Transaction Hash:
Block:
12379502 at May-06-2021 07:52:18 AM +UTC
Transaction Fee:
0.228899396 ETH
$595.16
Gas Used:
5,202,259 Gas / 44 Gwei
Emitted Events:
97 |
UniswapV3Factory.PoolCreated( token0=FRAXStablecoin, token1=FiatTokenProxy, fee=500, tickSpacing=10, pool=UniswapV3Pool )
|
98 |
UniswapV3Pool.Initialize( sqrtPriceX96=79224306130848112672356, tick=-276325 )
|
99 |
FRAXStablecoin.Transfer( from=[Sender] 0xb85828477d09842e75de3e686689110525ead27a, to=UniswapV3Pool, value=199999999958589438270 )
|
100 |
FRAXStablecoin.Approval( owner=[Sender] 0xb85828477d09842e75de3e686689110525ead27a, spender=[Receiver] NonfungiblePositionManager, value=115792089237316195423570985008687907853269984665640564039257584007954540201665 )
|
101 |
FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000b85828477d09842e75de3e686689110525ead27a, 0x000000000000000000000000c63b0708e2f7e69cb8a1df0e1389a98c35a76d52, 0000000000000000000000000000000000000000000000000000000009ac92da )
|
102 |
UniswapV3Pool.Mint( sender=[Receiver] NonfungiblePositionManager, owner=[Receiver] NonfungiblePositionManager, tickLower=-277000, tickUpper=-275490, amount=4891116372211175, amount0=199999999958589438270, amount1=162304730 )
|
103 |
NonfungiblePositionManager.Transfer( from=0x00000000...000000000, to=[Sender] 0xb85828477d09842e75de3e686689110525ead27a, tokenId=3409 )
|
104 |
NonfungiblePositionManager.IncreaseLiquidity( tokenId=3409, liquidity=4891116372211175, amount0=199999999958589438270, amount1=162304730 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x1F98431c...6ea31F984 | (Uniswap V3: Factory) | ||||
0x853d955a...7F175b99e | |||||
0xA0b86991...E3606eB48 | |||||
0xb8582847...525EAd27a |
1.9640102423970556 Eth
Nonce: 53
|
1.7351108463970556 Eth
Nonce: 54
| 0.228899396 | ||
0xC36442b4...7Ab11FE88 | |||||
0xc63B0708...C35A76D52 | (Uniswap V3: FRAX-USDC) |
0 Eth
Nonce: 0
|
0 Eth
Nonce: 1
| ||
0xF20b3387...902360704
Miner
| (F2Pool) | 965.368873985341956923 Eth | 965.597773381341956923 Eth | 0.228899396 |
Execution Trace
NonfungiblePositionManager.multicall( data=[E+rVYgAAAAAAAAAAAAAAAIU9lVrO+CLbBY64UFkR7XfxdbmeAAAAAAAAAAAAAAAAoLhpkcYhizbB0Z1KLp6wzjYG60gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQxsIcFaSTa35k, iDFkVgAAAAAAAAAAAAAAAIU9lVrO+CLbBY64UFkR7XfxdbmeAAAAAAAAAAAAAAAAoLhpkcYhizbB0Z1KLp6wzjYG60gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9P//////////////////////////////////////+8X4///////////////////////////////////////7y94AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArXjrxRId2Y+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJrJLaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKya4FnYbQ+DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaAw1gAAAAAAAAAAAAAAALhYKEd9CYQudd4+aGaJEQUl6tJ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCTpCY=] ) => ( results=[AAAAAAAAAAAAAAAAxjsHCOL35py4od8OE4mpjDWnbVI=, AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWBxxeu15wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACteOvFEh3Pk+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmskto=] )

NonfungiblePositionManager.createAndInitializePoolIfNecessary( token0=0x853d955aCEf822Db058eb8505911ED77F175b99e, token1=0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, fee=500, sqrtPriceX96=79224306130848112672356 ) => ( pool=0xc63B0708E2F7e69CB8A1df0e1389A98C35A76D52 )
-
UniswapV3Factory.getPool( 0x853d955aCEf822Db058eb8505911ED77F175b99e, 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, 500 ) => ( 0x0000000000000000000000000000000000000000 )
UniswapV3Factory.createPool( tokenA=0x853d955aCEf822Db058eb8505911ED77F175b99e, tokenB=0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, fee=500 ) => ( pool=0xc63B0708E2F7e69CB8A1df0e1389A98C35A76D52 )
UniswapV3Pool.61016060( )
-
UniswapV3Factory.STATICCALL( )
-
-
UniswapV3Pool.initialize( sqrtPriceX96=79224306130848112672356 )
-
NonfungiblePositionManager.mint( params=[{name:token0, type:address, order:1, indexed:false, value:0x853d955aCEf822Db058eb8505911ED77F175b99e, valueString:0x853d955aCEf822Db058eb8505911ED77F175b99e}, {name:token1, type:address, order:2, indexed:false, value:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, valueString:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48}, {name:fee, type:uint24, order:3, indexed:false, value:500, valueString:500}, {name:tickLower, type:int24, order:4, indexed:false, value:-277000, valueString:-277000}, {name:tickUpper, type:int24, order:5, indexed:false, value:-275490, valueString:-275490}, {name:amount0Desired, type:uint256, order:6, indexed:false, value:199999999958589479160, valueString:199999999958589479160}, {name:amount1Desired, type:uint256, order:7, indexed:false, value:162304730, valueString:162304730}, {name:amount0Min, type:uint256, order:8, indexed:false, value:198999999958796531764, valueString:198999999958796531764}, {name:amount1Min, type:uint256, order:9, indexed:false, value:161493206, valueString:161493206}, {name:recipient, type:address, order:10, indexed:false, value:0xb85828477D09842e75De3e686689110525EAd27a, valueString:0xb85828477D09842e75De3e686689110525EAd27a}, {name:deadline, type:uint256, order:11, indexed:false, value:1620288550, valueString:1620288550}] ) => ( tokenId=3409, liquidity=4891116372211175, amount0=199999999958589438270, amount1=162304730 )
-
UniswapV3Pool.STATICCALL( )
UniswapV3Pool.mint( recipient=0xC36442b4a4522E871399CD717aBDD847Ab11FE88, tickLower=-277000, tickUpper=-275490, amount=4891116372211175, data=0x000000000000000000000000853D955ACEF822DB058EB8505911ED77F175B99E000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB4800000000000000000000000000000000000000000000000000000000000001F4000000000000000000000000B85828477D09842E75DE3E686689110525EAD27A ) => ( amount0=199999999958589438270, amount1=162304730 )
-
FRAXStablecoin.balanceOf( account=0xc63B0708E2F7e69CB8A1df0e1389A98C35A76D52 ) => ( 0 )
FiatTokenProxy.70a08231( )
-
FiatTokenV2_1.balanceOf( account=0xc63B0708E2F7e69CB8A1df0e1389A98C35A76D52 ) => ( 0 )
-
NonfungiblePositionManager.uniswapV3MintCallback( amount0Owed=199999999958589438270, amount1Owed=162304730, data=0x000000000000000000000000853D955ACEF822DB058EB8505911ED77F175B99E000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB4800000000000000000000000000000000000000000000000000000000000001F4000000000000000000000000B85828477D09842E75DE3E686689110525EAD27A )
-
FRAXStablecoin.transferFrom( sender=0xb85828477D09842e75De3e686689110525EAd27a, recipient=0xc63B0708E2F7e69CB8A1df0e1389A98C35A76D52, amount=199999999958589438270 ) => ( True )
FiatTokenProxy.23b872dd( )
-
FiatTokenV2_1.transferFrom( from=0xb85828477D09842e75De3e686689110525EAd27a, to=0xc63B0708E2F7e69CB8A1df0e1389A98C35A76D52, value=162304730 ) => ( True )
-
-
-
FRAXStablecoin.balanceOf( account=0xc63B0708E2F7e69CB8A1df0e1389A98C35A76D52 ) => ( 199999999958589438270 )
FiatTokenProxy.70a08231( )
-
FiatTokenV2_1.balanceOf( account=0xc63B0708E2F7e69CB8A1df0e1389A98C35A76D52 ) => ( 162304730 )
-
-
-
UniswapV3Pool.positions( 693DBB2331B33BC1407E22FCFF39261A86F9E41E6FA9647AC125241451D20AE3 ) => ( liquidity=4891116372211175, feeGrowthInside0LastX128=0, feeGrowthInside1LastX128=0, tokensOwed0=0, tokensOwed1=0 )
-
multicall[Multicall (ln:832)]
delegatecall[Multicall (ln:835)]
revert[Multicall (ln:838)]
revert[Multicall (ln:842)]
decode[Multicall (ln:842)]
File 1 of 6: NonfungiblePositionManager
File 2 of 6: UniswapV3Factory
File 3 of 6: UniswapV3Pool
File 4 of 6: FRAXStablecoin
File 5 of 6: FiatTokenProxy
File 6 of 6: FiatTokenV2_1
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity =0.7.6; pragma abicoder v2; import '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol'; import '@uniswap/v3-core/contracts/libraries/FixedPoint128.sol'; import '@uniswap/v3-core/contracts/libraries/FullMath.sol'; import './interfaces/INonfungiblePositionManager.sol'; import './interfaces/INonfungibleTokenPositionDescriptor.sol'; import './libraries/PositionKey.sol'; import './libraries/PoolAddress.sol'; import './base/LiquidityManagement.sol'; import './base/PeripheryImmutableState.sol'; import './base/Multicall.sol'; import './base/ERC721Permit.sol'; import './base/PeripheryValidation.sol'; import './base/SelfPermit.sol'; import './base/PoolInitializer.sol'; /// @title NFT positions /// @notice Wraps Uniswap V3 positions in the ERC721 non-fungible token interface contract NonfungiblePositionManager is INonfungiblePositionManager, Multicall, ERC721Permit, PeripheryImmutableState, PoolInitializer, LiquidityManagement, PeripheryValidation, SelfPermit { // details about the uniswap position struct Position { // the nonce for permits uint96 nonce; // the address that is approved for spending this token address operator; // the ID of the pool with which this token is connected uint80 poolId; // the tick range of the position int24 tickLower; int24 tickUpper; // the liquidity of the position uint128 liquidity; // the fee growth of the aggregate position as of the last action on the individual position uint256 feeGrowthInside0LastX128; uint256 feeGrowthInside1LastX128; // how many uncollected tokens are owed to the position, as of the last computation uint128 tokensOwed0; uint128 tokensOwed1; } /// @dev IDs of pools assigned by this contract mapping(address => uint80) private _poolIds; /// @dev Pool keys by pool ID, to save on SSTOREs for position data mapping(uint80 => PoolAddress.PoolKey) private _poolIdToPoolKey; /// @dev The token ID position data mapping(uint256 => Position) private _positions; /// @dev The ID of the next token that will be minted. Skips 0 uint176 private _nextId = 1; /// @dev The ID of the next pool that is used for the first time. Skips 0 uint80 private _nextPoolId = 1; /// @dev The address of the token descriptor contract, which handles generating token URIs for position tokens address private immutable _tokenDescriptor; constructor( address _factory, address _WETH9, address _tokenDescriptor_ ) ERC721Permit('Uniswap V3 Positions NFT-V1', 'UNI-V3-POS', '1') PeripheryImmutableState(_factory, _WETH9) { _tokenDescriptor = _tokenDescriptor_; } /// @inheritdoc INonfungiblePositionManager function positions(uint256 tokenId) external view override returns ( uint96 nonce, address operator, address token0, address token1, uint24 fee, int24 tickLower, int24 tickUpper, uint128 liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ) { Position memory position = _positions[tokenId]; require(position.poolId != 0, 'Invalid token ID'); PoolAddress.PoolKey memory poolKey = _poolIdToPoolKey[position.poolId]; return ( position.nonce, position.operator, poolKey.token0, poolKey.token1, poolKey.fee, position.tickLower, position.tickUpper, position.liquidity, position.feeGrowthInside0LastX128, position.feeGrowthInside1LastX128, position.tokensOwed0, position.tokensOwed1 ); } /// @dev Caches a pool key function cachePoolKey(address pool, PoolAddress.PoolKey memory poolKey) private returns (uint80 poolId) { poolId = _poolIds[pool]; if (poolId == 0) { _poolIds[pool] = (poolId = _nextPoolId++); _poolIdToPoolKey[poolId] = poolKey; } } /// @inheritdoc INonfungiblePositionManager function mint(MintParams calldata params) external payable override checkDeadline(params.deadline) returns ( uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1 ) { IUniswapV3Pool pool; (liquidity, amount0, amount1, pool) = addLiquidity( AddLiquidityParams({ token0: params.token0, token1: params.token1, fee: params.fee, recipient: address(this), tickLower: params.tickLower, tickUpper: params.tickUpper, amount0Desired: params.amount0Desired, amount1Desired: params.amount1Desired, amount0Min: params.amount0Min, amount1Min: params.amount1Min }) ); _mint(params.recipient, (tokenId = _nextId++)); bytes32 positionKey = PositionKey.compute(address(this), params.tickLower, params.tickUpper); (, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, , ) = pool.positions(positionKey); // idempotent set uint80 poolId = cachePoolKey( address(pool), PoolAddress.PoolKey({token0: params.token0, token1: params.token1, fee: params.fee}) ); _positions[tokenId] = Position({ nonce: 0, operator: address(0), poolId: poolId, tickLower: params.tickLower, tickUpper: params.tickUpper, liquidity: liquidity, feeGrowthInside0LastX128: feeGrowthInside0LastX128, feeGrowthInside1LastX128: feeGrowthInside1LastX128, tokensOwed0: 0, tokensOwed1: 0 }); emit IncreaseLiquidity(tokenId, liquidity, amount0, amount1); } modifier isAuthorizedForToken(uint256 tokenId) { require(_isApprovedOrOwner(msg.sender, tokenId), 'Not approved'); _; } function tokenURI(uint256 tokenId) public view override(ERC721, IERC721Metadata) returns (string memory) { require(_exists(tokenId)); return INonfungibleTokenPositionDescriptor(_tokenDescriptor).tokenURI(this, tokenId); } // save bytecode by removing implementation of unused method function baseURI() public pure override returns (string memory) {} /// @inheritdoc INonfungiblePositionManager function increaseLiquidity(IncreaseLiquidityParams calldata params) external payable override checkDeadline(params.deadline) returns ( uint128 liquidity, uint256 amount0, uint256 amount1 ) { Position storage position = _positions[params.tokenId]; PoolAddress.PoolKey memory poolKey = _poolIdToPoolKey[position.poolId]; IUniswapV3Pool pool; (liquidity, amount0, amount1, pool) = addLiquidity( AddLiquidityParams({ token0: poolKey.token0, token1: poolKey.token1, fee: poolKey.fee, tickLower: position.tickLower, tickUpper: position.tickUpper, amount0Desired: params.amount0Desired, amount1Desired: params.amount1Desired, amount0Min: params.amount0Min, amount1Min: params.amount1Min, recipient: address(this) }) ); bytes32 positionKey = PositionKey.compute(address(this), position.tickLower, position.tickUpper); // this is now updated to the current transaction (, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, , ) = pool.positions(positionKey); position.tokensOwed0 += uint128( FullMath.mulDiv( feeGrowthInside0LastX128 - position.feeGrowthInside0LastX128, position.liquidity, FixedPoint128.Q128 ) ); position.tokensOwed1 += uint128( FullMath.mulDiv( feeGrowthInside1LastX128 - position.feeGrowthInside1LastX128, position.liquidity, FixedPoint128.Q128 ) ); position.feeGrowthInside0LastX128 = feeGrowthInside0LastX128; position.feeGrowthInside1LastX128 = feeGrowthInside1LastX128; position.liquidity += liquidity; emit IncreaseLiquidity(params.tokenId, liquidity, amount0, amount1); } /// @inheritdoc INonfungiblePositionManager function decreaseLiquidity(DecreaseLiquidityParams calldata params) external payable override isAuthorizedForToken(params.tokenId) checkDeadline(params.deadline) returns (uint256 amount0, uint256 amount1) { require(params.liquidity > 0); Position storage position = _positions[params.tokenId]; uint128 positionLiquidity = position.liquidity; require(positionLiquidity >= params.liquidity); PoolAddress.PoolKey memory poolKey = _poolIdToPoolKey[position.poolId]; IUniswapV3Pool pool = IUniswapV3Pool(PoolAddress.computeAddress(factory, poolKey)); (amount0, amount1) = pool.burn(position.tickLower, position.tickUpper, params.liquidity); require(amount0 >= params.amount0Min && amount1 >= params.amount1Min, 'Price slippage check'); bytes32 positionKey = PositionKey.compute(address(this), position.tickLower, position.tickUpper); // this is now updated to the current transaction (, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, , ) = pool.positions(positionKey); position.tokensOwed0 += uint128(amount0) + uint128( FullMath.mulDiv( feeGrowthInside0LastX128 - position.feeGrowthInside0LastX128, positionLiquidity, FixedPoint128.Q128 ) ); position.tokensOwed1 += uint128(amount1) + uint128( FullMath.mulDiv( feeGrowthInside1LastX128 - position.feeGrowthInside1LastX128, positionLiquidity, FixedPoint128.Q128 ) ); position.feeGrowthInside0LastX128 = feeGrowthInside0LastX128; position.feeGrowthInside1LastX128 = feeGrowthInside1LastX128; // subtraction is safe because we checked positionLiquidity is gte params.liquidity position.liquidity = positionLiquidity - params.liquidity; emit DecreaseLiquidity(params.tokenId, params.liquidity, amount0, amount1); } /// @inheritdoc INonfungiblePositionManager function collect(CollectParams calldata params) external payable override isAuthorizedForToken(params.tokenId) returns (uint256 amount0, uint256 amount1) { require(params.amount0Max > 0 || params.amount1Max > 0); // allow collecting to the nft position manager address with address 0 address recipient = params.recipient == address(0) ? address(this) : params.recipient; Position storage position = _positions[params.tokenId]; PoolAddress.PoolKey memory poolKey = _poolIdToPoolKey[position.poolId]; IUniswapV3Pool pool = IUniswapV3Pool(PoolAddress.computeAddress(factory, poolKey)); (uint128 tokensOwed0, uint128 tokensOwed1) = (position.tokensOwed0, position.tokensOwed1); // trigger an update of the position fees owed and fee growth snapshots if it has any liquidity if (position.liquidity > 0) { pool.burn(position.tickLower, position.tickUpper, 0); (, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, , ) = pool.positions(PositionKey.compute(address(this), position.tickLower, position.tickUpper)); tokensOwed0 += uint128( FullMath.mulDiv( feeGrowthInside0LastX128 - position.feeGrowthInside0LastX128, position.liquidity, FixedPoint128.Q128 ) ); tokensOwed1 += uint128( FullMath.mulDiv( feeGrowthInside1LastX128 - position.feeGrowthInside1LastX128, position.liquidity, FixedPoint128.Q128 ) ); position.feeGrowthInside0LastX128 = feeGrowthInside0LastX128; position.feeGrowthInside1LastX128 = feeGrowthInside1LastX128; } // compute the arguments to give to the pool#collect method (uint128 amount0Collect, uint128 amount1Collect) = ( params.amount0Max > tokensOwed0 ? tokensOwed0 : params.amount0Max, params.amount1Max > tokensOwed1 ? tokensOwed1 : params.amount1Max ); // the actual amounts collected are returned (amount0, amount1) = pool.collect( recipient, position.tickLower, position.tickUpper, amount0Collect, amount1Collect ); // sometimes there will be a few less wei than expected due to rounding down in core, but we just subtract the full amount expected // instead of the actual amount so we can burn the token (position.tokensOwed0, position.tokensOwed1) = (tokensOwed0 - amount0Collect, tokensOwed1 - amount1Collect); emit Collect(params.tokenId, recipient, amount0Collect, amount1Collect); } /// @inheritdoc INonfungiblePositionManager function burn(uint256 tokenId) external payable override isAuthorizedForToken(tokenId) { Position storage position = _positions[tokenId]; require(position.liquidity == 0 && position.tokensOwed0 == 0 && position.tokensOwed1 == 0, 'Not cleared'); delete _positions[tokenId]; _burn(tokenId); } function _getAndIncrementNonce(uint256 tokenId) internal override returns (uint256) { return uint256(_positions[tokenId].nonce++); } /// @inheritdoc IERC721 function getApproved(uint256 tokenId) public view override(ERC721, IERC721) returns (address) { require(_exists(tokenId), 'ERC721: approved query for nonexistent token'); return _positions[tokenId].operator; } /// @dev Overrides _approve to use the operator in the position, which is packed with the position permit nonce function _approve(address to, uint256 tokenId) internal override(ERC721) { _positions[tokenId].operator = to; emit Approval(ownerOf(tokenId), to, tokenId); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './pool/IUniswapV3PoolImmutables.sol'; import './pool/IUniswapV3PoolState.sol'; import './pool/IUniswapV3PoolDerivedState.sol'; import './pool/IUniswapV3PoolActions.sol'; import './pool/IUniswapV3PoolOwnerActions.sol'; import './pool/IUniswapV3PoolEvents.sol'; /// @title The interface for a Uniswap V3 Pool /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform /// to the ERC20 specification /// @dev The pool interface is broken up into many smaller pieces interface IUniswapV3Pool is IUniswapV3PoolImmutables, IUniswapV3PoolState, IUniswapV3PoolDerivedState, IUniswapV3PoolActions, IUniswapV3PoolOwnerActions, IUniswapV3PoolEvents { } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint128 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) library FixedPoint128 { uint256 internal constant Q128 = 0x100000000000000000000000000000000; } // SPDX-License-Identifier: MIT pragma solidity >=0.4.0; /// @title Contains 512-bit math functions /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits library FullMath { /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv function mulDiv( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = a * b // Compute the product mod 2**256 and mod 2**256 - 1 // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0 uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(a, b, not(0)) prod0 := mul(a, b) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division if (prod1 == 0) { require(denominator > 0); assembly { result := div(prod0, denominator) } return result; } // Make sure the result is less than 2**256. // Also prevents denominator == 0 require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0] // Compute remainder using mulmod uint256 remainder; assembly { remainder := mulmod(a, b, denominator) } // Subtract 256 bit number from 512 bit number assembly { prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator // Compute largest power of two divisor of denominator. // Always >= 1. uint256 twos = -denominator & denominator; // Divide denominator by power of two assembly { denominator := div(denominator, twos) } // Divide [prod1 prod0] by the factors of two assembly { prod0 := div(prod0, twos) } // Shift in bits from prod1 into prod0. For this we need // to flip `twos` such that it is 2**256 / twos. // If twos is zero, then it becomes one assembly { twos := add(div(sub(0, twos), twos), 1) } prod0 |= prod1 * twos; // Invert denominator mod 2**256 // Now that denominator is an odd number, it has an inverse // modulo 2**256 such that denominator * inv = 1 mod 2**256. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, denominator * inv = 1 mod 2**4 uint256 inv = (3 * denominator) ^ 2; // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv *= 2 - denominator * inv; // inverse mod 2**8 inv *= 2 - denominator * inv; // inverse mod 2**16 inv *= 2 - denominator * inv; // inverse mod 2**32 inv *= 2 - denominator * inv; // inverse mod 2**64 inv *= 2 - denominator * inv; // inverse mod 2**128 inv *= 2 - denominator * inv; // inverse mod 2**256 // Because the division is now exact we can divide by multiplying // with the modular inverse of denominator. This will give us the // correct result modulo 2**256. Since the precoditions guarantee // that the outcome is less than 2**256, this is the final result. // We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inv; return result; } /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result function mulDivRoundingUp( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { result = mulDiv(a, b, denominator); if (mulmod(a, b, denominator) > 0) { require(result < type(uint256).max); result++; } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; import '@openzeppelin/contracts/token/ERC721/IERC721Metadata.sol'; import '@openzeppelin/contracts/token/ERC721/IERC721Enumerable.sol'; import './IPoolInitializer.sol'; import './IERC721Permit.sol'; import './IPeripheryPayments.sol'; import './IPeripheryImmutableState.sol'; import '../libraries/PoolAddress.sol'; /// @title Non-fungible token for positions /// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred /// and authorized. interface INonfungiblePositionManager is IPoolInitializer, IPeripheryPayments, IPeripheryImmutableState, IERC721Metadata, IERC721Enumerable, IERC721Permit { /// @notice Emitted when liquidity is increased for a position NFT /// @dev Also emitted when a token is minted /// @param tokenId The ID of the token for which liquidity was increased /// @param liquidity The amount by which liquidity for the NFT position was increased /// @param amount0 The amount of token0 that was paid for the increase in liquidity /// @param amount1 The amount of token1 that was paid for the increase in liquidity event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); /// @notice Emitted when liquidity is decreased for a position NFT /// @param tokenId The ID of the token for which liquidity was decreased /// @param liquidity The amount by which liquidity for the NFT position was decreased /// @param amount0 The amount of token0 that was accounted for the decrease in liquidity /// @param amount1 The amount of token1 that was accounted for the decrease in liquidity event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); /// @notice Emitted when tokens are collected for a position NFT /// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior /// @param tokenId The ID of the token for which underlying tokens were collected /// @param recipient The address of the account that received the collected tokens /// @param amount0 The amount of token0 owed to the position that was collected /// @param amount1 The amount of token1 owed to the position that was collected event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1); /// @notice Returns the position information associated with a given token ID. /// @dev Throws if the token ID is not valid. /// @param tokenId The ID of the token that represents the position /// @return nonce The nonce for permits /// @return operator The address that is approved for spending /// @return token0 The address of the token0 for a specific pool /// @return token1 The address of the token1 for a specific pool /// @return fee The fee associated with the pool /// @return tickLower The lower end of the tick range for the position /// @return tickUpper The higher end of the tick range for the position /// @return liquidity The liquidity of the position /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation function positions(uint256 tokenId) external view returns ( uint96 nonce, address operator, address token0, address token1, uint24 fee, int24 tickLower, int24 tickUpper, uint128 liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); struct MintParams { address token0; address token1; uint24 fee; int24 tickLower; int24 tickUpper; uint256 amount0Desired; uint256 amount1Desired; uint256 amount0Min; uint256 amount1Min; address recipient; uint256 deadline; } /// @notice Creates a new position wrapped in a NFT /// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized /// a method does not exist, i.e. the pool is assumed to be initialized. /// @param params The params necessary to mint a position, encoded as `MintParams` in calldata /// @return tokenId The ID of the token that represents the minted position /// @return liquidity The amount of liquidity for this position /// @return amount0 The amount of token0 /// @return amount1 The amount of token1 function mint(MintParams calldata params) external payable returns ( uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1 ); struct IncreaseLiquidityParams { uint256 tokenId; uint256 amount0Desired; uint256 amount1Desired; uint256 amount0Min; uint256 amount1Min; uint256 deadline; } /// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender` /// @param params tokenId The ID of the token for which liquidity is being increased, /// amount0Desired The desired amount of token0 to be spent, /// amount1Desired The desired amount of token1 to be spent, /// amount0Min The minimum amount of token0 to spend, which serves as a slippage check, /// amount1Min The minimum amount of token1 to spend, which serves as a slippage check, /// deadline The time by which the transaction must be included to effect the change /// @return liquidity The new liquidity amount as a result of the increase /// @return amount0 The amount of token0 to acheive resulting liquidity /// @return amount1 The amount of token1 to acheive resulting liquidity function increaseLiquidity(IncreaseLiquidityParams calldata params) external payable returns ( uint128 liquidity, uint256 amount0, uint256 amount1 ); struct DecreaseLiquidityParams { uint256 tokenId; uint128 liquidity; uint256 amount0Min; uint256 amount1Min; uint256 deadline; } /// @notice Decreases the amount of liquidity in a position and accounts it to the position /// @param params tokenId The ID of the token for which liquidity is being decreased, /// amount The amount by which liquidity will be decreased, /// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity, /// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity, /// deadline The time by which the transaction must be included to effect the change /// @return amount0 The amount of token0 accounted to the position's tokens owed /// @return amount1 The amount of token1 accounted to the position's tokens owed function decreaseLiquidity(DecreaseLiquidityParams calldata params) external payable returns (uint256 amount0, uint256 amount1); struct CollectParams { uint256 tokenId; address recipient; uint128 amount0Max; uint128 amount1Max; } /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient /// @param params tokenId The ID of the NFT for which tokens are being collected, /// recipient The account that should receive the tokens, /// amount0Max The maximum amount of token0 to collect, /// amount1Max The maximum amount of token1 to collect /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1); /// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens /// must be collected first. /// @param tokenId The ID of the token that is being burned function burn(uint256 tokenId) external payable; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './INonfungiblePositionManager.sol'; /// @title Describes position NFT tokens via URI interface INonfungibleTokenPositionDescriptor { /// @notice Emitted when a token is given a new priority order in the displayed price ratio /// @param token The token being given priority order /// @param priority Represents priority in ratio - higher integers get numerator priority event UpdateTokenRatioPriority(address token, int256 priority); /// @notice Produces the URI describing a particular token ID for a position manager /// @dev Note this URI may be a data: URI with the JSON contents directly inlined /// @param positionManager The position manager for which to describe the token /// @param tokenId The ID of the token for which to produce a description, which may not be valid /// @return The URI of the ERC721-compliant metadata function tokenURI(INonfungiblePositionManager positionManager, uint256 tokenId) external view returns (string memory); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; library PositionKey { /// @dev Returns the key of the position in the core library function compute( address owner, int24 tickLower, int24 tickUpper ) internal pure returns (bytes32) { return keccak256(abi.encodePacked(owner, tickLower, tickUpper)); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Provides functions for deriving a pool address from the factory, tokens, and the fee library PoolAddress { bytes32 internal constant POOL_INIT_CODE_HASH = 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54; /// @notice The identifying key of the pool struct PoolKey { address token0; address token1; uint24 fee; } /// @notice Returns PoolKey: the ordered tokens with the matched fee levels /// @param tokenA The first token of a pool, unsorted /// @param tokenB The second token of a pool, unsorted /// @param fee The fee level of the pool /// @return Poolkey The pool details with ordered token0 and token1 assignments function getPoolKey( address tokenA, address tokenB, uint24 fee ) internal pure returns (PoolKey memory) { if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA); return PoolKey({token0: tokenA, token1: tokenB, fee: fee}); } /// @notice Deterministically computes the pool address given the factory and PoolKey /// @param factory The Uniswap V3 factory contract address /// @param key The PoolKey /// @return pool The contract address of the V3 pool function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) { require(key.token0 < key.token1); pool = address( uint256( keccak256( abi.encodePacked( hex'ff', factory, keccak256(abi.encode(key.token0, key.token1, key.fee)), POOL_INIT_CODE_HASH ) ) ) ); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity =0.7.6; pragma abicoder v2; import '@uniswap/v3-core/contracts/interfaces/IUniswapV3Factory.sol'; import '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3MintCallback.sol'; import '@uniswap/v3-core/contracts/libraries/TickMath.sol'; import '../libraries/PoolAddress.sol'; import '../libraries/CallbackValidation.sol'; import '../libraries/LiquidityAmounts.sol'; import './PeripheryPayments.sol'; import './PeripheryImmutableState.sol'; /// @title Liquidity management functions /// @notice Internal functions for safely managing liquidity in Uniswap V3 abstract contract LiquidityManagement is IUniswapV3MintCallback, PeripheryImmutableState, PeripheryPayments { struct MintCallbackData { PoolAddress.PoolKey poolKey; address payer; } /// @inheritdoc IUniswapV3MintCallback function uniswapV3MintCallback( uint256 amount0Owed, uint256 amount1Owed, bytes calldata data ) external override { MintCallbackData memory decoded = abi.decode(data, (MintCallbackData)); CallbackValidation.verifyCallback(factory, decoded.poolKey); if (amount0Owed > 0) pay(decoded.poolKey.token0, decoded.payer, msg.sender, amount0Owed); if (amount1Owed > 0) pay(decoded.poolKey.token1, decoded.payer, msg.sender, amount1Owed); } struct AddLiquidityParams { address token0; address token1; uint24 fee; address recipient; int24 tickLower; int24 tickUpper; uint256 amount0Desired; uint256 amount1Desired; uint256 amount0Min; uint256 amount1Min; } /// @notice Add liquidity to an initialized pool function addLiquidity(AddLiquidityParams memory params) internal returns ( uint128 liquidity, uint256 amount0, uint256 amount1, IUniswapV3Pool pool ) { PoolAddress.PoolKey memory poolKey = PoolAddress.PoolKey({token0: params.token0, token1: params.token1, fee: params.fee}); pool = IUniswapV3Pool(PoolAddress.computeAddress(factory, poolKey)); // compute the liquidity amount { (uint160 sqrtPriceX96, , , , , , ) = pool.slot0(); uint160 sqrtRatioAX96 = TickMath.getSqrtRatioAtTick(params.tickLower); uint160 sqrtRatioBX96 = TickMath.getSqrtRatioAtTick(params.tickUpper); liquidity = LiquidityAmounts.getLiquidityForAmounts( sqrtPriceX96, sqrtRatioAX96, sqrtRatioBX96, params.amount0Desired, params.amount1Desired ); } (amount0, amount1) = pool.mint( params.recipient, params.tickLower, params.tickUpper, liquidity, abi.encode(MintCallbackData({poolKey: poolKey, payer: msg.sender})) ); require(amount0 >= params.amount0Min && amount1 >= params.amount1Min, 'Price slippage check'); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity =0.7.6; import '../interfaces/IPeripheryImmutableState.sol'; /// @title Immutable state /// @notice Immutable state used by periphery contracts abstract contract PeripheryImmutableState is IPeripheryImmutableState { /// @inheritdoc IPeripheryImmutableState address public immutable override factory; /// @inheritdoc IPeripheryImmutableState address public immutable override WETH9; constructor(address _factory, address _WETH9) { factory = _factory; WETH9 = _WETH9; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity =0.7.6; pragma abicoder v2; import '../interfaces/IMulticall.sol'; /// @title Multicall /// @notice Enables calling multiple methods in a single call to the contract abstract contract Multicall is IMulticall { /// @inheritdoc IMulticall function multicall(bytes[] calldata data) external payable override returns (bytes[] memory results) { results = new bytes[](data.length); for (uint256 i = 0; i < data.length; i++) { (bool success, bytes memory result) = address(this).delegatecall(data[i]); if (!success) { // Next 5 lines from https://ethereum.stackexchange.com/a/83577 if (result.length < 68) revert(); assembly { result := add(result, 0x04) } revert(abi.decode(result, (string))); } results[i] = result; } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity =0.7.6; import '@openzeppelin/contracts/token/ERC721/ERC721.sol'; import '@openzeppelin/contracts/utils/Address.sol'; import '../libraries/ChainId.sol'; import '../interfaces/external/IERC1271.sol'; import '../interfaces/IERC721Permit.sol'; import './BlockTimestamp.sol'; /// @title ERC721 with permit /// @notice Nonfungible tokens that support an approve via signature, i.e. permit abstract contract ERC721Permit is BlockTimestamp, ERC721, IERC721Permit { /// @dev Gets the current nonce for a token ID and then increments it, returning the original value function _getAndIncrementNonce(uint256 tokenId) internal virtual returns (uint256); /// @dev The hash of the name used in the permit signature verification bytes32 private immutable nameHash; /// @dev The hash of the version string used in the permit signature verification bytes32 private immutable versionHash; /// @notice Computes the nameHash and versionHash constructor( string memory name_, string memory symbol_, string memory version_ ) ERC721(name_, symbol_) { nameHash = keccak256(bytes(name_)); versionHash = keccak256(bytes(version_)); } /// @inheritdoc IERC721Permit function DOMAIN_SEPARATOR() public view override returns (bytes32) { return keccak256( abi.encode( // keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)') 0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f, nameHash, versionHash, ChainId.get(), address(this) ) ); } /// @inheritdoc IERC721Permit /// @dev Value is equal to keccak256("Permit(address spender,uint256 tokenId,uint256 nonce,uint256 deadline)"); bytes32 public constant override PERMIT_TYPEHASH = 0x49ecf333e5b8c95c40fdafc95c1ad136e8914a8fb55e9dc8bb01eaa83a2df9ad; /// @inheritdoc IERC721Permit function permit( address spender, uint256 tokenId, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external payable override { require(_blockTimestamp() <= deadline, 'Permit expired'); bytes32 digest = keccak256( abi.encodePacked( '\\x19\\x01', DOMAIN_SEPARATOR(), keccak256(abi.encode(PERMIT_TYPEHASH, spender, tokenId, _getAndIncrementNonce(tokenId), deadline)) ) ); address owner = ownerOf(tokenId); require(spender != owner, 'ERC721Permit: approval to current owner'); if (Address.isContract(owner)) { require(IERC1271(owner).isValidSignature(digest, abi.encodePacked(r, s, v)) == 0x1626ba7e, 'Unauthorized'); } else { address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0), 'Invalid signature'); require(recoveredAddress == owner, 'Unauthorized'); } _approve(spender, tokenId); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity =0.7.6; import './BlockTimestamp.sol'; abstract contract PeripheryValidation is BlockTimestamp { modifier checkDeadline(uint256 deadline) { require(_blockTimestamp() <= deadline, 'Transaction too old'); _; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; import '@openzeppelin/contracts/drafts/IERC20Permit.sol'; import '../interfaces/ISelfPermit.sol'; import '../interfaces/external/IERC20PermitAllowed.sol'; /// @title Self Permit /// @notice Functionality to call permit on any EIP-2612-compliant token for use in the route /// @dev These functions are expected to be embedded in multicalls to allow EOAs to approve a contract and call a function /// that requires an approval in a single transaction. abstract contract SelfPermit is ISelfPermit { /// @inheritdoc ISelfPermit function selfPermit( address token, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public payable override { IERC20Permit(token).permit(msg.sender, address(this), value, deadline, v, r, s); } /// @inheritdoc ISelfPermit function selfPermitIfNecessary( address token, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external payable override { if (IERC20(token).allowance(msg.sender, address(this)) < value) selfPermit(token, value, deadline, v, r, s); } /// @inheritdoc ISelfPermit function selfPermitAllowed( address token, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) public payable override { IERC20PermitAllowed(token).permit(msg.sender, address(this), nonce, expiry, true, v, r, s); } /// @inheritdoc ISelfPermit function selfPermitAllowedIfNecessary( address token, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) external payable override { if (IERC20(token).allowance(msg.sender, address(this)) < type(uint256).max) selfPermitAllowed(token, nonce, expiry, v, r, s); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity =0.7.6; import '@uniswap/v3-core/contracts/interfaces/IUniswapV3Factory.sol'; import '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol'; import './PeripheryImmutableState.sol'; import '../interfaces/IPoolInitializer.sol'; /// @title Creates and initializes V3 Pools abstract contract PoolInitializer is IPoolInitializer, PeripheryImmutableState { /// @inheritdoc IPoolInitializer function createAndInitializePoolIfNecessary( address token0, address token1, uint24 fee, uint160 sqrtPriceX96 ) external payable override returns (address pool) { require(token0 < token1); pool = IUniswapV3Factory(factory).getPool(token0, token1, fee); if (pool == address(0)) { pool = IUniswapV3Factory(factory).createPool(token0, token1, fee); IUniswapV3Pool(pool).initialize(sqrtPriceX96); } else { (uint160 sqrtPriceX96Existing, , , , , , ) = IUniswapV3Pool(pool).slot0(); if (sqrtPriceX96Existing == 0) { IUniswapV3Pool(pool).initialize(sqrtPriceX96); } } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that never changes /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values interface IUniswapV3PoolImmutables { /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface /// @return The contract address function factory() external view returns (address); /// @notice The first of the two tokens of the pool, sorted by address /// @return The token contract address function token0() external view returns (address); /// @notice The second of the two tokens of the pool, sorted by address /// @return The token contract address function token1() external view returns (address); /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6 /// @return The fee function fee() external view returns (uint24); /// @notice The pool tick spacing /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ... /// This value is an int24 to avoid casting even though it is always positive. /// @return The tick spacing function tickSpacing() external view returns (int24); /// @notice The maximum amount of position liquidity that can use any tick in the range /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool /// @return The max amount of liquidity per tick function maxLiquidityPerTick() external view returns (uint128); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that can change /// @notice These methods compose the pool's state, and can change with any frequency including multiple times /// per transaction interface IUniswapV3PoolState { /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas /// when accessed externally. /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value /// tick The current tick of the pool, i.e. according to the last tick transition that was run. /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick /// boundary. /// observationIndex The index of the last oracle observation that was written, /// observationCardinality The current maximum number of observations stored in the pool, /// observationCardinalityNext The next maximum number of observations, to be updated when the observation. /// feeProtocol The protocol fee for both tokens of the pool. /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0 /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee. /// unlocked Whether the pool is currently locked to reentrancy function slot0() external view returns ( uint160 sqrtPriceX96, int24 tick, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext, uint8 feeProtocol, bool unlocked ); /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal0X128() external view returns (uint256); /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal1X128() external view returns (uint256); /// @notice The amounts of token0 and token1 that are owed to the protocol /// @dev Protocol fees will never exceed uint128 max in either token function protocolFees() external view returns (uint128 token0, uint128 token1); /// @notice The currently in range liquidity available to the pool /// @dev This value has no relationship to the total liquidity across all ticks function liquidity() external view returns (uint128); /// @notice Look up information about a specific tick in the pool /// @param tick The tick to look up /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or /// tick upper, /// liquidityNet how much liquidity changes when the pool price crosses the tick, /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0, /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1, /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick, /// secondsOutside the seconds spent on the other side of the tick from the current tick, /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false. /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0. /// In addition, these values are only relative and must be used only in comparison to previous snapshots for /// a specific position. function ticks(int24 tick) external view returns ( uint128 liquidityGross, int128 liquidityNet, uint256 feeGrowthOutside0X128, uint256 feeGrowthOutside1X128, int56 tickCumulativeOutside, uint160 secondsPerLiquidityOutsideX128, uint32 secondsOutside, bool initialized ); /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information function tickBitmap(int16 wordPosition) external view returns (uint256); /// @notice Returns the information about a position by the position's key /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper /// @return _liquidity The amount of liquidity in the position, /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke, /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke, /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke, /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke function positions(bytes32 key) external view returns ( uint128 _liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); /// @notice Returns data about a specific observation index /// @param index The element of the observations array to fetch /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time /// ago, rather than at a specific index in the array. /// @return blockTimestamp The timestamp of the observation, /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp, /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp, /// Returns initialized whether the observation has been initialized and the values are safe to use function observations(uint256 index) external view returns ( uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128, bool initialized ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that is not stored /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the /// blockchain. The functions here may have variable gas costs. interface IUniswapV3PoolDerivedState { /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick, /// you must call it with secondsAgos = [3600, 0]. /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio. /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block /// timestamp function observe(uint32[] calldata secondsAgos) external view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s); /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed. /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first /// snapshot is taken and the second snapshot is taken. /// @param tickLower The lower tick of the range /// @param tickUpper The upper tick of the range /// @return tickCumulativeInside The snapshot of the tick accumulator for the range /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range /// @return secondsInside The snapshot of seconds per liquidity for the range function snapshotCumulativesInside(int24 tickLower, int24 tickUpper) external view returns ( int56 tickCumulativeInside, uint160 secondsPerLiquidityInsideX128, uint32 secondsInside ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissionless pool actions /// @notice Contains pool methods that can be called by anyone interface IUniswapV3PoolActions { /// @notice Sets the initial price for the pool /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96 function initialize(uint160 sqrtPriceX96) external; /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends /// on tickLower, tickUpper, the amount of liquidity, and the current price. /// @param recipient The address for which the liquidity will be created /// @param tickLower The lower tick of the position in which to add liquidity /// @param tickUpper The upper tick of the position in which to add liquidity /// @param amount The amount of liquidity to mint /// @param data Any data that should be passed through to the callback /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external returns (uint256 amount0, uint256 amount1); /// @notice Collects tokens owed to a position /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity. /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity. /// @param recipient The address which should receive the fees collected /// @param tickLower The lower tick of the position for which to collect fees /// @param tickUpper The upper tick of the position for which to collect fees /// @param amount0Requested How much token0 should be withdrawn from the fees owed /// @param amount1Requested How much token1 should be withdrawn from the fees owed /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0 /// @dev Fees must be collected separately via a call to #collect /// @param tickLower The lower tick of the position for which to burn liquidity /// @param tickUpper The upper tick of the position for which to burn liquidity /// @param amount How much liquidity to burn /// @return amount0 The amount of token0 sent to the recipient /// @return amount1 The amount of token1 sent to the recipient function burn( int24 tickLower, int24 tickUpper, uint128 amount ) external returns (uint256 amount0, uint256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param data Any data to be passed through to the callback /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external returns (int256 amount0, int256 amount1); /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling /// with 0 amount{0,1} and sending the donation amount(s) from the callback /// @param recipient The address which will receive the token0 and token1 amounts /// @param amount0 The amount of token0 to send /// @param amount1 The amount of token1 to send /// @param data Any data to be passed through to the callback function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external; /// @notice Increase the maximum number of price and liquidity observations that this pool will store /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to /// the input observationCardinalityNext. /// @param observationCardinalityNext The desired minimum number of observations for the pool to store function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissioned pool actions /// @notice Contains pool methods that may only be called by the factory owner interface IUniswapV3PoolOwnerActions { /// @notice Set the denominator of the protocol's % share of the fees /// @param feeProtocol0 new protocol fee for token0 of the pool /// @param feeProtocol1 new protocol fee for token1 of the pool function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external; /// @notice Collect the protocol fee accrued to the pool /// @param recipient The address to which collected protocol fees should be sent /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1 /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0 /// @return amount0 The protocol fee collected in token0 /// @return amount1 The protocol fee collected in token1 function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Events emitted by a pool /// @notice Contains all events emitted by the pool interface IUniswapV3PoolEvents { /// @notice Emitted exactly once by a pool when #initialize is first called on the pool /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96 /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool event Initialize(uint160 sqrtPriceX96, int24 tick); /// @notice Emitted when liquidity is minted for a given position /// @param sender The address that minted the liquidity /// @param owner The owner of the position and recipient of any minted liquidity /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity minted to the position range /// @param amount0 How much token0 was required for the minted liquidity /// @param amount1 How much token1 was required for the minted liquidity event Mint( address sender, address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted when fees are collected by the owner of a position /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees /// @param owner The owner of the position for which fees are collected /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount0 The amount of token0 fees collected /// @param amount1 The amount of token1 fees collected event Collect( address indexed owner, address recipient, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount0, uint128 amount1 ); /// @notice Emitted when a position's liquidity is removed /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect /// @param owner The owner of the position for which liquidity is removed /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity to remove /// @param amount0 The amount of token0 withdrawn /// @param amount1 The amount of token1 withdrawn event Burn( address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted by the pool for any swaps between token0 and token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the output of the swap /// @param amount0 The delta of the token0 balance of the pool /// @param amount1 The delta of the token1 balance of the pool /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96 /// @param liquidity The liquidity of the pool after the swap /// @param tick The log base 1.0001 of price of the pool after the swap event Swap( address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 sqrtPriceX96, uint128 liquidity, int24 tick ); /// @notice Emitted by the pool for any flashes of token0/token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the tokens from flash /// @param amount0 The amount of token0 that was flashed /// @param amount1 The amount of token1 that was flashed /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee event Flash( address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1, uint256 paid0, uint256 paid1 ); /// @notice Emitted by the pool for increases to the number of observations that can be stored /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index /// just before a mint/swap/burn. /// @param observationCardinalityNextOld The previous value of the next observation cardinality /// @param observationCardinalityNextNew The updated value of the next observation cardinality event IncreaseObservationCardinalityNext( uint16 observationCardinalityNextOld, uint16 observationCardinalityNextNew ); /// @notice Emitted when the protocol fee is changed by the pool /// @param feeProtocol0Old The previous value of the token0 protocol fee /// @param feeProtocol1Old The previous value of the token1 protocol fee /// @param feeProtocol0New The updated value of the token0 protocol fee /// @param feeProtocol1New The updated value of the token1 protocol fee event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New); /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner /// @param sender The address that collects the protocol fees /// @param recipient The address that receives the collected protocol fees /// @param amount0 The amount of token0 protocol fees that is withdrawn /// @param amount0 The amount of token1 protocol fees that is withdrawn event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; /// @title Creates and initializes V3 Pools /// @notice Provides a method for creating and initializing a pool, if necessary, for bundling with other methods that /// require the pool to exist. interface IPoolInitializer { /// @notice Creates a new pool if it does not exist, then initializes if not initialized /// @dev This method can be bundled with others via IMulticall for the first action (e.g. mint) performed against a pool /// @param token0 The contract address of token0 of the pool /// @param token1 The contract address of token1 of the pool /// @param fee The fee amount of the v3 pool for the specified token pair /// @param sqrtPriceX96 The initial square root price of the pool as a Q64.96 value /// @return pool Returns the pool address based on the pair of tokens and fee, will return the newly created pool address if necessary function createAndInitializePoolIfNecessary( address token0, address token1, uint24 fee, uint160 sqrtPriceX96 ) external payable returns (address pool); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; import '@openzeppelin/contracts/token/ERC721/IERC721.sol'; /// @title ERC721 with permit /// @notice Extension to ERC721 that includes a permit function for signature based approvals interface IERC721Permit is IERC721 { /// @notice The permit typehash used in the permit signature /// @return The typehash for the permit function PERMIT_TYPEHASH() external pure returns (bytes32); /// @notice The domain separator used in the permit signature /// @return The domain seperator used in encoding of permit signature function DOMAIN_SEPARATOR() external view returns (bytes32); /// @notice Approve of a specific token ID for spending by spender via signature /// @param spender The account that is being approved /// @param tokenId The ID of the token that is being approved for spending /// @param deadline The deadline timestamp by which the call must be mined for the approve to work /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s` /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s` /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v` function permit( address spender, uint256 tokenId, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external payable; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; /// @title Periphery Payments /// @notice Functions to ease deposits and withdrawals of ETH interface IPeripheryPayments { /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH. /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users. /// @param amountMinimum The minimum amount of WETH9 to unwrap /// @param recipient The address receiving ETH function unwrapWETH9(uint256 amountMinimum, address recipient) external payable; /// @notice Refunds any ETH balance held by this contract to the `msg.sender` /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps /// that use ether for the input amount function refundETH() external payable; /// @notice Transfers the full amount of a token held by this contract to recipient /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users /// @param token The contract address of the token which will be transferred to `recipient` /// @param amountMinimum The minimum amount of token required for a transfer /// @param recipient The destination address of the token function sweepToken( address token, uint256 amountMinimum, address recipient ) external payable; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Immutable state /// @notice Functions that return immutable state of the router interface IPeripheryImmutableState { /// @return Returns the address of the Uniswap V3 factory function factory() external view returns (address); /// @return Returns the address of WETH9 function WETH9() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../../introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title The interface for the Uniswap V3 Factory /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees interface IUniswapV3Factory { /// @notice Emitted when the owner of the factory is changed /// @param oldOwner The owner before the owner was changed /// @param newOwner The owner after the owner was changed event OwnerChanged(address indexed oldOwner, address indexed newOwner); /// @notice Emitted when a pool is created /// @param token0 The first token of the pool by address sort order /// @param token1 The second token of the pool by address sort order /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// @param tickSpacing The minimum number of ticks between initialized ticks /// @param pool The address of the created pool event PoolCreated( address indexed token0, address indexed token1, uint24 indexed fee, int24 tickSpacing, address pool ); /// @notice Emitted when a new fee amount is enabled for pool creation via the factory /// @param fee The enabled fee, denominated in hundredths of a bip /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing); /// @notice Returns the current owner of the factory /// @dev Can be changed by the current owner via setOwner /// @return The address of the factory owner function owner() external view returns (address); /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee /// @return The tick spacing function feeAmountTickSpacing(uint24 fee) external view returns (int24); /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order /// @param tokenA The contract address of either token0 or token1 /// @param tokenB The contract address of the other token /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// @return pool The pool address function getPool( address tokenA, address tokenB, uint24 fee ) external view returns (address pool); /// @notice Creates a pool for the given two tokens and fee /// @param tokenA One of the two tokens in the desired pool /// @param tokenB The other of the two tokens in the desired pool /// @param fee The desired fee for the pool /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments /// are invalid. /// @return pool The address of the newly created pool function createPool( address tokenA, address tokenB, uint24 fee ) external returns (address pool); /// @notice Updates the owner of the factory /// @dev Must be called by the current owner /// @param _owner The new owner of the factory function setOwner(address _owner) external; /// @notice Enables a fee amount with the given tickSpacing /// @dev Fee amounts may never be removed once enabled /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6) /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount function enableFeeAmount(uint24 fee, int24 tickSpacing) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#mint /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface interface IUniswapV3MintCallback { /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint. /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call function uniswapV3MintCallback( uint256 amount0Owed, uint256 amount1Owed, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math library for computing sqrt prices from ticks and vice versa /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports /// prices between 2**-128 and 2**128 library TickMath { /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128 int24 internal constant MIN_TICK = -887272; /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128 int24 internal constant MAX_TICK = -MIN_TICK; /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK) uint160 internal constant MIN_SQRT_RATIO = 4295128739; /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK) uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342; /// @notice Calculates sqrt(1.0001^tick) * 2^96 /// @dev Throws if |tick| > max tick /// @param tick The input tick for the above formula /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0) /// at the given tick function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) { uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick)); require(absTick <= uint256(MAX_TICK), 'T'); uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000; if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128; if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128; if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128; if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128; if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128; if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128; if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128; if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128; if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128; if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128; if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128; if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128; if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128; if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128; if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128; if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128; if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128; if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128; if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128; if (tick > 0) ratio = type(uint256).max / ratio; // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96. // we then downcast because we know the result always fits within 160 bits due to our tick input constraint // we round up in the division so getTickAtSqrtRatio of the output price is always consistent sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1)); } /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may /// ever return. /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96 /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) { // second inequality must be < because the price can never reach the price at the max tick require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R'); uint256 ratio = uint256(sqrtPriceX96) << 32; uint256 r = ratio; uint256 msb = 0; assembly { let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(5, gt(r, 0xFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(4, gt(r, 0xFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(3, gt(r, 0xFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(2, gt(r, 0xF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(1, gt(r, 0x3)) msb := or(msb, f) r := shr(f, r) } assembly { let f := gt(r, 0x1) msb := or(msb, f) } if (msb >= 128) r = ratio >> (msb - 127); else r = ratio << (127 - msb); int256 log_2 = (int256(msb) - 128) << 64; assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(63, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(62, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(61, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(60, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(59, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(58, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(57, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(56, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(55, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(54, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(53, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(52, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(51, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(50, f)) } int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128); int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128); tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity =0.7.6; import '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol'; import './PoolAddress.sol'; /// @notice Provides validation for callbacks from Uniswap V3 Pools library CallbackValidation { /// @notice Returns the address of a valid Uniswap V3 Pool /// @param factory The contract address of the Uniswap V3 factory /// @param tokenA The contract address of either token0 or token1 /// @param tokenB The contract address of the other token /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// @return pool The V3 pool contract address function verifyCallback( address factory, address tokenA, address tokenB, uint24 fee ) internal view returns (IUniswapV3Pool pool) { return verifyCallback(factory, PoolAddress.getPoolKey(tokenA, tokenB, fee)); } /// @notice Returns the address of a valid Uniswap V3 Pool /// @param factory The contract address of the Uniswap V3 factory /// @param poolKey The identifying key of the V3 pool /// @return pool The V3 pool contract address function verifyCallback(address factory, PoolAddress.PoolKey memory poolKey) internal view returns (IUniswapV3Pool pool) { pool = IUniswapV3Pool(PoolAddress.computeAddress(factory, poolKey)); require(msg.sender == address(pool)); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import '@uniswap/v3-core/contracts/libraries/FullMath.sol'; import '@uniswap/v3-core/contracts/libraries/FixedPoint96.sol'; /// @title Liquidity amount functions /// @notice Provides functions for computing liquidity amounts from token amounts and prices library LiquidityAmounts { /// @notice Downcasts uint256 to uint128 /// @param x The uint258 to be downcasted /// @return y The passed value, downcasted to uint128 function toUint128(uint256 x) private pure returns (uint128 y) { require((y = uint128(x)) == x); } /// @notice Computes the amount of liquidity received for a given amount of token0 and price range /// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower)) /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param amount0 The amount0 being sent in /// @return liquidity The amount of returned liquidity function getLiquidityForAmount0( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint256 amount0 ) internal pure returns (uint128 liquidity) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); uint256 intermediate = FullMath.mulDiv(sqrtRatioAX96, sqrtRatioBX96, FixedPoint96.Q96); return toUint128(FullMath.mulDiv(amount0, intermediate, sqrtRatioBX96 - sqrtRatioAX96)); } /// @notice Computes the amount of liquidity received for a given amount of token1 and price range /// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)). /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param amount1 The amount1 being sent in /// @return liquidity The amount of returned liquidity function getLiquidityForAmount1( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint256 amount1 ) internal pure returns (uint128 liquidity) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return toUint128(FullMath.mulDiv(amount1, FixedPoint96.Q96, sqrtRatioBX96 - sqrtRatioAX96)); } /// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current /// pool prices and the prices at the tick boundaries /// @param sqrtRatioX96 A sqrt price representing the current pool prices /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param amount0 The amount of token0 being sent in /// @param amount1 The amount of token1 being sent in /// @return liquidity The maximum amount of liquidity received function getLiquidityForAmounts( uint160 sqrtRatioX96, uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint256 amount0, uint256 amount1 ) internal pure returns (uint128 liquidity) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); if (sqrtRatioX96 <= sqrtRatioAX96) { liquidity = getLiquidityForAmount0(sqrtRatioAX96, sqrtRatioBX96, amount0); } else if (sqrtRatioX96 < sqrtRatioBX96) { uint128 liquidity0 = getLiquidityForAmount0(sqrtRatioX96, sqrtRatioBX96, amount0); uint128 liquidity1 = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioX96, amount1); liquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1; } else { liquidity = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioBX96, amount1); } } /// @notice Computes the amount of token0 for a given amount of liquidity and a price range /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param liquidity The liquidity being valued /// @return amount0 The amount of token0 function getAmount0ForLiquidity( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount0) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return FullMath.mulDiv( uint256(liquidity) << FixedPoint96.RESOLUTION, sqrtRatioBX96 - sqrtRatioAX96, sqrtRatioBX96 ) / sqrtRatioAX96; } /// @notice Computes the amount of token1 for a given amount of liquidity and a price range /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param liquidity The liquidity being valued /// @return amount1 The amount of token1 function getAmount1ForLiquidity( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96); } /// @notice Computes the token0 and token1 value for a given amount of liquidity, the current /// pool prices and the prices at the tick boundaries /// @param sqrtRatioX96 A sqrt price representing the current pool prices /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param liquidity The liquidity being valued /// @return amount0 The amount of token0 /// @return amount1 The amount of token1 function getAmountsForLiquidity( uint160 sqrtRatioX96, uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount0, uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); if (sqrtRatioX96 <= sqrtRatioAX96) { amount0 = getAmount0ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity); } else if (sqrtRatioX96 < sqrtRatioBX96) { amount0 = getAmount0ForLiquidity(sqrtRatioX96, sqrtRatioBX96, liquidity); amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioX96, liquidity); } else { amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity); } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; import '../interfaces/IPeripheryPayments.sol'; import '../interfaces/external/IWETH9.sol'; import '../libraries/TransferHelper.sol'; import './PeripheryImmutableState.sol'; abstract contract PeripheryPayments is IPeripheryPayments, PeripheryImmutableState { receive() external payable { require(msg.sender == WETH9, 'Not WETH9'); } /// @inheritdoc IPeripheryPayments function unwrapWETH9(uint256 amountMinimum, address recipient) external payable override { uint256 balanceWETH9 = IWETH9(WETH9).balanceOf(address(this)); require(balanceWETH9 >= amountMinimum, 'Insufficient WETH9'); if (balanceWETH9 > 0) { IWETH9(WETH9).withdraw(balanceWETH9); TransferHelper.safeTransferETH(recipient, balanceWETH9); } } /// @inheritdoc IPeripheryPayments function sweepToken( address token, uint256 amountMinimum, address recipient ) external payable override { uint256 balanceToken = IERC20(token).balanceOf(address(this)); require(balanceToken >= amountMinimum, 'Insufficient token'); if (balanceToken > 0) { TransferHelper.safeTransfer(token, recipient, balanceToken); } } /// @inheritdoc IPeripheryPayments function refundETH() external payable override { if (address(this).balance > 0) TransferHelper.safeTransferETH(msg.sender, address(this).balance); } /// @param token The token to pay /// @param payer The entity that must pay /// @param recipient The entity that will receive payment /// @param value The amount to pay function pay( address token, address payer, address recipient, uint256 value ) internal { if (token == WETH9 && address(this).balance >= value) { // pay with WETH9 IWETH9(WETH9).deposit{value: value}(); // wrap only what is needed to pay IWETH9(WETH9).transfer(recipient, value); } else if (payer == address(this)) { // pay with tokens already in the contract (for the exact input multihop case) TransferHelper.safeTransfer(token, recipient, value); } else { // pull payment TransferHelper.safeTransferFrom(token, payer, recipient, value); } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint96 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) /// @dev Used in SqrtPriceMath.sol library FixedPoint96 { uint8 internal constant RESOLUTION = 96; uint256 internal constant Q96 = 0x1000000000000000000000000; } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity =0.7.6; import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; /// @title Interface for WETH9 interface IWETH9 is IERC20 { /// @notice Deposit ether to get wrapped ether function deposit() external payable; /// @notice Withdraw wrapped ether to get ether function withdraw(uint256) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.6.0; import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; library TransferHelper { /// @notice Transfers tokens from the targeted address to the given destination /// @notice Errors with 'STF' if transfer fails /// @param token The contract address of the token to be transferred /// @param from The originating address from which the tokens will be transferred /// @param to The destination address of the transfer /// @param value The amount to be transferred function safeTransferFrom( address token, address from, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'STF'); } /// @notice Transfers tokens from msg.sender to a recipient /// @dev Errors with ST if transfer fails /// @param token The contract address of the token which will be transferred /// @param to The recipient of the transfer /// @param value The value of the transfer function safeTransfer( address token, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'ST'); } /// @notice Approves the stipulated contract to spend the given allowance in the given token /// @dev Errors with 'SA' if transfer fails /// @param token The contract address of the token to be approved /// @param to The target of the approval /// @param value The amount of the given token the target will be allowed to spend function safeApprove( address token, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'SA'); } /// @notice Transfers ETH to the recipient address /// @dev Fails with `STE` /// @param to The destination of the transfer /// @param value The value to be transferred function safeTransferETH(address to, uint256 value) internal { (bool success, ) = to.call{value: value}(new bytes(0)); require(success, 'STE'); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; /// @title Multicall interface /// @notice Enables calling multiple methods in a single call to the contract interface IMulticall { /// @notice Call multiple functions in the current contract and return the data from all of them if they all succeed /// @dev The `msg.value` should not be trusted for any method callable from multicall. /// @param data The encoded function data for each of the calls to make to this contract /// @return results The results from each of the calls passed in via data function multicall(bytes[] calldata data) external payable returns (bytes[] memory results); } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../../utils/Context.sol"; import "./IERC721.sol"; import "./IERC721Metadata.sol"; import "./IERC721Enumerable.sol"; import "./IERC721Receiver.sol"; import "../../introspection/ERC165.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; import "../../utils/EnumerableSet.sol"; import "../../utils/EnumerableMap.sol"; import "../../utils/Strings.sol"; /** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */ contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Enumerable { using SafeMath for uint256; using Address for address; using EnumerableSet for EnumerableSet.UintSet; using EnumerableMap for EnumerableMap.UintToAddressMap; using Strings for uint256; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from holder address to their (enumerable) set of owned tokens mapping (address => EnumerableSet.UintSet) private _holderTokens; // Enumerable mapping from token ids to their owners EnumerableMap.UintToAddressMap private _tokenOwners; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; // Token name string private _name; // Token symbol string private _symbol; // Optional mapping for token URIs mapping (uint256 => string) private _tokenURIs; // Base URI string private _baseURI; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c5 ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; /* * bytes4(keccak256('name()')) == 0x06fdde03 * bytes4(keccak256('symbol()')) == 0x95d89b41 * bytes4(keccak256('tokenURI(uint256)')) == 0xc87b56dd * * => 0x06fdde03 ^ 0x95d89b41 ^ 0xc87b56dd == 0x5b5e139f */ bytes4 private constant _INTERFACE_ID_ERC721_METADATA = 0x5b5e139f; /* * bytes4(keccak256('totalSupply()')) == 0x18160ddd * bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59 * bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7 * * => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63 */ bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor (string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); _registerInterface(_INTERFACE_ID_ERC721_METADATA); _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual override returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _holderTokens[owner].length(); } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return _tokenOwners.get(tokenId, "ERC721: owner query for nonexistent token"); } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { require(_exists(tokenId), "ERC721Metadata: URI query for nonexistent token"); string memory _tokenURI = _tokenURIs[tokenId]; string memory base = baseURI(); // If there is no base URI, return the token URI. if (bytes(base).length == 0) { return _tokenURI; } // If both are set, concatenate the baseURI and tokenURI (via abi.encodePacked). if (bytes(_tokenURI).length > 0) { return string(abi.encodePacked(base, _tokenURI)); } // If there is a baseURI but no tokenURI, concatenate the tokenID to the baseURI. return string(abi.encodePacked(base, tokenId.toString())); } /** * @dev Returns the base URI set via {_setBaseURI}. This will be * automatically added as a prefix in {tokenURI} to each token's URI, or * to the token ID if no specific URI is set for that token ID. */ function baseURI() public view virtual returns (string memory) { return _baseURI; } /** * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}. */ function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) { return _holderTokens[owner].at(index); } /** * @dev See {IERC721Enumerable-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { // _tokenOwners are indexed by tokenIds, so .length() returns the number of tokenIds return _tokenOwners.length(); } /** * @dev See {IERC721Enumerable-tokenByIndex}. */ function tokenByIndex(uint256 index) public view virtual override returns (uint256) { (uint256 tokenId, ) = _tokenOwners.at(index); return tokenId; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual override { address owner = ERC721.ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || ERC721.isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _approve(to, tokenId); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { require(operator != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][operator] = approved; emit ApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom(address from, address to, uint256 tokenId) public virtual override { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transfer(from, to, tokenId); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public virtual override { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransfer(from, to, tokenId, _data); } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * `_data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer(address from, address to, uint256 tokenId, bytes memory _data) internal virtual { _transfer(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted (`_mint`), * and stop existing when they are burned (`_burn`). */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _tokenOwners.contains(tokenId); } /** * @dev Returns whether `spender` is allowed to manage `tokenId`. * * Requirements: * * - `tokenId` must exist. */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ERC721.ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || ERC721.isApprovedForAll(owner, spender)); } /** * @dev Safely mints `tokenId` and transfers it to `to`. * * Requirements: d* * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal virtual { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal virtual { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal virtual { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _beforeTokenTransfer(address(0), to, tokenId); _holderTokens[to].add(tokenId); _tokenOwners.set(tokenId, to); emit Transfer(address(0), to, tokenId); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal virtual { address owner = ERC721.ownerOf(tokenId); // internal owner _beforeTokenTransfer(owner, address(0), tokenId); // Clear approvals _approve(address(0), tokenId); // Clear metadata (if any) if (bytes(_tokenURIs[tokenId]).length != 0) { delete _tokenURIs[tokenId]; } _holderTokens[owner].remove(tokenId); _tokenOwners.remove(tokenId); emit Transfer(owner, address(0), tokenId); } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer(address from, address to, uint256 tokenId) internal virtual { require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); // internal owner require(to != address(0), "ERC721: transfer to the zero address"); _beforeTokenTransfer(from, to, tokenId); // Clear approvals from the previous owner _approve(address(0), tokenId); _holderTokens[from].remove(tokenId); _holderTokens[to].add(tokenId); _tokenOwners.set(tokenId, to); emit Transfer(from, to, tokenId); } /** * @dev Sets `_tokenURI` as the tokenURI of `tokenId`. * * Requirements: * * - `tokenId` must exist. */ function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual { require(_exists(tokenId), "ERC721Metadata: URI set of nonexistent token"); _tokenURIs[tokenId] = _tokenURI; } /** * @dev Internal function to set the base URI for all token IDs. It is * automatically added as a prefix to the value returned in {tokenURI}, * or to the token ID if {tokenURI} is empty. */ function _setBaseURI(string memory baseURI_) internal virtual { _baseURI = baseURI_; } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) private returns (bool) { if (!to.isContract()) { return true; } bytes memory returndata = to.functionCall(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data ), "ERC721: transfer to non ERC721Receiver implementer"); bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } /** * @dev Approve `to` to operate on `tokenId` * * Emits an {Approval} event. */ function _approve(address to, uint256 tokenId) internal virtual { _tokenApprovals[tokenId] = to; emit Approval(ERC721.ownerOf(tokenId), to, tokenId); // internal owner } /** * @dev Hook that is called before any token transfer. This includes minting * and burning. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, ``from``'s `tokenId` will be burned. * - `from` cannot be the zero address. * - `to` cannot be the zero address. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 tokenId) internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.0; /// @title Function for getting the current chain ID library ChainId { /// @dev Gets the current chain ID /// @return chainId The current chain ID function get() internal pure returns (uint256 chainId) { assembly { chainId := chainid() } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Interface for verifying contract-based account signatures /// @notice Interface that verifies provided signature for the data /// @dev Interface defined by EIP-1271 interface IERC1271 { /// @notice Returns whether the provided signature is valid for the provided data /// @dev MUST return the bytes4 magic value 0x1626ba7e when function passes. /// MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5). /// MUST allow external calls. /// @param hash Hash of the data to be signed /// @param signature Signature byte array associated with _data /// @return magicValue The bytes4 magic value 0x1626ba7e function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity =0.7.6; /// @title Function for getting block timestamp /// @dev Base contract that is overridden for tests abstract contract BlockTimestamp { /// @dev Method that exists purely to be overridden for tests /// @return The current block timestamp function _blockTimestamp() internal view virtual returns (uint256) { return block.timestamp; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`. */ function onERC721Received(address operator, address from, uint256 tokenId, bytes calldata data) external returns (bytes4); } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts may inherit from this and call {_registerInterface} to declare * their support of an interface. */ abstract contract ERC165 is IERC165 { /* * bytes4(keccak256('supportsInterface(bytes4)')) == 0x01ffc9a7 */ bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7; /** * @dev Mapping of interface ids to whether or not it's supported. */ mapping(bytes4 => bool) private _supportedInterfaces; constructor () { // Derived contracts need only register support for their own interfaces, // we register support for ERC165 itself here _registerInterface(_INTERFACE_ID_ERC165); } /** * @dev See {IERC165-supportsInterface}. * * Time complexity O(1), guaranteed to always use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return _supportedInterfaces[interfaceId]; } /** * @dev Registers the contract as an implementer of the interface defined by * `interfaceId`. Support of the actual ERC165 interface is automatic and * registering its interface id is not required. * * See {IERC165-supportsInterface}. * * Requirements: * * - `interfaceId` cannot be the ERC165 invalid interface (`0xffffffff`). */ function _registerInterface(bytes4 interfaceId) internal virtual { require(interfaceId != 0xffffffff, "ERC165: invalid interface id"); _supportedInterfaces[interfaceId] = true; } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Library for managing an enumerable variant of Solidity's * https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`] * type. * * Maps have the following properties: * * - Entries are added, removed, and checked for existence in constant time * (O(1)). * - Entries are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableMap for EnumerableMap.UintToAddressMap; * * // Declare a set state variable * EnumerableMap.UintToAddressMap private myMap; * } * ``` * * As of v3.0.0, only maps of type `uint256 -> address` (`UintToAddressMap`) are * supported. */ library EnumerableMap { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Map type with // bytes32 keys and values. // The Map implementation uses private functions, and user-facing // implementations (such as Uint256ToAddressMap) are just wrappers around // the underlying Map. // This means that we can only create new EnumerableMaps for types that fit // in bytes32. struct MapEntry { bytes32 _key; bytes32 _value; } struct Map { // Storage of map keys and values MapEntry[] _entries; // Position of the entry defined by a key in the `entries` array, plus 1 // because index 0 means a key is not in the map. mapping (bytes32 => uint256) _indexes; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function _set(Map storage map, bytes32 key, bytes32 value) private returns (bool) { // We read and store the key's index to prevent multiple reads from the same storage slot uint256 keyIndex = map._indexes[key]; if (keyIndex == 0) { // Equivalent to !contains(map, key) map._entries.push(MapEntry({ _key: key, _value: value })); // The entry is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value map._indexes[key] = map._entries.length; return true; } else { map._entries[keyIndex - 1]._value = value; return false; } } /** * @dev Removes a key-value pair from a map. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function _remove(Map storage map, bytes32 key) private returns (bool) { // We read and store the key's index to prevent multiple reads from the same storage slot uint256 keyIndex = map._indexes[key]; if (keyIndex != 0) { // Equivalent to contains(map, key) // To delete a key-value pair from the _entries array in O(1), we swap the entry to delete with the last one // in the array, and then remove the last entry (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = keyIndex - 1; uint256 lastIndex = map._entries.length - 1; // When the entry to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. MapEntry storage lastEntry = map._entries[lastIndex]; // Move the last entry to the index where the entry to delete is map._entries[toDeleteIndex] = lastEntry; // Update the index for the moved entry map._indexes[lastEntry._key] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved entry was stored map._entries.pop(); // Delete the index for the deleted slot delete map._indexes[key]; return true; } else { return false; } } /** * @dev Returns true if the key is in the map. O(1). */ function _contains(Map storage map, bytes32 key) private view returns (bool) { return map._indexes[key] != 0; } /** * @dev Returns the number of key-value pairs in the map. O(1). */ function _length(Map storage map) private view returns (uint256) { return map._entries.length; } /** * @dev Returns the key-value pair stored at position `index` in the map. O(1). * * Note that there are no guarantees on the ordering of entries inside the * array, and it may change when more entries are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Map storage map, uint256 index) private view returns (bytes32, bytes32) { require(map._entries.length > index, "EnumerableMap: index out of bounds"); MapEntry storage entry = map._entries[index]; return (entry._key, entry._value); } /** * @dev Tries to returns the value associated with `key`. O(1). * Does not revert if `key` is not in the map. */ function _tryGet(Map storage map, bytes32 key) private view returns (bool, bytes32) { uint256 keyIndex = map._indexes[key]; if (keyIndex == 0) return (false, 0); // Equivalent to contains(map, key) return (true, map._entries[keyIndex - 1]._value); // All indexes are 1-based } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. */ function _get(Map storage map, bytes32 key) private view returns (bytes32) { uint256 keyIndex = map._indexes[key]; require(keyIndex != 0, "EnumerableMap: nonexistent key"); // Equivalent to contains(map, key) return map._entries[keyIndex - 1]._value; // All indexes are 1-based } /** * @dev Same as {_get}, with a custom error message when `key` is not in the map. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {_tryGet}. */ function _get(Map storage map, bytes32 key, string memory errorMessage) private view returns (bytes32) { uint256 keyIndex = map._indexes[key]; require(keyIndex != 0, errorMessage); // Equivalent to contains(map, key) return map._entries[keyIndex - 1]._value; // All indexes are 1-based } // UintToAddressMap struct UintToAddressMap { Map _inner; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function set(UintToAddressMap storage map, uint256 key, address value) internal returns (bool) { return _set(map._inner, bytes32(key), bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function remove(UintToAddressMap storage map, uint256 key) internal returns (bool) { return _remove(map._inner, bytes32(key)); } /** * @dev Returns true if the key is in the map. O(1). */ function contains(UintToAddressMap storage map, uint256 key) internal view returns (bool) { return _contains(map._inner, bytes32(key)); } /** * @dev Returns the number of elements in the map. O(1). */ function length(UintToAddressMap storage map) internal view returns (uint256) { return _length(map._inner); } /** * @dev Returns the element stored at position `index` in the set. O(1). * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintToAddressMap storage map, uint256 index) internal view returns (uint256, address) { (bytes32 key, bytes32 value) = _at(map._inner, index); return (uint256(key), address(uint160(uint256(value)))); } /** * @dev Tries to returns the value associated with `key`. O(1). * Does not revert if `key` is not in the map. * * _Available since v3.4._ */ function tryGet(UintToAddressMap storage map, uint256 key) internal view returns (bool, address) { (bool success, bytes32 value) = _tryGet(map._inner, bytes32(key)); return (success, address(uint160(uint256(value)))); } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. */ function get(UintToAddressMap storage map, uint256 key) internal view returns (address) { return address(uint160(uint256(_get(map._inner, bytes32(key))))); } /** * @dev Same as {get}, with a custom error message when `key` is not in the map. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryGet}. */ function get(UintToAddressMap storage map, uint256 key, string memory errorMessage) internal view returns (address) { return address(uint160(uint256(_get(map._inner, bytes32(key), errorMessage)))); } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev String operations. */ library Strings { /** * @dev Converts a `uint256` to its ASCII `string` representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); uint256 index = digits - 1; temp = value; while (temp != 0) { buffer[index--] = bytes1(uint8(48 + temp % 10)); temp /= 10; } return string(buffer); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; /// @title Self Permit /// @notice Functionality to call permit on any EIP-2612-compliant token for use in the route interface ISelfPermit { /// @notice Permits this contract to spend a given token from `msg.sender` /// @dev The `owner` is always msg.sender and the `spender` is always address(this). /// @param token The address of the token spent /// @param value The amount that can be spent of token /// @param deadline A timestamp, the current blocktime must be less than or equal to this timestamp /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s` /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s` /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v` function selfPermit( address token, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external payable; /// @notice Permits this contract to spend a given token from `msg.sender` /// @dev The `owner` is always msg.sender and the `spender` is always address(this). /// Can be used instead of #selfPermit to prevent calls from failing due to a frontrun of a call to #selfPermit /// @param token The address of the token spent /// @param value The amount that can be spent of token /// @param deadline A timestamp, the current blocktime must be less than or equal to this timestamp /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s` /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s` /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v` function selfPermitIfNecessary( address token, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external payable; /// @notice Permits this contract to spend the sender's tokens for permit signatures that have the `allowed` parameter /// @dev The `owner` is always msg.sender and the `spender` is always address(this) /// @param token The address of the token spent /// @param nonce The current nonce of the owner /// @param expiry The timestamp at which the permit is no longer valid /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s` /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s` /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v` function selfPermitAllowed( address token, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) external payable; /// @notice Permits this contract to spend the sender's tokens for permit signatures that have the `allowed` parameter /// @dev The `owner` is always msg.sender and the `spender` is always address(this) /// Can be used instead of #selfPermitAllowed to prevent calls from failing due to a frontrun of a call to #selfPermitAllowed. /// @param token The address of the token spent /// @param nonce The current nonce of the owner /// @param expiry The timestamp at which the permit is no longer valid /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s` /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s` /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v` function selfPermitAllowedIfNecessary( address token, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) external payable; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Interface for permit /// @notice Interface used by DAI/CHAI for permit interface IERC20PermitAllowed { /// @notice Approve the spender to spend some tokens via the holder signature /// @dev This is the permit interface used by DAI and CHAI /// @param holder The address of the token holder, the token owner /// @param spender The address of the token spender /// @param nonce The holder's nonce, increases at each call to permit /// @param expiry The timestamp at which the permit is no longer valid /// @param allowed Boolean that sets approval amount, true for type(uint256).max and false for 0 /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s` /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s` /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v` function permit( address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s ) external; }
File 2 of 6: UniswapV3Factory
// SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.7.6; import './interfaces/IUniswapV3Factory.sol'; import './UniswapV3PoolDeployer.sol'; import './NoDelegateCall.sol'; import './UniswapV3Pool.sol'; /// @title Canonical Uniswap V3 factory /// @notice Deploys Uniswap V3 pools and manages ownership and control over pool protocol fees contract UniswapV3Factory is IUniswapV3Factory, UniswapV3PoolDeployer, NoDelegateCall { /// @inheritdoc IUniswapV3Factory address public override owner; /// @inheritdoc IUniswapV3Factory mapping(uint24 => int24) public override feeAmountTickSpacing; /// @inheritdoc IUniswapV3Factory mapping(address => mapping(address => mapping(uint24 => address))) public override getPool; constructor() { owner = msg.sender; emit OwnerChanged(address(0), msg.sender); feeAmountTickSpacing[500] = 10; emit FeeAmountEnabled(500, 10); feeAmountTickSpacing[3000] = 60; emit FeeAmountEnabled(3000, 60); feeAmountTickSpacing[10000] = 200; emit FeeAmountEnabled(10000, 200); } /// @inheritdoc IUniswapV3Factory function createPool( address tokenA, address tokenB, uint24 fee ) external override noDelegateCall returns (address pool) { require(tokenA != tokenB); (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); require(token0 != address(0)); int24 tickSpacing = feeAmountTickSpacing[fee]; require(tickSpacing != 0); require(getPool[token0][token1][fee] == address(0)); pool = deploy(address(this), token0, token1, fee, tickSpacing); getPool[token0][token1][fee] = pool; // populate mapping in the reverse direction, deliberate choice to avoid the cost of comparing addresses getPool[token1][token0][fee] = pool; emit PoolCreated(token0, token1, fee, tickSpacing, pool); } /// @inheritdoc IUniswapV3Factory function setOwner(address _owner) external override { require(msg.sender == owner); emit OwnerChanged(owner, _owner); owner = _owner; } /// @inheritdoc IUniswapV3Factory function enableFeeAmount(uint24 fee, int24 tickSpacing) public override { require(msg.sender == owner); require(fee < 1000000); // tick spacing is capped at 16384 to prevent the situation where tickSpacing is so large that // TickBitmap#nextInitializedTickWithinOneWord overflows int24 container from a valid tick // 16384 ticks represents a >5x price change with ticks of 1 bips require(tickSpacing > 0 && tickSpacing < 16384); require(feeAmountTickSpacing[fee] == 0); feeAmountTickSpacing[fee] = tickSpacing; emit FeeAmountEnabled(fee, tickSpacing); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title The interface for the Uniswap V3 Factory /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees interface IUniswapV3Factory { /// @notice Emitted when the owner of the factory is changed /// @param oldOwner The owner before the owner was changed /// @param newOwner The owner after the owner was changed event OwnerChanged(address indexed oldOwner, address indexed newOwner); /// @notice Emitted when a pool is created /// @param token0 The first token of the pool by address sort order /// @param token1 The second token of the pool by address sort order /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// @param tickSpacing The minimum number of ticks between initialized ticks /// @param pool The address of the created pool event PoolCreated( address indexed token0, address indexed token1, uint24 indexed fee, int24 tickSpacing, address pool ); /// @notice Emitted when a new fee amount is enabled for pool creation via the factory /// @param fee The enabled fee, denominated in hundredths of a bip /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing); /// @notice Returns the current owner of the factory /// @dev Can be changed by the current owner via setOwner /// @return The address of the factory owner function owner() external view returns (address); /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee /// @return The tick spacing function feeAmountTickSpacing(uint24 fee) external view returns (int24); /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order /// @param tokenA The contract address of either token0 or token1 /// @param tokenB The contract address of the other token /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// @return pool The pool address function getPool( address tokenA, address tokenB, uint24 fee ) external view returns (address pool); /// @notice Creates a pool for the given two tokens and fee /// @param tokenA One of the two tokens in the desired pool /// @param tokenB The other of the two tokens in the desired pool /// @param fee The desired fee for the pool /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments /// are invalid. /// @return pool The address of the newly created pool function createPool( address tokenA, address tokenB, uint24 fee ) external returns (address pool); /// @notice Updates the owner of the factory /// @dev Must be called by the current owner /// @param _owner The new owner of the factory function setOwner(address _owner) external; /// @notice Enables a fee amount with the given tickSpacing /// @dev Fee amounts may never be removed once enabled /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6) /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount function enableFeeAmount(uint24 fee, int24 tickSpacing) external; } // SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.7.6; import './interfaces/IUniswapV3PoolDeployer.sol'; import './UniswapV3Pool.sol'; contract UniswapV3PoolDeployer is IUniswapV3PoolDeployer { struct Parameters { address factory; address token0; address token1; uint24 fee; int24 tickSpacing; } /// @inheritdoc IUniswapV3PoolDeployer Parameters public override parameters; /// @dev Deploys a pool with the given parameters by transiently setting the parameters storage slot and then /// clearing it after deploying the pool. /// @param factory The contract address of the Uniswap V3 factory /// @param token0 The first token of the pool by address sort order /// @param token1 The second token of the pool by address sort order /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// @param tickSpacing The spacing between usable ticks function deploy( address factory, address token0, address token1, uint24 fee, int24 tickSpacing ) internal returns (address pool) { parameters = Parameters({factory: factory, token0: token0, token1: token1, fee: fee, tickSpacing: tickSpacing}); pool = address(new UniswapV3Pool{salt: keccak256(abi.encode(token0, token1, fee))}()); delete parameters; } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.7.6; /// @title Prevents delegatecall to a contract /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract abstract contract NoDelegateCall { /// @dev The original address of this contract address private immutable original; constructor() { // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode. // In other words, this variable won't change when it's checked at runtime. original = address(this); } /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method, /// and the use of immutable means the address bytes are copied in every place the modifier is used. function checkNotDelegateCall() private view { require(address(this) == original); } /// @notice Prevents delegatecall into the modified method modifier noDelegateCall() { checkNotDelegateCall(); _; } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.7.6; import './interfaces/IUniswapV3Pool.sol'; import './NoDelegateCall.sol'; import './libraries/LowGasSafeMath.sol'; import './libraries/SafeCast.sol'; import './libraries/Tick.sol'; import './libraries/TickBitmap.sol'; import './libraries/Position.sol'; import './libraries/Oracle.sol'; import './libraries/FullMath.sol'; import './libraries/FixedPoint128.sol'; import './libraries/TransferHelper.sol'; import './libraries/TickMath.sol'; import './libraries/LiquidityMath.sol'; import './libraries/SqrtPriceMath.sol'; import './libraries/SwapMath.sol'; import './interfaces/IUniswapV3PoolDeployer.sol'; import './interfaces/IUniswapV3Factory.sol'; import './interfaces/IERC20Minimal.sol'; import './interfaces/callback/IUniswapV3MintCallback.sol'; import './interfaces/callback/IUniswapV3SwapCallback.sol'; import './interfaces/callback/IUniswapV3FlashCallback.sol'; contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall { using LowGasSafeMath for uint256; using LowGasSafeMath for int256; using SafeCast for uint256; using SafeCast for int256; using Tick for mapping(int24 => Tick.Info); using TickBitmap for mapping(int16 => uint256); using Position for mapping(bytes32 => Position.Info); using Position for Position.Info; using Oracle for Oracle.Observation[65535]; /// @inheritdoc IUniswapV3PoolImmutables address public immutable override factory; /// @inheritdoc IUniswapV3PoolImmutables address public immutable override token0; /// @inheritdoc IUniswapV3PoolImmutables address public immutable override token1; /// @inheritdoc IUniswapV3PoolImmutables uint24 public immutable override fee; /// @inheritdoc IUniswapV3PoolImmutables int24 public immutable override tickSpacing; /// @inheritdoc IUniswapV3PoolImmutables uint128 public immutable override maxLiquidityPerTick; struct Slot0 { // the current price uint160 sqrtPriceX96; // the current tick int24 tick; // the most-recently updated index of the observations array uint16 observationIndex; // the current maximum number of observations that are being stored uint16 observationCardinality; // the next maximum number of observations to store, triggered in observations.write uint16 observationCardinalityNext; // the current protocol fee as a percentage of the swap fee taken on withdrawal // represented as an integer denominator (1/x)% uint8 feeProtocol; // whether the pool is locked bool unlocked; } /// @inheritdoc IUniswapV3PoolState Slot0 public override slot0; /// @inheritdoc IUniswapV3PoolState uint256 public override feeGrowthGlobal0X128; /// @inheritdoc IUniswapV3PoolState uint256 public override feeGrowthGlobal1X128; // accumulated protocol fees in token0/token1 units struct ProtocolFees { uint128 token0; uint128 token1; } /// @inheritdoc IUniswapV3PoolState ProtocolFees public override protocolFees; /// @inheritdoc IUniswapV3PoolState uint128 public override liquidity; /// @inheritdoc IUniswapV3PoolState mapping(int24 => Tick.Info) public override ticks; /// @inheritdoc IUniswapV3PoolState mapping(int16 => uint256) public override tickBitmap; /// @inheritdoc IUniswapV3PoolState mapping(bytes32 => Position.Info) public override positions; /// @inheritdoc IUniswapV3PoolState Oracle.Observation[65535] public override observations; /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because /// we use balance checks to determine the payment status of interactions such as mint, swap and flash. modifier lock() { require(slot0.unlocked, 'LOK'); slot0.unlocked = false; _; slot0.unlocked = true; } /// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner() modifier onlyFactoryOwner() { require(msg.sender == IUniswapV3Factory(factory).owner()); _; } constructor() { int24 _tickSpacing; (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters(); tickSpacing = _tickSpacing; maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing); } /// @dev Common checks for valid tick inputs. function checkTicks(int24 tickLower, int24 tickUpper) private pure { require(tickLower < tickUpper, 'TLU'); require(tickLower >= TickMath.MIN_TICK, 'TLM'); require(tickUpper <= TickMath.MAX_TICK, 'TUM'); } /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests. function _blockTimestamp() internal view virtual returns (uint32) { return uint32(block.timestamp); // truncation is desired } /// @dev Get the pool's balance of token0 /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize /// check function balance0() private view returns (uint256) { (bool success, bytes memory data) = token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this))); require(success && data.length >= 32); return abi.decode(data, (uint256)); } /// @dev Get the pool's balance of token1 /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize /// check function balance1() private view returns (uint256) { (bool success, bytes memory data) = token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this))); require(success && data.length >= 32); return abi.decode(data, (uint256)); } /// @inheritdoc IUniswapV3PoolDerivedState function snapshotCumulativesInside(int24 tickLower, int24 tickUpper) external view override noDelegateCall returns ( int56 tickCumulativeInside, uint160 secondsPerLiquidityInsideX128, uint32 secondsInside ) { checkTicks(tickLower, tickUpper); int56 tickCumulativeLower; int56 tickCumulativeUpper; uint160 secondsPerLiquidityOutsideLowerX128; uint160 secondsPerLiquidityOutsideUpperX128; uint32 secondsOutsideLower; uint32 secondsOutsideUpper; { Tick.Info storage lower = ticks[tickLower]; Tick.Info storage upper = ticks[tickUpper]; bool initializedLower; (tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = ( lower.tickCumulativeOutside, lower.secondsPerLiquidityOutsideX128, lower.secondsOutside, lower.initialized ); require(initializedLower); bool initializedUpper; (tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = ( upper.tickCumulativeOutside, upper.secondsPerLiquidityOutsideX128, upper.secondsOutside, upper.initialized ); require(initializedUpper); } Slot0 memory _slot0 = slot0; if (_slot0.tick < tickLower) { return ( tickCumulativeLower - tickCumulativeUpper, secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128, secondsOutsideLower - secondsOutsideUpper ); } else if (_slot0.tick < tickUpper) { uint32 time = _blockTimestamp(); (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) = observations.observeSingle( time, 0, _slot0.tick, _slot0.observationIndex, liquidity, _slot0.observationCardinality ); return ( tickCumulative - tickCumulativeLower - tickCumulativeUpper, secondsPerLiquidityCumulativeX128 - secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128, time - secondsOutsideLower - secondsOutsideUpper ); } else { return ( tickCumulativeUpper - tickCumulativeLower, secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128, secondsOutsideUpper - secondsOutsideLower ); } } /// @inheritdoc IUniswapV3PoolDerivedState function observe(uint32[] calldata secondsAgos) external view override noDelegateCall returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) { return observations.observe( _blockTimestamp(), secondsAgos, slot0.tick, slot0.observationIndex, liquidity, slot0.observationCardinality ); } /// @inheritdoc IUniswapV3PoolActions function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external override lock noDelegateCall { uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event uint16 observationCardinalityNextNew = observations.grow(observationCardinalityNextOld, observationCardinalityNext); slot0.observationCardinalityNext = observationCardinalityNextNew; if (observationCardinalityNextOld != observationCardinalityNextNew) emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew); } /// @inheritdoc IUniswapV3PoolActions /// @dev not locked because it initializes unlocked function initialize(uint160 sqrtPriceX96) external override { require(slot0.sqrtPriceX96 == 0, 'AI'); int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96); (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp()); slot0 = Slot0({ sqrtPriceX96: sqrtPriceX96, tick: tick, observationIndex: 0, observationCardinality: cardinality, observationCardinalityNext: cardinalityNext, feeProtocol: 0, unlocked: true }); emit Initialize(sqrtPriceX96, tick); } struct ModifyPositionParams { // the address that owns the position address owner; // the lower and upper tick of the position int24 tickLower; int24 tickUpper; // any change in liquidity int128 liquidityDelta; } /// @dev Effect some changes to a position /// @param params the position details and the change to the position's liquidity to effect /// @return position a storage pointer referencing the position with the given owner and tick range /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient function _modifyPosition(ModifyPositionParams memory params) private noDelegateCall returns ( Position.Info storage position, int256 amount0, int256 amount1 ) { checkTicks(params.tickLower, params.tickUpper); Slot0 memory _slot0 = slot0; // SLOAD for gas optimization position = _updatePosition( params.owner, params.tickLower, params.tickUpper, params.liquidityDelta, _slot0.tick ); if (params.liquidityDelta != 0) { if (_slot0.tick < params.tickLower) { // current tick is below the passed range; liquidity can only become in range by crossing from left to // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it amount0 = SqrtPriceMath.getAmount0Delta( TickMath.getSqrtRatioAtTick(params.tickLower), TickMath.getSqrtRatioAtTick(params.tickUpper), params.liquidityDelta ); } else if (_slot0.tick < params.tickUpper) { // current tick is inside the passed range uint128 liquidityBefore = liquidity; // SLOAD for gas optimization // write an oracle entry (slot0.observationIndex, slot0.observationCardinality) = observations.write( _slot0.observationIndex, _blockTimestamp(), _slot0.tick, liquidityBefore, _slot0.observationCardinality, _slot0.observationCardinalityNext ); amount0 = SqrtPriceMath.getAmount0Delta( _slot0.sqrtPriceX96, TickMath.getSqrtRatioAtTick(params.tickUpper), params.liquidityDelta ); amount1 = SqrtPriceMath.getAmount1Delta( TickMath.getSqrtRatioAtTick(params.tickLower), _slot0.sqrtPriceX96, params.liquidityDelta ); liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta); } else { // current tick is above the passed range; liquidity can only become in range by crossing from right to // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it amount1 = SqrtPriceMath.getAmount1Delta( TickMath.getSqrtRatioAtTick(params.tickLower), TickMath.getSqrtRatioAtTick(params.tickUpper), params.liquidityDelta ); } } } /// @dev Gets and updates a position with the given liquidity delta /// @param owner the owner of the position /// @param tickLower the lower tick of the position's tick range /// @param tickUpper the upper tick of the position's tick range /// @param tick the current tick, passed to avoid sloads function _updatePosition( address owner, int24 tickLower, int24 tickUpper, int128 liquidityDelta, int24 tick ) private returns (Position.Info storage position) { position = positions.get(owner, tickLower, tickUpper); uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization // if we need to update the ticks, do it bool flippedLower; bool flippedUpper; if (liquidityDelta != 0) { uint32 time = _blockTimestamp(); (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) = observations.observeSingle( time, 0, slot0.tick, slot0.observationIndex, liquidity, slot0.observationCardinality ); flippedLower = ticks.update( tickLower, tick, liquidityDelta, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128, secondsPerLiquidityCumulativeX128, tickCumulative, time, false, maxLiquidityPerTick ); flippedUpper = ticks.update( tickUpper, tick, liquidityDelta, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128, secondsPerLiquidityCumulativeX128, tickCumulative, time, true, maxLiquidityPerTick ); if (flippedLower) { tickBitmap.flipTick(tickLower, tickSpacing); } if (flippedUpper) { tickBitmap.flipTick(tickUpper, tickSpacing); } } (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) = ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128); position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128); // clear any tick data that is no longer needed if (liquidityDelta < 0) { if (flippedLower) { ticks.clear(tickLower); } if (flippedUpper) { ticks.clear(tickUpper); } } } /// @inheritdoc IUniswapV3PoolActions /// @dev noDelegateCall is applied indirectly via _modifyPosition function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external override lock returns (uint256 amount0, uint256 amount1) { require(amount > 0); (, int256 amount0Int, int256 amount1Int) = _modifyPosition( ModifyPositionParams({ owner: recipient, tickLower: tickLower, tickUpper: tickUpper, liquidityDelta: int256(amount).toInt128() }) ); amount0 = uint256(amount0Int); amount1 = uint256(amount1Int); uint256 balance0Before; uint256 balance1Before; if (amount0 > 0) balance0Before = balance0(); if (amount1 > 0) balance1Before = balance1(); IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data); if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0'); if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1'); emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1); } /// @inheritdoc IUniswapV3PoolActions function collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external override lock returns (uint128 amount0, uint128 amount1) { // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1} Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper); amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested; amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested; if (amount0 > 0) { position.tokensOwed0 -= amount0; TransferHelper.safeTransfer(token0, recipient, amount0); } if (amount1 > 0) { position.tokensOwed1 -= amount1; TransferHelper.safeTransfer(token1, recipient, amount1); } emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1); } /// @inheritdoc IUniswapV3PoolActions /// @dev noDelegateCall is applied indirectly via _modifyPosition function burn( int24 tickLower, int24 tickUpper, uint128 amount ) external override lock returns (uint256 amount0, uint256 amount1) { (Position.Info storage position, int256 amount0Int, int256 amount1Int) = _modifyPosition( ModifyPositionParams({ owner: msg.sender, tickLower: tickLower, tickUpper: tickUpper, liquidityDelta: -int256(amount).toInt128() }) ); amount0 = uint256(-amount0Int); amount1 = uint256(-amount1Int); if (amount0 > 0 || amount1 > 0) { (position.tokensOwed0, position.tokensOwed1) = ( position.tokensOwed0 + uint128(amount0), position.tokensOwed1 + uint128(amount1) ); } emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1); } struct SwapCache { // the protocol fee for the input token uint8 feeProtocol; // liquidity at the beginning of the swap uint128 liquidityStart; // the timestamp of the current block uint32 blockTimestamp; // the current value of the tick accumulator, computed only if we cross an initialized tick int56 tickCumulative; // the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick uint160 secondsPerLiquidityCumulativeX128; // whether we've computed and cached the above two accumulators bool computedLatestObservation; } // the top level state of the swap, the results of which are recorded in storage at the end struct SwapState { // the amount remaining to be swapped in/out of the input/output asset int256 amountSpecifiedRemaining; // the amount already swapped out/in of the output/input asset int256 amountCalculated; // current sqrt(price) uint160 sqrtPriceX96; // the tick associated with the current price int24 tick; // the global fee growth of the input token uint256 feeGrowthGlobalX128; // amount of input token paid as protocol fee uint128 protocolFee; // the current liquidity in range uint128 liquidity; } struct StepComputations { // the price at the beginning of the step uint160 sqrtPriceStartX96; // the next tick to swap to from the current tick in the swap direction int24 tickNext; // whether tickNext is initialized or not bool initialized; // sqrt(price) for the next tick (1/0) uint160 sqrtPriceNextX96; // how much is being swapped in in this step uint256 amountIn; // how much is being swapped out uint256 amountOut; // how much fee is being paid in uint256 feeAmount; } /// @inheritdoc IUniswapV3PoolActions function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external override noDelegateCall returns (int256 amount0, int256 amount1) { require(amountSpecified != 0, 'AS'); Slot0 memory slot0Start = slot0; require(slot0Start.unlocked, 'LOK'); require( zeroForOne ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO, 'SPL' ); slot0.unlocked = false; SwapCache memory cache = SwapCache({ liquidityStart: liquidity, blockTimestamp: _blockTimestamp(), feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4), secondsPerLiquidityCumulativeX128: 0, tickCumulative: 0, computedLatestObservation: false }); bool exactInput = amountSpecified > 0; SwapState memory state = SwapState({ amountSpecifiedRemaining: amountSpecified, amountCalculated: 0, sqrtPriceX96: slot0Start.sqrtPriceX96, tick: slot0Start.tick, feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128, protocolFee: 0, liquidity: cache.liquidityStart }); // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) { StepComputations memory step; step.sqrtPriceStartX96 = state.sqrtPriceX96; (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord( state.tick, tickSpacing, zeroForOne ); // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds if (step.tickNext < TickMath.MIN_TICK) { step.tickNext = TickMath.MIN_TICK; } else if (step.tickNext > TickMath.MAX_TICK) { step.tickNext = TickMath.MAX_TICK; } // get the price for the next tick step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext); // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep( state.sqrtPriceX96, (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96) ? sqrtPriceLimitX96 : step.sqrtPriceNextX96, state.liquidity, state.amountSpecifiedRemaining, fee ); if (exactInput) { state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256(); state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256()); } else { state.amountSpecifiedRemaining += step.amountOut.toInt256(); state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256()); } // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee if (cache.feeProtocol > 0) { uint256 delta = step.feeAmount / cache.feeProtocol; step.feeAmount -= delta; state.protocolFee += uint128(delta); } // update global fee tracker if (state.liquidity > 0) state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity); // shift tick if we reached the next price if (state.sqrtPriceX96 == step.sqrtPriceNextX96) { // if the tick is initialized, run the tick transition if (step.initialized) { // check for the placeholder value, which we replace with the actual value the first time the swap // crosses an initialized tick if (!cache.computedLatestObservation) { (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle( cache.blockTimestamp, 0, slot0Start.tick, slot0Start.observationIndex, cache.liquidityStart, slot0Start.observationCardinality ); cache.computedLatestObservation = true; } int128 liquidityNet = ticks.cross( step.tickNext, (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128), (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128), cache.secondsPerLiquidityCumulativeX128, cache.tickCumulative, cache.blockTimestamp ); // if we're moving leftward, we interpret liquidityNet as the opposite sign // safe because liquidityNet cannot be type(int128).min if (zeroForOne) liquidityNet = -liquidityNet; state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet); } state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext; } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) { // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96); } } // update tick and write an oracle entry if the tick change if (state.tick != slot0Start.tick) { (uint16 observationIndex, uint16 observationCardinality) = observations.write( slot0Start.observationIndex, cache.blockTimestamp, slot0Start.tick, cache.liquidityStart, slot0Start.observationCardinality, slot0Start.observationCardinalityNext ); (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = ( state.sqrtPriceX96, state.tick, observationIndex, observationCardinality ); } else { // otherwise just update the price slot0.sqrtPriceX96 = state.sqrtPriceX96; } // update liquidity if it changed if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity; // update fee growth global and, if necessary, protocol fees // overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees if (zeroForOne) { feeGrowthGlobal0X128 = state.feeGrowthGlobalX128; if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee; } else { feeGrowthGlobal1X128 = state.feeGrowthGlobalX128; if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee; } (amount0, amount1) = zeroForOne == exactInput ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated) : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining); // do the transfers and collect payment if (zeroForOne) { if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1)); uint256 balance0Before = balance0(); IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data); require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA'); } else { if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0)); uint256 balance1Before = balance1(); IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data); require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA'); } emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick); slot0.unlocked = true; } /// @inheritdoc IUniswapV3PoolActions function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external override lock noDelegateCall { uint128 _liquidity = liquidity; require(_liquidity > 0, 'L'); uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6); uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6); uint256 balance0Before = balance0(); uint256 balance1Before = balance1(); if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0); if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1); IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data); uint256 balance0After = balance0(); uint256 balance1After = balance1(); require(balance0Before.add(fee0) <= balance0After, 'F0'); require(balance1Before.add(fee1) <= balance1After, 'F1'); // sub is safe because we know balanceAfter is gt balanceBefore by at least fee uint256 paid0 = balance0After - balance0Before; uint256 paid1 = balance1After - balance1Before; if (paid0 > 0) { uint8 feeProtocol0 = slot0.feeProtocol % 16; uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0; if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0); feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity); } if (paid1 > 0) { uint8 feeProtocol1 = slot0.feeProtocol >> 4; uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1; if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1); feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity); } emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1); } /// @inheritdoc IUniswapV3PoolOwnerActions function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner { require( (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) && (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10)) ); uint8 feeProtocolOld = slot0.feeProtocol; slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4); emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1); } /// @inheritdoc IUniswapV3PoolOwnerActions function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) { amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested; amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested; if (amount0 > 0) { if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings protocolFees.token0 -= amount0; TransferHelper.safeTransfer(token0, recipient, amount0); } if (amount1 > 0) { if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings protocolFees.token1 -= amount1; TransferHelper.safeTransfer(token1, recipient, amount1); } emit CollectProtocol(msg.sender, recipient, amount0, amount1); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title An interface for a contract that is capable of deploying Uniswap V3 Pools /// @notice A contract that constructs a pool must implement this to pass arguments to the pool /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain interface IUniswapV3PoolDeployer { /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation. /// @dev Called by the pool constructor to fetch the parameters of the pool /// Returns factory The factory address /// Returns token0 The first token of the pool by address sort order /// Returns token1 The second token of the pool by address sort order /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// Returns tickSpacing The minimum number of ticks between initialized ticks function parameters() external view returns ( address factory, address token0, address token1, uint24 fee, int24 tickSpacing ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './pool/IUniswapV3PoolImmutables.sol'; import './pool/IUniswapV3PoolState.sol'; import './pool/IUniswapV3PoolDerivedState.sol'; import './pool/IUniswapV3PoolActions.sol'; import './pool/IUniswapV3PoolOwnerActions.sol'; import './pool/IUniswapV3PoolEvents.sol'; /// @title The interface for a Uniswap V3 Pool /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform /// to the ERC20 specification /// @dev The pool interface is broken up into many smaller pieces interface IUniswapV3Pool is IUniswapV3PoolImmutables, IUniswapV3PoolState, IUniswapV3PoolDerivedState, IUniswapV3PoolActions, IUniswapV3PoolOwnerActions, IUniswapV3PoolEvents { } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.0; /// @title Optimized overflow and underflow safe math operations /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost library LowGasSafeMath { /// @notice Returns x + y, reverts if sum overflows uint256 /// @param x The augend /// @param y The addend /// @return z The sum of x and y function add(uint256 x, uint256 y) internal pure returns (uint256 z) { require((z = x + y) >= x); } /// @notice Returns x - y, reverts if underflows /// @param x The minuend /// @param y The subtrahend /// @return z The difference of x and y function sub(uint256 x, uint256 y) internal pure returns (uint256 z) { require((z = x - y) <= x); } /// @notice Returns x * y, reverts if overflows /// @param x The multiplicand /// @param y The multiplier /// @return z The product of x and y function mul(uint256 x, uint256 y) internal pure returns (uint256 z) { require(x == 0 || (z = x * y) / x == y); } /// @notice Returns x + y, reverts if overflows or underflows /// @param x The augend /// @param y The addend /// @return z The sum of x and y function add(int256 x, int256 y) internal pure returns (int256 z) { require((z = x + y) >= x == (y >= 0)); } /// @notice Returns x - y, reverts if overflows or underflows /// @param x The minuend /// @param y The subtrahend /// @return z The difference of x and y function sub(int256 x, int256 y) internal pure returns (int256 z) { require((z = x - y) <= x == (y >= 0)); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Safe casting methods /// @notice Contains methods for safely casting between types library SafeCast { /// @notice Cast a uint256 to a uint160, revert on overflow /// @param y The uint256 to be downcasted /// @return z The downcasted integer, now type uint160 function toUint160(uint256 y) internal pure returns (uint160 z) { require((z = uint160(y)) == y); } /// @notice Cast a int256 to a int128, revert on overflow or underflow /// @param y The int256 to be downcasted /// @return z The downcasted integer, now type int128 function toInt128(int256 y) internal pure returns (int128 z) { require((z = int128(y)) == y); } /// @notice Cast a uint256 to a int256, revert on overflow /// @param y The uint256 to be casted /// @return z The casted integer, now type int256 function toInt256(uint256 y) internal pure returns (int256 z) { require(y < 2**255); z = int256(y); } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './LowGasSafeMath.sol'; import './SafeCast.sol'; import './TickMath.sol'; import './LiquidityMath.sol'; /// @title Tick /// @notice Contains functions for managing tick processes and relevant calculations library Tick { using LowGasSafeMath for int256; using SafeCast for int256; // info stored for each initialized individual tick struct Info { // the total position liquidity that references this tick uint128 liquidityGross; // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left), int128 liquidityNet; // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick) // only has relative meaning, not absolute — the value depends on when the tick is initialized uint256 feeGrowthOutside0X128; uint256 feeGrowthOutside1X128; // the cumulative tick value on the other side of the tick int56 tickCumulativeOutside; // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick) // only has relative meaning, not absolute — the value depends on when the tick is initialized uint160 secondsPerLiquidityOutsideX128; // the seconds spent on the other side of the tick (relative to the current tick) // only has relative meaning, not absolute — the value depends on when the tick is initialized uint32 secondsOutside; // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0 // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks bool initialized; } /// @notice Derives max liquidity per tick from given tick spacing /// @dev Executed within the pool constructor /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing` /// e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ... /// @return The max liquidity per tick function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) { int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing; int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing; uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1; return type(uint128).max / numTicks; } /// @notice Retrieves fee growth data /// @param self The mapping containing all tick information for initialized ticks /// @param tickLower The lower tick boundary of the position /// @param tickUpper The upper tick boundary of the position /// @param tickCurrent The current tick /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0 /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1 /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries function getFeeGrowthInside( mapping(int24 => Tick.Info) storage self, int24 tickLower, int24 tickUpper, int24 tickCurrent, uint256 feeGrowthGlobal0X128, uint256 feeGrowthGlobal1X128 ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) { Info storage lower = self[tickLower]; Info storage upper = self[tickUpper]; // calculate fee growth below uint256 feeGrowthBelow0X128; uint256 feeGrowthBelow1X128; if (tickCurrent >= tickLower) { feeGrowthBelow0X128 = lower.feeGrowthOutside0X128; feeGrowthBelow1X128 = lower.feeGrowthOutside1X128; } else { feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128; feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128; } // calculate fee growth above uint256 feeGrowthAbove0X128; uint256 feeGrowthAbove1X128; if (tickCurrent < tickUpper) { feeGrowthAbove0X128 = upper.feeGrowthOutside0X128; feeGrowthAbove1X128 = upper.feeGrowthOutside1X128; } else { feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128; feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128; } feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128; feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128; } /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa /// @param self The mapping containing all tick information for initialized ticks /// @param tick The tick that will be updated /// @param tickCurrent The current tick /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left) /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0 /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1 /// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool /// @param time The current block timestamp cast to a uint32 /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick /// @param maxLiquidity The maximum liquidity allocation for a single tick /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa function update( mapping(int24 => Tick.Info) storage self, int24 tick, int24 tickCurrent, int128 liquidityDelta, uint256 feeGrowthGlobal0X128, uint256 feeGrowthGlobal1X128, uint160 secondsPerLiquidityCumulativeX128, int56 tickCumulative, uint32 time, bool upper, uint128 maxLiquidity ) internal returns (bool flipped) { Tick.Info storage info = self[tick]; uint128 liquidityGrossBefore = info.liquidityGross; uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta); require(liquidityGrossAfter <= maxLiquidity, 'LO'); flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0); if (liquidityGrossBefore == 0) { // by convention, we assume that all growth before a tick was initialized happened _below_ the tick if (tick <= tickCurrent) { info.feeGrowthOutside0X128 = feeGrowthGlobal0X128; info.feeGrowthOutside1X128 = feeGrowthGlobal1X128; info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128; info.tickCumulativeOutside = tickCumulative; info.secondsOutside = time; } info.initialized = true; } info.liquidityGross = liquidityGrossAfter; // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed) info.liquidityNet = upper ? int256(info.liquidityNet).sub(liquidityDelta).toInt128() : int256(info.liquidityNet).add(liquidityDelta).toInt128(); } /// @notice Clears tick data /// @param self The mapping containing all initialized tick information for initialized ticks /// @param tick The tick that will be cleared function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal { delete self[tick]; } /// @notice Transitions to next tick as needed by price movement /// @param self The mapping containing all tick information for initialized ticks /// @param tick The destination tick of the transition /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0 /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1 /// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity /// @param time The current block.timestamp /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left) function cross( mapping(int24 => Tick.Info) storage self, int24 tick, uint256 feeGrowthGlobal0X128, uint256 feeGrowthGlobal1X128, uint160 secondsPerLiquidityCumulativeX128, int56 tickCumulative, uint32 time ) internal returns (int128 liquidityNet) { Tick.Info storage info = self[tick]; info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128; info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128; info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128; info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside; info.secondsOutside = time - info.secondsOutside; liquidityNet = info.liquidityNet; } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './BitMath.sol'; /// @title Packed tick initialized state library /// @notice Stores a packed mapping of tick index to its initialized state /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word. library TickBitmap { /// @notice Computes the position in the mapping where the initialized bit for a tick lives /// @param tick The tick for which to compute the position /// @return wordPos The key in the mapping containing the word in which the bit is stored /// @return bitPos The bit position in the word where the flag is stored function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) { wordPos = int16(tick >> 8); bitPos = uint8(tick % 256); } /// @notice Flips the initialized state for a given tick from false to true, or vice versa /// @param self The mapping in which to flip the tick /// @param tick The tick to flip /// @param tickSpacing The spacing between usable ticks function flipTick( mapping(int16 => uint256) storage self, int24 tick, int24 tickSpacing ) internal { require(tick % tickSpacing == 0); // ensure that the tick is spaced (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing); uint256 mask = 1 << bitPos; self[wordPos] ^= mask; } /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either /// to the left (less than or equal to) or right (greater than) of the given tick /// @param self The mapping in which to compute the next initialized tick /// @param tick The starting tick /// @param tickSpacing The spacing between usable ticks /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick) /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks function nextInitializedTickWithinOneWord( mapping(int16 => uint256) storage self, int24 tick, int24 tickSpacing, bool lte ) internal view returns (int24 next, bool initialized) { int24 compressed = tick / tickSpacing; if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity if (lte) { (int16 wordPos, uint8 bitPos) = position(compressed); // all the 1s at or to the right of the current bitPos uint256 mask = (1 << bitPos) - 1 + (1 << bitPos); uint256 masked = self[wordPos] & mask; // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word initialized = masked != 0; // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick next = initialized ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing : (compressed - int24(bitPos)) * tickSpacing; } else { // start from the word of the next tick, since the current tick state doesn't matter (int16 wordPos, uint8 bitPos) = position(compressed + 1); // all the 1s at or to the left of the bitPos uint256 mask = ~((1 << bitPos) - 1); uint256 masked = self[wordPos] & mask; // if there are no initialized ticks to the left of the current tick, return leftmost in the word initialized = masked != 0; // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick next = initialized ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing; } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './FullMath.sol'; import './FixedPoint128.sol'; import './LiquidityMath.sol'; /// @title Position /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary /// @dev Positions store additional state for tracking fees owed to the position library Position { // info stored for each user's position struct Info { // the amount of liquidity owned by this position uint128 liquidity; // fee growth per unit of liquidity as of the last update to liquidity or fees owed uint256 feeGrowthInside0LastX128; uint256 feeGrowthInside1LastX128; // the fees owed to the position owner in token0/token1 uint128 tokensOwed0; uint128 tokensOwed1; } /// @notice Returns the Info struct of a position, given an owner and position boundaries /// @param self The mapping containing all user positions /// @param owner The address of the position owner /// @param tickLower The lower tick boundary of the position /// @param tickUpper The upper tick boundary of the position /// @return position The position info struct of the given owners' position function get( mapping(bytes32 => Info) storage self, address owner, int24 tickLower, int24 tickUpper ) internal view returns (Position.Info storage position) { position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))]; } /// @notice Credits accumulated fees to a user's position /// @param self The individual position to update /// @param liquidityDelta The change in pool liquidity as a result of the position update /// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries /// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries function update( Info storage self, int128 liquidityDelta, uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128 ) internal { Info memory _self = self; uint128 liquidityNext; if (liquidityDelta == 0) { require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions liquidityNext = _self.liquidity; } else { liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta); } // calculate accumulated fees uint128 tokensOwed0 = uint128( FullMath.mulDiv( feeGrowthInside0X128 - _self.feeGrowthInside0LastX128, _self.liquidity, FixedPoint128.Q128 ) ); uint128 tokensOwed1 = uint128( FullMath.mulDiv( feeGrowthInside1X128 - _self.feeGrowthInside1LastX128, _self.liquidity, FixedPoint128.Q128 ) ); // update the position if (liquidityDelta != 0) self.liquidity = liquidityNext; self.feeGrowthInside0LastX128 = feeGrowthInside0X128; self.feeGrowthInside1LastX128 = feeGrowthInside1X128; if (tokensOwed0 > 0 || tokensOwed1 > 0) { // overflow is acceptable, have to withdraw before you hit type(uint128).max fees self.tokensOwed0 += tokensOwed0; self.tokensOwed1 += tokensOwed1; } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; /// @title Oracle /// @notice Provides price and liquidity data useful for a wide variety of system designs /// @dev Instances of stored oracle data, "observations", are collected in the oracle array /// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the /// maximum length of the oracle array. New slots will be added when the array is fully populated. /// Observations are overwritten when the full length of the oracle array is populated. /// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe() library Oracle { struct Observation { // the block timestamp of the observation uint32 blockTimestamp; // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized int56 tickCumulative; // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized uint160 secondsPerLiquidityCumulativeX128; // whether or not the observation is initialized bool initialized; } /// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values /// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows /// @param last The specified observation to be transformed /// @param blockTimestamp The timestamp of the new observation /// @param tick The active tick at the time of the new observation /// @param liquidity The total in-range liquidity at the time of the new observation /// @return Observation The newly populated observation function transform( Observation memory last, uint32 blockTimestamp, int24 tick, uint128 liquidity ) private pure returns (Observation memory) { uint32 delta = blockTimestamp - last.blockTimestamp; return Observation({ blockTimestamp: blockTimestamp, tickCumulative: last.tickCumulative + int56(tick) * delta, secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 + ((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)), initialized: true }); } /// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array /// @param self The stored oracle array /// @param time The time of the oracle initialization, via block.timestamp truncated to uint32 /// @return cardinality The number of populated elements in the oracle array /// @return cardinalityNext The new length of the oracle array, independent of population function initialize(Observation[65535] storage self, uint32 time) internal returns (uint16 cardinality, uint16 cardinalityNext) { self[0] = Observation({ blockTimestamp: time, tickCumulative: 0, secondsPerLiquidityCumulativeX128: 0, initialized: true }); return (1, 1); } /// @notice Writes an oracle observation to the array /// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally. /// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality /// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering. /// @param self The stored oracle array /// @param index The index of the observation that was most recently written to the observations array /// @param blockTimestamp The timestamp of the new observation /// @param tick The active tick at the time of the new observation /// @param liquidity The total in-range liquidity at the time of the new observation /// @param cardinality The number of populated elements in the oracle array /// @param cardinalityNext The new length of the oracle array, independent of population /// @return indexUpdated The new index of the most recently written element in the oracle array /// @return cardinalityUpdated The new cardinality of the oracle array function write( Observation[65535] storage self, uint16 index, uint32 blockTimestamp, int24 tick, uint128 liquidity, uint16 cardinality, uint16 cardinalityNext ) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) { Observation memory last = self[index]; // early return if we've already written an observation this block if (last.blockTimestamp == blockTimestamp) return (index, cardinality); // if the conditions are right, we can bump the cardinality if (cardinalityNext > cardinality && index == (cardinality - 1)) { cardinalityUpdated = cardinalityNext; } else { cardinalityUpdated = cardinality; } indexUpdated = (index + 1) % cardinalityUpdated; self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity); } /// @notice Prepares the oracle array to store up to `next` observations /// @param self The stored oracle array /// @param current The current next cardinality of the oracle array /// @param next The proposed next cardinality which will be populated in the oracle array /// @return next The next cardinality which will be populated in the oracle array function grow( Observation[65535] storage self, uint16 current, uint16 next ) internal returns (uint16) { require(current > 0, 'I'); // no-op if the passed next value isn't greater than the current next value if (next <= current) return current; // store in each slot to prevent fresh SSTOREs in swaps // this data will not be used because the initialized boolean is still false for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1; return next; } /// @notice comparator for 32-bit timestamps /// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time /// @param time A timestamp truncated to 32 bits /// @param a A comparison timestamp from which to determine the relative position of `time` /// @param b From which to determine the relative position of `time` /// @return bool Whether `a` is chronologically <= `b` function lte( uint32 time, uint32 a, uint32 b ) private pure returns (bool) { // if there hasn't been overflow, no need to adjust if (a <= time && b <= time) return a <= b; uint256 aAdjusted = a > time ? a : a + 2**32; uint256 bAdjusted = b > time ? b : b + 2**32; return aAdjusted <= bAdjusted; } /// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied. /// The result may be the same observation, or adjacent observations. /// @dev The answer must be contained in the array, used when the target is located within the stored observation /// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation /// @param self The stored oracle array /// @param time The current block.timestamp /// @param target The timestamp at which the reserved observation should be for /// @param index The index of the observation that was most recently written to the observations array /// @param cardinality The number of populated elements in the oracle array /// @return beforeOrAt The observation recorded before, or at, the target /// @return atOrAfter The observation recorded at, or after, the target function binarySearch( Observation[65535] storage self, uint32 time, uint32 target, uint16 index, uint16 cardinality ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) { uint256 l = (index + 1) % cardinality; // oldest observation uint256 r = l + cardinality - 1; // newest observation uint256 i; while (true) { i = (l + r) / 2; beforeOrAt = self[i % cardinality]; // we've landed on an uninitialized tick, keep searching higher (more recently) if (!beforeOrAt.initialized) { l = i + 1; continue; } atOrAfter = self[(i + 1) % cardinality]; bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target); // check if we've found the answer! if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break; if (!targetAtOrAfter) r = i - 1; else l = i + 1; } } /// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied /// @dev Assumes there is at least 1 initialized observation. /// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp. /// @param self The stored oracle array /// @param time The current block.timestamp /// @param target The timestamp at which the reserved observation should be for /// @param tick The active tick at the time of the returned or simulated observation /// @param index The index of the observation that was most recently written to the observations array /// @param liquidity The total pool liquidity at the time of the call /// @param cardinality The number of populated elements in the oracle array /// @return beforeOrAt The observation which occurred at, or before, the given timestamp /// @return atOrAfter The observation which occurred at, or after, the given timestamp function getSurroundingObservations( Observation[65535] storage self, uint32 time, uint32 target, int24 tick, uint16 index, uint128 liquidity, uint16 cardinality ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) { // optimistically set before to the newest observation beforeOrAt = self[index]; // if the target is chronologically at or after the newest observation, we can early return if (lte(time, beforeOrAt.blockTimestamp, target)) { if (beforeOrAt.blockTimestamp == target) { // if newest observation equals target, we're in the same block, so we can ignore atOrAfter return (beforeOrAt, atOrAfter); } else { // otherwise, we need to transform return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity)); } } // now, set before to the oldest observation beforeOrAt = self[(index + 1) % cardinality]; if (!beforeOrAt.initialized) beforeOrAt = self[0]; // ensure that the target is chronologically at or after the oldest observation require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD'); // if we've reached this point, we have to binary search return binarySearch(self, time, target, index, cardinality); } /// @dev Reverts if an observation at or before the desired observation timestamp does not exist. /// 0 may be passed as `secondsAgo' to return the current cumulative values. /// If called with a timestamp falling between two observations, returns the counterfactual accumulator values /// at exactly the timestamp between the two observations. /// @param self The stored oracle array /// @param time The current block timestamp /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation /// @param tick The current tick /// @param index The index of the observation that was most recently written to the observations array /// @param liquidity The current in-range pool liquidity /// @param cardinality The number of populated elements in the oracle array /// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo` /// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo` function observeSingle( Observation[65535] storage self, uint32 time, uint32 secondsAgo, int24 tick, uint16 index, uint128 liquidity, uint16 cardinality ) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) { if (secondsAgo == 0) { Observation memory last = self[index]; if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity); return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128); } uint32 target = time - secondsAgo; (Observation memory beforeOrAt, Observation memory atOrAfter) = getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality); if (target == beforeOrAt.blockTimestamp) { // we're at the left boundary return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128); } else if (target == atOrAfter.blockTimestamp) { // we're at the right boundary return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128); } else { // we're in the middle uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp; uint32 targetDelta = target - beforeOrAt.blockTimestamp; return ( beforeOrAt.tickCumulative + ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) * targetDelta, beforeOrAt.secondsPerLiquidityCumulativeX128 + uint160( (uint256( atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128 ) * targetDelta) / observationTimeDelta ) ); } } /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos` /// @dev Reverts if `secondsAgos` > oldest observation /// @param self The stored oracle array /// @param time The current block.timestamp /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation /// @param tick The current tick /// @param index The index of the observation that was most recently written to the observations array /// @param liquidity The current in-range pool liquidity /// @param cardinality The number of populated elements in the oracle array /// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo` /// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo` function observe( Observation[65535] storage self, uint32 time, uint32[] memory secondsAgos, int24 tick, uint16 index, uint128 liquidity, uint16 cardinality ) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) { require(cardinality > 0, 'I'); tickCumulatives = new int56[](secondsAgos.length); secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length); for (uint256 i = 0; i < secondsAgos.length; i++) { (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle( self, time, secondsAgos[i], tick, index, liquidity, cardinality ); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.4.0; /// @title Contains 512-bit math functions /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits library FullMath { /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv function mulDiv( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = a * b // Compute the product mod 2**256 and mod 2**256 - 1 // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0 uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(a, b, not(0)) prod0 := mul(a, b) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division if (prod1 == 0) { require(denominator > 0); assembly { result := div(prod0, denominator) } return result; } // Make sure the result is less than 2**256. // Also prevents denominator == 0 require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0] // Compute remainder using mulmod uint256 remainder; assembly { remainder := mulmod(a, b, denominator) } // Subtract 256 bit number from 512 bit number assembly { prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator // Compute largest power of two divisor of denominator. // Always >= 1. uint256 twos = -denominator & denominator; // Divide denominator by power of two assembly { denominator := div(denominator, twos) } // Divide [prod1 prod0] by the factors of two assembly { prod0 := div(prod0, twos) } // Shift in bits from prod1 into prod0. For this we need // to flip `twos` such that it is 2**256 / twos. // If twos is zero, then it becomes one assembly { twos := add(div(sub(0, twos), twos), 1) } prod0 |= prod1 * twos; // Invert denominator mod 2**256 // Now that denominator is an odd number, it has an inverse // modulo 2**256 such that denominator * inv = 1 mod 2**256. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, denominator * inv = 1 mod 2**4 uint256 inv = (3 * denominator) ^ 2; // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv *= 2 - denominator * inv; // inverse mod 2**8 inv *= 2 - denominator * inv; // inverse mod 2**16 inv *= 2 - denominator * inv; // inverse mod 2**32 inv *= 2 - denominator * inv; // inverse mod 2**64 inv *= 2 - denominator * inv; // inverse mod 2**128 inv *= 2 - denominator * inv; // inverse mod 2**256 // Because the division is now exact we can divide by multiplying // with the modular inverse of denominator. This will give us the // correct result modulo 2**256. Since the precoditions guarantee // that the outcome is less than 2**256, this is the final result. // We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inv; return result; } /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result function mulDivRoundingUp( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { result = mulDiv(a, b, denominator); if (mulmod(a, b, denominator) > 0) { require(result < type(uint256).max); result++; } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint128 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) library FixedPoint128 { uint256 internal constant Q128 = 0x100000000000000000000000000000000; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.6.0; import '../interfaces/IERC20Minimal.sol'; /// @title TransferHelper /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false library TransferHelper { /// @notice Transfers tokens from msg.sender to a recipient /// @dev Calls transfer on token contract, errors with TF if transfer fails /// @param token The contract address of the token which will be transferred /// @param to The recipient of the transfer /// @param value The value of the transfer function safeTransfer( address token, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF'); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math library for computing sqrt prices from ticks and vice versa /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports /// prices between 2**-128 and 2**128 library TickMath { /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128 int24 internal constant MIN_TICK = -887272; /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128 int24 internal constant MAX_TICK = -MIN_TICK; /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK) uint160 internal constant MIN_SQRT_RATIO = 4295128739; /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK) uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342; /// @notice Calculates sqrt(1.0001^tick) * 2^96 /// @dev Throws if |tick| > max tick /// @param tick The input tick for the above formula /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0) /// at the given tick function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) { uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick)); require(absTick <= uint256(MAX_TICK), 'T'); uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000; if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128; if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128; if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128; if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128; if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128; if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128; if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128; if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128; if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128; if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128; if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128; if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128; if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128; if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128; if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128; if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128; if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128; if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128; if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128; if (tick > 0) ratio = type(uint256).max / ratio; // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96. // we then downcast because we know the result always fits within 160 bits due to our tick input constraint // we round up in the division so getTickAtSqrtRatio of the output price is always consistent sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1)); } /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may /// ever return. /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96 /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) { // second inequality must be < because the price can never reach the price at the max tick require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R'); uint256 ratio = uint256(sqrtPriceX96) << 32; uint256 r = ratio; uint256 msb = 0; assembly { let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(5, gt(r, 0xFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(4, gt(r, 0xFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(3, gt(r, 0xFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(2, gt(r, 0xF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(1, gt(r, 0x3)) msb := or(msb, f) r := shr(f, r) } assembly { let f := gt(r, 0x1) msb := or(msb, f) } if (msb >= 128) r = ratio >> (msb - 127); else r = ratio << (127 - msb); int256 log_2 = (int256(msb) - 128) << 64; assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(63, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(62, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(61, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(60, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(59, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(58, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(57, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(56, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(55, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(54, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(53, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(52, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(51, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(50, f)) } int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128); int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128); tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math library for liquidity library LiquidityMath { /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows /// @param x The liquidity before change /// @param y The delta by which liquidity should be changed /// @return z The liquidity delta function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) { if (y < 0) { require((z = x - uint128(-y)) < x, 'LS'); } else { require((z = x + uint128(y)) >= x, 'LA'); } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './LowGasSafeMath.sol'; import './SafeCast.sol'; import './FullMath.sol'; import './UnsafeMath.sol'; import './FixedPoint96.sol'; /// @title Functions based on Q64.96 sqrt price and liquidity /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas library SqrtPriceMath { using LowGasSafeMath for uint256; using SafeCast for uint256; /// @notice Gets the next sqrt price given a delta of token0 /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the /// price less in order to not send too much output. /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96), /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount). /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta /// @param liquidity The amount of usable liquidity /// @param amount How much of token0 to add or remove from virtual reserves /// @param add Whether to add or remove the amount of token0 /// @return The price after adding or removing amount, depending on add function getNextSqrtPriceFromAmount0RoundingUp( uint160 sqrtPX96, uint128 liquidity, uint256 amount, bool add ) internal pure returns (uint160) { // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price if (amount == 0) return sqrtPX96; uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION; if (add) { uint256 product; if ((product = amount * sqrtPX96) / amount == sqrtPX96) { uint256 denominator = numerator1 + product; if (denominator >= numerator1) // always fits in 160 bits return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator)); } return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount))); } else { uint256 product; // if the product overflows, we know the denominator underflows // in addition, we must check that the denominator does not underflow require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product); uint256 denominator = numerator1 - product; return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160(); } } /// @notice Gets the next sqrt price given a delta of token1 /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the /// price less in order to not send too much output. /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta /// @param liquidity The amount of usable liquidity /// @param amount How much of token1 to add, or remove, from virtual reserves /// @param add Whether to add, or remove, the amount of token1 /// @return The price after adding or removing `amount` function getNextSqrtPriceFromAmount1RoundingDown( uint160 sqrtPX96, uint128 liquidity, uint256 amount, bool add ) internal pure returns (uint160) { // if we're adding (subtracting), rounding down requires rounding the quotient down (up) // in both cases, avoid a mulDiv for most inputs if (add) { uint256 quotient = ( amount <= type(uint160).max ? (amount << FixedPoint96.RESOLUTION) / liquidity : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity) ); return uint256(sqrtPX96).add(quotient).toUint160(); } else { uint256 quotient = ( amount <= type(uint160).max ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity) : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity) ); require(sqrtPX96 > quotient); // always fits 160 bits return uint160(sqrtPX96 - quotient); } } /// @notice Gets the next sqrt price given an input amount of token0 or token1 /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount /// @param liquidity The amount of usable liquidity /// @param amountIn How much of token0, or token1, is being swapped in /// @param zeroForOne Whether the amount in is token0 or token1 /// @return sqrtQX96 The price after adding the input amount to token0 or token1 function getNextSqrtPriceFromInput( uint160 sqrtPX96, uint128 liquidity, uint256 amountIn, bool zeroForOne ) internal pure returns (uint160 sqrtQX96) { require(sqrtPX96 > 0); require(liquidity > 0); // round to make sure that we don't pass the target price return zeroForOne ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true) : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true); } /// @notice Gets the next sqrt price given an output amount of token0 or token1 /// @dev Throws if price or liquidity are 0 or the next price is out of bounds /// @param sqrtPX96 The starting price before accounting for the output amount /// @param liquidity The amount of usable liquidity /// @param amountOut How much of token0, or token1, is being swapped out /// @param zeroForOne Whether the amount out is token0 or token1 /// @return sqrtQX96 The price after removing the output amount of token0 or token1 function getNextSqrtPriceFromOutput( uint160 sqrtPX96, uint128 liquidity, uint256 amountOut, bool zeroForOne ) internal pure returns (uint160 sqrtQX96) { require(sqrtPX96 > 0); require(liquidity > 0); // round to make sure that we pass the target price return zeroForOne ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false) : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false); } /// @notice Gets the amount0 delta between two prices /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper), /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower)) /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The amount of usable liquidity /// @param roundUp Whether to round the amount up or down /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices function getAmount0Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity, bool roundUp ) internal pure returns (uint256 amount0) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION; uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96; require(sqrtRatioAX96 > 0); return roundUp ? UnsafeMath.divRoundingUp( FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96), sqrtRatioAX96 ) : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96; } /// @notice Gets the amount1 delta between two prices /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower)) /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The amount of usable liquidity /// @param roundUp Whether to round the amount up, or down /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices function getAmount1Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity, bool roundUp ) internal pure returns (uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return roundUp ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96) : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96); } /// @notice Helper that gets signed token0 delta /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The change in liquidity for which to compute the amount0 delta /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices function getAmount0Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, int128 liquidity ) internal pure returns (int256 amount0) { return liquidity < 0 ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256() : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256(); } /// @notice Helper that gets signed token1 delta /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The change in liquidity for which to compute the amount1 delta /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices function getAmount1Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, int128 liquidity ) internal pure returns (int256 amount1) { return liquidity < 0 ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256() : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256(); } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './FullMath.sol'; import './SqrtPriceMath.sol'; /// @title Computes the result of a swap within ticks /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick. library SwapMath { /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive /// @param sqrtRatioCurrentX96 The current sqrt price of the pool /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred /// @param liquidity The usable liquidity /// @param amountRemaining How much input or output amount is remaining to be swapped in/out /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap /// @return feeAmount The amount of input that will be taken as a fee function computeSwapStep( uint160 sqrtRatioCurrentX96, uint160 sqrtRatioTargetX96, uint128 liquidity, int256 amountRemaining, uint24 feePips ) internal pure returns ( uint160 sqrtRatioNextX96, uint256 amountIn, uint256 amountOut, uint256 feeAmount ) { bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96; bool exactIn = amountRemaining >= 0; if (exactIn) { uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6); amountIn = zeroForOne ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true) : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true); if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96; else sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput( sqrtRatioCurrentX96, liquidity, amountRemainingLessFee, zeroForOne ); } else { amountOut = zeroForOne ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false) : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false); if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96; else sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput( sqrtRatioCurrentX96, liquidity, uint256(-amountRemaining), zeroForOne ); } bool max = sqrtRatioTargetX96 == sqrtRatioNextX96; // get the input/output amounts if (zeroForOne) { amountIn = max && exactIn ? amountIn : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true); amountOut = max && !exactIn ? amountOut : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false); } else { amountIn = max && exactIn ? amountIn : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true); amountOut = max && !exactIn ? amountOut : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false); } // cap the output amount to not exceed the remaining output amount if (!exactIn && amountOut > uint256(-amountRemaining)) { amountOut = uint256(-amountRemaining); } if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) { // we didn't reach the target, so take the remainder of the maximum input as fee feeAmount = uint256(amountRemaining) - amountIn; } else { feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips); } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Minimal ERC20 interface for Uniswap /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3 interface IERC20Minimal { /// @notice Returns the balance of a token /// @param account The account for which to look up the number of tokens it has, i.e. its balance /// @return The number of tokens held by the account function balanceOf(address account) external view returns (uint256); /// @notice Transfers the amount of token from the `msg.sender` to the recipient /// @param recipient The account that will receive the amount transferred /// @param amount The number of tokens to send from the sender to the recipient /// @return Returns true for a successful transfer, false for an unsuccessful transfer function transfer(address recipient, uint256 amount) external returns (bool); /// @notice Returns the current allowance given to a spender by an owner /// @param owner The account of the token owner /// @param spender The account of the token spender /// @return The current allowance granted by `owner` to `spender` function allowance(address owner, address spender) external view returns (uint256); /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount` /// @param spender The account which will be allowed to spend a given amount of the owners tokens /// @param amount The amount of tokens allowed to be used by `spender` /// @return Returns true for a successful approval, false for unsuccessful function approve(address spender, uint256 amount) external returns (bool); /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender` /// @param sender The account from which the transfer will be initiated /// @param recipient The recipient of the transfer /// @param amount The amount of the transfer /// @return Returns true for a successful transfer, false for unsuccessful function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`. /// @param from The account from which the tokens were sent, i.e. the balance decreased /// @param to The account to which the tokens were sent, i.e. the balance increased /// @param value The amount of tokens that were transferred event Transfer(address indexed from, address indexed to, uint256 value); /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes. /// @param owner The account that approved spending of its tokens /// @param spender The account for which the spending allowance was modified /// @param value The new allowance from the owner to the spender event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#mint /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface interface IUniswapV3MintCallback { /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint. /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call function uniswapV3MintCallback( uint256 amount0Owed, uint256 amount1Owed, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#swap /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface interface IUniswapV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call function uniswapV3SwapCallback( int256 amount0Delta, int256 amount1Delta, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#flash /// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface interface IUniswapV3FlashCallback { /// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash. /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// @param fee0 The fee amount in token0 due to the pool by the end of the flash /// @param fee1 The fee amount in token1 due to the pool by the end of the flash /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call function uniswapV3FlashCallback( uint256 fee0, uint256 fee1, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that never changes /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values interface IUniswapV3PoolImmutables { /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface /// @return The contract address function factory() external view returns (address); /// @notice The first of the two tokens of the pool, sorted by address /// @return The token contract address function token0() external view returns (address); /// @notice The second of the two tokens of the pool, sorted by address /// @return The token contract address function token1() external view returns (address); /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6 /// @return The fee function fee() external view returns (uint24); /// @notice The pool tick spacing /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ... /// This value is an int24 to avoid casting even though it is always positive. /// @return The tick spacing function tickSpacing() external view returns (int24); /// @notice The maximum amount of position liquidity that can use any tick in the range /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool /// @return The max amount of liquidity per tick function maxLiquidityPerTick() external view returns (uint128); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that can change /// @notice These methods compose the pool's state, and can change with any frequency including multiple times /// per transaction interface IUniswapV3PoolState { /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas /// when accessed externally. /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value /// tick The current tick of the pool, i.e. according to the last tick transition that was run. /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick /// boundary. /// observationIndex The index of the last oracle observation that was written, /// observationCardinality The current maximum number of observations stored in the pool, /// observationCardinalityNext The next maximum number of observations, to be updated when the observation. /// feeProtocol The protocol fee for both tokens of the pool. /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0 /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee. /// unlocked Whether the pool is currently locked to reentrancy function slot0() external view returns ( uint160 sqrtPriceX96, int24 tick, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext, uint8 feeProtocol, bool unlocked ); /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal0X128() external view returns (uint256); /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal1X128() external view returns (uint256); /// @notice The amounts of token0 and token1 that are owed to the protocol /// @dev Protocol fees will never exceed uint128 max in either token function protocolFees() external view returns (uint128 token0, uint128 token1); /// @notice The currently in range liquidity available to the pool /// @dev This value has no relationship to the total liquidity across all ticks function liquidity() external view returns (uint128); /// @notice Look up information about a specific tick in the pool /// @param tick The tick to look up /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or /// tick upper, /// liquidityNet how much liquidity changes when the pool price crosses the tick, /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0, /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1, /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick, /// secondsOutside the seconds spent on the other side of the tick from the current tick, /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false. /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0. /// In addition, these values are only relative and must be used only in comparison to previous snapshots for /// a specific position. function ticks(int24 tick) external view returns ( uint128 liquidityGross, int128 liquidityNet, uint256 feeGrowthOutside0X128, uint256 feeGrowthOutside1X128, int56 tickCumulativeOutside, uint160 secondsPerLiquidityOutsideX128, uint32 secondsOutside, bool initialized ); /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information function tickBitmap(int16 wordPosition) external view returns (uint256); /// @notice Returns the information about a position by the position's key /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper /// @return _liquidity The amount of liquidity in the position, /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke, /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke, /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke, /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke function positions(bytes32 key) external view returns ( uint128 _liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); /// @notice Returns data about a specific observation index /// @param index The element of the observations array to fetch /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time /// ago, rather than at a specific index in the array. /// @return blockTimestamp The timestamp of the observation, /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp, /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp, /// Returns initialized whether the observation has been initialized and the values are safe to use function observations(uint256 index) external view returns ( uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128, bool initialized ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that is not stored /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the /// blockchain. The functions here may have variable gas costs. interface IUniswapV3PoolDerivedState { /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick, /// you must call it with secondsAgos = [3600, 0]. /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio. /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block /// timestamp function observe(uint32[] calldata secondsAgos) external view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s); /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed. /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first /// snapshot is taken and the second snapshot is taken. /// @param tickLower The lower tick of the range /// @param tickUpper The upper tick of the range /// @return tickCumulativeInside The snapshot of the tick accumulator for the range /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range /// @return secondsInside The snapshot of seconds per liquidity for the range function snapshotCumulativesInside(int24 tickLower, int24 tickUpper) external view returns ( int56 tickCumulativeInside, uint160 secondsPerLiquidityInsideX128, uint32 secondsInside ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissionless pool actions /// @notice Contains pool methods that can be called by anyone interface IUniswapV3PoolActions { /// @notice Sets the initial price for the pool /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96 function initialize(uint160 sqrtPriceX96) external; /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends /// on tickLower, tickUpper, the amount of liquidity, and the current price. /// @param recipient The address for which the liquidity will be created /// @param tickLower The lower tick of the position in which to add liquidity /// @param tickUpper The upper tick of the position in which to add liquidity /// @param amount The amount of liquidity to mint /// @param data Any data that should be passed through to the callback /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external returns (uint256 amount0, uint256 amount1); /// @notice Collects tokens owed to a position /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity. /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity. /// @param recipient The address which should receive the fees collected /// @param tickLower The lower tick of the position for which to collect fees /// @param tickUpper The upper tick of the position for which to collect fees /// @param amount0Requested How much token0 should be withdrawn from the fees owed /// @param amount1Requested How much token1 should be withdrawn from the fees owed /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0 /// @dev Fees must be collected separately via a call to #collect /// @param tickLower The lower tick of the position for which to burn liquidity /// @param tickUpper The upper tick of the position for which to burn liquidity /// @param amount How much liquidity to burn /// @return amount0 The amount of token0 sent to the recipient /// @return amount1 The amount of token1 sent to the recipient function burn( int24 tickLower, int24 tickUpper, uint128 amount ) external returns (uint256 amount0, uint256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param data Any data to be passed through to the callback /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external returns (int256 amount0, int256 amount1); /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling /// with 0 amount{0,1} and sending the donation amount(s) from the callback /// @param recipient The address which will receive the token0 and token1 amounts /// @param amount0 The amount of token0 to send /// @param amount1 The amount of token1 to send /// @param data Any data to be passed through to the callback function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external; /// @notice Increase the maximum number of price and liquidity observations that this pool will store /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to /// the input observationCardinalityNext. /// @param observationCardinalityNext The desired minimum number of observations for the pool to store function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissioned pool actions /// @notice Contains pool methods that may only be called by the factory owner interface IUniswapV3PoolOwnerActions { /// @notice Set the denominator of the protocol's % share of the fees /// @param feeProtocol0 new protocol fee for token0 of the pool /// @param feeProtocol1 new protocol fee for token1 of the pool function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external; /// @notice Collect the protocol fee accrued to the pool /// @param recipient The address to which collected protocol fees should be sent /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1 /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0 /// @return amount0 The protocol fee collected in token0 /// @return amount1 The protocol fee collected in token1 function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Events emitted by a pool /// @notice Contains all events emitted by the pool interface IUniswapV3PoolEvents { /// @notice Emitted exactly once by a pool when #initialize is first called on the pool /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96 /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool event Initialize(uint160 sqrtPriceX96, int24 tick); /// @notice Emitted when liquidity is minted for a given position /// @param sender The address that minted the liquidity /// @param owner The owner of the position and recipient of any minted liquidity /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity minted to the position range /// @param amount0 How much token0 was required for the minted liquidity /// @param amount1 How much token1 was required for the minted liquidity event Mint( address sender, address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted when fees are collected by the owner of a position /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees /// @param owner The owner of the position for which fees are collected /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount0 The amount of token0 fees collected /// @param amount1 The amount of token1 fees collected event Collect( address indexed owner, address recipient, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount0, uint128 amount1 ); /// @notice Emitted when a position's liquidity is removed /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect /// @param owner The owner of the position for which liquidity is removed /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity to remove /// @param amount0 The amount of token0 withdrawn /// @param amount1 The amount of token1 withdrawn event Burn( address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted by the pool for any swaps between token0 and token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the output of the swap /// @param amount0 The delta of the token0 balance of the pool /// @param amount1 The delta of the token1 balance of the pool /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96 /// @param liquidity The liquidity of the pool after the swap /// @param tick The log base 1.0001 of price of the pool after the swap event Swap( address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 sqrtPriceX96, uint128 liquidity, int24 tick ); /// @notice Emitted by the pool for any flashes of token0/token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the tokens from flash /// @param amount0 The amount of token0 that was flashed /// @param amount1 The amount of token1 that was flashed /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee event Flash( address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1, uint256 paid0, uint256 paid1 ); /// @notice Emitted by the pool for increases to the number of observations that can be stored /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index /// just before a mint/swap/burn. /// @param observationCardinalityNextOld The previous value of the next observation cardinality /// @param observationCardinalityNextNew The updated value of the next observation cardinality event IncreaseObservationCardinalityNext( uint16 observationCardinalityNextOld, uint16 observationCardinalityNextNew ); /// @notice Emitted when the protocol fee is changed by the pool /// @param feeProtocol0Old The previous value of the token0 protocol fee /// @param feeProtocol1Old The previous value of the token1 protocol fee /// @param feeProtocol0New The updated value of the token0 protocol fee /// @param feeProtocol1New The updated value of the token1 protocol fee event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New); /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner /// @param sender The address that collects the protocol fees /// @param recipient The address that receives the collected protocol fees /// @param amount0 The amount of token0 protocol fees that is withdrawn /// @param amount0 The amount of token1 protocol fees that is withdrawn event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title BitMath /// @dev This library provides functionality for computing bit properties of an unsigned integer library BitMath { /// @notice Returns the index of the most significant bit of the number, /// where the least significant bit is at index 0 and the most significant bit is at index 255 /// @dev The function satisfies the property: /// x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1) /// @param x the value for which to compute the most significant bit, must be greater than 0 /// @return r the index of the most significant bit function mostSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0); if (x >= 0x100000000000000000000000000000000) { x >>= 128; r += 128; } if (x >= 0x10000000000000000) { x >>= 64; r += 64; } if (x >= 0x100000000) { x >>= 32; r += 32; } if (x >= 0x10000) { x >>= 16; r += 16; } if (x >= 0x100) { x >>= 8; r += 8; } if (x >= 0x10) { x >>= 4; r += 4; } if (x >= 0x4) { x >>= 2; r += 2; } if (x >= 0x2) r += 1; } /// @notice Returns the index of the least significant bit of the number, /// where the least significant bit is at index 0 and the most significant bit is at index 255 /// @dev The function satisfies the property: /// (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0) /// @param x the value for which to compute the least significant bit, must be greater than 0 /// @return r the index of the least significant bit function leastSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0); r = 255; if (x & type(uint128).max > 0) { r -= 128; } else { x >>= 128; } if (x & type(uint64).max > 0) { r -= 64; } else { x >>= 64; } if (x & type(uint32).max > 0) { r -= 32; } else { x >>= 32; } if (x & type(uint16).max > 0) { r -= 16; } else { x >>= 16; } if (x & type(uint8).max > 0) { r -= 8; } else { x >>= 8; } if (x & 0xf > 0) { r -= 4; } else { x >>= 4; } if (x & 0x3 > 0) { r -= 2; } else { x >>= 2; } if (x & 0x1 > 0) r -= 1; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math functions that do not check inputs or outputs /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks library UnsafeMath { /// @notice Returns ceil(x / y) /// @dev division by 0 has unspecified behavior, and must be checked externally /// @param x The dividend /// @param y The divisor /// @return z The quotient, ceil(x / y) function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) { assembly { z := add(div(x, y), gt(mod(x, y), 0)) } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint96 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) /// @dev Used in SqrtPriceMath.sol library FixedPoint96 { uint8 internal constant RESOLUTION = 96; uint256 internal constant Q96 = 0x1000000000000000000000000; }
File 3 of 6: UniswapV3Pool
// SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.7.6; import './interfaces/IUniswapV3Pool.sol'; import './NoDelegateCall.sol'; import './libraries/LowGasSafeMath.sol'; import './libraries/SafeCast.sol'; import './libraries/Tick.sol'; import './libraries/TickBitmap.sol'; import './libraries/Position.sol'; import './libraries/Oracle.sol'; import './libraries/FullMath.sol'; import './libraries/FixedPoint128.sol'; import './libraries/TransferHelper.sol'; import './libraries/TickMath.sol'; import './libraries/LiquidityMath.sol'; import './libraries/SqrtPriceMath.sol'; import './libraries/SwapMath.sol'; import './interfaces/IUniswapV3PoolDeployer.sol'; import './interfaces/IUniswapV3Factory.sol'; import './interfaces/IERC20Minimal.sol'; import './interfaces/callback/IUniswapV3MintCallback.sol'; import './interfaces/callback/IUniswapV3SwapCallback.sol'; import './interfaces/callback/IUniswapV3FlashCallback.sol'; contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall { using LowGasSafeMath for uint256; using LowGasSafeMath for int256; using SafeCast for uint256; using SafeCast for int256; using Tick for mapping(int24 => Tick.Info); using TickBitmap for mapping(int16 => uint256); using Position for mapping(bytes32 => Position.Info); using Position for Position.Info; using Oracle for Oracle.Observation[65535]; /// @inheritdoc IUniswapV3PoolImmutables address public immutable override factory; /// @inheritdoc IUniswapV3PoolImmutables address public immutable override token0; /// @inheritdoc IUniswapV3PoolImmutables address public immutable override token1; /// @inheritdoc IUniswapV3PoolImmutables uint24 public immutable override fee; /// @inheritdoc IUniswapV3PoolImmutables int24 public immutable override tickSpacing; /// @inheritdoc IUniswapV3PoolImmutables uint128 public immutable override maxLiquidityPerTick; struct Slot0 { // the current price uint160 sqrtPriceX96; // the current tick int24 tick; // the most-recently updated index of the observations array uint16 observationIndex; // the current maximum number of observations that are being stored uint16 observationCardinality; // the next maximum number of observations to store, triggered in observations.write uint16 observationCardinalityNext; // the current protocol fee as a percentage of the swap fee taken on withdrawal // represented as an integer denominator (1/x)% uint8 feeProtocol; // whether the pool is locked bool unlocked; } /// @inheritdoc IUniswapV3PoolState Slot0 public override slot0; /// @inheritdoc IUniswapV3PoolState uint256 public override feeGrowthGlobal0X128; /// @inheritdoc IUniswapV3PoolState uint256 public override feeGrowthGlobal1X128; // accumulated protocol fees in token0/token1 units struct ProtocolFees { uint128 token0; uint128 token1; } /// @inheritdoc IUniswapV3PoolState ProtocolFees public override protocolFees; /// @inheritdoc IUniswapV3PoolState uint128 public override liquidity; /// @inheritdoc IUniswapV3PoolState mapping(int24 => Tick.Info) public override ticks; /// @inheritdoc IUniswapV3PoolState mapping(int16 => uint256) public override tickBitmap; /// @inheritdoc IUniswapV3PoolState mapping(bytes32 => Position.Info) public override positions; /// @inheritdoc IUniswapV3PoolState Oracle.Observation[65535] public override observations; /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because /// we use balance checks to determine the payment status of interactions such as mint, swap and flash. modifier lock() { require(slot0.unlocked, 'LOK'); slot0.unlocked = false; _; slot0.unlocked = true; } /// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner() modifier onlyFactoryOwner() { require(msg.sender == IUniswapV3Factory(factory).owner()); _; } constructor() { int24 _tickSpacing; (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters(); tickSpacing = _tickSpacing; maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing); } /// @dev Common checks for valid tick inputs. function checkTicks(int24 tickLower, int24 tickUpper) private pure { require(tickLower < tickUpper, 'TLU'); require(tickLower >= TickMath.MIN_TICK, 'TLM'); require(tickUpper <= TickMath.MAX_TICK, 'TUM'); } /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests. function _blockTimestamp() internal view virtual returns (uint32) { return uint32(block.timestamp); // truncation is desired } /// @dev Get the pool's balance of token0 /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize /// check function balance0() private view returns (uint256) { (bool success, bytes memory data) = token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this))); require(success && data.length >= 32); return abi.decode(data, (uint256)); } /// @dev Get the pool's balance of token1 /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize /// check function balance1() private view returns (uint256) { (bool success, bytes memory data) = token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this))); require(success && data.length >= 32); return abi.decode(data, (uint256)); } /// @inheritdoc IUniswapV3PoolDerivedState function snapshotCumulativesInside(int24 tickLower, int24 tickUpper) external view override noDelegateCall returns ( int56 tickCumulativeInside, uint160 secondsPerLiquidityInsideX128, uint32 secondsInside ) { checkTicks(tickLower, tickUpper); int56 tickCumulativeLower; int56 tickCumulativeUpper; uint160 secondsPerLiquidityOutsideLowerX128; uint160 secondsPerLiquidityOutsideUpperX128; uint32 secondsOutsideLower; uint32 secondsOutsideUpper; { Tick.Info storage lower = ticks[tickLower]; Tick.Info storage upper = ticks[tickUpper]; bool initializedLower; (tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = ( lower.tickCumulativeOutside, lower.secondsPerLiquidityOutsideX128, lower.secondsOutside, lower.initialized ); require(initializedLower); bool initializedUpper; (tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = ( upper.tickCumulativeOutside, upper.secondsPerLiquidityOutsideX128, upper.secondsOutside, upper.initialized ); require(initializedUpper); } Slot0 memory _slot0 = slot0; if (_slot0.tick < tickLower) { return ( tickCumulativeLower - tickCumulativeUpper, secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128, secondsOutsideLower - secondsOutsideUpper ); } else if (_slot0.tick < tickUpper) { uint32 time = _blockTimestamp(); (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) = observations.observeSingle( time, 0, _slot0.tick, _slot0.observationIndex, liquidity, _slot0.observationCardinality ); return ( tickCumulative - tickCumulativeLower - tickCumulativeUpper, secondsPerLiquidityCumulativeX128 - secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128, time - secondsOutsideLower - secondsOutsideUpper ); } else { return ( tickCumulativeUpper - tickCumulativeLower, secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128, secondsOutsideUpper - secondsOutsideLower ); } } /// @inheritdoc IUniswapV3PoolDerivedState function observe(uint32[] calldata secondsAgos) external view override noDelegateCall returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) { return observations.observe( _blockTimestamp(), secondsAgos, slot0.tick, slot0.observationIndex, liquidity, slot0.observationCardinality ); } /// @inheritdoc IUniswapV3PoolActions function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external override lock noDelegateCall { uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event uint16 observationCardinalityNextNew = observations.grow(observationCardinalityNextOld, observationCardinalityNext); slot0.observationCardinalityNext = observationCardinalityNextNew; if (observationCardinalityNextOld != observationCardinalityNextNew) emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew); } /// @inheritdoc IUniswapV3PoolActions /// @dev not locked because it initializes unlocked function initialize(uint160 sqrtPriceX96) external override { require(slot0.sqrtPriceX96 == 0, 'AI'); int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96); (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp()); slot0 = Slot0({ sqrtPriceX96: sqrtPriceX96, tick: tick, observationIndex: 0, observationCardinality: cardinality, observationCardinalityNext: cardinalityNext, feeProtocol: 0, unlocked: true }); emit Initialize(sqrtPriceX96, tick); } struct ModifyPositionParams { // the address that owns the position address owner; // the lower and upper tick of the position int24 tickLower; int24 tickUpper; // any change in liquidity int128 liquidityDelta; } /// @dev Effect some changes to a position /// @param params the position details and the change to the position's liquidity to effect /// @return position a storage pointer referencing the position with the given owner and tick range /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient function _modifyPosition(ModifyPositionParams memory params) private noDelegateCall returns ( Position.Info storage position, int256 amount0, int256 amount1 ) { checkTicks(params.tickLower, params.tickUpper); Slot0 memory _slot0 = slot0; // SLOAD for gas optimization position = _updatePosition( params.owner, params.tickLower, params.tickUpper, params.liquidityDelta, _slot0.tick ); if (params.liquidityDelta != 0) { if (_slot0.tick < params.tickLower) { // current tick is below the passed range; liquidity can only become in range by crossing from left to // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it amount0 = SqrtPriceMath.getAmount0Delta( TickMath.getSqrtRatioAtTick(params.tickLower), TickMath.getSqrtRatioAtTick(params.tickUpper), params.liquidityDelta ); } else if (_slot0.tick < params.tickUpper) { // current tick is inside the passed range uint128 liquidityBefore = liquidity; // SLOAD for gas optimization // write an oracle entry (slot0.observationIndex, slot0.observationCardinality) = observations.write( _slot0.observationIndex, _blockTimestamp(), _slot0.tick, liquidityBefore, _slot0.observationCardinality, _slot0.observationCardinalityNext ); amount0 = SqrtPriceMath.getAmount0Delta( _slot0.sqrtPriceX96, TickMath.getSqrtRatioAtTick(params.tickUpper), params.liquidityDelta ); amount1 = SqrtPriceMath.getAmount1Delta( TickMath.getSqrtRatioAtTick(params.tickLower), _slot0.sqrtPriceX96, params.liquidityDelta ); liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta); } else { // current tick is above the passed range; liquidity can only become in range by crossing from right to // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it amount1 = SqrtPriceMath.getAmount1Delta( TickMath.getSqrtRatioAtTick(params.tickLower), TickMath.getSqrtRatioAtTick(params.tickUpper), params.liquidityDelta ); } } } /// @dev Gets and updates a position with the given liquidity delta /// @param owner the owner of the position /// @param tickLower the lower tick of the position's tick range /// @param tickUpper the upper tick of the position's tick range /// @param tick the current tick, passed to avoid sloads function _updatePosition( address owner, int24 tickLower, int24 tickUpper, int128 liquidityDelta, int24 tick ) private returns (Position.Info storage position) { position = positions.get(owner, tickLower, tickUpper); uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization // if we need to update the ticks, do it bool flippedLower; bool flippedUpper; if (liquidityDelta != 0) { uint32 time = _blockTimestamp(); (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) = observations.observeSingle( time, 0, slot0.tick, slot0.observationIndex, liquidity, slot0.observationCardinality ); flippedLower = ticks.update( tickLower, tick, liquidityDelta, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128, secondsPerLiquidityCumulativeX128, tickCumulative, time, false, maxLiquidityPerTick ); flippedUpper = ticks.update( tickUpper, tick, liquidityDelta, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128, secondsPerLiquidityCumulativeX128, tickCumulative, time, true, maxLiquidityPerTick ); if (flippedLower) { tickBitmap.flipTick(tickLower, tickSpacing); } if (flippedUpper) { tickBitmap.flipTick(tickUpper, tickSpacing); } } (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) = ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128); position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128); // clear any tick data that is no longer needed if (liquidityDelta < 0) { if (flippedLower) { ticks.clear(tickLower); } if (flippedUpper) { ticks.clear(tickUpper); } } } /// @inheritdoc IUniswapV3PoolActions /// @dev noDelegateCall is applied indirectly via _modifyPosition function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external override lock returns (uint256 amount0, uint256 amount1) { require(amount > 0); (, int256 amount0Int, int256 amount1Int) = _modifyPosition( ModifyPositionParams({ owner: recipient, tickLower: tickLower, tickUpper: tickUpper, liquidityDelta: int256(amount).toInt128() }) ); amount0 = uint256(amount0Int); amount1 = uint256(amount1Int); uint256 balance0Before; uint256 balance1Before; if (amount0 > 0) balance0Before = balance0(); if (amount1 > 0) balance1Before = balance1(); IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data); if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0'); if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1'); emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1); } /// @inheritdoc IUniswapV3PoolActions function collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external override lock returns (uint128 amount0, uint128 amount1) { // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1} Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper); amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested; amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested; if (amount0 > 0) { position.tokensOwed0 -= amount0; TransferHelper.safeTransfer(token0, recipient, amount0); } if (amount1 > 0) { position.tokensOwed1 -= amount1; TransferHelper.safeTransfer(token1, recipient, amount1); } emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1); } /// @inheritdoc IUniswapV3PoolActions /// @dev noDelegateCall is applied indirectly via _modifyPosition function burn( int24 tickLower, int24 tickUpper, uint128 amount ) external override lock returns (uint256 amount0, uint256 amount1) { (Position.Info storage position, int256 amount0Int, int256 amount1Int) = _modifyPosition( ModifyPositionParams({ owner: msg.sender, tickLower: tickLower, tickUpper: tickUpper, liquidityDelta: -int256(amount).toInt128() }) ); amount0 = uint256(-amount0Int); amount1 = uint256(-amount1Int); if (amount0 > 0 || amount1 > 0) { (position.tokensOwed0, position.tokensOwed1) = ( position.tokensOwed0 + uint128(amount0), position.tokensOwed1 + uint128(amount1) ); } emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1); } struct SwapCache { // the protocol fee for the input token uint8 feeProtocol; // liquidity at the beginning of the swap uint128 liquidityStart; // the timestamp of the current block uint32 blockTimestamp; // the current value of the tick accumulator, computed only if we cross an initialized tick int56 tickCumulative; // the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick uint160 secondsPerLiquidityCumulativeX128; // whether we've computed and cached the above two accumulators bool computedLatestObservation; } // the top level state of the swap, the results of which are recorded in storage at the end struct SwapState { // the amount remaining to be swapped in/out of the input/output asset int256 amountSpecifiedRemaining; // the amount already swapped out/in of the output/input asset int256 amountCalculated; // current sqrt(price) uint160 sqrtPriceX96; // the tick associated with the current price int24 tick; // the global fee growth of the input token uint256 feeGrowthGlobalX128; // amount of input token paid as protocol fee uint128 protocolFee; // the current liquidity in range uint128 liquidity; } struct StepComputations { // the price at the beginning of the step uint160 sqrtPriceStartX96; // the next tick to swap to from the current tick in the swap direction int24 tickNext; // whether tickNext is initialized or not bool initialized; // sqrt(price) for the next tick (1/0) uint160 sqrtPriceNextX96; // how much is being swapped in in this step uint256 amountIn; // how much is being swapped out uint256 amountOut; // how much fee is being paid in uint256 feeAmount; } /// @inheritdoc IUniswapV3PoolActions function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external override noDelegateCall returns (int256 amount0, int256 amount1) { require(amountSpecified != 0, 'AS'); Slot0 memory slot0Start = slot0; require(slot0Start.unlocked, 'LOK'); require( zeroForOne ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO, 'SPL' ); slot0.unlocked = false; SwapCache memory cache = SwapCache({ liquidityStart: liquidity, blockTimestamp: _blockTimestamp(), feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4), secondsPerLiquidityCumulativeX128: 0, tickCumulative: 0, computedLatestObservation: false }); bool exactInput = amountSpecified > 0; SwapState memory state = SwapState({ amountSpecifiedRemaining: amountSpecified, amountCalculated: 0, sqrtPriceX96: slot0Start.sqrtPriceX96, tick: slot0Start.tick, feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128, protocolFee: 0, liquidity: cache.liquidityStart }); // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) { StepComputations memory step; step.sqrtPriceStartX96 = state.sqrtPriceX96; (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord( state.tick, tickSpacing, zeroForOne ); // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds if (step.tickNext < TickMath.MIN_TICK) { step.tickNext = TickMath.MIN_TICK; } else if (step.tickNext > TickMath.MAX_TICK) { step.tickNext = TickMath.MAX_TICK; } // get the price for the next tick step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext); // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep( state.sqrtPriceX96, (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96) ? sqrtPriceLimitX96 : step.sqrtPriceNextX96, state.liquidity, state.amountSpecifiedRemaining, fee ); if (exactInput) { state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256(); state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256()); } else { state.amountSpecifiedRemaining += step.amountOut.toInt256(); state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256()); } // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee if (cache.feeProtocol > 0) { uint256 delta = step.feeAmount / cache.feeProtocol; step.feeAmount -= delta; state.protocolFee += uint128(delta); } // update global fee tracker if (state.liquidity > 0) state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity); // shift tick if we reached the next price if (state.sqrtPriceX96 == step.sqrtPriceNextX96) { // if the tick is initialized, run the tick transition if (step.initialized) { // check for the placeholder value, which we replace with the actual value the first time the swap // crosses an initialized tick if (!cache.computedLatestObservation) { (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle( cache.blockTimestamp, 0, slot0Start.tick, slot0Start.observationIndex, cache.liquidityStart, slot0Start.observationCardinality ); cache.computedLatestObservation = true; } int128 liquidityNet = ticks.cross( step.tickNext, (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128), (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128), cache.secondsPerLiquidityCumulativeX128, cache.tickCumulative, cache.blockTimestamp ); // if we're moving leftward, we interpret liquidityNet as the opposite sign // safe because liquidityNet cannot be type(int128).min if (zeroForOne) liquidityNet = -liquidityNet; state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet); } state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext; } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) { // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96); } } // update tick and write an oracle entry if the tick change if (state.tick != slot0Start.tick) { (uint16 observationIndex, uint16 observationCardinality) = observations.write( slot0Start.observationIndex, cache.blockTimestamp, slot0Start.tick, cache.liquidityStart, slot0Start.observationCardinality, slot0Start.observationCardinalityNext ); (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = ( state.sqrtPriceX96, state.tick, observationIndex, observationCardinality ); } else { // otherwise just update the price slot0.sqrtPriceX96 = state.sqrtPriceX96; } // update liquidity if it changed if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity; // update fee growth global and, if necessary, protocol fees // overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees if (zeroForOne) { feeGrowthGlobal0X128 = state.feeGrowthGlobalX128; if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee; } else { feeGrowthGlobal1X128 = state.feeGrowthGlobalX128; if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee; } (amount0, amount1) = zeroForOne == exactInput ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated) : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining); // do the transfers and collect payment if (zeroForOne) { if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1)); uint256 balance0Before = balance0(); IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data); require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA'); } else { if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0)); uint256 balance1Before = balance1(); IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data); require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA'); } emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick); slot0.unlocked = true; } /// @inheritdoc IUniswapV3PoolActions function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external override lock noDelegateCall { uint128 _liquidity = liquidity; require(_liquidity > 0, 'L'); uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6); uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6); uint256 balance0Before = balance0(); uint256 balance1Before = balance1(); if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0); if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1); IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data); uint256 balance0After = balance0(); uint256 balance1After = balance1(); require(balance0Before.add(fee0) <= balance0After, 'F0'); require(balance1Before.add(fee1) <= balance1After, 'F1'); // sub is safe because we know balanceAfter is gt balanceBefore by at least fee uint256 paid0 = balance0After - balance0Before; uint256 paid1 = balance1After - balance1Before; if (paid0 > 0) { uint8 feeProtocol0 = slot0.feeProtocol % 16; uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0; if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0); feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity); } if (paid1 > 0) { uint8 feeProtocol1 = slot0.feeProtocol >> 4; uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1; if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1); feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity); } emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1); } /// @inheritdoc IUniswapV3PoolOwnerActions function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner { require( (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) && (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10)) ); uint8 feeProtocolOld = slot0.feeProtocol; slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4); emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1); } /// @inheritdoc IUniswapV3PoolOwnerActions function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) { amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested; amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested; if (amount0 > 0) { if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings protocolFees.token0 -= amount0; TransferHelper.safeTransfer(token0, recipient, amount0); } if (amount1 > 0) { if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings protocolFees.token1 -= amount1; TransferHelper.safeTransfer(token1, recipient, amount1); } emit CollectProtocol(msg.sender, recipient, amount0, amount1); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './pool/IUniswapV3PoolImmutables.sol'; import './pool/IUniswapV3PoolState.sol'; import './pool/IUniswapV3PoolDerivedState.sol'; import './pool/IUniswapV3PoolActions.sol'; import './pool/IUniswapV3PoolOwnerActions.sol'; import './pool/IUniswapV3PoolEvents.sol'; /// @title The interface for a Uniswap V3 Pool /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform /// to the ERC20 specification /// @dev The pool interface is broken up into many smaller pieces interface IUniswapV3Pool is IUniswapV3PoolImmutables, IUniswapV3PoolState, IUniswapV3PoolDerivedState, IUniswapV3PoolActions, IUniswapV3PoolOwnerActions, IUniswapV3PoolEvents { } // SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.7.6; /// @title Prevents delegatecall to a contract /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract abstract contract NoDelegateCall { /// @dev The original address of this contract address private immutable original; constructor() { // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode. // In other words, this variable won't change when it's checked at runtime. original = address(this); } /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method, /// and the use of immutable means the address bytes are copied in every place the modifier is used. function checkNotDelegateCall() private view { require(address(this) == original); } /// @notice Prevents delegatecall into the modified method modifier noDelegateCall() { checkNotDelegateCall(); _; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.0; /// @title Optimized overflow and underflow safe math operations /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost library LowGasSafeMath { /// @notice Returns x + y, reverts if sum overflows uint256 /// @param x The augend /// @param y The addend /// @return z The sum of x and y function add(uint256 x, uint256 y) internal pure returns (uint256 z) { require((z = x + y) >= x); } /// @notice Returns x - y, reverts if underflows /// @param x The minuend /// @param y The subtrahend /// @return z The difference of x and y function sub(uint256 x, uint256 y) internal pure returns (uint256 z) { require((z = x - y) <= x); } /// @notice Returns x * y, reverts if overflows /// @param x The multiplicand /// @param y The multiplier /// @return z The product of x and y function mul(uint256 x, uint256 y) internal pure returns (uint256 z) { require(x == 0 || (z = x * y) / x == y); } /// @notice Returns x + y, reverts if overflows or underflows /// @param x The augend /// @param y The addend /// @return z The sum of x and y function add(int256 x, int256 y) internal pure returns (int256 z) { require((z = x + y) >= x == (y >= 0)); } /// @notice Returns x - y, reverts if overflows or underflows /// @param x The minuend /// @param y The subtrahend /// @return z The difference of x and y function sub(int256 x, int256 y) internal pure returns (int256 z) { require((z = x - y) <= x == (y >= 0)); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Safe casting methods /// @notice Contains methods for safely casting between types library SafeCast { /// @notice Cast a uint256 to a uint160, revert on overflow /// @param y The uint256 to be downcasted /// @return z The downcasted integer, now type uint160 function toUint160(uint256 y) internal pure returns (uint160 z) { require((z = uint160(y)) == y); } /// @notice Cast a int256 to a int128, revert on overflow or underflow /// @param y The int256 to be downcasted /// @return z The downcasted integer, now type int128 function toInt128(int256 y) internal pure returns (int128 z) { require((z = int128(y)) == y); } /// @notice Cast a uint256 to a int256, revert on overflow /// @param y The uint256 to be casted /// @return z The casted integer, now type int256 function toInt256(uint256 y) internal pure returns (int256 z) { require(y < 2**255); z = int256(y); } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './LowGasSafeMath.sol'; import './SafeCast.sol'; import './TickMath.sol'; import './LiquidityMath.sol'; /// @title Tick /// @notice Contains functions for managing tick processes and relevant calculations library Tick { using LowGasSafeMath for int256; using SafeCast for int256; // info stored for each initialized individual tick struct Info { // the total position liquidity that references this tick uint128 liquidityGross; // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left), int128 liquidityNet; // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick) // only has relative meaning, not absolute — the value depends on when the tick is initialized uint256 feeGrowthOutside0X128; uint256 feeGrowthOutside1X128; // the cumulative tick value on the other side of the tick int56 tickCumulativeOutside; // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick) // only has relative meaning, not absolute — the value depends on when the tick is initialized uint160 secondsPerLiquidityOutsideX128; // the seconds spent on the other side of the tick (relative to the current tick) // only has relative meaning, not absolute — the value depends on when the tick is initialized uint32 secondsOutside; // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0 // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks bool initialized; } /// @notice Derives max liquidity per tick from given tick spacing /// @dev Executed within the pool constructor /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing` /// e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ... /// @return The max liquidity per tick function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) { int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing; int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing; uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1; return type(uint128).max / numTicks; } /// @notice Retrieves fee growth data /// @param self The mapping containing all tick information for initialized ticks /// @param tickLower The lower tick boundary of the position /// @param tickUpper The upper tick boundary of the position /// @param tickCurrent The current tick /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0 /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1 /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries function getFeeGrowthInside( mapping(int24 => Tick.Info) storage self, int24 tickLower, int24 tickUpper, int24 tickCurrent, uint256 feeGrowthGlobal0X128, uint256 feeGrowthGlobal1X128 ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) { Info storage lower = self[tickLower]; Info storage upper = self[tickUpper]; // calculate fee growth below uint256 feeGrowthBelow0X128; uint256 feeGrowthBelow1X128; if (tickCurrent >= tickLower) { feeGrowthBelow0X128 = lower.feeGrowthOutside0X128; feeGrowthBelow1X128 = lower.feeGrowthOutside1X128; } else { feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128; feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128; } // calculate fee growth above uint256 feeGrowthAbove0X128; uint256 feeGrowthAbove1X128; if (tickCurrent < tickUpper) { feeGrowthAbove0X128 = upper.feeGrowthOutside0X128; feeGrowthAbove1X128 = upper.feeGrowthOutside1X128; } else { feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128; feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128; } feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128; feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128; } /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa /// @param self The mapping containing all tick information for initialized ticks /// @param tick The tick that will be updated /// @param tickCurrent The current tick /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left) /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0 /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1 /// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool /// @param time The current block timestamp cast to a uint32 /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick /// @param maxLiquidity The maximum liquidity allocation for a single tick /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa function update( mapping(int24 => Tick.Info) storage self, int24 tick, int24 tickCurrent, int128 liquidityDelta, uint256 feeGrowthGlobal0X128, uint256 feeGrowthGlobal1X128, uint160 secondsPerLiquidityCumulativeX128, int56 tickCumulative, uint32 time, bool upper, uint128 maxLiquidity ) internal returns (bool flipped) { Tick.Info storage info = self[tick]; uint128 liquidityGrossBefore = info.liquidityGross; uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta); require(liquidityGrossAfter <= maxLiquidity, 'LO'); flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0); if (liquidityGrossBefore == 0) { // by convention, we assume that all growth before a tick was initialized happened _below_ the tick if (tick <= tickCurrent) { info.feeGrowthOutside0X128 = feeGrowthGlobal0X128; info.feeGrowthOutside1X128 = feeGrowthGlobal1X128; info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128; info.tickCumulativeOutside = tickCumulative; info.secondsOutside = time; } info.initialized = true; } info.liquidityGross = liquidityGrossAfter; // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed) info.liquidityNet = upper ? int256(info.liquidityNet).sub(liquidityDelta).toInt128() : int256(info.liquidityNet).add(liquidityDelta).toInt128(); } /// @notice Clears tick data /// @param self The mapping containing all initialized tick information for initialized ticks /// @param tick The tick that will be cleared function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal { delete self[tick]; } /// @notice Transitions to next tick as needed by price movement /// @param self The mapping containing all tick information for initialized ticks /// @param tick The destination tick of the transition /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0 /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1 /// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity /// @param time The current block.timestamp /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left) function cross( mapping(int24 => Tick.Info) storage self, int24 tick, uint256 feeGrowthGlobal0X128, uint256 feeGrowthGlobal1X128, uint160 secondsPerLiquidityCumulativeX128, int56 tickCumulative, uint32 time ) internal returns (int128 liquidityNet) { Tick.Info storage info = self[tick]; info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128; info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128; info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128; info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside; info.secondsOutside = time - info.secondsOutside; liquidityNet = info.liquidityNet; } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './BitMath.sol'; /// @title Packed tick initialized state library /// @notice Stores a packed mapping of tick index to its initialized state /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word. library TickBitmap { /// @notice Computes the position in the mapping where the initialized bit for a tick lives /// @param tick The tick for which to compute the position /// @return wordPos The key in the mapping containing the word in which the bit is stored /// @return bitPos The bit position in the word where the flag is stored function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) { wordPos = int16(tick >> 8); bitPos = uint8(tick % 256); } /// @notice Flips the initialized state for a given tick from false to true, or vice versa /// @param self The mapping in which to flip the tick /// @param tick The tick to flip /// @param tickSpacing The spacing between usable ticks function flipTick( mapping(int16 => uint256) storage self, int24 tick, int24 tickSpacing ) internal { require(tick % tickSpacing == 0); // ensure that the tick is spaced (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing); uint256 mask = 1 << bitPos; self[wordPos] ^= mask; } /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either /// to the left (less than or equal to) or right (greater than) of the given tick /// @param self The mapping in which to compute the next initialized tick /// @param tick The starting tick /// @param tickSpacing The spacing between usable ticks /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick) /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks function nextInitializedTickWithinOneWord( mapping(int16 => uint256) storage self, int24 tick, int24 tickSpacing, bool lte ) internal view returns (int24 next, bool initialized) { int24 compressed = tick / tickSpacing; if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity if (lte) { (int16 wordPos, uint8 bitPos) = position(compressed); // all the 1s at or to the right of the current bitPos uint256 mask = (1 << bitPos) - 1 + (1 << bitPos); uint256 masked = self[wordPos] & mask; // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word initialized = masked != 0; // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick next = initialized ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing : (compressed - int24(bitPos)) * tickSpacing; } else { // start from the word of the next tick, since the current tick state doesn't matter (int16 wordPos, uint8 bitPos) = position(compressed + 1); // all the 1s at or to the left of the bitPos uint256 mask = ~((1 << bitPos) - 1); uint256 masked = self[wordPos] & mask; // if there are no initialized ticks to the left of the current tick, return leftmost in the word initialized = masked != 0; // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick next = initialized ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing; } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './FullMath.sol'; import './FixedPoint128.sol'; import './LiquidityMath.sol'; /// @title Position /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary /// @dev Positions store additional state for tracking fees owed to the position library Position { // info stored for each user's position struct Info { // the amount of liquidity owned by this position uint128 liquidity; // fee growth per unit of liquidity as of the last update to liquidity or fees owed uint256 feeGrowthInside0LastX128; uint256 feeGrowthInside1LastX128; // the fees owed to the position owner in token0/token1 uint128 tokensOwed0; uint128 tokensOwed1; } /// @notice Returns the Info struct of a position, given an owner and position boundaries /// @param self The mapping containing all user positions /// @param owner The address of the position owner /// @param tickLower The lower tick boundary of the position /// @param tickUpper The upper tick boundary of the position /// @return position The position info struct of the given owners' position function get( mapping(bytes32 => Info) storage self, address owner, int24 tickLower, int24 tickUpper ) internal view returns (Position.Info storage position) { position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))]; } /// @notice Credits accumulated fees to a user's position /// @param self The individual position to update /// @param liquidityDelta The change in pool liquidity as a result of the position update /// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries /// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries function update( Info storage self, int128 liquidityDelta, uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128 ) internal { Info memory _self = self; uint128 liquidityNext; if (liquidityDelta == 0) { require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions liquidityNext = _self.liquidity; } else { liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta); } // calculate accumulated fees uint128 tokensOwed0 = uint128( FullMath.mulDiv( feeGrowthInside0X128 - _self.feeGrowthInside0LastX128, _self.liquidity, FixedPoint128.Q128 ) ); uint128 tokensOwed1 = uint128( FullMath.mulDiv( feeGrowthInside1X128 - _self.feeGrowthInside1LastX128, _self.liquidity, FixedPoint128.Q128 ) ); // update the position if (liquidityDelta != 0) self.liquidity = liquidityNext; self.feeGrowthInside0LastX128 = feeGrowthInside0X128; self.feeGrowthInside1LastX128 = feeGrowthInside1X128; if (tokensOwed0 > 0 || tokensOwed1 > 0) { // overflow is acceptable, have to withdraw before you hit type(uint128).max fees self.tokensOwed0 += tokensOwed0; self.tokensOwed1 += tokensOwed1; } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; /// @title Oracle /// @notice Provides price and liquidity data useful for a wide variety of system designs /// @dev Instances of stored oracle data, "observations", are collected in the oracle array /// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the /// maximum length of the oracle array. New slots will be added when the array is fully populated. /// Observations are overwritten when the full length of the oracle array is populated. /// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe() library Oracle { struct Observation { // the block timestamp of the observation uint32 blockTimestamp; // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized int56 tickCumulative; // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized uint160 secondsPerLiquidityCumulativeX128; // whether or not the observation is initialized bool initialized; } /// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values /// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows /// @param last The specified observation to be transformed /// @param blockTimestamp The timestamp of the new observation /// @param tick The active tick at the time of the new observation /// @param liquidity The total in-range liquidity at the time of the new observation /// @return Observation The newly populated observation function transform( Observation memory last, uint32 blockTimestamp, int24 tick, uint128 liquidity ) private pure returns (Observation memory) { uint32 delta = blockTimestamp - last.blockTimestamp; return Observation({ blockTimestamp: blockTimestamp, tickCumulative: last.tickCumulative + int56(tick) * delta, secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 + ((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)), initialized: true }); } /// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array /// @param self The stored oracle array /// @param time The time of the oracle initialization, via block.timestamp truncated to uint32 /// @return cardinality The number of populated elements in the oracle array /// @return cardinalityNext The new length of the oracle array, independent of population function initialize(Observation[65535] storage self, uint32 time) internal returns (uint16 cardinality, uint16 cardinalityNext) { self[0] = Observation({ blockTimestamp: time, tickCumulative: 0, secondsPerLiquidityCumulativeX128: 0, initialized: true }); return (1, 1); } /// @notice Writes an oracle observation to the array /// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally. /// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality /// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering. /// @param self The stored oracle array /// @param index The index of the observation that was most recently written to the observations array /// @param blockTimestamp The timestamp of the new observation /// @param tick The active tick at the time of the new observation /// @param liquidity The total in-range liquidity at the time of the new observation /// @param cardinality The number of populated elements in the oracle array /// @param cardinalityNext The new length of the oracle array, independent of population /// @return indexUpdated The new index of the most recently written element in the oracle array /// @return cardinalityUpdated The new cardinality of the oracle array function write( Observation[65535] storage self, uint16 index, uint32 blockTimestamp, int24 tick, uint128 liquidity, uint16 cardinality, uint16 cardinalityNext ) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) { Observation memory last = self[index]; // early return if we've already written an observation this block if (last.blockTimestamp == blockTimestamp) return (index, cardinality); // if the conditions are right, we can bump the cardinality if (cardinalityNext > cardinality && index == (cardinality - 1)) { cardinalityUpdated = cardinalityNext; } else { cardinalityUpdated = cardinality; } indexUpdated = (index + 1) % cardinalityUpdated; self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity); } /// @notice Prepares the oracle array to store up to `next` observations /// @param self The stored oracle array /// @param current The current next cardinality of the oracle array /// @param next The proposed next cardinality which will be populated in the oracle array /// @return next The next cardinality which will be populated in the oracle array function grow( Observation[65535] storage self, uint16 current, uint16 next ) internal returns (uint16) { require(current > 0, 'I'); // no-op if the passed next value isn't greater than the current next value if (next <= current) return current; // store in each slot to prevent fresh SSTOREs in swaps // this data will not be used because the initialized boolean is still false for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1; return next; } /// @notice comparator for 32-bit timestamps /// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time /// @param time A timestamp truncated to 32 bits /// @param a A comparison timestamp from which to determine the relative position of `time` /// @param b From which to determine the relative position of `time` /// @return bool Whether `a` is chronologically <= `b` function lte( uint32 time, uint32 a, uint32 b ) private pure returns (bool) { // if there hasn't been overflow, no need to adjust if (a <= time && b <= time) return a <= b; uint256 aAdjusted = a > time ? a : a + 2**32; uint256 bAdjusted = b > time ? b : b + 2**32; return aAdjusted <= bAdjusted; } /// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied. /// The result may be the same observation, or adjacent observations. /// @dev The answer must be contained in the array, used when the target is located within the stored observation /// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation /// @param self The stored oracle array /// @param time The current block.timestamp /// @param target The timestamp at which the reserved observation should be for /// @param index The index of the observation that was most recently written to the observations array /// @param cardinality The number of populated elements in the oracle array /// @return beforeOrAt The observation recorded before, or at, the target /// @return atOrAfter The observation recorded at, or after, the target function binarySearch( Observation[65535] storage self, uint32 time, uint32 target, uint16 index, uint16 cardinality ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) { uint256 l = (index + 1) % cardinality; // oldest observation uint256 r = l + cardinality - 1; // newest observation uint256 i; while (true) { i = (l + r) / 2; beforeOrAt = self[i % cardinality]; // we've landed on an uninitialized tick, keep searching higher (more recently) if (!beforeOrAt.initialized) { l = i + 1; continue; } atOrAfter = self[(i + 1) % cardinality]; bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target); // check if we've found the answer! if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break; if (!targetAtOrAfter) r = i - 1; else l = i + 1; } } /// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied /// @dev Assumes there is at least 1 initialized observation. /// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp. /// @param self The stored oracle array /// @param time The current block.timestamp /// @param target The timestamp at which the reserved observation should be for /// @param tick The active tick at the time of the returned or simulated observation /// @param index The index of the observation that was most recently written to the observations array /// @param liquidity The total pool liquidity at the time of the call /// @param cardinality The number of populated elements in the oracle array /// @return beforeOrAt The observation which occurred at, or before, the given timestamp /// @return atOrAfter The observation which occurred at, or after, the given timestamp function getSurroundingObservations( Observation[65535] storage self, uint32 time, uint32 target, int24 tick, uint16 index, uint128 liquidity, uint16 cardinality ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) { // optimistically set before to the newest observation beforeOrAt = self[index]; // if the target is chronologically at or after the newest observation, we can early return if (lte(time, beforeOrAt.blockTimestamp, target)) { if (beforeOrAt.blockTimestamp == target) { // if newest observation equals target, we're in the same block, so we can ignore atOrAfter return (beforeOrAt, atOrAfter); } else { // otherwise, we need to transform return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity)); } } // now, set before to the oldest observation beforeOrAt = self[(index + 1) % cardinality]; if (!beforeOrAt.initialized) beforeOrAt = self[0]; // ensure that the target is chronologically at or after the oldest observation require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD'); // if we've reached this point, we have to binary search return binarySearch(self, time, target, index, cardinality); } /// @dev Reverts if an observation at or before the desired observation timestamp does not exist. /// 0 may be passed as `secondsAgo' to return the current cumulative values. /// If called with a timestamp falling between two observations, returns the counterfactual accumulator values /// at exactly the timestamp between the two observations. /// @param self The stored oracle array /// @param time The current block timestamp /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation /// @param tick The current tick /// @param index The index of the observation that was most recently written to the observations array /// @param liquidity The current in-range pool liquidity /// @param cardinality The number of populated elements in the oracle array /// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo` /// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo` function observeSingle( Observation[65535] storage self, uint32 time, uint32 secondsAgo, int24 tick, uint16 index, uint128 liquidity, uint16 cardinality ) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) { if (secondsAgo == 0) { Observation memory last = self[index]; if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity); return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128); } uint32 target = time - secondsAgo; (Observation memory beforeOrAt, Observation memory atOrAfter) = getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality); if (target == beforeOrAt.blockTimestamp) { // we're at the left boundary return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128); } else if (target == atOrAfter.blockTimestamp) { // we're at the right boundary return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128); } else { // we're in the middle uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp; uint32 targetDelta = target - beforeOrAt.blockTimestamp; return ( beforeOrAt.tickCumulative + ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) * targetDelta, beforeOrAt.secondsPerLiquidityCumulativeX128 + uint160( (uint256( atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128 ) * targetDelta) / observationTimeDelta ) ); } } /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos` /// @dev Reverts if `secondsAgos` > oldest observation /// @param self The stored oracle array /// @param time The current block.timestamp /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation /// @param tick The current tick /// @param index The index of the observation that was most recently written to the observations array /// @param liquidity The current in-range pool liquidity /// @param cardinality The number of populated elements in the oracle array /// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo` /// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo` function observe( Observation[65535] storage self, uint32 time, uint32[] memory secondsAgos, int24 tick, uint16 index, uint128 liquidity, uint16 cardinality ) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) { require(cardinality > 0, 'I'); tickCumulatives = new int56[](secondsAgos.length); secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length); for (uint256 i = 0; i < secondsAgos.length; i++) { (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle( self, time, secondsAgos[i], tick, index, liquidity, cardinality ); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.4.0; /// @title Contains 512-bit math functions /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits library FullMath { /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv function mulDiv( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = a * b // Compute the product mod 2**256 and mod 2**256 - 1 // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0 uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(a, b, not(0)) prod0 := mul(a, b) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division if (prod1 == 0) { require(denominator > 0); assembly { result := div(prod0, denominator) } return result; } // Make sure the result is less than 2**256. // Also prevents denominator == 0 require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0] // Compute remainder using mulmod uint256 remainder; assembly { remainder := mulmod(a, b, denominator) } // Subtract 256 bit number from 512 bit number assembly { prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator // Compute largest power of two divisor of denominator. // Always >= 1. uint256 twos = -denominator & denominator; // Divide denominator by power of two assembly { denominator := div(denominator, twos) } // Divide [prod1 prod0] by the factors of two assembly { prod0 := div(prod0, twos) } // Shift in bits from prod1 into prod0. For this we need // to flip `twos` such that it is 2**256 / twos. // If twos is zero, then it becomes one assembly { twos := add(div(sub(0, twos), twos), 1) } prod0 |= prod1 * twos; // Invert denominator mod 2**256 // Now that denominator is an odd number, it has an inverse // modulo 2**256 such that denominator * inv = 1 mod 2**256. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, denominator * inv = 1 mod 2**4 uint256 inv = (3 * denominator) ^ 2; // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv *= 2 - denominator * inv; // inverse mod 2**8 inv *= 2 - denominator * inv; // inverse mod 2**16 inv *= 2 - denominator * inv; // inverse mod 2**32 inv *= 2 - denominator * inv; // inverse mod 2**64 inv *= 2 - denominator * inv; // inverse mod 2**128 inv *= 2 - denominator * inv; // inverse mod 2**256 // Because the division is now exact we can divide by multiplying // with the modular inverse of denominator. This will give us the // correct result modulo 2**256. Since the precoditions guarantee // that the outcome is less than 2**256, this is the final result. // We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inv; return result; } /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result function mulDivRoundingUp( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { result = mulDiv(a, b, denominator); if (mulmod(a, b, denominator) > 0) { require(result < type(uint256).max); result++; } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint128 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) library FixedPoint128 { uint256 internal constant Q128 = 0x100000000000000000000000000000000; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.6.0; import '../interfaces/IERC20Minimal.sol'; /// @title TransferHelper /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false library TransferHelper { /// @notice Transfers tokens from msg.sender to a recipient /// @dev Calls transfer on token contract, errors with TF if transfer fails /// @param token The contract address of the token which will be transferred /// @param to The recipient of the transfer /// @param value The value of the transfer function safeTransfer( address token, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF'); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math library for computing sqrt prices from ticks and vice versa /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports /// prices between 2**-128 and 2**128 library TickMath { /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128 int24 internal constant MIN_TICK = -887272; /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128 int24 internal constant MAX_TICK = -MIN_TICK; /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK) uint160 internal constant MIN_SQRT_RATIO = 4295128739; /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK) uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342; /// @notice Calculates sqrt(1.0001^tick) * 2^96 /// @dev Throws if |tick| > max tick /// @param tick The input tick for the above formula /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0) /// at the given tick function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) { uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick)); require(absTick <= uint256(MAX_TICK), 'T'); uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000; if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128; if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128; if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128; if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128; if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128; if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128; if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128; if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128; if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128; if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128; if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128; if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128; if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128; if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128; if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128; if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128; if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128; if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128; if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128; if (tick > 0) ratio = type(uint256).max / ratio; // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96. // we then downcast because we know the result always fits within 160 bits due to our tick input constraint // we round up in the division so getTickAtSqrtRatio of the output price is always consistent sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1)); } /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may /// ever return. /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96 /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) { // second inequality must be < because the price can never reach the price at the max tick require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R'); uint256 ratio = uint256(sqrtPriceX96) << 32; uint256 r = ratio; uint256 msb = 0; assembly { let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(5, gt(r, 0xFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(4, gt(r, 0xFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(3, gt(r, 0xFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(2, gt(r, 0xF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(1, gt(r, 0x3)) msb := or(msb, f) r := shr(f, r) } assembly { let f := gt(r, 0x1) msb := or(msb, f) } if (msb >= 128) r = ratio >> (msb - 127); else r = ratio << (127 - msb); int256 log_2 = (int256(msb) - 128) << 64; assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(63, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(62, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(61, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(60, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(59, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(58, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(57, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(56, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(55, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(54, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(53, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(52, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(51, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(50, f)) } int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128); int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128); tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math library for liquidity library LiquidityMath { /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows /// @param x The liquidity before change /// @param y The delta by which liquidity should be changed /// @return z The liquidity delta function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) { if (y < 0) { require((z = x - uint128(-y)) < x, 'LS'); } else { require((z = x + uint128(y)) >= x, 'LA'); } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './LowGasSafeMath.sol'; import './SafeCast.sol'; import './FullMath.sol'; import './UnsafeMath.sol'; import './FixedPoint96.sol'; /// @title Functions based on Q64.96 sqrt price and liquidity /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas library SqrtPriceMath { using LowGasSafeMath for uint256; using SafeCast for uint256; /// @notice Gets the next sqrt price given a delta of token0 /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the /// price less in order to not send too much output. /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96), /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount). /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta /// @param liquidity The amount of usable liquidity /// @param amount How much of token0 to add or remove from virtual reserves /// @param add Whether to add or remove the amount of token0 /// @return The price after adding or removing amount, depending on add function getNextSqrtPriceFromAmount0RoundingUp( uint160 sqrtPX96, uint128 liquidity, uint256 amount, bool add ) internal pure returns (uint160) { // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price if (amount == 0) return sqrtPX96; uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION; if (add) { uint256 product; if ((product = amount * sqrtPX96) / amount == sqrtPX96) { uint256 denominator = numerator1 + product; if (denominator >= numerator1) // always fits in 160 bits return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator)); } return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount))); } else { uint256 product; // if the product overflows, we know the denominator underflows // in addition, we must check that the denominator does not underflow require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product); uint256 denominator = numerator1 - product; return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160(); } } /// @notice Gets the next sqrt price given a delta of token1 /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the /// price less in order to not send too much output. /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta /// @param liquidity The amount of usable liquidity /// @param amount How much of token1 to add, or remove, from virtual reserves /// @param add Whether to add, or remove, the amount of token1 /// @return The price after adding or removing `amount` function getNextSqrtPriceFromAmount1RoundingDown( uint160 sqrtPX96, uint128 liquidity, uint256 amount, bool add ) internal pure returns (uint160) { // if we're adding (subtracting), rounding down requires rounding the quotient down (up) // in both cases, avoid a mulDiv for most inputs if (add) { uint256 quotient = ( amount <= type(uint160).max ? (amount << FixedPoint96.RESOLUTION) / liquidity : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity) ); return uint256(sqrtPX96).add(quotient).toUint160(); } else { uint256 quotient = ( amount <= type(uint160).max ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity) : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity) ); require(sqrtPX96 > quotient); // always fits 160 bits return uint160(sqrtPX96 - quotient); } } /// @notice Gets the next sqrt price given an input amount of token0 or token1 /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount /// @param liquidity The amount of usable liquidity /// @param amountIn How much of token0, or token1, is being swapped in /// @param zeroForOne Whether the amount in is token0 or token1 /// @return sqrtQX96 The price after adding the input amount to token0 or token1 function getNextSqrtPriceFromInput( uint160 sqrtPX96, uint128 liquidity, uint256 amountIn, bool zeroForOne ) internal pure returns (uint160 sqrtQX96) { require(sqrtPX96 > 0); require(liquidity > 0); // round to make sure that we don't pass the target price return zeroForOne ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true) : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true); } /// @notice Gets the next sqrt price given an output amount of token0 or token1 /// @dev Throws if price or liquidity are 0 or the next price is out of bounds /// @param sqrtPX96 The starting price before accounting for the output amount /// @param liquidity The amount of usable liquidity /// @param amountOut How much of token0, or token1, is being swapped out /// @param zeroForOne Whether the amount out is token0 or token1 /// @return sqrtQX96 The price after removing the output amount of token0 or token1 function getNextSqrtPriceFromOutput( uint160 sqrtPX96, uint128 liquidity, uint256 amountOut, bool zeroForOne ) internal pure returns (uint160 sqrtQX96) { require(sqrtPX96 > 0); require(liquidity > 0); // round to make sure that we pass the target price return zeroForOne ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false) : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false); } /// @notice Gets the amount0 delta between two prices /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper), /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower)) /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The amount of usable liquidity /// @param roundUp Whether to round the amount up or down /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices function getAmount0Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity, bool roundUp ) internal pure returns (uint256 amount0) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION; uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96; require(sqrtRatioAX96 > 0); return roundUp ? UnsafeMath.divRoundingUp( FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96), sqrtRatioAX96 ) : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96; } /// @notice Gets the amount1 delta between two prices /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower)) /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The amount of usable liquidity /// @param roundUp Whether to round the amount up, or down /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices function getAmount1Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity, bool roundUp ) internal pure returns (uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return roundUp ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96) : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96); } /// @notice Helper that gets signed token0 delta /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The change in liquidity for which to compute the amount0 delta /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices function getAmount0Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, int128 liquidity ) internal pure returns (int256 amount0) { return liquidity < 0 ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256() : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256(); } /// @notice Helper that gets signed token1 delta /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The change in liquidity for which to compute the amount1 delta /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices function getAmount1Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, int128 liquidity ) internal pure returns (int256 amount1) { return liquidity < 0 ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256() : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256(); } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './FullMath.sol'; import './SqrtPriceMath.sol'; /// @title Computes the result of a swap within ticks /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick. library SwapMath { /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive /// @param sqrtRatioCurrentX96 The current sqrt price of the pool /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred /// @param liquidity The usable liquidity /// @param amountRemaining How much input or output amount is remaining to be swapped in/out /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap /// @return feeAmount The amount of input that will be taken as a fee function computeSwapStep( uint160 sqrtRatioCurrentX96, uint160 sqrtRatioTargetX96, uint128 liquidity, int256 amountRemaining, uint24 feePips ) internal pure returns ( uint160 sqrtRatioNextX96, uint256 amountIn, uint256 amountOut, uint256 feeAmount ) { bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96; bool exactIn = amountRemaining >= 0; if (exactIn) { uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6); amountIn = zeroForOne ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true) : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true); if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96; else sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput( sqrtRatioCurrentX96, liquidity, amountRemainingLessFee, zeroForOne ); } else { amountOut = zeroForOne ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false) : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false); if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96; else sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput( sqrtRatioCurrentX96, liquidity, uint256(-amountRemaining), zeroForOne ); } bool max = sqrtRatioTargetX96 == sqrtRatioNextX96; // get the input/output amounts if (zeroForOne) { amountIn = max && exactIn ? amountIn : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true); amountOut = max && !exactIn ? amountOut : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false); } else { amountIn = max && exactIn ? amountIn : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true); amountOut = max && !exactIn ? amountOut : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false); } // cap the output amount to not exceed the remaining output amount if (!exactIn && amountOut > uint256(-amountRemaining)) { amountOut = uint256(-amountRemaining); } if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) { // we didn't reach the target, so take the remainder of the maximum input as fee feeAmount = uint256(amountRemaining) - amountIn; } else { feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips); } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title An interface for a contract that is capable of deploying Uniswap V3 Pools /// @notice A contract that constructs a pool must implement this to pass arguments to the pool /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain interface IUniswapV3PoolDeployer { /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation. /// @dev Called by the pool constructor to fetch the parameters of the pool /// Returns factory The factory address /// Returns token0 The first token of the pool by address sort order /// Returns token1 The second token of the pool by address sort order /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// Returns tickSpacing The minimum number of ticks between initialized ticks function parameters() external view returns ( address factory, address token0, address token1, uint24 fee, int24 tickSpacing ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title The interface for the Uniswap V3 Factory /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees interface IUniswapV3Factory { /// @notice Emitted when the owner of the factory is changed /// @param oldOwner The owner before the owner was changed /// @param newOwner The owner after the owner was changed event OwnerChanged(address indexed oldOwner, address indexed newOwner); /// @notice Emitted when a pool is created /// @param token0 The first token of the pool by address sort order /// @param token1 The second token of the pool by address sort order /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// @param tickSpacing The minimum number of ticks between initialized ticks /// @param pool The address of the created pool event PoolCreated( address indexed token0, address indexed token1, uint24 indexed fee, int24 tickSpacing, address pool ); /// @notice Emitted when a new fee amount is enabled for pool creation via the factory /// @param fee The enabled fee, denominated in hundredths of a bip /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing); /// @notice Returns the current owner of the factory /// @dev Can be changed by the current owner via setOwner /// @return The address of the factory owner function owner() external view returns (address); /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee /// @return The tick spacing function feeAmountTickSpacing(uint24 fee) external view returns (int24); /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order /// @param tokenA The contract address of either token0 or token1 /// @param tokenB The contract address of the other token /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// @return pool The pool address function getPool( address tokenA, address tokenB, uint24 fee ) external view returns (address pool); /// @notice Creates a pool for the given two tokens and fee /// @param tokenA One of the two tokens in the desired pool /// @param tokenB The other of the two tokens in the desired pool /// @param fee The desired fee for the pool /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments /// are invalid. /// @return pool The address of the newly created pool function createPool( address tokenA, address tokenB, uint24 fee ) external returns (address pool); /// @notice Updates the owner of the factory /// @dev Must be called by the current owner /// @param _owner The new owner of the factory function setOwner(address _owner) external; /// @notice Enables a fee amount with the given tickSpacing /// @dev Fee amounts may never be removed once enabled /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6) /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount function enableFeeAmount(uint24 fee, int24 tickSpacing) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Minimal ERC20 interface for Uniswap /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3 interface IERC20Minimal { /// @notice Returns the balance of a token /// @param account The account for which to look up the number of tokens it has, i.e. its balance /// @return The number of tokens held by the account function balanceOf(address account) external view returns (uint256); /// @notice Transfers the amount of token from the `msg.sender` to the recipient /// @param recipient The account that will receive the amount transferred /// @param amount The number of tokens to send from the sender to the recipient /// @return Returns true for a successful transfer, false for an unsuccessful transfer function transfer(address recipient, uint256 amount) external returns (bool); /// @notice Returns the current allowance given to a spender by an owner /// @param owner The account of the token owner /// @param spender The account of the token spender /// @return The current allowance granted by `owner` to `spender` function allowance(address owner, address spender) external view returns (uint256); /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount` /// @param spender The account which will be allowed to spend a given amount of the owners tokens /// @param amount The amount of tokens allowed to be used by `spender` /// @return Returns true for a successful approval, false for unsuccessful function approve(address spender, uint256 amount) external returns (bool); /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender` /// @param sender The account from which the transfer will be initiated /// @param recipient The recipient of the transfer /// @param amount The amount of the transfer /// @return Returns true for a successful transfer, false for unsuccessful function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`. /// @param from The account from which the tokens were sent, i.e. the balance decreased /// @param to The account to which the tokens were sent, i.e. the balance increased /// @param value The amount of tokens that were transferred event Transfer(address indexed from, address indexed to, uint256 value); /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes. /// @param owner The account that approved spending of its tokens /// @param spender The account for which the spending allowance was modified /// @param value The new allowance from the owner to the spender event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#mint /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface interface IUniswapV3MintCallback { /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint. /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call function uniswapV3MintCallback( uint256 amount0Owed, uint256 amount1Owed, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#swap /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface interface IUniswapV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call function uniswapV3SwapCallback( int256 amount0Delta, int256 amount1Delta, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#flash /// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface interface IUniswapV3FlashCallback { /// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash. /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// @param fee0 The fee amount in token0 due to the pool by the end of the flash /// @param fee1 The fee amount in token1 due to the pool by the end of the flash /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call function uniswapV3FlashCallback( uint256 fee0, uint256 fee1, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that never changes /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values interface IUniswapV3PoolImmutables { /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface /// @return The contract address function factory() external view returns (address); /// @notice The first of the two tokens of the pool, sorted by address /// @return The token contract address function token0() external view returns (address); /// @notice The second of the two tokens of the pool, sorted by address /// @return The token contract address function token1() external view returns (address); /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6 /// @return The fee function fee() external view returns (uint24); /// @notice The pool tick spacing /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ... /// This value is an int24 to avoid casting even though it is always positive. /// @return The tick spacing function tickSpacing() external view returns (int24); /// @notice The maximum amount of position liquidity that can use any tick in the range /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool /// @return The max amount of liquidity per tick function maxLiquidityPerTick() external view returns (uint128); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that can change /// @notice These methods compose the pool's state, and can change with any frequency including multiple times /// per transaction interface IUniswapV3PoolState { /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas /// when accessed externally. /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value /// tick The current tick of the pool, i.e. according to the last tick transition that was run. /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick /// boundary. /// observationIndex The index of the last oracle observation that was written, /// observationCardinality The current maximum number of observations stored in the pool, /// observationCardinalityNext The next maximum number of observations, to be updated when the observation. /// feeProtocol The protocol fee for both tokens of the pool. /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0 /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee. /// unlocked Whether the pool is currently locked to reentrancy function slot0() external view returns ( uint160 sqrtPriceX96, int24 tick, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext, uint8 feeProtocol, bool unlocked ); /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal0X128() external view returns (uint256); /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal1X128() external view returns (uint256); /// @notice The amounts of token0 and token1 that are owed to the protocol /// @dev Protocol fees will never exceed uint128 max in either token function protocolFees() external view returns (uint128 token0, uint128 token1); /// @notice The currently in range liquidity available to the pool /// @dev This value has no relationship to the total liquidity across all ticks function liquidity() external view returns (uint128); /// @notice Look up information about a specific tick in the pool /// @param tick The tick to look up /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or /// tick upper, /// liquidityNet how much liquidity changes when the pool price crosses the tick, /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0, /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1, /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick, /// secondsOutside the seconds spent on the other side of the tick from the current tick, /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false. /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0. /// In addition, these values are only relative and must be used only in comparison to previous snapshots for /// a specific position. function ticks(int24 tick) external view returns ( uint128 liquidityGross, int128 liquidityNet, uint256 feeGrowthOutside0X128, uint256 feeGrowthOutside1X128, int56 tickCumulativeOutside, uint160 secondsPerLiquidityOutsideX128, uint32 secondsOutside, bool initialized ); /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information function tickBitmap(int16 wordPosition) external view returns (uint256); /// @notice Returns the information about a position by the position's key /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper /// @return _liquidity The amount of liquidity in the position, /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke, /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke, /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke, /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke function positions(bytes32 key) external view returns ( uint128 _liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); /// @notice Returns data about a specific observation index /// @param index The element of the observations array to fetch /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time /// ago, rather than at a specific index in the array. /// @return blockTimestamp The timestamp of the observation, /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp, /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp, /// Returns initialized whether the observation has been initialized and the values are safe to use function observations(uint256 index) external view returns ( uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128, bool initialized ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that is not stored /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the /// blockchain. The functions here may have variable gas costs. interface IUniswapV3PoolDerivedState { /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick, /// you must call it with secondsAgos = [3600, 0]. /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio. /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block /// timestamp function observe(uint32[] calldata secondsAgos) external view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s); /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed. /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first /// snapshot is taken and the second snapshot is taken. /// @param tickLower The lower tick of the range /// @param tickUpper The upper tick of the range /// @return tickCumulativeInside The snapshot of the tick accumulator for the range /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range /// @return secondsInside The snapshot of seconds per liquidity for the range function snapshotCumulativesInside(int24 tickLower, int24 tickUpper) external view returns ( int56 tickCumulativeInside, uint160 secondsPerLiquidityInsideX128, uint32 secondsInside ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissionless pool actions /// @notice Contains pool methods that can be called by anyone interface IUniswapV3PoolActions { /// @notice Sets the initial price for the pool /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96 function initialize(uint160 sqrtPriceX96) external; /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends /// on tickLower, tickUpper, the amount of liquidity, and the current price. /// @param recipient The address for which the liquidity will be created /// @param tickLower The lower tick of the position in which to add liquidity /// @param tickUpper The upper tick of the position in which to add liquidity /// @param amount The amount of liquidity to mint /// @param data Any data that should be passed through to the callback /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external returns (uint256 amount0, uint256 amount1); /// @notice Collects tokens owed to a position /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity. /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity. /// @param recipient The address which should receive the fees collected /// @param tickLower The lower tick of the position for which to collect fees /// @param tickUpper The upper tick of the position for which to collect fees /// @param amount0Requested How much token0 should be withdrawn from the fees owed /// @param amount1Requested How much token1 should be withdrawn from the fees owed /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0 /// @dev Fees must be collected separately via a call to #collect /// @param tickLower The lower tick of the position for which to burn liquidity /// @param tickUpper The upper tick of the position for which to burn liquidity /// @param amount How much liquidity to burn /// @return amount0 The amount of token0 sent to the recipient /// @return amount1 The amount of token1 sent to the recipient function burn( int24 tickLower, int24 tickUpper, uint128 amount ) external returns (uint256 amount0, uint256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param data Any data to be passed through to the callback /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external returns (int256 amount0, int256 amount1); /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling /// with 0 amount{0,1} and sending the donation amount(s) from the callback /// @param recipient The address which will receive the token0 and token1 amounts /// @param amount0 The amount of token0 to send /// @param amount1 The amount of token1 to send /// @param data Any data to be passed through to the callback function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external; /// @notice Increase the maximum number of price and liquidity observations that this pool will store /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to /// the input observationCardinalityNext. /// @param observationCardinalityNext The desired minimum number of observations for the pool to store function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissioned pool actions /// @notice Contains pool methods that may only be called by the factory owner interface IUniswapV3PoolOwnerActions { /// @notice Set the denominator of the protocol's % share of the fees /// @param feeProtocol0 new protocol fee for token0 of the pool /// @param feeProtocol1 new protocol fee for token1 of the pool function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external; /// @notice Collect the protocol fee accrued to the pool /// @param recipient The address to which collected protocol fees should be sent /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1 /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0 /// @return amount0 The protocol fee collected in token0 /// @return amount1 The protocol fee collected in token1 function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Events emitted by a pool /// @notice Contains all events emitted by the pool interface IUniswapV3PoolEvents { /// @notice Emitted exactly once by a pool when #initialize is first called on the pool /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96 /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool event Initialize(uint160 sqrtPriceX96, int24 tick); /// @notice Emitted when liquidity is minted for a given position /// @param sender The address that minted the liquidity /// @param owner The owner of the position and recipient of any minted liquidity /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity minted to the position range /// @param amount0 How much token0 was required for the minted liquidity /// @param amount1 How much token1 was required for the minted liquidity event Mint( address sender, address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted when fees are collected by the owner of a position /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees /// @param owner The owner of the position for which fees are collected /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount0 The amount of token0 fees collected /// @param amount1 The amount of token1 fees collected event Collect( address indexed owner, address recipient, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount0, uint128 amount1 ); /// @notice Emitted when a position's liquidity is removed /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect /// @param owner The owner of the position for which liquidity is removed /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity to remove /// @param amount0 The amount of token0 withdrawn /// @param amount1 The amount of token1 withdrawn event Burn( address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted by the pool for any swaps between token0 and token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the output of the swap /// @param amount0 The delta of the token0 balance of the pool /// @param amount1 The delta of the token1 balance of the pool /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96 /// @param liquidity The liquidity of the pool after the swap /// @param tick The log base 1.0001 of price of the pool after the swap event Swap( address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 sqrtPriceX96, uint128 liquidity, int24 tick ); /// @notice Emitted by the pool for any flashes of token0/token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the tokens from flash /// @param amount0 The amount of token0 that was flashed /// @param amount1 The amount of token1 that was flashed /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee event Flash( address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1, uint256 paid0, uint256 paid1 ); /// @notice Emitted by the pool for increases to the number of observations that can be stored /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index /// just before a mint/swap/burn. /// @param observationCardinalityNextOld The previous value of the next observation cardinality /// @param observationCardinalityNextNew The updated value of the next observation cardinality event IncreaseObservationCardinalityNext( uint16 observationCardinalityNextOld, uint16 observationCardinalityNextNew ); /// @notice Emitted when the protocol fee is changed by the pool /// @param feeProtocol0Old The previous value of the token0 protocol fee /// @param feeProtocol1Old The previous value of the token1 protocol fee /// @param feeProtocol0New The updated value of the token0 protocol fee /// @param feeProtocol1New The updated value of the token1 protocol fee event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New); /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner /// @param sender The address that collects the protocol fees /// @param recipient The address that receives the collected protocol fees /// @param amount0 The amount of token0 protocol fees that is withdrawn /// @param amount0 The amount of token1 protocol fees that is withdrawn event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title BitMath /// @dev This library provides functionality for computing bit properties of an unsigned integer library BitMath { /// @notice Returns the index of the most significant bit of the number, /// where the least significant bit is at index 0 and the most significant bit is at index 255 /// @dev The function satisfies the property: /// x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1) /// @param x the value for which to compute the most significant bit, must be greater than 0 /// @return r the index of the most significant bit function mostSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0); if (x >= 0x100000000000000000000000000000000) { x >>= 128; r += 128; } if (x >= 0x10000000000000000) { x >>= 64; r += 64; } if (x >= 0x100000000) { x >>= 32; r += 32; } if (x >= 0x10000) { x >>= 16; r += 16; } if (x >= 0x100) { x >>= 8; r += 8; } if (x >= 0x10) { x >>= 4; r += 4; } if (x >= 0x4) { x >>= 2; r += 2; } if (x >= 0x2) r += 1; } /// @notice Returns the index of the least significant bit of the number, /// where the least significant bit is at index 0 and the most significant bit is at index 255 /// @dev The function satisfies the property: /// (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0) /// @param x the value for which to compute the least significant bit, must be greater than 0 /// @return r the index of the least significant bit function leastSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0); r = 255; if (x & type(uint128).max > 0) { r -= 128; } else { x >>= 128; } if (x & type(uint64).max > 0) { r -= 64; } else { x >>= 64; } if (x & type(uint32).max > 0) { r -= 32; } else { x >>= 32; } if (x & type(uint16).max > 0) { r -= 16; } else { x >>= 16; } if (x & type(uint8).max > 0) { r -= 8; } else { x >>= 8; } if (x & 0xf > 0) { r -= 4; } else { x >>= 4; } if (x & 0x3 > 0) { r -= 2; } else { x >>= 2; } if (x & 0x1 > 0) r -= 1; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math functions that do not check inputs or outputs /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks library UnsafeMath { /// @notice Returns ceil(x / y) /// @dev division by 0 has unspecified behavior, and must be checked externally /// @param x The dividend /// @param y The divisor /// @return z The quotient, ceil(x / y) function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) { assembly { z := add(div(x, y), gt(mod(x, y), 0)) } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint96 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) /// @dev Used in SqrtPriceMath.sol library FixedPoint96 { uint8 internal constant RESOLUTION = 96; uint256 internal constant Q96 = 0x1000000000000000000000000; }
File 4 of 6: FRAXStablecoin
{"AccessControl.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\nimport \"./EnumerableSet.sol\";\nimport \"./Address.sol\";\nimport \"./Context.sol\";\n\n/**\n * @dev Contract module that allows children to implement role-based access\n * control mechanisms.\n *\n * Roles are referred to by their `bytes32` identifier. These should be exposed\n * in the external API and be unique. The best way to achieve this is by\n * using `public constant` hash digests:\n *\n * ```\n * bytes32 public constant MY_ROLE = keccak256(\"MY_ROLE\");\n * ```\n *\n * Roles can be used to represent a set of permissions. To restrict access to a\n * function call, use {hasRole}:\n *\n * ```\n * function foo() public {\n * require(hasRole(MY_ROLE, msg.sender));\n * ...\n * }\n * ```\n *\n * Roles can be granted and revoked dynamically via the {grantRole} and\n * {revokeRole} functions. Each role has an associated admin role, and only\n * accounts that have a role\u0027s admin role can call {grantRole} and {revokeRole}.\n *\n * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means\n * that only accounts with this role will be able to grant or revoke other\n * roles. More complex role relationships can be created by using\n * {_setRoleAdmin}.\n *\n * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to\n * grant and revoke this role. Extra precautions should be taken to secure\n * accounts that have been granted it.\n */\nabstract contract AccessControl is Context {\n using EnumerableSet for EnumerableSet.AddressSet;\n using Address for address;\n\n struct RoleData {\n EnumerableSet.AddressSet members;\n bytes32 adminRole;\n }\n\n mapping (bytes32 =\u003e RoleData) private _roles;\n\n bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; //bytes32(uint256(0x4B437D01b575618140442A4975db38850e3f8f5f) \u003c\u003c 96);\n\n /**\n * @dev Emitted when `newAdminRole` is set as ``role``\u0027s admin role, replacing `previousAdminRole`\n *\n * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite\n * {RoleAdminChanged} not being emitted signaling this.\n *\n * _Available since v3.1._\n */\n event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);\n\n /**\n * @dev Emitted when `account` is granted `role`.\n *\n * `sender` is the account that originated the contract call, an admin role\n * bearer except when using {_setupRole}.\n */\n event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);\n\n /**\n * @dev Emitted when `account` is revoked `role`.\n *\n * `sender` is the account that originated the contract call:\n * - if using `revokeRole`, it is the admin role bearer\n * - if using `renounceRole`, it is the role bearer (i.e. `account`)\n */\n event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);\n\n /**\n * @dev Returns `true` if `account` has been granted `role`.\n */\n function hasRole(bytes32 role, address account) public view returns (bool) {\n return _roles[role].members.contains(account);\n }\n\n /**\n * @dev Returns the number of accounts that have `role`. Can be used\n * together with {getRoleMember} to enumerate all bearers of a role.\n */\n function getRoleMemberCount(bytes32 role) public view returns (uint256) {\n return _roles[role].members.length();\n }\n\n /**\n * @dev Returns one of the accounts that have `role`. `index` must be a\n * value between 0 and {getRoleMemberCount}, non-inclusive.\n *\n * Role bearers are not sorted in any particular way, and their ordering may\n * change at any point.\n *\n * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure\n * you perform all queries on the same block. See the following\n * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]\n * for more information.\n */\n function getRoleMember(bytes32 role, uint256 index) public view returns (address) {\n return _roles[role].members.at(index);\n }\n\n /**\n * @dev Returns the admin role that controls `role`. See {grantRole} and\n * {revokeRole}.\n *\n * To change a role\u0027s admin, use {_setRoleAdmin}.\n */\n function getRoleAdmin(bytes32 role) public view returns (bytes32) {\n return _roles[role].adminRole;\n }\n\n /**\n * @dev Grants `role` to `account`.\n *\n * If `account` had not been already granted `role`, emits a {RoleGranted}\n * event.\n *\n * Requirements:\n *\n * - the caller must have ``role``\u0027s admin role.\n */\n function grantRole(bytes32 role, address account) public virtual {\n require(hasRole(_roles[role].adminRole, _msgSender()), \"AccessControl: sender must be an admin to grant\");\n\n _grantRole(role, account);\n }\n\n /**\n * @dev Revokes `role` from `account`.\n *\n * If `account` had been granted `role`, emits a {RoleRevoked} event.\n *\n * Requirements:\n *\n * - the caller must have ``role``\u0027s admin role.\n */\n function revokeRole(bytes32 role, address account) public virtual {\n require(hasRole(_roles[role].adminRole, _msgSender()), \"AccessControl: sender must be an admin to revoke\");\n\n _revokeRole(role, account);\n }\n\n /**\n * @dev Revokes `role` from the calling account.\n *\n * Roles are often managed via {grantRole} and {revokeRole}: this function\u0027s\n * purpose is to provide a mechanism for accounts to lose their privileges\n * if they are compromised (such as when a trusted device is misplaced).\n *\n * If the calling account had been granted `role`, emits a {RoleRevoked}\n * event.\n *\n * Requirements:\n *\n * - the caller must be `account`.\n */\n function renounceRole(bytes32 role, address account) public virtual {\n require(account == _msgSender(), \"AccessControl: can only renounce roles for self\");\n\n _revokeRole(role, account);\n }\n\n /**\n * @dev Grants `role` to `account`.\n *\n * If `account` had not been already granted `role`, emits a {RoleGranted}\n * event. Note that unlike {grantRole}, this function doesn\u0027t perform any\n * checks on the calling account.\n *\n * [WARNING]\n * ====\n * This function should only be called from the constructor when setting\n * up the initial roles for the system.\n *\n * Using this function in any other way is effectively circumventing the admin\n * system imposed by {AccessControl}.\n * ====\n */\n function _setupRole(bytes32 role, address account) internal virtual {\n _grantRole(role, account);\n }\n\n /**\n * @dev Sets `adminRole` as ``role``\u0027s admin role.\n *\n * Emits a {RoleAdminChanged} event.\n */\n function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {\n emit RoleAdminChanged(role, _roles[role].adminRole, adminRole);\n _roles[role].adminRole = adminRole;\n }\n\n function _grantRole(bytes32 role, address account) private {\n if (_roles[role].members.add(account)) {\n emit RoleGranted(role, account, _msgSender());\n }\n }\n\n function _revokeRole(bytes32 role, address account) private {\n if (_roles[role].members.remove(account)) {\n emit RoleRevoked(role, account, _msgSender());\n }\n }\n}\n"},"Address.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n/**\n * @dev Collection of functions related to the address type\n */\nlibrary Address {\n /**\n * @dev Returns true if `account` is a contract.\n *\n * [IMPORTANT]\n * ====\n * It is unsafe to assume that an address for which this function returns\n * false is an externally-owned account (EOA) and not a contract.\n *\n * Among others, `isContract` will return false for the following\n * types of addresses:\n *\n * - an externally-owned account\n * - a contract in construction\n * - an address where a contract will be created\n * - an address where a contract lived, but was destroyed\n * ====\n */\n function isContract(address account) internal view returns (bool) {\n // This method relies in extcodesize, which returns 0 for contracts in\n // construction, since the code is only stored at the end of the\n // constructor execution.\n\n uint256 size;\n // solhint-disable-next-line no-inline-assembly\n assembly { size := extcodesize(account) }\n return size \u003e 0;\n }\n\n /**\n * @dev Replacement for Solidity\u0027s `transfer`: sends `amount` wei to\n * `recipient`, forwarding all available gas and reverting on errors.\n *\n * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost\n * of certain opcodes, possibly making contracts go over the 2300 gas limit\n * imposed by `transfer`, making them unable to receive funds via\n * `transfer`. {sendValue} removes this limitation.\n *\n * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].\n *\n * IMPORTANT: because control is transferred to `recipient`, care must be\n * taken to not create reentrancy vulnerabilities. Consider using\n * {ReentrancyGuard} or the\n * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].\n */\n function sendValue(address payable recipient, uint256 amount) internal {\n require(address(this).balance \u003e= amount, \"Address: insufficient balance\");\n\n // solhint-disable-next-line avoid-low-level-calls, avoid-call-value\n (bool success, ) = recipient.call{ value: amount }(\"\");\n require(success, \"Address: unable to send value, recipient may have reverted\");\n }\n\n /**\n * @dev Performs a Solidity function call using a low level `call`. A\n * plain`call` is an unsafe replacement for a function call: use this\n * function instead.\n *\n * If `target` reverts with a revert reason, it is bubbled up by this\n * function (like regular Solidity function calls).\n *\n * Returns the raw returned data. To convert to the expected return value,\n * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].\n *\n * Requirements:\n *\n * - `target` must be a contract.\n * - calling `target` with `data` must not revert.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionCall(target, data, \"Address: low-level call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with\n * `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {\n return _functionCallWithValue(target, data, 0, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but also transferring `value` wei to `target`.\n *\n * Requirements:\n *\n * - the calling contract must have an ETH balance of at least `value`.\n * - the called Solidity function must be `payable`.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {\n return functionCallWithValue(target, data, value, \"Address: low-level call with value failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but\n * with `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {\n require(address(this).balance \u003e= value, \"Address: insufficient balance for call\");\n return _functionCallWithValue(target, data, value, errorMessage);\n }\n\n function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {\n require(isContract(target), \"Address: call to non-contract\");\n\n // solhint-disable-next-line avoid-low-level-calls\n (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);\n if (success) {\n return returndata;\n } else {\n // Look for revert reason and bubble it up if present\n if (returndata.length \u003e 0) {\n // The easiest way to bubble the revert reason is using memory via assembly\n\n // solhint-disable-next-line no-inline-assembly\n assembly {\n let returndata_size := mload(returndata)\n revert(add(32, returndata), returndata_size)\n }\n } else {\n revert(errorMessage);\n }\n }\n }\n}"},"AggregatorV3Interface.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity \u003e=0.6.0;\n\ninterface AggregatorV3Interface {\n\n function decimals() external view returns (uint8);\n function description() external view returns (string memory);\n function version() external view returns (uint256);\n\n // getRoundData and latestRoundData should both raise \"No data present\"\n // if they do not have data to report, instead of returning unset values\n // which could be misinterpreted as actual reported values.\n function getRoundData(uint80 _roundId)\n external\n view\n returns (\n uint80 roundId,\n int256 answer,\n uint256 startedAt,\n uint256 updatedAt,\n uint80 answeredInRound\n );\n function latestRoundData()\n external\n view\n returns (\n uint80 roundId,\n int256 answer,\n uint256 startedAt,\n uint256 updatedAt,\n uint80 answeredInRound\n );\n\n}"},"Babylonian.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n// computes square roots using the babylonian method\n// https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method\nlibrary Babylonian {\n function sqrt(uint y) internal pure returns (uint z) {\n if (y \u003e 3) {\n z = y;\n uint x = y / 2 + 1;\n while (x \u003c z) {\n z = x;\n x = (y / x + x) / 2;\n }\n } else if (y != 0) {\n z = 1;\n }\n // else z = 0\n }\n}"},"BlockMiner.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n// file: BlockMinder.sol\n\n// used to \"waste\" blocks for truffle tests\ncontract BlockMiner {\n uint256 public blocksMined;\n\n constructor () public {\n blocksMined = 0;\n }\n\n function mine() public {\n blocksMined += 1;\n }\n\n function blockTime() external view returns (uint256) {\n return block.timestamp;\n }\n}"},"ChainlinkETHUSDPriceConsumer.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./AggregatorV3Interface.sol\";\n\ncontract ChainlinkETHUSDPriceConsumer {\n\n AggregatorV3Interface internal priceFeed;\n\n\n constructor() public {\n priceFeed = AggregatorV3Interface(0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419);\n }\n\n /**\n * Returns the latest price\n */\n function getLatestPrice() public view returns (int) {\n (\n , \n int price,\n ,\n ,\n \n ) = priceFeed.latestRoundData();\n return price;\n }\n\n function getDecimals() public view returns (uint8) {\n return priceFeed.decimals();\n }\n}"},"ChainlinkETHUSDPriceConsumerTest.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./AggregatorV3Interface.sol\";\n\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// VERY IMPORTANT: UNCOMMENT THIS LATER\n// import \"@chainlink/contracts/src/v0.6/interfaces/AggregatorV3Interface.sol\";\n\ncontract ChainlinkETHUSDPriceConsumerTest {\n\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // AggregatorV3Interface internal priceFeed;\n\n /**\n * Network: Kovan\n * Aggregator: ETH/USD\n * Address: 0x9326BFA02ADD2366b30bacB125260Af641031331\n */\n /**\n * Network: Mainnet\n * Aggregator: ETH/USD\n * Address: 0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419\n */\n\n \n constructor() public {\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // priceFeed = AggregatorV3Interface(0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419);\n }\n\n /**\n * Returns the latest price\n */\n function getLatestPrice() public pure returns (int) {\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // (\n // uint80 roundID, \n // int price,\n // uint startedAt,\n // uint timeStamp,\n // uint80 answeredInRound\n // ) = priceFeed.latestRoundData();\n // // If the round is not complete yet, timestamp is 0\n // require(timeStamp \u003e 0, \"Round not complete\");\n\n // This will return something like 32063000000\n // Divide this by getDecimals to get the \"true\" price\n // You can can multiply the \"true\" price by 1e6 to get the frax ecosystem \u0027price\u0027\n // return price;\n\n return 59000000000;\n }\n\n function getDecimals() public pure returns (uint8) {\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // VERY IMPORTANT: UNCOMMENT THIS LATER\n // return priceFeed.decimals();\n return 8;\n }\n}"},"Context.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n/*\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with GSN meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\ncontract Context {\n // Empty internal constructor, to prevent people from mistakenly deploying\n // an instance of this contract, which should be used via inheritance.\n constructor () internal { }\n\n function _msgSender() internal view virtual returns (address payable) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes memory) {\n this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691\n return msg.data;\n }\n}"},"EnumerableSet.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity ^0.6.0;\n\n/**\n * @dev Library for managing\n * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive\n * types.\n *\n * Sets have the following properties:\n *\n * - Elements are added, removed, and checked for existence in constant time\n * (O(1)).\n * - Elements are enumerated in O(n). No guarantees are made on the ordering.\n *\n * ```\n * contract Example {\n * // Add the library methods\n * using EnumerableSet for EnumerableSet.AddressSet;\n *\n * // Declare a set state variable\n * EnumerableSet.AddressSet private mySet;\n * }\n * ```\n *\n * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256`\n * (`UintSet`) are supported.\n */\nlibrary EnumerableSet {\n // To implement this library for multiple types with as little code\n // repetition as possible, we write it in terms of a generic Set type with\n // bytes32 values.\n // The Set implementation uses private functions, and user-facing\n // implementations (such as AddressSet) are just wrappers around the\n // underlying Set.\n // This means that we can only create new EnumerableSets for types that fit\n // in bytes32.\n\n struct Set {\n // Storage of set values\n bytes32[] _values;\n\n // Position of the value in the `values` array, plus 1 because index 0\n // means a value is not in the set.\n mapping (bytes32 =\u003e uint256) _indexes;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function _add(Set storage set, bytes32 value) private returns (bool) {\n if (!_contains(set, value)) {\n set._values.push(value);\n // The value is stored at length-1, but we add 1 to all indexes\n // and use 0 as a sentinel value\n set._indexes[value] = set._values.length;\n return true;\n } else {\n return false;\n }\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function _remove(Set storage set, bytes32 value) private returns (bool) {\n // We read and store the value\u0027s index to prevent multiple reads from the same storage slot\n uint256 valueIndex = set._indexes[value];\n\n if (valueIndex != 0) { // Equivalent to contains(set, value)\n // To delete an element from the _values array in O(1), we swap the element to delete with the last one in\n // the array, and then remove the last element (sometimes called as \u0027swap and pop\u0027).\n // This modifies the order of the array, as noted in {at}.\n\n uint256 toDeleteIndex = valueIndex - 1;\n uint256 lastIndex = set._values.length - 1;\n\n // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs\n // so rarely, we still do the swap anyway to avoid the gas cost of adding an \u0027if\u0027 statement.\n\n bytes32 lastvalue = set._values[lastIndex];\n\n // Move the last value to the index where the value to delete is\n set._values[toDeleteIndex] = lastvalue;\n // Update the index for the moved value\n set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based\n\n // Delete the slot where the moved value was stored\n set._values.pop();\n\n // Delete the index for the deleted slot\n delete set._indexes[value];\n\n return true;\n } else {\n return false;\n }\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function _contains(Set storage set, bytes32 value) private view returns (bool) {\n return set._indexes[value] != 0;\n }\n\n /**\n * @dev Returns the number of values on the set. O(1).\n */\n function _length(Set storage set) private view returns (uint256) {\n return set._values.length;\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function _at(Set storage set, uint256 index) private view returns (bytes32) {\n require(set._values.length \u003e index, \"EnumerableSet: index out of bounds\");\n return set._values[index];\n }\n\n // AddressSet\n\n struct AddressSet {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(AddressSet storage set, address value) internal returns (bool) {\n return _add(set._inner, bytes32(uint256(value)));\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(AddressSet storage set, address value) internal returns (bool) {\n return _remove(set._inner, bytes32(uint256(value)));\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(AddressSet storage set, address value) internal view returns (bool) {\n return _contains(set._inner, bytes32(uint256(value)));\n }\n\n /**\n * @dev Returns the number of values in the set. O(1).\n */\n function length(AddressSet storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(AddressSet storage set, uint256 index) internal view returns (address) {\n return address(uint256(_at(set._inner, index)));\n }\n\n\n // UintSet\n\n struct UintSet {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(UintSet storage set, uint256 value) internal returns (bool) {\n return _add(set._inner, bytes32(value));\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(UintSet storage set, uint256 value) internal returns (bool) {\n return _remove(set._inner, bytes32(value));\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(UintSet storage set, uint256 value) internal view returns (bool) {\n return _contains(set._inner, bytes32(value));\n }\n\n /**\n * @dev Returns the number of values on the set. O(1).\n */\n function length(UintSet storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(UintSet storage set, uint256 index) internal view returns (uint256) {\n return uint256(_at(set._inner, index));\n }\n}\n"},"ERC20.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./Context.sol\";\nimport \"./IERC20.sol\";\nimport \"./SafeMath.sol\";\nimport \"./Address.sol\";\n\n\n/**\n * @dev Implementation of the {IERC20} interface.\n *\n * This implementation is agnostic to the way tokens are created. This means\n * that a supply mechanism has to be added in a derived contract using {_mint}.\n * For a generic mechanism see {ERC20Mintable}.\n *\n * TIP: For a detailed writeup see our guide\n * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How\n * to implement supply mechanisms].\n *\n * We have followed general OpenZeppelin guidelines: functions revert instead\n * of returning `false` on failure. This behavior is nonetheless conventional\n * and does not conflict with the expectations of ERC20 applications.\n *\n * Additionally, an {Approval} event is emitted on calls to {transferFrom}.\n * This allows applications to reconstruct the allowance for all accounts just\n * by listening to said events. Other implementations of the EIP may not emit\n * these events, as it isn\u0027t required by the specification.\n *\n * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}\n * functions have been added to mitigate the well-known issues around setting\n * allowances. See {IERC20-approve}.\n */\n \ncontract ERC20 is Context, IERC20 {\n using SafeMath for uint256;\n\n mapping (address =\u003e uint256) private _balances;\n\n mapping (address =\u003e mapping (address =\u003e uint256)) private _allowances;\n\n uint256 private _totalSupply;\n\n string private _name;\n string private _symbol;\n uint8 private _decimals;\n \n /**\n * @dev Sets the values for {name} and {symbol}, initializes {decimals} with\n * a default value of 18.\n *\n * To select a different value for {decimals}, use {_setupDecimals}.\n *\n * All three of these values are immutable: they can only be set once during\n * construction.\n */\n constructor (string memory name, string memory symbol) public {\n _name = name;\n _symbol = symbol;\n _decimals = 18;\n }\n\n /**\n * @dev Returns the name of the token.\n */\n function name() public view returns (string memory) {\n return _name;\n }\n\n /**\n * @dev Returns the symbol of the token, usually a shorter version of the\n * name.\n */\n function symbol() public view returns (string memory) {\n return _symbol;\n }\n\n /**\n * @dev Returns the number of decimals used to get its user representation.\n * For example, if `decimals` equals `2`, a balance of `505` tokens should\n * be displayed to a user as `5,05` (`505 / 10 ** 2`).\n *\n * Tokens usually opt for a value of 18, imitating the relationship between\n * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is\n * called.\n *\n * NOTE: This information is only used for _display_ purposes: it in\n * no way affects any of the arithmetic of the contract, including\n * {IERC20-balanceOf} and {IERC20-transfer}.\n */\n function decimals() public view returns (uint8) {\n return _decimals;\n }\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public view override returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public view override returns (uint256) {\n return _balances[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `recipient` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner, address spender) public view virtual override returns (uint256) {\n return _allowances[owner][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.approve(address spender, uint256 amount)\n */\n function approve(address spender, uint256 amount) public virtual override returns (bool) {\n _approve(_msgSender(), spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20};\n *\n * Requirements:\n * - `sender` and `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n * - the caller must have allowance for `sender`\u0027s tokens of at least\n * `amount`.\n */\n function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(sender, recipient, amount);\n _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, \"ERC20: transfer amount exceeds allowance\"));\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, \"ERC20: decreased allowance below zero\"));\n return true;\n }\n\n /**\n * @dev Moves tokens `amount` from `sender` to `recipient`.\n *\n * This is internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token fees, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `sender` cannot be the zero address.\n * - `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n */\n function _transfer(address sender, address recipient, uint256 amount) internal virtual {\n require(sender != address(0), \"ERC20: transfer from the zero address\");\n require(recipient != address(0), \"ERC20: transfer to the zero address\");\n\n _beforeTokenTransfer(sender, recipient, amount);\n\n _balances[sender] = _balances[sender].sub(amount, \"ERC20: transfer amount exceeds balance\");\n _balances[recipient] = _balances[recipient].add(amount);\n emit Transfer(sender, recipient, amount);\n }\n\n /** @dev Creates `amount` tokens and assigns them to `account`, increasing\n * the total supply.\n *\n * Emits a {Transfer} event with `from` set to the zero address.\n *\n * Requirements\n *\n * - `to` cannot be the zero address.\n */\n function _mint(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: mint to the zero address\");\n\n _beforeTokenTransfer(address(0), account, amount);\n\n _totalSupply = _totalSupply.add(amount);\n _balances[account] = _balances[account].add(amount);\n emit Transfer(address(0), account, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from the caller.\n *\n * See {ERC20-_burn}.\n */\n function burn(uint256 amount) public virtual {\n _burn(_msgSender(), amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, deducting from the caller\u0027s\n * allowance.\n *\n * See {ERC20-_burn} and {ERC20-allowance}.\n *\n * Requirements:\n *\n * - the caller must have allowance for `accounts`\u0027s tokens of at least\n * `amount`.\n */\n function burnFrom(address account, uint256 amount) public virtual {\n uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, \"ERC20: burn amount exceeds allowance\");\n\n _approve(account, _msgSender(), decreasedAllowance);\n _burn(account, amount);\n }\n\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _beforeTokenTransfer(account, address(0), amount);\n\n _balances[account] = _balances[account].sub(amount, \"ERC20: burn amount exceeds balance\");\n _totalSupply = _totalSupply.sub(amount);\n emit Transfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.\n *\n * This is internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function _approve(address owner, address spender, uint256 amount) internal virtual {\n require(owner != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner][spender] = amount;\n emit Approval(owner, spender, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`.`amount` is then deducted\n * from the caller\u0027s allowance.\n *\n * See {_burn} and {_approve}.\n */\n function _burnFrom(address account, uint256 amount) internal virtual {\n _burn(account, amount);\n _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, \"ERC20: burn amount exceeds allowance\"));\n }\n\n /**\n * @dev Hook that is called before any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of `from`\u0027s tokens\n * will be to transferred to `to`.\n * - when `from` is zero, `amount` tokens will be minted for `to`.\n * - when `to` is zero, `amount` of `from`\u0027s tokens will be burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:using-hooks.adoc[Using Hooks].\n */\n function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }\n}\n"},"ERC20Custom.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./Context.sol\";\nimport \"./IERC20.sol\";\nimport \"./SafeMath.sol\";\nimport \"./Address.sol\";\n\n// Due to compiling issues, _name, _symbol, and _decimals were removed\n\n\n/**\n * @dev Implementation of the {IERC20} interface.\n *\n * This implementation is agnostic to the way tokens are created. This means\n * that a supply mechanism has to be added in a derived contract using {_mint}.\n * For a generic mechanism see {ERC20Mintable}.\n *\n * TIP: For a detailed writeup see our guide\n * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How\n * to implement supply mechanisms].\n *\n * We have followed general OpenZeppelin guidelines: functions revert instead\n * of returning `false` on failure. This behavior is nonetheless conventional\n * and does not conflict with the expectations of ERC20 applications.\n *\n * Additionally, an {Approval} event is emitted on calls to {transferFrom}.\n * This allows applications to reconstruct the allowance for all accounts just\n * by listening to said events. Other implementations of the EIP may not emit\n * these events, as it isn\u0027t required by the specification.\n *\n * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}\n * functions have been added to mitigate the well-known issues around setting\n * allowances. See {IERC20-approve}.\n */\ncontract ERC20Custom is Context, IERC20 {\n using SafeMath for uint256;\n\n mapping (address =\u003e uint256) internal _balances;\n\n mapping (address =\u003e mapping (address =\u003e uint256)) internal _allowances;\n\n uint256 private _totalSupply;\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public view override returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public view override returns (uint256) {\n return _balances[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `recipient` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner, address spender) public view virtual override returns (uint256) {\n return _allowances[owner][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.approve(address spender, uint256 amount)\n */\n function approve(address spender, uint256 amount) public virtual override returns (bool) {\n _approve(_msgSender(), spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20};\n *\n * Requirements:\n * - `sender` and `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n * - the caller must have allowance for `sender`\u0027s tokens of at least\n * `amount`.\n */\n function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(sender, recipient, amount);\n _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, \"ERC20: transfer amount exceeds allowance\"));\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, \"ERC20: decreased allowance below zero\"));\n return true;\n }\n\n /**\n * @dev Moves tokens `amount` from `sender` to `recipient`.\n *\n * This is internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token fees, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `sender` cannot be the zero address.\n * - `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n */\n function _transfer(address sender, address recipient, uint256 amount) internal virtual {\n require(sender != address(0), \"ERC20: transfer from the zero address\");\n require(recipient != address(0), \"ERC20: transfer to the zero address\");\n\n _beforeTokenTransfer(sender, recipient, amount);\n\n _balances[sender] = _balances[sender].sub(amount, \"ERC20: transfer amount exceeds balance\");\n _balances[recipient] = _balances[recipient].add(amount);\n emit Transfer(sender, recipient, amount);\n }\n\n /** @dev Creates `amount` tokens and assigns them to `account`, increasing\n * the total supply.\n *\n * Emits a {Transfer} event with `from` set to the zero address.\n *\n * Requirements\n *\n * - `to` cannot be the zero address.\n */\n function _mint(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: mint to the zero address\");\n\n _beforeTokenTransfer(address(0), account, amount);\n\n _totalSupply = _totalSupply.add(amount);\n _balances[account] = _balances[account].add(amount);\n emit Transfer(address(0), account, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from the caller.\n *\n * See {ERC20-_burn}.\n */\n function burn(uint256 amount) public virtual {\n _burn(_msgSender(), amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, deducting from the caller\u0027s\n * allowance.\n *\n * See {ERC20-_burn} and {ERC20-allowance}.\n *\n * Requirements:\n *\n * - the caller must have allowance for `accounts`\u0027s tokens of at least\n * `amount`.\n */\n function burnFrom(address account, uint256 amount) public virtual {\n uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, \"ERC20: burn amount exceeds allowance\");\n\n _approve(account, _msgSender(), decreasedAllowance);\n _burn(account, amount);\n }\n\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _beforeTokenTransfer(account, address(0), amount);\n\n _balances[account] = _balances[account].sub(amount, \"ERC20: burn amount exceeds balance\");\n _totalSupply = _totalSupply.sub(amount);\n emit Transfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.\n *\n * This is internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function _approve(address owner, address spender, uint256 amount) internal virtual {\n require(owner != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner][spender] = amount;\n emit Approval(owner, spender, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`.`amount` is then deducted\n * from the caller\u0027s allowance.\n *\n * See {_burn} and {_approve}.\n */\n function _burnFrom(address account, uint256 amount) internal virtual {\n _burn(account, amount);\n _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, \"ERC20: burn amount exceeds allowance\"));\n }\n\n /**\n * @dev Hook that is called before any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of `from`\u0027s tokens\n * will be to transferred to `to`.\n * - when `from` is zero, `amount` tokens will be minted for `to`.\n * - when `to` is zero, `amount` of `from`\u0027s tokens will be burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:using-hooks.adoc[Using Hooks].\n */\n function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }\n}"},"FakeCollateral.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./Context.sol\";\nimport \"./IERC20.sol\";\nimport \"./SafeMath.sol\";\nimport \"./Address.sol\";\n\n// Due to compiling issues, _name, _symbol, and _decimals were removed\n\n\n/**\n * @dev Implementation of the {IERC20} interface.\n *\n * This implementation is agnostic to the way tokens are created. This means\n * that a supply mechanism has to be added in a derived contract using {_mint}.\n * For a generic mechanism see {ERC20Mintable}.\n *\n * TIP: For a detailed writeup see our guide\n * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How\n * to implement supply mechanisms].\n *\n * We have followed general OpenZeppelin guidelines: functions revert instead\n * of returning `false` on failure. This behavior is nonetheless conventional\n * and does not conflict with the expectations of ERC20 applications.\n *\n * Additionally, an {Approval} event is emitted on calls to {transferFrom}.\n * This allows applications to reconstruct the allowance for all accounts just\n * by listening to said events. Other implementations of the EIP may not emit\n * these events, as it isn\u0027t required by the specification.\n *\n * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}\n * functions have been added to mitigate the well-known issues around setting\n * allowances. See {IERC20-approve}.\n */\ncontract FakeCollateral is Context, IERC20 {\n using SafeMath for uint256;\n string public symbol;\n uint8 public decimals;\n address public creator_address;\n uint256 public genesis_supply;\n uint256 private _totalSupply;\n\n mapping (address =\u003e uint256) private _balances;\n mapping (address =\u003e mapping (address =\u003e uint256)) private _allowances;\n mapping (address =\u003e bool) used;\n\n constructor(\n address _creator_address,\n uint256 _genesis_supply,\n string memory _symbol,\n uint8 _decimals\n ) public {\n genesis_supply = _genesis_supply;\n creator_address = _creator_address;\n symbol = _symbol;\n decimals = _decimals;\n _mint(creator_address, genesis_supply);\n }\n\n function faucet() public {\n \tif (used[msg.sender] == false) {\n \t\tused[msg.sender] = true;\n \t\t_mint(msg.sender, 1000 * (10 ** uint256(decimals)));\n \t}\n }\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public view override returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public view override returns (uint256) {\n return _balances[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `recipient` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner, address spender) public view virtual override returns (uint256) {\n return _allowances[owner][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.approve(address spender, uint256 amount)\n */\n function approve(address spender, uint256 amount) public virtual override returns (bool) {\n _approve(_msgSender(), spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20};\n *\n * Requirements:\n * - `sender` and `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n * - the caller must have allowance for `sender`\u0027s tokens of at least\n * `amount`.\n */\n function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(sender, recipient, amount);\n _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, \"ERC20: transfer amount exceeds allowance\"));\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, \"ERC20: decreased allowance below zero\"));\n return true;\n }\n\n /**\n * @dev Moves tokens `amount` from `sender` to `recipient`.\n *\n * This is internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token fees, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `sender` cannot be the zero address.\n * - `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n */\n function _transfer(address sender, address recipient, uint256 amount) internal virtual {\n require(sender != address(0), \"ERC20: transfer from the zero address\");\n require(recipient != address(0), \"ERC20: transfer to the zero address\");\n\n _beforeTokenTransfer(sender, recipient, amount);\n\n _balances[sender] = _balances[sender].sub(amount, \"ERC20: transfer amount exceeds balance\");\n _balances[recipient] = _balances[recipient].add(amount);\n emit Transfer(sender, recipient, amount);\n }\n\n /** @dev Creates `amount` tokens and assigns them to `account`, increasing\n * the total supply.\n *\n * Emits a {Transfer} event with `from` set to the zero address.\n *\n * Requirements\n *\n * - `to` cannot be the zero address.\n */\n function _mint(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: mint to the zero address\");\n\n _beforeTokenTransfer(address(0), account, amount);\n\n _totalSupply = _totalSupply.add(amount);\n _balances[account] = _balances[account].add(amount);\n emit Transfer(address(0), account, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from the caller.\n *\n * See {ERC20-_burn}.\n */\n function burn(uint256 amount) public virtual {\n _burn(_msgSender(), amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, deducting from the caller\u0027s\n * allowance.\n *\n * See {ERC20-_burn} and {ERC20-allowance}.\n *\n * Requirements:\n *\n * - the caller must have allowance for `accounts`\u0027s tokens of at least\n * `amount`.\n */\n function burnFrom(address account, uint256 amount) public virtual {\n uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, \"ERC20: burn amount exceeds allowance\");\n\n _approve(account, _msgSender(), decreasedAllowance);\n _burn(account, amount);\n }\n\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _beforeTokenTransfer(account, address(0), amount);\n\n _balances[account] = _balances[account].sub(amount, \"ERC20: burn amount exceeds balance\");\n _totalSupply = _totalSupply.sub(amount);\n emit Transfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.\n *\n * This is internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function _approve(address owner, address spender, uint256 amount) internal virtual {\n require(owner != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner][spender] = amount;\n emit Approval(owner, spender, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`.`amount` is then deducted\n * from the caller\u0027s allowance.\n *\n * See {_burn} and {_approve}.\n */\n function _burnFrom(address account, uint256 amount) internal virtual {\n _burn(account, amount);\n _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, \"ERC20: burn amount exceeds allowance\"));\n }\n\n /**\n * @dev Hook that is called before any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of `from`\u0027s tokens\n * will be to transferred to `to`.\n * - when `from` is zero, `amount` tokens will be minted for `to`.\n * - when `to` is zero, `amount` of `from`\u0027s tokens will be burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:using-hooks.adoc[Using Hooks].\n */\n function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }\n}\n"},"FakeCollateral_USDC.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./FakeCollateral.sol\";\n\ncontract FakeCollateral_USDC is FakeCollateral {\n constructor(\n address _creator_address,\n uint256 _genesis_supply,\n string memory _symbol,\n uint8 _decimals\n ) \n FakeCollateral(_creator_address, _genesis_supply, _symbol, _decimals)\n public {}\n}"},"FakeCollateral_USDT.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./FakeCollateral.sol\";\n\ncontract FakeCollateral_USDT is FakeCollateral {\n constructor(\n address _creator_address,\n uint256 _genesis_supply,\n string memory _symbol,\n uint8 _decimals\n ) \n FakeCollateral(_creator_address, _genesis_supply, _symbol, _decimals)\n public {}\n}"},"FakeCollateral_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./FakeCollateral.sol\";\n\ncontract FakeCollateral_WETH is FakeCollateral {\n constructor(\n address _creator_address,\n uint256 _genesis_supply,\n string memory _symbol,\n uint8 _decimals\n ) \n FakeCollateral(_creator_address, _genesis_supply, _symbol, _decimals)\n public {}\n}"},"FixedPoint.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./Babylonian.sol\u0027;\n\n// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))\nlibrary FixedPoint {\n // range: [0, 2**112 - 1]\n // resolution: 1 / 2**112\n struct uq112x112 {\n uint224 _x;\n }\n\n // range: [0, 2**144 - 1]\n // resolution: 1 / 2**112\n struct uq144x112 {\n uint _x;\n }\n\n uint8 private constant RESOLUTION = 112;\n uint private constant Q112 = uint(1) \u003c\u003c RESOLUTION;\n uint private constant Q224 = Q112 \u003c\u003c RESOLUTION;\n\n // encode a uint112 as a UQ112x112\n function encode(uint112 x) internal pure returns (uq112x112 memory) {\n return uq112x112(uint224(x) \u003c\u003c RESOLUTION);\n }\n\n // encodes a uint144 as a UQ144x112\n function encode144(uint144 x) internal pure returns (uq144x112 memory) {\n return uq144x112(uint256(x) \u003c\u003c RESOLUTION);\n }\n\n // divide a UQ112x112 by a uint112, returning a UQ112x112\n function div(uq112x112 memory self, uint112 x) internal pure returns (uq112x112 memory) {\n require(x != 0, \u0027FixedPoint: DIV_BY_ZERO\u0027);\n return uq112x112(self._x / uint224(x));\n }\n\n // multiply a UQ112x112 by a uint, returning a UQ144x112\n // reverts on overflow\n function mul(uq112x112 memory self, uint y) internal pure returns (uq144x112 memory) {\n uint z;\n require(y == 0 || (z = uint(self._x) * y) / y == uint(self._x), \"FixedPoint: MULTIPLICATION_OVERFLOW\");\n return uq144x112(z);\n }\n\n // returns a UQ112x112 which represents the ratio of the numerator to the denominator\n // equivalent to encode(numerator).div(denominator)\n function fraction(uint112 numerator, uint112 denominator) internal pure returns (uq112x112 memory) {\n require(denominator \u003e 0, \"FixedPoint: DIV_BY_ZERO\");\n return uq112x112((uint224(numerator) \u003c\u003c RESOLUTION) / denominator);\n }\n\n // decode a UQ112x112 into a uint112 by truncating after the radix point\n function decode(uq112x112 memory self) internal pure returns (uint112) {\n return uint112(self._x \u003e\u003e RESOLUTION);\n }\n\n // decode a UQ144x112 into a uint144 by truncating after the radix point\n function decode144(uq144x112 memory self) internal pure returns (uint144) {\n return uint144(self._x \u003e\u003e RESOLUTION);\n }\n\n // take the reciprocal of a UQ112x112\n function reciprocal(uq112x112 memory self) internal pure returns (uq112x112 memory) {\n require(self._x != 0, \u0027FixedPoint: ZERO_RECIPROCAL\u0027);\n return uq112x112(uint224(Q224 / self._x));\n }\n\n // square root of a UQ112x112\n function sqrt(uq112x112 memory self) internal pure returns (uq112x112 memory) {\n return uq112x112(uint224(Babylonian.sqrt(uint256(self._x)) \u003c\u003c 56));\n }\n}"},"Frax.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./Context.sol\";\nimport \"./IERC20.sol\";\nimport \"./ERC20Custom.sol\";\nimport \"./ERC20.sol\";\nimport \"./SafeMath.sol\";\nimport \"./FXS.sol\";\nimport \"./FraxPool.sol\";\nimport \"./UniswapPairOracle.sol\";\nimport \"./ChainlinkETHUSDPriceConsumer.sol\";\nimport \"./AccessControl.sol\";\n\ncontract FRAXStablecoin is ERC20Custom, AccessControl {\n using SafeMath for uint256;\n\n /* ========== STATE VARIABLES ========== */\n enum PriceChoice { FRAX, FXS }\n ChainlinkETHUSDPriceConsumer private eth_usd_pricer;\n uint8 private eth_usd_pricer_decimals;\n UniswapPairOracle private fraxEthOracle;\n UniswapPairOracle private fxsEthOracle;\n string public symbol;\n string public name;\n uint8 public constant decimals = 18;\n address public owner_address;\n address public creator_address;\n address public timelock_address; // Governance timelock address\n address public controller_address; // Controller contract to dynamically adjust system parameters automatically\n address public fxs_address;\n address public frax_eth_oracle_address;\n address public fxs_eth_oracle_address;\n address public weth_address;\n address public eth_usd_consumer_address;\n uint256 public constant genesis_supply = 2000000e18; // 2M FRAX (only for testing, genesis supply will be 5k on Mainnet). This is to help with establishing the Uniswap pools, as they need liquidity\n\n // The addresses in this array are added by the oracle and these contracts are able to mint frax\n address[] public frax_pools_array;\n\n // Mapping is also used for faster verification\n mapping(address =\u003e bool) public frax_pools; \n\n // Constants for various precisions\n uint256 private constant PRICE_PRECISION = 1e6;\n \n uint256 public global_collateral_ratio; // 6 decimals of precision, e.g. 924102 = 0.924102\n uint256 public redemption_fee; // 6 decimals of precision, divide by 1000000 in calculations for fee\n uint256 public minting_fee; // 6 decimals of precision, divide by 1000000 in calculations for fee\n uint256 public frax_step; // Amount to change the collateralization ratio by upon refreshCollateralRatio()\n uint256 public refresh_cooldown; // Seconds to wait before being able to run refreshCollateralRatio() again\n uint256 public price_target; // The price of FRAX at which the collateral ratio will respond to; this value is only used for the collateral ratio mechanism and not for minting and redeeming which are hardcoded at $1\n uint256 public price_band; // The bound above and below the price target at which the refreshCollateralRatio() will not change the collateral ratio\n\n address public DEFAULT_ADMIN_ADDRESS;\n bytes32 public constant COLLATERAL_RATIO_PAUSER = keccak256(\"COLLATERAL_RATIO_PAUSER\");\n bool public collateral_ratio_paused = false;\n\n /* ========== MODIFIERS ========== */\n\n modifier onlyCollateralRatioPauser() {\n require(hasRole(COLLATERAL_RATIO_PAUSER, msg.sender));\n _;\n }\n\n modifier onlyPools() {\n require(frax_pools[msg.sender] == true, \"Only frax pools can call this function\");\n _;\n } \n \n modifier onlyByOwnerOrGovernance() {\n require(msg.sender == owner_address || msg.sender == timelock_address || msg.sender == controller_address, \"You are not the owner, controller, or the governance timelock\");\n _;\n }\n\n modifier onlyByOwnerGovernanceOrPool() {\n require(\n msg.sender == owner_address \n || msg.sender == timelock_address \n || frax_pools[msg.sender] == true, \n \"You are not the owner, the governance timelock, or a pool\");\n _;\n }\n\n /* ========== CONSTRUCTOR ========== */\n\n constructor(\n string memory _name,\n string memory _symbol,\n address _creator_address,\n address _timelock_address\n ) public {\n name = _name;\n symbol = _symbol;\n creator_address = _creator_address;\n timelock_address = _timelock_address;\n _setupRole(DEFAULT_ADMIN_ROLE, _msgSender());\n DEFAULT_ADMIN_ADDRESS = _msgSender();\n owner_address = _creator_address;\n _mint(creator_address, genesis_supply);\n grantRole(COLLATERAL_RATIO_PAUSER, creator_address);\n grantRole(COLLATERAL_RATIO_PAUSER, timelock_address);\n frax_step = 2500; // 6 decimals of precision, equal to 0.25%\n global_collateral_ratio = 1000000; // Frax system starts off fully collateralized (6 decimals of precision)\n refresh_cooldown = 3600; // Refresh cooldown period is set to 1 hour (3600 seconds) at genesis\n price_target = 1000000; // Collateral ratio will adjust according to the $1 price target at genesis\n price_band = 5000; // Collateral ratio will not adjust if between $0.995 and $1.005 at genesis\n }\n\n /* ========== VIEWS ========== */\n\n // Choice = \u0027FRAX\u0027 or \u0027FXS\u0027 for now\n function oracle_price(PriceChoice choice) internal view returns (uint256) {\n // Get the ETH / USD price first, and cut it down to 1e6 precision\n uint256 eth_usd_price = uint256(eth_usd_pricer.getLatestPrice()).mul(PRICE_PRECISION).div(uint256(10) ** eth_usd_pricer_decimals);\n uint256 price_vs_eth;\n\n if (choice == PriceChoice.FRAX) {\n price_vs_eth = uint256(fraxEthOracle.consult(weth_address, PRICE_PRECISION)); // How much FRAX if you put in PRICE_PRECISION WETH\n }\n else if (choice == PriceChoice.FXS) {\n price_vs_eth = uint256(fxsEthOracle.consult(weth_address, PRICE_PRECISION)); // How much FXS if you put in PRICE_PRECISION WETH\n }\n else revert(\"INVALID PRICE CHOICE. Needs to be either 0 (FRAX) or 1 (FXS)\");\n\n // Will be in 1e6 format\n return eth_usd_price.mul(PRICE_PRECISION).div(price_vs_eth);\n }\n\n // Returns X FRAX = 1 USD\n function frax_price() public view returns (uint256) {\n return oracle_price(PriceChoice.FRAX);\n }\n\n // Returns X FXS = 1 USD\n function fxs_price() public view returns (uint256) {\n return oracle_price(PriceChoice.FXS);\n }\n\n function eth_usd_price() public view returns (uint256) {\n return uint256(eth_usd_pricer.getLatestPrice()).mul(PRICE_PRECISION).div(uint256(10) ** eth_usd_pricer_decimals);\n }\n\n // This is needed to avoid costly repeat calls to different getter functions\n // It is cheaper gas-wise to just dump everything and only use some of the info\n function frax_info() public view returns (uint256, uint256, uint256, uint256, uint256, uint256, uint256, uint256) {\n return (\n oracle_price(PriceChoice.FRAX), // frax_price()\n oracle_price(PriceChoice.FXS), // fxs_price()\n totalSupply(), // totalSupply()\n global_collateral_ratio, // global_collateral_ratio()\n globalCollateralValue(), // globalCollateralValue\n minting_fee, // minting_fee()\n redemption_fee, // redemption_fee()\n uint256(eth_usd_pricer.getLatestPrice()).mul(PRICE_PRECISION).div(uint256(10) ** eth_usd_pricer_decimals) //eth_usd_price\n );\n }\n\n // Iterate through all frax pools and calculate all value of collateral in all pools globally \n function globalCollateralValue() public view returns (uint256) {\n uint256 total_collateral_value_d18 = 0; \n\n for (uint i = 0; i \u003c frax_pools_array.length; i++){ \n // Exclude null addresses\n if (frax_pools_array[i] != address(0)){\n total_collateral_value_d18 = total_collateral_value_d18.add(FraxPool(frax_pools_array[i]).collatDollarBalance());\n }\n\n }\n return total_collateral_value_d18;\n }\n\n /* ========== PUBLIC FUNCTIONS ========== */\n \n // There needs to be a time interval that this can be called. Otherwise it can be called multiple times per expansion.\n uint256 public last_call_time; // Last time the refreshCollateralRatio function was called\n function refreshCollateralRatio() public {\n require(collateral_ratio_paused == false, \"Collateral Ratio has been paused\");\n uint256 frax_price_cur = frax_price();\n require(block.timestamp - last_call_time \u003e= refresh_cooldown, \"Must wait for the refresh cooldown since last refresh\");\n\n // Step increments are 0.25% (upon genesis, changable by setFraxStep()) \n \n if (frax_price_cur \u003e price_target.add(price_band)) { //decrease collateral ratio\n if(global_collateral_ratio \u003c= frax_step){ //if within a step of 0, go to 0\n global_collateral_ratio = 0;\n } else {\n global_collateral_ratio = global_collateral_ratio.sub(frax_step);\n }\n } else if (frax_price_cur \u003c price_target.sub(price_band)) { //increase collateral ratio\n if(global_collateral_ratio.add(frax_step) \u003e= 1000000){\n global_collateral_ratio = 1000000; // cap collateral ratio at 1.000000\n } else {\n global_collateral_ratio = global_collateral_ratio.add(frax_step);\n }\n }\n\n last_call_time = block.timestamp; // Set the time of the last expansion\n }\n\n /* ========== RESTRICTED FUNCTIONS ========== */\n\n // Used by pools when user redeems\n function pool_burn_from(address b_address, uint256 b_amount) public onlyPools {\n super._burnFrom(b_address, b_amount);\n emit FRAXBurned(b_address, msg.sender, b_amount);\n }\n\n // This function is what other frax pools will call to mint new FRAX \n function pool_mint(address m_address, uint256 m_amount) public onlyPools {\n super._mint(m_address, m_amount);\n emit FRAXMinted(msg.sender, m_address, m_amount);\n }\n\n // Adds collateral addresses supported, such as tether and busd, must be ERC20 \n function addPool(address pool_address) public onlyByOwnerOrGovernance {\n require(frax_pools[pool_address] == false, \"address already exists\");\n frax_pools[pool_address] = true; \n frax_pools_array.push(pool_address);\n }\n\n // Remove a pool \n function removePool(address pool_address) public onlyByOwnerOrGovernance {\n require(frax_pools[pool_address] == true, \"address doesn\u0027t exist already\");\n \n // Delete from the mapping\n delete frax_pools[pool_address];\n\n // \u0027Delete\u0027 from the array by setting the address to 0x0\n for (uint i = 0; i \u003c frax_pools_array.length; i++){ \n if (frax_pools_array[i] == pool_address) {\n frax_pools_array[i] = address(0); // This will leave a null in the array and keep the indices the same\n break;\n }\n }\n }\n\n function setOwner(address _owner_address) external onlyByOwnerOrGovernance {\n owner_address = _owner_address;\n }\n\n function setRedemptionFee(uint256 red_fee) public onlyByOwnerOrGovernance {\n redemption_fee = red_fee;\n }\n\n function setMintingFee(uint256 min_fee) public onlyByOwnerOrGovernance {\n minting_fee = min_fee;\n } \n\n function setFraxStep(uint256 _new_step) public onlyByOwnerOrGovernance {\n frax_step = _new_step;\n } \n\n function setPriceTarget (uint256 _new_price_target) public onlyByOwnerOrGovernance {\n price_target = _new_price_target;\n }\n\n function setRefreshCooldown(uint256 _new_cooldown) public onlyByOwnerOrGovernance {\n \trefresh_cooldown = _new_cooldown;\n }\n\n function setFXSAddress(address _fxs_address) public onlyByOwnerOrGovernance {\n fxs_address = _fxs_address;\n }\n\n function setETHUSDOracle(address _eth_usd_consumer_address) public onlyByOwnerOrGovernance {\n eth_usd_consumer_address = _eth_usd_consumer_address;\n eth_usd_pricer = ChainlinkETHUSDPriceConsumer(eth_usd_consumer_address);\n eth_usd_pricer_decimals = eth_usd_pricer.getDecimals();\n }\n\n function setTimelock(address new_timelock) external onlyByOwnerOrGovernance {\n timelock_address = new_timelock;\n }\n\n function setController(address _controller_address) external onlyByOwnerOrGovernance {\n controller_address = _controller_address;\n }\n\n function setPriceBand(uint256 _price_band) external onlyByOwnerOrGovernance {\n price_band = _price_band;\n }\n\n // Sets the FRAX_ETH Uniswap oracle address \n function setFRAXEthOracle(address _frax_oracle_addr, address _weth_address) public onlyByOwnerOrGovernance {\n frax_eth_oracle_address = _frax_oracle_addr;\n fraxEthOracle = UniswapPairOracle(_frax_oracle_addr); \n weth_address = _weth_address;\n }\n\n // Sets the FXS_ETH Uniswap oracle address \n function setFXSEthOracle(address _fxs_oracle_addr, address _weth_address) public onlyByOwnerOrGovernance {\n fxs_eth_oracle_address = _fxs_oracle_addr;\n fxsEthOracle = UniswapPairOracle(_fxs_oracle_addr);\n weth_address = _weth_address;\n }\n\n function toggleCollateralRatio() public onlyCollateralRatioPauser {\n collateral_ratio_paused = !collateral_ratio_paused;\n }\n\n /* ========== EVENTS ========== */\n\n // Track FRAX burned\n event FRAXBurned(address indexed from, address indexed to, uint256 amount);\n\n // Track FRAX minted\n event FRAXMinted(address indexed from, address indexed to, uint256 amount);\n}\n"},"FraxPool.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./SafeMath.sol\";\nimport \"./FXS.sol\";\nimport \"./Frax.sol\";\nimport \"./ERC20.sol\";\n// import \u0027../../Uniswap/TransferHelper.sol\u0027;\nimport \"./UniswapPairOracle.sol\";\nimport \"./AccessControl.sol\";\n// import \"../../Utils/StringHelpers.sol\";\nimport \"./FraxPoolLibrary.sol\";\n\n/*\n Same as FraxPool.sol, but has some gas optimizations\n*/\n\n\ncontract FraxPool is AccessControl {\n using SafeMath for uint256;\n\n /* ========== STATE VARIABLES ========== */\n\n ERC20 private collateral_token;\n address private collateral_address;\n address private owner_address;\n // address private oracle_address;\n address private frax_contract_address;\n address private fxs_contract_address;\n address private timelock_address; // Timelock address for the governance contract\n FRAXShares private FXS;\n FRAXStablecoin private FRAX;\n // UniswapPairOracle private oracle;\n UniswapPairOracle private collatEthOracle;\n address private collat_eth_oracle_address;\n address private weth_address;\n\n uint256 private minting_fee;\n uint256 private redemption_fee;\n\n mapping (address =\u003e uint256) public redeemFXSBalances;\n mapping (address =\u003e uint256) public redeemCollateralBalances;\n uint256 public unclaimedPoolCollateral;\n uint256 public unclaimedPoolFXS;\n mapping (address =\u003e uint256) public lastRedeemed;\n\n // Constants for various precisions\n uint256 private constant PRICE_PRECISION = 1e6;\n uint256 private constant COLLATERAL_RATIO_PRECISION = 1e6;\n uint256 private constant COLLATERAL_RATIO_MAX = 1e6;\n\n // Number of decimals needed to get to 18\n uint256 private missing_decimals;\n \n // Pool_ceiling is the total units of collateral that a pool contract can hold\n uint256 public pool_ceiling = 0;\n\n // Stores price of the collateral, if price is paused\n uint256 public pausedPrice = 0;\n\n // Bonus rate on FXS minted during recollateralizeFRAX(); 6 decimals of precision, set to 0.75% on genesis\n uint256 public bonus_rate = 7500;\n\n // Number of blocks to wait before being able to collectRedemption()\n uint256 public redemption_delay = 1;\n\n // AccessControl Roles\n bytes32 private constant MINT_PAUSER = keccak256(\"MINT_PAUSER\");\n bytes32 private constant REDEEM_PAUSER = keccak256(\"REDEEM_PAUSER\");\n bytes32 private constant BUYBACK_PAUSER = keccak256(\"BUYBACK_PAUSER\");\n bytes32 private constant RECOLLATERALIZE_PAUSER = keccak256(\"RECOLLATERALIZE_PAUSER\");\n bytes32 private constant COLLATERAL_PRICE_PAUSER = keccak256(\"COLLATERAL_PRICE_PAUSER\");\n \n // AccessControl state variables\n bool private mintPaused = false;\n bool private redeemPaused = false;\n bool private recollateralizePaused = false;\n bool private buyBackPaused = false;\n bool private collateralPricePaused = false;\n\n /* ========== MODIFIERS ========== */\n\n modifier onlyByOwnerOrGovernance() {\n require(msg.sender == timelock_address || msg.sender == owner_address, \"You are not the owner or the governance timelock\");\n _;\n }\n\n modifier notRedeemPaused() {\n require(redeemPaused == false, \"Redeeming is paused\");\n _;\n }\n\n modifier notMintPaused() {\n require(mintPaused == false, \"Minting is paused\");\n _;\n }\n \n /* ========== CONSTRUCTOR ========== */\n \n constructor(\n address _frax_contract_address,\n address _fxs_contract_address,\n address _collateral_address,\n address _creator_address,\n address _timelock_address,\n uint256 _pool_ceiling\n ) public {\n FRAX = FRAXStablecoin(_frax_contract_address);\n FXS = FRAXShares(_fxs_contract_address);\n frax_contract_address = _frax_contract_address;\n fxs_contract_address = _fxs_contract_address;\n collateral_address = _collateral_address;\n timelock_address = _timelock_address;\n owner_address = _creator_address;\n collateral_token = ERC20(_collateral_address);\n pool_ceiling = _pool_ceiling;\n missing_decimals = uint(18).sub(collateral_token.decimals());\n\n _setupRole(DEFAULT_ADMIN_ROLE, _msgSender());\n grantRole(MINT_PAUSER, timelock_address);\n grantRole(REDEEM_PAUSER, timelock_address);\n grantRole(RECOLLATERALIZE_PAUSER, timelock_address);\n grantRole(BUYBACK_PAUSER, timelock_address);\n grantRole(COLLATERAL_PRICE_PAUSER, timelock_address);\n }\n\n /* ========== VIEWS ========== */\n\n // Returns dollar value of collateral held in this Frax pool\n function collatDollarBalance() public view returns (uint256) {\n uint256 eth_usd_price = FRAX.eth_usd_price();\n uint256 eth_collat_price = collatEthOracle.consult(weth_address, (PRICE_PRECISION * (10 ** missing_decimals)));\n\n uint256 collat_usd_price = eth_usd_price.mul(PRICE_PRECISION).div(eth_collat_price);\n return (collateral_token.balanceOf(address(this)).sub(unclaimedPoolCollateral)).mul(10 ** missing_decimals).mul(collat_usd_price).div(PRICE_PRECISION); //.mul(getCollateralPrice()).div(1e6); \n }\n\n // Returns the value of excess collateral held in this Frax pool, compared to what is needed to maintain the global collateral ratio\n function availableExcessCollatDV() public view returns (uint256) {\n uint256 total_supply = FRAX.totalSupply();\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n uint256 global_collat_value = FRAX.globalCollateralValue();\n\n if (global_collateral_ratio \u003e COLLATERAL_RATIO_PRECISION) global_collateral_ratio = COLLATERAL_RATIO_PRECISION; // Handles an overcollateralized contract with CR \u003e 1\n uint256 required_collat_dollar_value_d18 = (total_supply.mul(global_collateral_ratio)).div(COLLATERAL_RATIO_PRECISION); // Calculates collateral needed to back each 1 FRAX with $1 of collateral at current collat ratio\n if (global_collat_value \u003e required_collat_dollar_value_d18) return global_collat_value.sub(required_collat_dollar_value_d18);\n else return 0;\n }\n\n /* ========== PUBLIC FUNCTIONS ========== */\n \n // Returns the price of the pool collateral in USD\n function getCollateralPrice() public view returns (uint256) {\n if(collateralPricePaused == true){\n return pausedPrice;\n } else {\n uint256 eth_usd_price = FRAX.eth_usd_price();\n return eth_usd_price.mul(PRICE_PRECISION).div(collatEthOracle.consult(weth_address, PRICE_PRECISION * (10 ** missing_decimals)));\n }\n }\n\n function setCollatETHOracle(address _collateral_weth_oracle_address, address _weth_address) external onlyByOwnerOrGovernance {\n collat_eth_oracle_address = _collateral_weth_oracle_address;\n collatEthOracle = UniswapPairOracle(_collateral_weth_oracle_address);\n weth_address = _weth_address;\n }\n\n // We separate out the 1t1, fractional and algorithmic minting functions for gas efficiency \n function mint1t1FRAX(uint256 collateral_amount, uint256 FRAX_out_min) external notMintPaused {\n uint256 collateral_amount_d18 = collateral_amount * (10 ** missing_decimals);\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n\n require(global_collateral_ratio \u003e= COLLATERAL_RATIO_MAX, \"Collateral ratio must be \u003e= 1\");\n require((collateral_token.balanceOf(address(this))).sub(unclaimedPoolCollateral).add(collateral_amount) \u003c= pool_ceiling, \"[Pool\u0027s Closed]: Ceiling reached\");\n \n (uint256 frax_amount_d18) = FraxPoolLibrary.calcMint1t1FRAX(\n getCollateralPrice(),\n minting_fee,\n collateral_amount_d18\n ); //1 FRAX for each $1 worth of collateral\n\n require(FRAX_out_min \u003c= frax_amount_d18, \"Slippage limit reached\");\n collateral_token.transferFrom(msg.sender, address(this), collateral_amount);\n FRAX.pool_mint(msg.sender, frax_amount_d18);\n }\n\n // 0% collateral-backed\n function mintAlgorithmicFRAX(uint256 fxs_amount_d18, uint256 FRAX_out_min) external notMintPaused {\n uint256 fxs_price = FRAX.fxs_price();\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n require(global_collateral_ratio == 0, \"Collateral ratio must be 0\");\n \n (uint256 frax_amount_d18) = FraxPoolLibrary.calcMintAlgorithmicFRAX(\n minting_fee, \n fxs_price, // X FXS / 1 USD\n fxs_amount_d18\n );\n\n require(FRAX_out_min \u003c= frax_amount_d18, \"Slippage limit reached\");\n FXS.pool_burn_from(msg.sender, fxs_amount_d18);\n FRAX.pool_mint(msg.sender, frax_amount_d18);\n }\n\n // Will fail if fully collateralized or fully algorithmic\n // \u003e 0% and \u003c 100% collateral-backed\n function mintFractionalFRAX(uint256 collateral_amount, uint256 fxs_amount, uint256 FRAX_out_min) external notMintPaused {\n uint256 frax_price = FRAX.frax_price();\n uint256 fxs_price = FRAX.fxs_price();\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n\n require(global_collateral_ratio \u003c COLLATERAL_RATIO_MAX \u0026\u0026 global_collateral_ratio \u003e 0, \"Collateral ratio needs to be between .000001 and .999999\");\n require(collateral_token.balanceOf(address(this)).sub(unclaimedPoolCollateral).add(collateral_amount) \u003c= pool_ceiling, \"Pool ceiling reached, no more FRAX can be minted with this collateral\");\n\n uint256 collateral_amount_d18 = collateral_amount * (10 ** missing_decimals);\n FraxPoolLibrary.MintFF_Params memory input_params = FraxPoolLibrary.MintFF_Params(\n minting_fee, \n fxs_price,\n frax_price,\n getCollateralPrice(),\n fxs_amount,\n collateral_amount_d18,\n (collateral_token.balanceOf(address(this)).sub(unclaimedPoolCollateral)),\n pool_ceiling,\n global_collateral_ratio\n );\n\n (uint256 mint_amount, uint256 fxs_needed) = FraxPoolLibrary.calcMintFractionalFRAX(input_params);\n\n require(FRAX_out_min \u003c= mint_amount, \"Slippage limit reached\");\n require(fxs_needed \u003c= fxs_amount, \"Not enough FXS inputted\");\n FXS.pool_burn_from(msg.sender, fxs_needed);\n collateral_token.transferFrom(msg.sender, address(this), collateral_amount);\n FRAX.pool_mint(msg.sender, mint_amount);\n }\n\n // Redeem collateral. 100% collateral-backed\n function redeem1t1FRAX(uint256 FRAX_amount, uint256 COLLATERAL_out_min) external notRedeemPaused {\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n require(global_collateral_ratio == COLLATERAL_RATIO_MAX, \"Collateral ratio must be == 1\");\n\n // Need to adjust for decimals of collateral\n uint256 FRAX_amount_precision = FRAX_amount.div(10 ** missing_decimals);\n (uint256 collateral_needed) = FraxPoolLibrary.calcRedeem1t1FRAX(\n getCollateralPrice(),\n FRAX_amount_precision,\n redemption_fee\n );\n\n require(collateral_needed \u003c= collateral_token.balanceOf(address(this)).sub(unclaimedPoolCollateral), \"Not enough collateral in pool\");\n\n redeemCollateralBalances[msg.sender] = redeemCollateralBalances[msg.sender].add(collateral_needed);\n unclaimedPoolCollateral = unclaimedPoolCollateral.add(collateral_needed);\n lastRedeemed[msg.sender] = block.number;\n\n require(COLLATERAL_out_min \u003c= collateral_needed, \"Slippage limit reached\");\n \n // Move all external functions to the end\n FRAX.pool_burn_from(msg.sender, FRAX_amount);\n }\n\n // Will fail if fully collateralized or algorithmic\n // Redeem FRAX for collateral and FXS. \u003e 0% and \u003c 100% collateral-backed\n function redeemFractionalFRAX(uint256 FRAX_amount, uint256 FXS_out_min, uint256 COLLATERAL_out_min) external notRedeemPaused {\n uint256 fxs_price = FRAX.fxs_price();\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n\n require(global_collateral_ratio \u003c COLLATERAL_RATIO_MAX \u0026\u0026 global_collateral_ratio \u003e 0, \"Collateral ratio needs to be between .000001 and .999999\");\n uint256 col_price_usd = getCollateralPrice();\n\n uint256 FRAX_amount_post_fee = FRAX_amount.sub((FRAX_amount.mul(redemption_fee)).div(PRICE_PRECISION));\n uint256 fxs_dollar_value_d18 = FRAX_amount_post_fee.sub(FRAX_amount_post_fee.mul(global_collateral_ratio).div(PRICE_PRECISION));\n uint256 fxs_amount = fxs_dollar_value_d18.mul(PRICE_PRECISION).div(fxs_price);\n\n // Need to adjust for decimals of collateral\n uint256 FRAX_amount_precision = FRAX_amount_post_fee.div(10 ** missing_decimals);\n uint256 collateral_dollar_value = FRAX_amount_precision.mul(global_collateral_ratio).div(PRICE_PRECISION);\n uint256 collateral_amount = collateral_dollar_value.mul(PRICE_PRECISION).div(col_price_usd);\n\n redeemCollateralBalances[msg.sender] = redeemCollateralBalances[msg.sender].add(collateral_amount);\n unclaimedPoolCollateral = unclaimedPoolCollateral.add(collateral_amount);\n\n redeemFXSBalances[msg.sender] = redeemFXSBalances[msg.sender].add(fxs_amount);\n unclaimedPoolFXS = unclaimedPoolFXS.add(fxs_amount);\n\n lastRedeemed[msg.sender] = block.number;\n\n require(collateral_amount \u003c= collateral_token.balanceOf(address(this)).sub(unclaimedPoolCollateral), \"Not enough collateral in pool\");\n require(COLLATERAL_out_min \u003c= collateral_amount, \"Slippage limit reached [collateral]\");\n require(FXS_out_min \u003c= fxs_amount, \"Slippage limit reached [FXS]\");\n \n // Move all external functions to the end\n FRAX.pool_burn_from(msg.sender, FRAX_amount);\n FXS.pool_mint(address(this), fxs_amount);\n }\n\n // Redeem FRAX for FXS. 0% collateral-backed\n function redeemAlgorithmicFRAX(uint256 FRAX_amount, uint256 FXS_out_min) external notRedeemPaused {\n uint256 fxs_price = FRAX.fxs_price();\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n\n require(global_collateral_ratio == 0, \"Collateral ratio must be 0\"); \n uint256 fxs_dollar_value_d18 = FRAX_amount;\n fxs_dollar_value_d18 = fxs_dollar_value_d18.sub((fxs_dollar_value_d18.mul(redemption_fee)).div(PRICE_PRECISION)); //apply redemption fee\n\n uint256 fxs_amount = fxs_dollar_value_d18.mul(PRICE_PRECISION).div(fxs_price);\n \n redeemFXSBalances[msg.sender] = redeemFXSBalances[msg.sender].add(fxs_amount);\n unclaimedPoolFXS = unclaimedPoolFXS.add(fxs_amount);\n \n lastRedeemed[msg.sender] = block.number;\n \n require(FXS_out_min \u003c= fxs_amount, \"Slippage limit reached\");\n // Move all external functions to the end\n FRAX.pool_burn_from(msg.sender, FRAX_amount);\n FXS.pool_mint(address(this), fxs_amount);\n }\n\n // After a redemption happens, transfer the newly minted FXS and owed collateral from this pool\n // contract to the user. Redemption is split into two functions to prevent flash loans from being able\n // to take out FRAX/collateral from the system, use an AMM to trade the new price, and then mint back into the system.\n function collectRedemption() external {\n require((lastRedeemed[msg.sender].add(redemption_delay)) \u003c= block.number, \"Must wait for redemption_delay blocks before collecting redemption\");\n bool sendFXS = false;\n bool sendCollateral = false;\n uint FXSAmount;\n uint CollateralAmount;\n\n // Use Checks-Effects-Interactions pattern\n if(redeemFXSBalances[msg.sender] \u003e 0){\n FXSAmount = redeemFXSBalances[msg.sender];\n redeemFXSBalances[msg.sender] = 0;\n unclaimedPoolFXS = unclaimedPoolFXS.sub(FXSAmount);\n\n sendFXS = true;\n }\n \n if(redeemCollateralBalances[msg.sender] \u003e 0){\n CollateralAmount = redeemCollateralBalances[msg.sender];\n redeemCollateralBalances[msg.sender] = 0;\n unclaimedPoolCollateral = unclaimedPoolCollateral.sub(CollateralAmount);\n\n sendCollateral = true;\n }\n\n if(sendFXS == true){\n FXS.transfer(msg.sender, FXSAmount);\n }\n if(sendCollateral == true){\n collateral_token.transfer(msg.sender, CollateralAmount);\n }\n }\n\n\n // When the protocol is recollateralizing, we need to give a discount of FXS to hit the new CR target\n // Thus, if the target collateral ratio is higher than the actual value of collateral, minters get FXS for adding collateral\n // This function simply rewards anyone that sends collateral to a pool with the same amount of FXS + the bonus rate\n // Anyone can call this function to recollateralize the protocol and take the extra FXS value from the bonus rate as an arb opportunity\n function recollateralizeFRAX(uint256 collateral_amount, uint256 FXS_out_min) external {\n require(recollateralizePaused == false, \"Recollateralize is paused\");\n uint256 collateral_amount_d18 = collateral_amount * (10 ** missing_decimals);\n uint256 fxs_price = FRAX.fxs_price();\n uint256 frax_total_supply = FRAX.totalSupply();\n uint256 global_collateral_ratio = FRAX.global_collateral_ratio();\n uint256 global_collat_value = FRAX.globalCollateralValue();\n \n (uint256 collateral_units, uint256 amount_to_recollat) = FraxPoolLibrary.calcRecollateralizeFRAXInner(\n collateral_amount_d18,\n getCollateralPrice(),\n global_collat_value,\n frax_total_supply,\n global_collateral_ratio\n ); \n\n uint256 collateral_units_precision = collateral_units.div(10 ** missing_decimals);\n\n uint256 fxs_paid_back = amount_to_recollat.mul(uint(1e6).add(bonus_rate)).div(fxs_price);\n\n require(FXS_out_min \u003c= fxs_paid_back, \"Slippage limit reached\");\n collateral_token.transferFrom(msg.sender, address(this), collateral_units_precision);\n FXS.pool_mint(msg.sender, fxs_paid_back);\n \n }\n\n // Function can be called by an FXS holder to have the protocol buy back FXS with excess collateral value from a desired collateral pool\n // This can also happen if the collateral ratio \u003e 1\n function buyBackFXS(uint256 FXS_amount, uint256 COLLATERAL_out_min) external {\n require(buyBackPaused == false, \"Buyback is paused\");\n uint256 fxs_price = FRAX.fxs_price();\n \n FraxPoolLibrary.BuybackFXS_Params memory input_params = FraxPoolLibrary.BuybackFXS_Params(\n availableExcessCollatDV(),\n fxs_price,\n getCollateralPrice(),\n FXS_amount\n );\n\n (uint256 collateral_equivalent_d18) = FraxPoolLibrary.calcBuyBackFXS(input_params);\n uint256 collateral_precision = collateral_equivalent_d18.div(10 ** missing_decimals);\n\n require(COLLATERAL_out_min \u003c= collateral_precision, \"Slippage limit reached\");\n // Give the sender their desired collateral and burn the FXS\n FXS.pool_burn_from(msg.sender, FXS_amount);\n collateral_token.transfer(msg.sender, collateral_precision);\n }\n\n /* ========== RESTRICTED FUNCTIONS ========== */\n\n function toggleMinting() external {\n require(hasRole(MINT_PAUSER, msg.sender));\n mintPaused = !mintPaused;\n }\n \n function toggleRedeeming() external {\n require(hasRole(REDEEM_PAUSER, msg.sender));\n redeemPaused = !redeemPaused;\n }\n\n function toggleRecollateralize() external {\n require(hasRole(RECOLLATERALIZE_PAUSER, msg.sender));\n recollateralizePaused = !recollateralizePaused;\n }\n \n function toggleBuyBack() external {\n require(hasRole(BUYBACK_PAUSER, msg.sender));\n buyBackPaused = !buyBackPaused;\n }\n\n function toggleCollateralPrice() external {\n require(hasRole(COLLATERAL_PRICE_PAUSER, msg.sender));\n // If pausing, set paused price; else if unpausing, clear pausedPrice\n if(collateralPricePaused == false){\n pausedPrice = getCollateralPrice();\n } else {\n pausedPrice = 0;\n }\n collateralPricePaused = !collateralPricePaused;\n }\n\n // Combined into one function due to 24KiB contract memory limit\n function setPoolParameters(uint256 new_ceiling, uint256 new_bonus_rate, uint256 new_redemption_delay) external onlyByOwnerOrGovernance {\n pool_ceiling = new_ceiling;\n bonus_rate = new_bonus_rate;\n redemption_delay = new_redemption_delay;\n minting_fee = FRAX.minting_fee();\n redemption_fee = FRAX.redemption_fee();\n }\n\n function setTimelock(address new_timelock) external onlyByOwnerOrGovernance {\n timelock_address = new_timelock;\n }\n\n function setOwner(address _owner_address) external onlyByOwnerOrGovernance {\n owner_address = _owner_address;\n }\n\n /* ========== EVENTS ========== */\n\n}"},"FraxPoolLibrary.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity ^0.6.0;\npragma experimental ABIEncoderV2;\n\nimport \"./SafeMath.sol\";\n\n\n\nlibrary FraxPoolLibrary {\n using SafeMath for uint256;\n\n // Constants for various precisions\n uint256 private constant PRICE_PRECISION = 1e6;\n\n // ================ Structs ================\n // Needed to lower stack size\n struct MintFF_Params {\n uint256 mint_fee; \n uint256 fxs_price_usd; \n uint256 frax_price_usd; \n uint256 col_price_usd;\n uint256 fxs_amount;\n uint256 collateral_amount;\n uint256 collateral_token_balance;\n uint256 pool_ceiling;\n uint256 col_ratio;\n }\n\n struct BuybackFXS_Params {\n uint256 excess_collateral_dollar_value_d18;\n uint256 fxs_price_usd;\n uint256 col_price_usd;\n uint256 FXS_amount;\n }\n\n // ================ Functions ================\n\n function calcMint1t1FRAX(uint256 col_price, uint256 mint_fee, uint256 collateral_amount_d18) public pure returns (uint256) {\n uint256 col_price_usd = col_price;\n uint256 c_dollar_value_d18 = (collateral_amount_d18.mul(col_price_usd)).div(1e6);\n return c_dollar_value_d18.sub((c_dollar_value_d18.mul(mint_fee)).div(1e6));\n }\n\n function calcMintAlgorithmicFRAX(uint256 mint_fee, uint256 fxs_price_usd, uint256 fxs_amount_d18) public pure returns (uint256) {\n uint256 fxs_dollar_value_d18 = fxs_amount_d18.mul(fxs_price_usd).div(1e6);\n return fxs_dollar_value_d18.sub((fxs_dollar_value_d18.mul(mint_fee)).div(1e6));\n }\n\n // Must be internal because of the struct\n function calcMintFractionalFRAX(MintFF_Params memory params) internal pure returns (uint256, uint256) {\n // Since solidity truncates division, every division operation must be the last operation in the equation to ensure minimum error\n // The contract must check the proper ratio was sent to mint FRAX. We do this by seeing the minimum mintable FRAX based on each amount \n uint256 fxs_dollar_value_d18;\n uint256 c_dollar_value_d18;\n \n // Scoping for stack concerns\n { \n // USD amounts of the collateral and the FXS\n fxs_dollar_value_d18 = params.fxs_amount.mul(params.fxs_price_usd).div(1e6);\n c_dollar_value_d18 = params.collateral_amount.mul(params.col_price_usd).div(1e6);\n\n }\n uint calculated_fxs_dollar_value_d18 = \n (c_dollar_value_d18.mul(1e6).div(params.col_ratio))\n .sub(c_dollar_value_d18);\n\n uint calculated_fxs_needed = calculated_fxs_dollar_value_d18.mul(1e6).div(params.fxs_price_usd);\n\n return (\n (c_dollar_value_d18.add(calculated_fxs_dollar_value_d18)).sub(((c_dollar_value_d18.add(calculated_fxs_dollar_value_d18)).mul(params.mint_fee)).div(1e6)),\n calculated_fxs_needed\n );\n }\n\n function calcRedeem1t1FRAX(uint256 col_price_usd, uint256 FRAX_amount, uint256 redemption_fee) public pure returns (uint256) {\n uint256 collateral_needed_d18 = FRAX_amount.mul(1e6).div(col_price_usd);\n return collateral_needed_d18.sub((collateral_needed_d18.mul(redemption_fee)).div(1e6));\n }\n\n // Must be internal because of the struct\n function calcBuyBackFXS(BuybackFXS_Params memory params) internal pure returns (uint256) {\n // If the total collateral value is higher than the amount required at the current collateral ratio then buy back up to the possible FXS with the desired collateral\n require(params.excess_collateral_dollar_value_d18 \u003e 0, \"No excess collateral to buy back!\");\n\n // Make sure not to take more than is available\n uint256 fxs_dollar_value_d18 = params.FXS_amount.mul(params.fxs_price_usd).div(1e6);\n require(fxs_dollar_value_d18 \u003c= params.excess_collateral_dollar_value_d18, \"You are trying to buy back more than the excess!\");\n\n // Get the equivalent amount of collateral based on the market value of FXS provided \n uint256 collateral_equivalent_d18 = fxs_dollar_value_d18.mul(1e6).div(params.col_price_usd);\n //collateral_equivalent_d18 = collateral_equivalent_d18.sub((collateral_equivalent_d18.mul(params.buyback_fee)).div(1e6));\n\n return (\n collateral_equivalent_d18\n );\n\n }\n\n\n // Returns value of collateral that must increase to reach recollateralization target (if 0 means no recollateralization)\n function recollateralizeAmount(uint256 total_supply, uint256 global_collateral_ratio, uint256 global_collat_value) public pure returns (uint256) {\n uint256 target_collat_value = total_supply.mul(global_collateral_ratio).div(1e6); // We want 18 decimals of precision so divide by 1e6; total_supply is 1e18 and global_collateral_ratio is 1e6\n // Subtract the current value of collateral from the target value needed, if higher than 0 then system needs to recollateralize\n uint256 recollateralization_left = target_collat_value.sub(global_collat_value); // If recollateralization is not needed, throws a subtraction underflow\n return(recollateralization_left);\n }\n\n function calcRecollateralizeFRAXInner(\n uint256 collateral_amount, \n uint256 col_price,\n uint256 global_collat_value,\n uint256 frax_total_supply,\n uint256 global_collateral_ratio\n ) public pure returns (uint256, uint256) {\n uint256 collat_value_attempted = collateral_amount.mul(col_price).div(1e6);\n uint256 effective_collateral_ratio = global_collat_value.mul(1e6).div(frax_total_supply); //returns it in 1e6\n uint256 recollat_possible = (global_collateral_ratio.mul(frax_total_supply).sub(frax_total_supply.mul(effective_collateral_ratio))).div(1e6);\n\n uint256 amount_to_recollat;\n if(collat_value_attempted \u003c= recollat_possible){\n amount_to_recollat = collat_value_attempted;\n } else {\n amount_to_recollat = recollat_possible;\n }\n\n return (amount_to_recollat.mul(1e6).div(col_price), amount_to_recollat);\n\n }\n\n}"},"FXS.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./Context.sol\";\nimport \"./ERC20Custom.sol\";\nimport \"./IERC20.sol\";\nimport \"./Frax.sol\";\nimport \"./SafeMath.sol\";\nimport \"./AccessControl.sol\";\n\ncontract FRAXShares is ERC20Custom, AccessControl {\n using SafeMath for uint256;\n\n /* ========== STATE VARIABLES ========== */\n\n string public symbol;\n string public name;\n uint8 public constant decimals = 18;\n address public FRAXStablecoinAdd;\n \n uint256 public constant genesis_supply = 100000000e18; // 100M is printed upon genesis\n uint256 public FXS_DAO_min; // Minimum FXS required to join DAO groups \n\n address public owner_address;\n address public oracle_address;\n address public timelock_address; // Governance timelock address\n FRAXStablecoin private FRAX;\n\n bool public trackingVotes = true; // Tracking votes (only change if need to disable votes)\n\n // A checkpoint for marking number of votes from a given block\n struct Checkpoint {\n uint32 fromBlock;\n uint96 votes;\n }\n\n // A record of votes checkpoints for each account, by index\n mapping (address =\u003e mapping (uint32 =\u003e Checkpoint)) public checkpoints;\n\n // The number of checkpoints for each account\n mapping (address =\u003e uint32) public numCheckpoints;\n\n /* ========== MODIFIERS ========== */\n\n modifier onlyPools() {\n require(FRAX.frax_pools(msg.sender) == true, \"Only frax pools can mint new FRAX\");\n _;\n } \n \n modifier onlyByOwnerOrGovernance() {\n require(msg.sender == owner_address || msg.sender == timelock_address, \"You are not an owner or the governance timelock\");\n _;\n }\n\n /* ========== CONSTRUCTOR ========== */\n\n constructor(\n string memory _name,\n string memory _symbol, \n address _oracle_address,\n address _owner_address,\n address _timelock_address\n ) public {\n name = _name;\n symbol = _symbol;\n owner_address = _owner_address;\n oracle_address = _oracle_address;\n timelock_address = _timelock_address;\n _setupRole(DEFAULT_ADMIN_ROLE, _msgSender());\n _mint(owner_address, genesis_supply);\n\n // Do a checkpoint for the owner\n _writeCheckpoint(owner_address, 0, 0, uint96(genesis_supply));\n }\n\n /* ========== RESTRICTED FUNCTIONS ========== */\n\n function setOracle(address new_oracle) external onlyByOwnerOrGovernance {\n oracle_address = new_oracle;\n }\n\n function setTimelock(address new_timelock) external onlyByOwnerOrGovernance {\n timelock_address = new_timelock;\n }\n \n function setFRAXAddress(address frax_contract_address) external onlyByOwnerOrGovernance {\n FRAX = FRAXStablecoin(frax_contract_address);\n }\n \n function setFXSMinDAO(uint256 min_FXS) external onlyByOwnerOrGovernance {\n FXS_DAO_min = min_FXS;\n }\n\n function setOwner(address _owner_address) external onlyByOwnerOrGovernance {\n owner_address = _owner_address;\n }\n\n function mint(address to, uint256 amount) public onlyPools {\n _mint(to, amount);\n }\n \n // This function is what other frax pools will call to mint new FXS (similar to the FRAX mint) \n function pool_mint(address m_address, uint256 m_amount) external onlyPools { \n if(trackingVotes){\n uint32 srcRepNum = numCheckpoints[address(this)];\n uint96 srcRepOld = srcRepNum \u003e 0 ? checkpoints[address(this)][srcRepNum - 1].votes : 0;\n uint96 srcRepNew = add96(srcRepOld, uint96(m_amount), \"pool_mint new votes overflows\");\n _writeCheckpoint(address(this), srcRepNum, srcRepOld, srcRepNew); // mint new votes\n trackVotes(address(this), m_address, uint96(m_amount));\n }\n\n super._mint(m_address, m_amount);\n emit FXSMinted(address(this), m_address, m_amount);\n }\n\n // This function is what other frax pools will call to burn FXS \n function pool_burn_from(address b_address, uint256 b_amount) external onlyPools {\n if(trackingVotes){\n trackVotes(b_address, address(this), uint96(b_amount));\n uint32 srcRepNum = numCheckpoints[address(this)];\n uint96 srcRepOld = srcRepNum \u003e 0 ? checkpoints[address(this)][srcRepNum - 1].votes : 0;\n uint96 srcRepNew = sub96(srcRepOld, uint96(b_amount), \"pool_burn_from new votes underflows\");\n _writeCheckpoint(address(this), srcRepNum, srcRepOld, srcRepNew); // burn votes\n }\n\n super._burnFrom(b_address, b_amount);\n emit FXSBurned(b_address, address(this), b_amount);\n }\n\n function toggleVotes() external onlyByOwnerOrGovernance {\n trackingVotes = !trackingVotes;\n }\n\n /* ========== OVERRIDDEN PUBLIC FUNCTIONS ========== */\n\n function transfer(address recipient, uint256 amount) public virtual override returns (bool) {\n if(trackingVotes){\n // Transfer votes\n trackVotes(_msgSender(), recipient, uint96(amount));\n }\n\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {\n if(trackingVotes){\n // Transfer votes\n trackVotes(sender, recipient, uint96(amount));\n }\n\n _transfer(sender, recipient, amount);\n _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, \"ERC20: transfer amount exceeds allowance\"));\n\n return true;\n }\n\n /* ========== PUBLIC FUNCTIONS ========== */\n\n /**\n * @notice Gets the current votes balance for `account`\n * @param account The address to get votes balance\n * @return The number of current votes for `account`\n */\n function getCurrentVotes(address account) external view returns (uint96) {\n uint32 nCheckpoints = numCheckpoints[account];\n return nCheckpoints \u003e 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;\n }\n\n /**\n * @notice Determine the prior number of votes for an account as of a block number\n * @dev Block number must be a finalized block or else this function will revert to prevent misinformation.\n * @param account The address of the account to check\n * @param blockNumber The block number to get the vote balance at\n * @return The number of votes the account had as of the given block\n */\n function getPriorVotes(address account, uint blockNumber) public view returns (uint96) {\n require(blockNumber \u003c block.number, \"FXS::getPriorVotes: not yet determined\");\n\n uint32 nCheckpoints = numCheckpoints[account];\n if (nCheckpoints == 0) {\n return 0;\n }\n\n // First check most recent balance\n if (checkpoints[account][nCheckpoints - 1].fromBlock \u003c= blockNumber) {\n return checkpoints[account][nCheckpoints - 1].votes;\n }\n\n // Next check implicit zero balance\n if (checkpoints[account][0].fromBlock \u003e blockNumber) {\n return 0;\n }\n\n uint32 lower = 0;\n uint32 upper = nCheckpoints - 1;\n while (upper \u003e lower) {\n uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow\n Checkpoint memory cp = checkpoints[account][center];\n if (cp.fromBlock == blockNumber) {\n return cp.votes;\n } else if (cp.fromBlock \u003c blockNumber) {\n lower = center;\n } else {\n upper = center - 1;\n }\n }\n return checkpoints[account][lower].votes;\n }\n\n /* ========== INTERNAL FUNCTIONS ========== */\n\n // From compound\u0027s _moveDelegates\n // Keep track of votes. \"Delegates\" is a misnomer here\n function trackVotes(address srcRep, address dstRep, uint96 amount) internal {\n if (srcRep != dstRep \u0026\u0026 amount \u003e 0) {\n if (srcRep != address(0)) {\n uint32 srcRepNum = numCheckpoints[srcRep];\n uint96 srcRepOld = srcRepNum \u003e 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;\n uint96 srcRepNew = sub96(srcRepOld, amount, \"FXS::_moveVotes: vote amount underflows\");\n _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);\n }\n\n if (dstRep != address(0)) {\n uint32 dstRepNum = numCheckpoints[dstRep];\n uint96 dstRepOld = dstRepNum \u003e 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;\n uint96 dstRepNew = add96(dstRepOld, amount, \"FXS::_moveVotes: vote amount overflows\");\n _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);\n }\n }\n }\n\n function _writeCheckpoint(address voter, uint32 nCheckpoints, uint96 oldVotes, uint96 newVotes) internal {\n uint32 blockNumber = safe32(block.number, \"FXS::_writeCheckpoint: block number exceeds 32 bits\");\n\n if (nCheckpoints \u003e 0 \u0026\u0026 checkpoints[voter][nCheckpoints - 1].fromBlock == blockNumber) {\n checkpoints[voter][nCheckpoints - 1].votes = newVotes;\n } else {\n checkpoints[voter][nCheckpoints] = Checkpoint(blockNumber, newVotes);\n numCheckpoints[voter] = nCheckpoints + 1;\n }\n\n emit VoterVotesChanged(voter, oldVotes, newVotes);\n }\n\n function safe32(uint n, string memory errorMessage) internal pure returns (uint32) {\n require(n \u003c 2**32, errorMessage);\n return uint32(n);\n }\n\n function safe96(uint n, string memory errorMessage) internal pure returns (uint96) {\n require(n \u003c 2**96, errorMessage);\n return uint96(n);\n }\n\n function add96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {\n uint96 c = a + b;\n require(c \u003e= a, errorMessage);\n return c;\n }\n\n function sub96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {\n require(b \u003c= a, errorMessage);\n return a - b;\n }\n\n function getChainId() internal pure returns (uint) {\n uint256 chainId;\n assembly { chainId := chainid() }\n return chainId;\n }\n\n /* ========== EVENTS ========== */\n \n /// @notice An event thats emitted when a voters account\u0027s vote balance changes\n event VoterVotesChanged(address indexed voter, uint previousBalance, uint newBalance);\n\n // Track FXS burned\n event FXSBurned(address indexed from, address indexed to, uint256 amount);\n\n // Track FXS minted\n event FXSMinted(address indexed from, address indexed to, uint256 amount);\n\n}\n"},"Governance.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./FXS.sol\";\n\n// From https://compound.finance/docs/governance\n// and https://github.com/compound-finance/compound-protocol/tree/master/contracts/Governance\ncontract GovernorAlpha {\n /// @notice The name of this contract\n string public constant name = \"FXS Governor Alpha\";\n\n /// @notice The number of votes in support of a proposal required in order for a quorum to be reached and for a vote to succeed\n function quorumVotes() public pure returns (uint) { return 4000000e18; } // 4,000,000 = 4% of FXS\n\n /// @notice The number of votes required in order for a voter to become a proposer\n function proposalThreshold() public pure returns (uint) { return 1000000e18; } // 1,000,000 = 1% of FXS\n\n /// @notice The maximum number of actions that can be included in a proposal\n function proposalMaxOperations() public pure returns (uint) { return 10; } // 10 actions\n\n /// @notice The delay before voting on a proposal may take place, once proposed\n // This also helps protect against flash loan attacks because only the vote balance at the proposal start block is considered\n function votingDelay() public pure returns (uint) { return 1; } // 1 block\n\n /// @notice The duration of voting on a proposal, in blocks\n // function votingPeriod() public pure returns (uint) { return 17280; } // ~3 days in blocks (assuming 15s blocks)\n uint public votingPeriod = 17280;\n \n /// @notice The address of the Timelock\n TimelockInterface public timelock;\n\n // The address of the FXS token\n FRAXShares public fxs;\n\n /// @notice The address of the Governor Guardian\n address public guardian;\n\n /// @notice The total number of proposals\n uint public proposalCount = 0;\n\n struct Proposal {\n // @notice Unique id for looking up a proposal\n uint id;\n\n // @notice Creator of the proposal\n address proposer;\n\n // @notice The timestamp that the proposal will be available for execution, set once the vote succeeds\n uint eta;\n\n // @notice the ordered list of target addresses for calls to be made\n address[] targets;\n\n // @notice The ordered list of values (i.e. msg.value) to be passed to the calls to be made\n uint[] values;\n\n // @notice The ordered list of function signatures to be called\n string[] signatures;\n\n // @notice The ordered list of calldata to be passed to each call\n bytes[] calldatas;\n\n // @notice The block at which voting begins: holders must delegate their votes prior to this block\n uint startBlock;\n\n // @notice The block at which voting ends: votes must be cast prior to this block\n uint endBlock;\n\n // @notice Current number of votes in favor of this proposal\n uint forVotes;\n\n // @notice Current number of votes in opposition to this proposal\n uint againstVotes;\n\n // @notice Flag marking whether the proposal has been canceled\n bool canceled;\n\n // @notice Flag marking whether the proposal has been executed\n bool executed;\n\n // @notice Title of the proposal (human-readable)\n string title;\n\n // @notice Description of the proposall (human-readable)\n string description;\n\n // @notice Receipts of ballots for the entire set of voters\n mapping (address =\u003e Receipt) receipts;\n }\n\n /// @notice Ballot receipt record for a voter\n struct Receipt {\n // @notice Whether or not a vote has been cast\n bool hasVoted;\n\n // @notice Whether or not the voter supports the proposal\n bool support;\n\n // @notice The number of votes the voter had, which were cast\n uint96 votes;\n }\n\n /// @notice Possible states that a proposal may be in\n enum ProposalState {\n Pending,\n Active,\n Canceled,\n Defeated,\n Succeeded,\n Queued,\n Expired,\n Executed\n }\n\n /// @notice The official record of all proposals ever proposed\n mapping (uint =\u003e Proposal) public proposals;\n\n /// @notice The latest proposal for each proposer\n mapping (address =\u003e uint) public latestProposalIds;\n\n /// @notice The EIP-712 typehash for the contract\u0027s domain\n bytes32 public constant DOMAIN_TYPEHASH = keccak256(\"EIP712Domain(string name,uint256 chainId,address verifyingContract)\");\n\n /// @notice The EIP-712 typehash for the ballot struct used by the contract\n bytes32 public constant BALLOT_TYPEHASH = keccak256(\"Ballot(uint256 proposalId,bool support)\");\n\n /// @notice An event emitted when a new proposal is created\n event ProposalCreated(uint id, address proposer, address[] targets, uint[] values, string[] signatures, bytes[] calldatas, uint startBlock, uint endBlock, string description);\n\n /// @notice An event emitted when a vote has been cast on a proposal\n event VoteCast(address voter, uint proposalId, bool support, uint votes);\n\n /// @notice An event emitted when a proposal has been canceled\n event ProposalCanceled(uint id);\n\n /// @notice An event emitted when a proposal has been queued in the Timelock\n event ProposalQueued(uint id, uint eta);\n\n /// @notice An event emitted when a proposal has been executed in the Timelock\n event ProposalExecuted(uint id);\n\n constructor(address timelock_, address fxs_, address guardian_) public {\n timelock = TimelockInterface(timelock_);\n fxs = FRAXShares(fxs_);\n guardian = guardian_;\n }\n\n function propose(address[] memory targets, uint[] memory values, string[] memory signatures, bytes[] memory calldatas, string memory title, string memory description) public returns (uint) {\n require(fxs.getPriorVotes(msg.sender, sub256(block.number, 1)) \u003e= proposalThreshold(), \"GovernorAlpha::propose: proposer votes below proposal threshold\");\n require(targets.length == values.length \u0026\u0026 targets.length == signatures.length \u0026\u0026 targets.length == calldatas.length, \"GovernorAlpha::propose: proposal function information arity mismatch\");\n require(targets.length != 0, \"GovernorAlpha::propose: must provide actions\");\n require(targets.length \u003c= proposalMaxOperations(), \"GovernorAlpha::propose: too many actions\");\n\n uint latestProposalId = latestProposalIds[msg.sender];\n if (latestProposalId != 0) {\n ProposalState proposersLatestProposalState = state(latestProposalId);\n require(proposersLatestProposalState != ProposalState.Active, \"GovernorAlpha::propose: one live proposal per proposer, found an already active proposal\");\n require(proposersLatestProposalState != ProposalState.Pending, \"GovernorAlpha::propose: one live proposal per proposer, found an already pending proposal\");\n }\n\n uint startBlock = add256(block.number, votingDelay());\n uint endBlock = add256(startBlock, votingPeriod);\n\n proposalCount++;\n Proposal memory newProposal = Proposal({\n id: proposalCount,\n proposer: msg.sender,\n eta: 0,\n targets: targets,\n values: values,\n signatures: signatures,\n calldatas: calldatas,\n startBlock: startBlock,\n endBlock: endBlock,\n forVotes: 0,\n againstVotes: 0,\n canceled: false,\n executed: false,\n title: title,\n description: description\n });\n\n proposals[newProposal.id] = newProposal;\n latestProposalIds[newProposal.proposer] = newProposal.id;\n\n emit ProposalCreated(newProposal.id, msg.sender, targets, values, signatures, calldatas, startBlock, endBlock, description);\n return newProposal.id;\n }\n\n function queue(uint proposalId) public {\n require(state(proposalId) == ProposalState.Succeeded, \"GovernorAlpha::queue: proposal can only be queued if it succeeded\");\n Proposal storage proposal = proposals[proposalId];\n uint eta = add256(block.timestamp, timelock.delay());\n for (uint i = 0; i \u003c proposal.targets.length; i++) {\n _queueOrRevert(proposal.targets[i], proposal.values[i], proposal.signatures[i], proposal.calldatas[i], eta);\n }\n proposal.eta = eta;\n emit ProposalQueued(proposalId, eta);\n }\n\n function _queueOrRevert(address target, uint value, string memory signature, bytes memory data, uint eta) internal {\n require(!timelock.queuedTransactions(keccak256(abi.encode(target, value, signature, data, eta))), \"GovernorAlpha::_queueOrRevert: proposal action already queued at eta\");\n timelock.queueTransaction(target, value, signature, data, eta);\n }\n\n function execute(uint proposalId) public payable {\n require(state(proposalId) == ProposalState.Queued, \"GovernorAlpha::execute: proposal can only be executed if it is queued\");\n Proposal storage proposal = proposals[proposalId];\n proposal.executed = true;\n for (uint i = 0; i \u003c proposal.targets.length; i++) {\n timelock.executeTransaction(proposal.targets[i], proposal.values[i], proposal.signatures[i], proposal.calldatas[i], proposal.eta);\n }\n emit ProposalExecuted(proposalId);\n }\n\n function cancel(uint proposalId) public {\n ProposalState state = state(proposalId);\n require(state != ProposalState.Executed, \"GovernorAlpha::cancel: cannot cancel executed proposal\");\n\n Proposal storage proposal = proposals[proposalId];\n require(msg.sender == guardian || fxs.getPriorVotes(proposal.proposer, sub256(block.number, 1)) \u003c proposalThreshold(), \"GovernorAlpha::cancel: proposer at or above threshold\");\n\n proposal.canceled = true;\n for (uint i = 0; i \u003c proposal.targets.length; i++) {\n timelock.cancelTransaction(proposal.targets[i], proposal.values[i], proposal.signatures[i], proposal.calldatas[i], proposal.eta);\n }\n\n emit ProposalCanceled(proposalId);\n }\n\n function getActions(uint proposalId) public view returns (address[] memory targets, uint[] memory values, string[] memory signatures, bytes[] memory calldatas) {\n Proposal storage p = proposals[proposalId];\n return (p.targets, p.values, p.signatures, p.calldatas);\n }\n\n function getReceipt(uint proposalId, address voter) public view returns (Receipt memory) {\n return proposals[proposalId].receipts[voter];\n }\n\n function state(uint proposalId) public view returns (ProposalState) {\n require(proposalCount \u003e= proposalId \u0026\u0026 proposalId \u003e 0, \"GovernorAlpha::state: invalid proposal id\");\n Proposal storage proposal = proposals[proposalId];\n if (proposal.canceled) {\n return ProposalState.Canceled;\n } else if (block.number \u003c= proposal.startBlock) {\n return ProposalState.Pending;\n } else if (block.number \u003c= proposal.endBlock) {\n return ProposalState.Active;\n } else if (proposal.forVotes \u003c= proposal.againstVotes || proposal.forVotes \u003c quorumVotes()) {\n return ProposalState.Defeated;\n } else if (proposal.eta == 0) {\n return ProposalState.Succeeded;\n } else if (proposal.executed) {\n return ProposalState.Executed;\n } else if (block.timestamp \u003e= add256(proposal.eta, timelock.GRACE_PERIOD())) {\n return ProposalState.Expired;\n } else {\n return ProposalState.Queued;\n }\n }\n\n function castVote(uint proposalId, bool support) public {\n return _castVote(msg.sender, proposalId, support);\n }\n\n function castVoteBySig(uint proposalId, bool support, uint8 v, bytes32 r, bytes32 s) public {\n bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), getChainId(), address(this)));\n bytes32 structHash = keccak256(abi.encode(BALLOT_TYPEHASH, proposalId, support));\n bytes32 digest = keccak256(abi.encodePacked(\"\\x19\\x01\", domainSeparator, structHash));\n address signatory = ecrecover(digest, v, r, s);\n require(signatory != address(0), \"GovernorAlpha::castVoteBySig: invalid signature\");\n return _castVote(signatory, proposalId, support);\n }\n\n function _castVote(address voter, uint proposalId, bool support) internal {\n require(state(proposalId) == ProposalState.Active, \"GovernorAlpha::_castVote: voting is closed\");\n Proposal storage proposal = proposals[proposalId];\n Receipt storage receipt = proposal.receipts[voter];\n require(receipt.hasVoted == false, \"GovernorAlpha::_castVote: voter already voted\");\n uint96 votes = fxs.getPriorVotes(voter, proposal.startBlock);\n\n if (support) {\n proposal.forVotes = add256(proposal.forVotes, votes);\n } else {\n proposal.againstVotes = add256(proposal.againstVotes, votes);\n }\n\n receipt.hasVoted = true;\n receipt.support = support;\n receipt.votes = votes;\n\n emit VoteCast(voter, proposalId, support, votes);\n }\n\n function __acceptAdmin() public {\n require(msg.sender == guardian, \"GovernorAlpha::__acceptAdmin: sender must be gov guardian\");\n timelock.acceptAdmin();\n }\n\n function __abdicate() public {\n require(msg.sender == guardian, \"GovernorAlpha::__abdicate: sender must be gov guardian\");\n guardian = address(0);\n }\n\n function __setVotingPeriod(uint period) public {\n require(msg.sender == guardian, \"GovernorAlpha::__setVotingPeriod: sender must be gov guardian\");\n votingPeriod = period;\n }\n\n function __setTimelockAddress(address timelock_) public {\n require(msg.sender == guardian, \"GovernorAlpha::__setTimelockAddress: sender must be gov guardian\");\n timelock = TimelockInterface(timelock_);\n }\n\n function __queueSetTimelockPendingAdmin(address newPendingAdmin, uint eta) public {\n require(msg.sender == guardian, \"GovernorAlpha::__queueSetTimelockPendingAdmin: sender must be gov guardian\");\n timelock.queueTransaction(address(timelock), 0, \"setPendingAdmin(address)\", abi.encode(newPendingAdmin), eta);\n }\n\n function __executeSetTimelockPendingAdmin(address newPendingAdmin, uint eta) public {\n require(msg.sender == guardian, \"GovernorAlpha::__executeSetTimelockPendingAdmin: sender must be gov guardian\");\n timelock.executeTransaction(address(timelock), 0, \"setPendingAdmin(address)\", abi.encode(newPendingAdmin), eta);\n }\n\n function add256(uint256 a, uint256 b) internal pure returns (uint) {\n uint c = a + b;\n require(c \u003e= a, \"addition overflow\");\n return c;\n }\n\n function sub256(uint256 a, uint256 b) internal pure returns (uint) {\n require(b \u003c= a, \"subtraction underflow\");\n return a - b;\n }\n\n function getChainId() internal pure returns (uint) {\n uint chainId;\n assembly { chainId := chainid() }\n return chainId;\n }\n}\n\ninterface TimelockInterface {\n function delay() external view returns (uint);\n function GRACE_PERIOD() external view returns (uint);\n function acceptAdmin() external;\n function queuedTransactions(bytes32 hash) external view returns (bool);\n function queueTransaction(address target, uint value, string calldata signature, bytes calldata data, uint eta) external returns (bytes32);\n function cancelTransaction(address target, uint value, string calldata signature, bytes calldata data, uint eta) external;\n function executeTransaction(address target, uint value, string calldata signature, bytes calldata data, uint eta) external payable returns (bytes memory);\n}\n"},"IERC20.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./Context.sol\";\nimport \"./SafeMath.sol\";\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP. Does not include\n * the optional functions; to access them see {ERC20Detailed}.\n */\ninterface IERC20 {\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller\u0027s account to `recipient`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address recipient, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller\u0027s tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender\u0027s allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `sender` to `recipient` using the\n * allowance mechanism. `amount` is then deducted from the caller\u0027s\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);\n\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n}\n\n"},"IStakingRewards.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n\ninterface IStakingRewards {\n // Views\n function lastTimeRewardApplicable() external view returns (uint256);\n\n function rewardPerToken() external view returns (uint256);\n\n function earned(address account) external view returns (uint256);\n\n function getRewardForDuration() external view returns (uint256);\n\n function totalSupply() external view returns (uint256);\n\n function balanceOf(address account) external view returns (uint256);\n\n // Mutative\n\n function stake(uint256 amount) external;\n\n function withdraw(uint256 amount) external;\n\n function getReward() external;\n\n //function exit() external;\n}\n"},"IUniswapV2Callee.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ninterface IUniswapV2Callee {\n function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;\n}\n"},"IUniswapV2ERC20.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ninterface IUniswapV2ERC20 {\n event Approval(address indexed owner, address indexed spender, uint value);\n event Transfer(address indexed from, address indexed to, uint value);\n\n function name() external pure returns (string memory);\n function symbol() external pure returns (string memory);\n function decimals() external pure returns (uint8);\n function totalSupply() external view returns (uint);\n function balanceOf(address owner) external view returns (uint);\n function allowance(address owner, address spender) external view returns (uint);\n\n function approve(address spender, uint value) external returns (bool);\n function transfer(address to, uint value) external returns (bool);\n function transferFrom(address from, address to, uint value) external returns (bool);\n\n function DOMAIN_SEPARATOR() external view returns (bytes32);\n function PERMIT_TYPEHASH() external pure returns (bytes32);\n function nonces(address owner) external view returns (uint);\n\n function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;\n}\n"},"IUniswapV2Factory.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ninterface IUniswapV2Factory {\n event PairCreated(address indexed token0, address indexed token1, address pair, uint);\n\n function feeTo() external view returns (address);\n function feeToSetter() external view returns (address);\n\n function getPair(address tokenA, address tokenB) external view returns (address pair);\n function allPairs(uint) external view returns (address pair);\n function allPairsLength() external view returns (uint);\n\n function createPair(address tokenA, address tokenB) external returns (address pair);\n\n function setFeeTo(address) external;\n function setFeeToSetter(address) external;\n}\n"},"IUniswapV2Pair.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ninterface IUniswapV2Pair {\n event Approval(address indexed owner, address indexed spender, uint value);\n event Transfer(address indexed from, address indexed to, uint value);\n\n function name() external pure returns (string memory);\n function symbol() external pure returns (string memory);\n function decimals() external pure returns (uint8);\n function totalSupply() external view returns (uint);\n function balanceOf(address owner) external view returns (uint);\n function allowance(address owner, address spender) external view returns (uint);\n\n function approve(address spender, uint value) external returns (bool);\n function transfer(address to, uint value) external returns (bool);\n function transferFrom(address from, address to, uint value) external returns (bool);\n\n function DOMAIN_SEPARATOR() external view returns (bytes32);\n function PERMIT_TYPEHASH() external pure returns (bytes32);\n function nonces(address owner) external view returns (uint);\n\n function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;\n\n event Mint(address indexed sender, uint amount0, uint amount1);\n event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);\n event Swap(\n address indexed sender,\n uint amount0In,\n uint amount1In,\n uint amount0Out,\n uint amount1Out,\n address indexed to\n );\n event Sync(uint112 reserve0, uint112 reserve1);\n\n function MINIMUM_LIQUIDITY() external pure returns (uint);\n function factory() external view returns (address);\n function token0() external view returns (address);\n function token1() external view returns (address);\n function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);\n function price0CumulativeLast() external view returns (uint);\n function price1CumulativeLast() external view returns (uint);\n function kLast() external view returns (uint);\n\n function mint(address to) external returns (uint liquidity);\n function burn(address to) external returns (uint amount0, uint amount1);\n function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;\n function skim(address to) external;\n function sync() external;\n\n function initialize(address, address) external;\n\n\n\n\n\n\n\n\n\n\n\n\n \n}\n"},"IUniswapV2Router01.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ninterface IUniswapV2Router01 {\n function factory() external pure returns (address);\n function WETH() external pure returns (address);\n\n function addLiquidity(\n address tokenA,\n address tokenB,\n uint amountADesired,\n uint amountBDesired,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) external returns (uint amountA, uint amountB, uint liquidity);\n function addLiquidityETH(\n address token,\n uint amountTokenDesired,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external payable returns (uint amountToken, uint amountETH, uint liquidity);\n function removeLiquidity(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) external returns (uint amountA, uint amountB);\n function removeLiquidityETH(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external returns (uint amountToken, uint amountETH);\n function removeLiquidityWithPermit(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external returns (uint amountA, uint amountB);\n function removeLiquidityETHWithPermit(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external returns (uint amountToken, uint amountETH);\n function swapExactTokensForTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external returns (uint[] memory amounts);\n function swapTokensForExactTokens(\n uint amountOut,\n uint amountInMax,\n address[] calldata path,\n address to,\n uint deadline\n ) external returns (uint[] memory amounts);\n function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n payable\n returns (uint[] memory amounts);\n function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)\n external\n returns (uint[] memory amounts);\n function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n returns (uint[] memory amounts);\n function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)\n external\n payable\n returns (uint[] memory amounts);\n\n function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);\n function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);\n function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);\n function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);\n function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);\n}"},"IUniswapV2Router02.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Router01.sol\u0027;\n\ninterface IUniswapV2Router02 is IUniswapV2Router01 {\n function removeLiquidityETHSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external returns (uint amountETH);\n function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external returns (uint amountETH);\n\n function swapExactTokensForTokensSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external;\n function swapExactETHForTokensSupportingFeeOnTransferTokens(\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external payable;\n function swapExactTokensForETHSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external;\n}"},"IWETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ninterface IWETH {\n function deposit() external payable;\n function transfer(address to, uint value) external returns (bool);\n function transferFrom(address src, address dst, uint wad) external returns (bool);\n function withdraw(uint) external;\n}"},"Math.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n/**\n * @dev Standard math utilities missing in the Solidity language.\n */\nlibrary Math {\n /**\n * @dev Returns the largest of two numbers.\n */\n function max(uint256 a, uint256 b) internal pure returns (uint256) {\n return a \u003e= b ? a : b;\n }\n\n /**\n * @dev Returns the smallest of two numbers.\n */\n function min(uint256 a, uint256 b) internal pure returns (uint256) {\n return a \u003c b ? a : b;\n }\n\n /**\n * @dev Returns the average of two numbers. The result is rounded towards\n * zero.\n */\n function average(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b) / 2 can overflow, so we distribute\n return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);\n }\n\n // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)\n function sqrt(uint y) internal pure returns (uint z) {\n if (y \u003e 3) {\n z = y;\n uint x = y / 2 + 1;\n while (x \u003c z) {\n z = x;\n x = (y / x + x) / 2;\n }\n } else if (y != 0) {\n z = 1;\n }\n }\n}"},"MigrationHelper.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ncontract MigrationHelper {\n address public owner;\n uint256 public gov_to_timelock_eta;\n\n modifier restricted() {\n if (msg.sender == owner) _;\n }\n\n constructor(address _owner) public {\n owner = _owner;\n }\n\n function setGovToTimeLockETA(uint256 _eta) public restricted {\n gov_to_timelock_eta = _eta;\n }\n}\n"},"Migrations.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\ncontract Migrations {\n address public owner;\n uint public last_completed_migration;\n\n modifier restricted() {\n if (msg.sender == owner) _;\n }\n\n constructor() public {\n owner = msg.sender;\n }\n\n function setCompleted(uint completed) public restricted {\n last_completed_migration = completed;\n }\n}\n"},"Owned.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n// https://docs.synthetix.io/contracts/Owned\ncontract Owned {\n address public owner;\n address public nominatedOwner;\n\n constructor(address _owner) public {\n require(_owner != address(0), \"Owner address cannot be 0\");\n owner = _owner;\n emit OwnerChanged(address(0), _owner);\n }\n\n function nominateNewOwner(address _owner) external onlyOwner {\n nominatedOwner = _owner;\n emit OwnerNominated(_owner);\n }\n\n function acceptOwnership() external {\n require(msg.sender == nominatedOwner, \"You must be nominated before you can accept ownership\");\n emit OwnerChanged(owner, nominatedOwner);\n owner = nominatedOwner;\n nominatedOwner = address(0);\n }\n\n modifier onlyOwner {\n require(msg.sender == owner, \"Only the contract owner may perform this action\");\n _;\n }\n\n event OwnerNominated(address newOwner);\n event OwnerChanged(address oldOwner, address newOwner);\n}"},"Pausable.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n// Inheritance\nimport \"./Owned.sol\";\n\n// https://docs.synthetix.io/contracts/Pausable\nabstract contract Pausable is Owned {\n uint public lastPauseTime;\n bool public paused;\n\n constructor() internal {\n // This contract is abstract, and thus cannot be instantiated directly\n require(owner != address(0), \"Owner must be set\");\n // Paused will be false, and lastPauseTime will be 0 upon initialisation\n }\n\n /**\n * @notice Change the paused state of the contract\n * @dev Only the contract owner may call this.\n */\n function setPaused(bool _paused) external onlyOwner {\n // Ensure we\u0027re actually changing the state before we do anything\n if (_paused == paused) {\n return;\n }\n\n // Set our paused state.\n paused = _paused;\n\n // If applicable, set the last pause time.\n if (paused) {\n lastPauseTime = now;\n }\n\n // Let everyone know that our pause state has changed.\n emit PauseChanged(paused);\n }\n\n event PauseChanged(bool isPaused);\n\n modifier notPaused {\n require(!paused, \"This action cannot be performed while the contract is paused\");\n _;\n }\n}"},"Pool_USDC.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./FraxPool.sol\";\n\ncontract Pool_USDC is FraxPool {\n address public USDC_address;\n constructor(\n address _frax_contract_address,\n address _fxs_contract_address,\n address _collateral_address,\n address _creator_address,\n address _timelock_address,\n uint256 _pool_ceiling\n ) \n FraxPool(_frax_contract_address, _fxs_contract_address, _collateral_address, _creator_address, _timelock_address, _pool_ceiling)\n public {\n _setupRole(DEFAULT_ADMIN_ROLE, _msgSender());\n USDC_address = _collateral_address;\n }\n}\n"},"Pool_USDT.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./FraxPool.sol\";\n\ncontract Pool_USDT is FraxPool {\n address public USDT_address;\n constructor(\n address _frax_contract_address,\n address _fxs_contract_address,\n address _collateral_address,\n address _creator_address,\n address _timelock_address,\n uint256 _pool_ceiling\n ) \n FraxPool(_frax_contract_address, _fxs_contract_address, _collateral_address, _creator_address, _timelock_address, _pool_ceiling)\n public {\n _setupRole(DEFAULT_ADMIN_ROLE, _msgSender());\n USDT_address = _collateral_address;\n }\n}\n"},"ReentrancyGuard.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n/**\n * @dev Contract module that helps prevent reentrant calls to a function.\n *\n * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier\n * available, which can be applied to functions to make sure there are no nested\n * (reentrant) calls to them.\n *\n * Note that because there is a single `nonReentrant` guard, functions marked as\n * `nonReentrant` may not call one another. This can be worked around by making\n * those functions `private`, and then adding `external` `nonReentrant` entry\n * points to them.\n *\n * TIP: If you would like to learn more about reentrancy and alternative ways\n * to protect against it, check out our blog post\n * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].\n */\ncontract ReentrancyGuard {\n // Booleans are more expensive than uint256 or any type that takes up a full\n // word because each write operation emits an extra SLOAD to first read the\n // slot\u0027s contents, replace the bits taken up by the boolean, and then write\n // back. This is the compiler\u0027s defense against contract upgrades and\n // pointer aliasing, and it cannot be disabled.\n\n // The values being non-zero value makes deployment a bit more expensive,\n // but in exchange the refund on every call to nonReentrant will be lower in\n // amount. Since refunds are capped to a percentage of the total\n // transaction\u0027s gas, it is best to keep them low in cases like this one, to\n // increase the likelihood of the full refund coming into effect.\n uint256 private constant _NOT_ENTERED = 1;\n uint256 private constant _ENTERED = 2;\n\n uint256 private _status;\n\n constructor () internal {\n _status = _NOT_ENTERED;\n }\n\n /**\n * @dev Prevents a contract from calling itself, directly or indirectly.\n * Calling a `nonReentrant` function from another `nonReentrant`\n * function is not supported. It is possible to prevent this from happening\n * by making the `nonReentrant` function external, and make it call a\n * `private` function that does the actual work.\n */\n modifier nonReentrant() {\n // On the first call to nonReentrant, _notEntered will be true\n require(_status != _ENTERED, \"ReentrancyGuard: reentrant call\");\n\n // Any calls to nonReentrant after this point will fail\n _status = _ENTERED;\n\n _;\n\n // By storing the original value once again, a refund is triggered (see\n // https://eips.ethereum.org/EIPS/eip-2200)\n _status = _NOT_ENTERED;\n }\n}"},"RewardsDistributionRecipient.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n// Inheritance\nimport \"./Owned.sol\";\n\n\n// https://docs.synthetix.io/contracts/RewardsDistributionRecipient\nabstract contract RewardsDistributionRecipient is Owned {\n address public rewardsDistribution;\n\n //function notifyRewardAmount(uint256 reward) external virtual;\n\n modifier onlyRewardsDistribution() {\n require(msg.sender == rewardsDistribution, \"Caller is not RewardsDistribution contract\");\n _;\n }\n\n function setRewardsDistribution(address _rewardsDistribution) external onlyOwner {\n rewardsDistribution = _rewardsDistribution;\n }\n}\n"},"SafeERC20.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./IERC20.sol\";\nimport \"./SafeMath.sol\";\nimport \"./Address.sol\";\n\n/**\n * @title SafeERC20\n * @dev Wrappers around ERC20 operations that throw on failure (when the token\n * contract returns false). Tokens that return no value (and instead revert or\n * throw on failure) are also supported, non-reverting calls are assumed to be\n * successful.\n * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,\n * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.\n */\nlibrary SafeERC20 {\n using SafeMath for uint256;\n using Address for address;\n\n function safeTransfer(IERC20 token, address to, uint256 value) internal {\n _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));\n }\n\n function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {\n _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));\n }\n\n /**\n * @dev Deprecated. This function has issues similar to the ones found in\n * {IERC20-approve}, and its usage is discouraged.\n *\n * Whenever possible, use {safeIncreaseAllowance} and\n * {safeDecreaseAllowance} instead.\n */\n function safeApprove(IERC20 token, address spender, uint256 value) internal {\n // safeApprove should only be called when setting an initial allowance,\n // or when resetting it to zero. To increase and decrease it, use\n // \u0027safeIncreaseAllowance\u0027 and \u0027safeDecreaseAllowance\u0027\n // solhint-disable-next-line max-line-length\n require((value == 0) || (token.allowance(address(this), spender) == 0),\n \"SafeERC20: approve from non-zero to non-zero allowance\"\n );\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));\n }\n\n function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {\n uint256 newAllowance = token.allowance(address(this), spender).add(value);\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));\n }\n\n function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {\n uint256 newAllowance = token.allowance(address(this), spender).sub(value, \"SafeERC20: decreased allowance below zero\");\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));\n }\n\n /**\n * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement\n * on the return value: the return value is optional (but if data is returned, it must not be false).\n * @param token The token targeted by the call.\n * @param data The call data (encoded using abi.encode or one of its variants).\n */\n function _callOptionalReturn(IERC20 token, bytes memory data) private {\n // We need to perform a low level call here, to bypass Solidity\u0027s return data size checking mechanism, since\n // we\u0027re implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that\n // the target address contains contract code and also asserts for success in the low-level call.\n\n bytes memory returndata = address(token).functionCall(data, \"SafeERC20: low-level call failed\");\n if (returndata.length \u003e 0) { // Return data is optional\n // solhint-disable-next-line max-line-length\n require(abi.decode(returndata, (bool)), \"SafeERC20: ERC20 operation did not succeed\");\n }\n }\n}"},"SafeMath.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n/**\n * @dev Wrappers over Solidity\u0027s arithmetic operations with added overflow\n * checks.\n *\n * Arithmetic operations in Solidity wrap on overflow. This can easily result\n * in bugs, because programmers usually assume that an overflow raises an\n * error, which is the standard behavior in high level programming languages.\n * `SafeMath` restores this intuition by reverting the transaction when an\n * operation overflows.\n *\n * Using this library instead of the unchecked operations eliminates an entire\n * class of bugs, so it\u0027s recommended to use it always.\n */\nlibrary SafeMath {\n /**\n * @dev Returns the addition of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity\u0027s `+` operator.\n *\n * Requirements:\n * - Addition cannot overflow.\n */\n function add(uint256 a, uint256 b) internal pure returns (uint256) {\n uint256 c = a + b;\n require(c \u003e= a, \"SafeMath: addition overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting on\n * overflow (when the result is negative).\n *\n * Counterpart to Solidity\u0027s `-` operator.\n *\n * Requirements:\n * - Subtraction cannot overflow.\n */\n function sub(uint256 a, uint256 b) internal pure returns (uint256) {\n return sub(a, b, \"SafeMath: subtraction overflow\");\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting with custom message on\n * overflow (when the result is negative).\n *\n * Counterpart to Solidity\u0027s `-` operator.\n *\n * Requirements:\n * - Subtraction cannot overflow.\n *\n * _Available since v2.4.0._\n */\n function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b \u003c= a, errorMessage);\n uint256 c = a - b;\n\n return c;\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity\u0027s `*` operator.\n *\n * Requirements:\n * - Multiplication cannot overflow.\n */\n function mul(uint256 a, uint256 b) internal pure returns (uint256) {\n // Gas optimization: this is cheaper than requiring \u0027a\u0027 not being zero, but the\n // benefit is lost if \u0027b\u0027 is also tested.\n // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522\n if (a == 0) {\n return 0;\n }\n\n uint256 c = a * b;\n require(c / a == b, \"SafeMath: multiplication overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers. Reverts on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity\u0027s `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function div(uint256 a, uint256 b) internal pure returns (uint256) {\n return div(a, b, \"SafeMath: division by zero\");\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers. Reverts with custom message on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity\u0027s `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n *\n * _Available since v2.4.0._\n */\n function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n // Solidity only automatically asserts when dividing by 0\n require(b \u003e 0, errorMessage);\n uint256 c = a / b;\n // assert(a == b * c + a % b); // There is no case in which this doesn\u0027t hold\n\n return c;\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts when dividing by zero.\n *\n * Counterpart to Solidity\u0027s `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function mod(uint256 a, uint256 b) internal pure returns (uint256) {\n return mod(a, b, \"SafeMath: modulo by zero\");\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts with custom message when dividing by zero.\n *\n * Counterpart to Solidity\u0027s `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n *\n * _Available since v2.4.0._\n */\n function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b != 0, errorMessage);\n return a % b;\n }\n}"},"Stake_FRAX_FXS.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./StakingRewards.sol\";\n\ncontract Stake_FRAX_FXS is StakingRewards {\n constructor(\n address _owner,\n address _rewardsDistribution,\n address _rewardsToken,\n address _stakingToken,\n address _frax_address,\n address _timelock_address,\n uint256 _pool_weight\n ) \n StakingRewards(_owner, _rewardsDistribution, _rewardsToken, _stakingToken, _frax_address, _timelock_address, _pool_weight)\n public {}\n}"},"Stake_FRAX_USDC.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./StakingRewards.sol\";\n\ncontract Stake_FRAX_USDC is StakingRewards {\n constructor(\n address _owner,\n address _rewardsDistribution,\n address _rewardsToken,\n address _stakingToken,\n address _frax_address,\n address _timelock_address,\n uint256 _pool_weight\n ) \n StakingRewards(_owner, _rewardsDistribution, _rewardsToken, _stakingToken, _frax_address, _timelock_address, _pool_weight)\n public {}\n}"},"Stake_FRAX_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./StakingRewards.sol\";\n\ncontract Stake_FRAX_WETH is StakingRewards {\n constructor(\n address _owner,\n address _rewardsDistribution,\n address _rewardsToken,\n address _stakingToken,\n address _frax_address,\n address _timelock_address,\n uint256 _pool_weight\n ) \n StakingRewards(_owner, _rewardsDistribution, _rewardsToken, _stakingToken, _frax_address, _timelock_address, _pool_weight)\n public {}\n}"},"Stake_FXS_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\nimport \"./StakingRewards.sol\";\n\ncontract Stake_FXS_WETH is StakingRewards {\n constructor(\n address _owner,\n address _rewardsDistribution,\n address _rewardsToken,\n address _stakingToken,\n address _frax_address,\n address _timelock_address,\n uint256 _pool_weight\n ) \n StakingRewards(_owner, _rewardsDistribution, _rewardsToken, _stakingToken, _frax_address, _timelock_address, _pool_weight)\n public {}\n}"},"StakingRewards.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\npragma experimental ABIEncoderV2;\n\n// Stolen with love from Synthetixio\n// https://raw.githubusercontent.com/Synthetixio/synthetix/develop/contracts/StakingRewards.sol\n\nimport \"./Math.sol\";\nimport \"./SafeMath.sol\";\nimport \"./ERC20.sol\";\nimport \u0027./TransferHelper.sol\u0027;\nimport \"./SafeERC20.sol\";\nimport \"./Frax.sol\";\nimport \"./ReentrancyGuard.sol\";\nimport \"./StringHelpers.sol\";\n\n// Inheritance\nimport \"./IStakingRewards.sol\";\nimport \"./RewardsDistributionRecipient.sol\";\nimport \"./Pausable.sol\";\n\ncontract StakingRewards is IStakingRewards, RewardsDistributionRecipient, ReentrancyGuard, Pausable {\n using SafeMath for uint256;\n using SafeERC20 for ERC20;\n\n /* ========== STATE VARIABLES ========== */\n\n FRAXStablecoin private FRAX;\n ERC20 public rewardsToken;\n ERC20 public stakingToken;\n uint256 public periodFinish;\n\n // Constant for various precisions\n uint256 private constant PRICE_PRECISION = 1e6;\n uint256 private constant MULTIPLIER_BASE = 1e6;\n\n // Max reward per second\n uint256 public rewardRate;\n\n // uint256 public rewardsDuration = 86400 hours;\n uint256 public rewardsDuration = 604800; // 7 * 86400 (7 days)\n\n uint256 public lastUpdateTime;\n uint256 public rewardPerTokenStored = 0;\n uint256 private pool_weight; // This staking pool\u0027s percentage of the total FXS being distributed by all pools, 6 decimals of precision\n\n address public owner_address;\n address public timelock_address; // Governance timelock address\n\n uint256 public locked_stake_max_multiplier = 3000000; // 6 decimals of precision. 1x = 1000000\n uint256 public locked_stake_time_for_max_multiplier = 3 * 365 * 86400; // 3 years\n uint256 public locked_stake_min_time = 604800; // 7 * 86400 (7 days)\n string private locked_stake_min_time_str = \"604800\"; // 7 days on genesis\n\n uint256 public cr_boost_max_multiplier = 3000000; // 6 decimals of precision. 1x = 1000000\n\n mapping(address =\u003e uint256) public userRewardPerTokenPaid;\n mapping(address =\u003e uint256) public rewards;\n\n uint256 private _staking_token_supply = 0;\n uint256 private _staking_token_boosted_supply = 0;\n mapping(address =\u003e uint256) private _unlocked_balances;\n mapping(address =\u003e uint256) private _locked_balances;\n mapping(address =\u003e uint256) private _boosted_balances;\n\n mapping(address =\u003e LockedStake[]) private lockedStakes;\n\n mapping(address =\u003e bool) public greylist;\n\n bool public unlockedStakes; // Release lock stakes in case of system migration\n\n struct LockedStake {\n bytes32 kek_id;\n uint256 start_timestamp;\n uint256 amount;\n uint256 ending_timestamp;\n uint256 multiplier; // 6 decimals of precision. 1x = 1000000\n }\n\n /* ========== CONSTRUCTOR ========== */\n\n constructor(\n address _owner,\n address _rewardsDistribution,\n address _rewardsToken,\n address _stakingToken,\n address _frax_address,\n address _timelock_address,\n uint256 _pool_weight\n ) public Owned(_owner){\n owner_address = _owner;\n rewardsToken = ERC20(_rewardsToken);\n stakingToken = ERC20(_stakingToken);\n FRAX = FRAXStablecoin(_frax_address);\n rewardsDistribution = _rewardsDistribution;\n lastUpdateTime = block.timestamp;\n timelock_address = _timelock_address;\n pool_weight = _pool_weight;\n rewardRate = 380517503805175038; // (uint256(12000000e18)).div(365 * 86400); // Base emission rate of 12M FXS over the first year\n rewardRate = rewardRate.mul(pool_weight).div(1e6);\n unlockedStakes = false;\n }\n\n /* ========== VIEWS ========== */\n\n function totalSupply() external override view returns (uint256) {\n return _staking_token_supply;\n }\n\n function totalBoostedSupply() external view returns (uint256) {\n return _staking_token_boosted_supply;\n }\n\n function stakingMultiplier(uint256 secs) public view returns (uint256) {\n uint256 multiplier = uint(MULTIPLIER_BASE).add(secs.mul(locked_stake_max_multiplier.sub(MULTIPLIER_BASE)).div(locked_stake_time_for_max_multiplier));\n if (multiplier \u003e locked_stake_max_multiplier) multiplier = locked_stake_max_multiplier;\n return multiplier;\n }\n\n function crBoostMultiplier() public view returns (uint256) {\n uint256 multiplier = uint(MULTIPLIER_BASE).add((uint(MULTIPLIER_BASE).sub(FRAX.global_collateral_ratio())).mul(cr_boost_max_multiplier.sub(MULTIPLIER_BASE)).div(MULTIPLIER_BASE) );\n return multiplier;\n }\n\n // Total unlocked and locked liquidity tokens\n function balanceOf(address account) external override view returns (uint256) {\n return (_unlocked_balances[account]).add(_locked_balances[account]);\n }\n\n // Total unlocked liquidity tokens\n function unlockedBalanceOf(address account) external view returns (uint256) {\n return _unlocked_balances[account];\n }\n\n // Total locked liquidity tokens\n function lockedBalanceOf(address account) public view returns (uint256) {\n return _locked_balances[account];\n }\n\n // Total \u0027balance\u0027 used for calculating the percent of the pool the account owns\n // Takes into account the locked stake time multiplier\n function boostedBalanceOf(address account) external view returns (uint256) {\n return _boosted_balances[account];\n }\n\n function lockedStakesOf(address account) external view returns (LockedStake[] memory) {\n return lockedStakes[account];\n }\n\n function stakingDecimals() external view returns (uint256) {\n return stakingToken.decimals();\n }\n\n function rewardsFor(address account) external view returns (uint256) {\n // You may have use earned() instead, because of the order in which the contract executes \n return rewards[account];\n }\n\n function lastTimeRewardApplicable() public override view returns (uint256) {\n return Math.min(block.timestamp, periodFinish);\n }\n\n function rewardPerToken() public override view returns (uint256) {\n if (_staking_token_supply == 0) {\n return rewardPerTokenStored;\n }\n else {\n return rewardPerTokenStored.add(\n lastTimeRewardApplicable().sub(lastUpdateTime).mul(rewardRate).mul(crBoostMultiplier()).mul(1e18).div(PRICE_PRECISION).div(_staking_token_boosted_supply)\n );\n }\n }\n\n function earned(address account) public override view returns (uint256) {\n return _boosted_balances[account].mul(rewardPerToken().sub(userRewardPerTokenPaid[account])).div(1e18).add(rewards[account]);\n }\n\n // function earned(address account) public override view returns (uint256) {\n // return _balances[account].mul(rewardPerToken().sub(userRewardPerTokenPaid[account])).add(rewards[account]);\n // }\n\n function getRewardForDuration() external override view returns (uint256) {\n return rewardRate.mul(rewardsDuration).mul(crBoostMultiplier()).div(PRICE_PRECISION);\n }\n\n /* ========== MUTATIVE FUNCTIONS ========== */\n\n function stake(uint256 amount) external override nonReentrant notPaused updateReward(msg.sender) {\n require(amount \u003e 0, \"Cannot stake 0\");\n require(greylist[msg.sender] == false, \"address has been greylisted\");\n\n // Pull the tokens from the staker\n TransferHelper.safeTransferFrom(address(stakingToken), msg.sender, address(this), amount);\n\n // Staking token supply and boosted supply\n _staking_token_supply = _staking_token_supply.add(amount);\n _staking_token_boosted_supply = _staking_token_boosted_supply.add(amount);\n\n // Staking token balance and boosted balance\n _unlocked_balances[msg.sender] = _unlocked_balances[msg.sender].add(amount);\n _boosted_balances[msg.sender] = _boosted_balances[msg.sender].add(amount);\n\n emit Staked(msg.sender, amount);\n }\n\n function stakeLocked(uint256 amount, uint256 secs) external nonReentrant notPaused updateReward(msg.sender) {\n require(amount \u003e 0, \"Cannot stake 0\");\n require(secs \u003e 0, \"Cannot wait for a negative number\");\n require(greylist[msg.sender] == false, \"address has been greylisted\");\n require(secs \u003e= locked_stake_min_time, StringHelpers.strConcat(\"Minimum stake time not met (\", locked_stake_min_time_str, \")\") );\n\n uint256 multiplier = stakingMultiplier(secs);\n uint256 boostedAmount = amount.mul(multiplier).div(PRICE_PRECISION);\n lockedStakes[msg.sender].push(LockedStake(\n keccak256(abi.encodePacked(msg.sender, block.timestamp, amount)),\n block.timestamp,\n amount,\n block.timestamp.add(secs),\n multiplier\n ));\n\n // Pull the tokens from the staker\n TransferHelper.safeTransferFrom(address(stakingToken), msg.sender, address(this), amount);\n\n // Staking token supply and boosted supply\n _staking_token_supply = _staking_token_supply.add(amount);\n _staking_token_boosted_supply = _staking_token_boosted_supply.add(boostedAmount);\n\n // Staking token balance and boosted balance\n _locked_balances[msg.sender] = _locked_balances[msg.sender].add(amount);\n _boosted_balances[msg.sender] = _boosted_balances[msg.sender].add(boostedAmount);\n\n emit StakeLocked(msg.sender, amount, secs);\n }\n\n function withdraw(uint256 amount) public override nonReentrant updateReward(msg.sender) {\n require(amount \u003e 0, \"Cannot withdraw 0\");\n\n // Staking token balance and boosted balance\n _unlocked_balances[msg.sender] = _unlocked_balances[msg.sender].sub(amount);\n _boosted_balances[msg.sender] = _boosted_balances[msg.sender].sub(amount);\n\n // Staking token supply and boosted supply\n _staking_token_supply = _staking_token_supply.sub(amount);\n _staking_token_boosted_supply = _staking_token_boosted_supply.sub(amount);\n\n // Give the tokens to the withdrawer\n stakingToken.safeTransfer(msg.sender, amount);\n emit Withdrawn(msg.sender, amount);\n }\n\n function withdrawLocked(bytes32 kek_id) public nonReentrant updateReward(msg.sender) {\n LockedStake memory thisStake;\n thisStake.amount = 0;\n uint theIndex;\n for (uint i = 0; i \u003c lockedStakes[msg.sender].length; i++){ \n if (kek_id == lockedStakes[msg.sender][i].kek_id){\n thisStake = lockedStakes[msg.sender][i];\n theIndex = i;\n break;\n }\n }\n require(thisStake.kek_id == kek_id, \"Stake not found\");\n require(block.timestamp \u003e= thisStake.ending_timestamp || unlockedStakes == true, \"Stake is still locked!\");\n\n uint256 theAmount = thisStake.amount;\n uint256 boostedAmount = theAmount.mul(thisStake.multiplier).div(PRICE_PRECISION);\n if (theAmount \u003e 0){\n // Staking token balance and boosted balance\n _locked_balances[msg.sender] = _locked_balances[msg.sender].sub(theAmount);\n _boosted_balances[msg.sender] = _boosted_balances[msg.sender].sub(boostedAmount);\n\n // Staking token supply and boosted supply\n _staking_token_supply = _staking_token_supply.sub(theAmount);\n _staking_token_boosted_supply = _staking_token_boosted_supply.sub(boostedAmount);\n\n // Remove the stake from the array\n delete lockedStakes[msg.sender][theIndex];\n\n // Give the tokens to the withdrawer\n stakingToken.safeTransfer(msg.sender, theAmount);\n\n emit WithdrawnLocked(msg.sender, theAmount, kek_id);\n }\n\n }\n\n function getReward() public override nonReentrant updateReward(msg.sender) {\n uint256 reward = rewards[msg.sender];\n if (reward \u003e 0) {\n rewards[msg.sender] = 0;\n rewardsToken.transfer(msg.sender, reward);\n emit RewardPaid(msg.sender, reward);\n }\n }\n/*\n function exit() external override {\n withdraw(_balances[msg.sender]);\n\n // TODO: Add locked stakes too?\n\n getReward();\n }\n*/\n function renewIfApplicable() external {\n if (block.timestamp \u003e periodFinish) {\n retroCatchUp();\n }\n }\n\n // If the period expired, renew it\n function retroCatchUp() internal {\n // Failsafe check\n require(block.timestamp \u003e periodFinish, \"Period has not expired yet!\");\n\n // Ensure the provided reward amount is not more than the balance in the contract.\n // This keeps the reward rate in the right range, preventing overflows due to\n // very high values of rewardRate in the earned and rewardsPerToken functions;\n // Reward + leftover must be less than 2^256 / 10^18 to avoid overflow.\n uint256 num_periods_elapsed = uint256(block.timestamp.sub(periodFinish)) / rewardsDuration; // Floor division to the nearest period\n uint balance = rewardsToken.balanceOf(address(this));\n require(rewardRate.mul(rewardsDuration).mul(crBoostMultiplier()).mul(num_periods_elapsed + 1).div(PRICE_PRECISION) \u003c= balance, \"Not enough FXS available for rewards!\");\n\n // uint256 old_lastUpdateTime = lastUpdateTime;\n // uint256 new_lastUpdateTime = block.timestamp;\n\n // lastUpdateTime = periodFinish;\n periodFinish = periodFinish.add((num_periods_elapsed.add(1)).mul(rewardsDuration));\n\n rewardPerTokenStored = rewardPerToken();\n lastUpdateTime = lastTimeRewardApplicable();\n\n emit RewardsPeriodRenewed(address(stakingToken));\n }\n\n /* ========== RESTRICTED FUNCTIONS ========== */\n/*\n // This notifies people that the reward is being changed\n function notifyRewardAmount(uint256 reward) external override onlyRewardsDistribution updateReward(address(0)) {\n // Needed to make compiler happy\n\n \n // if (block.timestamp \u003e= periodFinish) {\n // rewardRate = reward.mul(crBoostMultiplier()).div(rewardsDuration).div(PRICE_PRECISION);\n // } else {\n // uint256 remaining = periodFinish.sub(block.timestamp);\n // uint256 leftover = remaining.mul(rewardRate);\n // rewardRate = reward.mul(crBoostMultiplier()).add(leftover).div(rewardsDuration).div(PRICE_PRECISION);\n // }\n\n // // Ensure the provided reward amount is not more than the balance in the contract.\n // // This keeps the reward rate in the right range, preventing overflows due to\n // // very high values of rewardRate in the earned and rewardsPerToken functions;\n // // Reward + leftover must be less than 2^256 / 10^18 to avoid overflow.\n // uint balance = rewardsToken.balanceOf(address(this));\n // require(rewardRate \u003c= balance.div(rewardsDuration), \"Provided reward too high\");\n\n // lastUpdateTime = block.timestamp;\n // periodFinish = block.timestamp.add(rewardsDuration);\n // emit RewardAdded(reward);\n }\n*/\n // Added to support recovering LP Rewards from other systems to be distributed to holders\n function recoverERC20(address tokenAddress, uint256 tokenAmount) external onlyByOwnerOrGovernance {\n // Admin cannot withdraw the staking token from the contract\n require(tokenAddress != address(stakingToken));\n ERC20(tokenAddress).transfer(owner_address, tokenAmount);\n emit Recovered(tokenAddress, tokenAmount);\n }\n\n function setRewardsDuration(uint256 _rewardsDuration) external onlyByOwnerOrGovernance {\n require(\n periodFinish == 0 || block.timestamp \u003e periodFinish,\n \"Previous rewards period must be complete before changing the duration for the new period\"\n );\n rewardsDuration = _rewardsDuration;\n emit RewardsDurationUpdated(rewardsDuration);\n }\n\n function setMultipliers(uint256 _locked_stake_max_multiplier, uint256 _cr_boost_max_multiplier) external onlyByOwnerOrGovernance {\n require(_locked_stake_max_multiplier \u003e= 1, \"Multiplier must be greater than or equal to 1\");\n require(_cr_boost_max_multiplier \u003e= 1, \"Max CR Boost must be greater than or equal to 1\");\n\n locked_stake_max_multiplier = _locked_stake_max_multiplier;\n cr_boost_max_multiplier = _cr_boost_max_multiplier;\n \n emit MaxCRBoostMultiplier(cr_boost_max_multiplier);\n emit LockedStakeMaxMultiplierUpdated(locked_stake_max_multiplier);\n }\n\n function setLockedStakeTimeForMinAndMaxMultiplier(uint256 _locked_stake_time_for_max_multiplier, uint256 _locked_stake_min_time) external onlyByOwnerOrGovernance {\n require(_locked_stake_time_for_max_multiplier \u003e= 1, \"Multiplier Max Time must be greater than or equal to 1\");\n require(_locked_stake_min_time \u003e= 1, \"Multiplier Min Time must be greater than or equal to 1\");\n \n locked_stake_time_for_max_multiplier = _locked_stake_time_for_max_multiplier;\n\n locked_stake_min_time = _locked_stake_min_time;\n locked_stake_min_time_str = StringHelpers.uint2str(_locked_stake_min_time);\n\n emit LockedStakeTimeForMaxMultiplier(locked_stake_time_for_max_multiplier);\n emit LockedStakeMinTime(_locked_stake_min_time);\n }\n\n function initializeDefault() external onlyByOwnerOrGovernance {\n lastUpdateTime = block.timestamp;\n periodFinish = block.timestamp.add(rewardsDuration);\n emit DefaultInitialization();\n }\n\n function greylistAddress(address _address) external onlyByOwnerOrGovernance {\n greylist[_address] = !(greylist[_address]);\n }\n\n function unlockStakes() external onlyByOwnerOrGovernance {\n unlockedStakes = !unlockedStakes;\n }\n\n function setRewardRate(uint256 _new_rate) external onlyByOwnerOrGovernance {\n rewardRate = _new_rate;\n }\n\n function setOwnerAndTimelock(address _new_owner, address _new_timelock) external onlyByOwnerOrGovernance {\n owner_address = _new_owner;\n timelock_address = _new_timelock;\n }\n\n /* ========== MODIFIERS ========== */\n\n modifier updateReward(address account) {\n // Need to retro-adjust some things if the period hasn\u0027t been renewed, then start a new one\n if (block.timestamp \u003e periodFinish) {\n retroCatchUp();\n }\n else {\n rewardPerTokenStored = rewardPerToken();\n lastUpdateTime = lastTimeRewardApplicable();\n }\n if (account != address(0)) {\n rewards[account] = earned(account);\n userRewardPerTokenPaid[account] = rewardPerTokenStored;\n }\n _;\n }\n\n modifier onlyByOwnerOrGovernance() {\n require(msg.sender == owner_address || msg.sender == timelock_address, \"You are not the owner or the governance timelock\");\n _;\n }\n\n /* ========== EVENTS ========== */\n\n event RewardAdded(uint256 reward);\n event Staked(address indexed user, uint256 amount);\n event StakeLocked(address indexed user, uint256 amount, uint256 secs);\n event Withdrawn(address indexed user, uint256 amount);\n event WithdrawnLocked(address indexed user, uint256 amount, bytes32 kek_id);\n event RewardPaid(address indexed user, uint256 reward);\n event RewardsDurationUpdated(uint256 newDuration);\n event Recovered(address token, uint256 amount);\n event RewardsPeriodRenewed(address token);\n event DefaultInitialization();\n event LockedStakeMaxMultiplierUpdated(uint256 multiplier);\n event LockedStakeTimeForMaxMultiplier(uint256 secs);\n event LockedStakeMinTime(uint256 secs);\n event MaxCRBoostMultiplier(uint256 multiplier);\n}\n"},"StringHelpers.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n\nlibrary StringHelpers {\n function parseAddr(string memory _a) internal pure returns (address _parsedAddress) {\n bytes memory tmp = bytes(_a);\n uint160 iaddr = 0;\n uint160 b1;\n uint160 b2;\n for (uint i = 2; i \u003c 2 + 2 * 20; i += 2) {\n iaddr *= 256;\n b1 = uint160(uint8(tmp[i]));\n b2 = uint160(uint8(tmp[i + 1]));\n if ((b1 \u003e= 97) \u0026\u0026 (b1 \u003c= 102)) {\n b1 -= 87;\n } else if ((b1 \u003e= 65) \u0026\u0026 (b1 \u003c= 70)) {\n b1 -= 55;\n } else if ((b1 \u003e= 48) \u0026\u0026 (b1 \u003c= 57)) {\n b1 -= 48;\n }\n if ((b2 \u003e= 97) \u0026\u0026 (b2 \u003c= 102)) {\n b2 -= 87;\n } else if ((b2 \u003e= 65) \u0026\u0026 (b2 \u003c= 70)) {\n b2 -= 55;\n } else if ((b2 \u003e= 48) \u0026\u0026 (b2 \u003c= 57)) {\n b2 -= 48;\n }\n iaddr += (b1 * 16 + b2);\n }\n return address(iaddr);\n }\n\n function strCompare(string memory _a, string memory _b) internal pure returns (int _returnCode) {\n bytes memory a = bytes(_a);\n bytes memory b = bytes(_b);\n uint minLength = a.length;\n if (b.length \u003c minLength) {\n minLength = b.length;\n }\n for (uint i = 0; i \u003c minLength; i ++) {\n if (a[i] \u003c b[i]) {\n return -1;\n } else if (a[i] \u003e b[i]) {\n return 1;\n }\n }\n if (a.length \u003c b.length) {\n return -1;\n } else if (a.length \u003e b.length) {\n return 1;\n } else {\n return 0;\n }\n }\n\n function indexOf(string memory _haystack, string memory _needle) internal pure returns (int _returnCode) {\n bytes memory h = bytes(_haystack);\n bytes memory n = bytes(_needle);\n if (h.length \u003c 1 || n.length \u003c 1 || (n.length \u003e h.length)) {\n return -1;\n } else if (h.length \u003e (2 ** 128 - 1)) {\n return -1;\n } else {\n uint subindex = 0;\n for (uint i = 0; i \u003c h.length; i++) {\n if (h[i] == n[0]) {\n subindex = 1;\n while(subindex \u003c n.length \u0026\u0026 (i + subindex) \u003c h.length \u0026\u0026 h[i + subindex] == n[subindex]) {\n subindex++;\n }\n if (subindex == n.length) {\n return int(i);\n }\n }\n }\n return -1;\n }\n }\n\n function strConcat(string memory _a, string memory _b) internal pure returns (string memory _concatenatedString) {\n return strConcat(_a, _b, \"\", \"\", \"\");\n }\n\n function strConcat(string memory _a, string memory _b, string memory _c) internal pure returns (string memory _concatenatedString) {\n return strConcat(_a, _b, _c, \"\", \"\");\n }\n\n function strConcat(string memory _a, string memory _b, string memory _c, string memory _d) internal pure returns (string memory _concatenatedString) {\n return strConcat(_a, _b, _c, _d, \"\");\n }\n\n function strConcat(string memory _a, string memory _b, string memory _c, string memory _d, string memory _e) internal pure returns (string memory _concatenatedString) {\n bytes memory _ba = bytes(_a);\n bytes memory _bb = bytes(_b);\n bytes memory _bc = bytes(_c);\n bytes memory _bd = bytes(_d);\n bytes memory _be = bytes(_e);\n string memory abcde = new string(_ba.length + _bb.length + _bc.length + _bd.length + _be.length);\n bytes memory babcde = bytes(abcde);\n uint k = 0;\n uint i = 0;\n for (i = 0; i \u003c _ba.length; i++) {\n babcde[k++] = _ba[i];\n }\n for (i = 0; i \u003c _bb.length; i++) {\n babcde[k++] = _bb[i];\n }\n for (i = 0; i \u003c _bc.length; i++) {\n babcde[k++] = _bc[i];\n }\n for (i = 0; i \u003c _bd.length; i++) {\n babcde[k++] = _bd[i];\n }\n for (i = 0; i \u003c _be.length; i++) {\n babcde[k++] = _be[i];\n }\n return string(babcde);\n }\n\n function safeParseInt(string memory _a) internal pure returns (uint _parsedInt) {\n return safeParseInt(_a, 0);\n }\n\n function safeParseInt(string memory _a, uint _b) internal pure returns (uint _parsedInt) {\n bytes memory bresult = bytes(_a);\n uint mint = 0;\n bool decimals = false;\n for (uint i = 0; i \u003c bresult.length; i++) {\n if ((uint(uint8(bresult[i])) \u003e= 48) \u0026\u0026 (uint(uint8(bresult[i])) \u003c= 57)) {\n if (decimals) {\n if (_b == 0) break;\n else _b--;\n }\n mint *= 10;\n mint += uint(uint8(bresult[i])) - 48;\n } else if (uint(uint8(bresult[i])) == 46) {\n require(!decimals, \u0027More than one decimal encountered in string!\u0027);\n decimals = true;\n } else {\n revert(\"Non-numeral character encountered in string!\");\n }\n }\n if (_b \u003e 0) {\n mint *= 10 ** _b;\n }\n return mint;\n }\n\n function parseInt(string memory _a) internal pure returns (uint _parsedInt) {\n return parseInt(_a, 0);\n }\n\n function parseInt(string memory _a, uint _b) internal pure returns (uint _parsedInt) {\n bytes memory bresult = bytes(_a);\n uint mint = 0;\n bool decimals = false;\n for (uint i = 0; i \u003c bresult.length; i++) {\n if ((uint(uint8(bresult[i])) \u003e= 48) \u0026\u0026 (uint(uint8(bresult[i])) \u003c= 57)) {\n if (decimals) {\n if (_b == 0) {\n break;\n } else {\n _b--;\n }\n }\n mint *= 10;\n mint += uint(uint8(bresult[i])) - 48;\n } else if (uint(uint8(bresult[i])) == 46) {\n decimals = true;\n }\n }\n if (_b \u003e 0) {\n mint *= 10 ** _b;\n }\n return mint;\n }\n\n function uint2str(uint _i) internal pure returns (string memory _uintAsString) {\n if (_i == 0) {\n return \"0\";\n }\n uint j = _i;\n uint len;\n while (j != 0) {\n len++;\n j /= 10;\n }\n bytes memory bstr = new bytes(len);\n uint k = len - 1;\n while (_i != 0) {\n bstr[k--] = byte(uint8(48 + _i % 10));\n _i /= 10;\n }\n return string(bstr);\n }\n}"},"SwapToPrice.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Pair.sol\u0027;\nimport \u0027./Babylonian.sol\u0027;\nimport \u0027./SafeMath.sol\u0027;\nimport \u0027./TransferHelper.sol\u0027;\nimport \u0027./IERC20.sol\u0027;\nimport \u0027./IUniswapV2Router01.sol\u0027;\nimport \u0027./UniswapV2Library.sol\u0027;\n\ncontract SwapToPrice {\n using SafeMath for uint256;\n\n IUniswapV2Router01 public immutable router;\n address public immutable factory;\n\n constructor(address factory_, IUniswapV2Router01 router_) public {\n factory = factory_;\n router = router_;\n }\n\n // computes the direction and magnitude of the profit-maximizing trade\n function computeProfitMaximizingTrade(\n uint256 truePriceTokenA,\n uint256 truePriceTokenB,\n uint256 reserveA,\n uint256 reserveB\n ) pure public returns (bool aToB, uint256 amountIn) {\n aToB = reserveA.mul(truePriceTokenB) / reserveB \u003c truePriceTokenA;\n\n uint256 invariant = reserveA.mul(reserveB);\n\n uint256 leftSide = Babylonian.sqrt(\n invariant.mul(aToB ? truePriceTokenA : truePriceTokenB).mul(1000) /\n uint256(aToB ? truePriceTokenB : truePriceTokenA).mul(997)\n );\n uint256 rightSide = (aToB ? reserveA.mul(1000) : reserveB.mul(1000)) / 997;\n\n // compute the amount that must be sent to move the price to the profit-maximizing price\n amountIn = leftSide.sub(rightSide);\n }\n\n // swaps an amount of either token such that the trade is profit-maximizing, given an external true price\n // true price is expressed in the ratio of token A to token B\n // caller must approve this contract to spend whichever token is intended to be swapped\n function swapToPrice(\n address tokenA,\n address tokenB,\n uint256 truePriceTokenA,\n uint256 truePriceTokenB,\n uint256 maxSpendTokenA,\n uint256 maxSpendTokenB,\n address to,\n uint256 deadline\n ) public {\n // true price is expressed as a ratio, so both values must be non-zero\n require(truePriceTokenA != 0 \u0026\u0026 truePriceTokenB != 0, \"ExampleSwapToPrice: ZERO_PRICE\");\n // caller can specify 0 for either if they wish to swap in only one direction, but not both\n require(maxSpendTokenA != 0 || maxSpendTokenB != 0, \"ExampleSwapToPrice: ZERO_SPEND\");\n\n bool aToB;\n uint256 amountIn;\n {\n (uint256 reserveA, uint256 reserveB) = UniswapV2Library.getReserves(factory, tokenA, tokenB);\n (aToB, amountIn) = computeProfitMaximizingTrade(\n truePriceTokenA, truePriceTokenB,\n reserveA, reserveB\n );\n }\n\n // spend up to the allowance of the token in\n uint256 maxSpend = aToB ? maxSpendTokenA : maxSpendTokenB;\n if (amountIn \u003e maxSpend) {\n amountIn = maxSpend;\n }\n\n address tokenIn = aToB ? tokenA : tokenB;\n address tokenOut = aToB ? tokenB : tokenA;\n TransferHelper.safeTransferFrom(tokenIn, msg.sender, address(this), amountIn);\n TransferHelper.safeApprove(tokenIn, address(router), amountIn);\n\n address[] memory path = new address[](2);\n path[0] = tokenIn;\n path[1] = tokenOut;\n\n router.swapExactTokensForTokens(\n amountIn,\n 0, // amountOutMin: we can skip computing this number because the math is tested\n path,\n to,\n deadline\n );\n }\n}"},"TestSwap.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./FakeCollateral_USDT.sol\";\nimport \"./FakeCollateral_WETH.sol\";\nimport \"./UniswapV2Router02_Modified.sol\";\n\n/* IGNORE THIS CONTRACT, ONLY USED FOR TESTING PURPOSES */\n\ncontract TestSwap {\n\taddress public USDT_address;\n\taddress public WETH_address;\n\tUniswapV2Router02_Modified public router;\n\tFakeCollateral_USDT USDT = FakeCollateral_USDT(USDT);\n\tFakeCollateral_WETH WETH = FakeCollateral_WETH(WETH);\n\n\tconstructor( \n\t\taddress _USDT_address, \n\t\taddress _WETH_address,\n\t\tUniswapV2Router02_Modified _router_address\n\t) public {\n\t\tUSDT_address = _USDT_address;\n\t\tWETH_address = _WETH_address;\n\t\trouter = UniswapV2Router02_Modified(_router_address);\n\t}\n\n\tfunction getPath() public returns (address[] memory) {\n\t\taddress[] memory path = new address[](2);\n\t\tpath[0] = USDT_address;\n\t\tpath[1] = WETH_address;\n\t\treturn path;\n\t}\n\n\tfunction swapUSDTforETH(uint256 amountIn, uint256 amountOutMin) public payable {\n\t\trequire(USDT.transferFrom(msg.sender, address(this), amountIn), \"transferFrom failed.\");\n\t\trequire(USDT.approve(address(router), amountIn), \"approve failed.\");\n\n\t\taddress[] memory path = new address[](2);\n\t\tpath[0] = USDT_address;\n\t\tpath[1] = WETH_address;\n\n\t\trouter.swapExactTokensForETH(amountIn, amountOutMin, path, msg.sender, block.timestamp);\n\t}\n\n}"},"Timelock.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./SafeMath.sol\";\n\ncontract Timelock {\n using SafeMath for uint;\n\n event NewAdmin(address indexed newAdmin);\n event NewPendingAdmin(address indexed newPendingAdmin);\n event NewDelay(uint indexed newDelay);\n event CancelTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);\n event ExecuteTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);\n event QueueTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);\n\n uint public constant GRACE_PERIOD = 14 days;\n uint public constant MINIMUM_DELAY = 2 days;\n uint public constant MAXIMUM_DELAY = 30 days;\n\n address public admin;\n address public pendingAdmin;\n uint public delay;\n\n mapping (bytes32 =\u003e bool) public queuedTransactions;\n\n\n constructor(address admin_, uint delay_) public {\n require(delay_ \u003e= MINIMUM_DELAY, \"Timelock::constructor: Delay must exceed minimum delay.\");\n require(delay_ \u003c= MAXIMUM_DELAY, \"Timelock::setDelay: Delay must not exceed maximum delay.\");\n\n admin = admin_;\n delay = delay_;\n }\n\n //function() external payable { }\n\n function setDelay(uint delay_) public {\n require(msg.sender == address(this), \"Timelock::setDelay: Call must come from Timelock.\");\n require(delay_ \u003e= MINIMUM_DELAY, \"Timelock::setDelay: Delay must exceed minimum delay.\");\n require(delay_ \u003c= MAXIMUM_DELAY, \"Timelock::setDelay: Delay must not exceed maximum delay.\");\n delay = delay_;\n\n emit NewDelay(delay);\n }\n\n function acceptAdmin() public {\n require(msg.sender == pendingAdmin, \"Timelock::acceptAdmin: Call must come from pendingAdmin.\");\n admin = msg.sender;\n pendingAdmin = address(0);\n\n emit NewAdmin(admin);\n }\n\n function setPendingAdmin(address pendingAdmin_) public {\n require(msg.sender == address(this), \"Timelock::setPendingAdmin: Call must come from Timelock.\");\n pendingAdmin = pendingAdmin_;\n\n emit NewPendingAdmin(pendingAdmin);\n }\n\n function queueTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public returns (bytes32) {\n require(msg.sender == admin, \"Timelock::queueTransaction: Call must come from admin.\");\n require(eta \u003e= getBlockTimestamp().add(delay), \"Timelock::queueTransaction: Estimated execution block must satisfy delay.\");\n\n bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));\n queuedTransactions[txHash] = true;\n\n emit QueueTransaction(txHash, target, value, signature, data, eta);\n return txHash;\n }\n\n function cancelTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public {\n require(msg.sender == admin, \"Timelock::cancelTransaction: Call must come from admin.\");\n\n bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));\n queuedTransactions[txHash] = false;\n\n emit CancelTransaction(txHash, target, value, signature, data, eta);\n }\n\n function executeTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public payable returns (bytes memory) {\n require(msg.sender == admin, \"Timelock::executeTransaction: Call must come from admin.\");\n\n bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));\n require(queuedTransactions[txHash], \"Timelock::executeTransaction: Transaction hasn\u0027t been queued.\");\n require(getBlockTimestamp() \u003e= eta, \"Timelock::executeTransaction: Transaction hasn\u0027t surpassed time lock.\");\n require(getBlockTimestamp() \u003c= eta.add(GRACE_PERIOD), \"Timelock::executeTransaction: Transaction is stale.\");\n\n queuedTransactions[txHash] = false;\n\n bytes memory callData;\n\n if (bytes(signature).length == 0) {\n callData = data;\n } else {\n callData = abi.encodePacked(bytes4(keccak256(bytes(signature))), data);\n }\n\n // Execute the call\n (bool success, bytes memory returnData) = target.call{ value: value }(callData);\n require(success, \"Timelock::executeTransaction: Transaction execution reverted.\");\n\n emit ExecuteTransaction(txHash, target, value, signature, data, eta);\n\n return returnData;\n }\n\n function getBlockTimestamp() internal view returns (uint) {\n return block.timestamp;\n }\n}"},"TokenVesting.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \"./ERC20Custom.sol\";\nimport \"./ERC20.sol\";\nimport \"./SafeMath.sol\";\n\n/**\n * @title TokenVesting\n * @dev A token holder contract that can release its token balance gradually like a\n * typical vesting scheme, with a cliff and vesting period. Optionally revocable by the\n * owner.\n * \n * Modified from OpenZeppelin\u0027s TokenVesting.sol draft\n */\ncontract TokenVesting {\n // The vesting schedule is time-based (i.e. using block timestamps as opposed to e.g. block numbers), and is\n // therefore sensitive to timestamp manipulation (which is something miners can do, to a certain degree). Therefore,\n // it is recommended to avoid using short time durations (less than a minute). Typical vesting schemes, with a\n // cliff period of a year and a duration of four years, are safe to use.\n // solhint-disable not-rely-on-time\n\n using SafeMath for uint256;\n\n event TokensReleased(uint256 amount);\n event TokenVestingRevoked();\n\n // beneficiary of tokens after they are released\n address private _beneficiary;\n\n // owner (grantor) of the tokens\n address private _owner;\n\n // Durations and timestamps are expressed in UNIX time, the same units as block.timestamp.\n uint256 private _cliff;\n uint256 private _start;\n uint256 private _duration;\n\n address public _FXS_contract_address;\n ERC20 FXS;\n address public _timelock_address;\n bool public _revocable;\n\n uint256 private _released;\n bool public _revoked;\n\n /**\n * @dev Creates a vesting contract that vests its balance of any ERC20 token to the\n * beneficiary, gradually in a linear fashion until start + duration. By then all\n * of the balance will have vested.\n * @param beneficiary address of the beneficiary to whom vested tokens are transferred\n * @param cliffDuration duration in seconds of the cliff in which tokens will begin to vest\n * @param start the time (as Unix time) at which point vesting starts\n * @param duration duration in seconds of the period in which the tokens will vest\n * @param revocable whether the vesting is revocable or not\n */\n\n constructor(\n address beneficiary,\n uint256 start,\n uint256 cliffDuration,\n uint256 duration,\n bool revocable\n ) public {\n require(beneficiary != address(0), \"TokenVesting: beneficiary is the zero address\");\n // solhint-disable-next-line max-line-length\n require(cliffDuration \u003c= duration, \"TokenVesting: cliff is longer than duration\");\n require(duration \u003e 0, \"TokenVesting: duration is 0\");\n // solhint-disable-next-line max-line-length\n require(start.add(duration) \u003e block.timestamp, \"TokenVesting: final time is before current time\");\n\n _beneficiary = beneficiary;\n _revocable = revocable;\n _duration = duration;\n _cliff = start.add(cliffDuration);\n _start = start;\n _owner = msg.sender;\n }\n\n function setFXSAddress(address FXS_address) public {\n require(msg.sender == _owner, \"must be set by the owner\");\n _FXS_contract_address = FXS_address;\n FXS = ERC20(FXS_address);\n }\n\n function setTimelockAddress(address timelock_address) public {\n require(msg.sender == _owner, \"must be set by the owner\");\n _timelock_address = timelock_address;\n }\n\n /**\n * @return the beneficiary of the tokens.\n */\n function getBeneficiary() public view returns (address) {\n return _beneficiary;\n }\n\n /**\n * @return the cliff time of the token vesting.\n */\n function getCliff() public view returns (uint256) {\n return _cliff;\n }\n\n /**\n * @return the start time of the token vesting.\n */\n function getStart() public view returns (uint256) {\n return _start;\n }\n\n /**\n * @return the duration of the token vesting.\n */\n function getDuration() public view returns (uint256) {\n return _duration;\n }\n\n /**\n * @return true if the vesting is revocable.\n */\n function getRevocable() public view returns (bool) {\n return _revocable;\n }\n\n /**\n * @return the amount of the token released.\n */\n function getReleased() public view returns (uint256) {\n return _released;\n }\n\n /**\n * @return true if the token is revoked.\n */\n function getRevoked() public view returns (bool) {\n return _revoked;\n }\n\n /**\n * @notice Transfers vested tokens to beneficiary.\n */\n function release() public {\n require(msg.sender == _beneficiary, \"must be the beneficiary to release tokens\");\n uint256 unreleased = _releasableAmount();\n\n require(unreleased \u003e 0, \"TokenVesting: no tokens are due\");\n\n _released = _released.add(unreleased);\n\n FXS.transfer(_beneficiary, unreleased);\n\n emit TokensReleased(unreleased);\n }\n\n /**\n * @notice Allows the owner to revoke the vesting. Tokens already vested\n * remain in the contract, the rest are returned to the owner.\n */\n function revoke() public {\n require(msg.sender == _timelock_address, \"Must be called by the timelock contract\");\n require(_revocable, \"TokenVesting: cannot revoke\");\n require(!_revoked, \"TokenVesting: token already revoked\");\n\n uint256 balance = FXS.balanceOf(address(this));\n\n uint256 unreleased = _releasableAmount();\n uint256 refund = balance.sub(unreleased);\n\n _revoked = true;\n\n FXS.transfer(_owner, refund);\n\n emit TokenVestingRevoked();\n }\n\n // Added to support recovering possible airdrops\n function recoverERC20(address tokenAddress, uint256 tokenAmount) external {\n require(msg.sender == _beneficiary, \"Must be called by the beneficiary\");\n\n // Cannot recover the staking token or the rewards token\n require(tokenAddress != _FXS_contract_address, \"Cannot withdraw the FXS through this function\");\n ERC20(tokenAddress).transfer(_beneficiary, tokenAmount);\n }\n\n\n /**\n * @dev Calculates the amount that has already vested but hasn\u0027t been released yet.\n */\n function _releasableAmount() private view returns (uint256) {\n return _vestedAmount().sub(_released);\n }\n\n /**\n * @dev Calculates the amount that has already vested.\n */\n function _vestedAmount() private view returns (uint256) {\n uint256 currentBalance = FXS.balanceOf(address(this));\n uint256 totalBalance = currentBalance.add(_released);\n if (block.timestamp \u003c _cliff) {\n return 0;\n } else if (block.timestamp \u003e= _start.add(_duration) || _revoked) {\n return totalBalance;\n } else {\n return totalBalance.mul(block.timestamp.sub(_start)).div(_duration);\n }\n }\n\n uint256[44] private __gap;\n}\n"},"TransferHelper.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n// helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false\nlibrary TransferHelper {\n function safeApprove(address token, address to, uint value) internal {\n // bytes4(keccak256(bytes(\u0027approve(address,uint256)\u0027)));\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));\n require(success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))), \u0027TransferHelper: APPROVE_FAILED\u0027);\n }\n\n function safeTransfer(address token, address to, uint value) internal {\n // bytes4(keccak256(bytes(\u0027transfer(address,uint256)\u0027)));\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));\n require(success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))), \u0027TransferHelper: TRANSFER_FAILED\u0027);\n }\n\n function safeTransferFrom(address token, address from, address to, uint value) internal {\n // bytes4(keccak256(bytes(\u0027transferFrom(address,address,uint256)\u0027)));\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));\n require(success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))), \u0027TransferHelper: TRANSFER_FROM_FAILED\u0027);\n }\n\n function safeTransferETH(address to, uint value) internal {\n (bool success,) = to.call{value:value}(new bytes(0));\n require(success, \u0027TransferHelper: ETH_TRANSFER_FAILED\u0027);\n }\n}"},"UniswapPairOracle.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Factory.sol\u0027;\nimport \u0027./IUniswapV2Pair.sol\u0027;\nimport \u0027./FixedPoint.sol\u0027;\n\nimport \u0027./UniswapV2OracleLibrary.sol\u0027;\nimport \u0027./UniswapV2Library.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle {\n using FixedPoint for *;\n \n address owner_address;\n address timelock_address;\n\n uint public PERIOD = 3600; // 1 hour TWAP (time-weighted average price)\n\n IUniswapV2Pair public immutable pair;\n address public immutable token0;\n address public immutable token1;\n\n uint public price0CumulativeLast;\n uint public price1CumulativeLast;\n uint32 public blockTimestampLast;\n FixedPoint.uq112x112 public price0Average;\n FixedPoint.uq112x112 public price1Average;\n\n modifier onlyByOwnerOrGovernance() {\n require(msg.sender == owner_address || msg.sender == timelock_address, \"You are not an owner or the governance timelock\");\n _;\n }\n\n constructor(address factory, address tokenA, address tokenB, address _owner_address, address _timelock_address) public {\n IUniswapV2Pair _pair = IUniswapV2Pair(UniswapV2Library.pairFor(factory, tokenA, tokenB));\n pair = _pair;\n token0 = _pair.token0();\n token1 = _pair.token1();\n price0CumulativeLast = _pair.price0CumulativeLast(); // Fetch the current accumulated price value (1 / 0)\n price1CumulativeLast = _pair.price1CumulativeLast(); // Fetch the current accumulated price value (0 / 1)\n uint112 reserve0;\n uint112 reserve1;\n (reserve0, reserve1, blockTimestampLast) = _pair.getReserves();\n require(reserve0 != 0 \u0026\u0026 reserve1 != 0, \u0027UniswapPairOracle: NO_RESERVES\u0027); // Ensure that there\u0027s liquidity in the pair\n\n owner_address = _owner_address;\n timelock_address = _timelock_address;\n }\n\n function setOwner(address _owner_address) external onlyByOwnerOrGovernance {\n owner_address = _owner_address;\n }\n\n function setTimelock(address _timelock_address) external onlyByOwnerOrGovernance {\n timelock_address = _timelock_address;\n }\n\n function setPeriod(uint _period) external onlyByOwnerOrGovernance {\n PERIOD = _period;\n }\n\n function update() external {\n (uint price0Cumulative, uint price1Cumulative, uint32 blockTimestamp) =\n UniswapV2OracleLibrary.currentCumulativePrices(address(pair));\n uint32 timeElapsed = blockTimestamp - blockTimestampLast; // Overflow is desired\n\n // Ensure that at least one full period has passed since the last update\n require(timeElapsed \u003e= PERIOD, \u0027UniswapPairOracle: PERIOD_NOT_ELAPSED\u0027);\n\n // Overflow is desired, casting never truncates\n // Cumulative price is in (uq112x112 price * seconds) units so we simply wrap it after division by time elapsed\n price0Average = FixedPoint.uq112x112(uint224((price0Cumulative - price0CumulativeLast) / timeElapsed));\n price1Average = FixedPoint.uq112x112(uint224((price1Cumulative - price1CumulativeLast) / timeElapsed));\n\n price0CumulativeLast = price0Cumulative;\n price1CumulativeLast = price1Cumulative;\n blockTimestampLast = blockTimestamp;\n }\n\n // Note this will always return 0 before update has been called successfully for the first time.\n function consult(address token, uint amountIn) external view returns (uint amountOut) {\n if (token == token0) {\n amountOut = price0Average.mul(amountIn).decode144();\n } else {\n require(token == token1, \u0027UniswapPairOracle: INVALID_TOKEN\u0027);\n amountOut = price1Average.mul(amountIn).decode144();\n }\n }\n}\n"},"UniswapPairOracle_FRAX_FXS.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FRAX_FXS is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}"},"UniswapPairOracle_FRAX_USDC.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FRAX_USDC is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}\n"},"UniswapPairOracle_FRAX_USDT.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FRAX_USDT is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}\n"},"UniswapPairOracle_FRAX_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FRAX_WETH is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}"},"UniswapPairOracle_FXS_USDC.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FXS_USDC is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}"},"UniswapPairOracle_FXS_USDT.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FXS_USDT is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}"},"UniswapPairOracle_FXS_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_FXS_WETH is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}"},"UniswapPairOracle_USDC_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_USDC_WETH is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}\n"},"UniswapPairOracle_USDT_WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./UniswapPairOracle.sol\u0027;\n\n// Fixed window oracle that recomputes the average price for the entire period once every period\n// Note that the price average is only guaranteed to be over at least 1 period, but may be over a longer period\ncontract UniswapPairOracle_USDT_WETH is UniswapPairOracle {\n constructor(address factory, address tokenA, address tokenB, address owner_address, address timelock_address) \n UniswapPairOracle(factory, tokenA, tokenB, owner_address, timelock_address) \n public {}\n}\n"},"UniswapV2ERC20.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2ERC20.sol\u0027;\nimport \u0027./SafeMath.sol\u0027;\n\ncontract UniswapV2ERC20 is IUniswapV2ERC20 {\n using SafeMath for uint;\n\n string public override constant name = \u0027Uniswap V2\u0027;\n string public override constant symbol = \u0027UNI-V2\u0027;\n uint8 public override constant decimals = 18;\n uint public override totalSupply;\n mapping(address =\u003e uint) public override balanceOf;\n mapping(address =\u003e mapping(address =\u003e uint)) public override allowance;\n\n bytes32 public override DOMAIN_SEPARATOR;\n // keccak256(\"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)\");\n bytes32 public constant override PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;\n mapping(address =\u003e uint) public override nonces;\n\n event Approval(address indexed owner, address indexed spender, uint value);\n event Transfer(address indexed from, address indexed to, uint value);\n\n constructor() public {\n uint chainId;\n assembly {\n chainId := chainid()\n }\n DOMAIN_SEPARATOR = keccak256(\n abi.encode(\n keccak256(\u0027EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)\u0027),\n keccak256(bytes(name)),\n keccak256(bytes(\u00271\u0027)),\n chainId,\n address(this)\n )\n );\n }\n\n function _mint(address to, uint value) internal {\n totalSupply = totalSupply.add(value);\n balanceOf[to] = balanceOf[to].add(value);\n emit Transfer(address(0), to, value);\n }\n\n function _burn(address from, uint value) internal {\n balanceOf[from] = balanceOf[from].sub(value);\n totalSupply = totalSupply.sub(value);\n emit Transfer(from, address(0), value);\n }\n\n function _approve(address owner, address spender, uint value) private {\n allowance[owner][spender] = value;\n emit Approval(owner, spender, value);\n }\n\n function _transfer(address from, address to, uint value) private {\n balanceOf[from] = balanceOf[from].sub(value);\n balanceOf[to] = balanceOf[to].add(value);\n emit Transfer(from, to, value);\n }\n\n function approve(address spender, uint value) external override returns (bool) {\n _approve(msg.sender, spender, value);\n return true;\n }\n\n function transfer(address to, uint value) external override returns (bool) {\n _transfer(msg.sender, to, value);\n return true;\n }\n\n function transferFrom(address from, address to, uint value) external override returns (bool) {\n if (allowance[from][msg.sender] != uint(-1)) {\n allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);\n }\n _transfer(from, to, value);\n return true;\n }\n\n function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external override {\n require(deadline \u003e= block.timestamp, \u0027UniswapV2: EXPIRED\u0027);\n bytes32 digest = keccak256(\n abi.encodePacked(\n \u0027\\x19\\x01\u0027,\n DOMAIN_SEPARATOR,\n keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))\n )\n );\n address recoveredAddress = ecrecover(digest, v, r, s);\n require(recoveredAddress != address(0) \u0026\u0026 recoveredAddress == owner, \u0027UniswapV2: INVALID_SIGNATURE\u0027);\n _approve(owner, spender, value);\n }\n}\n"},"UniswapV2Factory.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Factory.sol\u0027;\nimport \u0027./UniswapV2Pair.sol\u0027;\n\ncontract UniswapV2Factory is IUniswapV2Factory {\n address public override feeTo;\n address public override feeToSetter;\n\n mapping(address =\u003e mapping(address =\u003e address)) public override getPair;\n address[] public override allPairs;\n\n event PairCreated(address indexed token0, address indexed token1, address pair, uint);\n\n constructor(address _feeToSetter) public {\n feeToSetter = _feeToSetter;\n }\n\n function allPairsLength() external override view returns (uint) {\n return allPairs.length;\n }\n\n function createPair(address tokenA, address tokenB) external override returns (address pair) {\n require(tokenA != tokenB, \u0027UniswapV2: IDENTICAL_ADDRESSES\u0027);\n (address token0, address token1) = tokenA \u003c tokenB ? (tokenA, tokenB) : (tokenB, tokenA);\n require(token0 != address(0), \u0027UniswapV2: ZERO_ADDRESS\u0027);\n require(getPair[token0][token1] == address(0), \u0027UniswapV2: PAIR_EXISTS\u0027); // single check is sufficient\n bytes memory bytecode = type(UniswapV2Pair).creationCode;\n bytes32 salt = keccak256(abi.encodePacked(token0, token1));\n\n // This creates a new contract\n assembly {\n pair := create2(0, add(bytecode, 32), mload(bytecode), salt)\n }\n IUniswapV2Pair(pair).initialize(token0, token1);\n getPair[token0][token1] = pair;\n getPair[token1][token0] = pair; // populate mapping in the reverse direction\n allPairs.push(pair);\n emit PairCreated(token0, token1, pair, allPairs.length);\n }\n\n function setFeeTo(address _feeTo) external override {\n require(msg.sender == feeToSetter, \u0027UniswapV2: FORBIDDEN\u0027);\n feeTo = _feeTo;\n }\n\n function setFeeToSetter(address _feeToSetter) external override {\n require(msg.sender == feeToSetter, \u0027UniswapV2: FORBIDDEN\u0027);\n feeToSetter = _feeToSetter;\n }\n}\n"},"UniswapV2Library.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Pair.sol\u0027;\nimport \u0027./IUniswapV2Factory.sol\u0027;\n\nimport \"./SafeMath.sol\";\n\nlibrary UniswapV2Library {\n using SafeMath for uint;\n\n // returns sorted token addresses, used to handle return values from pairs sorted in this order\n function sortTokens(address tokenA, address tokenB) internal pure returns (address token0, address token1) {\n require(tokenA != tokenB, \u0027UniswapV2Library: IDENTICAL_ADDRESSES\u0027);\n (token0, token1) = tokenA \u003c tokenB ? (tokenA, tokenB) : (tokenB, tokenA);\n require(token0 != address(0), \u0027UniswapV2Library: ZERO_ADDRESS\u0027);\n }\n\n // Less efficient than the CREATE2 method below\n function pairFor(address factory, address tokenA, address tokenB) internal view returns (address pair) {\n (address token0, address token1) = sortTokens(tokenA, tokenB);\n pair = IUniswapV2Factory(factory).getPair(token0, token1);\n }\n\n // calculates the CREATE2 address for a pair without making any external calls\n function pairForCreate2(address factory, address tokenA, address tokenB) internal pure returns (address pair) {\n (address token0, address token1) = sortTokens(tokenA, tokenB);\n pair = address(uint(keccak256(abi.encodePacked(\n hex\u0027ff\u0027,\n factory,\n keccak256(abi.encodePacked(token0, token1)),\n hex\u002796e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f\u0027 // init code hash\n )))); // this matches the CREATE2 in UniswapV2Factory.createPair\n }\n\n // fetches and sorts the reserves for a pair\n function getReserves(address factory, address tokenA, address tokenB) internal view returns (uint reserveA, uint reserveB) {\n (address token0,) = sortTokens(tokenA, tokenB);\n (uint reserve0, uint reserve1,) = IUniswapV2Pair(pairFor(factory, tokenA, tokenB)).getReserves();\n (reserveA, reserveB) = tokenA == token0 ? (reserve0, reserve1) : (reserve1, reserve0);\n }\n\n // given some amount of an asset and pair reserves, returns an equivalent amount of the other asset\n function quote(uint amountA, uint reserveA, uint reserveB) internal pure returns (uint amountB) {\n require(amountA \u003e 0, \u0027UniswapV2Library: INSUFFICIENT_AMOUNT\u0027);\n require(reserveA \u003e 0 \u0026\u0026 reserveB \u003e 0, \u0027UniswapV2Library: INSUFFICIENT_LIQUIDITY\u0027);\n amountB = amountA.mul(reserveB) / reserveA;\n }\n\n // given an input amount of an asset and pair reserves, returns the maximum output amount of the other asset\n function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) internal pure returns (uint amountOut) {\n require(amountIn \u003e 0, \u0027UniswapV2Library: INSUFFICIENT_INPUT_AMOUNT\u0027);\n require(reserveIn \u003e 0 \u0026\u0026 reserveOut \u003e 0, \u0027UniswapV2Library: INSUFFICIENT_LIQUIDITY\u0027);\n uint amountInWithFee = amountIn.mul(997);\n uint numerator = amountInWithFee.mul(reserveOut);\n uint denominator = reserveIn.mul(1000).add(amountInWithFee);\n amountOut = numerator / denominator;\n }\n\n // given an output amount of an asset and pair reserves, returns a required input amount of the other asset\n function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) internal pure returns (uint amountIn) {\n require(amountOut \u003e 0, \u0027UniswapV2Library: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n require(reserveIn \u003e 0 \u0026\u0026 reserveOut \u003e 0, \u0027UniswapV2Library: INSUFFICIENT_LIQUIDITY\u0027);\n uint numerator = reserveIn.mul(amountOut).mul(1000);\n uint denominator = reserveOut.sub(amountOut).mul(997);\n amountIn = (numerator / denominator).add(1);\n }\n\n // performs chained getAmountOut calculations on any number of pairs\n function getAmountsOut(address factory, uint amountIn, address[] memory path) internal view returns (uint[] memory amounts) {\n require(path.length \u003e= 2, \u0027UniswapV2Library: INVALID_PATH\u0027);\n amounts = new uint[](path.length);\n amounts[0] = amountIn;\n for (uint i; i \u003c path.length - 1; i++) {\n (uint reserveIn, uint reserveOut) = getReserves(factory, path[i], path[i + 1]);\n amounts[i + 1] = getAmountOut(amounts[i], reserveIn, reserveOut);\n }\n }\n\n // performs chained getAmountIn calculations on any number of pairs\n function getAmountsIn(address factory, uint amountOut, address[] memory path) internal view returns (uint[] memory amounts) {\n require(path.length \u003e= 2, \u0027UniswapV2Library: INVALID_PATH\u0027);\n amounts = new uint[](path.length);\n amounts[amounts.length - 1] = amountOut;\n for (uint i = path.length - 1; i \u003e 0; i--) {\n (uint reserveIn, uint reserveOut) = getReserves(factory, path[i - 1], path[i]);\n amounts[i - 1] = getAmountIn(amounts[i], reserveIn, reserveOut);\n }\n }\n}"},"UniswapV2OracleLibrary.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Pair.sol\u0027;\nimport \u0027./FixedPoint.sol\u0027;\n\n// library with helper methods for oracles that are concerned with computing average prices\nlibrary UniswapV2OracleLibrary {\n using FixedPoint for *;\n\n // helper function that returns the current block timestamp within the range of uint32, i.e. [0, 2**32 - 1]\n function currentBlockTimestamp() internal view returns (uint32) {\n return uint32(block.timestamp % 2 ** 32);\n }\n\n // produces the cumulative price using counterfactuals to save gas and avoid a call to sync.\n function currentCumulativePrices(\n address pair\n ) internal view returns (uint price0Cumulative, uint price1Cumulative, uint32 blockTimestamp) {\n blockTimestamp = currentBlockTimestamp();\n price0Cumulative = IUniswapV2Pair(pair).price0CumulativeLast();\n price1Cumulative = IUniswapV2Pair(pair).price1CumulativeLast();\n\n // if time has elapsed since the last update on the pair, mock the accumulated price values\n (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast) = IUniswapV2Pair(pair).getReserves();\n if (blockTimestampLast != blockTimestamp) {\n // subtraction overflow is desired\n uint32 timeElapsed = blockTimestamp - blockTimestampLast;\n // addition overflow is desired\n // counterfactual\n price0Cumulative += uint(FixedPoint.fraction(reserve1, reserve0)._x) * timeElapsed;\n // counterfactual\n price1Cumulative += uint(FixedPoint.fraction(reserve0, reserve1)._x) * timeElapsed;\n }\n }\n}"},"UniswapV2Pair.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n\nimport \u0027./IUniswapV2Pair.sol\u0027;\nimport \u0027./UniswapV2ERC20.sol\u0027;\nimport \u0027./Math.sol\u0027;\nimport \u0027./UQ112x112.sol\u0027;\nimport \u0027./IERC20.sol\u0027;\nimport \u0027./IUniswapV2Factory.sol\u0027;\nimport \u0027./IUniswapV2Callee.sol\u0027;\n\ncontract UniswapV2Pair is IUniswapV2Pair {\n using SafeMath for uint;\n using UQ112x112 for uint224;\n\n string public override constant name = \u0027Uniswap V2\u0027;\n string public override constant symbol = \u0027UNI-V2\u0027;\n uint8 public override constant decimals = 18;\n uint public override totalSupply;\n mapping(address =\u003e uint) public override balanceOf;\n mapping(address =\u003e mapping(address =\u003e uint)) public override allowance;\n\n uint public override constant MINIMUM_LIQUIDITY = 10**3;\n bytes4 private constant SELECTOR = bytes4(keccak256(bytes(\u0027transfer(address,uint256)\u0027)));\n bytes32 public override DOMAIN_SEPARATOR;\n // keccak256(\"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)\");\n bytes32 public constant override PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;\n mapping(address =\u003e uint) public override nonces;\n\n\n \n\n address public override factory;\n address public override token0;\n address public override token1;\n\n uint112 private reserve0; // uses single storage slot, accessible via getReserves\n uint112 private reserve1; // uses single storage slot, accessible via getReserves\n uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves\n\n uint public override price0CumulativeLast;\n uint public override price1CumulativeLast;\n uint public override kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event\n\n uint private unlocked = 1;\n modifier lock() {\n require(unlocked == 1, \u0027UniswapV2: LOCKED\u0027);\n unlocked = 0;\n _;\n unlocked = 1;\n }\n\n function getReserves() public override view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {\n _reserve0 = reserve0;\n _reserve1 = reserve1;\n _blockTimestampLast = blockTimestampLast;\n }\n\n function _safeTransfer(address token, address to, uint value) private {\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));\n require(success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))), \u0027UniswapV2: TRANSFER_FAILED\u0027);\n }\n\n event Mint(address indexed sender, uint amount0, uint amount1);\n event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);\n event Swap(\n address indexed sender,\n uint amount0In,\n uint amount1In,\n uint amount0Out,\n uint amount1Out,\n address indexed to\n );\n event Sync(uint112 reserve0, uint112 reserve1);\n\n constructor() public {\n factory = msg.sender;\n }\n\n // called once by the factory at time of deployment\n function initialize(address _token0, address _token1) external override {\n require(msg.sender == factory, \u0027UniswapV2: FORBIDDEN\u0027); // sufficient check\n token0 = _token0;\n token1 = _token1;\n }\n\n // update reserves and, on the first call per block, price accumulators\n function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {\n require(balance0 \u003c= uint112(-1) \u0026\u0026 balance1 \u003c= uint112(-1), \u0027UniswapV2: OVERFLOW\u0027);\n uint32 blockTimestamp = uint32(block.timestamp % 2**32);\n uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired\n if (timeElapsed \u003e 0 \u0026\u0026 _reserve0 != 0 \u0026\u0026 _reserve1 != 0) {\n // * never overflows, and + overflow is desired\n price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;\n price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;\n }\n reserve0 = uint112(balance0);\n reserve1 = uint112(balance1);\n blockTimestampLast = blockTimestamp;\n emit Sync(reserve0, reserve1);\n }\n\n // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)\n function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {\n address feeTo = IUniswapV2Factory(factory).feeTo();\n feeOn = feeTo != address(0);\n uint _kLast = kLast; // gas savings\n if (feeOn) {\n if (_kLast != 0) {\n uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));\n uint rootKLast = Math.sqrt(_kLast);\n if (rootK \u003e rootKLast) {\n uint numerator = totalSupply.mul(rootK.sub(rootKLast));\n uint denominator = rootK.mul(5).add(rootKLast);\n uint liquidity = numerator / denominator;\n if (liquidity \u003e 0) _mint(feeTo, liquidity);\n }\n }\n } else if (_kLast != 0) {\n kLast = 0;\n }\n }\n\n // this low-level function should be called from a contract which performs important safety checks\n function mint(address to) external override lock returns (uint liquidity) {\n (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings\n uint balance0 = IERC20(token0).balanceOf(address(this));\n uint balance1 = IERC20(token1).balanceOf(address(this));\n uint amount0 = balance0.sub(_reserve0);\n uint amount1 = balance1.sub(_reserve1);\n bool feeOn = _mintFee(_reserve0, _reserve1);\n uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee\n\n if (_totalSupply == 0) {\n liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);\n _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens\n } else {\n liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);\n }\n\n require(liquidity \u003e 0, \u0027UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED\u0027);\n _mint(to, liquidity);\n\n _update(balance0, balance1, _reserve0, _reserve1);\n if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date\n emit Mint(msg.sender, amount0, amount1);\n }\n\n // this low-level function should be called from a contract which performs important safety checks\n function burn(address to) external override lock returns (uint amount0, uint amount1) {\n (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings\n address _token0 = token0; // gas savings\n address _token1 = token1; // gas savings\n uint balance0 = IERC20(_token0).balanceOf(address(this));\n uint balance1 = IERC20(_token1).balanceOf(address(this));\n uint liquidity = balanceOf[address(this)];\n\n bool feeOn = _mintFee(_reserve0, _reserve1);\n uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee\n amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution\n amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution\n require(amount0 \u003e 0 \u0026\u0026 amount1 \u003e 0, \u0027UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED\u0027);\n _burn(address(this), liquidity);\n _safeTransfer(_token0, to, amount0);\n _safeTransfer(_token1, to, amount1);\n balance0 = IERC20(_token0).balanceOf(address(this));\n balance1 = IERC20(_token1).balanceOf(address(this));\n\n _update(balance0, balance1, _reserve0, _reserve1);\n if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date\n emit Burn(msg.sender, amount0, amount1, to);\n }\n\n // this low-level function should be called from a contract which performs important safety checks\n function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external override lock {\n require(amount0Out \u003e 0 || amount1Out \u003e 0, \u0027UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings\n require(amount0Out \u003c _reserve0 \u0026\u0026 amount1Out \u003c _reserve1, \u0027UniswapV2: INSUFFICIENT_LIQUIDITY\u0027);\n\n uint balance0;\n uint balance1;\n { // scope for _token{0,1}, avoids stack too deep errors\n address _token0 = token0;\n address _token1 = token1;\n require(to != _token0 \u0026\u0026 to != _token1, \u0027UniswapV2: INVALID_TO\u0027);\n if (amount0Out \u003e 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens\n if (amount1Out \u003e 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens\n if (data.length \u003e 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);\n balance0 = IERC20(_token0).balanceOf(address(this));\n balance1 = IERC20(_token1).balanceOf(address(this));\n }\n uint amount0In = balance0 \u003e _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;\n uint amount1In = balance1 \u003e _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;\n require(amount0In \u003e 0 || amount1In \u003e 0, \u0027UniswapV2: INSUFFICIENT_INPUT_AMOUNT\u0027);\n { // scope for reserve{0,1}Adjusted, avoids stack too deep errors\n uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));\n uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));\n require(balance0Adjusted.mul(balance1Adjusted) \u003e= uint(_reserve0).mul(_reserve1).mul(1000**2), \u0027UniswapV2: K\u0027);\n }\n\n _update(balance0, balance1, _reserve0, _reserve1);\n emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);\n }\n\n // force balances to match reserves\n function skim(address to) external override lock {\n address _token0 = token0; // gas savings\n address _token1 = token1; // gas savings\n _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));\n _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));\n }\n\n // force reserves to match balances\n function sync() external override lock {\n _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);\n }\n\n\n\n // Migrated over from UniswapV2ERC20. Needed for ^0.6.0\n // ===============================================\n\n function _mint(address to, uint value) internal {\n totalSupply = totalSupply.add(value);\n balanceOf[to] = balanceOf[to].add(value);\n emit Transfer(address(0), to, value);\n }\n\n function _burn(address from, uint value) internal {\n balanceOf[from] = balanceOf[from].sub(value);\n totalSupply = totalSupply.sub(value);\n emit Transfer(from, address(0), value);\n }\n\n function _approve(address owner, address spender, uint value) private {\n allowance[owner][spender] = value;\n emit Approval(owner, spender, value);\n }\n\n function _transfer(address from, address to, uint value) private {\n balanceOf[from] = balanceOf[from].sub(value);\n balanceOf[to] = balanceOf[to].add(value);\n emit Transfer(from, to, value);\n }\n\n function approve(address spender, uint value) external override returns (bool) {\n _approve(msg.sender, spender, value);\n return true;\n }\n\n function transfer(address to, uint value) external override returns (bool) {\n _transfer(msg.sender, to, value);\n return true;\n }\n\n function transferFrom(address from, address to, uint value) external override returns (bool) {\n if (allowance[from][msg.sender] != uint(-1)) {\n allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);\n }\n _transfer(from, to, value);\n return true;\n }\n\n function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external override {\n require(deadline \u003e= block.timestamp, \u0027UniswapV2: EXPIRED\u0027);\n bytes32 digest = keccak256(\n abi.encodePacked(\n \u0027\\x19\\x01\u0027,\n DOMAIN_SEPARATOR,\n keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))\n )\n );\n address recoveredAddress = ecrecover(digest, v, r, s);\n require(recoveredAddress != address(0) \u0026\u0026 recoveredAddress == owner, \u0027UniswapV2: INVALID_SIGNATURE\u0027);\n _approve(owner, spender, value);\n }\n\n\n\n}"},"UniswapV2Router02.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Factory.sol\u0027;\nimport \u0027./TransferHelper.sol\u0027;\n\nimport \u0027./IUniswapV2Router02.sol\u0027;\nimport \u0027./UniswapV2Library.sol\u0027;\nimport \u0027./SafeMath.sol\u0027;\nimport \u0027./IERC20.sol\u0027;\nimport \u0027./IWETH.sol\u0027;\n\ncontract UniswapV2Router02 is IUniswapV2Router02 {\n using SafeMath for uint;\n\n address public immutable override factory;\n address public immutable override WETH;\n\n modifier ensure(uint deadline) {\n require(deadline \u003e= block.timestamp, \u0027UniswapV2Router: EXPIRED\u0027);\n _;\n }\n\n constructor(address _factory, address _WETH) public {\n factory = _factory;\n WETH = _WETH;\n }\n\n receive() external payable {\n assert(msg.sender == WETH); // only accept ETH via fallback from the WETH contract\n }\n\n // **** ADD LIQUIDITY ****\n function _addLiquidity(\n address tokenA,\n address tokenB,\n uint amountADesired,\n uint amountBDesired,\n uint amountAMin,\n uint amountBMin\n ) internal virtual returns (uint amountA, uint amountB) {\n // create the pair if it doesn\u0027t exist yet\n if (IUniswapV2Factory(factory).getPair(tokenA, tokenB) == address(0)) {\n IUniswapV2Factory(factory).createPair(tokenA, tokenB);\n }\n (uint reserveA, uint reserveB) = UniswapV2Library.getReserves(factory, tokenA, tokenB);\n if (reserveA == 0 \u0026\u0026 reserveB == 0) {\n (amountA, amountB) = (amountADesired, amountBDesired);\n } else {\n uint amountBOptimal = UniswapV2Library.quote(amountADesired, reserveA, reserveB);\n if (amountBOptimal \u003c= amountBDesired) {\n require(amountBOptimal \u003e= amountBMin, \u0027UniswapV2Router: INSUFFICIENT_B_AMOUNT\u0027);\n (amountA, amountB) = (amountADesired, amountBOptimal);\n } else {\n uint amountAOptimal = UniswapV2Library.quote(amountBDesired, reserveB, reserveA);\n assert(amountAOptimal \u003c= amountADesired);\n require(amountAOptimal \u003e= amountAMin, \u0027UniswapV2Router: INSUFFICIENT_A_AMOUNT\u0027);\n (amountA, amountB) = (amountAOptimal, amountBDesired);\n }\n }\n }\n function addLiquidity(\n address tokenA,\n address tokenB,\n uint amountADesired,\n uint amountBDesired,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) returns (uint amountA, uint amountB, uint liquidity) {\n (amountA, amountB) = _addLiquidity(tokenA, tokenB, amountADesired, amountBDesired, amountAMin, amountBMin);\n address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);\n TransferHelper.safeTransferFrom(tokenA, msg.sender, pair, amountA);\n TransferHelper.safeTransferFrom(tokenB, msg.sender, pair, amountB);\n liquidity = IUniswapV2Pair(pair).mint(to);\n }\n function addLiquidityETH(\n address token,\n uint amountTokenDesired,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external virtual override payable ensure(deadline) returns (uint amountToken, uint amountETH, uint liquidity) {\n (amountToken, amountETH) = _addLiquidity(\n token,\n WETH,\n amountTokenDesired,\n msg.value,\n amountTokenMin,\n amountETHMin\n );\n address pair = UniswapV2Library.pairFor(factory, token, WETH);\n TransferHelper.safeTransferFrom(token, msg.sender, pair, amountToken);\n IWETH(WETH).deposit{value: amountETH}();\n assert(IWETH(WETH).transfer(pair, amountETH));\n liquidity = IUniswapV2Pair(pair).mint(to);\n // refund dust eth, if any\n if (msg.value \u003e amountETH) TransferHelper.safeTransferETH(msg.sender, msg.value - amountETH);\n }\n\n // **** REMOVE LIQUIDITY ****\n function removeLiquidity(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) public virtual override ensure(deadline) returns (uint amountA, uint amountB) {\n address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);\n IUniswapV2Pair(pair).transferFrom(msg.sender, pair, liquidity); // send liquidity to pair\n (uint amount0, uint amount1) = IUniswapV2Pair(pair).burn(to);\n (address token0,) = UniswapV2Library.sortTokens(tokenA, tokenB);\n (amountA, amountB) = tokenA == token0 ? (amount0, amount1) : (amount1, amount0);\n require(amountA \u003e= amountAMin, \u0027UniswapV2Router: INSUFFICIENT_A_AMOUNT\u0027);\n require(amountB \u003e= amountBMin, \u0027UniswapV2Router: INSUFFICIENT_B_AMOUNT\u0027);\n }\n function removeLiquidityETH(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) public virtual override ensure(deadline) returns (uint amountToken, uint amountETH) {\n (amountToken, amountETH) = removeLiquidity(\n token,\n WETH,\n liquidity,\n amountTokenMin,\n amountETHMin,\n address(this),\n deadline\n );\n TransferHelper.safeTransfer(token, to, amountToken);\n IWETH(WETH).withdraw(amountETH);\n TransferHelper.safeTransferETH(to, amountETH);\n }\n function removeLiquidityWithPermit(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external virtual override returns (uint amountA, uint amountB) {\n address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);\n uint value = approveMax ? uint(-1) : liquidity;\n IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);\n (amountA, amountB) = removeLiquidity(tokenA, tokenB, liquidity, amountAMin, amountBMin, to, deadline);\n }\n function removeLiquidityETHWithPermit(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external virtual override returns (uint amountToken, uint amountETH) {\n address pair = UniswapV2Library.pairFor(factory, token, WETH);\n uint value = approveMax ? uint(-1) : liquidity;\n IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);\n (amountToken, amountETH) = removeLiquidityETH(token, liquidity, amountTokenMin, amountETHMin, to, deadline);\n }\n\n // **** REMOVE LIQUIDITY (supporting fee-on-transfer tokens) ****\n function removeLiquidityETHSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) public virtual override ensure(deadline) returns (uint amountETH) {\n (, amountETH) = removeLiquidity(\n token,\n WETH,\n liquidity,\n amountTokenMin,\n amountETHMin,\n address(this),\n deadline\n );\n TransferHelper.safeTransfer(token, to, IERC20(token).balanceOf(address(this)));\n IWETH(WETH).withdraw(amountETH);\n TransferHelper.safeTransferETH(to, amountETH);\n }\n function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external virtual override returns (uint amountETH) {\n address pair = UniswapV2Library.pairFor(factory, token, WETH);\n uint value = approveMax ? uint(-1) : liquidity;\n IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);\n amountETH = removeLiquidityETHSupportingFeeOnTransferTokens(\n token, liquidity, amountTokenMin, amountETHMin, to, deadline\n );\n }\n\n // **** SWAP ****\n // requires the initial amount to have already been sent to the first pair\n function _swap(uint[] memory amounts, address[] memory path, address _to) internal virtual {\n for (uint i; i \u003c path.length - 1; i++) {\n (address input, address output) = (path[i], path[i + 1]);\n (address token0,) = UniswapV2Library.sortTokens(input, output);\n uint amountOut = amounts[i + 1];\n (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOut) : (amountOut, uint(0));\n address to = i \u003c path.length - 2 ? UniswapV2Library.pairFor(factory, output, path[i + 2]) : _to;\n IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output)).swap(\n amount0Out, amount1Out, to, new bytes(0)\n );\n }\n }\n function swapExactTokensForTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) returns (uint[] memory amounts) {\n amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);\n require(amounts[amounts.length - 1] \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, to);\n }\n function swapTokensForExactTokens(\n uint amountOut,\n uint amountInMax,\n address[] calldata path,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) returns (uint[] memory amounts) {\n amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);\n require(amounts[0] \u003c= amountInMax, \u0027UniswapV2Router: EXCESSIVE_INPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, to);\n }\n function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n payable\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[0] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsOut(factory, msg.value, path);\n require(amounts[amounts.length - 1] \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n IWETH(WETH).deposit{value: amounts[0]}();\n assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]));\n _swap(amounts, path, to);\n }\n function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[path.length - 1] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);\n require(amounts[0] \u003c= amountInMax, \u0027UniswapV2Router: EXCESSIVE_INPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, address(this));\n IWETH(WETH).withdraw(amounts[amounts.length - 1]);\n TransferHelper.safeTransferETH(to, amounts[amounts.length - 1]);\n }\n function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[path.length - 1] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);\n require(amounts[amounts.length - 1] \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, address(this));\n IWETH(WETH).withdraw(amounts[amounts.length - 1]);\n TransferHelper.safeTransferETH(to, amounts[amounts.length - 1]);\n }\n function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n payable\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[0] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);\n require(amounts[0] \u003c= msg.value, \u0027UniswapV2Router: EXCESSIVE_INPUT_AMOUNT\u0027);\n IWETH(WETH).deposit{value: amounts[0]}();\n assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]));\n _swap(amounts, path, to);\n // refund dust eth, if any\n if (msg.value \u003e amounts[0]) TransferHelper.safeTransferETH(msg.sender, msg.value - amounts[0]);\n }\n\n // **** SWAP (supporting fee-on-transfer tokens) ****\n // requires the initial amount to have already been sent to the first pair\n function _swapSupportingFeeOnTransferTokens(address[] memory path, address _to) internal virtual {\n for (uint i; i \u003c path.length - 1; i++) {\n (address input, address output) = (path[i], path[i + 1]);\n (address token0,) = UniswapV2Library.sortTokens(input, output);\n IUniswapV2Pair pair = IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output));\n uint amountInput;\n uint amountOutput;\n { // scope to avoid stack too deep errors\n (uint reserve0, uint reserve1,) = pair.getReserves();\n (uint reserveInput, uint reserveOutput) = input == token0 ? (reserve0, reserve1) : (reserve1, reserve0);\n amountInput = IERC20(input).balanceOf(address(pair)).sub(reserveInput);\n amountOutput = UniswapV2Library.getAmountOut(amountInput, reserveInput, reserveOutput);\n }\n (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOutput) : (amountOutput, uint(0));\n address to = i \u003c path.length - 2 ? UniswapV2Library.pairFor(factory, output, path[i + 2]) : _to;\n pair.swap(amount0Out, amount1Out, to, new bytes(0));\n }\n }\n function swapExactTokensForTokensSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) {\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn\n );\n uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);\n _swapSupportingFeeOnTransferTokens(path, to);\n require(\n IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore) \u003e= amountOutMin,\n \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027\n );\n }\n function swapExactETHForTokensSupportingFeeOnTransferTokens(\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n )\n external\n virtual\n override\n payable\n ensure(deadline)\n {\n require(path[0] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n uint amountIn = msg.value;\n IWETH(WETH).deposit{value: amountIn}();\n assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn));\n uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);\n _swapSupportingFeeOnTransferTokens(path, to);\n require(\n IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore) \u003e= amountOutMin,\n \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027\n );\n }\n function swapExactTokensForETHSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n )\n external\n virtual\n override\n ensure(deadline)\n {\n require(path[path.length - 1] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn\n );\n _swapSupportingFeeOnTransferTokens(path, address(this));\n uint amountOut = IERC20(WETH).balanceOf(address(this));\n require(amountOut \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n IWETH(WETH).withdraw(amountOut);\n TransferHelper.safeTransferETH(to, amountOut);\n }\n\n // **** LIBRARY FUNCTIONS ****\n function quote(uint amountA, uint reserveA, uint reserveB) public pure virtual override returns (uint amountB) {\n return UniswapV2Library.quote(amountA, reserveA, reserveB);\n }\n\n function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut)\n public\n pure\n virtual\n override\n returns (uint amountOut)\n {\n return UniswapV2Library.getAmountOut(amountIn, reserveIn, reserveOut);\n }\n\n function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut)\n public\n pure\n virtual\n override\n returns (uint amountIn)\n {\n return UniswapV2Library.getAmountIn(amountOut, reserveIn, reserveOut);\n }\n\n function getAmountsOut(uint amountIn, address[] memory path)\n public\n view\n virtual\n override\n returns (uint[] memory amounts)\n {\n return UniswapV2Library.getAmountsOut(factory, amountIn, path);\n }\n\n function getAmountsIn(uint amountOut, address[] memory path)\n public\n view\n virtual\n override\n returns (uint[] memory amounts)\n {\n return UniswapV2Library.getAmountsIn(factory, amountOut, path);\n }\n}"},"UniswapV2Router02_Modified.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IUniswapV2Factory.sol\u0027;\nimport \u0027./TransferHelper.sol\u0027;\n\nimport \u0027./IUniswapV2Router02.sol\u0027;\nimport \u0027./UniswapV2Library.sol\u0027;\nimport \u0027./SafeMath.sol\u0027;\nimport \u0027./IERC20.sol\u0027;\nimport \u0027./IWETH.sol\u0027;\n\ncontract UniswapV2Router02_Modified is IUniswapV2Router02 {\n using SafeMath for uint;\n\n address public immutable override factory;\n address public immutable override WETH;\n\n modifier ensure(uint deadline) {\n require(deadline \u003e= block.timestamp, \u0027UniswapV2Router: EXPIRED\u0027);\n _;\n }\n\n constructor(address _factory, address _WETH) public {\n factory = _factory;\n WETH = _WETH;\n }\n\n receive() external payable {\n assert(msg.sender == WETH); // only accept ETH via fallback from the WETH contract\n }\n\n // **** ADD LIQUIDITY ****\n function _addLiquidity(\n address tokenA,\n address tokenB,\n uint amountADesired,\n uint amountBDesired,\n uint amountAMin,\n uint amountBMin\n ) internal virtual returns (uint amountA, uint amountB) {\n // create the pair if it doesn\u0027t exist yet\n if (IUniswapV2Factory(factory).getPair(tokenA, tokenB) == address(0)) {\n IUniswapV2Factory(factory).createPair(tokenA, tokenB);\n }\n (uint reserveA, uint reserveB) = UniswapV2Library.getReserves(factory, tokenA, tokenB);\n if (reserveA == 0 \u0026\u0026 reserveB == 0) {\n (amountA, amountB) = (amountADesired, amountBDesired);\n } else {\n uint amountBOptimal = UniswapV2Library.quote(amountADesired, reserveA, reserveB);\n if (amountBOptimal \u003c= amountBDesired) {\n require(amountBOptimal \u003e= amountBMin, \u0027UniswapV2Router: INSUFFICIENT_B_AMOUNT\u0027);\n (amountA, amountB) = (amountADesired, amountBOptimal);\n } else {\n uint amountAOptimal = UniswapV2Library.quote(amountBDesired, reserveB, reserveA);\n assert(amountAOptimal \u003c= amountADesired);\n require(amountAOptimal \u003e= amountAMin, \u0027UniswapV2Router: INSUFFICIENT_A_AMOUNT\u0027);\n (amountA, amountB) = (amountAOptimal, amountBDesired);\n }\n }\n }\n function addLiquidity(\n address tokenA,\n address tokenB,\n uint amountADesired,\n uint amountBDesired,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) returns (uint amountA, uint amountB, uint liquidity) {\n (amountA, amountB) = _addLiquidity(tokenA, tokenB, amountADesired, amountBDesired, amountAMin, amountBMin);\n address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);\n TransferHelper.safeTransferFrom(tokenA, msg.sender, pair, amountA);\n TransferHelper.safeTransferFrom(tokenB, msg.sender, pair, amountB);\n liquidity = IUniswapV2Pair(pair).mint(to);\n }\n function addLiquidityETH(\n address token,\n uint amountTokenDesired,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external virtual override payable ensure(deadline) returns (uint amountToken, uint amountETH, uint liquidity) {\n (amountToken, amountETH) = _addLiquidity(\n token,\n WETH,\n amountTokenDesired,\n msg.value,\n amountTokenMin,\n amountETHMin\n );\n address pair = UniswapV2Library.pairFor(factory, token, WETH);\n TransferHelper.safeTransferFrom(token, msg.sender, pair, amountToken);\n \n \n TransferHelper.safeTransferFrom(WETH, msg.sender, pair, amountETH);\n\n // IWETH(WETH).transferFrom(msg.sender, pair, amountETH);\n // IWETH(WETH).deposit{value: amountETH}();\n // assert(IWETH(WETH).transfer(pair, amountETH));\n\n // require(false, \"HELLO: HOW ARE YOU TODAY!\");\n\n liquidity = IUniswapV2Pair(pair).mint(to); // \u003c\u003c PROBLEM IS HERE\n\n // refund dust eth, if any\n if (msg.value \u003e amountETH) TransferHelper.safeTransferETH(msg.sender, msg.value - amountETH);\n }\n\n // **** REMOVE LIQUIDITY ****\n function removeLiquidity(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) public virtual override ensure(deadline) returns (uint amountA, uint amountB) {\n address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);\n IUniswapV2Pair(pair).transferFrom(msg.sender, pair, liquidity); // send liquidity to pair\n (uint amount0, uint amount1) = IUniswapV2Pair(pair).burn(to);\n (address token0,) = UniswapV2Library.sortTokens(tokenA, tokenB);\n (amountA, amountB) = tokenA == token0 ? (amount0, amount1) : (amount1, amount0);\n require(amountA \u003e= amountAMin, \u0027UniswapV2Router: INSUFFICIENT_A_AMOUNT\u0027);\n require(amountB \u003e= amountBMin, \u0027UniswapV2Router: INSUFFICIENT_B_AMOUNT\u0027);\n }\n function removeLiquidityETH(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) public virtual override ensure(deadline) returns (uint amountToken, uint amountETH) {\n (amountToken, amountETH) = removeLiquidity(\n token,\n WETH,\n liquidity,\n amountTokenMin,\n amountETHMin,\n address(this),\n deadline\n );\n TransferHelper.safeTransfer(token, to, amountToken);\n IWETH(WETH).withdraw(amountETH);\n TransferHelper.safeTransferETH(to, amountETH);\n }\n function removeLiquidityWithPermit(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external virtual override returns (uint amountA, uint amountB) {\n address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);\n uint value = approveMax ? uint(-1) : liquidity;\n IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);\n (amountA, amountB) = removeLiquidity(tokenA, tokenB, liquidity, amountAMin, amountBMin, to, deadline);\n }\n function removeLiquidityETHWithPermit(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external virtual override returns (uint amountToken, uint amountETH) {\n address pair = UniswapV2Library.pairFor(factory, token, WETH);\n uint value = approveMax ? uint(-1) : liquidity;\n IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);\n (amountToken, amountETH) = removeLiquidityETH(token, liquidity, amountTokenMin, amountETHMin, to, deadline);\n }\n\n // **** REMOVE LIQUIDITY (supporting fee-on-transfer tokens) ****\n function removeLiquidityETHSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) public virtual override ensure(deadline) returns (uint amountETH) {\n (, amountETH) = removeLiquidity(\n token,\n WETH,\n liquidity,\n amountTokenMin,\n amountETHMin,\n address(this),\n deadline\n );\n TransferHelper.safeTransfer(token, to, IERC20(token).balanceOf(address(this)));\n IWETH(WETH).withdraw(amountETH);\n TransferHelper.safeTransferETH(to, amountETH);\n }\n function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external virtual override returns (uint amountETH) {\n address pair = UniswapV2Library.pairFor(factory, token, WETH);\n uint value = approveMax ? uint(-1) : liquidity;\n IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);\n amountETH = removeLiquidityETHSupportingFeeOnTransferTokens(\n token, liquidity, amountTokenMin, amountETHMin, to, deadline\n );\n }\n\n // **** SWAP ****\n // requires the initial amount to have already been sent to the first pair\n function _swap(uint[] memory amounts, address[] memory path, address _to) internal virtual {\n for (uint i; i \u003c path.length - 1; i++) {\n (address input, address output) = (path[i], path[i + 1]);\n (address token0,) = UniswapV2Library.sortTokens(input, output);\n uint amountOut = amounts[i + 1];\n (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOut) : (amountOut, uint(0));\n address to = i \u003c path.length - 2 ? UniswapV2Library.pairFor(factory, output, path[i + 2]) : _to;\n IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output)).swap(\n amount0Out, amount1Out, to, new bytes(0)\n );\n }\n }\n function swapExactTokensForTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) returns (uint[] memory amounts) {\n amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);\n require(amounts[amounts.length - 1] \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, to);\n }\n function swapTokensForExactTokens(\n uint amountOut,\n uint amountInMax,\n address[] calldata path,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) returns (uint[] memory amounts) {\n amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);\n require(amounts[0] \u003c= amountInMax, \u0027UniswapV2Router: EXCESSIVE_INPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, to);\n }\n function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n payable\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[0] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsOut(factory, msg.value, path);\n require(amounts[amounts.length - 1] \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n IWETH(WETH).deposit{value: amounts[0]}();\n assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]));\n _swap(amounts, path, to);\n }\n function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[path.length - 1] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);\n require(amounts[0] \u003c= amountInMax, \u0027UniswapV2Router: EXCESSIVE_INPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, address(this));\n IWETH(WETH).withdraw(amounts[amounts.length - 1]);\n TransferHelper.safeTransferETH(to, amounts[amounts.length - 1]);\n }\n function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[path.length - 1] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);\n require(amounts[amounts.length - 1] \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n TransferHelper.safeTransferFrom(\n path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]\n );\n _swap(amounts, path, address(this));\n IWETH(WETH).withdraw(amounts[amounts.length - 1]);\n TransferHelper.safeTransferETH(to, amounts[amounts.length - 1]);\n }\n function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)\n external\n virtual\n override\n payable\n ensure(deadline)\n returns (uint[] memory amounts)\n {\n require(path[0] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);\n require(amounts[0] \u003c= msg.value, \u0027UniswapV2Router: EXCESSIVE_INPUT_AMOUNT\u0027);\n IWETH(WETH).deposit{value: amounts[0]}();\n assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]));\n _swap(amounts, path, to);\n // refund dust eth, if any\n if (msg.value \u003e amounts[0]) TransferHelper.safeTransferETH(msg.sender, msg.value - amounts[0]);\n }\n\n // **** SWAP (supporting fee-on-transfer tokens) ****\n // requires the initial amount to have already been sent to the first pair\n function _swapSupportingFeeOnTransferTokens(address[] memory path, address _to) internal virtual {\n // for (uint i; i \u003c path.length - 1; i++) {\n // (address input, address output) = (path[i], path[i + 1]);\n // (address token0,) = UniswapV2Library.sortTokens(input, output);\n // IUniswapV2Pair pair = IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output));\n // uint amountInput;\n // uint amountOutput;\n // { // scope to avoid stack too deep errors\n // (uint reserve0, uint reserve1,) = pair.getReserves();\n // (uint reserveInput, uint reserveOutput) = input == token0 ? (reserve0, reserve1) : (reserve1, reserve0);\n // amountInput = IERC20(input).balanceOf(address(pair)).sub(reserveInput);\n // amountOutput = UniswapV2Library.getAmountOut(amountInput, reserveInput, reserveOutput);\n // }\n // (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOutput) : (amountOutput, uint(0));\n // address to = i \u003c path.length - 2 ? UniswapV2Library.pairFor(factory, output, path[i + 2]) : _to;\n // pair.swap(amount0Out, amount1Out, to, new bytes(0));\n // }\n }\n function swapExactTokensForTokensSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external virtual override ensure(deadline) {\n // TransferHelper.safeTransferFrom(\n // path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn\n // );\n // uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);\n // _swapSupportingFeeOnTransferTokens(path, to);\n // require(\n // IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore) \u003e= amountOutMin,\n // \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027\n // );\n }\n function swapExactETHForTokensSupportingFeeOnTransferTokens(\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n )\n external\n virtual\n override\n payable\n ensure(deadline)\n {\n // require(path[0] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n // uint amountIn = msg.value;\n // IWETH(WETH).deposit{value: amountIn}();\n // assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn));\n // uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);\n // _swapSupportingFeeOnTransferTokens(path, to);\n // require(\n // IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore) \u003e= amountOutMin,\n // \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027\n // );\n }\n function swapExactTokensForETHSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n )\n external\n virtual\n override\n ensure(deadline)\n {\n // require(path[path.length - 1] == WETH, \u0027UniswapV2Router: INVALID_PATH\u0027);\n // TransferHelper.safeTransferFrom(\n // path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn\n // );\n // _swapSupportingFeeOnTransferTokens(path, address(this));\n // uint amountOut = IERC20(WETH).balanceOf(address(this));\n // require(amountOut \u003e= amountOutMin, \u0027UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT\u0027);\n // IWETH(WETH).withdraw(amountOut);\n // TransferHelper.safeTransferETH(to, amountOut);\n }\n\n // **** LIBRARY FUNCTIONS ****\n function quote(uint amountA, uint reserveA, uint reserveB) public pure virtual override returns (uint amountB) {\n return UniswapV2Library.quote(amountA, reserveA, reserveB);\n }\n\n function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut)\n public\n pure\n virtual\n override\n returns (uint amountOut)\n {\n return UniswapV2Library.getAmountOut(amountIn, reserveIn, reserveOut);\n }\n\n function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut)\n public\n pure\n virtual\n override\n returns (uint amountIn)\n {\n return UniswapV2Library.getAmountIn(amountOut, reserveIn, reserveOut);\n }\n\n function getAmountsOut(uint amountIn, address[] memory path)\n public\n view\n virtual\n override\n returns (uint[] memory amounts)\n {\n return UniswapV2Library.getAmountsOut(factory, amountIn, path);\n }\n\n function getAmountsIn(uint amountOut, address[] memory path)\n public\n view\n virtual\n override\n returns (uint[] memory amounts)\n {\n return UniswapV2Library.getAmountsIn(factory, amountOut, path);\n }\n}"},"UQ112x112.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\n// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))\n\n// range: [0, 2**112 - 1]\n// resolution: 1 / 2**112\n\nlibrary UQ112x112 {\n uint224 constant Q112 = 2**112;\n\n // encode a uint112 as a UQ112x112\n function encode(uint112 y) internal pure returns (uint224 z) {\n z = uint224(y) * Q112; // never overflows\n }\n\n // divide a UQ112x112 by a uint112, returning a UQ112x112\n function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {\n z = x / uint224(y);\n }\n}"},"WETH.sol":{"content":"// SPDX-License-Identifier: MIT\npragma solidity 0.6.11;\n\nimport \u0027./IWETH.sol\u0027;\n\n// Copyright (C) 2015, 2016, 2017 Dapphub\n\n// This program is free software: you can redistribute it and/or modify\n// it under the terms of the GNU General Public License as published by\n// the Free Software Foundation, either version 3 of the License, or\n// (at your option) any later version.\n\n// This program is distributed in the hope that it will be useful,\n// but WITHOUT ANY WARRANTY; without even the implied warranty of\n// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n// GNU General Public License for more details.\n\n// You should have received a copy of the GNU General Public License\n// along with this program. If not, see \u003chttp://www.gnu.org/licenses/\u003e.\n\ncontract WETH is IWETH {\n string public name = \"Wrapped Ether\";\n string public symbol = \"WETH\";\n uint8 public decimals = 18;\n\n event Approval(address indexed src, address indexed guy, uint wad);\n event Transfer(address indexed src, address indexed dst, uint wad);\n event Deposit(address indexed dst, uint wad);\n event Withdrawal(address indexed src, uint wad);\n\n mapping (address =\u003e uint) public balanceOf;\n mapping (address =\u003e mapping (address =\u003e uint)) public allowance;\n\n fallback() external payable {\n deposit();\n }\n\n receive() external payable { }\n\n constructor (address _creator_address ) public \n {\n balanceOf[_creator_address] = 1000000e18; // this is for testing only\n }\n\n\n function deposit() public override payable {\n balanceOf[msg.sender] += msg.value;\n emit Deposit(msg.sender, msg.value);\n }\n function withdraw(uint wad) override public {\n require(balanceOf[msg.sender] \u003e= wad);\n balanceOf[msg.sender] -= wad;\n msg.sender.transfer(wad);\n emit Withdrawal(msg.sender, wad);\n }\n\n function totalSupply() public view returns (uint) {\n return address(this).balance;\n }\n\n function approve(address guy, uint wad) public returns (bool) {\n allowance[msg.sender][guy] = wad;\n emit Approval(msg.sender, guy, wad);\n return true;\n }\n\n function transfer(address dst, uint wad) public override returns (bool) {\n return transferFrom(msg.sender, dst, wad);\n }\n\n function transferFrom(address src, address dst, uint wad)\n public\n override\n returns (bool)\n {\n require(balanceOf[src] \u003e= wad);\n\n if (src != msg.sender \u0026\u0026 allowance[src][msg.sender] != uint(-1)) {\n require(allowance[src][msg.sender] \u003e= wad);\n allowance[src][msg.sender] -= wad;\n }\n\n balanceOf[src] -= wad;\n balanceOf[dst] += wad;\n\n emit Transfer(src, dst, wad);\n\n return true;\n }\n}\n\n\n/*\n GNU GENERAL PUBLIC LICENSE\n Version 3, 29 June 2007\n\n Copyright (C) 2007 Free Software Foundation, Inc. \u003chttp://fsf.org/\u003e\n Everyone is permitted to copy and distribute verbatim copies\n of this license document, but changing it is not allowed.\n\n Preamble\n\n The GNU General Public License is a free, copyleft license for\nsoftware and other kinds of works.\n\n The licenses for most software and other practical works are designed\nto take away your freedom to share and change the works. By contrast,\nthe GNU General Public License is intended to guarantee your freedom to\nshare and change all versions of a program--to make sure it remains free\nsoftware for all its users. We, the Free Software Foundation, use the\nGNU General Public License for most of our software; it applies also to\nany other work released this way by its authors. You can apply it to\nyour programs, too.\n\n When we speak of free software, we are referring to freedom, not\nprice. Our General Public Licenses are designed to make sure that you\nhave the freedom to distribute copies of free software (and charge for\nthem if you wish), that you receive source code or can get it if you\nwant it, that you can change the software or use pieces of it in new\nfree programs, and that you know you can do these things.\n\n To protect your rights, we need to prevent others from denying you\nthese rights or asking you to surrender the rights. Therefore, you have\ncertain responsibilities if you distribute copies of the software, or if\nyou modify it: responsibilities to respect the freedom of others.\n\n For example, if you distribute copies of such a program, whether\ngratis or for a fee, you must pass on to the recipients the same\nfreedoms that you received. You must make sure that they, too, receive\nor can get the source code. And you must show them these terms so they\nknow their rights.\n\n Developers that use the GNU GPL protect your rights with two steps:\n(1) assert copyright on the software, and (2) offer you this License\ngiving you legal permission to copy, distribute and/or modify it.\n\n For the developers\u0027 and authors\u0027 protection, the GPL clearly explains\nthat there is no warranty for this free software. For both users\u0027 and\nauthors\u0027 sake, the GPL requires that modified versions be marked as\nchanged, so that their problems will not be attributed erroneously to\nauthors of previous versions.\n\n Some devices are designed to deny users access to install or run\nmodified versions of the software inside them, although the manufacturer\ncan do so. This is fundamentally incompatible with the aim of\nprotecting users\u0027 freedom to change the software. The systematic\npattern of such abuse occurs in the area of products for individuals to\nuse, which is precisely where it is most unacceptable. Therefore, we\nhave designed this version of the GPL to prohibit the practice for those\nproducts. If such problems arise substantially in other domains, we\nstand ready to extend this provision to those domains in future versions\nof the GPL, as needed to protect the freedom of users.\n\n Finally, every program is threatened constantly by software patents.\nStates should not allow patents to restrict development and use of\nsoftware on general-purpose computers, but in those that do, we wish to\navoid the special danger that patents applied to a free program could\nmake it effectively proprietary. To prevent this, the GPL assures that\npatents cannot be used to render the program non-free.\n\n The precise terms and conditions for copying, distribution and\nmodification follow.\n\n TERMS AND CONDITIONS\n\n 0. Definitions.\n\n \"This License\" refers to version 3 of the GNU General Public License.\n\n \"Copyright\" also means copyright-like laws that apply to other kinds of\nworks, such as semiconductor masks.\n\n \"The Program\" refers to any copyrightable work licensed under this\nLicense. Each licensee is addressed as \"you\". \"Licensees\" and\n\"recipients\" may be individuals or organizations.\n\n To \"modify\" a work means to copy from or adapt all or part of the work\nin a fashion requiring copyright permission, other than the making of an\nexact copy. The resulting work is called a \"modified version\" of the\nearlier work or a work \"based on\" the earlier work.\n\n A \"covered work\" means either the unmodified Program or a work based\non the Program.\n\n To \"propagate\" a work means to do anything with it that, without\npermission, would make you directly or secondarily liable for\ninfringement under applicable copyright law, except executing it on a\ncomputer or modifying a private copy. Propagation includes copying,\ndistribution (with or without modification), making available to the\npublic, and in some countries other activities as well.\n\n To \"convey\" a work means any kind of propagation that enables other\nparties to make or receive copies. Mere interaction with a user through\na computer network, with no transfer of a copy, is not conveying.\n\n An interactive user interface displays \"Appropriate Legal Notices\"\nto the extent that it includes a convenient and prominently visible\nfeature that (1) displays an appropriate copyright notice, and (2)\ntells the user that there is no warranty for the work (except to the\nextent that warranties are provided), that licensees may convey the\nwork under this License, and how to view a copy of this License. If\nthe interface presents a list of user commands or options, such as a\nmenu, a prominent item in the list meets this criterion.\n\n 1. Source Code.\n\n The \"source code\" for a work means the preferred form of the work\nfor making modifications to it. \"Object code\" means any non-source\nform of a work.\n\n A \"Standard Interface\" means an interface that either is an official\nstandard defined by a recognized standards body, or, in the case of\ninterfaces specified for a particular programming language, one that\nis widely used among developers working in that language.\n\n The \"System Libraries\" of an executable work include anything, other\nthan the work as a whole, that (a) is included in the normal form of\npackaging a Major Component, but which is not part of that Major\nComponent, and (b) serves only to enable use of the work with that\nMajor Component, or to implement a Standard Interface for which an\nimplementation is available to the public in source code form. A\n\"Major Component\", in this context, means a major essential component\n(kernel, window system, and so on) of the specific operating system\n(if any) on which the executable work runs, or a compiler used to\nproduce the work, or an object code interpreter used to run it.\n\n The \"Corresponding Source\" for a work in object code form means all\nthe source code needed to generate, install, and (for an executable\nwork) run the object code and to modify the work, including scripts to\ncontrol those activities. However, it does not include the work\u0027s\nSystem Libraries, or general-purpose tools or generally available free\nprograms which are used unmodified in performing those activities but\nwhich are not part of the work. For example, Corresponding Source\nincludes interface definition files associated with source files for\nthe work, and the source code for shared libraries and dynamically\nlinked subprograms that the work is specifically designed to require,\nsuch as by intimate data communication or control flow between those\nsubprograms and other parts of the work.\n\n The Corresponding Source need not include anything that users\ncan regenerate automatically from other parts of the Corresponding\nSource.\n\n The Corresponding Source for a work in source code form is that\nsame work.\n\n 2. Basic Permissions.\n\n All rights granted under this License are granted for the term of\ncopyright on the Program, and are irrevocable provided the stated\nconditions are met. This License explicitly affirms your unlimited\npermission to run the unmodified Program. The output from running a\ncovered work is covered by this License only if the output, given its\ncontent, constitutes a covered work. This License acknowledges your\nrights of fair use or other equivalent, as provided by copyright law.\n\n You may make, run and propagate covered works that you do not\nconvey, without conditions so long as your license otherwise remains\nin force. You may convey covered works to others for the sole purpose\nof having them make modifications exclusively for you, or provide you\nwith facilities for running those works, provided that you comply with\nthe terms of this License in conveying all material for which you do\nnot control copyright. Those thus making or running the covered works\nfor you must do so exclusively on your behalf, under your direction\nand control, on terms that prohibit them from making any copies of\nyour copyrighted material outside their relationship with you.\n\n Conveying under any other circumstances is permitted solely under\nthe conditions stated below. Sublicensing is not allowed; section 10\nmakes it unnecessary.\n\n 3. Protecting Users\u0027 Legal Rights From Anti-Circumvention Law.\n\n No covered work shall be deemed part of an effective technological\nmeasure under any applicable law fulfilling obligations under article\n11 of the WIPO copyright treaty adopted on 20 December 1996, or\nsimilar laws prohibiting or restricting circumvention of such\nmeasures.\n\n When you convey a covered work, you waive any legal power to forbid\ncircumvention of technological measures to the extent such circumvention\nis effected by exercising rights under this License with respect to\nthe covered work, and you disclaim any intention to limit operation or\nmodification of the work as a means of enforcing, against the work\u0027s\nusers, your or third parties\u0027 legal rights to forbid circumvention of\ntechnological measures.\n\n 4. Conveying Verbatim Copies.\n\n You may convey verbatim copies of the Program\u0027s source code as you\nreceive it, in any medium, provided that you conspicuously and\nappropriately publish on each copy an appropriate copyright notice;\nkeep intact all notices stating that this License and any\nnon-permissive terms added in accord with section 7 apply to the code;\nkeep intact all notices of the absence of any warranty; and give all\nrecipients a copy of this License along with the Program.\n\n You may charge any price or no price for each copy that you convey,\nand you may offer support or warranty protection for a fee.\n\n 5. Conveying Modified Source Versions.\n\n You may convey a work based on the Program, or the modifications to\nproduce it from the Program, in the form of source code under the\nterms of section 4, provided that you also meet all of these conditions:\n\n a) The work must carry prominent notices stating that you modified\n it, and giving a relevant date.\n\n b) The work must carry prominent notices stating that it is\n released under this License and any conditions added under section\n 7. This requirement modifies the requirement in section 4 to\n \"keep intact all notices\".\n\n c) You must license the entire work, as a whole, under this\n License to anyone who comes into possession of a copy. This\n License will therefore apply, along with any applicable section 7\n additional terms, to the whole of the work, and all its parts,\n regardless of how they are packaged. This License gives no\n permission to license the work in any other way, but it does not\n invalidate such permission if you have separately received it.\n\n d) If the work has interactive user interfaces, each must display\n Appropriate Legal Notices; however, if the Program has interactive\n interfaces that do not display Appropriate Legal Notices, your\n work need not make them do so.\n\n A compilation of a covered work with other separate and independent\nworks, which are not by their nature extensions of the covered work,\nand which are not combined with it such as to form a larger program,\nin or on a volume of a storage or distribution medium, is called an\n\"aggregate\" if the compilation and its resulting copyright are not\nused to limit the access or legal rights of the compilation\u0027s users\nbeyond what the individual works permit. Inclusion of a covered work\nin an aggregate does not cause this License to apply to the other\nparts of the aggregate.\n\n 6. Conveying Non-Source Forms.\n\n You may convey a covered work in object code form under the terms\nof sections 4 and 5, provided that you also convey the\nmachine-readable Corresponding Source under the terms of this License,\nin one of these ways:\n\n a) Convey the object code in, or embodied in, a physical product\n (including a physical distribution medium), accompanied by the\n Corresponding Source fixed on a durable physical medium\n customarily used for software interchange.\n\n b) Convey the object code in, or embodied in, a physical product\n (including a physical distribution medium), accompanied by a\n written offer, valid for at least three years and valid for as\n long as you offer spare parts or customer support for that product\n model, to give anyone who possesses the object code either (1) a\n copy of the Corresponding Source for all the software in the\n product that is covered by this License, on a durable physical\n medium customarily used for software interchange, for a price no\n more than your reasonable cost of physically performing this\n conveying of source, or (2) access to copy the\n Corresponding Source from a network server at no charge.\n\n c) Convey individual copies of the object code with a copy of the\n written offer to provide the Corresponding Source. This\n alternative is allowed only occasionally and noncommercially, and\n only if you received the object code with such an offer, in accord\n with subsection 6b.\n\n d) Convey the object code by offering access from a designated\n place (gratis or for a charge), and offer equivalent access to the\n Corresponding Source in the same way through the same place at no\n further charge. You need not require recipients to copy the\n Corresponding Source along with the object code. If the place to\n copy the object code is a network server, the Corresponding Source\n may be on a different server (operated by you or a third party)\n that supports equivalent copying facilities, provided you maintain\n clear directions next to the object code saying where to find the\n Corresponding Source. Regardless of what server hosts the\n Corresponding Source, you remain obligated to ensure that it is\n available for as long as needed to satisfy these requirements.\n\n e) Convey the object code using peer-to-peer transmission, provided\n you inform other peers where the object code and Corresponding\n Source of the work are being offered to the general public at no\n charge under subsection 6d.\n\n A separable portion of the object code, whose source code is excluded\nfrom the Corresponding Source as a System Library, need not be\nincluded in conveying the object code work.\n\n A \"User Product\" is either (1) a \"consumer product\", which means any\ntangible personal property which is normally used for personal, family,\nor household purposes, or (2) anything designed or sold for incorporation\ninto a dwelling. In determining whether a product is a consumer product,\ndoubtful cases shall be resolved in favor of coverage. For a particular\nproduct received by a particular user, \"normally used\" refers to a\ntypical or common use of that class of product, regardless of the status\nof the particular user or of the way in which the particular user\nactually uses, or expects or is expected to use, the product. A product\nis a consumer product regardless of whether the product has substantial\ncommercial, industrial or non-consumer uses, unless such uses represent\nthe only significant mode of use of the product.\n\n \"Installation Information\" for a User Product means any methods,\nprocedures, authorization keys, or other information required to install\nand execute modified versions of a covered work in that User Product from\na modified version of its Corresponding Source. The information must\nsuffice to ensure that the continued functioning of the modified object\ncode is in no case prevented or interfered with solely because\nmodification has been made.\n\n If you convey an object code work under this section in, or with, or\nspecifically for use in, a User Product, and the conveying occurs as\npart of a transaction in which the right of possession and use of the\nUser Product is transferred to the recipient in perpetuity or for a\nfixed term (regardless of how the transaction is characterized), the\nCorresponding Source conveyed under this section must be accompanied\nby the Installation Information. But this requirement does not apply\nif neither you nor any third party retains the ability to install\nmodified object code on the User Product (for example, the work has\nbeen installed in ROM).\n\n The requirement to provide Installation Information does not include a\nrequirement to continue to provide support service, warranty, or updates\nfor a work that has been modified or installed by the recipient, or for\nthe User Product in which it has been modified or installed. Access to a\nnetwork may be denied when the modification itself materially and\nadversely affects the operation of the network or violates the rules and\nprotocols for communication across the network.\n\n Corresponding Source conveyed, and Installation Information provided,\nin accord with this section must be in a format that is publicly\ndocumented (and with an implementation available to the public in\nsource code form), and must require no special password or key for\nunpacking, reading or copying.\n\n 7. Additional Terms.\n\n \"Additional permissions\" are terms that supplement the terms of this\nLicense by making exceptions from one or more of its conditions.\nAdditional permissions that are applicable to the entire Program shall\nbe treated as though they were included in this License, to the extent\nthat they are valid under applicable law. If additional permissions\napply only to part of the Program, that part may be used separately\nunder those permissions, but the entire Program remains governed by\nthis License without regard to the additional permissions.\n\n When you convey a copy of a covered work, you may at your option\nremove any additional permissions from that copy, or from any part of\nit. (Additional permissions may be written to require their own\nremoval in certain cases when you modify the work.) You may place\nadditional permissions on material, added by you to a covered work,\nfor which you have or can give appropriate copyright permission.\n\n Notwithstanding any other provision of this License, for material you\nadd to a covered work, you may (if authorized by the copyright holders of\nthat material) supplement the terms of this License with terms:\n\n a) Disclaiming warranty or limiting liability differently from the\n terms of sections 15 and 16 of this License; or\n\n b) Requiring preservation of specified reasonable legal notices or\n author attributions in that material or in the Appropriate Legal\n Notices displayed by works containing it; or\n\n c) Prohibiting misrepresentation of the origin of that material, or\n requiring that modified versions of such material be marked in\n reasonable ways as different from the original version; or\n\n d) Limiting the use for publicity purposes of names of licensors or\n authors of the material; or\n\n e) Declining to grant rights under trademark law for use of some\n trade names, trademarks, or service marks; or\n\n f) Requiring indemnification of licensors and authors of that\n material by anyone who conveys the material (or modified versions of\n it) with contractual assumptions of liability to the recipient, for\n any liability that these contractual assumptions directly impose on\n those licensors and authors.\n\n All other non-permissive additional terms are considered \"further\nrestrictions\" within the meaning of section 10. If the Program as you\nreceived it, or any part of it, contains a notice stating that it is\ngoverned by this License along with a term that is a further\nrestriction, you may remove that term. If a license document contains\na further restriction but permits relicensing or conveying under this\nLicense, you may add to a covered work material governed by the terms\nof that license document, provided that the further restriction does\nnot survive such relicensing or conveying.\n\n If you add terms to a covered work in accord with this section, you\nmust place, in the relevant source files, a statement of the\nadditional terms that apply to those files, or a notice indicating\nwhere to find the applicable terms.\n\n Additional terms, permissive or non-permissive, may be stated in the\nform of a separately written license, or stated as exceptions;\nthe above requirements apply either way.\n\n 8. Termination.\n\n You may not propagate or modify a covered work except as expressly\nprovided under this License. Any attempt otherwise to propagate or\nmodify it is void, and will automatically terminate your rights under\nthis License (including any patent licenses granted under the third\nparagraph of section 11).\n\n However, if you cease all violation of this License, then your\nlicense from a particular copyright holder is reinstated (a)\nprovisionally, unless and until the copyright holder explicitly and\nfinally terminates your license, and (b) permanently, if the copyright\nholder fails to notify you of the violation by some reasonable means\nprior to 60 days after the cessation.\n\n Moreover, your license from a particular copyright holder is\nreinstated permanently if the copyright holder notifies you of the\nviolation by some reasonable means, this is the first time you have\nreceived notice of violation of this License (for any work) from that\ncopyright holder, and you cure the violation prior to 30 days after\nyour receipt of the notice.\n\n Termination of your rights under this section does not terminate the\nlicenses of parties who have received copies or rights from you under\nthis License. If your rights have been terminated and not permanently\nreinstated, you do not qualify to receive new licenses for the same\nmaterial under section 10.\n\n 9. Acceptance Not Required for Having Copies.\n\n You are not required to accept this License in order to receive or\nrun a copy of the Program. Ancillary propagation of a covered work\noccurring solely as a consequence of using peer-to-peer transmission\nto receive a copy likewise does not require acceptance. However,\nnothing other than this License grants you permission to propagate or\nmodify any covered work. These actions infringe copyright if you do\nnot accept this License. Therefore, by modifying or propagating a\ncovered work, you indicate your acceptance of this License to do so.\n\n 10. Automatic Licensing of Downstream Recipients.\n\n Each time you convey a covered work, the recipient automatically\nreceives a license from the original licensors, to run, modify and\npropagate that work, subject to this License. You are not responsible\nfor enforcing compliance by third parties with this License.\n\n An \"entity transaction\" is a transaction transferring control of an\norganization, or substantially all assets of one, or subdividing an\norganization, or merging organizations. If propagation of a covered\nwork results from an entity transaction, each party to that\ntransaction who receives a copy of the work also receives whatever\nlicenses to the work the party\u0027s predecessor in interest had or could\ngive under the previous paragraph, plus a right to possession of the\nCorresponding Source of the work from the predecessor in interest, if\nthe predecessor has it or can get it with reasonable efforts.\n\n You may not impose any further restrictions on the exercise of the\nrights granted or affirmed under this License. For example, you may\nnot impose a license fee, royalty, or other charge for exercise of\nrights granted under this License, and you may not initiate litigation\n(including a cross-claim or counterclaim in a lawsuit) alleging that\nany patent claim is infringed by making, using, selling, offering for\nsale, or importing the Program or any portion of it.\n\n 11. Patents.\n\n A \"contributor\" is a copyright holder who authorizes use under this\nLicense of the Program or a work on which the Program is based. The\nwork thus licensed is called the contributor\u0027s \"contributor version\".\n\n A contributor\u0027s \"essential patent claims\" are all patent claims\nowned or controlled by the contributor, whether already acquired or\nhereafter acquired, that would be infringed by some manner, permitted\nby this License, of making, using, or selling its contributor version,\nbut do not include claims that would be infringed only as a\nconsequence of further modification of the contributor version. For\npurposes of this definition, \"control\" includes the right to grant\npatent sublicenses in a manner consistent with the requirements of\nthis License.\n\n Each contributor grants you a non-exclusive, worldwide, royalty-free\npatent license under the contributor\u0027s essential patent claims, to\nmake, use, sell, offer for sale, import and otherwise run, modify and\npropagate the contents of its contributor version.\n\n In the following three paragraphs, a \"patent license\" is any express\nagreement or commitment, however denominated, not to enforce a patent\n(such as an express permission to practice a patent or covenant not to\nsue for patent infringement). To \"grant\" such a patent license to a\nparty means to make such an agreement or commitment not to enforce a\npatent against the party.\n\n If you convey a covered work, knowingly relying on a patent license,\nand the Corresponding Source of the work is not available for anyone\nto copy, free of charge and under the terms of this License, through a\npublicly available network server or other readily accessible means,\nthen you must either (1) cause the Corresponding Source to be so\navailable, or (2) arrange to deprive yourself of the benefit of the\npatent license for this particular work, or (3) arrange, in a manner\nconsistent with the requirements of this License, to extend the patent\nlicense to downstream recipients. \"Knowingly relying\" means you have\nactual knowledge that, but for the patent license, your conveying the\ncovered work in a country, or your recipient\u0027s use of the covered work\nin a country, would infringe one or more identifiable patents in that\ncountry that you have reason to believe are valid.\n\n If, pursuant to or in connection with a single transaction or\narrangement, you convey, or propagate by procuring conveyance of, a\ncovered work, and grant a patent license to some of the parties\nreceiving the covered work authorizing them to use, propagate, modify\nor convey a specific copy of the covered work, then the patent license\nyou grant is automatically extended to all recipients of the covered\nwork and works based on it.\n\n A patent license is \"discriminatory\" if it does not include within\nthe scope of its coverage, prohibits the exercise of, or is\nconditioned on the non-exercise of one or more of the rights that are\nspecifically granted under this License. You may not convey a covered\nwork if you are a party to an arrangement with a third party that is\nin the business of distributing software, under which you make payment\nto the third party based on the extent of your activity of conveying\nthe work, and under which the third party grants, to any of the\nparties who would receive the covered work from you, a discriminatory\npatent license (a) in connection with copies of the covered work\nconveyed by you (or copies made from those copies), or (b) primarily\nfor and in connection with specific products or compilations that\ncontain the covered work, unless you entered into that arrangement,\nor that patent license was granted, prior to 28 March 2007.\n\n Nothing in this License shall be construed as excluding or limiting\nany implied license or other defenses to infringement that may\notherwise be available to you under applicable patent law.\n\n 12. No Surrender of Others\u0027 Freedom.\n\n If conditions are imposed on you (whether by court order, agreement or\notherwise) that contradict the conditions of this License, they do not\nexcuse you from the conditions of this License. If you cannot convey a\ncovered work so as to satisfy simultaneously your obligations under this\nLicense and any other pertinent obligations, then as a consequence you may\nnot convey it at all. For example, if you agree to terms that obligate you\nto collect a royalty for further conveying from those to whom you convey\nthe Program, the only way you could satisfy both those terms and this\nLicense would be to refrain entirely from conveying the Program.\n\n 13. Use with the GNU Affero General Public License.\n\n Notwithstanding any other provision of this License, you have\npermission to link or combine any covered work with a work licensed\nunder version 3 of the GNU Affero General Public License into a single\ncombined work, and to convey the resulting work. The terms of this\nLicense will continue to apply to the part which is the covered work,\nbut the special requirements of the GNU Affero General Public License,\nsection 13, concerning interaction through a network will apply to the\ncombination as such.\n\n 14. Revised Versions of this License.\n\n The Free Software Foundation may publish revised and/or new versions of\nthe GNU General Public License from time to time. Such new versions will\nbe similar in spirit to the present version, but may differ in detail to\naddress new problems or concerns.\n\n Each version is given a distinguishing version number. If the\nProgram specifies that a certain numbered version of the GNU General\nPublic License \"or any later version\" applies to it, you have the\noption of following the terms and conditions either of that numbered\nversion or of any later version published by the Free Software\nFoundation. If the Program does not specify a version number of the\nGNU General Public License, you may choose any version ever published\nby the Free Software Foundation.\n\n If the Program specifies that a proxy can decide which future\nversions of the GNU General Public License can be used, that proxy\u0027s\npublic statement of acceptance of a version permanently authorizes you\nto choose that version for the Program.\n\n Later license versions may give you additional or different\npermissions. However, no additional obligations are imposed on any\nauthor or copyright holder as a result of your choosing to follow a\nlater version.\n\n 15. Disclaimer of Warranty.\n\n THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY\nAPPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT\nHOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \"AS IS\" WITHOUT WARRANTY\nOF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,\nTHE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR\nPURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM\nIS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF\nALL NECESSARY SERVICING, REPAIR OR CORRECTION.\n\n 16. Limitation of Liability.\n\n IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING\nWILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS\nTHE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY\nGENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE\nUSE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF\nDATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD\nPARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),\nEVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF\nSUCH DAMAGES.\n\n 17. Interpretation of Sections 15 and 16.\n\n If the disclaimer of warranty and limitation of liability provided\nabove cannot be given local legal effect according to their terms,\nreviewing courts shall apply local law that most closely approximates\nan absolute waiver of all civil liability in connection with the\nProgram, unless a warranty or assumption of liability accompanies a\ncopy of the Program in return for a fee.\n\n END OF TERMS AND CONDITIONS\n\n How to Apply These Terms to Your New Programs\n\n If you develop a new program, and you want it to be of the greatest\npossible use to the public, the best way to achieve this is to make it\nfree software which everyone can redistribute and change under these terms.\n\n To do so, attach the following notices to the program. It is safest\nto attach them to the start of each source file to most effectively\nstate the exclusion of warranty; and each file should have at least\nthe \"copyright\" line and a pointer to where the full notice is found.\n\n \u003cone line to give the program\u0027s name and a brief idea of what it does.\u003e\n Copyright (C) \u003cyear\u003e \u003cname of author\u003e\n\n This program is free software: you can redistribute it and/or modify\n it under the terms of the GNU General Public License as published by\n the Free Software Foundation, either version 3 of the License, or\n (at your option) any later version.\n\n This program is distributed in the hope that it will be useful,\n but WITHOUT ANY WARRANTY; without even the implied warranty of\n MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n GNU General Public License for more details.\n\n You should have received a copy of the GNU General Public License\n along with this program. If not, see \u003chttp://www.gnu.org/licenses/\u003e.\n\nAlso add information on how to contact you by electronic and paper mail.\n\n If the program does terminal interaction, make it output a short\nnotice like this when it starts in an interactive mode:\n\n \u003cprogram\u003e Copyright (C) \u003cyear\u003e \u003cname of author\u003e\n This program comes with ABSOLUTELY NO WARRANTY; for details type `show w\u0027.\n This is free software, and you are welcome to redistribute it\n under certain conditions; type `show c\u0027 for details.\n\nThe hypothetical commands `show w\u0027 and `show c\u0027 should show the appropriate\nparts of the General Public License. Of course, your program\u0027s commands\nmight be different; for a GUI interface, you would use an \"about box\".\n\n You should also get your employer (if you work as a programmer) or school,\nif any, to sign a \"copyright disclaimer\" for the program, if necessary.\nFor more information on this, and how to apply and follow the GNU GPL, see\n\u003chttp://www.gnu.org/licenses/\u003e.\n\n The GNU General Public License does not permit incorporating your program\ninto proprietary programs. If your program is a subroutine library, you\nmay consider it more useful to permit linking proprietary applications with\nthe library. If this is what you want to do, use the GNU Lesser General\nPublic License instead of this License. But first, please read\n\u003chttp://www.gnu.org/philosophy/why-not-lgpl.html\u003e.\n\n*/"}}
File 5 of 6: FiatTokenProxy
pragma solidity ^0.4.24; // File: zos-lib/contracts/upgradeability/Proxy.sol /** * @title Proxy * @dev Implements delegation of calls to other contracts, with proper * forwarding of return values and bubbling of failures. * It defines a fallback function that delegates all calls to the address * returned by the abstract _implementation() internal function. */ contract Proxy { /** * @dev Fallback function. * Implemented entirely in `_fallback`. */ function () payable external { _fallback(); } /** * @return The Address of the implementation. */ function _implementation() internal view returns (address); /** * @dev Delegates execution to an implementation contract. * This is a low level function that doesn't return to its internal call site. * It will return to the external caller whatever the implementation returns. * @param implementation Address to delegate. */ function _delegate(address implementation) internal { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize) } default { return(0, returndatasize) } } } /** * @dev Function that is run as the first thing in the fallback function. * Can be redefined in derived contracts to add functionality. * Redefinitions must call super._willFallback(). */ function _willFallback() internal { } /** * @dev fallback implementation. * Extracted to enable manual triggering. */ function _fallback() internal { _willFallback(); _delegate(_implementation()); } } // File: openzeppelin-solidity/contracts/AddressUtils.sol /** * Utility library of inline functions on addresses */ library AddressUtils { /** * Returns whether the target address is a contract * @dev This function will return false if invoked during the constructor of a contract, * as the code is not actually created until after the constructor finishes. * @param addr address to check * @return whether the target address is a contract */ function isContract(address addr) internal view returns (bool) { uint256 size; // XXX Currently there is no better way to check if there is a contract in an address // than to check the size of the code at that address. // See https://ethereum.stackexchange.com/a/14016/36603 // for more details about how this works. // TODO Check this again before the Serenity release, because all addresses will be // contracts then. // solium-disable-next-line security/no-inline-assembly assembly { size := extcodesize(addr) } return size > 0; } } // File: zos-lib/contracts/upgradeability/UpgradeabilityProxy.sol /** * @title UpgradeabilityProxy * @dev This contract implements a proxy that allows to change the * implementation address to which it will delegate. * Such a change is called an implementation upgrade. */ contract UpgradeabilityProxy is Proxy { /** * @dev Emitted when the implementation is upgraded. * @param implementation Address of the new implementation. */ event Upgraded(address implementation); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "org.zeppelinos.proxy.implementation", and is * validated in the constructor. */ bytes32 private constant IMPLEMENTATION_SLOT = 0x7050c9e0f4ca769c69bd3a8ef740bc37934f8e2c036e5a723fd8ee048ed3f8c3; /** * @dev Contract constructor. * @param _implementation Address of the initial implementation. */ constructor(address _implementation) public { assert(IMPLEMENTATION_SLOT == keccak256("org.zeppelinos.proxy.implementation")); _setImplementation(_implementation); } /** * @dev Returns the current implementation. * @return Address of the current implementation */ function _implementation() internal view returns (address impl) { bytes32 slot = IMPLEMENTATION_SLOT; assembly { impl := sload(slot) } } /** * @dev Upgrades the proxy to a new implementation. * @param newImplementation Address of the new implementation. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Sets the implementation address of the proxy. * @param newImplementation Address of the new implementation. */ function _setImplementation(address newImplementation) private { require(AddressUtils.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address"); bytes32 slot = IMPLEMENTATION_SLOT; assembly { sstore(slot, newImplementation) } } } // File: zos-lib/contracts/upgradeability/AdminUpgradeabilityProxy.sol /** * @title AdminUpgradeabilityProxy * @dev This contract combines an upgradeability proxy with an authorization * mechanism for administrative tasks. * All external functions in this contract must be guarded by the * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity * feature proposal that would enable this to be done automatically. */ contract AdminUpgradeabilityProxy is UpgradeabilityProxy { /** * @dev Emitted when the administration has been transferred. * @param previousAdmin Address of the previous admin. * @param newAdmin Address of the new admin. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "org.zeppelinos.proxy.admin", and is * validated in the constructor. */ bytes32 private constant ADMIN_SLOT = 0x10d6a54a4754c8869d6886b5f5d7fbfa5b4522237ea5c60d11bc4e7a1ff9390b; /** * @dev Modifier to check whether the `msg.sender` is the admin. * If it is, it will run the function. Otherwise, it will delegate the call * to the implementation. */ modifier ifAdmin() { if (msg.sender == _admin()) { _; } else { _fallback(); } } /** * Contract constructor. * It sets the `msg.sender` as the proxy administrator. * @param _implementation address of the initial implementation. */ constructor(address _implementation) UpgradeabilityProxy(_implementation) public { assert(ADMIN_SLOT == keccak256("org.zeppelinos.proxy.admin")); _setAdmin(msg.sender); } /** * @return The address of the proxy admin. */ function admin() external view ifAdmin returns (address) { return _admin(); } /** * @return The address of the implementation. */ function implementation() external view ifAdmin returns (address) { return _implementation(); } /** * @dev Changes the admin of the proxy. * Only the current admin can call this function. * @param newAdmin Address to transfer proxy administration to. */ function changeAdmin(address newAdmin) external ifAdmin { require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address"); emit AdminChanged(_admin(), newAdmin); _setAdmin(newAdmin); } /** * @dev Upgrade the backing implementation of the proxy. * Only the admin can call this function. * @param newImplementation Address of the new implementation. */ function upgradeTo(address newImplementation) external ifAdmin { _upgradeTo(newImplementation); } /** * @dev Upgrade the backing implementation of the proxy and call a function * on the new implementation. * This is useful to initialize the proxied contract. * @param newImplementation Address of the new implementation. * @param data Data to send as msg.data in the low level call. * It should include the signature and the parameters of the function to be * called, as described in * https://solidity.readthedocs.io/en/develop/abi-spec.html#function-selector-and-argument-encoding. */ function upgradeToAndCall(address newImplementation, bytes data) payable external ifAdmin { _upgradeTo(newImplementation); require(address(this).call.value(msg.value)(data)); } /** * @return The admin slot. */ function _admin() internal view returns (address adm) { bytes32 slot = ADMIN_SLOT; assembly { adm := sload(slot) } } /** * @dev Sets the address of the proxy admin. * @param newAdmin Address of the new proxy admin. */ function _setAdmin(address newAdmin) internal { bytes32 slot = ADMIN_SLOT; assembly { sstore(slot, newAdmin) } } /** * @dev Only fall back when the sender is not the admin. */ function _willFallback() internal { require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin"); super._willFallback(); } } // File: contracts/FiatTokenProxy.sol /** * Copyright CENTRE SECZ 2018 * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is furnished to * do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ pragma solidity ^0.4.24; /** * @title FiatTokenProxy * @dev This contract proxies FiatToken calls and enables FiatToken upgrades */ contract FiatTokenProxy is AdminUpgradeabilityProxy { constructor(address _implementation) public AdminUpgradeabilityProxy(_implementation) { } }
File 6 of 6: FiatTokenV2_1
// File: @openzeppelin/contracts/math/SafeMath.sol // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // File: @openzeppelin/contracts/token/ERC20/IERC20.sol pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval( address indexed owner, address indexed spender, uint256 value ); } // File: contracts/v1/AbstractFiatTokenV1.sol /** * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; abstract contract AbstractFiatTokenV1 is IERC20 { function _approve( address owner, address spender, uint256 value ) internal virtual; function _transfer( address from, address to, uint256 value ) internal virtual; } // File: contracts/v1/Ownable.sol /** * Copyright (c) 2018 zOS Global Limited. * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @notice The Ownable contract has an owner address, and provides basic * authorization control functions * @dev Forked from https://github.com/OpenZeppelin/openzeppelin-labs/blob/3887ab77b8adafba4a26ace002f3a684c1a3388b/upgradeability_ownership/contracts/ownership/Ownable.sol * Modifications: * 1. Consolidate OwnableStorage into this contract (7/13/18) * 2. Reformat, conform to Solidity 0.6 syntax, and add error messages (5/13/20) * 3. Make public functions external (5/27/20) */ contract Ownable { // Owner of the contract address private _owner; /** * @dev Event to show ownership has been transferred * @param previousOwner representing the address of the previous owner * @param newOwner representing the address of the new owner */ event OwnershipTransferred(address previousOwner, address newOwner); /** * @dev The constructor sets the original owner of the contract to the sender account. */ constructor() public { setOwner(msg.sender); } /** * @dev Tells the address of the owner * @return the address of the owner */ function owner() external view returns (address) { return _owner; } /** * @dev Sets a new owner address */ function setOwner(address newOwner) internal { _owner = newOwner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == _owner, "Ownable: caller is not the owner"); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) external onlyOwner { require( newOwner != address(0), "Ownable: new owner is the zero address" ); emit OwnershipTransferred(_owner, newOwner); setOwner(newOwner); } } // File: contracts/v1/Pausable.sol /** * Copyright (c) 2016 Smart Contract Solutions, Inc. * Copyright (c) 2018-2020 CENTRE SECZ0 * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @notice Base contract which allows children to implement an emergency stop * mechanism * @dev Forked from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/feb665136c0dae9912e08397c1a21c4af3651ef3/contracts/lifecycle/Pausable.sol * Modifications: * 1. Added pauser role, switched pause/unpause to be onlyPauser (6/14/2018) * 2. Removed whenNotPause/whenPaused from pause/unpause (6/14/2018) * 3. Removed whenPaused (6/14/2018) * 4. Switches ownable library to use ZeppelinOS (7/12/18) * 5. Remove constructor (7/13/18) * 6. Reformat, conform to Solidity 0.6 syntax and add error messages (5/13/20) * 7. Make public functions external (5/27/20) */ contract Pausable is Ownable { event Pause(); event Unpause(); event PauserChanged(address indexed newAddress); address public pauser; bool public paused = false; /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!paused, "Pausable: paused"); _; } /** * @dev throws if called by any account other than the pauser */ modifier onlyPauser() { require(msg.sender == pauser, "Pausable: caller is not the pauser"); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() external onlyPauser { paused = true; emit Pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() external onlyPauser { paused = false; emit Unpause(); } /** * @dev update the pauser role */ function updatePauser(address _newPauser) external onlyOwner { require( _newPauser != address(0), "Pausable: new pauser is the zero address" ); pauser = _newPauser; emit PauserChanged(pauser); } } // File: contracts/v1/Blacklistable.sol /** * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @title Blacklistable Token * @dev Allows accounts to be blacklisted by a "blacklister" role */ contract Blacklistable is Ownable { address public blacklister; mapping(address => bool) internal blacklisted; event Blacklisted(address indexed _account); event UnBlacklisted(address indexed _account); event BlacklisterChanged(address indexed newBlacklister); /** * @dev Throws if called by any account other than the blacklister */ modifier onlyBlacklister() { require( msg.sender == blacklister, "Blacklistable: caller is not the blacklister" ); _; } /** * @dev Throws if argument account is blacklisted * @param _account The address to check */ modifier notBlacklisted(address _account) { require( !blacklisted[_account], "Blacklistable: account is blacklisted" ); _; } /** * @dev Checks if account is blacklisted * @param _account The address to check */ function isBlacklisted(address _account) external view returns (bool) { return blacklisted[_account]; } /** * @dev Adds account to blacklist * @param _account The address to blacklist */ function blacklist(address _account) external onlyBlacklister { blacklisted[_account] = true; emit Blacklisted(_account); } /** * @dev Removes account from blacklist * @param _account The address to remove from the blacklist */ function unBlacklist(address _account) external onlyBlacklister { blacklisted[_account] = false; emit UnBlacklisted(_account); } function updateBlacklister(address _newBlacklister) external onlyOwner { require( _newBlacklister != address(0), "Blacklistable: new blacklister is the zero address" ); blacklister = _newBlacklister; emit BlacklisterChanged(blacklister); } } // File: contracts/v1/FiatTokenV1.sol /** * * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @title FiatToken * @dev ERC20 Token backed by fiat reserves */ contract FiatTokenV1 is AbstractFiatTokenV1, Ownable, Pausable, Blacklistable { using SafeMath for uint256; string public name; string public symbol; uint8 public decimals; string public currency; address public masterMinter; bool internal initialized; mapping(address => uint256) internal balances; mapping(address => mapping(address => uint256)) internal allowed; uint256 internal totalSupply_ = 0; mapping(address => bool) internal minters; mapping(address => uint256) internal minterAllowed; event Mint(address indexed minter, address indexed to, uint256 amount); event Burn(address indexed burner, uint256 amount); event MinterConfigured(address indexed minter, uint256 minterAllowedAmount); event MinterRemoved(address indexed oldMinter); event MasterMinterChanged(address indexed newMasterMinter); function initialize( string memory tokenName, string memory tokenSymbol, string memory tokenCurrency, uint8 tokenDecimals, address newMasterMinter, address newPauser, address newBlacklister, address newOwner ) public { require(!initialized, "FiatToken: contract is already initialized"); require( newMasterMinter != address(0), "FiatToken: new masterMinter is the zero address" ); require( newPauser != address(0), "FiatToken: new pauser is the zero address" ); require( newBlacklister != address(0), "FiatToken: new blacklister is the zero address" ); require( newOwner != address(0), "FiatToken: new owner is the zero address" ); name = tokenName; symbol = tokenSymbol; currency = tokenCurrency; decimals = tokenDecimals; masterMinter = newMasterMinter; pauser = newPauser; blacklister = newBlacklister; setOwner(newOwner); initialized = true; } /** * @dev Throws if called by any account other than a minter */ modifier onlyMinters() { require(minters[msg.sender], "FiatToken: caller is not a minter"); _; } /** * @dev Function to mint tokens * @param _to The address that will receive the minted tokens. * @param _amount The amount of tokens to mint. Must be less than or equal * to the minterAllowance of the caller. * @return A boolean that indicates if the operation was successful. */ function mint(address _to, uint256 _amount) external whenNotPaused onlyMinters notBlacklisted(msg.sender) notBlacklisted(_to) returns (bool) { require(_to != address(0), "FiatToken: mint to the zero address"); require(_amount > 0, "FiatToken: mint amount not greater than 0"); uint256 mintingAllowedAmount = minterAllowed[msg.sender]; require( _amount <= mintingAllowedAmount, "FiatToken: mint amount exceeds minterAllowance" ); totalSupply_ = totalSupply_.add(_amount); balances[_to] = balances[_to].add(_amount); minterAllowed[msg.sender] = mintingAllowedAmount.sub(_amount); emit Mint(msg.sender, _to, _amount); emit Transfer(address(0), _to, _amount); return true; } /** * @dev Throws if called by any account other than the masterMinter */ modifier onlyMasterMinter() { require( msg.sender == masterMinter, "FiatToken: caller is not the masterMinter" ); _; } /** * @dev Get minter allowance for an account * @param minter The address of the minter */ function minterAllowance(address minter) external view returns (uint256) { return minterAllowed[minter]; } /** * @dev Checks if account is a minter * @param account The address to check */ function isMinter(address account) external view returns (bool) { return minters[account]; } /** * @notice Amount of remaining tokens spender is allowed to transfer on * behalf of the token owner * @param owner Token owner's address * @param spender Spender's address * @return Allowance amount */ function allowance(address owner, address spender) external override view returns (uint256) { return allowed[owner][spender]; } /** * @dev Get totalSupply of token */ function totalSupply() external override view returns (uint256) { return totalSupply_; } /** * @dev Get token balance of an account * @param account address The account */ function balanceOf(address account) external override view returns (uint256) { return balances[account]; } /** * @notice Set spender's allowance over the caller's tokens to be a given * value. * @param spender Spender's address * @param value Allowance amount * @return True if successful */ function approve(address spender, uint256 value) external override whenNotPaused notBlacklisted(msg.sender) notBlacklisted(spender) returns (bool) { _approve(msg.sender, spender, value); return true; } /** * @dev Internal function to set allowance * @param owner Token owner's address * @param spender Spender's address * @param value Allowance amount */ function _approve( address owner, address spender, uint256 value ) internal override { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); allowed[owner][spender] = value; emit Approval(owner, spender, value); } /** * @notice Transfer tokens by spending allowance * @param from Payer's address * @param to Payee's address * @param value Transfer amount * @return True if successful */ function transferFrom( address from, address to, uint256 value ) external override whenNotPaused notBlacklisted(msg.sender) notBlacklisted(from) notBlacklisted(to) returns (bool) { require( value <= allowed[from][msg.sender], "ERC20: transfer amount exceeds allowance" ); _transfer(from, to, value); allowed[from][msg.sender] = allowed[from][msg.sender].sub(value); return true; } /** * @notice Transfer tokens from the caller * @param to Payee's address * @param value Transfer amount * @return True if successful */ function transfer(address to, uint256 value) external override whenNotPaused notBlacklisted(msg.sender) notBlacklisted(to) returns (bool) { _transfer(msg.sender, to, value); return true; } /** * @notice Internal function to process transfers * @param from Payer's address * @param to Payee's address * @param value Transfer amount */ function _transfer( address from, address to, uint256 value ) internal override { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); require( value <= balances[from], "ERC20: transfer amount exceeds balance" ); balances[from] = balances[from].sub(value); balances[to] = balances[to].add(value); emit Transfer(from, to, value); } /** * @dev Function to add/update a new minter * @param minter The address of the minter * @param minterAllowedAmount The minting amount allowed for the minter * @return True if the operation was successful. */ function configureMinter(address minter, uint256 minterAllowedAmount) external whenNotPaused onlyMasterMinter returns (bool) { minters[minter] = true; minterAllowed[minter] = minterAllowedAmount; emit MinterConfigured(minter, minterAllowedAmount); return true; } /** * @dev Function to remove a minter * @param minter The address of the minter to remove * @return True if the operation was successful. */ function removeMinter(address minter) external onlyMasterMinter returns (bool) { minters[minter] = false; minterAllowed[minter] = 0; emit MinterRemoved(minter); return true; } /** * @dev allows a minter to burn some of its own tokens * Validates that caller is a minter and that sender is not blacklisted * amount is less than or equal to the minter's account balance * @param _amount uint256 the amount of tokens to be burned */ function burn(uint256 _amount) external whenNotPaused onlyMinters notBlacklisted(msg.sender) { uint256 balance = balances[msg.sender]; require(_amount > 0, "FiatToken: burn amount not greater than 0"); require(balance >= _amount, "FiatToken: burn amount exceeds balance"); totalSupply_ = totalSupply_.sub(_amount); balances[msg.sender] = balance.sub(_amount); emit Burn(msg.sender, _amount); emit Transfer(msg.sender, address(0), _amount); } function updateMasterMinter(address _newMasterMinter) external onlyOwner { require( _newMasterMinter != address(0), "FiatToken: new masterMinter is the zero address" ); masterMinter = _newMasterMinter; emit MasterMinterChanged(masterMinter); } } // File: @openzeppelin/contracts/utils/Address.sol pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require( address(this).balance >= amount, "Address: insufficient balance" ); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require( success, "Address: unable to send value, recipient may have reverted" ); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue( target, data, value, "Address: low-level call with value failed" ); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require( address(this).balance >= value, "Address: insufficient balance for call" ); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue( address target, bytes memory data, uint256 weiValue, string memory errorMessage ) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol pragma solidity ^0.6.0; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transfer.selector, to, value) ); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value) ); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn( token, abi.encodeWithSelector(token.approve.selector, spender, value) ); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender).add( value ); _callOptionalReturn( token, abi.encodeWithSelector( token.approve.selector, spender, newAllowance ) ); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender).sub( value, "SafeERC20: decreased allowance below zero" ); _callOptionalReturn( token, abi.encodeWithSelector( token.approve.selector, spender, newAllowance ) ); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall( data, "SafeERC20: low-level call failed" ); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require( abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed" ); } } } // File: contracts/v1.1/Rescuable.sol /** * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; contract Rescuable is Ownable { using SafeERC20 for IERC20; address private _rescuer; event RescuerChanged(address indexed newRescuer); /** * @notice Returns current rescuer * @return Rescuer's address */ function rescuer() external view returns (address) { return _rescuer; } /** * @notice Revert if called by any account other than the rescuer. */ modifier onlyRescuer() { require(msg.sender == _rescuer, "Rescuable: caller is not the rescuer"); _; } /** * @notice Rescue ERC20 tokens locked up in this contract. * @param tokenContract ERC20 token contract address * @param to Recipient address * @param amount Amount to withdraw */ function rescueERC20( IERC20 tokenContract, address to, uint256 amount ) external onlyRescuer { tokenContract.safeTransfer(to, amount); } /** * @notice Assign the rescuer role to a given address. * @param newRescuer New rescuer's address */ function updateRescuer(address newRescuer) external onlyOwner { require( newRescuer != address(0), "Rescuable: new rescuer is the zero address" ); _rescuer = newRescuer; emit RescuerChanged(newRescuer); } } // File: contracts/v1.1/FiatTokenV1_1.sol /** * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @title FiatTokenV1_1 * @dev ERC20 Token backed by fiat reserves */ contract FiatTokenV1_1 is FiatTokenV1, Rescuable { } // File: contracts/v2/AbstractFiatTokenV2.sol /** * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; abstract contract AbstractFiatTokenV2 is AbstractFiatTokenV1 { function _increaseAllowance( address owner, address spender, uint256 increment ) internal virtual; function _decreaseAllowance( address owner, address spender, uint256 decrement ) internal virtual; } // File: contracts/util/ECRecover.sol /** * Copyright (c) 2016-2019 zOS Global Limited * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @title ECRecover * @notice A library that provides a safe ECDSA recovery function */ library ECRecover { /** * @notice Recover signer's address from a signed message * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/65e4ffde586ec89af3b7e9140bdc9235d1254853/contracts/cryptography/ECDSA.sol * Modifications: Accept v, r, and s as separate arguments * @param digest Keccak-256 hash digest of the signed message * @param v v of the signature * @param r r of the signature * @param s s of the signature * @return Signer address */ function recover( bytes32 digest, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if ( uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0 ) { revert("ECRecover: invalid signature 's' value"); } if (v != 27 && v != 28) { revert("ECRecover: invalid signature 'v' value"); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(digest, v, r, s); require(signer != address(0), "ECRecover: invalid signature"); return signer; } } // File: contracts/util/EIP712.sol /** * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @title EIP712 * @notice A library that provides EIP712 helper functions */ library EIP712 { /** * @notice Make EIP712 domain separator * @param name Contract name * @param version Contract version * @return Domain separator */ function makeDomainSeparator(string memory name, string memory version) internal view returns (bytes32) { uint256 chainId; assembly { chainId := chainid() } return keccak256( abi.encode( // keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)") 0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f, keccak256(bytes(name)), keccak256(bytes(version)), chainId, address(this) ) ); } /** * @notice Recover signer's address from a EIP712 signature * @param domainSeparator Domain separator * @param v v of the signature * @param r r of the signature * @param s s of the signature * @param typeHashAndData Type hash concatenated with data * @return Signer's address */ function recover( bytes32 domainSeparator, uint8 v, bytes32 r, bytes32 s, bytes memory typeHashAndData ) internal pure returns (address) { bytes32 digest = keccak256( abi.encodePacked( "\x19\x01", domainSeparator, keccak256(typeHashAndData) ) ); return ECRecover.recover(digest, v, r, s); } } // File: contracts/v2/EIP712Domain.sol /** * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @title EIP712 Domain */ contract EIP712Domain { /** * @dev EIP712 Domain Separator */ bytes32 public DOMAIN_SEPARATOR; } // File: contracts/v2/EIP3009.sol /** * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @title EIP-3009 * @notice Provide internal implementation for gas-abstracted transfers * @dev Contracts that inherit from this must wrap these with publicly * accessible functions, optionally adding modifiers where necessary */ abstract contract EIP3009 is AbstractFiatTokenV2, EIP712Domain { // keccak256("TransferWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)") bytes32 public constant TRANSFER_WITH_AUTHORIZATION_TYPEHASH = 0x7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a2267; // keccak256("ReceiveWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)") bytes32 public constant RECEIVE_WITH_AUTHORIZATION_TYPEHASH = 0xd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de8; // keccak256("CancelAuthorization(address authorizer,bytes32 nonce)") bytes32 public constant CANCEL_AUTHORIZATION_TYPEHASH = 0x158b0a9edf7a828aad02f63cd515c68ef2f50ba807396f6d12842833a1597429; /** * @dev authorizer address => nonce => bool (true if nonce is used) */ mapping(address => mapping(bytes32 => bool)) private _authorizationStates; event AuthorizationUsed(address indexed authorizer, bytes32 indexed nonce); event AuthorizationCanceled( address indexed authorizer, bytes32 indexed nonce ); /** * @notice Returns the state of an authorization * @dev Nonces are randomly generated 32-byte data unique to the * authorizer's address * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @return True if the nonce is used */ function authorizationState(address authorizer, bytes32 nonce) external view returns (bool) { return _authorizationStates[authorizer][nonce]; } /** * @notice Execute a transfer with a signed authorization * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function _transferWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) internal { _requireValidAuthorization(from, nonce, validAfter, validBefore); bytes memory data = abi.encode( TRANSFER_WITH_AUTHORIZATION_TYPEHASH, from, to, value, validAfter, validBefore, nonce ); require( EIP712.recover(DOMAIN_SEPARATOR, v, r, s, data) == from, "FiatTokenV2: invalid signature" ); _markAuthorizationAsUsed(from, nonce); _transfer(from, to, value); } /** * @notice Receive a transfer with a signed authorization from the payer * @dev This has an additional check to ensure that the payee's address * matches the caller of this function to prevent front-running attacks. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function _receiveWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) internal { require(to == msg.sender, "FiatTokenV2: caller must be the payee"); _requireValidAuthorization(from, nonce, validAfter, validBefore); bytes memory data = abi.encode( RECEIVE_WITH_AUTHORIZATION_TYPEHASH, from, to, value, validAfter, validBefore, nonce ); require( EIP712.recover(DOMAIN_SEPARATOR, v, r, s, data) == from, "FiatTokenV2: invalid signature" ); _markAuthorizationAsUsed(from, nonce); _transfer(from, to, value); } /** * @notice Attempt to cancel an authorization * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function _cancelAuthorization( address authorizer, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) internal { _requireUnusedAuthorization(authorizer, nonce); bytes memory data = abi.encode( CANCEL_AUTHORIZATION_TYPEHASH, authorizer, nonce ); require( EIP712.recover(DOMAIN_SEPARATOR, v, r, s, data) == authorizer, "FiatTokenV2: invalid signature" ); _authorizationStates[authorizer][nonce] = true; emit AuthorizationCanceled(authorizer, nonce); } /** * @notice Check that an authorization is unused * @param authorizer Authorizer's address * @param nonce Nonce of the authorization */ function _requireUnusedAuthorization(address authorizer, bytes32 nonce) private view { require( !_authorizationStates[authorizer][nonce], "FiatTokenV2: authorization is used or canceled" ); } /** * @notice Check that authorization is valid * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) */ function _requireValidAuthorization( address authorizer, bytes32 nonce, uint256 validAfter, uint256 validBefore ) private view { require( now > validAfter, "FiatTokenV2: authorization is not yet valid" ); require(now < validBefore, "FiatTokenV2: authorization is expired"); _requireUnusedAuthorization(authorizer, nonce); } /** * @notice Mark an authorization as used * @param authorizer Authorizer's address * @param nonce Nonce of the authorization */ function _markAuthorizationAsUsed(address authorizer, bytes32 nonce) private { _authorizationStates[authorizer][nonce] = true; emit AuthorizationUsed(authorizer, nonce); } } // File: contracts/v2/EIP2612.sol /** * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @title EIP-2612 * @notice Provide internal implementation for gas-abstracted approvals */ abstract contract EIP2612 is AbstractFiatTokenV2, EIP712Domain { // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)") bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint256) private _permitNonces; /** * @notice Nonces for permit * @param owner Token owner's address (Authorizer) * @return Next nonce */ function nonces(address owner) external view returns (uint256) { return _permitNonces[owner]; } /** * @notice Verify a signed approval permit and execute if valid * @param owner Token owner's address (Authorizer) * @param spender Spender's address * @param value Amount of allowance * @param deadline The time at which this expires (unix time) * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function _permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { require(deadline >= now, "FiatTokenV2: permit is expired"); bytes memory data = abi.encode( PERMIT_TYPEHASH, owner, spender, value, _permitNonces[owner]++, deadline ); require( EIP712.recover(DOMAIN_SEPARATOR, v, r, s, data) == owner, "EIP2612: invalid signature" ); _approve(owner, spender, value); } } // File: contracts/v2/FiatTokenV2.sol /** * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @title FiatToken V2 * @notice ERC20 Token backed by fiat reserves, version 2 */ contract FiatTokenV2 is FiatTokenV1_1, EIP3009, EIP2612 { uint8 internal _initializedVersion; /** * @notice Initialize v2 * @param newName New token name */ function initializeV2(string calldata newName) external { // solhint-disable-next-line reason-string require(initialized && _initializedVersion == 0); name = newName; DOMAIN_SEPARATOR = EIP712.makeDomainSeparator(newName, "2"); _initializedVersion = 1; } /** * @notice Increase the allowance by a given increment * @param spender Spender's address * @param increment Amount of increase in allowance * @return True if successful */ function increaseAllowance(address spender, uint256 increment) external whenNotPaused notBlacklisted(msg.sender) notBlacklisted(spender) returns (bool) { _increaseAllowance(msg.sender, spender, increment); return true; } /** * @notice Decrease the allowance by a given decrement * @param spender Spender's address * @param decrement Amount of decrease in allowance * @return True if successful */ function decreaseAllowance(address spender, uint256 decrement) external whenNotPaused notBlacklisted(msg.sender) notBlacklisted(spender) returns (bool) { _decreaseAllowance(msg.sender, spender, decrement); return true; } /** * @notice Execute a transfer with a signed authorization * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function transferWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) { _transferWithAuthorization( from, to, value, validAfter, validBefore, nonce, v, r, s ); } /** * @notice Receive a transfer with a signed authorization from the payer * @dev This has an additional check to ensure that the payee's address * matches the caller of this function to prevent front-running attacks. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function receiveWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) { _receiveWithAuthorization( from, to, value, validAfter, validBefore, nonce, v, r, s ); } /** * @notice Attempt to cancel an authorization * @dev Works only if the authorization is not yet used. * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function cancelAuthorization( address authorizer, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) external whenNotPaused { _cancelAuthorization(authorizer, nonce, v, r, s); } /** * @notice Update allowance with a signed permit * @param owner Token owner's address (Authorizer) * @param spender Spender's address * @param value Amount of allowance * @param deadline Expiration time, seconds since the epoch * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external whenNotPaused notBlacklisted(owner) notBlacklisted(spender) { _permit(owner, spender, value, deadline, v, r, s); } /** * @notice Internal function to increase the allowance by a given increment * @param owner Token owner's address * @param spender Spender's address * @param increment Amount of increase */ function _increaseAllowance( address owner, address spender, uint256 increment ) internal override { _approve(owner, spender, allowed[owner][spender].add(increment)); } /** * @notice Internal function to decrease the allowance by a given decrement * @param owner Token owner's address * @param spender Spender's address * @param decrement Amount of decrease */ function _decreaseAllowance( address owner, address spender, uint256 decrement ) internal override { _approve( owner, spender, allowed[owner][spender].sub( decrement, "ERC20: decreased allowance below zero" ) ); } } // File: contracts/v2/FiatTokenV2_1.sol /** * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; // solhint-disable func-name-mixedcase /** * @title FiatToken V2.1 * @notice ERC20 Token backed by fiat reserves, version 2.1 */ contract FiatTokenV2_1 is FiatTokenV2 { /** * @notice Initialize v2.1 * @param lostAndFound The address to which the locked funds are sent */ function initializeV2_1(address lostAndFound) external { // solhint-disable-next-line reason-string require(_initializedVersion == 1); uint256 lockedAmount = balances[address(this)]; if (lockedAmount > 0) { _transfer(address(this), lostAndFound, lockedAmount); } blacklisted[address(this)] = true; _initializedVersion = 2; } /** * @notice Version string for the EIP712 domain separator * @return Version string */ function version() external view returns (string memory) { return "2"; } }