ETH Price: $2,543.37 (-3.52%)

Transaction Decoder

Block:
22544089 at May-23-2025 07:30:11 AM +UTC
Transaction Fee:
0.000074968 ETH $0.19
Gas Used:
37,484 Gas / 2 Gwei

Emitted Events:

388 ERC1967Proxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x00000000000000000000000006fd4ba7973a0d39a91734bbc35bc2bcaa99e3b0, 0x00000000000000000000000028c6c06298d514db089934071355e5743bf21d60, 0000000000000000000000000000000000000000000000c252300e08a8d0d000 )

Account State Difference:

  Address   Before After State Difference Code
0x06FD4bA7...Caa99E3B0
(Binance Dep: 0x06FD4bA7973a0d39a91734bbc35bC2bCaa99E3B0)
0.013740244 Eth
Nonce: 113463
0.013665276 Eth
Nonce: 113464
0.000074968
(Titan Builder)
8.685276130036921596 Eth8.685305636021227932 Eth0.000029505984306336
0x6E2a43be...482b8b050

Execution Trace

ERC1967Proxy.a9059cbb( )
  • ARKM.transfer( to=0x28C6c06298d514Db089934071355E5743bf21d60, amount=3584590599240000000000 ) => ( True )
    File 1 of 2: ERC1967Proxy
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "@openzeppelin/contracts/proxy/beacon/BeaconProxy.sol";
    import "@openzeppelin/contracts/proxy/beacon/UpgradeableBeacon.sol";
    import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";
    import "@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol";
    import "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol";
    // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins.
    contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy {
        constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {}
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./IBeacon.sol";
    import "../Proxy.sol";
    import "../ERC1967/ERC1967Upgrade.sol";
    /**
     * @dev This contract implements a proxy that gets the implementation address for each call from a {UpgradeableBeacon}.
     *
     * The beacon address is stored in storage slot `uint256(keccak256('eip1967.proxy.beacon')) - 1`, so that it doesn't
     * conflict with the storage layout of the implementation behind the proxy.
     *
     * _Available since v3.4._
     */
    contract BeaconProxy is Proxy, ERC1967Upgrade {
        /**
         * @dev Initializes the proxy with `beacon`.
         *
         * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
         * will typically be an encoded function call, and allows initializating the storage of the proxy like a Solidity
         * constructor.
         *
         * Requirements:
         *
         * - `beacon` must be a contract with the interface {IBeacon}.
         */
        constructor(address beacon, bytes memory data) payable {
            assert(_BEACON_SLOT == bytes32(uint256(keccak256("eip1967.proxy.beacon")) - 1));
            _upgradeBeaconToAndCall(beacon, data, false);
        }
        /**
         * @dev Returns the current beacon address.
         */
        function _beacon() internal view virtual returns (address) {
            return _getBeacon();
        }
        /**
         * @dev Returns the current implementation address of the associated beacon.
         */
        function _implementation() internal view virtual override returns (address) {
            return IBeacon(_getBeacon()).implementation();
        }
        /**
         * @dev Changes the proxy to use a new beacon. Deprecated: see {_upgradeBeaconToAndCall}.
         *
         * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon.
         *
         * Requirements:
         *
         * - `beacon` must be a contract.
         * - The implementation returned by `beacon` must be a contract.
         */
        function _setBeacon(address beacon, bytes memory data) internal virtual {
            _upgradeBeaconToAndCall(beacon, data, false);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./IBeacon.sol";
    import "../../access/Ownable.sol";
    import "../../utils/Address.sol";
    /**
     * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
     * implementation contract, which is where they will delegate all function calls.
     *
     * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
     */
    contract UpgradeableBeacon is IBeacon, Ownable {
        address private _implementation;
        /**
         * @dev Emitted when the implementation returned by the beacon is changed.
         */
        event Upgraded(address indexed implementation);
        /**
         * @dev Sets the address of the initial implementation, and the deployer account as the owner who can upgrade the
         * beacon.
         */
        constructor(address implementation_) {
            _setImplementation(implementation_);
        }
        /**
         * @dev Returns the current implementation address.
         */
        function implementation() public view virtual override returns (address) {
            return _implementation;
        }
        /**
         * @dev Upgrades the beacon to a new implementation.
         *
         * Emits an {Upgraded} event.
         *
         * Requirements:
         *
         * - msg.sender must be the owner of the contract.
         * - `newImplementation` must be a contract.
         */
        function upgradeTo(address newImplementation) public virtual onlyOwner {
            _setImplementation(newImplementation);
            emit Upgraded(newImplementation);
        }
        /**
         * @dev Sets the implementation contract address for this beacon
         *
         * Requirements:
         *
         * - `newImplementation` must be a contract.
         */
        function _setImplementation(address newImplementation) private {
            require(Address.isContract(newImplementation), "UpgradeableBeacon: implementation is not a contract");
            _implementation = newImplementation;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "../Proxy.sol";
    import "./ERC1967Upgrade.sol";
    /**
     * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
     * implementation address that can be changed. This address is stored in storage in the location specified by
     * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
     * implementation behind the proxy.
     */
    contract ERC1967Proxy is Proxy, ERC1967Upgrade {
        /**
         * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
         *
         * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
         * function call, and allows initializating the storage of the proxy like a Solidity constructor.
         */
        constructor(address _logic, bytes memory _data) payable {
            assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
            _upgradeToAndCall(_logic, _data, false);
        }
        /**
         * @dev Returns the current implementation address.
         */
        function _implementation() internal view virtual override returns (address impl) {
            return ERC1967Upgrade._getImplementation();
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "../ERC1967/ERC1967Proxy.sol";
    /**
     * @dev This contract implements a proxy that is upgradeable by an admin.
     *
     * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
     * clashing], which can potentially be used in an attack, this contract uses the
     * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
     * things that go hand in hand:
     *
     * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
     * that call matches one of the admin functions exposed by the proxy itself.
     * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
     * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
     * "admin cannot fallback to proxy target".
     *
     * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
     * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
     * to sudden errors when trying to call a function from the proxy implementation.
     *
     * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
     * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
     */
    contract TransparentUpgradeableProxy is ERC1967Proxy {
        /**
         * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
         * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
         */
        constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
            assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
            _changeAdmin(admin_);
        }
        /**
         * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
         */
        modifier ifAdmin() {
            if (msg.sender == _getAdmin()) {
                _;
            } else {
                _fallback();
            }
        }
        /**
         * @dev Returns the current admin.
         *
         * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
         *
         * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
         * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
         * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
         */
        function admin() external ifAdmin returns (address admin_) {
            admin_ = _getAdmin();
        }
        /**
         * @dev Returns the current implementation.
         *
         * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
         *
         * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
         * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
         * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
         */
        function implementation() external ifAdmin returns (address implementation_) {
            implementation_ = _implementation();
        }
        /**
         * @dev Changes the admin of the proxy.
         *
         * Emits an {AdminChanged} event.
         *
         * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
         */
        function changeAdmin(address newAdmin) external virtual ifAdmin {
            _changeAdmin(newAdmin);
        }
        /**
         * @dev Upgrade the implementation of the proxy.
         *
         * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
         */
        function upgradeTo(address newImplementation) external ifAdmin {
            _upgradeToAndCall(newImplementation, bytes(""), false);
        }
        /**
         * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
         * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
         * proxied contract.
         *
         * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
         */
        function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
            _upgradeToAndCall(newImplementation, data, true);
        }
        /**
         * @dev Returns the current admin.
         */
        function _admin() internal view virtual returns (address) {
            return _getAdmin();
        }
        /**
         * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
         */
        function _beforeFallback() internal virtual override {
            require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
            super._beforeFallback();
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./TransparentUpgradeableProxy.sol";
    import "../../access/Ownable.sol";
    /**
     * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
     * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
     */
    contract ProxyAdmin is Ownable {
        /**
         * @dev Returns the current implementation of `proxy`.
         *
         * Requirements:
         *
         * - This contract must be the admin of `proxy`.
         */
        function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
            // We need to manually run the static call since the getter cannot be flagged as view
            // bytes4(keccak256("implementation()")) == 0x5c60da1b
            (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
            require(success);
            return abi.decode(returndata, (address));
        }
        /**
         * @dev Returns the current admin of `proxy`.
         *
         * Requirements:
         *
         * - This contract must be the admin of `proxy`.
         */
        function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
            // We need to manually run the static call since the getter cannot be flagged as view
            // bytes4(keccak256("admin()")) == 0xf851a440
            (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
            require(success);
            return abi.decode(returndata, (address));
        }
        /**
         * @dev Changes the admin of `proxy` to `newAdmin`.
         *
         * Requirements:
         *
         * - This contract must be the current admin of `proxy`.
         */
        function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
            proxy.changeAdmin(newAdmin);
        }
        /**
         * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
         *
         * Requirements:
         *
         * - This contract must be the admin of `proxy`.
         */
        function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
            proxy.upgradeTo(implementation);
        }
        /**
         * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
         * {TransparentUpgradeableProxy-upgradeToAndCall}.
         *
         * Requirements:
         *
         * - This contract must be the admin of `proxy`.
         */
        function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner {
            proxy.upgradeToAndCall{value: msg.value}(implementation, data);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /**
     * @dev This is the interface that {BeaconProxy} expects of its beacon.
     */
    interface IBeacon {
        /**
         * @dev Must return an address that can be used as a delegate call target.
         *
         * {BeaconProxy} will check that this address is a contract.
         */
        function implementation() external view returns (address);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /**
     * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
     * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
     * be specified by overriding the virtual {_implementation} function.
     *
     * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
     * different contract through the {_delegate} function.
     *
     * The success and return data of the delegated call will be returned back to the caller of the proxy.
     */
    abstract contract Proxy {
        /**
         * @dev Delegates the current call to `implementation`.
         *
         * This function does not return to its internall call site, it will return directly to the external caller.
         */
        function _delegate(address implementation) internal virtual {
            // solhint-disable-next-line no-inline-assembly
            assembly {
                // Copy msg.data. We take full control of memory in this inline assembly
                // block because it will not return to Solidity code. We overwrite the
                // Solidity scratch pad at memory position 0.
                calldatacopy(0, 0, calldatasize())
                // Call the implementation.
                // out and outsize are 0 because we don't know the size yet.
                let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                // Copy the returned data.
                returndatacopy(0, 0, returndatasize())
                switch result
                // delegatecall returns 0 on error.
                case 0 { revert(0, returndatasize()) }
                default { return(0, returndatasize()) }
            }
        }
        /**
         * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
         * and {_fallback} should delegate.
         */
        function _implementation() internal view virtual returns (address);
        /**
         * @dev Delegates the current call to the address returned by `_implementation()`.
         *
         * This function does not return to its internall call site, it will return directly to the external caller.
         */
        function _fallback() internal virtual {
            _beforeFallback();
            _delegate(_implementation());
        }
        /**
         * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
         * function in the contract matches the call data.
         */
        fallback () external payable virtual {
            _fallback();
        }
        /**
         * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
         * is empty.
         */
        receive () external payable virtual {
            _fallback();
        }
        /**
         * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
         * call, or as part of the Solidity `fallback` or `receive` functions.
         *
         * If overriden should call `super._beforeFallback()`.
         */
        function _beforeFallback() internal virtual {
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.2;
    import "../beacon/IBeacon.sol";
    import "../../utils/Address.sol";
    import "../../utils/StorageSlot.sol";
    /**
     * @dev This abstract contract provides getters and event emitting update functions for
     * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
     *
     * _Available since v4.1._
     *
     * @custom:oz-upgrades-unsafe-allow delegatecall
     */
    abstract contract ERC1967Upgrade {
        // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
        bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
        /**
         * @dev Storage slot with the address of the current implementation.
         * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
         * validated in the constructor.
         */
        bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /**
         * @dev Emitted when the implementation is upgraded.
         */
        event Upgraded(address indexed implementation);
        /**
         * @dev Returns the current implementation address.
         */
        function _getImplementation() internal view returns (address) {
            return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
        }
        /**
         * @dev Stores a new address in the EIP1967 implementation slot.
         */
        function _setImplementation(address newImplementation) private {
            require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
            StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
        }
        /**
         * @dev Perform implementation upgrade
         *
         * Emits an {Upgraded} event.
         */
        function _upgradeTo(address newImplementation) internal {
            _setImplementation(newImplementation);
            emit Upgraded(newImplementation);
        }
        /**
         * @dev Perform implementation upgrade with additional setup call.
         *
         * Emits an {Upgraded} event.
         */
        function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
            _setImplementation(newImplementation);
            emit Upgraded(newImplementation);
            if (data.length > 0 || forceCall) {
                Address.functionDelegateCall(newImplementation, data);
            }
        }
        /**
         * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
         *
         * Emits an {Upgraded} event.
         */
        function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal {
            address oldImplementation = _getImplementation();
            // Initial upgrade and setup call
            _setImplementation(newImplementation);
            if (data.length > 0 || forceCall) {
                Address.functionDelegateCall(newImplementation, data);
            }
            // Perform rollback test if not already in progress
            StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT);
            if (!rollbackTesting.value) {
                // Trigger rollback using upgradeTo from the new implementation
                rollbackTesting.value = true;
                Address.functionDelegateCall(
                    newImplementation,
                    abi.encodeWithSignature(
                        "upgradeTo(address)",
                        oldImplementation
                    )
                );
                rollbackTesting.value = false;
                // Check rollback was effective
                require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades");
                // Finally reset to the new implementation and log the upgrade
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
        }
        /**
         * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
         * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
         *
         * Emits a {BeaconUpgraded} event.
         */
        function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
            _setBeacon(newBeacon);
            emit BeaconUpgraded(newBeacon);
            if (data.length > 0 || forceCall) {
                Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
            }
        }
        /**
         * @dev Storage slot with the admin of the contract.
         * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
         * validated in the constructor.
         */
        bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /**
         * @dev Emitted when the admin account has changed.
         */
        event AdminChanged(address previousAdmin, address newAdmin);
        /**
         * @dev Returns the current admin.
         */
        function _getAdmin() internal view returns (address) {
            return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
        }
        /**
         * @dev Stores a new address in the EIP1967 admin slot.
         */
        function _setAdmin(address newAdmin) private {
            require(newAdmin != address(0), "ERC1967: new admin is the zero address");
            StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
        }
        /**
         * @dev Changes the admin of the proxy.
         *
         * Emits an {AdminChanged} event.
         */
        function _changeAdmin(address newAdmin) internal {
            emit AdminChanged(_getAdmin(), newAdmin);
            _setAdmin(newAdmin);
        }
        /**
         * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
         * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
         */
        bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
        /**
         * @dev Emitted when the beacon is upgraded.
         */
        event BeaconUpgraded(address indexed beacon);
        /**
         * @dev Returns the current beacon.
         */
        function _getBeacon() internal view returns (address) {
            return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
        }
        /**
         * @dev Stores a new beacon in the EIP1967 beacon slot.
         */
        function _setBeacon(address newBeacon) private {
            require(
                Address.isContract(newBeacon),
                "ERC1967: new beacon is not a contract"
            );
            require(
                Address.isContract(IBeacon(newBeacon).implementation()),
                "ERC1967: beacon implementation is not a contract"
            );
            StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize, which returns 0 for contracts in
            // construction, since the code is only stored at the end of the
            // constructor execution.
            uint256 size;
            // solhint-disable-next-line no-inline-assembly
            assembly { size := extcodesize(account) }
            return size > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
            (bool success, ) = recipient.call{ value: amount }("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain`call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
          return functionCall(target, data, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.call{ value: value }(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.staticcall(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
            require(isContract(target), "Address: delegate call to non-contract");
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
        function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /**
     * @dev Library for reading and writing primitive types to specific storage slots.
     *
     * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
     * This library helps with reading and writing to such slots without the need for inline assembly.
     *
     * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
     *
     * Example usage to set ERC1967 implementation slot:
     * ```
     * contract ERC1967 {
     *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
     *
     *     function _getImplementation() internal view returns (address) {
     *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
     *     }
     *
     *     function _setImplementation(address newImplementation) internal {
     *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
     *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
     *     }
     * }
     * ```
     *
     * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
     */
    library StorageSlot {
        struct AddressSlot {
            address value;
        }
        struct BooleanSlot {
            bool value;
        }
        struct Bytes32Slot {
            bytes32 value;
        }
        struct Uint256Slot {
            uint256 value;
        }
        /**
         * @dev Returns an `AddressSlot` with member `value` located at `slot`.
         */
        function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
         */
        function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
         */
        function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
         */
        function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
            assembly {
                r.slot := slot
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor () {
            address msgSender = _msgSender();
            _owner = msgSender;
            emit OwnershipTransferred(address(0), msgSender);
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
            _;
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            emit OwnershipTransferred(_owner, address(0));
            _owner = address(0);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            emit OwnershipTransferred(_owner, newOwner);
            _owner = newOwner;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
            return msg.data;
        }
    }
    

    File 2 of 2: ARKM
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/ContextUpgradeable.sol";
    import "../proxy/utils/Initializable.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        function __Ownable_init() internal onlyInitializing {
            __Ownable_init_unchained();
        }
        function __Ownable_init_unchained() internal onlyInitializing {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[49] private __gap;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
     * proxy whose upgrades are fully controlled by the current implementation.
     */
    interface IERC1822ProxiableUpgradeable {
        /**
         * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
         * address.
         *
         * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
         * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
         * function revert if invoked through a proxy.
         */
        function proxiableUUID() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev This is the interface that {BeaconProxy} expects of its beacon.
     */
    interface IBeaconUpgradeable {
        /**
         * @dev Must return an address that can be used as a delegate call target.
         *
         * {BeaconProxy} will check that this address is a contract.
         */
        function implementation() external view returns (address);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol)
    pragma solidity ^0.8.2;
    import "../beacon/IBeaconUpgradeable.sol";
    import "../../interfaces/draft-IERC1822Upgradeable.sol";
    import "../../utils/AddressUpgradeable.sol";
    import "../../utils/StorageSlotUpgradeable.sol";
    import "../utils/Initializable.sol";
    /**
     * @dev This abstract contract provides getters and event emitting update functions for
     * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
     *
     * _Available since v4.1._
     *
     * @custom:oz-upgrades-unsafe-allow delegatecall
     */
    abstract contract ERC1967UpgradeUpgradeable is Initializable {
        function __ERC1967Upgrade_init() internal onlyInitializing {
        }
        function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
        }
        // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
        bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
        /**
         * @dev Storage slot with the address of the current implementation.
         * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
         * validated in the constructor.
         */
        bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /**
         * @dev Emitted when the implementation is upgraded.
         */
        event Upgraded(address indexed implementation);
        /**
         * @dev Returns the current implementation address.
         */
        function _getImplementation() internal view returns (address) {
            return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
        }
        /**
         * @dev Stores a new address in the EIP1967 implementation slot.
         */
        function _setImplementation(address newImplementation) private {
            require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
            StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
        }
        /**
         * @dev Perform implementation upgrade
         *
         * Emits an {Upgraded} event.
         */
        function _upgradeTo(address newImplementation) internal {
            _setImplementation(newImplementation);
            emit Upgraded(newImplementation);
        }
        /**
         * @dev Perform implementation upgrade with additional setup call.
         *
         * Emits an {Upgraded} event.
         */
        function _upgradeToAndCall(
            address newImplementation,
            bytes memory data,
            bool forceCall
        ) internal {
            _upgradeTo(newImplementation);
            if (data.length > 0 || forceCall) {
                _functionDelegateCall(newImplementation, data);
            }
        }
        /**
         * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
         *
         * Emits an {Upgraded} event.
         */
        function _upgradeToAndCallUUPS(
            address newImplementation,
            bytes memory data,
            bool forceCall
        ) internal {
            // Upgrades from old implementations will perform a rollback test. This test requires the new
            // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
            // this special case will break upgrade paths from old UUPS implementation to new ones.
            if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
                _setImplementation(newImplementation);
            } else {
                try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                    require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                } catch {
                    revert("ERC1967Upgrade: new implementation is not UUPS");
                }
                _upgradeToAndCall(newImplementation, data, forceCall);
            }
        }
        /**
         * @dev Storage slot with the admin of the contract.
         * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
         * validated in the constructor.
         */
        bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /**
         * @dev Emitted when the admin account has changed.
         */
        event AdminChanged(address previousAdmin, address newAdmin);
        /**
         * @dev Returns the current admin.
         */
        function _getAdmin() internal view returns (address) {
            return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
        }
        /**
         * @dev Stores a new address in the EIP1967 admin slot.
         */
        function _setAdmin(address newAdmin) private {
            require(newAdmin != address(0), "ERC1967: new admin is the zero address");
            StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
        }
        /**
         * @dev Changes the admin of the proxy.
         *
         * Emits an {AdminChanged} event.
         */
        function _changeAdmin(address newAdmin) internal {
            emit AdminChanged(_getAdmin(), newAdmin);
            _setAdmin(newAdmin);
        }
        /**
         * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
         * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
         */
        bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
        /**
         * @dev Emitted when the beacon is upgraded.
         */
        event BeaconUpgraded(address indexed beacon);
        /**
         * @dev Returns the current beacon.
         */
        function _getBeacon() internal view returns (address) {
            return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
        }
        /**
         * @dev Stores a new beacon in the EIP1967 beacon slot.
         */
        function _setBeacon(address newBeacon) private {
            require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
            require(
                AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
                "ERC1967: beacon implementation is not a contract"
            );
            StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
        }
        /**
         * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
         * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
         *
         * Emits a {BeaconUpgraded} event.
         */
        function _upgradeBeaconToAndCall(
            address newBeacon,
            bytes memory data,
            bool forceCall
        ) internal {
            _setBeacon(newBeacon);
            emit BeaconUpgraded(newBeacon);
            if (data.length > 0 || forceCall) {
                _functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
            }
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) {
            require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract");
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed");
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[50] private __gap;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (proxy/utils/Initializable.sol)
    pragma solidity ^0.8.2;
    import "../../utils/AddressUpgradeable.sol";
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
     * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
     * case an upgrade adds a module that needs to be initialized.
     *
     * For example:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * contract MyToken is ERC20Upgradeable {
     *     function initialize() initializer public {
     *         __ERC20_init("MyToken", "MTK");
     *     }
     * }
     * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
     *     function initializeV2() reinitializer(2) public {
     *         __ERC20Permit_init("MyToken");
     *     }
     * }
     * ```
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     *
     * [CAUTION]
     * ====
     * Avoid leaving a contract uninitialized.
     *
     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
     * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
     * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * /// @custom:oz-upgrades-unsafe-allow constructor
     * constructor() {
     *     _disableInitializers();
     * }
     * ```
     * ====
     */
    abstract contract Initializable {
        /**
         * @dev Indicates that the contract has been initialized.
         * @custom:oz-retyped-from bool
         */
        uint8 private _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool private _initializing;
        /**
         * @dev Triggered when the contract has been initialized or reinitialized.
         */
        event Initialized(uint8 version);
        /**
         * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
         * `onlyInitializing` functions can be used to initialize parent contracts.
         *
         * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
         * constructor.
         *
         * Emits an {Initialized} event.
         */
        modifier initializer() {
            bool isTopLevelCall = !_initializing;
            require(
                (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                "Initializable: contract is already initialized"
            );
            _initialized = 1;
            if (isTopLevelCall) {
                _initializing = true;
            }
            _;
            if (isTopLevelCall) {
                _initializing = false;
                emit Initialized(1);
            }
        }
        /**
         * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
         * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
         * used to initialize parent contracts.
         *
         * A reinitializer may be used after the original initialization step. This is essential to configure modules that
         * are added through upgrades and that require initialization.
         *
         * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
         * cannot be nested. If one is invoked in the context of another, execution will revert.
         *
         * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
         * a contract, executing them in the right order is up to the developer or operator.
         *
         * WARNING: setting the version to 255 will prevent any future reinitialization.
         *
         * Emits an {Initialized} event.
         */
        modifier reinitializer(uint8 version) {
            require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
            _initialized = version;
            _initializing = true;
            _;
            _initializing = false;
            emit Initialized(version);
        }
        /**
         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
         * {initializer} and {reinitializer} modifiers, directly or indirectly.
         */
        modifier onlyInitializing() {
            require(_initializing, "Initializable: contract is not initializing");
            _;
        }
        /**
         * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
         * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
         * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
         * through proxies.
         *
         * Emits an {Initialized} event the first time it is successfully executed.
         */
        function _disableInitializers() internal virtual {
            require(!_initializing, "Initializable: contract is initializing");
            if (_initialized < type(uint8).max) {
                _initialized = type(uint8).max;
                emit Initialized(type(uint8).max);
            }
        }
        /**
         * @dev Internal function that returns the initialized version. Returns `_initialized`
         */
        function _getInitializedVersion() internal view returns (uint8) {
            return _initialized;
        }
        /**
         * @dev Internal function that returns the initialized version. Returns `_initializing`
         */
        function _isInitializing() internal view returns (bool) {
            return _initializing;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (proxy/utils/UUPSUpgradeable.sol)
    pragma solidity ^0.8.0;
    import "../../interfaces/draft-IERC1822Upgradeable.sol";
    import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
    import "./Initializable.sol";
    /**
     * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
     * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
     *
     * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
     * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
     * `UUPSUpgradeable` with a custom implementation of upgrades.
     *
     * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
     *
     * _Available since v4.1._
     */
    abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
        function __UUPSUpgradeable_init() internal onlyInitializing {
        }
        function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
        }
        /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
        address private immutable __self = address(this);
        /**
         * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
         * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
         * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
         * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
         * fail.
         */
        modifier onlyProxy() {
            require(address(this) != __self, "Function must be called through delegatecall");
            require(_getImplementation() == __self, "Function must be called through active proxy");
            _;
        }
        /**
         * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
         * callable on the implementing contract but not through proxies.
         */
        modifier notDelegated() {
            require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
            _;
        }
        /**
         * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
         * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
         *
         * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
         * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
         * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
         */
        function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
            return _IMPLEMENTATION_SLOT;
        }
        /**
         * @dev Upgrade the implementation of the proxy to `newImplementation`.
         *
         * Calls {_authorizeUpgrade}.
         *
         * Emits an {Upgraded} event.
         */
        function upgradeTo(address newImplementation) external virtual onlyProxy {
            _authorizeUpgrade(newImplementation);
            _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
        }
        /**
         * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
         * encoded in `data`.
         *
         * Calls {_authorizeUpgrade}.
         *
         * Emits an {Upgraded} event.
         */
        function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy {
            _authorizeUpgrade(newImplementation);
            _upgradeToAndCallUUPS(newImplementation, data, true);
        }
        /**
         * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
         * {upgradeTo} and {upgradeToAndCall}.
         *
         * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
         *
         * ```solidity
         * function _authorizeUpgrade(address) internal override onlyOwner {}
         * ```
         */
        function _authorizeUpgrade(address newImplementation) internal virtual;
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[50] private __gap;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
    pragma solidity ^0.8.0;
    import "../utils/ContextUpgradeable.sol";
    import "../proxy/utils/Initializable.sol";
    /**
     * @dev Contract module which allows children to implement an emergency stop
     * mechanism that can be triggered by an authorized account.
     *
     * This module is used through inheritance. It will make available the
     * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
     * the functions of your contract. Note that they will not be pausable by
     * simply including this module, only once the modifiers are put in place.
     */
    abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
        /**
         * @dev Emitted when the pause is triggered by `account`.
         */
        event Paused(address account);
        /**
         * @dev Emitted when the pause is lifted by `account`.
         */
        event Unpaused(address account);
        bool private _paused;
        /**
         * @dev Initializes the contract in unpaused state.
         */
        function __Pausable_init() internal onlyInitializing {
            __Pausable_init_unchained();
        }
        function __Pausable_init_unchained() internal onlyInitializing {
            _paused = false;
        }
        /**
         * @dev Modifier to make a function callable only when the contract is not paused.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        modifier whenNotPaused() {
            _requireNotPaused();
            _;
        }
        /**
         * @dev Modifier to make a function callable only when the contract is paused.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        modifier whenPaused() {
            _requirePaused();
            _;
        }
        /**
         * @dev Returns true if the contract is paused, and false otherwise.
         */
        function paused() public view virtual returns (bool) {
            return _paused;
        }
        /**
         * @dev Throws if the contract is paused.
         */
        function _requireNotPaused() internal view virtual {
            require(!paused(), "Pausable: paused");
        }
        /**
         * @dev Throws if the contract is not paused.
         */
        function _requirePaused() internal view virtual {
            require(paused(), "Pausable: not paused");
        }
        /**
         * @dev Triggers stopped state.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        function _pause() internal virtual whenNotPaused {
            _paused = true;
            emit Paused(_msgSender());
        }
        /**
         * @dev Returns to normal state.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        function _unpause() internal virtual whenPaused {
            _paused = false;
            emit Unpaused(_msgSender());
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[49] private __gap;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20Upgradeable.sol";
    import "./extensions/IERC20MetadataUpgradeable.sol";
    import "../../utils/ContextUpgradeable.sol";
    import "../../proxy/utils/Initializable.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
            __ERC20_init_unchained(name_, symbol_);
        }
        function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
                // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                // decrementing then incrementing.
                _balances[to] += amount;
            }
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            unchecked {
                // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                _balances[account] += amount;
            }
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
                // Overflow not possible: amount <= accountBalance <= totalSupply.
                _totalSupply -= amount;
            }
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[45] private __gap;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Burnable.sol)
    pragma solidity ^0.8.0;
    import "../ERC20Upgradeable.sol";
    import "../../../utils/ContextUpgradeable.sol";
    import "../../../proxy/utils/Initializable.sol";
    /**
     * @dev Extension of {ERC20} that allows token holders to destroy both their own
     * tokens and those that they have an allowance for, in a way that can be
     * recognized off-chain (via event analysis).
     */
    abstract contract ERC20BurnableUpgradeable is Initializable, ContextUpgradeable, ERC20Upgradeable {
        function __ERC20Burnable_init() internal onlyInitializing {
        }
        function __ERC20Burnable_init_unchained() internal onlyInitializing {
        }
        /**
         * @dev Destroys `amount` tokens from the caller.
         *
         * See {ERC20-_burn}.
         */
        function burn(uint256 amount) public virtual {
            _burn(_msgSender(), amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, deducting from the caller's
         * allowance.
         *
         * See {ERC20-_burn} and {ERC20-allowance}.
         *
         * Requirements:
         *
         * - the caller must have allowance for ``accounts``'s tokens of at least
         * `amount`.
         */
        function burnFrom(address account, uint256 amount) public virtual {
            _spendAllowance(account, _msgSender(), amount);
            _burn(account, amount);
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[50] private __gap;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20Upgradeable.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20MetadataUpgradeable is IERC20Upgradeable {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20Upgradeable {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library AddressUpgradeable {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    import "../proxy/utils/Initializable.sol";
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract ContextUpgradeable is Initializable {
        function __Context_init() internal onlyInitializing {
        }
        function __Context_init_unchained() internal onlyInitializing {
        }
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[50] private __gap;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Library for reading and writing primitive types to specific storage slots.
     *
     * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
     * This library helps with reading and writing to such slots without the need for inline assembly.
     *
     * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
     *
     * Example usage to set ERC1967 implementation slot:
     * ```
     * contract ERC1967 {
     *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
     *
     *     function _getImplementation() internal view returns (address) {
     *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
     *     }
     *
     *     function _setImplementation(address newImplementation) internal {
     *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
     *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
     *     }
     * }
     * ```
     *
     * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
     */
    library StorageSlotUpgradeable {
        struct AddressSlot {
            address value;
        }
        struct BooleanSlot {
            bool value;
        }
        struct Bytes32Slot {
            bytes32 value;
        }
        struct Uint256Slot {
            uint256 value;
        }
        /**
         * @dev Returns an `AddressSlot` with member `value` located at `slot`.
         */
        function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
         */
        function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
         */
        function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
         */
        function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
    }
    //SPDX-License-Identifier: Unlicense
    pragma solidity ^0.8.11;
    import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
    import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20BurnableUpgradeable.sol";
    import "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol";
    import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
    import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
    import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
    contract ARKM is Initializable, ERC20Upgradeable, ERC20BurnableUpgradeable, PausableUpgradeable, OwnableUpgradeable, UUPSUpgradeable {
        /// @custom:oz-upgrades-unsafe-allow constructor
        constructor() {
            _disableInitializers();
        }
        function initialize() initializer public {
            __ERC20_init("Arkham", "ARKM");
            __ERC20Burnable_init();
            __Pausable_init();
            __Ownable_init();
            __UUPSUpgradeable_init();
            // Initial supply is 1 billion (1,000,000,000).
            mint(msg.sender, 1000000000 * 10 ** decimals());
        }
        function pause() public onlyOwner {
            _pause();
        }
        function unpause() public onlyOwner {
            _unpause();
        }
        function mint(address to, uint256 amount) public onlyOwner {
            _mint(to, amount);
        }
        function _beforeTokenTransfer(address from, address to, uint256 amount)
            internal
            whenNotPaused
            override
        {
            super._beforeTokenTransfer(from, to, amount);
        }
        function _authorizeUpgrade(address newImplementation)
            internal
            onlyOwner
            override
        {}
    }