Transaction Hash:
Block:
21623932 at Jan-14-2025 04:29:59 PM +UTC
Transaction Fee:
0.000433899889895415 ETH
$1.08
Gas Used:
46,505 Gas / 9.330177183 Gwei
Emitted Events:
384 |
HFT.Approval( owner=[Sender] 0x5f939de0e81a199a34e50615f34cbab82412459a, spender=0x68b34658...D8665Fc45, amount=8073890000000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 13.79215184635153262 Eth | 13.79215649685153262 Eth | 0.0000046505 | |
0x5F939de0...82412459a |
8.053176917389558455 Eth
Nonce: 70
|
8.05274301749966304 Eth
Nonce: 71
| 0.000433899889895415 | ||
0xb3999F65...C942BcADC |
Execution Trace
HFT.approve( spender=0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45, rawAmount=8073890000000000000000000 ) => ( True )
approve[HFT (ln:443)]
_approve[HFT (ln:447)]
type[HFT (ln:736)]
type[HFT (ln:737)]
safe96[HFT (ln:739)]
Approval[HFT (ln:744)]
/** * SPDX-License-Identifier: UNLICENSED */ pragma solidity 0.8.11; library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } } contract HFT { /// @notice EIP-20 token name for this token string public constant name = 'Hashflow'; /// @notice EIP-20 token symbol for this token string public constant symbol = 'HFT'; /// @notice EIP-20 token decimals for this token uint8 public constant decimals = 18; /// @notice Total number of tokens in circulation uint256 public totalSupply = 1_000_000_000e18; // 1 billion HFT /// @notice Address which may mint new tokens address public minter; /// @notice The timestamp after which minting may occur (must be set to 4 years) uint256 public mintingAllowedAfter; /// @notice Minimum time between mints uint32 public constant minimumTimeBetweenMints = 1 days * 365; /// @notice Cap on the percentage of totalSupply that can be minted at each mint (set to 5% inflation currently) uint8 public mintCap = 5; /// @notice Allowance amounts on behalf of others mapping(address => mapping(address => uint96)) internal allowances; /// @notice Official record of token balances for each account mapping(address => uint96) internal balances; /// @notice A record of each accounts delegate mapping(address => address) public delegates; /// @notice A checkpoint for marking number of votes from a given block struct Checkpoint { uint32 fromBlock; uint96 votes; } /// @notice A record of votes checkpoints for each account, by index mapping(address => mapping(uint32 => Checkpoint)) public checkpoints; /// @notice The number of checkpoints for each account mapping(address => uint32) public numCheckpoints; /// @notice The EIP-712 typehash for the contract's domain bytes32 public constant DOMAIN_TYPEHASH = keccak256( 'EIP712Domain(string name,uint256 chainId,address verifyingContract)' ); /// @notice The EIP-712 typehash for the delegation struct used by the contract bytes32 public constant DELEGATION_TYPEHASH = keccak256('Delegation(address delegatee,uint256 nonce,uint256 expiry)'); /// @notice The EIP-712 typehash for the permit struct used by the contract bytes32 public constant PERMIT_TYPEHASH = keccak256( 'Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)' ); /// @notice A record of states for signing / validating signatures mapping(address => uint256) public nonces; /// @notice An event that is emitted when the minter address is changed event MinterChanged(address minter, address newMinter); /// @notice An event that is emitted when the mint percentage is changed event MintCapChanged(uint256 newMintCap); /// @notice An event thats emitted when an account changes its delegate event DelegateChanged( address indexed delegator, address indexed fromDelegate, address indexed toDelegate ); /// @notice An event thats emitted when a delegate account's vote balance changes event DelegateVotesChanged( address indexed delegate, uint256 previousBalance, uint256 newBalance ); /// @notice The standard EIP-20 transfer event event Transfer(address indexed from, address indexed to, uint256 amount); /// @notice The standard EIP-20 approval event event Approval( address indexed owner, address indexed spender, uint256 amount ); /** * @notice Construct a new Hashflow token * @param account The initial account to grant all the tokens * @param minter_ The account with minting ability * @param mintingAllowedAfter_ The timestamp after which minting may occur */ constructor( address account, address minter_, uint256 mintingAllowedAfter_ ) { require( mintingAllowedAfter_ >= block.timestamp + 1460 days, 'HFT::constructor: minting can only begin after 4 years' ); require( minter_ != address(0), 'HFT::constructor: minter_ cannot be zero address' ); require( account != address(0), 'HFT::constructor: account cannot be zero address' ); balances[account] = uint96(totalSupply); emit Transfer(address(0), account, totalSupply); minter = minter_; emit MinterChanged(address(0), minter); mintingAllowedAfter = mintingAllowedAfter_; } /** * @notice Change the minter address * @param minter_ The address of the new minter */ function setMinter(address minter_) external { require( minter_ != address(0), 'HFT::setMinter: minter_ cannot be zero address' ); require( msg.sender == minter, 'HFT::setMinter: only the minter can change the minter address' ); minter = minter_; emit MinterChanged(minter, minter_); } function setMintCap(uint256 mintCap_) external { require( msg.sender == minter, 'HFT::setMintCap: only the minter can change the mint cap' ); require( mintCap_ <= 100, 'HFT::setMintCap: mint cap should be between 0 and 100' ); mintCap = uint8(mintCap_); emit MintCapChanged(uint256(mintCap)); } /** * @notice Mint new tokens * @param dst The address of the destination account */ function mint(address dst) external { require(msg.sender == minter, 'HFT::mint: only the minter can mint'); require( block.timestamp >= mintingAllowedAfter, 'HFT::mint: minting not allowed yet or exceeds mint cap' ); require( dst != address(0), 'HFT::mint: cannot transfer to the zero address' ); // record the mint mintingAllowedAfter = SafeMath.add( block.timestamp, minimumTimeBetweenMints ); uint96 amount = safe96( SafeMath.div(SafeMath.mul(totalSupply, uint256(mintCap)), 100), 'HFT::mint: amount exceeds 96 bits' ); totalSupply = safe96( SafeMath.add(totalSupply, amount), 'HFT::mint: totalSupply exceeds 96 bits' ); // transfer the amount to the recipient balances[dst] = add96( balances[dst], amount, 'HFT::mint: transfer amount overflows' ); emit Transfer(address(0), dst, amount); // move delegates _moveDelegates(address(0), delegates[dst], amount); } /** * @notice Get the number of tokens `spender` is approved to spend on behalf of `account` * @param account The address of the account holding the funds * @param spender The address of the account spending the funds * @return The number of tokens approved */ function allowance(address account, address spender) external view returns (uint256) { return allowances[account][spender]; } /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param rawAmount The number of tokens that are approved (2^256-1 means infinite) * @return Whether or not the approval succeeded */ function approve(address spender, uint256 rawAmount) external returns (bool) { _approve(msg.sender, spender, rawAmount); return true; } /** * @notice Atomically increases the allowance granted to `spender` by the caller. * @dev This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * @param spender The address of the account which may transfer tokens * @param rawAmount The number of tokens that are approved (2^256-1 means infinite) * @return Whether or not the approval succeeded */ function increaseAllowance(address spender, uint256 rawAmount) external returns (bool) { _approve( msg.sender, spender, allowances[msg.sender][spender] + rawAmount ); return true; } /** * @notice Atomically increases the allowance granted to `spender` by the caller. * @dev This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * @param spender The address of the account which may transfer tokens * @param rawAmount The number of tokens that are approved (2^256-1 means infinite) * @return Whether or not the approval succeeded */ function decreaseAllowance(address spender, uint256 rawAmount) external returns (bool) { _approve( msg.sender, spender, allowances[msg.sender][spender] - rawAmount ); return true; } /** * @notice Triggers an approval from owner to spends * @param owner The address to approve from * @param spender The address to be approved * @param rawAmount The number of tokens that are approved (2^256-1 means infinite) * @param deadline The time at which to expire the signature * @param v The recovery byte of the signature * @param r Half of the ECDSA signature pair * @param s Half of the ECDSA signature pair */ function permit( address owner, address spender, uint256 rawAmount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external { uint96 amount; if (rawAmount == type(uint256).max) { amount = type(uint96).max; } else { amount = safe96(rawAmount, 'HFT::permit: amount exceeds 96 bits'); } bytes32 domainSeparator = keccak256( abi.encode( DOMAIN_TYPEHASH, keccak256(bytes(name)), getChainId(), address(this) ) ); bytes32 structHash = keccak256( abi.encode( PERMIT_TYPEHASH, owner, spender, rawAmount, nonces[owner]++, deadline ) ); bytes32 digest = keccak256( abi.encodePacked('\x19\x01', domainSeparator, structHash) ); address signatory = ecrecover(digest, v, r, s); require(signatory != address(0), 'HFT::permit: invalid signature'); require(signatory == owner, 'HFT::permit: unauthorized'); require(block.timestamp <= deadline, 'HFT::permit: signature expired'); allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @notice Get the number of tokens held by the `account` * @param account The address of the account to get the balance of * @return The number of tokens held */ function balanceOf(address account) external view returns (uint256) { return balances[account]; } /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param rawAmount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transfer(address dst, uint256 rawAmount) external returns (bool) { uint96 amount = safe96( rawAmount, 'HFT::transfer: amount exceeds 96 bits' ); _transferTokens(msg.sender, dst, amount); return true; } /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param rawAmount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferFrom( address src, address dst, uint256 rawAmount ) external returns (bool) { address spender = msg.sender; uint96 spenderAllowance = allowances[src][spender]; uint96 amount = safe96( rawAmount, 'HFT::approve: amount exceeds 96 bits' ); if (spender != src && spenderAllowance != type(uint96).max) { uint96 newAllowance = sub96( spenderAllowance, amount, 'HFT::transferFrom: transfer amount exceeds spender allowance' ); allowances[src][spender] = newAllowance; emit Approval(src, spender, newAllowance); } _transferTokens(src, dst, amount); return true; } /** * @notice Delegate votes from `msg.sender` to `delegatee` * @param delegatee The address to delegate votes to */ function delegate(address delegatee) public { return _delegate(msg.sender, delegatee); } /** * @notice Delegates votes from signatory to `delegatee` * @param delegatee The address to delegate votes to * @param nonce The contract state required to match the signature * @param expiry The time at which to expire the signature * @param v The recovery byte of the signature * @param r Half of the ECDSA signature pair * @param s Half of the ECDSA signature pair */ function delegateBySig( address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) public { bytes32 domainSeparator = keccak256( abi.encode( DOMAIN_TYPEHASH, keccak256(bytes(name)), getChainId(), address(this) ) ); bytes32 structHash = keccak256( abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry) ); bytes32 digest = keccak256( abi.encodePacked('\x19\x01', domainSeparator, structHash) ); address signatory = ecrecover(digest, v, r, s); require( signatory != address(0), 'HFT::delegateBySig: invalid signature' ); require( nonce == nonces[signatory]++, 'HFT::delegateBySig: invalid nonce' ); require( block.timestamp <= expiry, 'HFT::delegateBySig: signature expired' ); return _delegate(signatory, delegatee); } /** * @notice Gets the current votes balance for `account` * @param account The address to get votes balance * @return The number of current votes for `account` */ function getCurrentVotes(address account) external view returns (uint96) { uint32 nCheckpoints = numCheckpoints[account]; return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0; } /** * @notice Determine the prior number of votes for an account as of a block number * @dev Block number must be a finalized block or else this function will revert to prevent misinformation. * @param account The address of the account to check * @param blockNumber The block number to get the vote balance at * @return The number of votes the account had as of the given block */ function getPriorVotes(address account, uint256 blockNumber) public view returns (uint96) { require( blockNumber < block.number, 'HFT::getPriorVotes: not yet determined' ); uint32 nCheckpoints = numCheckpoints[account]; if (nCheckpoints == 0) { return 0; } // First check most recent balance if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) { return checkpoints[account][nCheckpoints - 1].votes; } // Next check implicit zero balance if (checkpoints[account][0].fromBlock > blockNumber) { return 0; } uint32 lower = 0; uint32 upper = nCheckpoints - 1; while (upper > lower) { uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow Checkpoint memory cp = checkpoints[account][center]; if (cp.fromBlock == blockNumber) { return cp.votes; } else if (cp.fromBlock < blockNumber) { lower = center; } else { upper = center - 1; } } return checkpoints[account][lower].votes; } function _delegate(address delegator, address delegatee) internal { address currentDelegate = delegates[delegator]; uint96 delegatorBalance = balances[delegator]; delegates[delegator] = delegatee; emit DelegateChanged(delegator, currentDelegate, delegatee); _moveDelegates(currentDelegate, delegatee, delegatorBalance); } function _approve( address caller, address spender, uint256 rawAmount ) internal { uint96 amount; if (rawAmount == type(uint256).max) { amount = type(uint96).max; } else { amount = safe96(rawAmount, 'HFT::approve: amount exceeds 96 bits'); } allowances[caller][spender] = amount; emit Approval(caller, spender, amount); } function _transferTokens( address src, address dst, uint96 amount ) internal { require( src != address(0), 'HFT::_transferTokens: cannot transfer from the zero address' ); require( dst != address(0), 'HFT::_transferTokens: cannot transfer to the zero address' ); balances[src] = sub96( balances[src], amount, 'HFT::_transferTokens: transfer amount exceeds balance' ); balances[dst] = add96( balances[dst], amount, 'HFT::_transferTokens: transfer amount overflows' ); emit Transfer(src, dst, amount); _moveDelegates(delegates[src], delegates[dst], amount); } function _moveDelegates( address srcRep, address dstRep, uint96 amount ) internal { if (srcRep != dstRep && amount > 0) { if (srcRep != address(0)) { uint32 srcRepNum = numCheckpoints[srcRep]; uint96 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0; uint96 srcRepNew = sub96( srcRepOld, amount, 'HFT::_moveDelegates: vote amount underflows' ); _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew); } if (dstRep != address(0)) { uint32 dstRepNum = numCheckpoints[dstRep]; uint96 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0; uint96 dstRepNew = add96( dstRepOld, amount, 'HFT::_moveDelegates: vote amount overflows' ); _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew); } } } function _writeCheckpoint( address delegatee, uint32 nCheckpoints, uint96 oldVotes, uint96 newVotes ) internal { uint32 blockNumber = safe32( block.number, 'HFT::_writeCheckpoint: block number exceeds 32 bits' ); if ( nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber ) { checkpoints[delegatee][nCheckpoints - 1].votes = newVotes; } else { checkpoints[delegatee][nCheckpoints] = Checkpoint( blockNumber, newVotes ); numCheckpoints[delegatee] = nCheckpoints + 1; } emit DelegateVotesChanged(delegatee, oldVotes, newVotes); } function safe32(uint256 n, string memory errorMessage) internal pure returns (uint32) { require(n < 2**32, errorMessage); return uint32(n); } function safe96(uint256 n, string memory errorMessage) internal pure returns (uint96) { require(n < 2**96, errorMessage); return uint96(n); } function add96( uint96 a, uint96 b, string memory errorMessage ) internal pure returns (uint96) { uint96 c = a + b; require(c >= a, errorMessage); return c; } function sub96( uint96 a, uint96 b, string memory errorMessage ) internal pure returns (uint96) { require(b <= a, errorMessage); return a - b; } function getChainId() internal view returns (uint256) { uint256 chainId; assembly { chainId := chainid() } return chainId; } }