Transaction Hash:
Block:
19902408 at May-19-2024 07:10:59 AM +UTC
Transaction Fee:
0.000129842748792918 ETH
$0.49
Gas Used:
44,874 Gas / 2.893496207 Gwei
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 13.065756601517946775 Eth | 13.065757048409676463 Eth | 0.000000446891729688 | |
0x9D7dBb01...332721EC4 |
0.000338491783846719 Eth
Nonce: 20
|
0.000208649035053801 Eth
Nonce: 21
| 0.000129842748792918 |
Execution Trace
ETH 0.0001
L1ChugSplashProxy.e11013dd( )
-
ProxyAdmin.STATICCALL( )
- ETH 0.0001
L1StandardBridge.bridgeETHTo( _to=0x9D7dBb019f35cF9d26be2b06F8f1E43332721EC4, _minGasLimit=200000, _extraData=0x7375706572627269646765 )
File 1 of 3: L1ChugSplashProxy
File 2 of 3: ProxyAdmin
File 3 of 3: L1StandardBridge
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title IL1ChugSplashDeployer */ interface IL1ChugSplashDeployer { function isUpgrading() external view returns (bool); } /** * @custom:legacy * @title L1ChugSplashProxy * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added * functions `setCode` and `setStorage` for changing the code or storage of the contract. * * Note for future developers: do NOT make anything in this contract 'public' unless you * know what you're doing. Anything public can potentially have a function signature that * conflicts with a signature attached to the implementation contract. Public functions * SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good * reason not to have that modifier. And there almost certainly is not a good reason to not * have that modifier. Beware! */ contract L1ChugSplashProxy { /** * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a * contract, the appended bytecode will be deployed as given. */ bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3; /** * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) */ bytes32 internal constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) */ bytes32 internal constant OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @notice Blocks a function from being called when the parent signals that the system should * be paused via an isUpgrading function. */ modifier onlyWhenNotPaused() { address owner = _getOwner(); // We do a low-level call because there's no guarantee that the owner actually *is* an // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and // it turns out that it isn't the right type of contract. (bool success, bytes memory returndata) = owner.staticcall( abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector) ); // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we // can just continue as normal. We also expect that the return value is exactly 32 bytes // long. If this isn't the case then we can safely ignore the result. if (success && returndata.length == 32) { // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the // case that the isUpgrading function returned something other than 0 or 1. But we only // really care about the case where this value is 0 (= false). uint256 ret = abi.decode(returndata, (uint256)); require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded"); } _; } /** * @notice Makes a proxy call instead of triggering the given function when the caller is * either the owner or the zero address. Caller can only ever be the zero address if * this function is being called off-chain via eth_call, which is totally fine and can * be convenient for client-side tooling. Avoids situations where the proxy and * implementation share a sighash and the proxy function ends up being called instead * of the implementation one. * * Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If * there's a way for someone to send a transaction with msg.sender == address(0) in any * real context then we have much bigger problems. Primary reason to include this * additional allowed sender is because the owner address can be changed dynamically * and we do not want clients to have to keep track of the current owner in order to * make an eth_call that doesn't trigger the proxied contract. */ // slither-disable-next-line incorrect-modifier modifier proxyCallIfNotOwner() { if (msg.sender == _getOwner() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /** * @param _owner Address of the initial contract owner. */ constructor(address _owner) { _setOwner(_owner); } // slither-disable-next-line locked-ether receive() external payable { // Proxy call by default. _doProxyCall(); } // slither-disable-next-line locked-ether fallback() external payable { // Proxy call by default. _doProxyCall(); } /** * @notice Sets the code that should be running behind this proxy. * * Note: This scheme is a bit different from the standard proxy scheme where one would * typically deploy the code separately and then set the implementation address. We're * doing it this way because it gives us a lot more freedom on the client side. Can * only be triggered by the contract owner. * * @param _code New contract code to run inside this contract. */ function setCode(bytes memory _code) external proxyCallIfNotOwner { // Get the code hash of the current implementation. address implementation = _getImplementation(); // If the code hash matches the new implementation then we return early. if (keccak256(_code) == _getAccountCodeHash(implementation)) { return; } // Create the deploycode by appending the magic prefix. bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code); // Deploy the code and set the new implementation address. address newImplementation; assembly { newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode)) } // Check that the code was actually deployed correctly. I'm not sure if you can ever // actually fail this check. Should only happen if the contract creation from above runs // out of gas but this parent execution thread does NOT run out of gas. Seems like we // should be doing this check anyway though. require( _getAccountCodeHash(newImplementation) == keccak256(_code), "L1ChugSplashProxy: code was not correctly deployed" ); _setImplementation(newImplementation); } /** * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to * perform upgrades in a more transparent way. Only callable by the owner. * * @param _key Storage key to modify. * @param _value New value for the storage key. */ function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner { assembly { sstore(_key, _value) } } /** * @notice Changes the owner of the proxy contract. Only callable by the owner. * * @param _owner New owner of the proxy contract. */ function setOwner(address _owner) external proxyCallIfNotOwner { _setOwner(_owner); } /** * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by * making an eth_call and setting the "from" address to address(0). * * @return Owner address. */ function getOwner() external proxyCallIfNotOwner returns (address) { return _getOwner(); } /** * @notice Queries the implementation address. Can only be called by the owner OR by making an * eth_call and setting the "from" address to address(0). * * @return Implementation address. */ function getImplementation() external proxyCallIfNotOwner returns (address) { return _getImplementation(); } /** * @notice Sets the implementation address. * * @param _implementation New implementation address. */ function _setImplementation(address _implementation) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } } /** * @notice Changes the owner of the proxy contract. * * @param _owner New owner of the proxy contract. */ function _setOwner(address _owner) internal { assembly { sstore(OWNER_KEY, _owner) } } /** * @notice Performs the proxy call via a delegatecall. */ function _doProxyCall() internal onlyWhenNotPaused { address implementation = _getImplementation(); require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet"); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } /** * @notice Queries the implementation address. * * @return Implementation address. */ function _getImplementation() internal view returns (address) { address implementation; assembly { implementation := sload(IMPLEMENTATION_KEY) } return implementation; } /** * @notice Queries the owner of the proxy contract. * * @return Owner address. */ function _getOwner() internal view returns (address) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } /** * @notice Gets the code hash for a given account. * * @param _account Address of the account to get a code hash for. * * @return Code hash for the account. */ function _getAccountCodeHash(address _account) internal view returns (bytes32) { bytes32 codeHash; assembly { codeHash := extcodehash(_account) } return codeHash; } }
File 2 of 3: ProxyAdmin
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; /** * @custom:legacy * @title AddressManager * @notice AddressManager is a legacy contract that was used in the old version of the Optimism * system to manage a registry of string names to addresses. We now use a more standard * proxy system instead, but this contract is still necessary for backwards compatibility * with several older contracts. */ contract AddressManager is Ownable { /** * @notice Mapping of the hashes of string names to addresses. */ mapping(bytes32 => address) private addresses; /** * @notice Emitted when an address is modified in the registry. * * @param name String name being set in the registry. * @param newAddress Address set for the given name. * @param oldAddress Address that was previously set for the given name. */ event AddressSet(string indexed name, address newAddress, address oldAddress); /** * @notice Changes the address associated with a particular name. * * @param _name String name to associate an address with. * @param _address Address to associate with the name. */ function setAddress(string memory _name, address _address) external onlyOwner { bytes32 nameHash = _getNameHash(_name); address oldAddress = addresses[nameHash]; addresses[nameHash] = _address; emit AddressSet(_name, _address, oldAddress); } /** * @notice Retrieves the address associated with a given name. * * @param _name Name to retrieve an address for. * * @return Address associated with the given name. */ function getAddress(string memory _name) external view returns (address) { return addresses[_getNameHash(_name)]; } /** * @notice Computes the hash of a name. * * @param _name Name to compute a hash for. * * @return Hash of the given name. */ function _getNameHash(string memory _name) internal pure returns (bytes32) { return keccak256(abi.encodePacked(_name)); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title IL1ChugSplashDeployer */ interface IL1ChugSplashDeployer { function isUpgrading() external view returns (bool); } /** * @custom:legacy * @title L1ChugSplashProxy * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added * functions `setCode` and `setStorage` for changing the code or storage of the contract. * * Note for future developers: do NOT make anything in this contract 'public' unless you * know what you're doing. Anything public can potentially have a function signature that * conflicts with a signature attached to the implementation contract. Public functions * SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good * reason not to have that modifier. And there almost certainly is not a good reason to not * have that modifier. Beware! */ contract L1ChugSplashProxy { /** * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a * contract, the appended bytecode will be deployed as given. */ bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3; /** * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) */ bytes32 internal constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) */ bytes32 internal constant OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @notice Blocks a function from being called when the parent signals that the system should * be paused via an isUpgrading function. */ modifier onlyWhenNotPaused() { address owner = _getOwner(); // We do a low-level call because there's no guarantee that the owner actually *is* an // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and // it turns out that it isn't the right type of contract. (bool success, bytes memory returndata) = owner.staticcall( abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector) ); // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we // can just continue as normal. We also expect that the return value is exactly 32 bytes // long. If this isn't the case then we can safely ignore the result. if (success && returndata.length == 32) { // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the // case that the isUpgrading function returned something other than 0 or 1. But we only // really care about the case where this value is 0 (= false). uint256 ret = abi.decode(returndata, (uint256)); require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded"); } _; } /** * @notice Makes a proxy call instead of triggering the given function when the caller is * either the owner or the zero address. Caller can only ever be the zero address if * this function is being called off-chain via eth_call, which is totally fine and can * be convenient for client-side tooling. Avoids situations where the proxy and * implementation share a sighash and the proxy function ends up being called instead * of the implementation one. * * Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If * there's a way for someone to send a transaction with msg.sender == address(0) in any * real context then we have much bigger problems. Primary reason to include this * additional allowed sender is because the owner address can be changed dynamically * and we do not want clients to have to keep track of the current owner in order to * make an eth_call that doesn't trigger the proxied contract. */ // slither-disable-next-line incorrect-modifier modifier proxyCallIfNotOwner() { if (msg.sender == _getOwner() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /** * @param _owner Address of the initial contract owner. */ constructor(address _owner) { _setOwner(_owner); } // slither-disable-next-line locked-ether receive() external payable { // Proxy call by default. _doProxyCall(); } // slither-disable-next-line locked-ether fallback() external payable { // Proxy call by default. _doProxyCall(); } /** * @notice Sets the code that should be running behind this proxy. * * Note: This scheme is a bit different from the standard proxy scheme where one would * typically deploy the code separately and then set the implementation address. We're * doing it this way because it gives us a lot more freedom on the client side. Can * only be triggered by the contract owner. * * @param _code New contract code to run inside this contract. */ function setCode(bytes memory _code) external proxyCallIfNotOwner { // Get the code hash of the current implementation. address implementation = _getImplementation(); // If the code hash matches the new implementation then we return early. if (keccak256(_code) == _getAccountCodeHash(implementation)) { return; } // Create the deploycode by appending the magic prefix. bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code); // Deploy the code and set the new implementation address. address newImplementation; assembly { newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode)) } // Check that the code was actually deployed correctly. I'm not sure if you can ever // actually fail this check. Should only happen if the contract creation from above runs // out of gas but this parent execution thread does NOT run out of gas. Seems like we // should be doing this check anyway though. require( _getAccountCodeHash(newImplementation) == keccak256(_code), "L1ChugSplashProxy: code was not correctly deployed" ); _setImplementation(newImplementation); } /** * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to * perform upgrades in a more transparent way. Only callable by the owner. * * @param _key Storage key to modify. * @param _value New value for the storage key. */ function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner { assembly { sstore(_key, _value) } } /** * @notice Changes the owner of the proxy contract. Only callable by the owner. * * @param _owner New owner of the proxy contract. */ function setOwner(address _owner) external proxyCallIfNotOwner { _setOwner(_owner); } /** * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by * making an eth_call and setting the "from" address to address(0). * * @return Owner address. */ function getOwner() external proxyCallIfNotOwner returns (address) { return _getOwner(); } /** * @notice Queries the implementation address. Can only be called by the owner OR by making an * eth_call and setting the "from" address to address(0). * * @return Implementation address. */ function getImplementation() external proxyCallIfNotOwner returns (address) { return _getImplementation(); } /** * @notice Sets the implementation address. * * @param _implementation New implementation address. */ function _setImplementation(address _implementation) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } } /** * @notice Changes the owner of the proxy contract. * * @param _owner New owner of the proxy contract. */ function _setOwner(address _owner) internal { assembly { sstore(OWNER_KEY, _owner) } } /** * @notice Performs the proxy call via a delegatecall. */ function _doProxyCall() internal onlyWhenNotPaused { address implementation = _getImplementation(); require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet"); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } /** * @notice Queries the implementation address. * * @return Implementation address. */ function _getImplementation() internal view returns (address) { address implementation; assembly { implementation := sload(IMPLEMENTATION_KEY) } return implementation; } /** * @notice Queries the owner of the proxy contract. * * @return Owner address. */ function _getOwner() internal view returns (address) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } /** * @notice Gets the code hash for a given account. * * @param _account Address of the account to get a code hash for. * * @return Code hash for the account. */ function _getAccountCodeHash(address _account) internal view returns (bytes32) { bytes32 codeHash; assembly { codeHash := extcodehash(_account) } return codeHash; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title Proxy * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or * if the caller is address(0), meaning that the call originated from an off-chain * simulation. */ contract Proxy { /** * @notice The storage slot that holds the address of the implementation. * bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) */ bytes32 internal constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice The storage slot that holds the address of the owner. * bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) */ bytes32 internal constant OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @notice An event that is emitted each time the implementation is changed. This event is part * of the EIP-1967 specification. * * @param implementation The address of the implementation contract */ event Upgraded(address indexed implementation); /** * @notice An event that is emitted each time the owner is upgraded. This event is part of the * EIP-1967 specification. * * @param previousAdmin The previous owner of the contract * @param newAdmin The new owner of the contract */ event AdminChanged(address previousAdmin, address newAdmin); /** * @notice A modifier that reverts if not called by the owner or by address(0) to allow * eth_call to interact with this proxy without needing to use low-level storage * inspection. We assume that nobody is able to trigger calls from address(0) during * normal EVM execution. */ modifier proxyCallIfNotAdmin() { if (msg.sender == _getAdmin() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /** * @notice Sets the initial admin during contract deployment. Admin address is stored at the * EIP-1967 admin storage slot so that accidental storage collision with the * implementation is not possible. * * @param _admin Address of the initial contract admin. Admin as the ability to access the * transparent proxy interface. */ constructor(address _admin) { _changeAdmin(_admin); } // slither-disable-next-line locked-ether receive() external payable { // Proxy call by default. _doProxyCall(); } // slither-disable-next-line locked-ether fallback() external payable { // Proxy call by default. _doProxyCall(); } /** * @notice Set the implementation contract address. The code at the given address will execute * when this contract is called. * * @param _implementation Address of the implementation contract. */ function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin { _setImplementation(_implementation); } /** * @notice Set the implementation and call a function in a single transaction. Useful to ensure * atomic execution of initialization-based upgrades. * * @param _implementation Address of the implementation contract. * @param _data Calldata to delegatecall the new implementation with. */ function upgradeToAndCall(address _implementation, bytes calldata _data) public payable virtual proxyCallIfNotAdmin returns (bytes memory) { _setImplementation(_implementation); (bool success, bytes memory returndata) = _implementation.delegatecall(_data); require(success, "Proxy: delegatecall to new implementation contract failed"); return returndata; } /** * @notice Changes the owner of the proxy contract. Only callable by the owner. * * @param _admin New owner of the proxy contract. */ function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin { _changeAdmin(_admin); } /** * @notice Gets the owner of the proxy contract. * * @return Owner address. */ function admin() public virtual proxyCallIfNotAdmin returns (address) { return _getAdmin(); } /** * @notice Queries the implementation address. * * @return Implementation address. */ function implementation() public virtual proxyCallIfNotAdmin returns (address) { return _getImplementation(); } /** * @notice Sets the implementation address. * * @param _implementation New implementation address. */ function _setImplementation(address _implementation) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } emit Upgraded(_implementation); } /** * @notice Changes the owner of the proxy contract. * * @param _admin New owner of the proxy contract. */ function _changeAdmin(address _admin) internal { address previous = _getAdmin(); assembly { sstore(OWNER_KEY, _admin) } emit AdminChanged(previous, _admin); } /** * @notice Performs the proxy call via a delegatecall. */ function _doProxyCall() internal { address impl = _getImplementation(); require(impl != address(0), "Proxy: implementation not initialized"); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } /** * @notice Queries the implementation address. * * @return Implementation address. */ function _getImplementation() internal view returns (address) { address impl; assembly { impl := sload(IMPLEMENTATION_KEY) } return impl; } /** * @notice Queries the owner of the proxy contract. * * @return Owner address. */ function _getAdmin() internal view returns (address) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { Proxy } from "./Proxy.sol"; import { AddressManager } from "../legacy/AddressManager.sol"; import { L1ChugSplashProxy } from "../legacy/L1ChugSplashProxy.sol"; /** * @title IStaticERC1967Proxy * @notice IStaticERC1967Proxy is a static version of the ERC1967 proxy interface. */ interface IStaticERC1967Proxy { function implementation() external view returns (address); function admin() external view returns (address); } /** * @title IStaticL1ChugSplashProxy * @notice IStaticL1ChugSplashProxy is a static version of the ChugSplash proxy interface. */ interface IStaticL1ChugSplashProxy { function getImplementation() external view returns (address); function getOwner() external view returns (address); } /** * @title ProxyAdmin * @notice This is an auxiliary contract meant to be assigned as the admin of an ERC1967 Proxy, * based on the OpenZeppelin implementation. It has backwards compatibility logic to work * with the various types of proxies that have been deployed by Optimism in the past. */ contract ProxyAdmin is Ownable { /** * @notice The proxy types that the ProxyAdmin can manage. * * @custom:value ERC1967 Represents an ERC1967 compliant transparent proxy interface. * @custom:value CHUGSPLASH Represents the Chugsplash proxy interface (legacy). * @custom:value RESOLVED Represents the ResolvedDelegate proxy (legacy). */ enum ProxyType { ERC1967, CHUGSPLASH, RESOLVED } /** * @notice A mapping of proxy types, used for backwards compatibility. */ mapping(address => ProxyType) public proxyType; /** * @notice A reverse mapping of addresses to names held in the AddressManager. This must be * manually kept up to date with changes in the AddressManager for this contract * to be able to work as an admin for the ResolvedDelegateProxy type. */ mapping(address => string) public implementationName; /** * @notice The address of the address manager, this is required to manage the * ResolvedDelegateProxy type. */ AddressManager public addressManager; /** * @notice A legacy upgrading indicator used by the old Chugsplash Proxy. */ bool internal upgrading; /** * @param _owner Address of the initial owner of this contract. */ constructor(address _owner) Ownable() { _transferOwnership(_owner); } /** * @notice Sets the proxy type for a given address. Only required for non-standard (legacy) * proxy types. * * @param _address Address of the proxy. * @param _type Type of the proxy. */ function setProxyType(address _address, ProxyType _type) external onlyOwner { proxyType[_address] = _type; } /** * @notice Sets the implementation name for a given address. Only required for * ResolvedDelegateProxy type proxies that have an implementation name. * * @param _address Address of the ResolvedDelegateProxy. * @param _name Name of the implementation for the proxy. */ function setImplementationName(address _address, string memory _name) external onlyOwner { implementationName[_address] = _name; } /** * @notice Set the address of the AddressManager. This is required to manage legacy * ResolvedDelegateProxy type proxy contracts. * * @param _address Address of the AddressManager. */ function setAddressManager(AddressManager _address) external onlyOwner { addressManager = _address; } /** * @custom:legacy * @notice Set an address in the address manager. Since only the owner of the AddressManager * can directly modify addresses and the ProxyAdmin will own the AddressManager, this * gives the owner of the ProxyAdmin the ability to modify addresses directly. * * @param _name Name to set within the AddressManager. * @param _address Address to attach to the given name. */ function setAddress(string memory _name, address _address) external onlyOwner { addressManager.setAddress(_name, _address); } /** * @custom:legacy * @notice Set the upgrading status for the Chugsplash proxy type. * * @param _upgrading Whether or not the system is upgrading. */ function setUpgrading(bool _upgrading) external onlyOwner { upgrading = _upgrading; } /** * @custom:legacy * @notice Legacy function used to tell ChugSplashProxy contracts if an upgrade is happening. * * @return Whether or not there is an upgrade going on. May not actually tell you whether an * upgrade is going on, since we don't currently plan to use this variable for anything * other than a legacy indicator to fix a UX bug in the ChugSplash proxy. */ function isUpgrading() external view returns (bool) { return upgrading; } /** * @notice Returns the implementation of the given proxy address. * * @param _proxy Address of the proxy to get the implementation of. * * @return Address of the implementation of the proxy. */ function getProxyImplementation(address _proxy) external view returns (address) { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { return IStaticERC1967Proxy(_proxy).implementation(); } else if (ptype == ProxyType.CHUGSPLASH) { return IStaticL1ChugSplashProxy(_proxy).getImplementation(); } else if (ptype == ProxyType.RESOLVED) { return addressManager.getAddress(implementationName[_proxy]); } else { revert("ProxyAdmin: unknown proxy type"); } } /** * @notice Returns the admin of the given proxy address. * * @param _proxy Address of the proxy to get the admin of. * * @return Address of the admin of the proxy. */ function getProxyAdmin(address payable _proxy) external view returns (address) { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { return IStaticERC1967Proxy(_proxy).admin(); } else if (ptype == ProxyType.CHUGSPLASH) { return IStaticL1ChugSplashProxy(_proxy).getOwner(); } else if (ptype == ProxyType.RESOLVED) { return addressManager.owner(); } else { revert("ProxyAdmin: unknown proxy type"); } } /** * @notice Updates the admin of the given proxy address. * * @param _proxy Address of the proxy to update. * @param _newAdmin Address of the new proxy admin. */ function changeProxyAdmin(address payable _proxy, address _newAdmin) external onlyOwner { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { Proxy(_proxy).changeAdmin(_newAdmin); } else if (ptype == ProxyType.CHUGSPLASH) { L1ChugSplashProxy(_proxy).setOwner(_newAdmin); } else if (ptype == ProxyType.RESOLVED) { addressManager.transferOwnership(_newAdmin); } else { revert("ProxyAdmin: unknown proxy type"); } } /** * @notice Changes a proxy's implementation contract. * * @param _proxy Address of the proxy to upgrade. * @param _implementation Address of the new implementation address. */ function upgrade(address payable _proxy, address _implementation) public onlyOwner { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { Proxy(_proxy).upgradeTo(_implementation); } else if (ptype == ProxyType.CHUGSPLASH) { L1ChugSplashProxy(_proxy).setStorage( // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc, bytes32(uint256(uint160(_implementation))) ); } else if (ptype == ProxyType.RESOLVED) { string memory name = implementationName[_proxy]; addressManager.setAddress(name, _implementation); } else { // It should not be possible to retrieve a ProxyType value which is not matched by // one of the previous conditions. assert(false); } } /** * @notice Changes a proxy's implementation contract and delegatecalls the new implementation * with some given data. Useful for atomic upgrade-and-initialize calls. * * @param _proxy Address of the proxy to upgrade. * @param _implementation Address of the new implementation address. * @param _data Data to trigger the new implementation with. */ function upgradeAndCall( address payable _proxy, address _implementation, bytes memory _data ) external payable onlyOwner { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { Proxy(_proxy).upgradeToAndCall{ value: msg.value }(_implementation, _data); } else { // reverts if proxy type is unknown upgrade(_proxy, _implementation); (bool success, ) = _proxy.call{ value: msg.value }(_data); require(success, "ProxyAdmin: call to proxy after upgrade failed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
File 3 of 3: L1StandardBridge
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Predeploys } from "../libraries/Predeploys.sol"; import { StandardBridge } from "../universal/StandardBridge.sol"; import { Semver } from "../universal/Semver.sol"; /** * @custom:proxied * @title L1StandardBridge * @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and * L2. In the case that an ERC20 token is native to L1, it will be escrowed within this * contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was * stored within this contract. After Bedrock, ETH is instead stored inside the * OptimismPortal contract. * NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples * of some token types that may not be properly supported by this contract include, but are * not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists. */ contract L1StandardBridge is StandardBridge, Semver { /** * @custom:legacy * @notice Emitted whenever a deposit of ETH from L1 into L2 is initiated. * * @param from Address of the depositor. * @param to Address of the recipient on L2. * @param amount Amount of ETH deposited. * @param extraData Extra data attached to the deposit. */ event ETHDepositInitiated( address indexed from, address indexed to, uint256 amount, bytes extraData ); /** * @custom:legacy * @notice Emitted whenever a withdrawal of ETH from L2 to L1 is finalized. * * @param from Address of the withdrawer. * @param to Address of the recipient on L1. * @param amount Amount of ETH withdrawn. * @param extraData Extra data attached to the withdrawal. */ event ETHWithdrawalFinalized( address indexed from, address indexed to, uint256 amount, bytes extraData ); /** * @custom:legacy * @notice Emitted whenever an ERC20 deposit is initiated. * * @param l1Token Address of the token on L1. * @param l2Token Address of the corresponding token on L2. * @param from Address of the depositor. * @param to Address of the recipient on L2. * @param amount Amount of the ERC20 deposited. * @param extraData Extra data attached to the deposit. */ event ERC20DepositInitiated( address indexed l1Token, address indexed l2Token, address indexed from, address to, uint256 amount, bytes extraData ); /** * @custom:legacy * @notice Emitted whenever an ERC20 withdrawal is finalized. * * @param l1Token Address of the token on L1. * @param l2Token Address of the corresponding token on L2. * @param from Address of the withdrawer. * @param to Address of the recipient on L1. * @param amount Amount of the ERC20 withdrawn. * @param extraData Extra data attached to the withdrawal. */ event ERC20WithdrawalFinalized( address indexed l1Token, address indexed l2Token, address indexed from, address to, uint256 amount, bytes extraData ); /** * @custom:semver 1.1.0 * * @param _messenger Address of the L1CrossDomainMessenger. */ constructor(address payable _messenger) Semver(1, 1, 0) StandardBridge(_messenger, payable(Predeploys.L2_STANDARD_BRIDGE)) {} /** * @notice Allows EOAs to bridge ETH by sending directly to the bridge. */ receive() external payable override onlyEOA { _initiateETHDeposit(msg.sender, msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes("")); } /** * @custom:legacy * @notice Deposits some amount of ETH into the sender's account on L2. * * @param _minGasLimit Minimum gas limit for the deposit message on L2. * @param _extraData Optional data to forward to L2. Data supplied here will not be used to * execute any code on L2 and is only emitted as extra data for the * convenience of off-chain tooling. */ function depositETH(uint32 _minGasLimit, bytes calldata _extraData) external payable onlyEOA { _initiateETHDeposit(msg.sender, msg.sender, _minGasLimit, _extraData); } /** * @custom:legacy * @notice Deposits some amount of ETH into a target account on L2. * Note that if ETH is sent to a contract on L2 and the call fails, then that ETH will * be locked in the L2StandardBridge. ETH may be recoverable if the call can be * successfully replayed by increasing the amount of gas supplied to the call. If the * call will fail for any amount of gas, then the ETH will be locked permanently. * * @param _to Address of the recipient on L2. * @param _minGasLimit Minimum gas limit for the deposit message on L2. * @param _extraData Optional data to forward to L2. Data supplied here will not be used to * execute any code on L2 and is only emitted as extra data for the * convenience of off-chain tooling. */ function depositETHTo( address _to, uint32 _minGasLimit, bytes calldata _extraData ) external payable { _initiateETHDeposit(msg.sender, _to, _minGasLimit, _extraData); } /** * @custom:legacy * @notice Deposits some amount of ERC20 tokens into the sender's account on L2. * * @param _l1Token Address of the L1 token being deposited. * @param _l2Token Address of the corresponding token on L2. * @param _amount Amount of the ERC20 to deposit. * @param _minGasLimit Minimum gas limit for the deposit message on L2. * @param _extraData Optional data to forward to L2. Data supplied here will not be used to * execute any code on L2 and is only emitted as extra data for the * convenience of off-chain tooling. */ function depositERC20( address _l1Token, address _l2Token, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) external virtual onlyEOA { _initiateERC20Deposit( _l1Token, _l2Token, msg.sender, msg.sender, _amount, _minGasLimit, _extraData ); } /** * @custom:legacy * @notice Deposits some amount of ERC20 tokens into a target account on L2. * * @param _l1Token Address of the L1 token being deposited. * @param _l2Token Address of the corresponding token on L2. * @param _to Address of the recipient on L2. * @param _amount Amount of the ERC20 to deposit. * @param _minGasLimit Minimum gas limit for the deposit message on L2. * @param _extraData Optional data to forward to L2. Data supplied here will not be used to * execute any code on L2 and is only emitted as extra data for the * convenience of off-chain tooling. */ function depositERC20To( address _l1Token, address _l2Token, address _to, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) external virtual { _initiateERC20Deposit( _l1Token, _l2Token, msg.sender, _to, _amount, _minGasLimit, _extraData ); } /** * @custom:legacy * @notice Finalizes a withdrawal of ETH from L2. * * @param _from Address of the withdrawer on L2. * @param _to Address of the recipient on L1. * @param _amount Amount of ETH to withdraw. * @param _extraData Optional data forwarded from L2. */ function finalizeETHWithdrawal( address _from, address _to, uint256 _amount, bytes calldata _extraData ) external payable { finalizeBridgeETH(_from, _to, _amount, _extraData); } /** * @custom:legacy * @notice Finalizes a withdrawal of ERC20 tokens from L2. * * @param _l1Token Address of the token on L1. * @param _l2Token Address of the corresponding token on L2. * @param _from Address of the withdrawer on L2. * @param _to Address of the recipient on L1. * @param _amount Amount of the ERC20 to withdraw. * @param _extraData Optional data forwarded from L2. */ function finalizeERC20Withdrawal( address _l1Token, address _l2Token, address _from, address _to, uint256 _amount, bytes calldata _extraData ) external { finalizeBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _extraData); } /** * @custom:legacy * @notice Retrieves the access of the corresponding L2 bridge contract. * * @return Address of the corresponding L2 bridge contract. */ function l2TokenBridge() external view returns (address) { return address(OTHER_BRIDGE); } /** * @notice Internal function for initiating an ETH deposit. * * @param _from Address of the sender on L1. * @param _to Address of the recipient on L2. * @param _minGasLimit Minimum gas limit for the deposit message on L2. * @param _extraData Optional data to forward to L2. */ function _initiateETHDeposit( address _from, address _to, uint32 _minGasLimit, bytes memory _extraData ) internal { _initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData); } /** * @notice Internal function for initiating an ERC20 deposit. * * @param _l1Token Address of the L1 token being deposited. * @param _l2Token Address of the corresponding token on L2. * @param _from Address of the sender on L1. * @param _to Address of the recipient on L2. * @param _amount Amount of the ERC20 to deposit. * @param _minGasLimit Minimum gas limit for the deposit message on L2. * @param _extraData Optional data to forward to L2. */ function _initiateERC20Deposit( address _l1Token, address _l2Token, address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { _initiateBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _minGasLimit, _extraData); } /** * @notice Emits the legacy ETHDepositInitiated event followed by the ETHBridgeInitiated event. * This is necessary for backwards compatibility with the legacy bridge. * * @inheritdoc StandardBridge */ function _emitETHBridgeInitiated( address _from, address _to, uint256 _amount, bytes memory _extraData ) internal override { emit ETHDepositInitiated(_from, _to, _amount, _extraData); super._emitETHBridgeInitiated(_from, _to, _amount, _extraData); } /** * @notice Emits the legacy ETHWithdrawalFinalized event followed by the ETHBridgeFinalized * event. This is necessary for backwards compatibility with the legacy bridge. * * @inheritdoc StandardBridge */ function _emitETHBridgeFinalized( address _from, address _to, uint256 _amount, bytes memory _extraData ) internal override { emit ETHWithdrawalFinalized(_from, _to, _amount, _extraData); super._emitETHBridgeFinalized(_from, _to, _amount, _extraData); } /** * @notice Emits the legacy ERC20DepositInitiated event followed by the ERC20BridgeInitiated * event. This is necessary for backwards compatibility with the legacy bridge. * * @inheritdoc StandardBridge */ function _emitERC20BridgeInitiated( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes memory _extraData ) internal override { emit ERC20DepositInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); super._emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); } /** * @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized * event. This is necessary for backwards compatibility with the legacy bridge. * * @inheritdoc StandardBridge */ function _emitERC20BridgeFinalized( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes memory _extraData ) internal override { emit ERC20WithdrawalFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); super._emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Burn } from "../libraries/Burn.sol"; import { Arithmetic } from "../libraries/Arithmetic.sol"; /** * @custom:upgradeable * @title ResourceMetering * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing * updates automatically based on current demand. */ abstract contract ResourceMetering is Initializable { /** * @notice Represents the various parameters that control the way in which resources are * metered. Corresponds to the EIP-1559 resource metering system. * * @custom:field prevBaseFee Base fee from the previous block(s). * @custom:field prevBoughtGas Amount of gas bought so far in the current block. * @custom:field prevBlockNum Last block number that the base fee was updated. */ struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /** * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas * market. These values should be set with care as it is possible to set them in * a way that breaks the deposit gas market. The target resource limit is defined as * maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a * single word. There is additional space for additions in the future. * * @custom:field maxResourceLimit Represents the maximum amount of deposit gas that * can be purchased per block. * @custom:field elasticityMultiplier Determines the target resource limit along with * the resource limit. * @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. * @custom:field minimumBaseFee The min deposit base fee, it is clamped to this * value. * @custom:field systemTxMaxGas The amount of gas supplied to the system * transaction. This should be set to the same number * that the op-node sets as the gas limit for the * system transaction. * @custom:field maximumBaseFee The max deposit base fee, it is clamped to this * value. */ struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /** * @notice EIP-1559 style gas parameters. */ ResourceParams public params; /** * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. */ uint256[48] private __gap; /** * @notice Meters access to a function based an amount of a requested resource. * * @param _amount Amount of the resource requested. */ modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /** * @notice An internal function that holds all of the logic for metering a resource. * * @param _amount Amount of the resource requested. * @param _initialGas The amount of gas before any modifier execution. */ function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; require( int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)), "ResourceMetering: cannot buy more gas than available gas limit" ); // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /** * @notice Virtual function that returns the resource config. Contracts that inherit this * contract must implement this function. * * @return ResourceConfig */ function _resourceConfig() internal virtual returns (ResourceConfig memory); /** * @notice Sets initial resource parameter values. This function must either be called by the * initializer function of an upgradeable child contract. */ // solhint-disable-next-line func-name-mixedcase function __ResourceMetering_init() internal onlyInitializing { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /** * @title Arithmetic * @notice Even more math than before. */ library Arithmetic { /** * @notice Clamps a value between a minimum and maximum. * * @param _value The value to clamp. * @param _min The minimum value. * @param _max The maximum value. * * @return The clamped value. */ function clamp( int256 _value, int256 _min, int256 _max ) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /** * @notice (c)oefficient (d)enominator (exp)onentiation function. * Returns the result of: c * (1 - 1/d)^exp. * * @param _coefficient Coefficient of the function. * @param _denominator Fractional denominator. * @param _exponent Power function exponent. * * @return Result of c * (1 - 1/d)^exp. */ function cdexp( int256 _coefficient, int256 _denominator, int256 _exponent ) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title Burn * @notice Utilities for burning stuff. */ library Burn { /** * Burns a given amount of ETH. * * @param _amount Amount of ETH to burn. */ function eth(uint256 _amount) internal { new Burner{ value: _amount }(); } /** * Burns a given amount of gas. * * @param _amount Amount of gas to burn. */ function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } } /** * @title Burner * @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to * the contract from the circulating supply. Self-destructing is the only way to remove ETH * from the circulating supply. */ contract Burner { constructor() payable { selfdestruct(payable(address(this))); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { ResourceMetering } from "../L1/ResourceMetering.sol"; /** * @title Constants * @notice Constants is a library for storing constants. Simple! Don't put everything in here, just * the stuff used in multiple contracts. Constants that only apply to a single contract * should be defined in that contract instead. */ library Constants { /** * @notice Special address to be used as the tx origin for gas estimation calls in the * OptimismPortal and CrossDomainMessenger calls. You only need to use this address if * the minimum gas limit specified by the user is not actually enough to execute the * given message and you're attempting to estimate the actual necessary gas limit. We * use address(1) because it's the ecrecover precompile and therefore guaranteed to * never have any code on any EVM chain. */ address internal constant ESTIMATION_ADDRESS = address(1); /** * @notice Value used for the L2 sender storage slot in both the OptimismPortal and the * CrossDomainMessenger contracts before an actual sender is set. This value is * non-zero to reduce the gas cost of message passing transactions. */ address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /** * @notice Returns the default values for the ResourceConfig. These are the recommended values * for a production network. */ function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) { ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "./Types.sol"; import { Hashing } from "./Hashing.sol"; import { RLPWriter } from "./rlp/RLPWriter.sol"; /** * @title Encoding * @notice Encoding handles Optimism's various different encoding schemes. */ library Encoding { /** * @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent * to the L2 system. Useful for searching for a deposit in the L2 system. The * transaction is prefixed with 0x7e to identify its EIP-2718 type. * * @param _tx User deposit transaction to encode. * * @return RLP encoded L2 deposit transaction. */ function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) { bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex); bytes[] memory raw = new bytes[](8); raw[0] = RLPWriter.writeBytes(abi.encodePacked(source)); raw[1] = RLPWriter.writeAddress(_tx.from); raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to); raw[3] = RLPWriter.writeUint(_tx.mint); raw[4] = RLPWriter.writeUint(_tx.value); raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit)); raw[6] = RLPWriter.writeBool(false); raw[7] = RLPWriter.writeBytes(_tx.data); return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw)); } /** * @notice Encodes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { (, uint16 version) = decodeVersionedNonce(_nonce); if (version == 0) { return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Encoding: unknown cross domain message version"); } } /** * @notice Encodes a cross domain message based on the V0 (legacy) encoding. * * @param _target Address of the target of the message. * @param _sender Address of the sender of the message. * @param _data Data to send with the message. * @param _nonce Message nonce. * * @return Encoded cross domain message. */ function encodeCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce ); } /** * @notice Encodes a cross domain message based on the V1 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(uint256,address,address,uint256,uint256,bytes)", _nonce, _sender, _target, _value, _gasLimit, _data ); } /** * @notice Adds a version number into the first two bytes of a message nonce. * * @param _nonce Message nonce to encode into. * @param _version Version number to encode into the message nonce. * * @return Message nonce with version encoded into the first two bytes. */ function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) { uint256 nonce; assembly { nonce := or(shl(240, _version), _nonce) } return nonce; } /** * @notice Pulls the version out of a version-encoded nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * * @return Nonce without encoded version. * @return Version of the message. */ function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) { uint240 nonce; uint16 version; assembly { nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) version := shr(240, _nonce) } return (nonce, version); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "./Types.sol"; import { Encoding } from "./Encoding.sol"; /** * @title Hashing * @notice Hashing handles Optimism's various different hashing schemes. */ library Hashing { /** * @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a * given deposit is sent to the L2 system. Useful for searching for a deposit in the L2 * system. * * @param _tx User deposit transaction to hash. * * @return Hash of the RLP encoded L2 deposit transaction. */ function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) { return keccak256(Encoding.encodeDepositTransaction(_tx)); } /** * @notice Computes the deposit transaction's "source hash", a value that guarantees the hash * of the L2 transaction that corresponds to a deposit is unique and is * deterministically generated from L1 transaction data. * * @param _l1BlockHash Hash of the L1 block where the deposit was included. * @param _logIndex The index of the log that created the deposit transaction. * * @return Hash of the deposit transaction's "source hash". */ function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) { bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex)); return keccak256(abi.encode(bytes32(0), depositId)); } /** * @notice Hashes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); if (version == 0) { return hashCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Hashing: unknown cross domain message version"); } } /** * @notice Hashes a cross domain message based on the V0 (legacy) encoding. * * @param _target Address of the target of the message. * @param _sender Address of the sender of the message. * @param _data Data to send with the message. * @param _nonce Message nonce. * * @return Hashed cross domain message. */ function hashCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce)); } /** * @notice Hashes a cross domain message based on the V1 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { return keccak256( Encoding.encodeCrossDomainMessageV1( _nonce, _sender, _target, _value, _gasLimit, _data ) ); } /** * @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract * * @param _tx Withdrawal transaction to hash. * * @return Hashed withdrawal transaction. */ function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) { return keccak256( abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data) ); } /** * @notice Hashes the various elements of an output root proof into an output root hash which * can be used to check if the proof is valid. * * @param _outputRootProof Output root proof which should hash to an output root. * * @return Hashed output root proof. */ function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { return keccak256( abi.encode( _outputRootProof.version, _outputRootProof.stateRoot, _outputRootProof.messagePasserStorageRoot, _outputRootProof.latestBlockhash ) ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Predeploys * @notice Contains constant addresses for contracts that are pre-deployed to the L2 system. */ library Predeploys { /** * @notice Address of the L2ToL1MessagePasser predeploy. */ address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016; /** * @notice Address of the L2CrossDomainMessenger predeploy. */ address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007; /** * @notice Address of the L2StandardBridge predeploy. */ address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010; /** * @notice Address of the L2ERC721Bridge predeploy. */ address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014; /** * @notice Address of the SequencerFeeWallet predeploy. */ address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011; /** * @notice Address of the OptimismMintableERC20Factory predeploy. */ address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012; /** * @notice Address of the OptimismMintableERC721Factory predeploy. */ address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017; /** * @notice Address of the L1Block predeploy. */ address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015; /** * @notice Address of the GasPriceOracle predeploy. Includes fee information * and helpers for computing the L1 portion of the transaction fee. */ address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F; /** * @custom:legacy * @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger * or access tx.origin (or msg.sender) in a L1 to L2 transaction instead. */ address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001; /** * @custom:legacy * @notice Address of the DeployerWhitelist predeploy. No longer active. */ address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002; /** * @custom:legacy * @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the * state trie as of the Bedrock upgrade. Contract has been locked and write functions * can no longer be accessed. */ address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000; /** * @custom:legacy * @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy * instead, which exposes more information about the L1 state. */ address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013; /** * @custom:legacy * @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated * L2ToL1MessagePasser contract instead. */ address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000; /** * @notice Address of the ProxyAdmin predeploy. */ address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018; /** * @notice Address of the BaseFeeVault predeploy. */ address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019; /** * @notice Address of the L1FeeVault predeploy. */ address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A; /** * @notice Address of the GovernanceToken predeploy. */ address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042; } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title SafeCall * @notice Perform low level safe calls */ library SafeCall { /** * @notice Perform a low level call without copying any returndata * * @param _target Address to call * @param _gas Amount of gas to pass to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function call( address _target, uint256 _gas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) } return _success; } /** * @notice Perform a low level call without copying any returndata. This function * will revert if the call cannot be performed with the specified minimum * gas. * * @param _target Address to call * @param _minGas The minimum amount of gas that may be passed to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function callWithMinGas( address _target, uint256 _minGas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; assembly { // Assertion: gasleft() >= ((_minGas + 200) * 64) / 63 // // Because EIP-150 ensures that, a maximum of 63/64ths of the remaining gas in the call // frame may be passed to a subcontext, we need to ensure that the gas will not be // truncated to hold this function's invariant: "If a call is performed by // `callWithMinGas`, it must receive at least the specified minimum gas limit." In // addition, exactly 51 gas is consumed between the below `GAS` opcode and the `CALL` // opcode, so it is factored in with some extra room for error. if lt(gas(), div(mul(64, add(_minGas, 200)), 63)) { // Store the "Error(string)" selector in scratch space. mstore(0, 0x08c379a0) // Store the pointer to the string length in scratch space. mstore(32, 32) // Store the string. // // SAFETY: // - We pad the beginning of the string with two zero bytes as well as the // length (24) to ensure that we override the free memory pointer at offset // 0x40. This is necessary because the free memory pointer is likely to // be greater than 1 byte when this function is called, but it is incredibly // unlikely that it will be greater than 3 bytes. As for the data within // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset. // - It's fine to clobber the free memory pointer, we're reverting. mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173) // Revert with 'Error("SafeCall: Not enough gas")' revert(28, 100) } // The call will be supplied at least (((_minGas + 200) * 64) / 63) - 49 gas due to the // above assertion. This ensures that, in all circumstances, the call will // receive at least the minimum amount of gas specified. // We can prove this property by solving the inequalities: // ((((_minGas + 200) * 64) / 63) - 49) >= _minGas // ((((_minGas + 200) * 64) / 63) - 51) * (63 / 64) >= _minGas // Both inequalities hold true for all possible values of `_minGas`. _success := call( gas(), // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0x00, // outloc 0x00 // outlen ) } return _success; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Types * @notice Contains various types used throughout the Optimism contract system. */ library Types { /** * @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1 * timestamp that the output root is posted. This timestamp is used to verify that the * finalization period has passed since the output root was submitted. * * @custom:field outputRoot Hash of the L2 output. * @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. * @custom:field l2BlockNumber L2 block number that the output corresponds to. */ struct OutputProposal { bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /** * @notice Struct representing the elements that are hashed together to generate an output root * which itself represents a snapshot of the L2 state. * * @custom:field version Version of the output root. * @custom:field stateRoot Root of the state trie at the block of this output. * @custom:field messagePasserStorageRoot Root of the message passer storage trie. * @custom:field latestBlockhash Hash of the block this output was generated from. */ struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 latestBlockhash; } /** * @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end * user (as opposed to a system deposit transaction generated by the system). * * @custom:field from Address of the sender of the transaction. * @custom:field to Address of the recipient of the transaction. * @custom:field isCreation True if the transaction is a contract creation. * @custom:field value Value to send to the recipient. * @custom:field mint Amount of ETH to mint. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. * @custom:field l1BlockHash Hash of the block the transaction was submitted in. * @custom:field logIndex Index of the log in the block the transaction was submitted in. */ struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint256 logIndex; } /** * @notice Struct representing a withdrawal transaction. * * @custom:field nonce Nonce of the withdrawal transaction * @custom:field sender Address of the sender of the transaction. * @custom:field target Address of the recipient of the transaction. * @custom:field value Value to send to the recipient. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. */ struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @custom:attribution https://github.com/bakaoh/solidity-rlp-encode * @title RLPWriter * @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's * RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor * modifications to improve legibility. */ library RLPWriter { /** * @notice RLP encodes a byte string. * * @param _in The byte string to encode. * * @return The RLP encoded string in bytes. */ function writeBytes(bytes memory _in) internal pure returns (bytes memory) { bytes memory encoded; if (_in.length == 1 && uint8(_in[0]) < 128) { encoded = _in; } else { encoded = abi.encodePacked(_writeLength(_in.length, 128), _in); } return encoded; } /** * @notice RLP encodes a list of RLP encoded byte byte strings. * * @param _in The list of RLP encoded byte strings. * * @return The RLP encoded list of items in bytes. */ function writeList(bytes[] memory _in) internal pure returns (bytes memory) { bytes memory list = _flatten(_in); return abi.encodePacked(_writeLength(list.length, 192), list); } /** * @notice RLP encodes a string. * * @param _in The string to encode. * * @return The RLP encoded string in bytes. */ function writeString(string memory _in) internal pure returns (bytes memory) { return writeBytes(bytes(_in)); } /** * @notice RLP encodes an address. * * @param _in The address to encode. * * @return The RLP encoded address in bytes. */ function writeAddress(address _in) internal pure returns (bytes memory) { return writeBytes(abi.encodePacked(_in)); } /** * @notice RLP encodes a uint. * * @param _in The uint256 to encode. * * @return The RLP encoded uint256 in bytes. */ function writeUint(uint256 _in) internal pure returns (bytes memory) { return writeBytes(_toBinary(_in)); } /** * @notice RLP encodes a bool. * * @param _in The bool to encode. * * @return The RLP encoded bool in bytes. */ function writeBool(bool _in) internal pure returns (bytes memory) { bytes memory encoded = new bytes(1); encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80)); return encoded; } /** * @notice Encode the first byte and then the `len` in binary form if `length` is more than 55. * * @param _len The length of the string or the payload. * @param _offset 128 if item is string, 192 if item is list. * * @return RLP encoded bytes. */ function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) { bytes memory encoded; if (_len < 56) { encoded = new bytes(1); encoded[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } encoded = new bytes(lenLen + 1); encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256)); } } return encoded; } /** * @notice Encode integer in big endian binary form with no leading zeroes. * * @param _x The integer to encode. * * @return RLP encoded bytes. */ function _toBinary(uint256 _x) private pure returns (bytes memory) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } bytes memory res = new bytes(32 - i); for (uint256 j = 0; j < res.length; j++) { res[j] = b[i++]; } return res; } /** * @custom:attribution https://github.com/Arachnid/solidity-stringutils * @notice Copies a piece of memory to another location. * * @param _dest Destination location. * @param _src Source location. * @param _len Length of memory to copy. */ function _memcpy( uint256 _dest, uint256 _src, uint256 _len ) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256**(32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /** * @custom:attribution https://github.com/sammayo/solidity-rlp-encoder * @notice Flattens a list of byte strings into one byte string. * * @param _list List of byte strings to flatten. * * @return The flattened byte string. */ function _flatten(bytes[] memory _list) private pure returns (bytes memory) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } bytes memory flattened = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(flattened, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } return flattened; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { Hashing } from "../libraries/Hashing.sol"; import { Encoding } from "../libraries/Encoding.sol"; import { Constants } from "../libraries/Constants.sol"; /** * @custom:legacy * @title CrossDomainMessengerLegacySpacer0 * @notice Contract only exists to add a spacer to the CrossDomainMessenger where the * libAddressManager variable used to exist. Must be the first contract in the inheritance * tree of the CrossDomainMessenger. */ contract CrossDomainMessengerLegacySpacer0 { /** * @custom:legacy * @custom:spacer libAddressManager * @notice Spacer for backwards compatibility. */ address private spacer_0_0_20; } /** * @custom:legacy * @title CrossDomainMessengerLegacySpacer1 * @notice Contract only exists to add a spacer to the CrossDomainMessenger where the * PausableUpgradable and OwnableUpgradeable variables used to exist. Must be * the third contract in the inheritance tree of the CrossDomainMessenger. */ contract CrossDomainMessengerLegacySpacer1 { /** * @custom:legacy * @custom:spacer __gap * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * ContextUpgradable via OwnableUpgradeable. * */ uint256[50] private spacer_1_0_1600; /** * @custom:legacy * @custom:spacer _owner * @notice Spacer for backwards compatibility. * Come from OpenZeppelin OwnableUpgradeable. */ address private spacer_51_0_20; /** * @custom:legacy * @custom:spacer __gap * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * ContextUpgradable via PausableUpgradable. */ uint256[49] private spacer_52_0_1568; /** * @custom:legacy * @custom:spacer _paused * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * PausableUpgradable. */ bool private spacer_101_0_1; /** * @custom:legacy * @custom:spacer __gap * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * PausableUpgradable. */ uint256[49] private spacer_102_0_1568; /** * @custom:legacy * @custom:spacer ReentrancyGuardUpgradeable's `_status` field. * @notice Spacer for backwards compatibility */ uint256 private spacer_151_0_32; /** * @custom:spacer ReentrancyGuardUpgradeable * @notice Spacer for backwards compatibility */ uint256[49] private __gap_reentrancy_guard; /** * @custom:legacy * @custom:spacer blockedMessages * @notice Spacer for backwards compatibility. */ mapping(bytes32 => bool) private spacer_201_0_32; /** * @custom:legacy * @custom:spacer relayedMessages * @notice Spacer for backwards compatibility. */ mapping(bytes32 => bool) private spacer_202_0_32; } /** * @custom:upgradeable * @title CrossDomainMessenger * @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2 * cross-chain messenger contracts. It's designed to be a universal interface that only * needs to be extended slightly to provide low-level message passing functionality on each * chain it's deployed on. Currently only designed for message passing between two paired * chains and does not support one-to-many interactions. * * Any changes to this contract MUST result in a semver bump for contracts that inherit it. */ abstract contract CrossDomainMessenger is CrossDomainMessengerLegacySpacer0, Initializable, CrossDomainMessengerLegacySpacer1 { /** * @notice Current message version identifier. */ uint16 public constant MESSAGE_VERSION = 1; /** * @notice Constant overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_CONSTANT_OVERHEAD = 200_000; /** * @notice Numerator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 1016; /** * @notice Denominator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 1000; /** * @notice Extra gas added to base gas for each byte of calldata in a message. */ uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16; /** * @notice Address of the paired CrossDomainMessenger contract on the other chain. */ address public immutable OTHER_MESSENGER; /** * @notice Mapping of message hashes to boolean receipt values. Note that a message will only * be present in this mapping if it has successfully been relayed on this chain, and * can therefore not be relayed again. */ mapping(bytes32 => bool) public successfulMessages; /** * @notice Address of the sender of the currently executing message on the other chain. If the * value of this variable is the default value (0x00000000...dead) then no message is * currently being executed. Use the xDomainMessageSender getter which will throw an * error if this is the case. */ address internal xDomainMsgSender; /** * @notice Nonce for the next message to be sent, without the message version applied. Use the * messageNonce getter which will insert the message version into the nonce to give you * the actual nonce to be used for the message. */ uint240 internal msgNonce; /** * @notice Mapping of message hashes to a boolean if and only if the message has failed to be * executed at least once. A message will not be present in this mapping if it * successfully executed on the first attempt. */ mapping(bytes32 => bool) public failedMessages; /** * @notice A mapping of hashes to reentrancy locks. */ mapping(bytes32 => bool) internal reentrancyLocks; /** * @notice Reserve extra slots in the storage layout for future upgrades. * A gap size of 41 was chosen here, so that the first slot used in a child contract * would be a multiple of 50. */ uint256[41] private __gap; /** * @notice Emitted whenever a message is sent to the other chain. * * @param target Address of the recipient of the message. * @param sender Address of the sender of the message. * @param message Message to trigger the recipient address with. * @param messageNonce Unique nonce attached to the message. * @param gasLimit Minimum gas limit that the message can be executed with. */ event SentMessage( address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit ); /** * @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the * SentMessage event without breaking the ABI of this contract, this is good enough. * * @param sender Address of the sender of the message. * @param value ETH value sent along with the message to the recipient. */ event SentMessageExtension1(address indexed sender, uint256 value); /** * @notice Emitted whenever a message is successfully relayed on this chain. * * @param msgHash Hash of the message that was relayed. */ event RelayedMessage(bytes32 indexed msgHash); /** * @notice Emitted whenever a message fails to be relayed on this chain. * * @param msgHash Hash of the message that failed to be relayed. */ event FailedRelayedMessage(bytes32 indexed msgHash); /** * @param _otherMessenger Address of the messenger on the paired chain. */ constructor(address _otherMessenger) { OTHER_MESSENGER = _otherMessenger; } /** * @notice Sends a message to some target address on the other chain. Note that if the call * always reverts, then the message will be unrelayable, and any ETH sent will be * permanently locked. The same will occur if the target on the other chain is * considered unsafe (see the _isUnsafeTarget() function). * * @param _target Target contract or wallet address. * @param _message Message to trigger the target address with. * @param _minGasLimit Minimum gas limit that the message can be executed with. */ function sendMessage( address _target, bytes calldata _message, uint32 _minGasLimit ) external payable { // Triggers a message to the other messenger. Note that the amount of gas provided to the // message is the amount of gas requested by the user PLUS the base gas value. We want to // guarantee the property that the call to the target contract will always have at least // the minimum gas limit specified by the user. _sendMessage( OTHER_MESSENGER, baseGas(_message, _minGasLimit), msg.value, abi.encodeWithSelector( this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message ) ); emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit); emit SentMessageExtension1(msg.sender, msg.value); unchecked { ++msgNonce; } } /** * @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only * be executed via cross-chain call from the other messenger OR if the message was * already received once and is currently being replayed. * * @param _nonce Nonce of the message being relayed. * @param _sender Address of the user who sent the message. * @param _target Address that the message is targeted at. * @param _value ETH value to send with the message. * @param _minGasLimit Minimum amount of gas that the message can be executed with. * @param _message Message to send to the target. */ function relayMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _minGasLimit, bytes calldata _message ) external payable { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); require( version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time" ); // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need // to check that the legacy version of the message has not already been relayed. if (version == 0) { bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce); require( successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed" ); } // We use the v1 message hash as the unique identifier for the message because it commits // to the value and minimum gas limit of the message. bytes32 versionedHash = Hashing.hashCrossDomainMessageV1( _nonce, _sender, _target, _value, _minGasLimit, _message ); // Check if the reentrancy lock for the `versionedHash` is already set. if (reentrancyLocks[versionedHash]) { revert("ReentrancyGuard: reentrant call"); } // Trigger the reentrancy lock for `versionedHash` reentrancyLocks[versionedHash] = true; if (_isOtherMessenger()) { // These properties should always hold when the message is first submitted (as // opposed to being replayed). assert(msg.value == _value); assert(!failedMessages[versionedHash]); } else { require( msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address" ); require( failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed" ); } require( _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address" ); require( successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed" ); xDomainMsgSender = _sender; bool success = SafeCall.callWithMinGas(_target, _minGasLimit, _value, _message); xDomainMsgSender = Constants.DEFAULT_L2_SENDER; if (success) { successfulMessages[versionedHash] = true; emit RelayedMessage(versionedHash); } else { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } } // Clear the reentrancy lock for `versionedHash` reentrancyLocks[versionedHash] = false; } /** * @notice Retrieves the address of the contract or wallet that initiated the currently * executing message on the other chain. Will throw an error if there is no message * currently being executed. Allows the recipient of a call to see who triggered it. * * @return Address of the sender of the currently executing message on the other chain. */ function xDomainMessageSender() external view returns (address) { require( xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set" ); return xDomainMsgSender; } /** * @notice Retrieves the next message nonce. Message version will be added to the upper two * bytes of the message nonce. Message version allows us to treat messages as having * different structures. * * @return Nonce of the next message to be sent, with added message version. */ function messageNonce() public view returns (uint256) { return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION); } /** * @notice Computes the amount of gas required to guarantee that a given message will be * received on the other chain without running out of gas. Guaranteeing that a message * will not run out of gas is important because this ensures that a message can always * be replayed on the other chain if it fails to execute completely. * * @param _message Message to compute the amount of required gas for. * @param _minGasLimit Minimum desired gas limit when message goes to target. * * @return Amount of gas required to guarantee message receipt. */ function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) { // We peform the following math on uint64s to avoid overflow errors. Multiplying the // by MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR would otherwise limit the _minGasLimit to // type(uint32).max / MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR ~= 4.2m. return // Dynamic overhead ((uint64(_minGasLimit) * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) + // Calldata overhead (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) + // Constant overhead MIN_GAS_CONSTANT_OVERHEAD; } /** * @notice Intializer. */ // solhint-disable-next-line func-name-mixedcase function __CrossDomainMessenger_init() internal onlyInitializing { xDomainMsgSender = Constants.DEFAULT_L2_SENDER; } /** * @notice Sends a low-level message to the other messenger. Needs to be implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @param _to Recipient of the message on the other chain. * @param _gasLimit Minimum gas limit the message can be executed with. * @param _value Amount of ETH to send with the message. * @param _data Message data. */ function _sendMessage( address _to, uint64 _gasLimit, uint256 _value, bytes memory _data ) internal virtual; /** * @notice Checks whether the message is coming from the other messenger. Implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @return Whether the message is coming from the other messenger. */ function _isOtherMessenger() internal view virtual returns (bool); /** * @notice Checks whether a given call target is a system address that could cause the * messenger to peform an unsafe action. This is NOT a mechanism for blocking user * addresses. This is ONLY used to prevent the execution of messages to specific * system addresses that could cause security issues, e.g., having the * CrossDomainMessenger send messages to itself. * * @param _target Address of the contract to check. * * @return Whether or not the address is an unsafe system address. */ function _isUnsafeTarget(address _target) internal view virtual returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; /** * @title IOptimismMintableERC20 * @notice This interface is available on the OptimismMintableERC20 contract. We declare it as a * separate interface so that it can be used in custom implementations of * OptimismMintableERC20. */ interface IOptimismMintableERC20 is IERC165 { function remoteToken() external view returns (address); function bridge() external returns (address); function mint(address _to, uint256 _amount) external; function burn(address _from, uint256 _amount) external; } /** * @custom:legacy * @title ILegacyMintableERC20 * @notice This interface was available on the legacy L2StandardERC20 contract. It remains available * on the OptimismMintableERC20 contract for backwards compatibility. */ interface ILegacyMintableERC20 is IERC165 { function l1Token() external view returns (address); function mint(address _to, uint256 _amount) external; function burn(address _from, uint256 _amount) external; } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import { ILegacyMintableERC20, IOptimismMintableERC20 } from "./IOptimismMintableERC20.sol"; import { Semver } from "../universal/Semver.sol"; /** * @title OptimismMintableERC20 * @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed * to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to * use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa. * Designed to be backwards compatible with the older StandardL2ERC20 token which was only * meant for use on L2. */ contract OptimismMintableERC20 is IOptimismMintableERC20, ILegacyMintableERC20, ERC20, Semver { /** * @notice Address of the corresponding version of this token on the remote chain. */ address public immutable REMOTE_TOKEN; /** * @notice Address of the StandardBridge on this network. */ address public immutable BRIDGE; /** * @notice Emitted whenever tokens are minted for an account. * * @param account Address of the account tokens are being minted for. * @param amount Amount of tokens minted. */ event Mint(address indexed account, uint256 amount); /** * @notice Emitted whenever tokens are burned from an account. * * @param account Address of the account tokens are being burned from. * @param amount Amount of tokens burned. */ event Burn(address indexed account, uint256 amount); /** * @notice A modifier that only allows the bridge to call */ modifier onlyBridge() { require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn"); _; } /** * @custom:semver 1.0.0 * * @param _bridge Address of the L2 standard bridge. * @param _remoteToken Address of the corresponding L1 token. * @param _name ERC20 name. * @param _symbol ERC20 symbol. */ constructor( address _bridge, address _remoteToken, string memory _name, string memory _symbol ) ERC20(_name, _symbol) Semver(1, 0, 0) { REMOTE_TOKEN = _remoteToken; BRIDGE = _bridge; } /** * @notice Allows the StandardBridge on this network to mint tokens. * * @param _to Address to mint tokens to. * @param _amount Amount of tokens to mint. */ function mint(address _to, uint256 _amount) external virtual override(IOptimismMintableERC20, ILegacyMintableERC20) onlyBridge { _mint(_to, _amount); emit Mint(_to, _amount); } /** * @notice Allows the StandardBridge on this network to burn tokens. * * @param _from Address to burn tokens from. * @param _amount Amount of tokens to burn. */ function burn(address _from, uint256 _amount) external virtual override(IOptimismMintableERC20, ILegacyMintableERC20) onlyBridge { _burn(_from, _amount); emit Burn(_from, _amount); } /** * @notice ERC165 interface check function. * * @param _interfaceId Interface ID to check. * * @return Whether or not the interface is supported by this contract. */ function supportsInterface(bytes4 _interfaceId) external pure returns (bool) { bytes4 iface1 = type(IERC165).interfaceId; // Interface corresponding to the legacy L2StandardERC20. bytes4 iface2 = type(ILegacyMintableERC20).interfaceId; // Interface corresponding to the updated OptimismMintableERC20 (this contract). bytes4 iface3 = type(IOptimismMintableERC20).interfaceId; return _interfaceId == iface1 || _interfaceId == iface2 || _interfaceId == iface3; } /** * @custom:legacy * @notice Legacy getter for the remote token. Use REMOTE_TOKEN going forward. */ function l1Token() public view returns (address) { return REMOTE_TOKEN; } /** * @custom:legacy * @notice Legacy getter for the bridge. Use BRIDGE going forward. */ function l2Bridge() public view returns (address) { return BRIDGE; } /** * @custom:legacy * @notice Legacy getter for REMOTE_TOKEN. */ function remoteToken() public view returns (address) { return REMOTE_TOKEN; } /** * @custom:legacy * @notice Legacy getter for BRIDGE. */ function bridge() public view returns (address) { return BRIDGE; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Strings } from "@openzeppelin/contracts/utils/Strings.sol"; /** * @title Semver * @notice Semver is a simple contract for managing contract versions. */ contract Semver { /** * @notice Contract version number (major). */ uint256 private immutable MAJOR_VERSION; /** * @notice Contract version number (minor). */ uint256 private immutable MINOR_VERSION; /** * @notice Contract version number (patch). */ uint256 private immutable PATCH_VERSION; /** * @param _major Version number (major). * @param _minor Version number (minor). * @param _patch Version number (patch). */ constructor( uint256 _major, uint256 _minor, uint256 _patch ) { MAJOR_VERSION = _major; MINOR_VERSION = _minor; PATCH_VERSION = _patch; } /** * @notice Returns the full semver contract version. * * @return Semver contract version as a string. */ function version() public view returns (string memory) { return string( abi.encodePacked( Strings.toString(MAJOR_VERSION), ".", Strings.toString(MINOR_VERSION), ".", Strings.toString(PATCH_VERSION) ) ); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol"; import { Address } from "@openzeppelin/contracts/utils/Address.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { IOptimismMintableERC20, ILegacyMintableERC20 } from "./IOptimismMintableERC20.sol"; import { CrossDomainMessenger } from "./CrossDomainMessenger.sol"; import { OptimismMintableERC20 } from "./OptimismMintableERC20.sol"; /** * @custom:upgradeable * @title StandardBridge * @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles * the core bridging logic, including escrowing tokens that are native to the local chain * and minting/burning tokens that are native to the remote chain. */ abstract contract StandardBridge { using SafeERC20 for IERC20; /** * @notice The L2 gas limit set when eth is depoisited using the receive() function. */ uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000; /** * @notice Messenger contract on this domain. */ CrossDomainMessenger public immutable MESSENGER; /** * @notice Corresponding bridge on the other domain. */ StandardBridge public immutable OTHER_BRIDGE; /** * @custom:legacy * @custom:spacer messenger * @notice Spacer for backwards compatibility. */ address private spacer_0_0_20; /** * @custom:legacy * @custom:spacer l2TokenBridge * @notice Spacer for backwards compatibility. */ address private spacer_1_0_20; /** * @notice Mapping that stores deposits for a given pair of local and remote tokens. */ mapping(address => mapping(address => uint256)) public deposits; /** * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. * A gap size of 47 was chosen here, so that the first slot used in a child contract * would be a multiple of 50. */ uint256[47] private __gap; /** * @notice Emitted when an ETH bridge is initiated to the other chain. * * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of ETH sent. * @param extraData Extra data sent with the transaction. */ event ETHBridgeInitiated( address indexed from, address indexed to, uint256 amount, bytes extraData ); /** * @notice Emitted when an ETH bridge is finalized on this chain. * * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of ETH sent. * @param extraData Extra data sent with the transaction. */ event ETHBridgeFinalized( address indexed from, address indexed to, uint256 amount, bytes extraData ); /** * @notice Emitted when an ERC20 bridge is initiated to the other chain. * * @param localToken Address of the ERC20 on this chain. * @param remoteToken Address of the ERC20 on the remote chain. * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of the ERC20 sent. * @param extraData Extra data sent with the transaction. */ event ERC20BridgeInitiated( address indexed localToken, address indexed remoteToken, address indexed from, address to, uint256 amount, bytes extraData ); /** * @notice Emitted when an ERC20 bridge is finalized on this chain. * * @param localToken Address of the ERC20 on this chain. * @param remoteToken Address of the ERC20 on the remote chain. * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of the ERC20 sent. * @param extraData Extra data sent with the transaction. */ event ERC20BridgeFinalized( address indexed localToken, address indexed remoteToken, address indexed from, address to, uint256 amount, bytes extraData ); /** * @notice Only allow EOAs to call the functions. Note that this is not safe against contracts * calling code within their constructors, but also doesn't really matter since we're * just trying to prevent users accidentally depositing with smart contract wallets. */ modifier onlyEOA() { require( !Address.isContract(msg.sender), "StandardBridge: function can only be called from an EOA" ); _; } /** * @notice Ensures that the caller is a cross-chain message from the other bridge. */ modifier onlyOtherBridge() { require( msg.sender == address(MESSENGER) && MESSENGER.xDomainMessageSender() == address(OTHER_BRIDGE), "StandardBridge: function can only be called from the other bridge" ); _; } /** * @param _messenger Address of CrossDomainMessenger on this network. * @param _otherBridge Address of the other StandardBridge contract. */ constructor(address payable _messenger, address payable _otherBridge) { MESSENGER = CrossDomainMessenger(_messenger); OTHER_BRIDGE = StandardBridge(_otherBridge); } /** * @notice Allows EOAs to bridge ETH by sending directly to the bridge. * Must be implemented by contracts that inherit. */ receive() external payable virtual; /** * @custom:legacy * @notice Legacy getter for messenger contract. * * @return Messenger contract on this domain. */ function messenger() external view returns (CrossDomainMessenger) { return MESSENGER; } /** * @notice Sends ETH to the sender's address on the other chain. * * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA { _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData); } /** * @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a * smart contract and the call fails, the ETH will be temporarily locked in the * StandardBridge on the other chain until the call is replayed. If the call cannot be * replayed with any amount of gas (call always reverts), then the ETH will be * permanently locked in the StandardBridge on the other chain. ETH will also * be locked if the receiver is the other bridge, because finalizeBridgeETH will revert * in that case. * * @param _to Address of the receiver. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeETHTo( address _to, uint32 _minGasLimit, bytes calldata _extraData ) public payable { _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData); } /** * @notice Sends ERC20 tokens to the sender's address on the other chain. Note that if the * ERC20 token on the other chain does not recognize the local token as the correct * pair token, the ERC20 bridge will fail and the tokens will be returned to sender on * this chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _amount Amount of local tokens to deposit. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeERC20( address _localToken, address _remoteToken, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) public virtual onlyEOA { _initiateBridgeERC20( _localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData ); } /** * @notice Sends ERC20 tokens to a receiver's address on the other chain. Note that if the * ERC20 token on the other chain does not recognize the local token as the correct * pair token, the ERC20 bridge will fail and the tokens will be returned to sender on * this chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _to Address of the receiver. * @param _amount Amount of local tokens to deposit. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeERC20To( address _localToken, address _remoteToken, address _to, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) public virtual { _initiateBridgeERC20( _localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData ); } /** * @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other * StandardBridge contract on the remote chain. * * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of ETH being bridged. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function finalizeBridgeETH( address _from, address _to, uint256 _amount, bytes calldata _extraData ) public payable onlyOtherBridge { require(msg.value == _amount, "StandardBridge: amount sent does not match amount required"); require(_to != address(this), "StandardBridge: cannot send to self"); require(_to != address(MESSENGER), "StandardBridge: cannot send to messenger"); // Emit the correct events. By default this will be _amount, but child // contracts may override this function in order to emit legacy events as well. _emitETHBridgeFinalized(_from, _to, _amount, _extraData); bool success = SafeCall.call(_to, gasleft(), _amount, hex""); require(success, "StandardBridge: ETH transfer failed"); } /** * @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other * StandardBridge contract on the remote chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of the ERC20 being bridged. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function finalizeBridgeERC20( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes calldata _extraData ) public onlyOtherBridge { if (_isOptimismMintableERC20(_localToken)) { require( _isCorrectTokenPair(_localToken, _remoteToken), "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token" ); OptimismMintableERC20(_localToken).mint(_to, _amount); } else { deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount; IERC20(_localToken).safeTransfer(_to, _amount); } // Emit the correct events. By default this will be ERC20BridgeFinalized, but child // contracts may override this function in order to emit legacy events as well. _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); } /** * @notice Initiates a bridge of ETH through the CrossDomainMessenger. * * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of ETH being bridged. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function _initiateBridgeETH( address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { require( msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value" ); // Emit the correct events. By default this will be _amount, but child // contracts may override this function in order to emit legacy events as well. _emitETHBridgeInitiated(_from, _to, _amount, _extraData); MESSENGER.sendMessage{ value: _amount }( address(OTHER_BRIDGE), abi.encodeWithSelector( this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData ), _minGasLimit ); } /** * @notice Sends ERC20 tokens to a receiver's address on the other chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _to Address of the receiver. * @param _amount Amount of local tokens to deposit. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function _initiateBridgeERC20( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { if (_isOptimismMintableERC20(_localToken)) { require( _isCorrectTokenPair(_localToken, _remoteToken), "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token" ); OptimismMintableERC20(_localToken).burn(_from, _amount); } else { IERC20(_localToken).safeTransferFrom(_from, address(this), _amount); deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount; } // Emit the correct events. By default this will be ERC20BridgeInitiated, but child // contracts may override this function in order to emit legacy events as well. _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); MESSENGER.sendMessage( address(OTHER_BRIDGE), abi.encodeWithSelector( this.finalizeBridgeERC20.selector, // Because this call will be executed on the remote chain, we reverse the order of // the remote and local token addresses relative to their order in the // finalizeBridgeERC20 function. _remoteToken, _localToken, _from, _to, _amount, _extraData ), _minGasLimit ); } /** * @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough. * Just the way we like it. * * @param _token Address of the token to check. * * @return True if the token is an OptimismMintableERC20. */ function _isOptimismMintableERC20(address _token) internal view returns (bool) { return ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId) || ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId); } /** * @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20. * Calls can be saved in the future by combining this logic with * `_isOptimismMintableERC20`. * * @param _mintableToken OptimismMintableERC20 to check against. * @param _otherToken Pair token to check. * * @return True if the other token is the correct pair token for the OptimismMintableERC20. */ function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) { if ( ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId) ) { return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token(); } else { return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken(); } } /** @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event * when an ETH bridge is finalized on this chain. * * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of ETH sent. * @param _extraData Extra data sent with the transaction. */ function _emitETHBridgeInitiated( address _from, address _to, uint256 _amount, bytes memory _extraData ) internal virtual { emit ETHBridgeInitiated(_from, _to, _amount, _extraData); } /** * @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an * ETH bridge is finalized on this chain. * * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of ETH sent. * @param _extraData Extra data sent with the transaction. */ function _emitETHBridgeFinalized( address _from, address _to, uint256 _amount, bytes memory _extraData ) internal virtual { emit ETHBridgeFinalized(_from, _to, _amount, _extraData); } /** * @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy * event when an ERC20 bridge is initiated to the other chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the ERC20 on the remote chain. * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of the ERC20 sent. * @param _extraData Extra data sent with the transaction. */ function _emitERC20BridgeInitiated( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes memory _extraData ) internal virtual { emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); } /** * @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy * event when an ERC20 bridge is initiated to the other chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the ERC20 on the remote chain. * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of the ERC20 sent. * @param _extraData Extra data sent with the transaction. */ function _emitERC20BridgeFinalized( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes memory _extraData ) internal virtual { emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; } _balances[to] += amount; emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol) pragma solidity ^0.8.0; /** * @dev String operations. */ library Strings { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Library used to query support of an interface declared via {IERC165}. * * Note that these functions return the actual result of the query: they do not * `revert` if an interface is not supported. It is up to the caller to decide * what to do in these cases. */ library ERC165Checker { // As per the EIP-165 spec, no interface should ever match 0xffffffff bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff; /** * @dev Returns true if `account` supports the {IERC165} interface, */ function supportsERC165(address account) internal view returns (bool) { // Any contract that implements ERC165 must explicitly indicate support of // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid return _supportsERC165Interface(account, type(IERC165).interfaceId) && !_supportsERC165Interface(account, _INTERFACE_ID_INVALID); } /** * @dev Returns true if `account` supports the interface defined by * `interfaceId`. Support for {IERC165} itself is queried automatically. * * See {IERC165-supportsInterface}. */ function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) { // query support of both ERC165 as per the spec and support of _interfaceId return supportsERC165(account) && _supportsERC165Interface(account, interfaceId); } /** * @dev Returns a boolean array where each value corresponds to the * interfaces passed in and whether they're supported or not. This allows * you to batch check interfaces for a contract where your expectation * is that some interfaces may not be supported. * * See {IERC165-supportsInterface}. * * _Available since v3.4._ */ function getSupportedInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool[] memory) { // an array of booleans corresponding to interfaceIds and whether they're supported or not bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length); // query support of ERC165 itself if (supportsERC165(account)) { // query support of each interface in interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]); } } return interfaceIdsSupported; } /** * @dev Returns true if `account` supports all the interfaces defined in * `interfaceIds`. Support for {IERC165} itself is queried automatically. * * Batch-querying can lead to gas savings by skipping repeated checks for * {IERC165} support. * * See {IERC165-supportsInterface}. */ function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) { // query support of ERC165 itself if (!supportsERC165(account)) { return false; } // query support of each interface in _interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { if (!_supportsERC165Interface(account, interfaceIds[i])) { return false; } } // all interfaces supported return true; } /** * @notice Query if a contract implements an interface, does not check ERC165 support * @param account The address of the contract to query for support of an interface * @param interfaceId The interface identifier, as specified in ERC-165 * @return true if the contract at account indicates support of the interface with * identifier interfaceId, false otherwise * @dev Assumes that account contains a contract that supports ERC165, otherwise * the behavior of this method is undefined. This precondition can be checked * with {supportsERC165}. * Interface identification is specified in ERC-165. */ function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) { // prepare call bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId); // perform static call bool success; uint256 returnSize; uint256 returnValue; assembly { success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20) returnSize := returndatasize() returnValue := mload(0x00) } return success && returnSize >= 0x20 && returnValue > 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } }