
            require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
            assembly {
                // Copy calldata into memory at 0x0....calldatasize.
                calldatacopy(0x0, 0x0, calldatasize())
                // Perform the delegatecall, make sure to pass all available gas.
                let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                // overwrite the calldata that we just copied into memory but that doesn't really
                // matter because we'll be returning in a second anyway.
                returndatacopy(0x0, 0x0, returndatasize())
                // Success == 0 means a revert. We'll revert too and pass the data up.
                if iszero(success) {
                    revert(0x0, returndatasize())
                }
                // Otherwise we'll just return and pass the data up.
                return(0x0, returndatasize())
            }
        }
        /**
         * @notice Queries the implementation address.
         *
         * @return Implementation address.
         */
        function _getImplementation() internal view returns (address) {
            address implementation;
            assembly {
                implementation := sload(IMPLEMENTATION_KEY)
            }
            return implementation;
        }
        /**
         * @notice Queries the owner of the proxy contract.
         *
         * @return Owner address.
         */
        function _getOwner() internal view returns (address) {
            address owner;
            assembly {
                owner := sload(OWNER_KEY)
            }
            return owner;
        }
        /**
         * @notice Gets the code hash for a given account.
         *
         * @param _account Address of the account to get a code hash for.
         *
         * @return Code hash for the account.
         */
        function _getAccountCodeHash(address _account) internal view returns (bytes32) {
            bytes32 codeHash;
            assembly {
                codeHash := extcodehash(_account)
            }
            return codeHash;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    /**
     * @title Proxy
     * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
     *         if the caller is address(0), meaning that the call originated from an off-chain
     *         simulation.
     */
    contract Proxy {
        /**
         * @notice The storage slot that holds the address of the implementation.
         *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
         */
        bytes32 internal constant IMPLEMENTATION_KEY =
            0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /**
         * @notice The storage slot that holds the address of the owner.
         *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
         */
        bytes32 internal constant OWNER_KEY =
            0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /**
         * @notice An event that is emitted each time the implementation is changed. This event is part
         *         of the EIP-1967 specification.
         *
         * @param implementation The address of the implementation contract
         */
        event Upgraded(address indexed implementation);
        /**
         * @notice An event that is emitted each time the owner is upgraded. This event is part of the
         *         EIP-1967 specification.
         *
         * @param previousAdmin The previous owner of the contract
         * @param newAdmin      The new owner of the contract
         */
        event AdminChanged(address previousAdmin, address newAdmin);
        /**
         * @notice A modifier that reverts if not called by the owner or by address(0) to allow
         *         eth_call to interact with this proxy without needing to use low-level storage
         *         inspection. We assume that nobody is able to trigger calls from address(0) during
         *         normal EVM execution.
         */
        modifier proxyCallIfNotAdmin() {
            if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                _;
            } else {
                // This WILL halt the call frame on completion.
                _doProxyCall();
            }
        }
        /**
         * @notice Sets the initial admin during contract deployment. Admin address is stored at the
         *         EIP-1967 admin storage slot so that accidental storage collision with the
         *         implementation is not possible.
         *
         * @param _admin Address of the initial contract admin. Admin as the ability to access the
         *               transparent proxy interface.
         */
        constructor(address _admin) {
            _changeAdmin(_admin);
        }
        // slither-disable-next-line locked-ether
        receive() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        // slither-disable-next-line locked-ether
        fallback() external payable {
            // Proxy call by default.
            _doProxyCall();
        }
        /**
         * @notice Set the implementation contract address. The code at the given address will execute
         *         when this contract is called.
         *
         * @param _implementation Address of the implementation contract.
         */
        function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
            _setImplementation(_implementation);
        }
        /**
         * @notice Set the implementation and call a function in a single transaction. Useful to ensure
         *         atomic execution of initialization-based upgrades.
         *
         * @param _implementation Address of the implementation contract.
         * @param _data           Calldata to delegatecall the new implementation with.
         */
        function upgradeToAndCall(address _implementation, bytes calldata _data)
            public
            payable
            virtual
            proxyCallIfNotAdmin
            returns (bytes memory)
        {
            _setImplementation(_implementation);
            (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
            require(success, "Proxy: delegatecall to new implementation contract failed");
            return returndata;
        }
        /**
         * @notice Changes the owner of the proxy contract. Only callable by the owner.
         *
         * @param _admin New owner of the proxy contract.
         */
        function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
            _changeAdmin(_admin);
        }
        /**
         * @notice Gets the owner of the proxy contract.
         *
         * @return Owner address.
         */
        function admin() public virtual proxyCallIfNotAdmin returns (address) {
            return _getAdmin();
        }
        /**
         * @notice Queries the implementation address.
         *
         * @return Implementation address.
         */
        function implementation() public virtual proxyCallIfNotAdmin returns (address) {
            return _getImplementation();
        }
        /**
         * @notice Sets the implementation address.
         *
         * @param _implementation New implementation address.
         */
        function _setImplementation(address _implementation) internal {
            assembly {
                sstore(IMPLEMENTATION_KEY, _implementation)
            }
            emit Upgraded(_implementation);
        }
        /**
         * @notice Changes the owner of the proxy contract.
         *
         * @param _admin New owner of the proxy contract.
         */
        function _changeAdmin(address _admin) internal {
            address previous = _getAdmin();
            assembly {
                sstore(OWNER_KEY, _admin)
            }
            emit AdminChanged(previous, _admin);
        }
        /**
         * @notice Performs the proxy call via a delegatecall.
         */
        function _doProxyCall() internal {
            address impl = _getImplementation();
            require(impl != address(0), "Proxy: implementation not initialized");
            assembly {
                // Copy calldata into memory at 0x0....calldatasize.
                calldatacopy(0x0, 0x0, calldatasize())
                // Perform the delegatecall, make sure to pass all available gas.
                let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                // overwrite the calldata that we just copied into memory but that doesn't really
                // matter because we'll be returning in a second anyway.
                returndatacopy(0x0, 0x0, returndatasize())
                // Success == 0 means a revert. We'll revert too and pass the data up.
                if iszero(success) {
                    revert(0x0, returndatasize())
                }
                // Otherwise we'll just return and pass the data up.
                return(0x0, returndatasize())
            }
        }
        /**
         * @notice Queries the implementation address.
         *
         * @return Implementation address.
         */
        function _getImplementation() internal view returns (address) {
            address impl;
            assembly {
                impl := sload(IMPLEMENTATION_KEY)
            }
            return impl;
        }
        /**
         * @notice Queries the owner of the proxy contract.
         *
         * @return Owner address.
         */
        function _getAdmin() internal view returns (address) {
            address owner;
            assembly {
                owner := sload(OWNER_KEY)
            }
            return owner;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
    import { Proxy } from "./Proxy.sol";
    import { AddressManager } from "../legacy/AddressManager.sol";
    import { L1ChugSplashProxy } from "../legacy/L1ChugSplashProxy.sol";
    /**
     * @title IStaticERC1967Proxy
     * @notice IStaticERC1967Proxy is a static version of the ERC1967 proxy interface.
     */
    interface IStaticERC1967Proxy {
        function implementation() external view returns (address);
        function admin() external view returns (address);
    }
    /**
     * @title IStaticL1ChugSplashProxy
     * @notice IStaticL1ChugSplashProxy is a static version of the ChugSplash proxy interface.
     */
    interface IStaticL1ChugSplashProxy {
        function getImplementation() external view returns (address);
        function getOwner() external view returns (address);
    }
    /**
     * @title ProxyAdmin
     * @notice This is an auxiliary contract meant to be assigned as the admin of an ERC1967 Proxy,
     *         based on the OpenZeppelin implementation. It has backwards compatibility logic to work
     *         with the various types of proxies that have been deployed by Optimism in the past.
     */
    contract ProxyAdmin is Ownable {
        /**
         * @notice The proxy types that the ProxyAdmin can manage.
         *
         * @custom:value ERC1967    Represents an ERC1967 compliant transparent proxy interface.
         * @custom:value CHUGSPLASH Represents the Chugsplash proxy interface (legacy).
         * @custom:value RESOLVED   Represents the ResolvedDelegate proxy (legacy).
         */
        enum ProxyType {
            ERC1967,
            CHUGSPLASH,
            RESOLVED
        }
        /**
         * @notice A mapping of proxy types, used for backwards compatibility.
         */
        mapping(address => ProxyType) public proxyType;
        /**
         * @notice A reverse mapping of addresses to names held in the AddressManager. This must be
         *         manually kept up to date with changes in the AddressManager for this contract
         *         to be able to work as an admin for the ResolvedDelegateProxy type.
         */
        mapping(address => string) public implementationName;
        /**
         * @notice The address of the address manager, this is required to manage the
         *         ResolvedDelegateProxy type.
         */
        AddressManager public addressManager;
        /**
         * @notice A legacy upgrading indicator used by the old Chugsplash Proxy.
         */
        bool internal upgrading;
        /**
         * @param _owner Address of the initial owner of this contract.
         */
        constructor(address _owner) Ownable() {
            _transferOwnership(_owner);
        }
        /**
         * @notice Sets the proxy type for a given address. Only required for non-standard (legacy)
         *         proxy types.
         *
         * @param _address Address of the proxy.
         * @param _type    Type of the proxy.
         */
        function setProxyType(address _address, ProxyType _type) external onlyOwner {
            proxyType[_address] = _type;
        }
        /**
         * @notice Sets the implementation name for a given address. Only required for
         *         ResolvedDelegateProxy type proxies that have an implementation name.
         *
         * @param _address Address of the ResolvedDelegateProxy.
         * @param _name    Name of the implementation for the proxy.
         */
        function setImplementationName(address _address, string memory _name) external onlyOwner {
            implementationName[_address] = _name;
        }
        /**
         * @notice Set the address of the AddressManager. This is required to manage legacy
         *         ResolvedDelegateProxy type proxy contracts.
         *
         * @param _address Address of the AddressManager.
         */
        function setAddressManager(AddressManager _address) external onlyOwner {
            addressManager = _address;
        }
        /**
         * @custom:legacy
         * @notice Set an address in the address manager. Since only the owner of the AddressManager
         *         can directly modify addresses and the ProxyAdmin will own the AddressManager, this
         *         gives the owner of the ProxyAdmin the ability to modify addresses directly.
         *
         * @param _name    Name to set within the AddressManager.
         * @param _address Address to attach to the given name.
         */
        function setAddress(string memory _name, address _address) external onlyOwner {
            addressManager.setAddress(_name, _address);
        }
        /**
         * @custom:legacy
         * @notice Set the upgrading status for the Chugsplash proxy type.
         *
         * @param _upgrading Whether or not the system is upgrading.
         */
        function setUpgrading(bool _upgrading) external onlyOwner {
            upgrading = _upgrading;
        }
        /**
         * @custom:legacy
         * @notice Legacy function used to tell ChugSplashProxy contracts if an upgrade is happening.
         *
         * @return Whether or not there is an upgrade going on. May not actually tell you whether an
         *         upgrade is going on, since we don't currently plan to use this variable for anything
         *         other than a legacy indicator to fix a UX bug in the ChugSplash proxy.
         */
        function isUpgrading() external view returns (bool) {
            return upgrading;
        }
        /**
         * @notice Returns the implementation of the given proxy address.
         *
         * @param _proxy Address of the proxy to get the implementation of.
         *
         * @return Address of the implementation of the proxy.
         */
        function getProxyImplementation(address _proxy) external view returns (address) {
            ProxyType ptype = proxyType[_proxy];
            if (ptype == ProxyType.ERC1967) {
                return IStaticERC1967Proxy(_proxy).implementation();
            } else if (ptype == ProxyType.CHUGSPLASH) {
                return IStaticL1ChugSplashProxy(_proxy).getImplementation();
            } else if (ptype == ProxyType.RESOLVED) {
                return addressManager.getAddress(implementationName[_proxy]);
            } else {
                revert("ProxyAdmin: unknown proxy type");
            }
        }
        /**
         * @notice Returns the admin of the given proxy address.
         *
         * @param _proxy Address of the proxy to get the admin of.
         *
         * @return Address of the admin of the proxy.
         */
        function getProxyAdmin(address payable _proxy) external view returns (address) {
            ProxyType ptype = proxyType[_proxy];
            if (ptype == ProxyType.ERC1967) {
                return IStaticERC1967Proxy(_proxy).admin();
            } else if (ptype == ProxyType.CHUGSPLASH) {
                return IStaticL1ChugSplashProxy(_proxy).getOwner();
            } else if (ptype == ProxyType.RESOLVED) {
                return addressManager.owner();
            } else {
                revert("ProxyAdmin: unknown proxy type");
            }
        }
        /**
         * @notice Updates the admin of the given proxy address.
         *
         * @param _proxy    Address of the proxy to update.
         * @param _newAdmin Address of the new proxy admin.
         */
        function changeProxyAdmin(address payable _proxy, address _newAdmin) external onlyOwner {
            ProxyType ptype = proxyType[_proxy];
            if (ptype == ProxyType.ERC1967) {
                Proxy(_proxy).changeAdmin(_newAdmin);
            } else if (ptype == ProxyType.CHUGSPLASH) {
                L1ChugSplashProxy(_proxy).setOwner(_newAdmin);
            } else if (ptype == ProxyType.RESOLVED) {
                addressManager.transferOwnership(_newAdmin);
            } else {
                revert("ProxyAdmin: unknown proxy type");
            }
        }
        /**
         * @notice Changes a proxy's implementation contract.
         *
         * @param _proxy          Address of the proxy to upgrade.
         * @param _implementation Address of the new implementation address.
         */
        function upgrade(address payable _proxy, address _implementation) public onlyOwner {
            ProxyType ptype = proxyType[_proxy];
            if (ptype == ProxyType.ERC1967) {
                Proxy(_proxy).upgradeTo(_implementation);
            } else if (ptype == ProxyType.CHUGSPLASH) {
                L1ChugSplashProxy(_proxy).setStorage(
                    // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                    0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc,
                    bytes32(uint256(uint160(_implementation)))
                );
            } else if (ptype == ProxyType.RESOLVED) {
                string memory name = implementationName[_proxy];
                addressManager.setAddress(name, _implementation);
            } else {
                // It should not be possible to retrieve a ProxyType value which is not matched by
                // one of the previous conditions.
                assert(false);
            }
        }
        /**
         * @notice Changes a proxy's implementation contract and delegatecalls the new implementation
         *         with some given data. Useful for atomic upgrade-and-initialize calls.
         *
         * @param _proxy          Address of the proxy to upgrade.
         * @param _implementation Address of the new implementation address.
         * @param _data           Data to trigger the new implementation with.
         */
        function upgradeAndCall(
            address payable _proxy,
            address _implementation,
            bytes memory _data
        ) external payable onlyOwner {
            ProxyType ptype = proxyType[_proxy];
            if (ptype == ProxyType.ERC1967) {
                Proxy(_proxy).upgradeToAndCall{ value: msg.value }(_implementation, _data);
            } else {
                // reverts if proxy type is unknown
                upgrade(_proxy, _implementation);
                (bool success, ) = _proxy.call{ value: msg.value }(_data);
                require(success, "ProxyAdmin: call to proxy after upgrade failed");
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    

    File 3 of 3: L1StandardBridge
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    import { Predeploys } from "../libraries/Predeploys.sol";
    import { StandardBridge } from "../universal/StandardBridge.sol";
    import { Semver } from "../universal/Semver.sol";
    /**
     * @custom:proxied
     * @title L1StandardBridge
     * @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and
     *         L2. In the case that an ERC20 token is native to L1, it will be escrowed within this
     *         contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was
     *         stored within this contract. After Bedrock, ETH is instead stored inside the
     *         OptimismPortal contract.
     *         NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples
     *         of some token types that may not be properly supported by this contract include, but are
     *         not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists.
     */
    contract L1StandardBridge is StandardBridge, Semver {
        /**
         * @custom:legacy
         * @notice Emitted whenever a deposit of ETH from L1 into L2 is initiated.
         *
         * @param from      Address of the depositor.
         * @param to        Address of the recipient on L2.
         * @param amount    Amount of ETH deposited.
         * @param extraData Extra data attached to the deposit.
         */
        event ETHDepositInitiated(
            address indexed from,
            address indexed to,
            uint256 amount,
            bytes extraData
        );
        /**
         * @custom:legacy
         * @notice Emitted whenever a withdrawal of ETH from L2 to L1 is finalized.
         *
         * @param from      Address of the withdrawer.
         * @param to        Address of the recipient on L1.
         * @param amount    Amount of ETH withdrawn.
         * @param extraData Extra data attached to the withdrawal.
         */
        event ETHWithdrawalFinalized(
            address indexed from,
            address indexed to,
            uint256 amount,
            bytes extraData
        );
        /**
         * @custom:legacy
         * @notice Emitted whenever an ERC20 deposit is initiated.
         *
         * @param l1Token   Address of the token on L1.
         * @param l2Token   Address of the corresponding token on L2.
         * @param from      Address of the depositor.
         * @param to        Address of the recipient on L2.
         * @param amount    Amount of the ERC20 deposited.
         * @param extraData Extra data attached to the deposit.
         */
        event ERC20DepositInitiated(
            address indexed l1Token,
            address indexed l2Token,
            address indexed from,
            address to,
            uint256 amount,
            bytes extraData
        );
        /**
         * @custom:legacy
         * @notice Emitted whenever an ERC20 withdrawal is finalized.
         *
         * @param l1Token   Address of the token on L1.
         * @param l2Token   Address of the corresponding token on L2.
         * @param from      Address of the withdrawer.
         * @param to        Address of the recipient on L1.
         * @param amount    Amount of the ERC20 withdrawn.
         * @param extraData Extra data attached to the withdrawal.
         */
        event ERC20WithdrawalFinalized(
            address indexed l1Token,
            address indexed l2Token,
            address indexed from,
            address to,
            uint256 amount,
            bytes extraData
        );
        /**
         * @custom:semver 1.1.0
         *
         * @param _messenger Address of the L1CrossDomainMessenger.
         */
        constructor(address payable _messenger)
            Semver(1, 1, 0)
            StandardBridge(_messenger, payable(Predeploys.L2_STANDARD_BRIDGE))
        {}
        /**
         * @notice Allows EOAs to bridge ETH by sending directly to the bridge.
         */
        receive() external payable override onlyEOA {
            _initiateETHDeposit(msg.sender, msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
        }
        /**
         * @custom:legacy
         * @notice Deposits some amount of ETH into the sender's account on L2.
         *
         * @param _minGasLimit Minimum gas limit for the deposit message on L2.
         * @param _extraData   Optional data to forward to L2. Data supplied here will not be used to
         *                     execute any code on L2 and is only emitted as extra data for the
         *                     convenience of off-chain tooling.
         */
        function depositETH(uint32 _minGasLimit, bytes calldata _extraData) external payable onlyEOA {
            _initiateETHDeposit(msg.sender, msg.sender, _minGasLimit, _extraData);
        }
        /**
         * @custom:legacy
         * @notice Deposits some amount of ETH into a target account on L2.
         *         Note that if ETH is sent to a contract on L2 and the call fails, then that ETH will
         *         be locked in the L2StandardBridge. ETH may be recoverable if the call can be
         *         successfully replayed by increasing the amount of gas supplied to the call. If the
         *         call will fail for any amount of gas, then the ETH will be locked permanently.
         *
         * @param _to          Address of the recipient on L2.
         * @param _minGasLimit Minimum gas limit for the deposit message on L2.
         * @param _extraData   Optional data to forward to L2. Data supplied here will not be used to
         *                     execute any code on L2 and is only emitted as extra data for the
         *                     convenience of off-chain tooling.
         */
        function depositETHTo(
            address _to,
            uint32 _minGasLimit,
            bytes calldata _extraData
        ) external payable {
            _initiateETHDeposit(msg.sender, _to, _minGasLimit, _extraData);
        }
        /**
         * @custom:legacy
         * @notice Deposits some amount of ERC20 tokens into the sender's account on L2.
         *
         * @param _l1Token     Address of the L1 token being deposited.
         * @param _l2Token     Address of the corresponding token on L2.
         * @param _amount      Amount of the ERC20 to deposit.
         * @param _minGasLimit Minimum gas limit for the deposit message on L2.
         * @param _extraData   Optional data to forward to L2. Data supplied here will not be used to
         *                     execute any code on L2 and is only emitted as extra data for the
         *                     convenience of off-chain tooling.
         */
        function depositERC20(
            address _l1Token,
            address _l2Token,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes calldata _extraData
        ) external virtual onlyEOA {
            _initiateERC20Deposit(
                _l1Token,
                _l2Token,
                msg.sender,
                msg.sender,
                _amount,
                _minGasLimit,
                _extraData
            );
        }
        /**
         * @custom:legacy
         * @notice Deposits some amount of ERC20 tokens into a target account on L2.
         *
         * @param _l1Token     Address of the L1 token being deposited.
         * @param _l2Token     Address of the corresponding token on L2.
         * @param _to          Address of the recipient on L2.
         * @param _amount      Amount of the ERC20 to deposit.
         * @param _minGasLimit Minimum gas limit for the deposit message on L2.
         * @param _extraData   Optional data to forward to L2. Data supplied here will not be used to
         *                     execute any code on L2 and is only emitted as extra data for the
         *                     convenience of off-chain tooling.
         */
        function depositERC20To(
            address _l1Token,
            address _l2Token,
            address _to,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes calldata _extraData
        ) external virtual {
            _initiateERC20Deposit(
                _l1Token,
                _l2Token,
                msg.sender,
                _to,
                _amount,
                _minGasLimit,
                _extraData
            );
        }
        /**
         * @custom:legacy
         * @notice Finalizes a withdrawal of ETH from L2.
         *
         * @param _from      Address of the withdrawer on L2.
         * @param _to        Address of the recipient on L1.
         * @param _amount    Amount of ETH to withdraw.
         * @param _extraData Optional data forwarded from L2.
         */
        function finalizeETHWithdrawal(
            address _from,
            address _to,
            uint256 _amount,
            bytes calldata _extraData
        ) external payable {
            finalizeBridgeETH(_from, _to, _amount, _extraData);
        }
        /**
         * @custom:legacy
         * @notice Finalizes a withdrawal of ERC20 tokens from L2.
         *
         * @param _l1Token   Address of the token on L1.
         * @param _l2Token   Address of the corresponding token on L2.
         * @param _from      Address of the withdrawer on L2.
         * @param _to        Address of the recipient on L1.
         * @param _amount    Amount of the ERC20 to withdraw.
         * @param _extraData Optional data forwarded from L2.
         */
        function finalizeERC20Withdrawal(
            address _l1Token,
            address _l2Token,
            address _from,
            address _to,
            uint256 _amount,
            bytes calldata _extraData
        ) external {
            finalizeBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _extraData);
        }
        /**
         * @custom:legacy
         * @notice Retrieves the access of the corresponding L2 bridge contract.
         *
         * @return Address of the corresponding L2 bridge contract.
         */
        function l2TokenBridge() external view returns (address) {
            return address(OTHER_BRIDGE);
        }
        /**
         * @notice Internal function for initiating an ETH deposit.
         *
         * @param _from        Address of the sender on L1.
         * @param _to          Address of the recipient on L2.
         * @param _minGasLimit Minimum gas limit for the deposit message on L2.
         * @param _extraData   Optional data to forward to L2.
         */
        function _initiateETHDeposit(
            address _from,
            address _to,
            uint32 _minGasLimit,
            bytes memory _extraData
        ) internal {
            _initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData);
        }
        /**
         * @notice Internal function for initiating an ERC20 deposit.
         *
         * @param _l1Token     Address of the L1 token being deposited.
         * @param _l2Token     Address of the corresponding token on L2.
         * @param _from        Address of the sender on L1.
         * @param _to          Address of the recipient on L2.
         * @param _amount      Amount of the ERC20 to deposit.
         * @param _minGasLimit Minimum gas limit for the deposit message on L2.
         * @param _extraData   Optional data to forward to L2.
         */
        function _initiateERC20Deposit(
            address _l1Token,
            address _l2Token,
            address _from,
            address _to,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes memory _extraData
        ) internal {
            _initiateBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _minGasLimit, _extraData);
        }
        /**
         * @notice Emits the legacy ETHDepositInitiated event followed by the ETHBridgeInitiated event.
         *         This is necessary for backwards compatibility with the legacy bridge.
         *
         * @inheritdoc StandardBridge
         */
        function _emitETHBridgeInitiated(
            address _from,
            address _to,
            uint256 _amount,
            bytes memory _extraData
        ) internal override {
            emit ETHDepositInitiated(_from, _to, _amount, _extraData);
            super._emitETHBridgeInitiated(_from, _to, _amount, _extraData);
        }
        /**
         * @notice Emits the legacy ETHWithdrawalFinalized event followed by the ETHBridgeFinalized
         *         event. This is necessary for backwards compatibility with the legacy bridge.
         *
         * @inheritdoc StandardBridge
         */
        function _emitETHBridgeFinalized(
            address _from,
            address _to,
            uint256 _amount,
            bytes memory _extraData
        ) internal override {
            emit ETHWithdrawalFinalized(_from, _to, _amount, _extraData);
            super._emitETHBridgeFinalized(_from, _to, _amount, _extraData);
        }
        /**
         * @notice Emits the legacy ERC20DepositInitiated event followed by the ERC20BridgeInitiated
         *         event. This is necessary for backwards compatibility with the legacy bridge.
         *
         * @inheritdoc StandardBridge
         */
        function _emitERC20BridgeInitiated(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            bytes memory _extraData
        ) internal override {
            emit ERC20DepositInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
            super._emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
        }
        /**
         * @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
         *         event. This is necessary for backwards compatibility with the legacy bridge.
         *
         * @inheritdoc StandardBridge
         */
        function _emitERC20BridgeFinalized(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            bytes memory _extraData
        ) internal override {
            emit ERC20WithdrawalFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
            super._emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
    import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
    import { Burn } from "../libraries/Burn.sol";
    import { Arithmetic } from "../libraries/Arithmetic.sol";
    /**
     * @custom:upgradeable
     * @title ResourceMetering
     * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
     *         updates automatically based on current demand.
     */
    abstract contract ResourceMetering is Initializable {
        /**
         * @notice Represents the various parameters that control the way in which resources are
         *         metered. Corresponds to the EIP-1559 resource metering system.
         *
         * @custom:field prevBaseFee   Base fee from the previous block(s).
         * @custom:field prevBoughtGas Amount of gas bought so far in the current block.
         * @custom:field prevBlockNum  Last block number that the base fee was updated.
         */
        struct ResourceParams {
            uint128 prevBaseFee;
            uint64 prevBoughtGas;
            uint64 prevBlockNum;
        }
        /**
         * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
         *         market. These values should be set with care as it is possible to set them in
         *         a way that breaks the deposit gas market. The target resource limit is defined as
         *         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
         *         single word. There is additional space for additions in the future.
         *
         * @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
         *                                            can be purchased per block.
         * @custom:field elasticityMultiplier         Determines the target resource limit along with
         *                                            the resource limit.
         * @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
         * @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
         *                                            value.
         * @custom:field systemTxMaxGas               The amount of gas supplied to the system
         *                                            transaction. This should be set to the same number
         *                                            that the op-node sets as the gas limit for the
         *                                            system transaction.
         * @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
         *                                            value.
         */
        struct ResourceConfig {
            uint32 maxResourceLimit;
            uint8 elasticityMultiplier;
            uint8 baseFeeMaxChangeDenominator;
            uint32 minimumBaseFee;
            uint32 systemTxMaxGas;
            uint128 maximumBaseFee;
        }
        /**
         * @notice EIP-1559 style gas parameters.
         */
        ResourceParams public params;
        /**
         * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
         */
        uint256[48] private __gap;
        /**
         * @notice Meters access to a function based an amount of a requested resource.
         *
         * @param _amount Amount of the resource requested.
         */
        modifier metered(uint64 _amount) {
            // Record initial gas amount so we can refund for it later.
            uint256 initialGas = gasleft();
            // Run the underlying function.
            _;
            // Run the metering function.
            _metered(_amount, initialGas);
        }
        /**
         * @notice An internal function that holds all of the logic for metering a resource.
         *
         * @param _amount     Amount of the resource requested.
         * @param _initialGas The amount of gas before any modifier execution.
         */
        function _metered(uint64 _amount, uint256 _initialGas) internal {
            // Update block number and base fee if necessary.
            uint256 blockDiff = block.number - params.prevBlockNum;
            ResourceConfig memory config = _resourceConfig();
            int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) /
                int256(uint256(config.elasticityMultiplier));
            if (blockDiff > 0) {
                // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                // at which deposits can be created and therefore limit the potential for deposits to
                // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) /
                    (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                // Update base fee by adding the base fee delta and clamp the resulting value between
                // min and max.
                int256 newBaseFee = Arithmetic.clamp({
                    _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                    _min: int256(uint256(config.minimumBaseFee)),
                    _max: int256(uint256(config.maximumBaseFee))
                });
                // If we skipped more than one block, we also need to account for every empty block.
                // Empty block means there was no demand for deposits in that block, so we should
                // reflect this lack of demand in the fee.
                if (blockDiff > 1) {
                    // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                    // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                    // between min and max.
                    newBaseFee = Arithmetic.clamp({
                        _value: Arithmetic.cdexp({
                            _coefficient: newBaseFee,
                            _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                            _exponent: int256(blockDiff - 1)
                        }),
                        _min: int256(uint256(config.minimumBaseFee)),
                        _max: int256(uint256(config.maximumBaseFee))
                    });
                }
                // Update new base fee, reset bought gas, and update block number.
                params.prevBaseFee = uint128(uint256(newBaseFee));
                params.prevBoughtGas = 0;
                params.prevBlockNum = uint64(block.number);
            }
            // Make sure we can actually buy the resource amount requested by the user.
            params.prevBoughtGas += _amount;
            require(
                int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                "ResourceMetering: cannot buy more gas than available gas limit"
            );
            // Determine the amount of ETH to be paid.
            uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
            // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
            // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
            // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
            // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
            // during any 1 day period in the last 5 years, so should be fine.
            uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
            // Give the user a refund based on the amount of gas they used to do all of the work up to
            // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
            // effectively like a dynamic stipend (with a minimum value).
            uint256 usedGas = _initialGas - gasleft();
            if (gasCost > usedGas) {
                Burn.gas(gasCost - usedGas);
            }
        }
        /**
         * @notice Virtual function that returns the resource config. Contracts that inherit this
         *         contract must implement this function.
         *
         * @return ResourceConfig
         */
        function _resourceConfig() internal virtual returns (ResourceConfig memory);
        /**
         * @notice Sets initial resource parameter values. This function must either be called by the
         *         initializer function of an upgradeable child contract.
         */
        // solhint-disable-next-line func-name-mixedcase
        function __ResourceMetering_init() internal onlyInitializing {
            params = ResourceParams({
                prevBaseFee: 1 gwei,
                prevBoughtGas: 0,
                prevBlockNum: uint64(block.number)
            });
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
    import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
    /**
     * @title Arithmetic
     * @notice Even more math than before.
     */
    library Arithmetic {
        /**
         * @notice Clamps a value between a minimum and maximum.
         *
         * @param _value The value to clamp.
         * @param _min   The minimum value.
         * @param _max   The maximum value.
         *
         * @return The clamped value.
         */
        function clamp(
            int256 _value,
            int256 _min,
            int256 _max
        ) internal pure returns (int256) {
            return SignedMath.min(SignedMath.max(_value, _min), _max);
        }
        /**
         * @notice (c)oefficient (d)enominator (exp)onentiation function.
         *         Returns the result of: c * (1 - 1/d)^exp.
         *
         * @param _coefficient Coefficient of the function.
         * @param _denominator Fractional denominator.
         * @param _exponent    Power function exponent.
         *
         * @return Result of c * (1 - 1/d)^exp.
         */
        function cdexp(
            int256 _coefficient,
            int256 _denominator,
            int256 _exponent
        ) internal pure returns (int256) {
            return
                (_coefficient *
                    (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    /**
     * @title Burn
     * @notice Utilities for burning stuff.
     */
    library Burn {
        /**
         * Burns a given amount of ETH.
         *
         * @param _amount Amount of ETH to burn.
         */
        function eth(uint256 _amount) internal {
            new Burner{ value: _amount }();
        }
        /**
         * Burns a given amount of gas.
         *
         * @param _amount Amount of gas to burn.
         */
        function gas(uint256 _amount) internal view {
            uint256 i = 0;
            uint256 initialGas = gasleft();
            while (initialGas - gasleft() < _amount) {
                ++i;
            }
        }
    }
    /**
     * @title Burner
     * @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
     *         the contract from the circulating supply. Self-destructing is the only way to remove ETH
     *         from the circulating supply.
     */
    contract Burner {
        constructor() payable {
            selfdestruct(payable(address(this)));
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import { ResourceMetering } from "../L1/ResourceMetering.sol";
    /**
     * @title Constants
     * @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
     *         the stuff used in multiple contracts. Constants that only apply to a single contract
     *         should be defined in that contract instead.
     */
    library Constants {
        /**
         * @notice Special address to be used as the tx origin for gas estimation calls in the
         *         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
         *         the minimum gas limit specified by the user is not actually enough to execute the
         *         given message and you're attempting to estimate the actual necessary gas limit. We
         *         use address(1) because it's the ecrecover precompile and therefore guaranteed to
         *         never have any code on any EVM chain.
         */
        address internal constant ESTIMATION_ADDRESS = address(1);
        /**
         * @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
         *         CrossDomainMessenger contracts before an actual sender is set. This value is
         *         non-zero to reduce the gas cost of message passing transactions.
         */
        address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
        /**
         * @notice Returns the default values for the ResourceConfig. These are the recommended values
         *         for a production network.
         */
        function DEFAULT_RESOURCE_CONFIG()
            internal
            pure
            returns (ResourceMetering.ResourceConfig memory)
        {
            ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                maxResourceLimit: 20_000_000,
                elasticityMultiplier: 10,
                baseFeeMaxChangeDenominator: 8,
                minimumBaseFee: 1 gwei,
                systemTxMaxGas: 1_000_000,
                maximumBaseFee: type(uint128).max
            });
            return config;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import { Types } from "./Types.sol";
    import { Hashing } from "./Hashing.sol";
    import { RLPWriter } from "./rlp/RLPWriter.sol";
    /**
     * @title Encoding
     * @notice Encoding handles Optimism's various different encoding schemes.
     */
    library Encoding {
        /**
         * @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
         *         to the L2 system. Useful for searching for a deposit in the L2 system. The
         *         transaction is prefixed with 0x7e to identify its EIP-2718 type.
         *
         * @param _tx User deposit transaction to encode.
         *
         * @return RLP encoded L2 deposit transaction.
         */
        function encodeDepositTransaction(Types.UserDepositTransaction memory _tx)
            internal
            pure
            returns (bytes memory)
        {
            bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
            bytes[] memory raw = new bytes[](8);
            raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
            raw[1] = RLPWriter.writeAddress(_tx.from);
            raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
            raw[3] = RLPWriter.writeUint(_tx.mint);
            raw[4] = RLPWriter.writeUint(_tx.value);
            raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
            raw[6] = RLPWriter.writeBool(false);
            raw[7] = RLPWriter.writeBytes(_tx.data);
            return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
        }
        /**
         * @notice Encodes the cross domain message based on the version that is encoded into the
         *         message nonce.
         *
         * @param _nonce    Message nonce with version encoded into the first two bytes.
         * @param _sender   Address of the sender of the message.
         * @param _target   Address of the target of the message.
         * @param _value    ETH value to send to the target.
         * @param _gasLimit Gas limit to use for the message.
         * @param _data     Data to send with the message.
         *
         * @return Encoded cross domain message.
         */
        function encodeCrossDomainMessage(
            uint256 _nonce,
            address _sender,
            address _target,
            uint256 _value,
            uint256 _gasLimit,
            bytes memory _data
        ) internal pure returns (bytes memory) {
            (, uint16 version) = decodeVersionedNonce(_nonce);
            if (version == 0) {
                return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
            } else if (version == 1) {
                return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
            } else {
                revert("Encoding: unknown cross domain message version");
            }
        }
        /**
         * @notice Encodes a cross domain message based on the V0 (legacy) encoding.
         *
         * @param _target Address of the target of the message.
         * @param _sender Address of the sender of the message.
         * @param _data   Data to send with the message.
         * @param _nonce  Message nonce.
         *
         * @return Encoded cross domain message.
         */
        function encodeCrossDomainMessageV0(
            address _target,
            address _sender,
            bytes memory _data,
            uint256 _nonce
        ) internal pure returns (bytes memory) {
            return
                abi.encodeWithSignature(
                    "relayMessage(address,address,bytes,uint256)",
                    _target,
                    _sender,
                    _data,
                    _nonce
                );
        }
        /**
         * @notice Encodes a cross domain message based on the V1 (current) encoding.
         *
         * @param _nonce    Message nonce.
         * @param _sender   Address of the sender of the message.
         * @param _target   Address of the target of the message.
         * @param _value    ETH value to send to the target.
         * @param _gasLimit Gas limit to use for the message.
         * @param _data     Data to send with the message.
         *
         * @return Encoded cross domain message.
         */
        function encodeCrossDomainMessageV1(
            uint256 _nonce,
            address _sender,
            address _target,
            uint256 _value,
            uint256 _gasLimit,
            bytes memory _data
        ) internal pure returns (bytes memory) {
            return
                abi.encodeWithSignature(
                    "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                    _nonce,
                    _sender,
                    _target,
                    _value,
                    _gasLimit,
                    _data
                );
        }
        /**
         * @notice Adds a version number into the first two bytes of a message nonce.
         *
         * @param _nonce   Message nonce to encode into.
         * @param _version Version number to encode into the message nonce.
         *
         * @return Message nonce with version encoded into the first two bytes.
         */
        function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
            uint256 nonce;
            assembly {
                nonce := or(shl(240, _version), _nonce)
            }
            return nonce;
        }
        /**
         * @notice Pulls the version out of a version-encoded nonce.
         *
         * @param _nonce Message nonce with version encoded into the first two bytes.
         *
         * @return Nonce without encoded version.
         * @return Version of the message.
         */
        function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
            uint240 nonce;
            uint16 version;
            assembly {
                nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                version := shr(240, _nonce)
            }
            return (nonce, version);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import { Types } from "./Types.sol";
    import { Encoding } from "./Encoding.sol";
    /**
     * @title Hashing
     * @notice Hashing handles Optimism's various different hashing schemes.
     */
    library Hashing {
        /**
         * @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
         *         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
         *         system.
         *
         * @param _tx User deposit transaction to hash.
         *
         * @return Hash of the RLP encoded L2 deposit transaction.
         */
        function hashDepositTransaction(Types.UserDepositTransaction memory _tx)
            internal
            pure
            returns (bytes32)
        {
            return keccak256(Encoding.encodeDepositTransaction(_tx));
        }
        /**
         * @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
         *         of the L2 transaction that corresponds to a deposit is unique and is
         *         deterministically generated from L1 transaction data.
         *
         * @param _l1BlockHash Hash of the L1 block where the deposit was included.
         * @param _logIndex    The index of the log that created the deposit transaction.
         *
         * @return Hash of the deposit transaction's "source hash".
         */
        function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex)
            internal
            pure
            returns (bytes32)
        {
            bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
            return keccak256(abi.encode(bytes32(0), depositId));
        }
        /**
         * @notice Hashes the cross domain message based on the version that is encoded into the
         *         message nonce.
         *
         * @param _nonce    Message nonce with version encoded into the first two bytes.
         * @param _sender   Address of the sender of the message.
         * @param _target   Address of the target of the message.
         * @param _value    ETH value to send to the target.
         * @param _gasLimit Gas limit to use for the message.
         * @param _data     Data to send with the message.
         *
         * @return Hashed cross domain message.
         */
        function hashCrossDomainMessage(
            uint256 _nonce,
            address _sender,
            address _target,
            uint256 _value,
            uint256 _gasLimit,
            bytes memory _data
        ) internal pure returns (bytes32) {
            (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
            if (version == 0) {
                return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
            } else if (version == 1) {
                return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
            } else {
                revert("Hashing: unknown cross domain message version");
            }
        }
        /**
         * @notice Hashes a cross domain message based on the V0 (legacy) encoding.
         *
         * @param _target Address of the target of the message.
         * @param _sender Address of the sender of the message.
         * @param _data   Data to send with the message.
         * @param _nonce  Message nonce.
         *
         * @return Hashed cross domain message.
         */
        function hashCrossDomainMessageV0(
            address _target,
            address _sender,
            bytes memory _data,
            uint256 _nonce
        ) internal pure returns (bytes32) {
            return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
        }
        /**
         * @notice Hashes a cross domain message based on the V1 (current) encoding.
         *
         * @param _nonce    Message nonce.
         * @param _sender   Address of the sender of the message.
         * @param _target   Address of the target of the message.
         * @param _value    ETH value to send to the target.
         * @param _gasLimit Gas limit to use for the message.
         * @param _data     Data to send with the message.
         *
         * @return Hashed cross domain message.
         */
        function hashCrossDomainMessageV1(
            uint256 _nonce,
            address _sender,
            address _target,
            uint256 _value,
            uint256 _gasLimit,
            bytes memory _data
        ) internal pure returns (bytes32) {
            return
                keccak256(
                    Encoding.encodeCrossDomainMessageV1(
                        _nonce,
                        _sender,
                        _target,
                        _value,
                        _gasLimit,
                        _data
                    )
                );
        }
        /**
         * @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
         *
         * @param _tx Withdrawal transaction to hash.
         *
         * @return Hashed withdrawal transaction.
         */
        function hashWithdrawal(Types.WithdrawalTransaction memory _tx)
            internal
            pure
            returns (bytes32)
        {
            return
                keccak256(
                    abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data)
                );
        }
        /**
         * @notice Hashes the various elements of an output root proof into an output root hash which
         *         can be used to check if the proof is valid.
         *
         * @param _outputRootProof Output root proof which should hash to an output root.
         *
         * @return Hashed output root proof.
         */
        function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof)
            internal
            pure
            returns (bytes32)
        {
            return
                keccak256(
                    abi.encode(
                        _outputRootProof.version,
                        _outputRootProof.stateRoot,
                        _outputRootProof.messagePasserStorageRoot,
                        _outputRootProof.latestBlockhash
                    )
                );
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /**
     * @title Predeploys
     * @notice Contains constant addresses for contracts that are pre-deployed to the L2 system.
     */
    library Predeploys {
        /**
         * @notice Address of the L2ToL1MessagePasser predeploy.
         */
        address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
        /**
         * @notice Address of the L2CrossDomainMessenger predeploy.
         */
        address internal constant L2_CROSS_DOMAIN_MESSENGER =
            0x4200000000000000000000000000000000000007;
        /**
         * @notice Address of the L2StandardBridge predeploy.
         */
        address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
        /**
         * @notice Address of the L2ERC721Bridge predeploy.
         */
        address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
        /**
         * @notice Address of the SequencerFeeWallet predeploy.
         */
        address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
        /**
         * @notice Address of the OptimismMintableERC20Factory predeploy.
         */
        address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY =
            0x4200000000000000000000000000000000000012;
        /**
         * @notice Address of the OptimismMintableERC721Factory predeploy.
         */
        address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY =
            0x4200000000000000000000000000000000000017;
        /**
         * @notice Address of the L1Block predeploy.
         */
        address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
        /**
         * @notice Address of the GasPriceOracle predeploy. Includes fee information
         *         and helpers for computing the L1 portion of the transaction fee.
         */
        address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
        /**
         * @custom:legacy
         * @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
         *         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
         */
        address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
        /**
         * @custom:legacy
         * @notice Address of the DeployerWhitelist predeploy. No longer active.
         */
        address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
        /**
         * @custom:legacy
         * @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
         *         state trie as of the Bedrock upgrade. Contract has been locked and write functions
         *         can no longer be accessed.
         */
        address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
        /**
         * @custom:legacy
         * @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
         *         instead, which exposes more information about the L1 state.
         */
        address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
        /**
         * @custom:legacy
         * @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
         *         L2ToL1MessagePasser contract instead.
         */
        address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
        /**
         * @notice Address of the ProxyAdmin predeploy.
         */
        address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
        /**
         * @notice Address of the BaseFeeVault predeploy.
         */
        address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
        /**
         * @notice Address of the L1FeeVault predeploy.
         */
        address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
        /**
         * @notice Address of the GovernanceToken predeploy.
         */
        address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    /**
     * @title SafeCall
     * @notice Perform low level safe calls
     */
    library SafeCall {
        /**
         * @notice Perform a low level call without copying any returndata
         *
         * @param _target   Address to call
         * @param _gas      Amount of gas to pass to the call
         * @param _value    Amount of value to pass to the call
         * @param _calldata Calldata to pass to the call
         */
        function call(
            address _target,
            uint256 _gas,
            uint256 _value,
            bytes memory _calldata
        ) internal returns (bool) {
            bool _success;
            assembly {
                _success := call(
                    _gas, // gas
                    _target, // recipient
                    _value, // ether value
                    add(_calldata, 32), // inloc
                    mload(_calldata), // inlen
                    0, // outloc
                    0 // outlen
                )
            }
            return _success;
        }
        /**
         * @notice Perform a low level call without copying any returndata. This function
         *         will revert if the call cannot be performed with the specified minimum
         *         gas.
         *
         * @param _target   Address to call
         * @param _minGas   The minimum amount of gas that may be passed to the call
         * @param _value    Amount of value to pass to the call
         * @param _calldata Calldata to pass to the call
         */
        function callWithMinGas(
            address _target,
            uint256 _minGas,
            uint256 _value,
            bytes memory _calldata
        ) internal returns (bool) {
            bool _success;
            assembly {
                // Assertion: gasleft() >= ((_minGas + 200) * 64) / 63
                //
                // Because EIP-150 ensures that, a maximum of 63/64ths of the remaining gas in the call
                // frame may be passed to a subcontext, we need to ensure that the gas will not be
                // truncated to hold this function's invariant: "If a call is performed by
                // `callWithMinGas`, it must receive at least the specified minimum gas limit." In
                // addition, exactly 51 gas is consumed between the below `GAS` opcode and the `CALL`
                // opcode, so it is factored in with some extra room for error.
                if lt(gas(), div(mul(64, add(_minGas, 200)), 63)) {
                    // Store the "Error(string)" selector in scratch space.
                    mstore(0, 0x08c379a0)
                    // Store the pointer to the string length in scratch space.
                    mstore(32, 32)
                    // Store the string.
                    //
                    // SAFETY:
                    // - We pad the beginning of the string with two zero bytes as well as the
                    // length (24) to ensure that we override the free memory pointer at offset
                    // 0x40. This is necessary because the free memory pointer is likely to
                    // be greater than 1 byte when this function is called, but it is incredibly
                    // unlikely that it will be greater than 3 bytes. As for the data within
                    // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                    // - It's fine to clobber the free memory pointer, we're reverting.
                    mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                    // Revert with 'Error("SafeCall: Not enough gas")'
                    revert(28, 100)
                }
                // The call will be supplied at least (((_minGas + 200) * 64) / 63) - 49 gas due to the
                // above assertion. This ensures that, in all circumstances, the call will
                // receive at least the minimum amount of gas specified.
                // We can prove this property by solving the inequalities:
                // ((((_minGas + 200) * 64) / 63) - 49) >= _minGas
                // ((((_minGas + 200) * 64) / 63) - 51) * (63 / 64) >= _minGas
                // Both inequalities hold true for all possible values of `_minGas`.
                _success := call(
                    gas(), // gas
                    _target, // recipient
                    _value, // ether value
                    add(_calldata, 32), // inloc
                    mload(_calldata), // inlen
                    0x00, // outloc
                    0x00 // outlen
                )
            }
            return _success;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /**
     * @title Types
     * @notice Contains various types used throughout the Optimism contract system.
     */
    library Types {
        /**
         * @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
         *         timestamp that the output root is posted. This timestamp is used to verify that the
         *         finalization period has passed since the output root was submitted.
         *
         * @custom:field outputRoot    Hash of the L2 output.
         * @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
         * @custom:field l2BlockNumber L2 block number that the output corresponds to.
         */
        struct OutputProposal {
            bytes32 outputRoot;
            uint128 timestamp;
            uint128 l2BlockNumber;
        }
        /**
         * @notice Struct representing the elements that are hashed together to generate an output root
         *         which itself represents a snapshot of the L2 state.
         *
         * @custom:field version                  Version of the output root.
         * @custom:field stateRoot                Root of the state trie at the block of this output.
         * @custom:field messagePasserStorageRoot Root of the message passer storage trie.
         * @custom:field latestBlockhash          Hash of the block this output was generated from.
         */
        struct OutputRootProof {
            bytes32 version;
            bytes32 stateRoot;
            bytes32 messagePasserStorageRoot;
            bytes32 latestBlockhash;
        }
        /**
         * @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
         *         user (as opposed to a system deposit transaction generated by the system).
         *
         * @custom:field from        Address of the sender of the transaction.
         * @custom:field to          Address of the recipient of the transaction.
         * @custom:field isCreation  True if the transaction is a contract creation.
         * @custom:field value       Value to send to the recipient.
         * @custom:field mint        Amount of ETH to mint.
         * @custom:field gasLimit    Gas limit of the transaction.
         * @custom:field data        Data of the transaction.
         * @custom:field l1BlockHash Hash of the block the transaction was submitted in.
         * @custom:field logIndex    Index of the log in the block the transaction was submitted in.
         */
        struct UserDepositTransaction {
            address from;
            address to;
            bool isCreation;
            uint256 value;
            uint256 mint;
            uint64 gasLimit;
            bytes data;
            bytes32 l1BlockHash;
            uint256 logIndex;
        }
        /**
         * @notice Struct representing a withdrawal transaction.
         *
         * @custom:field nonce    Nonce of the withdrawal transaction
         * @custom:field sender   Address of the sender of the transaction.
         * @custom:field target   Address of the recipient of the transaction.
         * @custom:field value    Value to send to the recipient.
         * @custom:field gasLimit Gas limit of the transaction.
         * @custom:field data     Data of the transaction.
         */
        struct WithdrawalTransaction {
            uint256 nonce;
            address sender;
            address target;
            uint256 value;
            uint256 gasLimit;
            bytes data;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /**
     * @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
     * @title RLPWriter
     * @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
     *         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
     *         modifications to improve legibility.
     */
    library RLPWriter {
        /**
         * @notice RLP encodes a byte string.
         *
         * @param _in The byte string to encode.
         *
         * @return The RLP encoded string in bytes.
         */
        function writeBytes(bytes memory _in) internal pure returns (bytes memory) {
            bytes memory encoded;
            if (_in.length == 1 && uint8(_in[0]) < 128) {
                encoded = _in;
            } else {
                encoded = abi.encodePacked(_writeLength(_in.length, 128), _in);
            }
            return encoded;
        }
        /**
         * @notice RLP encodes a list of RLP encoded byte byte strings.
         *
         * @param _in The list of RLP encoded byte strings.
         *
         * @return The RLP encoded list of items in bytes.
         */
        function writeList(bytes[] memory _in) internal pure returns (bytes memory) {
            bytes memory list = _flatten(_in);
            return abi.encodePacked(_writeLength(list.length, 192), list);
        }
        /**
         * @notice RLP encodes a string.
         *
         * @param _in The string to encode.
         *
         * @return The RLP encoded string in bytes.
         */
        function writeString(string memory _in) internal pure returns (bytes memory) {
            return writeBytes(bytes(_in));
        }
        /**
         * @notice RLP encodes an address.
         *
         * @param _in The address to encode.
         *
         * @return The RLP encoded address in bytes.
         */
        function writeAddress(address _in) internal pure returns (bytes memory) {
            return writeBytes(abi.encodePacked(_in));
        }
        /**
         * @notice RLP encodes a uint.
         *
         * @param _in The uint256 to encode.
         *
         * @return The RLP encoded uint256 in bytes.
         */
        function writeUint(uint256 _in) internal pure returns (bytes memory) {
            return writeBytes(_toBinary(_in));
        }
        /**
         * @notice RLP encodes a bool.
         *
         * @param _in The bool to encode.
         *
         * @return The RLP encoded bool in bytes.
         */
        function writeBool(bool _in) internal pure returns (bytes memory) {
            bytes memory encoded = new bytes(1);
            encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80));
            return encoded;
        }
        /**
         * @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
         *
         * @param _len    The length of the string or the payload.
         * @param _offset 128 if item is string, 192 if item is list.
         *
         * @return RLP encoded bytes.
         */
        function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) {
            bytes memory encoded;
            if (_len < 56) {
                encoded = new bytes(1);
                encoded[0] = bytes1(uint8(_len) + uint8(_offset));
            } else {
                uint256 lenLen;
                uint256 i = 1;
                while (_len / i != 0) {
                    lenLen++;
                    i *= 256;
                }
                encoded = new bytes(lenLen + 1);
                encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                for (i = 1; i <= lenLen; i++) {
                    encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256));
                }
            }
            return encoded;
        }
        /**
         * @notice Encode integer in big endian binary form with no leading zeroes.
         *
         * @param _x The integer to encode.
         *
         * @return RLP encoded bytes.
         */
        function _toBinary(uint256 _x) private pure returns (bytes memory) {
            bytes memory b = abi.encodePacked(_x);
            uint256 i = 0;
            for (; i < 32; i++) {
                if (b[i] != 0) {
                    break;
                }
            }
            bytes memory res = new bytes(32 - i);
            for (uint256 j = 0; j < res.length; j++) {
                res[j] = b[i++];
            }
            return res;
        }
        /**
         * @custom:attribution https://github.com/Arachnid/solidity-stringutils
         * @notice Copies a piece of memory to another location.
         *
         * @param _dest Destination location.
         * @param _src  Source location.
         * @param _len  Length of memory to copy.
         */
        function _memcpy(
            uint256 _dest,
            uint256 _src,
            uint256 _len
        ) private pure {
            uint256 dest = _dest;
            uint256 src = _src;
            uint256 len = _len;
            for (; len >= 32; len -= 32) {
                assembly {
                    mstore(dest, mload(src))
                }
                dest += 32;
                src += 32;
            }
            uint256 mask;
            unchecked {
                mask = 256**(32 - len) - 1;
            }
            assembly {
                let srcpart := and(mload(src), not(mask))
                let destpart := and(mload(dest), mask)
                mstore(dest, or(destpart, srcpart))
            }
        }
        /**
         * @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
         * @notice Flattens a list of byte strings into one byte string.
         *
         * @param _list List of byte strings to flatten.
         *
         * @return The flattened byte string.
         */
        function _flatten(bytes[] memory _list) private pure returns (bytes memory) {
            if (_list.length == 0) {
                return new bytes(0);
            }
            uint256 len;
            uint256 i = 0;
            for (; i < _list.length; i++) {
                len += _list[i].length;
            }
            bytes memory flattened = new bytes(len);
            uint256 flattenedPtr;
            assembly {
                flattenedPtr := add(flattened, 0x20)
            }
            for (i = 0; i < _list.length; i++) {
                bytes memory item = _list[i];
                uint256 listPtr;
                assembly {
                    listPtr := add(item, 0x20)
                }
                _memcpy(flattenedPtr, listPtr, item.length);
                flattenedPtr += _list[i].length;
            }
            return flattened;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
    import { SafeCall } from "../libraries/SafeCall.sol";
    import { Hashing } from "../libraries/Hashing.sol";
    import { Encoding } from "../libraries/Encoding.sol";
    import { Constants } from "../libraries/Constants.sol";
    /**
     * @custom:legacy
     * @title CrossDomainMessengerLegacySpacer0
     * @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
     *         libAddressManager variable used to exist. Must be the first contract in the inheritance
     *         tree of the CrossDomainMessenger.
     */
    contract CrossDomainMessengerLegacySpacer0 {
        /**
         * @custom:legacy
         * @custom:spacer libAddressManager
         * @notice Spacer for backwards compatibility.
         */
        address private spacer_0_0_20;
    }
    /**
     * @custom:legacy
     * @title CrossDomainMessengerLegacySpacer1
     * @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
     *         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
     *         the third contract in the inheritance tree of the CrossDomainMessenger.
     */
    contract CrossDomainMessengerLegacySpacer1 {
        /**
         * @custom:legacy
         * @custom:spacer __gap
         * @notice Spacer for backwards compatibility. Comes from OpenZeppelin
         *         ContextUpgradable via OwnableUpgradeable.
         *
         */
        uint256[50] private spacer_1_0_1600;
        /**
         * @custom:legacy
         * @custom:spacer _owner
         * @notice Spacer for backwards compatibility.
         *         Come from OpenZeppelin OwnableUpgradeable.
         */
        address private spacer_51_0_20;
        /**
         * @custom:legacy
         * @custom:spacer __gap
         * @notice Spacer for backwards compatibility. Comes from OpenZeppelin
         *         ContextUpgradable via PausableUpgradable.
         */
        uint256[49] private spacer_52_0_1568;
        /**
         * @custom:legacy
         * @custom:spacer _paused
         * @notice Spacer for backwards compatibility. Comes from OpenZeppelin
         *         PausableUpgradable.
         */
        bool private spacer_101_0_1;
        /**
         * @custom:legacy
         * @custom:spacer __gap
         * @notice Spacer for backwards compatibility. Comes from OpenZeppelin
         *         PausableUpgradable.
         */
        uint256[49] private spacer_102_0_1568;
        /**
         * @custom:legacy
         * @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
         * @notice Spacer for backwards compatibility
         */
        uint256 private spacer_151_0_32;
        /**
         * @custom:spacer ReentrancyGuardUpgradeable
         * @notice Spacer for backwards compatibility
         */
        uint256[49] private __gap_reentrancy_guard;
        /**
         * @custom:legacy
         * @custom:spacer blockedMessages
         * @notice Spacer for backwards compatibility.
         */
        mapping(bytes32 => bool) private spacer_201_0_32;
        /**
         * @custom:legacy
         * @custom:spacer relayedMessages
         * @notice Spacer for backwards compatibility.
         */
        mapping(bytes32 => bool) private spacer_202_0_32;
    }
    /**
     * @custom:upgradeable
     * @title CrossDomainMessenger
     * @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
     *         cross-chain messenger contracts. It's designed to be a universal interface that only
     *         needs to be extended slightly to provide low-level message passing functionality on each
     *         chain it's deployed on. Currently only designed for message passing between two paired
     *         chains and does not support one-to-many interactions.
     *
     *         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
     */
    abstract contract CrossDomainMessenger is
        CrossDomainMessengerLegacySpacer0,
        Initializable,
        CrossDomainMessengerLegacySpacer1
    {
        /**
         * @notice Current message version identifier.
         */
        uint16 public constant MESSAGE_VERSION = 1;
        /**
         * @notice Constant overhead added to the base gas for a message.
         */
        uint64 public constant MIN_GAS_CONSTANT_OVERHEAD = 200_000;
        /**
         * @notice Numerator for dynamic overhead added to the base gas for a message.
         */
        uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 1016;
        /**
         * @notice Denominator for dynamic overhead added to the base gas for a message.
         */
        uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 1000;
        /**
         * @notice Extra gas added to base gas for each byte of calldata in a message.
         */
        uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
        /**
         * @notice Address of the paired CrossDomainMessenger contract on the other chain.
         */
        address public immutable OTHER_MESSENGER;
        /**
         * @notice Mapping of message hashes to boolean receipt values. Note that a message will only
         *         be present in this mapping if it has successfully been relayed on this chain, and
         *         can therefore not be relayed again.
         */
        mapping(bytes32 => bool) public successfulMessages;
        /**
         * @notice Address of the sender of the currently executing message on the other chain. If the
         *         value of this variable is the default value (0x00000000...dead) then no message is
         *         currently being executed. Use the xDomainMessageSender getter which will throw an
         *         error if this is the case.
         */
        address internal xDomainMsgSender;
        /**
         * @notice Nonce for the next message to be sent, without the message version applied. Use the
         *         messageNonce getter which will insert the message version into the nonce to give you
         *         the actual nonce to be used for the message.
         */
        uint240 internal msgNonce;
        /**
         * @notice Mapping of message hashes to a boolean if and only if the message has failed to be
         *         executed at least once. A message will not be present in this mapping if it
         *         successfully executed on the first attempt.
         */
        mapping(bytes32 => bool) public failedMessages;
        /**
         * @notice A mapping of hashes to reentrancy locks.
         */
        mapping(bytes32 => bool) internal reentrancyLocks;
        /**
         * @notice Reserve extra slots in the storage layout for future upgrades.
         *         A gap size of 41 was chosen here, so that the first slot used in a child contract
         *         would be a multiple of 50.
         */
        uint256[41] private __gap;
        /**
         * @notice Emitted whenever a message is sent to the other chain.
         *
         * @param target       Address of the recipient of the message.
         * @param sender       Address of the sender of the message.
         * @param message      Message to trigger the recipient address with.
         * @param messageNonce Unique nonce attached to the message.
         * @param gasLimit     Minimum gas limit that the message can be executed with.
         */
        event SentMessage(
            address indexed target,
            address sender,
            bytes message,
            uint256 messageNonce,
            uint256 gasLimit
        );
        /**
         * @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
         *         SentMessage event without breaking the ABI of this contract, this is good enough.
         *
         * @param sender Address of the sender of the message.
         * @param value  ETH value sent along with the message to the recipient.
         */
        event SentMessageExtension1(address indexed sender, uint256 value);
        /**
         * @notice Emitted whenever a message is successfully relayed on this chain.
         *
         * @param msgHash Hash of the message that was relayed.
         */
        event RelayedMessage(bytes32 indexed msgHash);
        /**
         * @notice Emitted whenever a message fails to be relayed on this chain.
         *
         * @param msgHash Hash of the message that failed to be relayed.
         */
        event FailedRelayedMessage(bytes32 indexed msgHash);
        /**
         * @param _otherMessenger Address of the messenger on the paired chain.
         */
        constructor(address _otherMessenger) {
            OTHER_MESSENGER = _otherMessenger;
        }
        /**
         * @notice Sends a message to some target address on the other chain. Note that if the call
         *         always reverts, then the message will be unrelayable, and any ETH sent will be
         *         permanently locked. The same will occur if the target on the other chain is
         *         considered unsafe (see the _isUnsafeTarget() function).
         *
         * @param _target      Target contract or wallet address.
         * @param _message     Message to trigger the target address with.
         * @param _minGasLimit Minimum gas limit that the message can be executed with.
         */
        function sendMessage(
            address _target,
            bytes calldata _message,
            uint32 _minGasLimit
        ) external payable {
            // Triggers a message to the other messenger. Note that the amount of gas provided to the
            // message is the amount of gas requested by the user PLUS the base gas value. We want to
            // guarantee the property that the call to the target contract will always have at least
            // the minimum gas limit specified by the user.
            _sendMessage(
                OTHER_MESSENGER,
                baseGas(_message, _minGasLimit),
                msg.value,
                abi.encodeWithSelector(
                    this.relayMessage.selector,
                    messageNonce(),
                    msg.sender,
                    _target,
                    msg.value,
                    _minGasLimit,
                    _message
                )
            );
            emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
            emit SentMessageExtension1(msg.sender, msg.value);
            unchecked {
                ++msgNonce;
            }
        }
        /**
         * @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
         *         be executed via cross-chain call from the other messenger OR if the message was
         *         already received once and is currently being replayed.
         *
         * @param _nonce       Nonce of the message being relayed.
         * @param _sender      Address of the user who sent the message.
         * @param _target      Address that the message is targeted at.
         * @param _value       ETH value to send with the message.
         * @param _minGasLimit Minimum amount of gas that the message can be executed with.
         * @param _message     Message to send to the target.
         */
        function relayMessage(
            uint256 _nonce,
            address _sender,
            address _target,
            uint256 _value,
            uint256 _minGasLimit,
            bytes calldata _message
        ) external payable {
            (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
            require(
                version < 2,
                "CrossDomainMessenger: only version 0 or 1 messages are supported at this time"
            );
            // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
            // to check that the legacy version of the message has not already been relayed.
            if (version == 0) {
                bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
                require(
                    successfulMessages[oldHash] == false,
                    "CrossDomainMessenger: legacy withdrawal already relayed"
                );
            }
            // We use the v1 message hash as the unique identifier for the message because it commits
            // to the value and minimum gas limit of the message.
            bytes32 versionedHash = Hashing.hashCrossDomainMessageV1(
                _nonce,
                _sender,
                _target,
                _value,
                _minGasLimit,
                _message
            );
            // Check if the reentrancy lock for the `versionedHash` is already set.
            if (reentrancyLocks[versionedHash]) {
                revert("ReentrancyGuard: reentrant call");
            }
            // Trigger the reentrancy lock for `versionedHash`
            reentrancyLocks[versionedHash] = true;
            if (_isOtherMessenger()) {
                // These properties should always hold when the message is first submitted (as
                // opposed to being replayed).
                assert(msg.value == _value);
                assert(!failedMessages[versionedHash]);
            } else {
                require(
                    msg.value == 0,
                    "CrossDomainMessenger: value must be zero unless message is from a system address"
                );
                require(
                    failedMessages[versionedHash],
                    "CrossDomainMessenger: message cannot be replayed"
                );
            }
            require(
                _isUnsafeTarget(_target) == false,
                "CrossDomainMessenger: cannot send message to blocked system address"
            );
            require(
                successfulMessages[versionedHash] == false,
                "CrossDomainMessenger: message has already been relayed"
            );
            xDomainMsgSender = _sender;
            bool success = SafeCall.callWithMinGas(_target, _minGasLimit, _value, _message);
            xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
            if (success) {
                successfulMessages[versionedHash] = true;
                emit RelayedMessage(versionedHash);
            } else {
                failedMessages[versionedHash] = true;
                emit FailedRelayedMessage(versionedHash);
                // Revert in this case if the transaction was triggered by the estimation address. This
                // should only be possible during gas estimation or we have bigger problems. Reverting
                // here will make the behavior of gas estimation change such that the gas limit
                // computed will be the amount required to relay the message, even if that amount is
                // greater than the minimum gas limit specified by the user.
                if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                    revert("CrossDomainMessenger: failed to relay message");
                }
            }
            // Clear the reentrancy lock for `versionedHash`
            reentrancyLocks[versionedHash] = false;
        }
        /**
         * @notice Retrieves the address of the contract or wallet that initiated the currently
         *         executing message on the other chain. Will throw an error if there is no message
         *         currently being executed. Allows the recipient of a call to see who triggered it.
         *
         * @return Address of the sender of the currently executing message on the other chain.
         */
        function xDomainMessageSender() external view returns (address) {
            require(
                xDomainMsgSender != Constants.DEFAULT_L2_SENDER,
                "CrossDomainMessenger: xDomainMessageSender is not set"
            );
            return xDomainMsgSender;
        }
        /**
         * @notice Retrieves the next message nonce. Message version will be added to the upper two
         *         bytes of the message nonce. Message version allows us to treat messages as having
         *         different structures.
         *
         * @return Nonce of the next message to be sent, with added message version.
         */
        function messageNonce() public view returns (uint256) {
            return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
        }
        /**
         * @notice Computes the amount of gas required to guarantee that a given message will be
         *         received on the other chain without running out of gas. Guaranteeing that a message
         *         will not run out of gas is important because this ensures that a message can always
         *         be replayed on the other chain if it fails to execute completely.
         *
         * @param _message     Message to compute the amount of required gas for.
         * @param _minGasLimit Minimum desired gas limit when message goes to target.
         *
         * @return Amount of gas required to guarantee message receipt.
         */
        function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
            // We peform the following math on uint64s to avoid overflow errors. Multiplying the
            // by MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR would otherwise limit the _minGasLimit to
            // type(uint32).max / MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR ~= 4.2m.
            return
                // Dynamic overhead
                ((uint64(_minGasLimit) * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) /
                    MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) +
                // Calldata overhead
                (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) +
                // Constant overhead
                MIN_GAS_CONSTANT_OVERHEAD;
        }
        /**
         * @notice Intializer.
         */
        // solhint-disable-next-line func-name-mixedcase
        function __CrossDomainMessenger_init() internal onlyInitializing {
            xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
        }
        /**
         * @notice Sends a low-level message to the other messenger. Needs to be implemented by child
         *         contracts because the logic for this depends on the network where the messenger is
         *         being deployed.
         *
         * @param _to       Recipient of the message on the other chain.
         * @param _gasLimit Minimum gas limit the message can be executed with.
         * @param _value    Amount of ETH to send with the message.
         * @param _data     Message data.
         */
        function _sendMessage(
            address _to,
            uint64 _gasLimit,
            uint256 _value,
            bytes memory _data
        ) internal virtual;
        /**
         * @notice Checks whether the message is coming from the other messenger. Implemented by child
         *         contracts because the logic for this depends on the network where the messenger is
         *         being deployed.
         *
         * @return Whether the message is coming from the other messenger.
         */
        function _isOtherMessenger() internal view virtual returns (bool);
        /**
         * @notice Checks whether a given call target is a system address that could cause the
         *         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
         *         addresses. This is ONLY used to prevent the execution of messages to specific
         *         system addresses that could cause security issues, e.g., having the
         *         CrossDomainMessenger send messages to itself.
         *
         * @param _target Address of the contract to check.
         *
         * @return Whether or not the address is an unsafe system address.
         */
        function _isUnsafeTarget(address _target) internal view virtual returns (bool);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
    /**
     * @title IOptimismMintableERC20
     * @notice This interface is available on the OptimismMintableERC20 contract. We declare it as a
     *         separate interface so that it can be used in custom implementations of
     *         OptimismMintableERC20.
     */
    interface IOptimismMintableERC20 is IERC165 {
        function remoteToken() external view returns (address);
        function bridge() external returns (address);
        function mint(address _to, uint256 _amount) external;
        function burn(address _from, uint256 _amount) external;
    }
    /**
     * @custom:legacy
     * @title ILegacyMintableERC20
     * @notice This interface was available on the legacy L2StandardERC20 contract. It remains available
     *         on the OptimismMintableERC20 contract for backwards compatibility.
     */
    interface ILegacyMintableERC20 is IERC165 {
        function l1Token() external view returns (address);
        function mint(address _to, uint256 _amount) external;
        function burn(address _from, uint256 _amount) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
    import { ILegacyMintableERC20, IOptimismMintableERC20 } from "./IOptimismMintableERC20.sol";
    import { Semver } from "../universal/Semver.sol";
    /**
     * @title OptimismMintableERC20
     * @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed
     *         to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to
     *         use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa.
     *         Designed to be backwards compatible with the older StandardL2ERC20 token which was only
     *         meant for use on L2.
     */
    contract OptimismMintableERC20 is IOptimismMintableERC20, ILegacyMintableERC20, ERC20, Semver {
        /**
         * @notice Address of the corresponding version of this token on the remote chain.
         */
        address public immutable REMOTE_TOKEN;
        /**
         * @notice Address of the StandardBridge on this network.
         */
        address public immutable BRIDGE;
        /**
         * @notice Emitted whenever tokens are minted for an account.
         *
         * @param account Address of the account tokens are being minted for.
         * @param amount  Amount of tokens minted.
         */
        event Mint(address indexed account, uint256 amount);
        /**
         * @notice Emitted whenever tokens are burned from an account.
         *
         * @param account Address of the account tokens are being burned from.
         * @param amount  Amount of tokens burned.
         */
        event Burn(address indexed account, uint256 amount);
        /**
         * @notice A modifier that only allows the bridge to call
         */
        modifier onlyBridge() {
            require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn");
            _;
        }
        /**
         * @custom:semver 1.0.0
         *
         * @param _bridge      Address of the L2 standard bridge.
         * @param _remoteToken Address of the corresponding L1 token.
         * @param _name        ERC20 name.
         * @param _symbol      ERC20 symbol.
         */
        constructor(
            address _bridge,
            address _remoteToken,
            string memory _name,
            string memory _symbol
        ) ERC20(_name, _symbol) Semver(1, 0, 0) {
            REMOTE_TOKEN = _remoteToken;
            BRIDGE = _bridge;
        }
        /**
         * @notice Allows the StandardBridge on this network to mint tokens.
         *
         * @param _to     Address to mint tokens to.
         * @param _amount Amount of tokens to mint.
         */
        function mint(address _to, uint256 _amount)
            external
            virtual
            override(IOptimismMintableERC20, ILegacyMintableERC20)
            onlyBridge
        {
            _mint(_to, _amount);
            emit Mint(_to, _amount);
        }
        /**
         * @notice Allows the StandardBridge on this network to burn tokens.
         *
         * @param _from   Address to burn tokens from.
         * @param _amount Amount of tokens to burn.
         */
        function burn(address _from, uint256 _amount)
            external
            virtual
            override(IOptimismMintableERC20, ILegacyMintableERC20)
            onlyBridge
        {
            _burn(_from, _amount);
            emit Burn(_from, _amount);
        }
        /**
         * @notice ERC165 interface check function.
         *
         * @param _interfaceId Interface ID to check.
         *
         * @return Whether or not the interface is supported by this contract.
         */
        function supportsInterface(bytes4 _interfaceId) external pure returns (bool) {
            bytes4 iface1 = type(IERC165).interfaceId;
            // Interface corresponding to the legacy L2StandardERC20.
            bytes4 iface2 = type(ILegacyMintableERC20).interfaceId;
            // Interface corresponding to the updated OptimismMintableERC20 (this contract).
            bytes4 iface3 = type(IOptimismMintableERC20).interfaceId;
            return _interfaceId == iface1 || _interfaceId == iface2 || _interfaceId == iface3;
        }
        /**
         * @custom:legacy
         * @notice Legacy getter for the remote token. Use REMOTE_TOKEN going forward.
         */
        function l1Token() public view returns (address) {
            return REMOTE_TOKEN;
        }
        /**
         * @custom:legacy
         * @notice Legacy getter for the bridge. Use BRIDGE going forward.
         */
        function l2Bridge() public view returns (address) {
            return BRIDGE;
        }
        /**
         * @custom:legacy
         * @notice Legacy getter for REMOTE_TOKEN.
         */
        function remoteToken() public view returns (address) {
            return REMOTE_TOKEN;
        }
        /**
         * @custom:legacy
         * @notice Legacy getter for BRIDGE.
         */
        function bridge() public view returns (address) {
            return BRIDGE;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
    /**
     * @title Semver
     * @notice Semver is a simple contract for managing contract versions.
     */
    contract Semver {
        /**
         * @notice Contract version number (major).
         */
        uint256 private immutable MAJOR_VERSION;
        /**
         * @notice Contract version number (minor).
         */
        uint256 private immutable MINOR_VERSION;
        /**
         * @notice Contract version number (patch).
         */
        uint256 private immutable PATCH_VERSION;
        /**
         * @param _major Version number (major).
         * @param _minor Version number (minor).
         * @param _patch Version number (patch).
         */
        constructor(
            uint256 _major,
            uint256 _minor,
            uint256 _patch
        ) {
            MAJOR_VERSION = _major;
            MINOR_VERSION = _minor;
            PATCH_VERSION = _patch;
        }
        /**
         * @notice Returns the full semver contract version.
         *
         * @return Semver contract version as a string.
         */
        function version() public view returns (string memory) {
            return
                string(
                    abi.encodePacked(
                        Strings.toString(MAJOR_VERSION),
                        ".",
                        Strings.toString(MINOR_VERSION),
                        ".",
                        Strings.toString(PATCH_VERSION)
                    )
                );
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.15;
    import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
    import { Address } from "@openzeppelin/contracts/utils/Address.sol";
    import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
    import { SafeCall } from "../libraries/SafeCall.sol";
    import { IOptimismMintableERC20, ILegacyMintableERC20 } from "./IOptimismMintableERC20.sol";
    import { CrossDomainMessenger } from "./CrossDomainMessenger.sol";
    import { OptimismMintableERC20 } from "./OptimismMintableERC20.sol";
    /**
     * @custom:upgradeable
     * @title StandardBridge
     * @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
     *         the core bridging logic, including escrowing tokens that are native to the local chain
     *         and minting/burning tokens that are native to the remote chain.
     */
    abstract contract StandardBridge {
        using SafeERC20 for IERC20;
        /**
         * @notice The L2 gas limit set when eth is depoisited using the receive() function.
         */
        uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;
        /**
         * @notice Messenger contract on this domain.
         */
        CrossDomainMessenger public immutable MESSENGER;
        /**
         * @notice Corresponding bridge on the other domain.
         */
        StandardBridge public immutable OTHER_BRIDGE;
        /**
         * @custom:legacy
         * @custom:spacer messenger
         * @notice Spacer for backwards compatibility.
         */
        address private spacer_0_0_20;
        /**
         * @custom:legacy
         * @custom:spacer l2TokenBridge
         * @notice Spacer for backwards compatibility.
         */
        address private spacer_1_0_20;
        /**
         * @notice Mapping that stores deposits for a given pair of local and remote tokens.
         */
        mapping(address => mapping(address => uint256)) public deposits;
        /**
         * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
         *         A gap size of 47 was chosen here, so that the first slot used in a child contract
         *         would be a multiple of 50.
         */
        uint256[47] private __gap;
        /**
         * @notice Emitted when an ETH bridge is initiated to the other chain.
         *
         * @param from      Address of the sender.
         * @param to        Address of the receiver.
         * @param amount    Amount of ETH sent.
         * @param extraData Extra data sent with the transaction.
         */
        event ETHBridgeInitiated(
            address indexed from,
            address indexed to,
            uint256 amount,
            bytes extraData
        );
        /**
         * @notice Emitted when an ETH bridge is finalized on this chain.
         *
         * @param from      Address of the sender.
         * @param to        Address of the receiver.
         * @param amount    Amount of ETH sent.
         * @param extraData Extra data sent with the transaction.
         */
        event ETHBridgeFinalized(
            address indexed from,
            address indexed to,
            uint256 amount,
            bytes extraData
        );
        /**
         * @notice Emitted when an ERC20 bridge is initiated to the other chain.
         *
         * @param localToken  Address of the ERC20 on this chain.
         * @param remoteToken Address of the ERC20 on the remote chain.
         * @param from        Address of the sender.
         * @param to          Address of the receiver.
         * @param amount      Amount of the ERC20 sent.
         * @param extraData   Extra data sent with the transaction.
         */
        event ERC20BridgeInitiated(
            address indexed localToken,
            address indexed remoteToken,
            address indexed from,
            address to,
            uint256 amount,
            bytes extraData
        );
        /**
         * @notice Emitted when an ERC20 bridge is finalized on this chain.
         *
         * @param localToken  Address of the ERC20 on this chain.
         * @param remoteToken Address of the ERC20 on the remote chain.
         * @param from        Address of the sender.
         * @param to          Address of the receiver.
         * @param amount      Amount of the ERC20 sent.
         * @param extraData   Extra data sent with the transaction.
         */
        event ERC20BridgeFinalized(
            address indexed localToken,
            address indexed remoteToken,
            address indexed from,
            address to,
            uint256 amount,
            bytes extraData
        );
        /**
         * @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
         *         calling code within their constructors, but also doesn't really matter since we're
         *         just trying to prevent users accidentally depositing with smart contract wallets.
         */
        modifier onlyEOA() {
            require(
                !Address.isContract(msg.sender),
                "StandardBridge: function can only be called from an EOA"
            );
            _;
        }
        /**
         * @notice Ensures that the caller is a cross-chain message from the other bridge.
         */
        modifier onlyOtherBridge() {
            require(
                msg.sender == address(MESSENGER) &&
                    MESSENGER.xDomainMessageSender() == address(OTHER_BRIDGE),
                "StandardBridge: function can only be called from the other bridge"
            );
            _;
        }
        /**
         * @param _messenger   Address of CrossDomainMessenger on this network.
         * @param _otherBridge Address of the other StandardBridge contract.
         */
        constructor(address payable _messenger, address payable _otherBridge) {
            MESSENGER = CrossDomainMessenger(_messenger);
            OTHER_BRIDGE = StandardBridge(_otherBridge);
        }
        /**
         * @notice Allows EOAs to bridge ETH by sending directly to the bridge.
         *         Must be implemented by contracts that inherit.
         */
        receive() external payable virtual;
        /**
         * @custom:legacy
         * @notice Legacy getter for messenger contract.
         *
         * @return Messenger contract on this domain.
         */
        function messenger() external view returns (CrossDomainMessenger) {
            return MESSENGER;
        }
        /**
         * @notice Sends ETH to the sender's address on the other chain.
         *
         * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
         * @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
         *                     not be triggered with this data, but it will be emitted and can be used
         *                     to identify the transaction.
         */
        function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA {
            _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
        }
        /**
         * @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
         *         smart contract and the call fails, the ETH will be temporarily locked in the
         *         StandardBridge on the other chain until the call is replayed. If the call cannot be
         *         replayed with any amount of gas (call always reverts), then the ETH will be
         *         permanently locked in the StandardBridge on the other chain. ETH will also
         *         be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
         *         in that case.
         *
         * @param _to          Address of the receiver.
         * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
         * @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
         *                     not be triggered with this data, but it will be emitted and can be used
         *                     to identify the transaction.
         */
        function bridgeETHTo(
            address _to,
            uint32 _minGasLimit,
            bytes calldata _extraData
        ) public payable {
            _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
        }
        /**
         * @notice Sends ERC20 tokens to the sender's address on the other chain. Note that if the
         *         ERC20 token on the other chain does not recognize the local token as the correct
         *         pair token, the ERC20 bridge will fail and the tokens will be returned to sender on
         *         this chain.
         *
         * @param _localToken  Address of the ERC20 on this chain.
         * @param _remoteToken Address of the corresponding token on the remote chain.
         * @param _amount      Amount of local tokens to deposit.
         * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
         * @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
         *                     not be triggered with this data, but it will be emitted and can be used
         *                     to identify the transaction.
         */
        function bridgeERC20(
            address _localToken,
            address _remoteToken,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes calldata _extraData
        ) public virtual onlyEOA {
            _initiateBridgeERC20(
                _localToken,
                _remoteToken,
                msg.sender,
                msg.sender,
                _amount,
                _minGasLimit,
                _extraData
            );
        }
        /**
         * @notice Sends ERC20 tokens to a receiver's address on the other chain. Note that if the
         *         ERC20 token on the other chain does not recognize the local token as the correct
         *         pair token, the ERC20 bridge will fail and the tokens will be returned to sender on
         *         this chain.
         *
         * @param _localToken  Address of the ERC20 on this chain.
         * @param _remoteToken Address of the corresponding token on the remote chain.
         * @param _to          Address of the receiver.
         * @param _amount      Amount of local tokens to deposit.
         * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
         * @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
         *                     not be triggered with this data, but it will be emitted and can be used
         *                     to identify the transaction.
         */
        function bridgeERC20To(
            address _localToken,
            address _remoteToken,
            address _to,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes calldata _extraData
        ) public virtual {
            _initiateBridgeERC20(
                _localToken,
                _remoteToken,
                msg.sender,
                _to,
                _amount,
                _minGasLimit,
                _extraData
            );
        }
        /**
         * @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
         *         StandardBridge contract on the remote chain.
         *
         * @param _from      Address of the sender.
         * @param _to        Address of the receiver.
         * @param _amount    Amount of ETH being bridged.
         * @param _extraData Extra data to be sent with the transaction. Note that the recipient will
         *                   not be triggered with this data, but it will be emitted and can be used
         *                   to identify the transaction.
         */
        function finalizeBridgeETH(
            address _from,
            address _to,
            uint256 _amount,
            bytes calldata _extraData
        ) public payable onlyOtherBridge {
            require(msg.value == _amount, "StandardBridge: amount sent does not match amount required");
            require(_to != address(this), "StandardBridge: cannot send to self");
            require(_to != address(MESSENGER), "StandardBridge: cannot send to messenger");
            // Emit the correct events. By default this will be _amount, but child
            // contracts may override this function in order to emit legacy events as well.
            _emitETHBridgeFinalized(_from, _to, _amount, _extraData);
            bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
            require(success, "StandardBridge: ETH transfer failed");
        }
        /**
         * @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
         *         StandardBridge contract on the remote chain.
         *
         * @param _localToken  Address of the ERC20 on this chain.
         * @param _remoteToken Address of the corresponding token on the remote chain.
         * @param _from        Address of the sender.
         * @param _to          Address of the receiver.
         * @param _amount      Amount of the ERC20 being bridged.
         * @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
         *                     not be triggered with this data, but it will be emitted and can be used
         *                     to identify the transaction.
         */
        function finalizeBridgeERC20(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            bytes calldata _extraData
        ) public onlyOtherBridge {
            if (_isOptimismMintableERC20(_localToken)) {
                require(
                    _isCorrectTokenPair(_localToken, _remoteToken),
                    "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                );
                OptimismMintableERC20(_localToken).mint(_to, _amount);
            } else {
                deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount;
                IERC20(_localToken).safeTransfer(_to, _amount);
            }
            // Emit the correct events. By default this will be ERC20BridgeFinalized, but child
            // contracts may override this function in order to emit legacy events as well.
            _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
        }
        /**
         * @notice Initiates a bridge of ETH through the CrossDomainMessenger.
         *
         * @param _from        Address of the sender.
         * @param _to          Address of the receiver.
         * @param _amount      Amount of ETH being bridged.
         * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
         * @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
         *                     not be triggered with this data, but it will be emitted and can be used
         *                     to identify the transaction.
         */
        function _initiateBridgeETH(
            address _from,
            address _to,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes memory _extraData
        ) internal {
            require(
                msg.value == _amount,
                "StandardBridge: bridging ETH must include sufficient ETH value"
            );
            // Emit the correct events. By default this will be _amount, but child
            // contracts may override this function in order to emit legacy events as well.
            _emitETHBridgeInitiated(_from, _to, _amount, _extraData);
            MESSENGER.sendMessage{ value: _amount }(
                address(OTHER_BRIDGE),
                abi.encodeWithSelector(
                    this.finalizeBridgeETH.selector,
                    _from,
                    _to,
                    _amount,
                    _extraData
                ),
                _minGasLimit
            );
        }
        /**
         * @notice Sends ERC20 tokens to a receiver's address on the other chain.
         *
         * @param _localToken  Address of the ERC20 on this chain.
         * @param _remoteToken Address of the corresponding token on the remote chain.
         * @param _to          Address of the receiver.
         * @param _amount      Amount of local tokens to deposit.
         * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
         * @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
         *                     not be triggered with this data, but it will be emitted and can be used
         *                     to identify the transaction.
         */
        function _initiateBridgeERC20(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            uint32 _minGasLimit,
            bytes memory _extraData
        ) internal {
            if (_isOptimismMintableERC20(_localToken)) {
                require(
                    _isCorrectTokenPair(_localToken, _remoteToken),
                    "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                );
                OptimismMintableERC20(_localToken).burn(_from, _amount);
            } else {
                IERC20(_localToken).safeTransferFrom(_from, address(this), _amount);
                deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount;
            }
            // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
            // contracts may override this function in order to emit legacy events as well.
            _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
            MESSENGER.sendMessage(
                address(OTHER_BRIDGE),
                abi.encodeWithSelector(
                    this.finalizeBridgeERC20.selector,
                    // Because this call will be executed on the remote chain, we reverse the order of
                    // the remote and local token addresses relative to their order in the
                    // finalizeBridgeERC20 function.
                    _remoteToken,
                    _localToken,
                    _from,
                    _to,
                    _amount,
                    _extraData
                ),
                _minGasLimit
            );
        }
        /**
         * @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
         *         Just the way we like it.
         *
         * @param _token Address of the token to check.
         *
         * @return True if the token is an OptimismMintableERC20.
         */
        function _isOptimismMintableERC20(address _token) internal view returns (bool) {
            return
                ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId) ||
                ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
        }
        /**
         * @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
         *         Calls can be saved in the future by combining this logic with
         *         `_isOptimismMintableERC20`.
         *
         * @param _mintableToken OptimismMintableERC20 to check against.
         * @param _otherToken    Pair token to check.
         *
         * @return True if the other token is the correct pair token for the OptimismMintableERC20.
         */
        function _isCorrectTokenPair(address _mintableToken, address _otherToken)
            internal
            view
            returns (bool)
        {
            if (
                ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId)
            ) {
                return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token();
            } else {
                return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
            }
        }
        /** @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
         *          when an ETH bridge is finalized on this chain.
         *
         * @param _from      Address of the sender.
         * @param _to        Address of the receiver.
         * @param _amount    Amount of ETH sent.
         * @param _extraData Extra data sent with the transaction.
         */
        function _emitETHBridgeInitiated(
            address _from,
            address _to,
            uint256 _amount,
            bytes memory _extraData
        ) internal virtual {
            emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
        }
        /**
         * @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
         *         ETH bridge is finalized on this chain.
         *
         * @param _from      Address of the sender.
         * @param _to        Address of the receiver.
         * @param _amount    Amount of ETH sent.
         * @param _extraData Extra data sent with the transaction.
         */
        function _emitETHBridgeFinalized(
            address _from,
            address _to,
            uint256 _amount,
            bytes memory _extraData
        ) internal virtual {
            emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
        }
        /**
         * @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
         *         event when an ERC20 bridge is initiated to the other chain.
         *
         * @param _localToken  Address of the ERC20 on this chain.
         * @param _remoteToken Address of the ERC20 on the remote chain.
         * @param _from        Address of the sender.
         * @param _to          Address of the receiver.
         * @param _amount      Amount of the ERC20 sent.
         * @param _extraData   Extra data sent with the transaction.
         */
        function _emitERC20BridgeInitiated(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            bytes memory _extraData
        ) internal virtual {
            emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
        }
        /**
         * @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
         *         event when an ERC20 bridge is initiated to the other chain.
         *
         * @param _localToken  Address of the ERC20 on this chain.
         * @param _remoteToken Address of the ERC20 on the remote chain.
         * @param _from        Address of the sender.
         * @param _to          Address of the receiver.
         * @param _amount      Amount of the ERC20 sent.
         * @param _extraData   Extra data sent with the transaction.
         */
        function _emitERC20BridgeFinalized(
            address _localToken,
            address _remoteToken,
            address _from,
            address _to,
            uint256 _amount,
            bytes memory _extraData
        ) internal virtual {
            emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
    pragma solidity ^0.8.2;
    import "../../utils/Address.sol";
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
     * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
     * case an upgrade adds a module that needs to be initialized.
     *
     * For example:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * contract MyToken is ERC20Upgradeable {
     *     function initialize() initializer public {
     *         __ERC20_init("MyToken", "MTK");
     *     }
     * }
     * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
     *     function initializeV2() reinitializer(2) public {
     *         __ERC20Permit_init("MyToken");
     *     }
     * }
     * ```
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     *
     * [CAUTION]
     * ====
     * Avoid leaving a contract uninitialized.
     *
     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
     * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
     * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * /// @custom:oz-upgrades-unsafe-allow constructor
     * constructor() {
     *     _disableInitializers();
     * }
     * ```
     * ====
     */
    abstract contract Initializable {
        /**
         * @dev Indicates that the contract has been initialized.
         * @custom:oz-retyped-from bool
         */
        uint8 private _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool private _initializing;
        /**
         * @dev Triggered when the contract has been initialized or reinitialized.
         */
        event Initialized(uint8 version);
        /**
         * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
         * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
         */
        modifier initializer() {
            bool isTopLevelCall = !_initializing;
            require(
                (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                "Initializable: contract is already initialized"
            );
            _initialized = 1;
            if (isTopLevelCall) {
                _initializing = true;
            }
            _;
            if (isTopLevelCall) {
                _initializing = false;
                emit Initialized(1);
            }
        }
        /**
         * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
         * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
         * used to initialize parent contracts.
         *
         * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
         * initialization step. This is essential to configure modules that are added through upgrades and that require
         * initialization.
         *
         * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
         * a contract, executing them in the right order is up to the developer or operator.
         */
        modifier reinitializer(uint8 version) {
            require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
            _initialized = version;
            _initializing = true;
            _;
            _initializing = false;
            emit Initialized(version);
        }
        /**
         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
         * {initializer} and {reinitializer} modifiers, directly or indirectly.
         */
        modifier onlyInitializing() {
            require(_initializing, "Initializable: contract is not initializing");
            _;
        }
        /**
         * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
         * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
         * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
         * through proxies.
         */
        function _disableInitializers() internal virtual {
            require(!_initializing, "Initializable: contract is initializing");
            if (_initialized < type(uint8).max) {
                _initialized = type(uint8).max;
                emit Initialized(type(uint8).max);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
            }
            _balances[to] += amount;
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            _balances[account] += amount;
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
            }
            _totalSupply -= amount;
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    import "../extensions/draft-IERC20Permit.sol";
    import "../../../utils/Address.sol";
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
        function safeTransfer(
            IERC20 token,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
        function safeTransferFrom(
            IERC20 token,
            address from,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IERC20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            require(
                (value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
        function safeIncreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 newAllowance = token.allowance(address(this), spender) + value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
        function safeDecreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            unchecked {
                uint256 oldAllowance = token.allowance(address(this), spender);
                require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                uint256 newAllowance = oldAllowance - value;
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
            }
        }
        function safePermit(
            IERC20Permit token,
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal {
            uint256 nonceBefore = token.nonces(owner);
            token.permit(owner, spender, value, deadline, v, r, s);
            uint256 nonceAfter = token.nonces(owner);
            require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
            if (returndata.length > 0) {
                // Return data is optional
                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(isContract(target), "Address: delegate call to non-contract");
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
        uint8 private constant _ADDRESS_LENGTH = 20;
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            // Inspired by OraclizeAPI's implementation - MIT licence
            // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
            if (value == 0) {
                return "0";
            }
            uint256 temp = value;
            uint256 digits;
            while (temp != 0) {
                digits++;
                temp /= 10;
            }
            bytes memory buffer = new bytes(digits);
            while (value != 0) {
                digits -= 1;
                buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                value /= 10;
            }
            return string(buffer);
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            if (value == 0) {
                return "0x00";
            }
            uint256 temp = value;
            uint256 length = 0;
            while (temp != 0) {
                length++;
                temp >>= 8;
            }
            return toHexString(value, length);
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _HEX_SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)
    pragma solidity ^0.8.0;
    import "./IERC165.sol";
    /**
     * @dev Library used to query support of an interface declared via {IERC165}.
     *
     * Note that these functions return the actual result of the query: they do not
     * `revert` if an interface is not supported. It is up to the caller to decide
     * what to do in these cases.
     */
    library ERC165Checker {
        // As per the EIP-165 spec, no interface should ever match 0xffffffff
        bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
        /**
         * @dev Returns true if `account` supports the {IERC165} interface,
         */
        function supportsERC165(address account) internal view returns (bool) {
            // Any contract that implements ERC165 must explicitly indicate support of
            // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
            return
                _supportsERC165Interface(account, type(IERC165).interfaceId) &&
                !_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
        }
        /**
         * @dev Returns true if `account` supports the interface defined by
         * `interfaceId`. Support for {IERC165} itself is queried automatically.
         *
         * See {IERC165-supportsInterface}.
         */
        function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
            // query support of both ERC165 as per the spec and support of _interfaceId
            return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
        }
        /**
         * @dev Returns a boolean array where each value corresponds to the
         * interfaces passed in and whether they're supported or not. This allows
         * you to batch check interfaces for a contract where your expectation
         * is that some interfaces may not be supported.
         *
         * See {IERC165-supportsInterface}.
         *
         * _Available since v3.4._
         */
        function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
            internal
            view
            returns (bool[] memory)
        {
            // an array of booleans corresponding to interfaceIds and whether they're supported or not
            bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
            // query support of ERC165 itself
            if (supportsERC165(account)) {
                // query support of each interface in interfaceIds
                for (uint256 i = 0; i < interfaceIds.length; i++) {
                    interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
                }
            }
            return interfaceIdsSupported;
        }
        /**
         * @dev Returns true if `account` supports all the interfaces defined in
         * `interfaceIds`. Support for {IERC165} itself is queried automatically.
         *
         * Batch-querying can lead to gas savings by skipping repeated checks for
         * {IERC165} support.
         *
         * See {IERC165-supportsInterface}.
         */
        function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
            // query support of ERC165 itself
            if (!supportsERC165(account)) {
                return false;
            }
            // query support of each interface in _interfaceIds
            for (uint256 i = 0; i < interfaceIds.length; i++) {
                if (!_supportsERC165Interface(account, interfaceIds[i])) {
                    return false;
                }
            }
            // all interfaces supported
            return true;
        }
        /**
         * @notice Query if a contract implements an interface, does not check ERC165 support
         * @param account The address of the contract to query for support of an interface
         * @param interfaceId The interface identifier, as specified in ERC-165
         * @return true if the contract at account indicates support of the interface with
         * identifier interfaceId, false otherwise
         * @dev Assumes that account contains a contract that supports ERC165, otherwise
         * the behavior of this method is undefined. This precondition can be checked
         * with {supportsERC165}.
         * Interface identification is specified in ERC-165.
         */
        function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
            // prepare call
            bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
            // perform static call
            bool success;
            uint256 returnSize;
            uint256 returnValue;
            assembly {
                success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
                returnSize := returndatasize()
                returnValue := mload(0x00)
            }
            return success && returnSize >= 0x20 && returnValue > 0;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a >= b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`.
            // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
            // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
            // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
            // good first aproximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1;
            uint256 x = a;
            if (x >> 128 > 0) {
                x >>= 128;
                result <<= 64;
            }
            if (x >> 64 > 0) {
                x >>= 64;
                result <<= 32;
            }
            if (x >> 32 > 0) {
                x >>= 32;
                result <<= 16;
            }
            if (x >> 16 > 0) {
                x >>= 16;
                result <<= 8;
            }
            if (x >> 8 > 0) {
                x >>= 8;
                result <<= 4;
            }
            if (x >> 4 > 0) {
                x >>= 4;
                result <<= 2;
            }
            if (x >> 2 > 0) {
                result <<= 1;
            }
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            uint256 result = sqrt(a);
            if (rounding == Rounding.Up && result * result < a) {
                result += 1;
            }
            return result;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard signed math utilities missing in the Solidity language.
     */
    library SignedMath {
        /**
         * @dev Returns the largest of two signed numbers.
         */
        function max(int256 a, int256 b) internal pure returns (int256) {
            return a >= b ? a : b;
        }
        /**
         * @dev Returns the smallest of two signed numbers.
         */
        function min(int256 a, int256 b) internal pure returns (int256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two signed numbers without overflow.
         * The result is rounded towards zero.
         */
        function average(int256 a, int256 b) internal pure returns (int256) {
            // Formula from the book "Hacker's Delight"
            int256 x = (a & b) + ((a ^ b) >> 1);
            return x + (int256(uint256(x) >> 255) & (a ^ b));
        }
        /**
         * @dev Returns the absolute unsigned value of a signed value.
         */
        function abs(int256 n) internal pure returns (uint256) {
            unchecked {
                // must be unchecked in order to support `n = type(int256).min`
                return uint256(n >= 0 ? n : -n);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
    pragma solidity ^0.8.2;
    import "../../utils/AddressUpgradeable.sol";
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
     * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
     * case an upgrade adds a module that needs to be initialized.
     *
     * For example:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * contract MyToken is ERC20Upgradeable {
     *     function initialize() initializer public {
     *         __ERC20_init("MyToken", "MTK");
     *     }
     * }
     * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
     *     function initializeV2() reinitializer(2) public {
     *         __ERC20Permit_init("MyToken");
     *     }
     * }
     * ```
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     *
     * [CAUTION]
     * ====
     * Avoid leaving a contract uninitialized.
     *
     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
     * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
     * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * /// @custom:oz-upgrades-unsafe-allow constructor
     * constructor() {
     *     _disableInitializers();
     * }
     * ```
     * ====
     */
    abstract contract Initializable {
        /**
         * @dev Indicates that the contract has been initialized.
         * @custom:oz-retyped-from bool
         */
        uint8 private _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool private _initializing;
        /**
         * @dev Triggered when the contract has been initialized or reinitialized.
         */
        event Initialized(uint8 version);
        /**
         * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
         * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
         */
        modifier initializer() {
            bool isTopLevelCall = !_initializing;
            require(
                (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                "Initializable: contract is already initialized"
            );
            _initialized = 1;
            if (isTopLevelCall) {
                _initializing = true;
            }
            _;
            if (isTopLevelCall) {
                _initializing = false;
                emit Initialized(1);
            }
        }
        /**
         * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
         * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
         * used to initialize parent contracts.
         *
         * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
         * initialization step. This is essential to configure modules that are added through upgrades and that require
         * initialization.
         *
         * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
         * a contract, executing them in the right order is up to the developer or operator.
         */
        modifier reinitializer(uint8 version) {
            require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
            _initialized = version;
            _initializing = true;
            _;
            _initializing = false;
            emit Initialized(version);
        }
        /**
         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
         * {initializer} and {reinitializer} modifiers, directly or indirectly.
         */
        modifier onlyInitializing() {
            require(_initializing, "Initializable: contract is not initializing");
            _;
        }
        /**
         * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
         * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
         * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
         * through proxies.
         */
        function _disableInitializers() internal virtual {
            require(!_initializing, "Initializable: contract is initializing");
            if (_initialized < type(uint8).max) {
                _initialized = type(uint8).max;
                emit Initialized(type(uint8).max);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library AddressUpgradeable {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.8.0;
    /// @notice Arithmetic library with operations for fixed-point numbers.
    /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
    library FixedPointMathLib {
        /*//////////////////////////////////////////////////////////////
                        SIMPLIFIED FIXED POINT OPERATIONS
        //////////////////////////////////////////////////////////////*/
        uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
        function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
        }
        function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
        }
        function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
        }
        function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
            return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
        }
        function powWad(int256 x, int256 y) internal pure returns (int256) {
            // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
            return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
        }
        function expWad(int256 x) internal pure returns (int256 r) {
            unchecked {
                // When the result is < 0.5 we return zero. This happens when
                // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                if (x <= -42139678854452767551) return 0;
                // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                // for more intermediate precision and a binary basis. This base conversion
                // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                x = (x << 78) / 5**18;
                // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                x = x - k * 54916777467707473351141471128;
                // k is in the range [-61, 195].
                // Evaluate using a (6, 7)-term rational approximation.
                // p is made monic, we'll multiply by a scale factor later.
                int256 y = x + 1346386616545796478920950773328;
                y = ((y * x) >> 96) + 57155421227552351082224309758442;
                int256 p = y + x - 94201549194550492254356042504812;
                p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                p = p * x + (4385272521454847904659076985693276 << 96);
                // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                int256 q = x - 2855989394907223263936484059900;
                q = ((q * x) >> 96) + 50020603652535783019961831881945;
                q = ((q * x) >> 96) - 533845033583426703283633433725380;
                q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                assembly {
                    // Div in assembly because solidity adds a zero check despite the unchecked.
                    // The q polynomial won't have zeros in the domain as all its roots are complex.
                    // No scaling is necessary because p is already 2**96 too large.
                    r := sdiv(p, q)
                }
                // r should be in the range (0.09, 0.25) * 2**96.
                // We now need to multiply r by:
                // * the scale factor s = ~6.031367120.
                // * the 2**k factor from the range reduction.
                // * the 1e18 / 2**96 factor for base conversion.
                // We do this all at once, with an intermediate result in 2**213
                // basis, so the final right shift is always by a positive amount.
                r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
            }
        }
        function lnWad(int256 x) internal pure returns (int256 r) {
            unchecked {
                require(x > 0, "UNDEFINED");
                // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                // We do this by multiplying by 2**96 / 10**18. But since
                // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                // and add ln(2**96 / 10**18) at the end.
                // Reduce range of x to (1, 2) * 2**96
                // ln(2^k * x) = k * ln(2) + ln(x)
                int256 k = int256(log2(uint256(x))) - 96;
                x <<= uint256(159 - k);
                x = int256(uint256(x) >> 159);
                // Evaluate using a (8, 8)-term rational approximation.
                // p is made monic, we will multiply by a scale factor later.
                int256 p = x + 3273285459638523848632254066296;
                p = ((p * x) >> 96) + 24828157081833163892658089445524;
                p = ((p * x) >> 96) + 43456485725739037958740375743393;
                p = ((p * x) >> 96) - 11111509109440967052023855526967;
                p = ((p * x) >> 96) - 45023709667254063763336534515857;
                p = ((p * x) >> 96) - 14706773417378608786704636184526;
                p = p * x - (795164235651350426258249787498 << 96);
                // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                // q is monic by convention.
                int256 q = x + 5573035233440673466300451813936;
                q = ((q * x) >> 96) + 71694874799317883764090561454958;
                q = ((q * x) >> 96) + 283447036172924575727196451306956;
                q = ((q * x) >> 96) + 401686690394027663651624208769553;
                q = ((q * x) >> 96) + 204048457590392012362485061816622;
                q = ((q * x) >> 96) + 31853899698501571402653359427138;
                q = ((q * x) >> 96) + 909429971244387300277376558375;
                assembly {
                    // Div in assembly because solidity adds a zero check despite the unchecked.
                    // The q polynomial is known not to have zeros in the domain.
                    // No scaling required because p is already 2**96 too large.
                    r := sdiv(p, q)
                }
                // r is in the range (0, 0.125) * 2**96
                // Finalization, we need to:
                // * multiply by the scale factor s = 5.549…
                // * add ln(2**96 / 10**18)
                // * add k * ln(2)
                // * multiply by 10**18 / 2**96 = 5**18 >> 78
                // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                r *= 1677202110996718588342820967067443963516166;
                // add ln(2) * k * 5e18 * 2**192
                r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                // add ln(2**96 / 10**18) * 5e18 * 2**192
                r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                // base conversion: mul 2**18 / 2**192
                r >>= 174;
            }
        }
        /*//////////////////////////////////////////////////////////////
                        LOW LEVEL FIXED POINT OPERATIONS
        //////////////////////////////////////////////////////////////*/
        function mulDivDown(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 z) {
            assembly {
                // Store x * y in z for now.
                z := mul(x, y)
                // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                    revert(0, 0)
                }
                // Divide z by the denominator.
                z := div(z, denominator)
            }
        }
        function mulDivUp(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 z) {
            assembly {
                // Store x * y in z for now.
                z := mul(x, y)
                // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                    revert(0, 0)
                }
                // First, divide z - 1 by the denominator and add 1.
                // We allow z - 1 to underflow if z is 0, because we multiply the
                // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
            }
        }
        function rpow(
            uint256 x,
            uint256 n,
            uint256 scalar
        ) internal pure returns (uint256 z) {
            assembly {
                switch x
                case 0 {
                    switch n
                    case 0 {
                        // 0 ** 0 = 1
                        z := scalar
                    }
                    default {
                        // 0 ** n = 0
                        z := 0
                    }
                }
                default {
                    switch mod(n, 2)
                    case 0 {
                        // If n is even, store scalar in z for now.
                        z := scalar
                    }
                    default {
                        // If n is odd, store x in z for now.
                        z := x
                    }
                    // Shifting right by 1 is like dividing by 2.
                    let half := shr(1, scalar)
                    for {
                        // Shift n right by 1 before looping to halve it.
                        n := shr(1, n)
                    } n {
                        // Shift n right by 1 each iteration to halve it.
                        n := shr(1, n)
                    } {
                        // Revert immediately if x ** 2 would overflow.
                        // Equivalent to iszero(eq(div(xx, x), x)) here.
                        if shr(128, x) {
                            revert(0, 0)
                        }
                        // Store x squared.
                        let xx := mul(x, x)
                        // Round to the nearest number.
                        let xxRound := add(xx, half)
                        // Revert if xx + half overflowed.
                        if lt(xxRound, xx) {
                            revert(0, 0)
                        }
                        // Set x to scaled xxRound.
                        x := div(xxRound, scalar)
                        // If n is even:
                        if mod(n, 2) {
                            // Compute z * x.
                            let zx := mul(z, x)
                            // If z * x overflowed:
                            if iszero(eq(div(zx, x), z)) {
                                // Revert if x is non-zero.
                                if iszero(iszero(x)) {
                                    revert(0, 0)
                                }
                            }
                            // Round to the nearest number.
                            let zxRound := add(zx, half)
                            // Revert if zx + half overflowed.
                            if lt(zxRound, zx) {
                                revert(0, 0)
                            }
                            // Return properly scaled zxRound.
                            z := div(zxRound, scalar)
                        }
                    }
                }
            }
        }
        /*//////////////////////////////////////////////////////////////
                            GENERAL NUMBER UTILITIES
        //////////////////////////////////////////////////////////////*/
        function sqrt(uint256 x) internal pure returns (uint256 z) {
            assembly {
                let y := x // We start y at x, which will help us make our initial estimate.
                z := 181 // The "correct" value is 1, but this saves a multiplication later.
                // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                // We check y >= 2^(k + 8) but shift right by k bits
                // each branch to ensure that if x >= 256, then y >= 256.
                if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                    y := shr(128, y)
                    z := shl(64, z)
                }
                if iszero(lt(y, 0x1000000000000000000)) {
                    y := shr(64, y)
                    z := shl(32, z)
                }
                if iszero(lt(y, 0x10000000000)) {
                    y := shr(32, y)
                    z := shl(16, z)
                }
                if iszero(lt(y, 0x1000000)) {
                    y := shr(16, y)
                    z := shl(8, z)
                }
                // Goal was to get z*z*y within a small factor of x. More iterations could
                // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                // That's not possible if x < 256 but we can just verify those cases exhaustively.
                // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                // There is no overflow risk here since y < 2^136 after the first branch above.
                z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                z := shr(1, add(z, div(x, z)))
                // If x+1 is a perfect square, the Babylonian method cycles between
                // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                z := sub(z, lt(div(x, z), z))
            }
        }
        function log2(uint256 x) internal pure returns (uint256 r) {
            require(x > 0, "UNDEFINED");
            assembly {
                r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                r := or(r, shl(4, lt(0xffff, shr(r, x))))
                r := or(r, shl(3, lt(0xff, shr(r, x))))
                r := or(r, shl(2, lt(0xf, shr(r, x))))
                r := or(r, shl(1, lt(0x3, shr(r, x))))
                r := or(r, lt(0x1, shr(r, x)))
            }
        }
    }